OSDN Git Service

f2fs: enhance f2fs_is_checkpoint_ready()'s readability
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "tree-checker.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 static const struct extent_io_ops btree_extent_io_ops;
59 static void end_workqueue_fn(struct btrfs_work *work);
60 static void free_fs_root(struct btrfs_root *root);
61 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62                                     int read_only);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65                                       struct btrfs_root *root);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68                                         struct extent_io_tree *dirty_pages,
69                                         int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71                                        struct extent_io_tree *pinned_extents);
72 static int btrfs_cleanup_transaction(struct btrfs_root *root);
73 static void btrfs_error_commit_super(struct btrfs_root *root);
74
75 /*
76  * btrfs_end_io_wq structs are used to do processing in task context when an IO
77  * is complete.  This is used during reads to verify checksums, and it is used
78  * by writes to insert metadata for new file extents after IO is complete.
79  */
80 struct btrfs_end_io_wq {
81         struct bio *bio;
82         bio_end_io_t *end_io;
83         void *private;
84         struct btrfs_fs_info *info;
85         int error;
86         enum btrfs_wq_endio_type metadata;
87         struct list_head list;
88         struct btrfs_work work;
89 };
90
91 static struct kmem_cache *btrfs_end_io_wq_cache;
92
93 int __init btrfs_end_io_wq_init(void)
94 {
95         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
96                                         sizeof(struct btrfs_end_io_wq),
97                                         0,
98                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
99                                         NULL);
100         if (!btrfs_end_io_wq_cache)
101                 return -ENOMEM;
102         return 0;
103 }
104
105 void btrfs_end_io_wq_exit(void)
106 {
107         if (btrfs_end_io_wq_cache)
108                 kmem_cache_destroy(btrfs_end_io_wq_cache);
109 }
110
111 /*
112  * async submit bios are used to offload expensive checksumming
113  * onto the worker threads.  They checksum file and metadata bios
114  * just before they are sent down the IO stack.
115  */
116 struct async_submit_bio {
117         struct inode *inode;
118         struct bio *bio;
119         struct list_head list;
120         extent_submit_bio_hook_t *submit_bio_start;
121         extent_submit_bio_hook_t *submit_bio_done;
122         int rw;
123         int mirror_num;
124         unsigned long bio_flags;
125         /*
126          * bio_offset is optional, can be used if the pages in the bio
127          * can't tell us where in the file the bio should go
128          */
129         u64 bio_offset;
130         struct btrfs_work work;
131         int error;
132 };
133
134 /*
135  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
136  * eb, the lockdep key is determined by the btrfs_root it belongs to and
137  * the level the eb occupies in the tree.
138  *
139  * Different roots are used for different purposes and may nest inside each
140  * other and they require separate keysets.  As lockdep keys should be
141  * static, assign keysets according to the purpose of the root as indicated
142  * by btrfs_root->objectid.  This ensures that all special purpose roots
143  * have separate keysets.
144  *
145  * Lock-nesting across peer nodes is always done with the immediate parent
146  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
147  * subclass to avoid triggering lockdep warning in such cases.
148  *
149  * The key is set by the readpage_end_io_hook after the buffer has passed
150  * csum validation but before the pages are unlocked.  It is also set by
151  * btrfs_init_new_buffer on freshly allocated blocks.
152  *
153  * We also add a check to make sure the highest level of the tree is the
154  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
155  * needs update as well.
156  */
157 #ifdef CONFIG_DEBUG_LOCK_ALLOC
158 # if BTRFS_MAX_LEVEL != 8
159 #  error
160 # endif
161
162 static struct btrfs_lockdep_keyset {
163         u64                     id;             /* root objectid */
164         const char              *name_stem;     /* lock name stem */
165         char                    names[BTRFS_MAX_LEVEL + 1][20];
166         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
167 } btrfs_lockdep_keysets[] = {
168         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
169         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
170         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
171         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
172         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
173         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
174         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
175         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
176         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
177         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
178         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
179         { .id = 0,                              .name_stem = "tree"     },
180 };
181
182 void __init btrfs_init_lockdep(void)
183 {
184         int i, j;
185
186         /* initialize lockdep class names */
187         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
188                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
189
190                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
191                         snprintf(ks->names[j], sizeof(ks->names[j]),
192                                  "btrfs-%s-%02d", ks->name_stem, j);
193         }
194 }
195
196 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
197                                     int level)
198 {
199         struct btrfs_lockdep_keyset *ks;
200
201         BUG_ON(level >= ARRAY_SIZE(ks->keys));
202
203         /* find the matching keyset, id 0 is the default entry */
204         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
205                 if (ks->id == objectid)
206                         break;
207
208         lockdep_set_class_and_name(&eb->lock,
209                                    &ks->keys[level], ks->names[level]);
210 }
211
212 #endif
213
214 /*
215  * extents on the btree inode are pretty simple, there's one extent
216  * that covers the entire device
217  */
218 static struct extent_map *btree_get_extent(struct inode *inode,
219                 struct page *page, size_t pg_offset, u64 start, u64 len,
220                 int create)
221 {
222         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
223         struct extent_map *em;
224         int ret;
225
226         read_lock(&em_tree->lock);
227         em = lookup_extent_mapping(em_tree, start, len);
228         if (em) {
229                 em->bdev =
230                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
231                 read_unlock(&em_tree->lock);
232                 goto out;
233         }
234         read_unlock(&em_tree->lock);
235
236         em = alloc_extent_map();
237         if (!em) {
238                 em = ERR_PTR(-ENOMEM);
239                 goto out;
240         }
241         em->start = 0;
242         em->len = (u64)-1;
243         em->block_len = (u64)-1;
244         em->block_start = 0;
245         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
246
247         write_lock(&em_tree->lock);
248         ret = add_extent_mapping(em_tree, em, 0);
249         if (ret == -EEXIST) {
250                 free_extent_map(em);
251                 em = lookup_extent_mapping(em_tree, start, len);
252                 if (!em)
253                         em = ERR_PTR(-EIO);
254         } else if (ret) {
255                 free_extent_map(em);
256                 em = ERR_PTR(ret);
257         }
258         write_unlock(&em_tree->lock);
259
260 out:
261         return em;
262 }
263
264 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
265 {
266         return btrfs_crc32c(seed, data, len);
267 }
268
269 void btrfs_csum_final(u32 crc, char *result)
270 {
271         put_unaligned_le32(~crc, result);
272 }
273
274 /*
275  * compute the csum for a btree block, and either verify it or write it
276  * into the csum field of the block.
277  */
278 static int csum_tree_block(struct btrfs_fs_info *fs_info,
279                            struct extent_buffer *buf,
280                            int verify)
281 {
282         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
283         char *result = NULL;
284         unsigned long len;
285         unsigned long cur_len;
286         unsigned long offset = BTRFS_CSUM_SIZE;
287         char *kaddr;
288         unsigned long map_start;
289         unsigned long map_len;
290         int err;
291         u32 crc = ~(u32)0;
292         unsigned long inline_result;
293
294         len = buf->len - offset;
295         while (len > 0) {
296                 err = map_private_extent_buffer(buf, offset, 32,
297                                         &kaddr, &map_start, &map_len);
298                 if (err)
299                         return 1;
300                 cur_len = min(len, map_len - (offset - map_start));
301                 crc = btrfs_csum_data(kaddr + offset - map_start,
302                                       crc, cur_len);
303                 len -= cur_len;
304                 offset += cur_len;
305         }
306         if (csum_size > sizeof(inline_result)) {
307                 result = kzalloc(csum_size, GFP_NOFS);
308                 if (!result)
309                         return 1;
310         } else {
311                 result = (char *)&inline_result;
312         }
313
314         btrfs_csum_final(crc, result);
315
316         if (verify) {
317                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
318                         u32 val;
319                         u32 found = 0;
320                         memcpy(&found, result, csum_size);
321
322                         read_extent_buffer(buf, &val, 0, csum_size);
323                         btrfs_warn_rl(fs_info,
324                                 "%s checksum verify failed on %llu wanted %X found %X "
325                                 "level %d",
326                                 fs_info->sb->s_id, buf->start,
327                                 val, found, btrfs_header_level(buf));
328                         if (result != (char *)&inline_result)
329                                 kfree(result);
330                         return 1;
331                 }
332         } else {
333                 write_extent_buffer(buf, result, 0, csum_size);
334         }
335         if (result != (char *)&inline_result)
336                 kfree(result);
337         return 0;
338 }
339
340 /*
341  * we can't consider a given block up to date unless the transid of the
342  * block matches the transid in the parent node's pointer.  This is how we
343  * detect blocks that either didn't get written at all or got written
344  * in the wrong place.
345  */
346 static int verify_parent_transid(struct extent_io_tree *io_tree,
347                                  struct extent_buffer *eb, u64 parent_transid,
348                                  int atomic)
349 {
350         struct extent_state *cached_state = NULL;
351         int ret;
352         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
353
354         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
355                 return 0;
356
357         if (atomic)
358                 return -EAGAIN;
359
360         if (need_lock) {
361                 btrfs_tree_read_lock(eb);
362                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
363         }
364
365         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
366                          0, &cached_state);
367         if (extent_buffer_uptodate(eb) &&
368             btrfs_header_generation(eb) == parent_transid) {
369                 ret = 0;
370                 goto out;
371         }
372         btrfs_err_rl(eb->fs_info,
373                 "parent transid verify failed on %llu wanted %llu found %llu",
374                         eb->start,
375                         parent_transid, btrfs_header_generation(eb));
376         ret = 1;
377
378         /*
379          * Things reading via commit roots that don't have normal protection,
380          * like send, can have a really old block in cache that may point at a
381          * block that has been free'd and re-allocated.  So don't clear uptodate
382          * if we find an eb that is under IO (dirty/writeback) because we could
383          * end up reading in the stale data and then writing it back out and
384          * making everybody very sad.
385          */
386         if (!extent_buffer_under_io(eb))
387                 clear_extent_buffer_uptodate(eb);
388 out:
389         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
390                              &cached_state, GFP_NOFS);
391         if (need_lock)
392                 btrfs_tree_read_unlock_blocking(eb);
393         return ret;
394 }
395
396 /*
397  * Return 0 if the superblock checksum type matches the checksum value of that
398  * algorithm. Pass the raw disk superblock data.
399  */
400 static int btrfs_check_super_csum(char *raw_disk_sb)
401 {
402         struct btrfs_super_block *disk_sb =
403                 (struct btrfs_super_block *)raw_disk_sb;
404         u16 csum_type = btrfs_super_csum_type(disk_sb);
405         int ret = 0;
406
407         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
408                 u32 crc = ~(u32)0;
409                 const int csum_size = sizeof(crc);
410                 char result[csum_size];
411
412                 /*
413                  * The super_block structure does not span the whole
414                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
415                  * is filled with zeros and is included in the checkum.
416                  */
417                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
418                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
419                 btrfs_csum_final(crc, result);
420
421                 if (memcmp(raw_disk_sb, result, csum_size))
422                         ret = 1;
423         }
424
425         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
426                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
427                                 csum_type);
428                 ret = 1;
429         }
430
431         return ret;
432 }
433
434 /*
435  * helper to read a given tree block, doing retries as required when
436  * the checksums don't match and we have alternate mirrors to try.
437  */
438 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
439                                           struct extent_buffer *eb,
440                                           u64 start, u64 parent_transid)
441 {
442         struct extent_io_tree *io_tree;
443         int failed = 0;
444         int ret;
445         int num_copies = 0;
446         int mirror_num = 0;
447         int failed_mirror = 0;
448
449         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450         while (1) {
451                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
452                 ret = read_extent_buffer_pages(io_tree, eb, start,
453                                                WAIT_COMPLETE,
454                                                btree_get_extent, mirror_num);
455                 if (!ret) {
456                         if (!verify_parent_transid(io_tree, eb,
457                                                    parent_transid, 0))
458                                 break;
459                         else
460                                 ret = -EIO;
461                 }
462
463                 num_copies = btrfs_num_copies(root->fs_info,
464                                               eb->start, eb->len);
465                 if (num_copies == 1)
466                         break;
467
468                 if (!failed_mirror) {
469                         failed = 1;
470                         failed_mirror = eb->read_mirror;
471                 }
472
473                 mirror_num++;
474                 if (mirror_num == failed_mirror)
475                         mirror_num++;
476
477                 if (mirror_num > num_copies)
478                         break;
479         }
480
481         if (failed && !ret && failed_mirror)
482                 repair_eb_io_failure(root, eb, failed_mirror);
483
484         return ret;
485 }
486
487 /*
488  * checksum a dirty tree block before IO.  This has extra checks to make sure
489  * we only fill in the checksum field in the first page of a multi-page block
490  */
491
492 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
493 {
494         u64 start = page_offset(page);
495         u64 found_start;
496         struct extent_buffer *eb;
497
498         eb = (struct extent_buffer *)page->private;
499         if (page != eb->pages[0])
500                 return 0;
501         found_start = btrfs_header_bytenr(eb);
502         if (WARN_ON(found_start != start || !PageUptodate(page)))
503                 return 0;
504         csum_tree_block(fs_info, eb, 0);
505         return 0;
506 }
507
508 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
509                                  struct extent_buffer *eb)
510 {
511         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
512         u8 fsid[BTRFS_UUID_SIZE];
513         int ret = 1;
514
515         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
516         while (fs_devices) {
517                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
518                         ret = 0;
519                         break;
520                 }
521                 fs_devices = fs_devices->seed;
522         }
523         return ret;
524 }
525
526 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
527                                       u64 phy_offset, struct page *page,
528                                       u64 start, u64 end, int mirror)
529 {
530         u64 found_start;
531         int found_level;
532         struct extent_buffer *eb;
533         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
534         int ret = 0;
535         int reads_done;
536
537         if (!page->private)
538                 goto out;
539
540         eb = (struct extent_buffer *)page->private;
541
542         /* the pending IO might have been the only thing that kept this buffer
543          * in memory.  Make sure we have a ref for all this other checks
544          */
545         extent_buffer_get(eb);
546
547         reads_done = atomic_dec_and_test(&eb->io_pages);
548         if (!reads_done)
549                 goto err;
550
551         eb->read_mirror = mirror;
552         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
553                 ret = -EIO;
554                 goto err;
555         }
556
557         found_start = btrfs_header_bytenr(eb);
558         if (found_start != eb->start) {
559                 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
560                                found_start, eb->start);
561                 ret = -EIO;
562                 goto err;
563         }
564         if (check_tree_block_fsid(root->fs_info, eb)) {
565                 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
566                                eb->start);
567                 ret = -EIO;
568                 goto err;
569         }
570         found_level = btrfs_header_level(eb);
571         if (found_level >= BTRFS_MAX_LEVEL) {
572                 btrfs_err(root->fs_info, "bad tree block level %d",
573                            (int)btrfs_header_level(eb));
574                 ret = -EIO;
575                 goto err;
576         }
577
578         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
579                                        eb, found_level);
580
581         ret = csum_tree_block(root->fs_info, eb, 1);
582         if (ret) {
583                 ret = -EIO;
584                 goto err;
585         }
586
587         /*
588          * If this is a leaf block and it is corrupt, set the corrupt bit so
589          * that we don't try and read the other copies of this block, just
590          * return -EIO.
591          */
592         if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
593                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
594                 ret = -EIO;
595         }
596
597         if (found_level > 0 && btrfs_check_node(root, eb))
598                 ret = -EIO;
599
600         if (!ret)
601                 set_extent_buffer_uptodate(eb);
602 err:
603         if (reads_done &&
604             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
605                 btree_readahead_hook(root, eb, eb->start, ret);
606
607         if (ret) {
608                 /*
609                  * our io error hook is going to dec the io pages
610                  * again, we have to make sure it has something
611                  * to decrement
612                  */
613                 atomic_inc(&eb->io_pages);
614                 clear_extent_buffer_uptodate(eb);
615         }
616         free_extent_buffer(eb);
617 out:
618         return ret;
619 }
620
621 static int btree_io_failed_hook(struct page *page, int failed_mirror)
622 {
623         struct extent_buffer *eb;
624         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
625
626         eb = (struct extent_buffer *)page->private;
627         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
628         eb->read_mirror = failed_mirror;
629         atomic_dec(&eb->io_pages);
630         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
631                 btree_readahead_hook(root, eb, eb->start, -EIO);
632         return -EIO;    /* we fixed nothing */
633 }
634
635 static void end_workqueue_bio(struct bio *bio)
636 {
637         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
638         struct btrfs_fs_info *fs_info;
639         struct btrfs_workqueue *wq;
640         btrfs_work_func_t func;
641
642         fs_info = end_io_wq->info;
643         end_io_wq->error = bio->bi_error;
644
645         if (bio->bi_rw & REQ_WRITE) {
646                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
647                         wq = fs_info->endio_meta_write_workers;
648                         func = btrfs_endio_meta_write_helper;
649                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
650                         wq = fs_info->endio_freespace_worker;
651                         func = btrfs_freespace_write_helper;
652                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
653                         wq = fs_info->endio_raid56_workers;
654                         func = btrfs_endio_raid56_helper;
655                 } else {
656                         wq = fs_info->endio_write_workers;
657                         func = btrfs_endio_write_helper;
658                 }
659         } else {
660                 if (unlikely(end_io_wq->metadata ==
661                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
662                         wq = fs_info->endio_repair_workers;
663                         func = btrfs_endio_repair_helper;
664                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
665                         wq = fs_info->endio_raid56_workers;
666                         func = btrfs_endio_raid56_helper;
667                 } else if (end_io_wq->metadata) {
668                         wq = fs_info->endio_meta_workers;
669                         func = btrfs_endio_meta_helper;
670                 } else {
671                         wq = fs_info->endio_workers;
672                         func = btrfs_endio_helper;
673                 }
674         }
675
676         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
677         btrfs_queue_work(wq, &end_io_wq->work);
678 }
679
680 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
681                         enum btrfs_wq_endio_type metadata)
682 {
683         struct btrfs_end_io_wq *end_io_wq;
684
685         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
686         if (!end_io_wq)
687                 return -ENOMEM;
688
689         end_io_wq->private = bio->bi_private;
690         end_io_wq->end_io = bio->bi_end_io;
691         end_io_wq->info = info;
692         end_io_wq->error = 0;
693         end_io_wq->bio = bio;
694         end_io_wq->metadata = metadata;
695
696         bio->bi_private = end_io_wq;
697         bio->bi_end_io = end_workqueue_bio;
698         return 0;
699 }
700
701 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
702 {
703         unsigned long limit = min_t(unsigned long,
704                                     info->thread_pool_size,
705                                     info->fs_devices->open_devices);
706         return 256 * limit;
707 }
708
709 static void run_one_async_start(struct btrfs_work *work)
710 {
711         struct async_submit_bio *async;
712         int ret;
713
714         async = container_of(work, struct  async_submit_bio, work);
715         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
716                                       async->mirror_num, async->bio_flags,
717                                       async->bio_offset);
718         if (ret)
719                 async->error = ret;
720 }
721
722 static void run_one_async_done(struct btrfs_work *work)
723 {
724         struct btrfs_fs_info *fs_info;
725         struct async_submit_bio *async;
726         int limit;
727
728         async = container_of(work, struct  async_submit_bio, work);
729         fs_info = BTRFS_I(async->inode)->root->fs_info;
730
731         limit = btrfs_async_submit_limit(fs_info);
732         limit = limit * 2 / 3;
733
734         /*
735          * atomic_dec_return implies a barrier for waitqueue_active
736          */
737         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
738             waitqueue_active(&fs_info->async_submit_wait))
739                 wake_up(&fs_info->async_submit_wait);
740
741         /* If an error occured we just want to clean up the bio and move on */
742         if (async->error) {
743                 async->bio->bi_error = async->error;
744                 bio_endio(async->bio);
745                 return;
746         }
747
748         async->submit_bio_done(async->inode, async->rw, async->bio,
749                                async->mirror_num, async->bio_flags,
750                                async->bio_offset);
751 }
752
753 static void run_one_async_free(struct btrfs_work *work)
754 {
755         struct async_submit_bio *async;
756
757         async = container_of(work, struct  async_submit_bio, work);
758         kfree(async);
759 }
760
761 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
762                         int rw, struct bio *bio, int mirror_num,
763                         unsigned long bio_flags,
764                         u64 bio_offset,
765                         extent_submit_bio_hook_t *submit_bio_start,
766                         extent_submit_bio_hook_t *submit_bio_done)
767 {
768         struct async_submit_bio *async;
769
770         async = kmalloc(sizeof(*async), GFP_NOFS);
771         if (!async)
772                 return -ENOMEM;
773
774         async->inode = inode;
775         async->rw = rw;
776         async->bio = bio;
777         async->mirror_num = mirror_num;
778         async->submit_bio_start = submit_bio_start;
779         async->submit_bio_done = submit_bio_done;
780
781         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
782                         run_one_async_done, run_one_async_free);
783
784         async->bio_flags = bio_flags;
785         async->bio_offset = bio_offset;
786
787         async->error = 0;
788
789         atomic_inc(&fs_info->nr_async_submits);
790
791         if (rw & REQ_SYNC)
792                 btrfs_set_work_high_priority(&async->work);
793
794         btrfs_queue_work(fs_info->workers, &async->work);
795
796         while (atomic_read(&fs_info->async_submit_draining) &&
797               atomic_read(&fs_info->nr_async_submits)) {
798                 wait_event(fs_info->async_submit_wait,
799                            (atomic_read(&fs_info->nr_async_submits) == 0));
800         }
801
802         return 0;
803 }
804
805 static int btree_csum_one_bio(struct bio *bio)
806 {
807         struct bio_vec *bvec;
808         struct btrfs_root *root;
809         int i, ret = 0;
810
811         bio_for_each_segment_all(bvec, bio, i) {
812                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
813                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
814                 if (ret)
815                         break;
816         }
817
818         return ret;
819 }
820
821 static int __btree_submit_bio_start(struct inode *inode, int rw,
822                                     struct bio *bio, int mirror_num,
823                                     unsigned long bio_flags,
824                                     u64 bio_offset)
825 {
826         /*
827          * when we're called for a write, we're already in the async
828          * submission context.  Just jump into btrfs_map_bio
829          */
830         return btree_csum_one_bio(bio);
831 }
832
833 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
834                                  int mirror_num, unsigned long bio_flags,
835                                  u64 bio_offset)
836 {
837         int ret;
838
839         /*
840          * when we're called for a write, we're already in the async
841          * submission context.  Just jump into btrfs_map_bio
842          */
843         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
844         if (ret) {
845                 bio->bi_error = ret;
846                 bio_endio(bio);
847         }
848         return ret;
849 }
850
851 static int check_async_write(struct inode *inode, unsigned long bio_flags)
852 {
853         if (bio_flags & EXTENT_BIO_TREE_LOG)
854                 return 0;
855 #ifdef CONFIG_X86
856         if (static_cpu_has(X86_FEATURE_XMM4_2))
857                 return 0;
858 #endif
859         return 1;
860 }
861
862 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
863                                  int mirror_num, unsigned long bio_flags,
864                                  u64 bio_offset)
865 {
866         int async = check_async_write(inode, bio_flags);
867         int ret;
868
869         if (!(rw & REQ_WRITE)) {
870                 /*
871                  * called for a read, do the setup so that checksum validation
872                  * can happen in the async kernel threads
873                  */
874                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
875                                           bio, BTRFS_WQ_ENDIO_METADATA);
876                 if (ret)
877                         goto out_w_error;
878                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
879                                     mirror_num, 0);
880         } else if (!async) {
881                 ret = btree_csum_one_bio(bio);
882                 if (ret)
883                         goto out_w_error;
884                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
885                                     mirror_num, 0);
886         } else {
887                 /*
888                  * kthread helpers are used to submit writes so that
889                  * checksumming can happen in parallel across all CPUs
890                  */
891                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
892                                           inode, rw, bio, mirror_num, 0,
893                                           bio_offset,
894                                           __btree_submit_bio_start,
895                                           __btree_submit_bio_done);
896         }
897
898         if (ret)
899                 goto out_w_error;
900         return 0;
901
902 out_w_error:
903         bio->bi_error = ret;
904         bio_endio(bio);
905         return ret;
906 }
907
908 #ifdef CONFIG_MIGRATION
909 static int btree_migratepage(struct address_space *mapping,
910                         struct page *newpage, struct page *page,
911                         enum migrate_mode mode)
912 {
913         /*
914          * we can't safely write a btree page from here,
915          * we haven't done the locking hook
916          */
917         if (PageDirty(page))
918                 return -EAGAIN;
919         /*
920          * Buffers may be managed in a filesystem specific way.
921          * We must have no buffers or drop them.
922          */
923         if (page_has_private(page) &&
924             !try_to_release_page(page, GFP_KERNEL))
925                 return -EAGAIN;
926         return migrate_page(mapping, newpage, page, mode);
927 }
928 #endif
929
930
931 static int btree_writepages(struct address_space *mapping,
932                             struct writeback_control *wbc)
933 {
934         struct btrfs_fs_info *fs_info;
935         int ret;
936
937         if (wbc->sync_mode == WB_SYNC_NONE) {
938
939                 if (wbc->for_kupdate)
940                         return 0;
941
942                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
943                 /* this is a bit racy, but that's ok */
944                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
945                                              BTRFS_DIRTY_METADATA_THRESH,
946                                              fs_info->dirty_metadata_batch);
947                 if (ret < 0)
948                         return 0;
949         }
950         return btree_write_cache_pages(mapping, wbc);
951 }
952
953 static int btree_readpage(struct file *file, struct page *page)
954 {
955         struct extent_io_tree *tree;
956         tree = &BTRFS_I(page->mapping->host)->io_tree;
957         return extent_read_full_page(tree, page, btree_get_extent, 0);
958 }
959
960 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
961 {
962         if (PageWriteback(page) || PageDirty(page))
963                 return 0;
964
965         return try_release_extent_buffer(page);
966 }
967
968 static void btree_invalidatepage(struct page *page, unsigned int offset,
969                                  unsigned int length)
970 {
971         struct extent_io_tree *tree;
972         tree = &BTRFS_I(page->mapping->host)->io_tree;
973         extent_invalidatepage(tree, page, offset);
974         btree_releasepage(page, GFP_NOFS);
975         if (PagePrivate(page)) {
976                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
977                            "page private not zero on page %llu",
978                            (unsigned long long)page_offset(page));
979                 ClearPagePrivate(page);
980                 set_page_private(page, 0);
981                 page_cache_release(page);
982         }
983 }
984
985 static int btree_set_page_dirty(struct page *page)
986 {
987 #ifdef DEBUG
988         struct extent_buffer *eb;
989
990         BUG_ON(!PagePrivate(page));
991         eb = (struct extent_buffer *)page->private;
992         BUG_ON(!eb);
993         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
994         BUG_ON(!atomic_read(&eb->refs));
995         btrfs_assert_tree_locked(eb);
996 #endif
997         return __set_page_dirty_nobuffers(page);
998 }
999
1000 static const struct address_space_operations btree_aops = {
1001         .readpage       = btree_readpage,
1002         .writepages     = btree_writepages,
1003         .releasepage    = btree_releasepage,
1004         .invalidatepage = btree_invalidatepage,
1005 #ifdef CONFIG_MIGRATION
1006         .migratepage    = btree_migratepage,
1007 #endif
1008         .set_page_dirty = btree_set_page_dirty,
1009 };
1010
1011 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1012 {
1013         struct extent_buffer *buf = NULL;
1014         struct inode *btree_inode = root->fs_info->btree_inode;
1015
1016         buf = btrfs_find_create_tree_block(root, bytenr);
1017         if (!buf)
1018                 return;
1019         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1020                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1021         free_extent_buffer(buf);
1022 }
1023
1024 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1025                          int mirror_num, struct extent_buffer **eb)
1026 {
1027         struct extent_buffer *buf = NULL;
1028         struct inode *btree_inode = root->fs_info->btree_inode;
1029         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1030         int ret;
1031
1032         buf = btrfs_find_create_tree_block(root, bytenr);
1033         if (!buf)
1034                 return 0;
1035
1036         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1037
1038         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1039                                        btree_get_extent, mirror_num);
1040         if (ret) {
1041                 free_extent_buffer(buf);
1042                 return ret;
1043         }
1044
1045         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1046                 free_extent_buffer(buf);
1047                 return -EIO;
1048         } else if (extent_buffer_uptodate(buf)) {
1049                 *eb = buf;
1050         } else {
1051                 free_extent_buffer(buf);
1052         }
1053         return 0;
1054 }
1055
1056 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1057                                             u64 bytenr)
1058 {
1059         return find_extent_buffer(fs_info, bytenr);
1060 }
1061
1062 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1063                                                  u64 bytenr)
1064 {
1065         if (btrfs_test_is_dummy_root(root))
1066                 return alloc_test_extent_buffer(root->fs_info, bytenr);
1067         return alloc_extent_buffer(root->fs_info, bytenr);
1068 }
1069
1070
1071 int btrfs_write_tree_block(struct extent_buffer *buf)
1072 {
1073         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1074                                         buf->start + buf->len - 1);
1075 }
1076
1077 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1078 {
1079         return filemap_fdatawait_range(buf->pages[0]->mapping,
1080                                        buf->start, buf->start + buf->len - 1);
1081 }
1082
1083 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1084                                       u64 parent_transid)
1085 {
1086         struct extent_buffer *buf = NULL;
1087         int ret;
1088
1089         buf = btrfs_find_create_tree_block(root, bytenr);
1090         if (!buf)
1091                 return ERR_PTR(-ENOMEM);
1092
1093         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1094         if (ret) {
1095                 free_extent_buffer(buf);
1096                 return ERR_PTR(ret);
1097         }
1098         return buf;
1099
1100 }
1101
1102 void clean_tree_block(struct btrfs_trans_handle *trans,
1103                       struct btrfs_fs_info *fs_info,
1104                       struct extent_buffer *buf)
1105 {
1106         if (btrfs_header_generation(buf) ==
1107             fs_info->running_transaction->transid) {
1108                 btrfs_assert_tree_locked(buf);
1109
1110                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1111                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1112                                              -buf->len,
1113                                              fs_info->dirty_metadata_batch);
1114                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1115                         btrfs_set_lock_blocking(buf);
1116                         clear_extent_buffer_dirty(buf);
1117                 }
1118         }
1119 }
1120
1121 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1122 {
1123         struct btrfs_subvolume_writers *writers;
1124         int ret;
1125
1126         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1127         if (!writers)
1128                 return ERR_PTR(-ENOMEM);
1129
1130         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1131         if (ret < 0) {
1132                 kfree(writers);
1133                 return ERR_PTR(ret);
1134         }
1135
1136         init_waitqueue_head(&writers->wait);
1137         return writers;
1138 }
1139
1140 static void
1141 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1142 {
1143         percpu_counter_destroy(&writers->counter);
1144         kfree(writers);
1145 }
1146
1147 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1148                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1149                          u64 objectid)
1150 {
1151         root->node = NULL;
1152         root->commit_root = NULL;
1153         root->sectorsize = sectorsize;
1154         root->nodesize = nodesize;
1155         root->stripesize = stripesize;
1156         root->state = 0;
1157         root->orphan_cleanup_state = 0;
1158
1159         root->objectid = objectid;
1160         root->last_trans = 0;
1161         root->highest_objectid = 0;
1162         root->nr_delalloc_inodes = 0;
1163         root->nr_ordered_extents = 0;
1164         root->name = NULL;
1165         root->inode_tree = RB_ROOT;
1166         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1167         root->block_rsv = NULL;
1168         root->orphan_block_rsv = NULL;
1169
1170         INIT_LIST_HEAD(&root->dirty_list);
1171         INIT_LIST_HEAD(&root->root_list);
1172         INIT_LIST_HEAD(&root->delalloc_inodes);
1173         INIT_LIST_HEAD(&root->delalloc_root);
1174         INIT_LIST_HEAD(&root->ordered_extents);
1175         INIT_LIST_HEAD(&root->ordered_root);
1176         INIT_LIST_HEAD(&root->logged_list[0]);
1177         INIT_LIST_HEAD(&root->logged_list[1]);
1178         spin_lock_init(&root->orphan_lock);
1179         spin_lock_init(&root->inode_lock);
1180         spin_lock_init(&root->delalloc_lock);
1181         spin_lock_init(&root->ordered_extent_lock);
1182         spin_lock_init(&root->accounting_lock);
1183         spin_lock_init(&root->log_extents_lock[0]);
1184         spin_lock_init(&root->log_extents_lock[1]);
1185         mutex_init(&root->objectid_mutex);
1186         mutex_init(&root->log_mutex);
1187         mutex_init(&root->ordered_extent_mutex);
1188         mutex_init(&root->delalloc_mutex);
1189         init_waitqueue_head(&root->log_writer_wait);
1190         init_waitqueue_head(&root->log_commit_wait[0]);
1191         init_waitqueue_head(&root->log_commit_wait[1]);
1192         INIT_LIST_HEAD(&root->log_ctxs[0]);
1193         INIT_LIST_HEAD(&root->log_ctxs[1]);
1194         atomic_set(&root->log_commit[0], 0);
1195         atomic_set(&root->log_commit[1], 0);
1196         atomic_set(&root->log_writers, 0);
1197         atomic_set(&root->log_batch, 0);
1198         atomic_set(&root->orphan_inodes, 0);
1199         atomic_set(&root->refs, 1);
1200         atomic_set(&root->will_be_snapshoted, 0);
1201         atomic_set(&root->qgroup_meta_rsv, 0);
1202         root->log_transid = 0;
1203         root->log_transid_committed = -1;
1204         root->last_log_commit = 0;
1205         if (fs_info)
1206                 extent_io_tree_init(&root->dirty_log_pages,
1207                                      fs_info->btree_inode->i_mapping);
1208
1209         memset(&root->root_key, 0, sizeof(root->root_key));
1210         memset(&root->root_item, 0, sizeof(root->root_item));
1211         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1212         if (fs_info)
1213                 root->defrag_trans_start = fs_info->generation;
1214         else
1215                 root->defrag_trans_start = 0;
1216         root->root_key.objectid = objectid;
1217         root->anon_dev = 0;
1218
1219         spin_lock_init(&root->root_item_lock);
1220 }
1221
1222 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1223 {
1224         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1225         if (root)
1226                 root->fs_info = fs_info;
1227         return root;
1228 }
1229
1230 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1231 /* Should only be used by the testing infrastructure */
1232 struct btrfs_root *btrfs_alloc_dummy_root(void)
1233 {
1234         struct btrfs_root *root;
1235
1236         root = btrfs_alloc_root(NULL);
1237         if (!root)
1238                 return ERR_PTR(-ENOMEM);
1239         __setup_root(4096, 4096, 4096, root, NULL, 1);
1240         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1241         root->alloc_bytenr = 0;
1242
1243         return root;
1244 }
1245 #endif
1246
1247 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1248                                      struct btrfs_fs_info *fs_info,
1249                                      u64 objectid)
1250 {
1251         struct extent_buffer *leaf;
1252         struct btrfs_root *tree_root = fs_info->tree_root;
1253         struct btrfs_root *root;
1254         struct btrfs_key key;
1255         int ret = 0;
1256         uuid_le uuid;
1257
1258         root = btrfs_alloc_root(fs_info);
1259         if (!root)
1260                 return ERR_PTR(-ENOMEM);
1261
1262         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1263                 tree_root->stripesize, root, fs_info, objectid);
1264         root->root_key.objectid = objectid;
1265         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1266         root->root_key.offset = 0;
1267
1268         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1269         if (IS_ERR(leaf)) {
1270                 ret = PTR_ERR(leaf);
1271                 leaf = NULL;
1272                 goto fail;
1273         }
1274
1275         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1276         btrfs_set_header_bytenr(leaf, leaf->start);
1277         btrfs_set_header_generation(leaf, trans->transid);
1278         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1279         btrfs_set_header_owner(leaf, objectid);
1280         root->node = leaf;
1281
1282         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1283                             BTRFS_FSID_SIZE);
1284         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1285                             btrfs_header_chunk_tree_uuid(leaf),
1286                             BTRFS_UUID_SIZE);
1287         btrfs_mark_buffer_dirty(leaf);
1288
1289         root->commit_root = btrfs_root_node(root);
1290         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1291
1292         root->root_item.flags = 0;
1293         root->root_item.byte_limit = 0;
1294         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1295         btrfs_set_root_generation(&root->root_item, trans->transid);
1296         btrfs_set_root_level(&root->root_item, 0);
1297         btrfs_set_root_refs(&root->root_item, 1);
1298         btrfs_set_root_used(&root->root_item, leaf->len);
1299         btrfs_set_root_last_snapshot(&root->root_item, 0);
1300         btrfs_set_root_dirid(&root->root_item, 0);
1301         uuid_le_gen(&uuid);
1302         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1303         root->root_item.drop_level = 0;
1304
1305         key.objectid = objectid;
1306         key.type = BTRFS_ROOT_ITEM_KEY;
1307         key.offset = 0;
1308         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1309         if (ret)
1310                 goto fail;
1311
1312         btrfs_tree_unlock(leaf);
1313
1314         return root;
1315
1316 fail:
1317         if (leaf) {
1318                 btrfs_tree_unlock(leaf);
1319                 free_extent_buffer(root->commit_root);
1320                 free_extent_buffer(leaf);
1321         }
1322         kfree(root);
1323
1324         return ERR_PTR(ret);
1325 }
1326
1327 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1328                                          struct btrfs_fs_info *fs_info)
1329 {
1330         struct btrfs_root *root;
1331         struct btrfs_root *tree_root = fs_info->tree_root;
1332         struct extent_buffer *leaf;
1333
1334         root = btrfs_alloc_root(fs_info);
1335         if (!root)
1336                 return ERR_PTR(-ENOMEM);
1337
1338         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1339                      tree_root->stripesize, root, fs_info,
1340                      BTRFS_TREE_LOG_OBJECTID);
1341
1342         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1343         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1344         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1345
1346         /*
1347          * DON'T set REF_COWS for log trees
1348          *
1349          * log trees do not get reference counted because they go away
1350          * before a real commit is actually done.  They do store pointers
1351          * to file data extents, and those reference counts still get
1352          * updated (along with back refs to the log tree).
1353          */
1354
1355         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1356                         NULL, 0, 0, 0);
1357         if (IS_ERR(leaf)) {
1358                 kfree(root);
1359                 return ERR_CAST(leaf);
1360         }
1361
1362         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1363         btrfs_set_header_bytenr(leaf, leaf->start);
1364         btrfs_set_header_generation(leaf, trans->transid);
1365         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1366         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1367         root->node = leaf;
1368
1369         write_extent_buffer(root->node, root->fs_info->fsid,
1370                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1371         btrfs_mark_buffer_dirty(root->node);
1372         btrfs_tree_unlock(root->node);
1373         return root;
1374 }
1375
1376 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1377                              struct btrfs_fs_info *fs_info)
1378 {
1379         struct btrfs_root *log_root;
1380
1381         log_root = alloc_log_tree(trans, fs_info);
1382         if (IS_ERR(log_root))
1383                 return PTR_ERR(log_root);
1384         WARN_ON(fs_info->log_root_tree);
1385         fs_info->log_root_tree = log_root;
1386         return 0;
1387 }
1388
1389 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1390                        struct btrfs_root *root)
1391 {
1392         struct btrfs_root *log_root;
1393         struct btrfs_inode_item *inode_item;
1394
1395         log_root = alloc_log_tree(trans, root->fs_info);
1396         if (IS_ERR(log_root))
1397                 return PTR_ERR(log_root);
1398
1399         log_root->last_trans = trans->transid;
1400         log_root->root_key.offset = root->root_key.objectid;
1401
1402         inode_item = &log_root->root_item.inode;
1403         btrfs_set_stack_inode_generation(inode_item, 1);
1404         btrfs_set_stack_inode_size(inode_item, 3);
1405         btrfs_set_stack_inode_nlink(inode_item, 1);
1406         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1407         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1408
1409         btrfs_set_root_node(&log_root->root_item, log_root->node);
1410
1411         WARN_ON(root->log_root);
1412         root->log_root = log_root;
1413         root->log_transid = 0;
1414         root->log_transid_committed = -1;
1415         root->last_log_commit = 0;
1416         return 0;
1417 }
1418
1419 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1420                                                struct btrfs_key *key)
1421 {
1422         struct btrfs_root *root;
1423         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1424         struct btrfs_path *path;
1425         u64 generation;
1426         int ret;
1427
1428         path = btrfs_alloc_path();
1429         if (!path)
1430                 return ERR_PTR(-ENOMEM);
1431
1432         root = btrfs_alloc_root(fs_info);
1433         if (!root) {
1434                 ret = -ENOMEM;
1435                 goto alloc_fail;
1436         }
1437
1438         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1439                 tree_root->stripesize, root, fs_info, key->objectid);
1440
1441         ret = btrfs_find_root(tree_root, key, path,
1442                               &root->root_item, &root->root_key);
1443         if (ret) {
1444                 if (ret > 0)
1445                         ret = -ENOENT;
1446                 goto find_fail;
1447         }
1448
1449         generation = btrfs_root_generation(&root->root_item);
1450         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1451                                      generation);
1452         if (IS_ERR(root->node)) {
1453                 ret = PTR_ERR(root->node);
1454                 goto find_fail;
1455         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1456                 ret = -EIO;
1457                 free_extent_buffer(root->node);
1458                 goto find_fail;
1459         }
1460         root->commit_root = btrfs_root_node(root);
1461 out:
1462         btrfs_free_path(path);
1463         return root;
1464
1465 find_fail:
1466         kfree(root);
1467 alloc_fail:
1468         root = ERR_PTR(ret);
1469         goto out;
1470 }
1471
1472 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1473                                       struct btrfs_key *location)
1474 {
1475         struct btrfs_root *root;
1476
1477         root = btrfs_read_tree_root(tree_root, location);
1478         if (IS_ERR(root))
1479                 return root;
1480
1481         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1482                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1483                 btrfs_check_and_init_root_item(&root->root_item);
1484         }
1485
1486         return root;
1487 }
1488
1489 int btrfs_init_fs_root(struct btrfs_root *root)
1490 {
1491         int ret;
1492         struct btrfs_subvolume_writers *writers;
1493
1494         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1495         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1496                                         GFP_NOFS);
1497         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1498                 ret = -ENOMEM;
1499                 goto fail;
1500         }
1501
1502         writers = btrfs_alloc_subvolume_writers();
1503         if (IS_ERR(writers)) {
1504                 ret = PTR_ERR(writers);
1505                 goto fail;
1506         }
1507         root->subv_writers = writers;
1508
1509         btrfs_init_free_ino_ctl(root);
1510         spin_lock_init(&root->ino_cache_lock);
1511         init_waitqueue_head(&root->ino_cache_wait);
1512
1513         ret = get_anon_bdev(&root->anon_dev);
1514         if (ret)
1515                 goto free_writers;
1516
1517         mutex_lock(&root->objectid_mutex);
1518         ret = btrfs_find_highest_objectid(root,
1519                                         &root->highest_objectid);
1520         if (ret) {
1521                 mutex_unlock(&root->objectid_mutex);
1522                 goto free_root_dev;
1523         }
1524
1525         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1526
1527         mutex_unlock(&root->objectid_mutex);
1528
1529         return 0;
1530
1531 free_root_dev:
1532         free_anon_bdev(root->anon_dev);
1533 free_writers:
1534         btrfs_free_subvolume_writers(root->subv_writers);
1535 fail:
1536         kfree(root->free_ino_ctl);
1537         kfree(root->free_ino_pinned);
1538         return ret;
1539 }
1540
1541 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1542                                         u64 root_id)
1543 {
1544         struct btrfs_root *root;
1545
1546         spin_lock(&fs_info->fs_roots_radix_lock);
1547         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1548                                  (unsigned long)root_id);
1549         spin_unlock(&fs_info->fs_roots_radix_lock);
1550         return root;
1551 }
1552
1553 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1554                          struct btrfs_root *root)
1555 {
1556         int ret;
1557
1558         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1559         if (ret)
1560                 return ret;
1561
1562         spin_lock(&fs_info->fs_roots_radix_lock);
1563         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1564                                 (unsigned long)root->root_key.objectid,
1565                                 root);
1566         if (ret == 0)
1567                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1568         spin_unlock(&fs_info->fs_roots_radix_lock);
1569         radix_tree_preload_end();
1570
1571         return ret;
1572 }
1573
1574 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1575                                      struct btrfs_key *location,
1576                                      bool check_ref)
1577 {
1578         struct btrfs_root *root;
1579         struct btrfs_path *path;
1580         struct btrfs_key key;
1581         int ret;
1582
1583         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1584                 return fs_info->tree_root;
1585         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1586                 return fs_info->extent_root;
1587         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1588                 return fs_info->chunk_root;
1589         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1590                 return fs_info->dev_root;
1591         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1592                 return fs_info->csum_root;
1593         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1594                 return fs_info->quota_root ? fs_info->quota_root :
1595                                              ERR_PTR(-ENOENT);
1596         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1597                 return fs_info->uuid_root ? fs_info->uuid_root :
1598                                             ERR_PTR(-ENOENT);
1599 again:
1600         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1601         if (root) {
1602                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1603                         return ERR_PTR(-ENOENT);
1604                 return root;
1605         }
1606
1607         root = btrfs_read_fs_root(fs_info->tree_root, location);
1608         if (IS_ERR(root))
1609                 return root;
1610
1611         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1612                 ret = -ENOENT;
1613                 goto fail;
1614         }
1615
1616         ret = btrfs_init_fs_root(root);
1617         if (ret)
1618                 goto fail;
1619
1620         path = btrfs_alloc_path();
1621         if (!path) {
1622                 ret = -ENOMEM;
1623                 goto fail;
1624         }
1625         key.objectid = BTRFS_ORPHAN_OBJECTID;
1626         key.type = BTRFS_ORPHAN_ITEM_KEY;
1627         key.offset = location->objectid;
1628
1629         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1630         btrfs_free_path(path);
1631         if (ret < 0)
1632                 goto fail;
1633         if (ret == 0)
1634                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1635
1636         ret = btrfs_insert_fs_root(fs_info, root);
1637         if (ret) {
1638                 if (ret == -EEXIST) {
1639                         free_fs_root(root);
1640                         goto again;
1641                 }
1642                 goto fail;
1643         }
1644         return root;
1645 fail:
1646         free_fs_root(root);
1647         return ERR_PTR(ret);
1648 }
1649
1650 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1651 {
1652         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1653         int ret = 0;
1654         struct btrfs_device *device;
1655         struct backing_dev_info *bdi;
1656
1657         rcu_read_lock();
1658         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1659                 if (!device->bdev)
1660                         continue;
1661                 bdi = blk_get_backing_dev_info(device->bdev);
1662                 if (bdi_congested(bdi, bdi_bits)) {
1663                         ret = 1;
1664                         break;
1665                 }
1666         }
1667         rcu_read_unlock();
1668         return ret;
1669 }
1670
1671 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1672 {
1673         int err;
1674
1675         err = bdi_setup_and_register(bdi, "btrfs");
1676         if (err)
1677                 return err;
1678
1679         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1680         bdi->congested_fn       = btrfs_congested_fn;
1681         bdi->congested_data     = info;
1682         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1683         return 0;
1684 }
1685
1686 /*
1687  * called by the kthread helper functions to finally call the bio end_io
1688  * functions.  This is where read checksum verification actually happens
1689  */
1690 static void end_workqueue_fn(struct btrfs_work *work)
1691 {
1692         struct bio *bio;
1693         struct btrfs_end_io_wq *end_io_wq;
1694
1695         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1696         bio = end_io_wq->bio;
1697
1698         bio->bi_error = end_io_wq->error;
1699         bio->bi_private = end_io_wq->private;
1700         bio->bi_end_io = end_io_wq->end_io;
1701         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1702         bio_endio(bio);
1703 }
1704
1705 static int cleaner_kthread(void *arg)
1706 {
1707         struct btrfs_root *root = arg;
1708         int again;
1709         struct btrfs_trans_handle *trans;
1710
1711         do {
1712                 again = 0;
1713
1714                 /* Make the cleaner go to sleep early. */
1715                 if (btrfs_need_cleaner_sleep(root))
1716                         goto sleep;
1717
1718                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1719                         goto sleep;
1720
1721                 /*
1722                  * Avoid the problem that we change the status of the fs
1723                  * during the above check and trylock.
1724                  */
1725                 if (btrfs_need_cleaner_sleep(root)) {
1726                         mutex_unlock(&root->fs_info->cleaner_mutex);
1727                         goto sleep;
1728                 }
1729
1730                 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1731                 btrfs_run_delayed_iputs(root);
1732                 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1733
1734                 again = btrfs_clean_one_deleted_snapshot(root);
1735                 mutex_unlock(&root->fs_info->cleaner_mutex);
1736
1737                 /*
1738                  * The defragger has dealt with the R/O remount and umount,
1739                  * needn't do anything special here.
1740                  */
1741                 btrfs_run_defrag_inodes(root->fs_info);
1742
1743                 /*
1744                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1745                  * with relocation (btrfs_relocate_chunk) and relocation
1746                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1747                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1748                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1749                  * unused block groups.
1750                  */
1751                 btrfs_delete_unused_bgs(root->fs_info);
1752 sleep:
1753                 if (!try_to_freeze() && !again) {
1754                         set_current_state(TASK_INTERRUPTIBLE);
1755                         if (!kthread_should_stop())
1756                                 schedule();
1757                         __set_current_state(TASK_RUNNING);
1758                 }
1759         } while (!kthread_should_stop());
1760
1761         /*
1762          * Transaction kthread is stopped before us and wakes us up.
1763          * However we might have started a new transaction and COWed some
1764          * tree blocks when deleting unused block groups for example. So
1765          * make sure we commit the transaction we started to have a clean
1766          * shutdown when evicting the btree inode - if it has dirty pages
1767          * when we do the final iput() on it, eviction will trigger a
1768          * writeback for it which will fail with null pointer dereferences
1769          * since work queues and other resources were already released and
1770          * destroyed by the time the iput/eviction/writeback is made.
1771          */
1772         trans = btrfs_attach_transaction(root);
1773         if (IS_ERR(trans)) {
1774                 if (PTR_ERR(trans) != -ENOENT)
1775                         btrfs_err(root->fs_info,
1776                                   "cleaner transaction attach returned %ld",
1777                                   PTR_ERR(trans));
1778         } else {
1779                 int ret;
1780
1781                 ret = btrfs_commit_transaction(trans, root);
1782                 if (ret)
1783                         btrfs_err(root->fs_info,
1784                                   "cleaner open transaction commit returned %d",
1785                                   ret);
1786         }
1787
1788         return 0;
1789 }
1790
1791 static int transaction_kthread(void *arg)
1792 {
1793         struct btrfs_root *root = arg;
1794         struct btrfs_trans_handle *trans;
1795         struct btrfs_transaction *cur;
1796         u64 transid;
1797         unsigned long now;
1798         unsigned long delay;
1799         bool cannot_commit;
1800
1801         do {
1802                 cannot_commit = false;
1803                 delay = HZ * root->fs_info->commit_interval;
1804                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1805
1806                 spin_lock(&root->fs_info->trans_lock);
1807                 cur = root->fs_info->running_transaction;
1808                 if (!cur) {
1809                         spin_unlock(&root->fs_info->trans_lock);
1810                         goto sleep;
1811                 }
1812
1813                 now = get_seconds();
1814                 if (cur->state < TRANS_STATE_BLOCKED &&
1815                     (now < cur->start_time ||
1816                      now - cur->start_time < root->fs_info->commit_interval)) {
1817                         spin_unlock(&root->fs_info->trans_lock);
1818                         delay = HZ * 5;
1819                         goto sleep;
1820                 }
1821                 transid = cur->transid;
1822                 spin_unlock(&root->fs_info->trans_lock);
1823
1824                 /* If the file system is aborted, this will always fail. */
1825                 trans = btrfs_attach_transaction(root);
1826                 if (IS_ERR(trans)) {
1827                         if (PTR_ERR(trans) != -ENOENT)
1828                                 cannot_commit = true;
1829                         goto sleep;
1830                 }
1831                 if (transid == trans->transid) {
1832                         btrfs_commit_transaction(trans, root);
1833                 } else {
1834                         btrfs_end_transaction(trans, root);
1835                 }
1836 sleep:
1837                 wake_up_process(root->fs_info->cleaner_kthread);
1838                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1839
1840                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1841                                       &root->fs_info->fs_state)))
1842                         btrfs_cleanup_transaction(root);
1843                 if (!try_to_freeze()) {
1844                         set_current_state(TASK_INTERRUPTIBLE);
1845                         if (!kthread_should_stop() &&
1846                             (!btrfs_transaction_blocked(root->fs_info) ||
1847                              cannot_commit))
1848                                 schedule_timeout(delay);
1849                         __set_current_state(TASK_RUNNING);
1850                 }
1851         } while (!kthread_should_stop());
1852         return 0;
1853 }
1854
1855 /*
1856  * this will find the highest generation in the array of
1857  * root backups.  The index of the highest array is returned,
1858  * or -1 if we can't find anything.
1859  *
1860  * We check to make sure the array is valid by comparing the
1861  * generation of the latest  root in the array with the generation
1862  * in the super block.  If they don't match we pitch it.
1863  */
1864 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1865 {
1866         u64 cur;
1867         int newest_index = -1;
1868         struct btrfs_root_backup *root_backup;
1869         int i;
1870
1871         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1872                 root_backup = info->super_copy->super_roots + i;
1873                 cur = btrfs_backup_tree_root_gen(root_backup);
1874                 if (cur == newest_gen)
1875                         newest_index = i;
1876         }
1877
1878         /* check to see if we actually wrapped around */
1879         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1880                 root_backup = info->super_copy->super_roots;
1881                 cur = btrfs_backup_tree_root_gen(root_backup);
1882                 if (cur == newest_gen)
1883                         newest_index = 0;
1884         }
1885         return newest_index;
1886 }
1887
1888
1889 /*
1890  * find the oldest backup so we know where to store new entries
1891  * in the backup array.  This will set the backup_root_index
1892  * field in the fs_info struct
1893  */
1894 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1895                                      u64 newest_gen)
1896 {
1897         int newest_index = -1;
1898
1899         newest_index = find_newest_super_backup(info, newest_gen);
1900         /* if there was garbage in there, just move along */
1901         if (newest_index == -1) {
1902                 info->backup_root_index = 0;
1903         } else {
1904                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1905         }
1906 }
1907
1908 /*
1909  * copy all the root pointers into the super backup array.
1910  * this will bump the backup pointer by one when it is
1911  * done
1912  */
1913 static void backup_super_roots(struct btrfs_fs_info *info)
1914 {
1915         int next_backup;
1916         struct btrfs_root_backup *root_backup;
1917         int last_backup;
1918
1919         next_backup = info->backup_root_index;
1920         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1921                 BTRFS_NUM_BACKUP_ROOTS;
1922
1923         /*
1924          * just overwrite the last backup if we're at the same generation
1925          * this happens only at umount
1926          */
1927         root_backup = info->super_for_commit->super_roots + last_backup;
1928         if (btrfs_backup_tree_root_gen(root_backup) ==
1929             btrfs_header_generation(info->tree_root->node))
1930                 next_backup = last_backup;
1931
1932         root_backup = info->super_for_commit->super_roots + next_backup;
1933
1934         /*
1935          * make sure all of our padding and empty slots get zero filled
1936          * regardless of which ones we use today
1937          */
1938         memset(root_backup, 0, sizeof(*root_backup));
1939
1940         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1941
1942         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1943         btrfs_set_backup_tree_root_gen(root_backup,
1944                                btrfs_header_generation(info->tree_root->node));
1945
1946         btrfs_set_backup_tree_root_level(root_backup,
1947                                btrfs_header_level(info->tree_root->node));
1948
1949         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1950         btrfs_set_backup_chunk_root_gen(root_backup,
1951                                btrfs_header_generation(info->chunk_root->node));
1952         btrfs_set_backup_chunk_root_level(root_backup,
1953                                btrfs_header_level(info->chunk_root->node));
1954
1955         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1956         btrfs_set_backup_extent_root_gen(root_backup,
1957                                btrfs_header_generation(info->extent_root->node));
1958         btrfs_set_backup_extent_root_level(root_backup,
1959                                btrfs_header_level(info->extent_root->node));
1960
1961         /*
1962          * we might commit during log recovery, which happens before we set
1963          * the fs_root.  Make sure it is valid before we fill it in.
1964          */
1965         if (info->fs_root && info->fs_root->node) {
1966                 btrfs_set_backup_fs_root(root_backup,
1967                                          info->fs_root->node->start);
1968                 btrfs_set_backup_fs_root_gen(root_backup,
1969                                btrfs_header_generation(info->fs_root->node));
1970                 btrfs_set_backup_fs_root_level(root_backup,
1971                                btrfs_header_level(info->fs_root->node));
1972         }
1973
1974         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1975         btrfs_set_backup_dev_root_gen(root_backup,
1976                                btrfs_header_generation(info->dev_root->node));
1977         btrfs_set_backup_dev_root_level(root_backup,
1978                                        btrfs_header_level(info->dev_root->node));
1979
1980         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1981         btrfs_set_backup_csum_root_gen(root_backup,
1982                                btrfs_header_generation(info->csum_root->node));
1983         btrfs_set_backup_csum_root_level(root_backup,
1984                                btrfs_header_level(info->csum_root->node));
1985
1986         btrfs_set_backup_total_bytes(root_backup,
1987                              btrfs_super_total_bytes(info->super_copy));
1988         btrfs_set_backup_bytes_used(root_backup,
1989                              btrfs_super_bytes_used(info->super_copy));
1990         btrfs_set_backup_num_devices(root_backup,
1991                              btrfs_super_num_devices(info->super_copy));
1992
1993         /*
1994          * if we don't copy this out to the super_copy, it won't get remembered
1995          * for the next commit
1996          */
1997         memcpy(&info->super_copy->super_roots,
1998                &info->super_for_commit->super_roots,
1999                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2000 }
2001
2002 /*
2003  * this copies info out of the root backup array and back into
2004  * the in-memory super block.  It is meant to help iterate through
2005  * the array, so you send it the number of backups you've already
2006  * tried and the last backup index you used.
2007  *
2008  * this returns -1 when it has tried all the backups
2009  */
2010 static noinline int next_root_backup(struct btrfs_fs_info *info,
2011                                      struct btrfs_super_block *super,
2012                                      int *num_backups_tried, int *backup_index)
2013 {
2014         struct btrfs_root_backup *root_backup;
2015         int newest = *backup_index;
2016
2017         if (*num_backups_tried == 0) {
2018                 u64 gen = btrfs_super_generation(super);
2019
2020                 newest = find_newest_super_backup(info, gen);
2021                 if (newest == -1)
2022                         return -1;
2023
2024                 *backup_index = newest;
2025                 *num_backups_tried = 1;
2026         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2027                 /* we've tried all the backups, all done */
2028                 return -1;
2029         } else {
2030                 /* jump to the next oldest backup */
2031                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2032                         BTRFS_NUM_BACKUP_ROOTS;
2033                 *backup_index = newest;
2034                 *num_backups_tried += 1;
2035         }
2036         root_backup = super->super_roots + newest;
2037
2038         btrfs_set_super_generation(super,
2039                                    btrfs_backup_tree_root_gen(root_backup));
2040         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2041         btrfs_set_super_root_level(super,
2042                                    btrfs_backup_tree_root_level(root_backup));
2043         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2044
2045         /*
2046          * fixme: the total bytes and num_devices need to match or we should
2047          * need a fsck
2048          */
2049         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2050         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2051         return 0;
2052 }
2053
2054 /* helper to cleanup workers */
2055 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2056 {
2057         btrfs_destroy_workqueue(fs_info->fixup_workers);
2058         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2059         btrfs_destroy_workqueue(fs_info->workers);
2060         btrfs_destroy_workqueue(fs_info->endio_workers);
2061         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2062         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2063         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2064         btrfs_destroy_workqueue(fs_info->rmw_workers);
2065         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2066         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2067         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2068         btrfs_destroy_workqueue(fs_info->submit_workers);
2069         btrfs_destroy_workqueue(fs_info->delayed_workers);
2070         btrfs_destroy_workqueue(fs_info->caching_workers);
2071         btrfs_destroy_workqueue(fs_info->readahead_workers);
2072         btrfs_destroy_workqueue(fs_info->flush_workers);
2073         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2074         btrfs_destroy_workqueue(fs_info->extent_workers);
2075 }
2076
2077 static void free_root_extent_buffers(struct btrfs_root *root)
2078 {
2079         if (root) {
2080                 free_extent_buffer(root->node);
2081                 free_extent_buffer(root->commit_root);
2082                 root->node = NULL;
2083                 root->commit_root = NULL;
2084         }
2085 }
2086
2087 /* helper to cleanup tree roots */
2088 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2089 {
2090         free_root_extent_buffers(info->tree_root);
2091
2092         free_root_extent_buffers(info->dev_root);
2093         free_root_extent_buffers(info->extent_root);
2094         free_root_extent_buffers(info->csum_root);
2095         free_root_extent_buffers(info->quota_root);
2096         free_root_extent_buffers(info->uuid_root);
2097         if (chunk_root)
2098                 free_root_extent_buffers(info->chunk_root);
2099 }
2100
2101 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2102 {
2103         int ret;
2104         struct btrfs_root *gang[8];
2105         int i;
2106
2107         while (!list_empty(&fs_info->dead_roots)) {
2108                 gang[0] = list_entry(fs_info->dead_roots.next,
2109                                      struct btrfs_root, root_list);
2110                 list_del(&gang[0]->root_list);
2111
2112                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2113                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2114                 } else {
2115                         free_extent_buffer(gang[0]->node);
2116                         free_extent_buffer(gang[0]->commit_root);
2117                         btrfs_put_fs_root(gang[0]);
2118                 }
2119         }
2120
2121         while (1) {
2122                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2123                                              (void **)gang, 0,
2124                                              ARRAY_SIZE(gang));
2125                 if (!ret)
2126                         break;
2127                 for (i = 0; i < ret; i++)
2128                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2129         }
2130
2131         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2132                 btrfs_free_log_root_tree(NULL, fs_info);
2133                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2134                                             fs_info->pinned_extents);
2135         }
2136 }
2137
2138 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2139 {
2140         mutex_init(&fs_info->scrub_lock);
2141         atomic_set(&fs_info->scrubs_running, 0);
2142         atomic_set(&fs_info->scrub_pause_req, 0);
2143         atomic_set(&fs_info->scrubs_paused, 0);
2144         atomic_set(&fs_info->scrub_cancel_req, 0);
2145         init_waitqueue_head(&fs_info->scrub_pause_wait);
2146         fs_info->scrub_workers_refcnt = 0;
2147 }
2148
2149 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2150 {
2151         spin_lock_init(&fs_info->balance_lock);
2152         mutex_init(&fs_info->balance_mutex);
2153         atomic_set(&fs_info->balance_running, 0);
2154         atomic_set(&fs_info->balance_pause_req, 0);
2155         atomic_set(&fs_info->balance_cancel_req, 0);
2156         fs_info->balance_ctl = NULL;
2157         init_waitqueue_head(&fs_info->balance_wait_q);
2158 }
2159
2160 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2161                                    struct btrfs_root *tree_root)
2162 {
2163         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2164         set_nlink(fs_info->btree_inode, 1);
2165         /*
2166          * we set the i_size on the btree inode to the max possible int.
2167          * the real end of the address space is determined by all of
2168          * the devices in the system
2169          */
2170         fs_info->btree_inode->i_size = OFFSET_MAX;
2171         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2172
2173         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2174         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2175                              fs_info->btree_inode->i_mapping);
2176         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2177         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2178
2179         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2180
2181         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2182         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2183                sizeof(struct btrfs_key));
2184         set_bit(BTRFS_INODE_DUMMY,
2185                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2186         btrfs_insert_inode_hash(fs_info->btree_inode);
2187 }
2188
2189 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2190 {
2191         fs_info->dev_replace.lock_owner = 0;
2192         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2193         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2194         mutex_init(&fs_info->dev_replace.lock_management_lock);
2195         mutex_init(&fs_info->dev_replace.lock);
2196         init_waitqueue_head(&fs_info->replace_wait);
2197 }
2198
2199 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2200 {
2201         spin_lock_init(&fs_info->qgroup_lock);
2202         mutex_init(&fs_info->qgroup_ioctl_lock);
2203         fs_info->qgroup_tree = RB_ROOT;
2204         fs_info->qgroup_op_tree = RB_ROOT;
2205         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2206         fs_info->qgroup_seq = 1;
2207         fs_info->quota_enabled = 0;
2208         fs_info->pending_quota_state = 0;
2209         fs_info->qgroup_ulist = NULL;
2210         fs_info->qgroup_rescan_running = false;
2211         mutex_init(&fs_info->qgroup_rescan_lock);
2212 }
2213
2214 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2215                 struct btrfs_fs_devices *fs_devices)
2216 {
2217         int max_active = fs_info->thread_pool_size;
2218         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2219
2220         fs_info->workers =
2221                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2222                                       max_active, 16);
2223
2224         fs_info->delalloc_workers =
2225                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2226
2227         fs_info->flush_workers =
2228                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2229
2230         fs_info->caching_workers =
2231                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2232
2233         /*
2234          * a higher idle thresh on the submit workers makes it much more
2235          * likely that bios will be send down in a sane order to the
2236          * devices
2237          */
2238         fs_info->submit_workers =
2239                 btrfs_alloc_workqueue("submit", flags,
2240                                       min_t(u64, fs_devices->num_devices,
2241                                             max_active), 64);
2242
2243         fs_info->fixup_workers =
2244                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2245
2246         /*
2247          * endios are largely parallel and should have a very
2248          * low idle thresh
2249          */
2250         fs_info->endio_workers =
2251                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2252         fs_info->endio_meta_workers =
2253                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2254         fs_info->endio_meta_write_workers =
2255                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2256         fs_info->endio_raid56_workers =
2257                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2258         fs_info->endio_repair_workers =
2259                 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2260         fs_info->rmw_workers =
2261                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2262         fs_info->endio_write_workers =
2263                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2264         fs_info->endio_freespace_worker =
2265                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2266         fs_info->delayed_workers =
2267                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2268         fs_info->readahead_workers =
2269                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2270         fs_info->qgroup_rescan_workers =
2271                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2272         fs_info->extent_workers =
2273                 btrfs_alloc_workqueue("extent-refs", flags,
2274                                       min_t(u64, fs_devices->num_devices,
2275                                             max_active), 8);
2276
2277         if (!(fs_info->workers && fs_info->delalloc_workers &&
2278               fs_info->submit_workers && fs_info->flush_workers &&
2279               fs_info->endio_workers && fs_info->endio_meta_workers &&
2280               fs_info->endio_meta_write_workers &&
2281               fs_info->endio_repair_workers &&
2282               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2283               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2284               fs_info->caching_workers && fs_info->readahead_workers &&
2285               fs_info->fixup_workers && fs_info->delayed_workers &&
2286               fs_info->extent_workers &&
2287               fs_info->qgroup_rescan_workers)) {
2288                 return -ENOMEM;
2289         }
2290
2291         return 0;
2292 }
2293
2294 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2295                             struct btrfs_fs_devices *fs_devices)
2296 {
2297         int ret;
2298         struct btrfs_root *tree_root = fs_info->tree_root;
2299         struct btrfs_root *log_tree_root;
2300         struct btrfs_super_block *disk_super = fs_info->super_copy;
2301         u64 bytenr = btrfs_super_log_root(disk_super);
2302
2303         if (fs_devices->rw_devices == 0) {
2304                 btrfs_warn(fs_info, "log replay required on RO media");
2305                 return -EIO;
2306         }
2307
2308         log_tree_root = btrfs_alloc_root(fs_info);
2309         if (!log_tree_root)
2310                 return -ENOMEM;
2311
2312         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2313                         tree_root->stripesize, log_tree_root, fs_info,
2314                         BTRFS_TREE_LOG_OBJECTID);
2315
2316         log_tree_root->node = read_tree_block(tree_root, bytenr,
2317                         fs_info->generation + 1);
2318         if (IS_ERR(log_tree_root->node)) {
2319                 btrfs_warn(fs_info, "failed to read log tree");
2320                 ret = PTR_ERR(log_tree_root->node);
2321                 kfree(log_tree_root);
2322                 return ret;
2323         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2324                 btrfs_err(fs_info, "failed to read log tree");
2325                 free_extent_buffer(log_tree_root->node);
2326                 kfree(log_tree_root);
2327                 return -EIO;
2328         }
2329         /* returns with log_tree_root freed on success */
2330         ret = btrfs_recover_log_trees(log_tree_root);
2331         if (ret) {
2332                 btrfs_std_error(tree_root->fs_info, ret,
2333                             "Failed to recover log tree");
2334                 free_extent_buffer(log_tree_root->node);
2335                 kfree(log_tree_root);
2336                 return ret;
2337         }
2338
2339         if (fs_info->sb->s_flags & MS_RDONLY) {
2340                 ret = btrfs_commit_super(tree_root);
2341                 if (ret)
2342                         return ret;
2343         }
2344
2345         return 0;
2346 }
2347
2348 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2349                             struct btrfs_root *tree_root)
2350 {
2351         struct btrfs_root *root;
2352         struct btrfs_key location;
2353         int ret;
2354
2355         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2356         location.type = BTRFS_ROOT_ITEM_KEY;
2357         location.offset = 0;
2358
2359         root = btrfs_read_tree_root(tree_root, &location);
2360         if (IS_ERR(root))
2361                 return PTR_ERR(root);
2362         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363         fs_info->extent_root = root;
2364
2365         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2366         root = btrfs_read_tree_root(tree_root, &location);
2367         if (IS_ERR(root))
2368                 return PTR_ERR(root);
2369         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2370         fs_info->dev_root = root;
2371         btrfs_init_devices_late(fs_info);
2372
2373         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2374         root = btrfs_read_tree_root(tree_root, &location);
2375         if (IS_ERR(root))
2376                 return PTR_ERR(root);
2377         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2378         fs_info->csum_root = root;
2379
2380         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2381         root = btrfs_read_tree_root(tree_root, &location);
2382         if (!IS_ERR(root)) {
2383                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2384                 fs_info->quota_enabled = 1;
2385                 fs_info->pending_quota_state = 1;
2386                 fs_info->quota_root = root;
2387         }
2388
2389         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2390         root = btrfs_read_tree_root(tree_root, &location);
2391         if (IS_ERR(root)) {
2392                 ret = PTR_ERR(root);
2393                 if (ret != -ENOENT)
2394                         return ret;
2395         } else {
2396                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2397                 fs_info->uuid_root = root;
2398         }
2399
2400         return 0;
2401 }
2402
2403 int open_ctree(struct super_block *sb,
2404                struct btrfs_fs_devices *fs_devices,
2405                char *options)
2406 {
2407         u32 sectorsize;
2408         u32 nodesize;
2409         u32 stripesize;
2410         u64 generation;
2411         u64 features;
2412         struct btrfs_key location;
2413         struct buffer_head *bh;
2414         struct btrfs_super_block *disk_super;
2415         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2416         struct btrfs_root *tree_root;
2417         struct btrfs_root *chunk_root;
2418         int ret;
2419         int err = -EINVAL;
2420         int num_backups_tried = 0;
2421         int backup_index = 0;
2422         int max_active;
2423
2424         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2425         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2426         if (!tree_root || !chunk_root) {
2427                 err = -ENOMEM;
2428                 goto fail;
2429         }
2430
2431         ret = init_srcu_struct(&fs_info->subvol_srcu);
2432         if (ret) {
2433                 err = ret;
2434                 goto fail;
2435         }
2436
2437         ret = setup_bdi(fs_info, &fs_info->bdi);
2438         if (ret) {
2439                 err = ret;
2440                 goto fail_srcu;
2441         }
2442
2443         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2444         if (ret) {
2445                 err = ret;
2446                 goto fail_bdi;
2447         }
2448         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2449                                         (1 + ilog2(nr_cpu_ids));
2450
2451         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2452         if (ret) {
2453                 err = ret;
2454                 goto fail_dirty_metadata_bytes;
2455         }
2456
2457         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2458         if (ret) {
2459                 err = ret;
2460                 goto fail_delalloc_bytes;
2461         }
2462
2463         fs_info->btree_inode = new_inode(sb);
2464         if (!fs_info->btree_inode) {
2465                 err = -ENOMEM;
2466                 goto fail_bio_counter;
2467         }
2468
2469         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2470
2471         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2472         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2473         INIT_LIST_HEAD(&fs_info->trans_list);
2474         INIT_LIST_HEAD(&fs_info->dead_roots);
2475         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2476         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2477         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2478         spin_lock_init(&fs_info->delalloc_root_lock);
2479         spin_lock_init(&fs_info->trans_lock);
2480         spin_lock_init(&fs_info->fs_roots_radix_lock);
2481         spin_lock_init(&fs_info->delayed_iput_lock);
2482         spin_lock_init(&fs_info->defrag_inodes_lock);
2483         spin_lock_init(&fs_info->free_chunk_lock);
2484         spin_lock_init(&fs_info->tree_mod_seq_lock);
2485         spin_lock_init(&fs_info->super_lock);
2486         spin_lock_init(&fs_info->qgroup_op_lock);
2487         spin_lock_init(&fs_info->buffer_lock);
2488         spin_lock_init(&fs_info->unused_bgs_lock);
2489         rwlock_init(&fs_info->tree_mod_log_lock);
2490         mutex_init(&fs_info->unused_bg_unpin_mutex);
2491         mutex_init(&fs_info->delete_unused_bgs_mutex);
2492         mutex_init(&fs_info->reloc_mutex);
2493         mutex_init(&fs_info->delalloc_root_mutex);
2494         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2495         seqlock_init(&fs_info->profiles_lock);
2496
2497         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2498         INIT_LIST_HEAD(&fs_info->space_info);
2499         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2500         INIT_LIST_HEAD(&fs_info->unused_bgs);
2501         btrfs_mapping_init(&fs_info->mapping_tree);
2502         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2503                              BTRFS_BLOCK_RSV_GLOBAL);
2504         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2505                              BTRFS_BLOCK_RSV_DELALLOC);
2506         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2507         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2508         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2509         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2510                              BTRFS_BLOCK_RSV_DELOPS);
2511         atomic_set(&fs_info->nr_async_submits, 0);
2512         atomic_set(&fs_info->async_delalloc_pages, 0);
2513         atomic_set(&fs_info->async_submit_draining, 0);
2514         atomic_set(&fs_info->nr_async_bios, 0);
2515         atomic_set(&fs_info->defrag_running, 0);
2516         atomic_set(&fs_info->qgroup_op_seq, 0);
2517         atomic64_set(&fs_info->tree_mod_seq, 0);
2518         fs_info->sb = sb;
2519         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2520         fs_info->metadata_ratio = 0;
2521         fs_info->defrag_inodes = RB_ROOT;
2522         fs_info->free_chunk_space = 0;
2523         fs_info->tree_mod_log = RB_ROOT;
2524         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2525         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2526         /* readahead state */
2527         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2528         spin_lock_init(&fs_info->reada_lock);
2529
2530         fs_info->thread_pool_size = min_t(unsigned long,
2531                                           num_online_cpus() + 2, 8);
2532
2533         INIT_LIST_HEAD(&fs_info->ordered_roots);
2534         spin_lock_init(&fs_info->ordered_root_lock);
2535         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2536                                         GFP_NOFS);
2537         if (!fs_info->delayed_root) {
2538                 err = -ENOMEM;
2539                 goto fail_iput;
2540         }
2541         btrfs_init_delayed_root(fs_info->delayed_root);
2542
2543         btrfs_init_scrub(fs_info);
2544 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2545         fs_info->check_integrity_print_mask = 0;
2546 #endif
2547         btrfs_init_balance(fs_info);
2548         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2549
2550         sb->s_blocksize = 4096;
2551         sb->s_blocksize_bits = blksize_bits(4096);
2552         sb->s_bdi = &fs_info->bdi;
2553
2554         btrfs_init_btree_inode(fs_info, tree_root);
2555
2556         spin_lock_init(&fs_info->block_group_cache_lock);
2557         fs_info->block_group_cache_tree = RB_ROOT;
2558         fs_info->first_logical_byte = (u64)-1;
2559
2560         extent_io_tree_init(&fs_info->freed_extents[0],
2561                              fs_info->btree_inode->i_mapping);
2562         extent_io_tree_init(&fs_info->freed_extents[1],
2563                              fs_info->btree_inode->i_mapping);
2564         fs_info->pinned_extents = &fs_info->freed_extents[0];
2565         fs_info->do_barriers = 1;
2566
2567
2568         mutex_init(&fs_info->ordered_operations_mutex);
2569         mutex_init(&fs_info->tree_log_mutex);
2570         mutex_init(&fs_info->chunk_mutex);
2571         mutex_init(&fs_info->transaction_kthread_mutex);
2572         mutex_init(&fs_info->cleaner_mutex);
2573         mutex_init(&fs_info->volume_mutex);
2574         mutex_init(&fs_info->ro_block_group_mutex);
2575         init_rwsem(&fs_info->commit_root_sem);
2576         init_rwsem(&fs_info->cleanup_work_sem);
2577         init_rwsem(&fs_info->subvol_sem);
2578         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2579
2580         btrfs_init_dev_replace_locks(fs_info);
2581         btrfs_init_qgroup(fs_info);
2582
2583         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2584         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2585
2586         init_waitqueue_head(&fs_info->transaction_throttle);
2587         init_waitqueue_head(&fs_info->transaction_wait);
2588         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2589         init_waitqueue_head(&fs_info->async_submit_wait);
2590
2591         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2592
2593         ret = btrfs_alloc_stripe_hash_table(fs_info);
2594         if (ret) {
2595                 err = ret;
2596                 goto fail_alloc;
2597         }
2598
2599         __setup_root(4096, 4096, 4096, tree_root,
2600                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2601
2602         invalidate_bdev(fs_devices->latest_bdev);
2603
2604         /*
2605          * Read super block and check the signature bytes only
2606          */
2607         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2608         if (IS_ERR(bh)) {
2609                 err = PTR_ERR(bh);
2610                 goto fail_alloc;
2611         }
2612
2613         /*
2614          * We want to check superblock checksum, the type is stored inside.
2615          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2616          */
2617         if (btrfs_check_super_csum(bh->b_data)) {
2618                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2619                 err = -EINVAL;
2620                 brelse(bh);
2621                 goto fail_alloc;
2622         }
2623
2624         /*
2625          * super_copy is zeroed at allocation time and we never touch the
2626          * following bytes up to INFO_SIZE, the checksum is calculated from
2627          * the whole block of INFO_SIZE
2628          */
2629         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2630         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2631                sizeof(*fs_info->super_for_commit));
2632         brelse(bh);
2633
2634         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2635
2636         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2637         if (ret) {
2638                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2639                 err = -EINVAL;
2640                 goto fail_alloc;
2641         }
2642
2643         disk_super = fs_info->super_copy;
2644         if (!btrfs_super_root(disk_super))
2645                 goto fail_alloc;
2646
2647         /* check FS state, whether FS is broken. */
2648         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2649                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2650
2651         /*
2652          * run through our array of backup supers and setup
2653          * our ring pointer to the oldest one
2654          */
2655         generation = btrfs_super_generation(disk_super);
2656         find_oldest_super_backup(fs_info, generation);
2657
2658         /*
2659          * In the long term, we'll store the compression type in the super
2660          * block, and it'll be used for per file compression control.
2661          */
2662         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2663
2664         ret = btrfs_parse_options(tree_root, options);
2665         if (ret) {
2666                 err = ret;
2667                 goto fail_alloc;
2668         }
2669
2670         features = btrfs_super_incompat_flags(disk_super) &
2671                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2672         if (features) {
2673                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2674                        "unsupported optional features (%Lx).\n",
2675                        features);
2676                 err = -EINVAL;
2677                 goto fail_alloc;
2678         }
2679
2680         /*
2681          * Leafsize and nodesize were always equal, this is only a sanity check.
2682          */
2683         if (le32_to_cpu(disk_super->__unused_leafsize) !=
2684             btrfs_super_nodesize(disk_super)) {
2685                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2686                        "blocksizes don't match.  node %d leaf %d\n",
2687                        btrfs_super_nodesize(disk_super),
2688                        le32_to_cpu(disk_super->__unused_leafsize));
2689                 err = -EINVAL;
2690                 goto fail_alloc;
2691         }
2692         if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2693                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2694                        "blocksize (%d) was too large\n",
2695                        btrfs_super_nodesize(disk_super));
2696                 err = -EINVAL;
2697                 goto fail_alloc;
2698         }
2699
2700         features = btrfs_super_incompat_flags(disk_super);
2701         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2702         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2703                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2704
2705         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2706                 printk(KERN_INFO "BTRFS: has skinny extents\n");
2707
2708         /*
2709          * flag our filesystem as having big metadata blocks if
2710          * they are bigger than the page size
2711          */
2712         if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2713                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2714                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2715                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2716         }
2717
2718         nodesize = btrfs_super_nodesize(disk_super);
2719         sectorsize = btrfs_super_sectorsize(disk_super);
2720         stripesize = btrfs_super_stripesize(disk_super);
2721         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2722         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2723
2724         /*
2725          * mixed block groups end up with duplicate but slightly offset
2726          * extent buffers for the same range.  It leads to corruptions
2727          */
2728         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2729             (sectorsize != nodesize)) {
2730                 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2731                                 "are not allowed for mixed block groups on %s\n",
2732                                 sb->s_id);
2733                 goto fail_alloc;
2734         }
2735
2736         /*
2737          * Needn't use the lock because there is no other task which will
2738          * update the flag.
2739          */
2740         btrfs_set_super_incompat_flags(disk_super, features);
2741
2742         features = btrfs_super_compat_ro_flags(disk_super) &
2743                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2744         if (!(sb->s_flags & MS_RDONLY) && features) {
2745                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2746                        "unsupported option features (%Lx).\n",
2747                        features);
2748                 err = -EINVAL;
2749                 goto fail_alloc;
2750         }
2751
2752         max_active = fs_info->thread_pool_size;
2753
2754         ret = btrfs_init_workqueues(fs_info, fs_devices);
2755         if (ret) {
2756                 err = ret;
2757                 goto fail_sb_buffer;
2758         }
2759
2760         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2761         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2762                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2763
2764         tree_root->nodesize = nodesize;
2765         tree_root->sectorsize = sectorsize;
2766         tree_root->stripesize = stripesize;
2767
2768         sb->s_blocksize = sectorsize;
2769         sb->s_blocksize_bits = blksize_bits(sectorsize);
2770
2771         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2772                 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2773                 goto fail_sb_buffer;
2774         }
2775
2776         if (sectorsize != PAGE_SIZE) {
2777                 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2778                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2779                 goto fail_sb_buffer;
2780         }
2781
2782         mutex_lock(&fs_info->chunk_mutex);
2783         ret = btrfs_read_sys_array(tree_root);
2784         mutex_unlock(&fs_info->chunk_mutex);
2785         if (ret) {
2786                 printk(KERN_ERR "BTRFS: failed to read the system "
2787                        "array on %s\n", sb->s_id);
2788                 goto fail_sb_buffer;
2789         }
2790
2791         generation = btrfs_super_chunk_root_generation(disk_super);
2792
2793         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2794                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2795
2796         chunk_root->node = read_tree_block(chunk_root,
2797                                            btrfs_super_chunk_root(disk_super),
2798                                            generation);
2799         if (IS_ERR(chunk_root->node) ||
2800             !extent_buffer_uptodate(chunk_root->node)) {
2801                 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2802                        sb->s_id);
2803                 if (!IS_ERR(chunk_root->node))
2804                         free_extent_buffer(chunk_root->node);
2805                 chunk_root->node = NULL;
2806                 goto fail_tree_roots;
2807         }
2808         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2809         chunk_root->commit_root = btrfs_root_node(chunk_root);
2810
2811         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2812            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2813
2814         ret = btrfs_read_chunk_tree(chunk_root);
2815         if (ret) {
2816                 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2817                        sb->s_id);
2818                 goto fail_tree_roots;
2819         }
2820
2821         /*
2822          * keep the device that is marked to be the target device for the
2823          * dev_replace procedure
2824          */
2825         btrfs_close_extra_devices(fs_devices, 0);
2826
2827         if (!fs_devices->latest_bdev) {
2828                 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2829                        sb->s_id);
2830                 goto fail_tree_roots;
2831         }
2832
2833 retry_root_backup:
2834         generation = btrfs_super_generation(disk_super);
2835
2836         tree_root->node = read_tree_block(tree_root,
2837                                           btrfs_super_root(disk_super),
2838                                           generation);
2839         if (IS_ERR(tree_root->node) ||
2840             !extent_buffer_uptodate(tree_root->node)) {
2841                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2842                        sb->s_id);
2843                 if (!IS_ERR(tree_root->node))
2844                         free_extent_buffer(tree_root->node);
2845                 tree_root->node = NULL;
2846                 goto recovery_tree_root;
2847         }
2848
2849         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2850         tree_root->commit_root = btrfs_root_node(tree_root);
2851         btrfs_set_root_refs(&tree_root->root_item, 1);
2852
2853         mutex_lock(&tree_root->objectid_mutex);
2854         ret = btrfs_find_highest_objectid(tree_root,
2855                                         &tree_root->highest_objectid);
2856         if (ret) {
2857                 mutex_unlock(&tree_root->objectid_mutex);
2858                 goto recovery_tree_root;
2859         }
2860
2861         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2862
2863         mutex_unlock(&tree_root->objectid_mutex);
2864
2865         ret = btrfs_read_roots(fs_info, tree_root);
2866         if (ret)
2867                 goto recovery_tree_root;
2868
2869         fs_info->generation = generation;
2870         fs_info->last_trans_committed = generation;
2871
2872         ret = btrfs_recover_balance(fs_info);
2873         if (ret) {
2874                 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2875                 goto fail_block_groups;
2876         }
2877
2878         ret = btrfs_init_dev_stats(fs_info);
2879         if (ret) {
2880                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2881                        ret);
2882                 goto fail_block_groups;
2883         }
2884
2885         ret = btrfs_init_dev_replace(fs_info);
2886         if (ret) {
2887                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2888                 goto fail_block_groups;
2889         }
2890
2891         btrfs_close_extra_devices(fs_devices, 1);
2892
2893         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2894         if (ret) {
2895                 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2896                 goto fail_block_groups;
2897         }
2898
2899         ret = btrfs_sysfs_add_device(fs_devices);
2900         if (ret) {
2901                 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2902                 goto fail_fsdev_sysfs;
2903         }
2904
2905         ret = btrfs_sysfs_add_mounted(fs_info);
2906         if (ret) {
2907                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2908                 goto fail_fsdev_sysfs;
2909         }
2910
2911         ret = btrfs_init_space_info(fs_info);
2912         if (ret) {
2913                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2914                 goto fail_sysfs;
2915         }
2916
2917         ret = btrfs_read_block_groups(fs_info->extent_root);
2918         if (ret) {
2919                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2920                 goto fail_sysfs;
2921         }
2922         fs_info->num_tolerated_disk_barrier_failures =
2923                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2924         if (fs_info->fs_devices->missing_devices >
2925              fs_info->num_tolerated_disk_barrier_failures &&
2926             !(sb->s_flags & MS_RDONLY)) {
2927                 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2928                         fs_info->fs_devices->missing_devices,
2929                         fs_info->num_tolerated_disk_barrier_failures);
2930                 goto fail_sysfs;
2931         }
2932
2933         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2934                                                "btrfs-cleaner");
2935         if (IS_ERR(fs_info->cleaner_kthread))
2936                 goto fail_sysfs;
2937
2938         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2939                                                    tree_root,
2940                                                    "btrfs-transaction");
2941         if (IS_ERR(fs_info->transaction_kthread))
2942                 goto fail_cleaner;
2943
2944         if (!btrfs_test_opt(tree_root, SSD) &&
2945             !btrfs_test_opt(tree_root, NOSSD) &&
2946             !fs_info->fs_devices->rotating) {
2947                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2948                        "mode\n");
2949                 btrfs_set_opt(fs_info->mount_opt, SSD);
2950         }
2951
2952         /*
2953          * Mount does not set all options immediatelly, we can do it now and do
2954          * not have to wait for transaction commit
2955          */
2956         btrfs_apply_pending_changes(fs_info);
2957
2958 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2959         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2960                 ret = btrfsic_mount(tree_root, fs_devices,
2961                                     btrfs_test_opt(tree_root,
2962                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2963                                     1 : 0,
2964                                     fs_info->check_integrity_print_mask);
2965                 if (ret)
2966                         printk(KERN_WARNING "BTRFS: failed to initialize"
2967                                " integrity check module %s\n", sb->s_id);
2968         }
2969 #endif
2970         ret = btrfs_read_qgroup_config(fs_info);
2971         if (ret)
2972                 goto fail_trans_kthread;
2973
2974         /* do not make disk changes in broken FS */
2975         if (btrfs_super_log_root(disk_super) != 0) {
2976                 ret = btrfs_replay_log(fs_info, fs_devices);
2977                 if (ret) {
2978                         err = ret;
2979                         goto fail_qgroup;
2980                 }
2981         }
2982
2983         ret = btrfs_find_orphan_roots(tree_root);
2984         if (ret)
2985                 goto fail_qgroup;
2986
2987         if (!(sb->s_flags & MS_RDONLY)) {
2988                 ret = btrfs_cleanup_fs_roots(fs_info);
2989                 if (ret)
2990                         goto fail_qgroup;
2991
2992                 mutex_lock(&fs_info->cleaner_mutex);
2993                 ret = btrfs_recover_relocation(tree_root);
2994                 mutex_unlock(&fs_info->cleaner_mutex);
2995                 if (ret < 0) {
2996                         printk(KERN_WARNING
2997                                "BTRFS: failed to recover relocation\n");
2998                         err = -EINVAL;
2999                         goto fail_qgroup;
3000                 }
3001         }
3002
3003         location.objectid = BTRFS_FS_TREE_OBJECTID;
3004         location.type = BTRFS_ROOT_ITEM_KEY;
3005         location.offset = 0;
3006
3007         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3008         if (IS_ERR(fs_info->fs_root)) {
3009                 err = PTR_ERR(fs_info->fs_root);
3010                 goto fail_qgroup;
3011         }
3012
3013         if (sb->s_flags & MS_RDONLY)
3014                 return 0;
3015
3016         down_read(&fs_info->cleanup_work_sem);
3017         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3018             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3019                 up_read(&fs_info->cleanup_work_sem);
3020                 close_ctree(tree_root);
3021                 return ret;
3022         }
3023         up_read(&fs_info->cleanup_work_sem);
3024
3025         ret = btrfs_resume_balance_async(fs_info);
3026         if (ret) {
3027                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3028                 close_ctree(tree_root);
3029                 return ret;
3030         }
3031
3032         ret = btrfs_resume_dev_replace_async(fs_info);
3033         if (ret) {
3034                 pr_warn("BTRFS: failed to resume dev_replace\n");
3035                 close_ctree(tree_root);
3036                 return ret;
3037         }
3038
3039         btrfs_qgroup_rescan_resume(fs_info);
3040
3041         if (!fs_info->uuid_root) {
3042                 pr_info("BTRFS: creating UUID tree\n");
3043                 ret = btrfs_create_uuid_tree(fs_info);
3044                 if (ret) {
3045                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
3046                                 ret);
3047                         close_ctree(tree_root);
3048                         return ret;
3049                 }
3050         } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3051                    fs_info->generation !=
3052                                 btrfs_super_uuid_tree_generation(disk_super)) {
3053                 pr_info("BTRFS: checking UUID tree\n");
3054                 ret = btrfs_check_uuid_tree(fs_info);
3055                 if (ret) {
3056                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
3057                                 ret);
3058                         close_ctree(tree_root);
3059                         return ret;
3060                 }
3061         } else {
3062                 fs_info->update_uuid_tree_gen = 1;
3063         }
3064
3065         fs_info->open = 1;
3066
3067         return 0;
3068
3069 fail_qgroup:
3070         btrfs_free_qgroup_config(fs_info);
3071 fail_trans_kthread:
3072         kthread_stop(fs_info->transaction_kthread);
3073         btrfs_cleanup_transaction(fs_info->tree_root);
3074         btrfs_free_fs_roots(fs_info);
3075 fail_cleaner:
3076         kthread_stop(fs_info->cleaner_kthread);
3077
3078         /*
3079          * make sure we're done with the btree inode before we stop our
3080          * kthreads
3081          */
3082         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3083
3084 fail_sysfs:
3085         btrfs_sysfs_remove_mounted(fs_info);
3086
3087 fail_fsdev_sysfs:
3088         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3089
3090 fail_block_groups:
3091         btrfs_put_block_group_cache(fs_info);
3092         btrfs_free_block_groups(fs_info);
3093
3094 fail_tree_roots:
3095         free_root_pointers(fs_info, 1);
3096         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3097
3098 fail_sb_buffer:
3099         btrfs_stop_all_workers(fs_info);
3100 fail_alloc:
3101 fail_iput:
3102         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3103
3104         iput(fs_info->btree_inode);
3105 fail_bio_counter:
3106         percpu_counter_destroy(&fs_info->bio_counter);
3107 fail_delalloc_bytes:
3108         percpu_counter_destroy(&fs_info->delalloc_bytes);
3109 fail_dirty_metadata_bytes:
3110         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3111 fail_bdi:
3112         bdi_destroy(&fs_info->bdi);
3113 fail_srcu:
3114         cleanup_srcu_struct(&fs_info->subvol_srcu);
3115 fail:
3116         btrfs_free_stripe_hash_table(fs_info);
3117         btrfs_close_devices(fs_info->fs_devices);
3118         return err;
3119
3120 recovery_tree_root:
3121         if (!btrfs_test_opt(tree_root, RECOVERY))
3122                 goto fail_tree_roots;
3123
3124         free_root_pointers(fs_info, 0);
3125
3126         /* don't use the log in recovery mode, it won't be valid */
3127         btrfs_set_super_log_root(disk_super, 0);
3128
3129         /* we can't trust the free space cache either */
3130         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3131
3132         ret = next_root_backup(fs_info, fs_info->super_copy,
3133                                &num_backups_tried, &backup_index);
3134         if (ret == -1)
3135                 goto fail_block_groups;
3136         goto retry_root_backup;
3137 }
3138
3139 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3140 {
3141         if (uptodate) {
3142                 set_buffer_uptodate(bh);
3143         } else {
3144                 struct btrfs_device *device = (struct btrfs_device *)
3145                         bh->b_private;
3146
3147                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3148                                 "lost page write due to IO error on %s",
3149                                           rcu_str_deref(device->name));
3150                 /* note, we dont' set_buffer_write_io_error because we have
3151                  * our own ways of dealing with the IO errors
3152                  */
3153                 clear_buffer_uptodate(bh);
3154                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3155         }
3156         unlock_buffer(bh);
3157         put_bh(bh);
3158 }
3159
3160 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3161                         struct buffer_head **bh_ret)
3162 {
3163         struct buffer_head *bh;
3164         struct btrfs_super_block *super;
3165         u64 bytenr;
3166
3167         bytenr = btrfs_sb_offset(copy_num);
3168         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3169                 return -EINVAL;
3170
3171         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3172         /*
3173          * If we fail to read from the underlying devices, as of now
3174          * the best option we have is to mark it EIO.
3175          */
3176         if (!bh)
3177                 return -EIO;
3178
3179         super = (struct btrfs_super_block *)bh->b_data;
3180         if (btrfs_super_bytenr(super) != bytenr ||
3181                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3182                 brelse(bh);
3183                 return -EINVAL;
3184         }
3185
3186         *bh_ret = bh;
3187         return 0;
3188 }
3189
3190
3191 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3192 {
3193         struct buffer_head *bh;
3194         struct buffer_head *latest = NULL;
3195         struct btrfs_super_block *super;
3196         int i;
3197         u64 transid = 0;
3198         int ret = -EINVAL;
3199
3200         /* we would like to check all the supers, but that would make
3201          * a btrfs mount succeed after a mkfs from a different FS.
3202          * So, we need to add a special mount option to scan for
3203          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3204          */
3205         for (i = 0; i < 1; i++) {
3206                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3207                 if (ret)
3208                         continue;
3209
3210                 super = (struct btrfs_super_block *)bh->b_data;
3211
3212                 if (!latest || btrfs_super_generation(super) > transid) {
3213                         brelse(latest);
3214                         latest = bh;
3215                         transid = btrfs_super_generation(super);
3216                 } else {
3217                         brelse(bh);
3218                 }
3219         }
3220
3221         if (!latest)
3222                 return ERR_PTR(ret);
3223
3224         return latest;
3225 }
3226
3227 /*
3228  * this should be called twice, once with wait == 0 and
3229  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3230  * we write are pinned.
3231  *
3232  * They are released when wait == 1 is done.
3233  * max_mirrors must be the same for both runs, and it indicates how
3234  * many supers on this one device should be written.
3235  *
3236  * max_mirrors == 0 means to write them all.
3237  */
3238 static int write_dev_supers(struct btrfs_device *device,
3239                             struct btrfs_super_block *sb,
3240                             int do_barriers, int wait, int max_mirrors)
3241 {
3242         struct buffer_head *bh;
3243         int i;
3244         int ret;
3245         int errors = 0;
3246         u32 crc;
3247         u64 bytenr;
3248
3249         if (max_mirrors == 0)
3250                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3251
3252         for (i = 0; i < max_mirrors; i++) {
3253                 bytenr = btrfs_sb_offset(i);
3254                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3255                     device->commit_total_bytes)
3256                         break;
3257
3258                 if (wait) {
3259                         bh = __find_get_block(device->bdev, bytenr / 4096,
3260                                               BTRFS_SUPER_INFO_SIZE);
3261                         if (!bh) {
3262                                 errors++;
3263                                 continue;
3264                         }
3265                         wait_on_buffer(bh);
3266                         if (!buffer_uptodate(bh))
3267                                 errors++;
3268
3269                         /* drop our reference */
3270                         brelse(bh);
3271
3272                         /* drop the reference from the wait == 0 run */
3273                         brelse(bh);
3274                         continue;
3275                 } else {
3276                         btrfs_set_super_bytenr(sb, bytenr);
3277
3278                         crc = ~(u32)0;
3279                         crc = btrfs_csum_data((char *)sb +
3280                                               BTRFS_CSUM_SIZE, crc,
3281                                               BTRFS_SUPER_INFO_SIZE -
3282                                               BTRFS_CSUM_SIZE);
3283                         btrfs_csum_final(crc, sb->csum);
3284
3285                         /*
3286                          * one reference for us, and we leave it for the
3287                          * caller
3288                          */
3289                         bh = __getblk(device->bdev, bytenr / 4096,
3290                                       BTRFS_SUPER_INFO_SIZE);
3291                         if (!bh) {
3292                                 btrfs_err(device->dev_root->fs_info,
3293                                     "couldn't get super buffer head for bytenr %llu",
3294                                     bytenr);
3295                                 errors++;
3296                                 continue;
3297                         }
3298
3299                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3300
3301                         /* one reference for submit_bh */
3302                         get_bh(bh);
3303
3304                         set_buffer_uptodate(bh);
3305                         lock_buffer(bh);
3306                         bh->b_end_io = btrfs_end_buffer_write_sync;
3307                         bh->b_private = device;
3308                 }
3309
3310                 /*
3311                  * we fua the first super.  The others we allow
3312                  * to go down lazy.
3313                  */
3314                 if (i == 0)
3315                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3316                 else
3317                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3318                 if (ret)
3319                         errors++;
3320         }
3321         return errors < i ? 0 : -1;
3322 }
3323
3324 /*
3325  * endio for the write_dev_flush, this will wake anyone waiting
3326  * for the barrier when it is done
3327  */
3328 static void btrfs_end_empty_barrier(struct bio *bio)
3329 {
3330         if (bio->bi_private)
3331                 complete(bio->bi_private);
3332         bio_put(bio);
3333 }
3334
3335 /*
3336  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3337  * sent down.  With wait == 1, it waits for the previous flush.
3338  *
3339  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3340  * capable
3341  */
3342 static int write_dev_flush(struct btrfs_device *device, int wait)
3343 {
3344         struct bio *bio;
3345         int ret = 0;
3346
3347         if (device->nobarriers)
3348                 return 0;
3349
3350         if (wait) {
3351                 bio = device->flush_bio;
3352                 if (!bio)
3353                         return 0;
3354
3355                 wait_for_completion(&device->flush_wait);
3356
3357                 if (bio->bi_error) {
3358                         ret = bio->bi_error;
3359                         btrfs_dev_stat_inc_and_print(device,
3360                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3361                 }
3362
3363                 /* drop the reference from the wait == 0 run */
3364                 bio_put(bio);
3365                 device->flush_bio = NULL;
3366
3367                 return ret;
3368         }
3369
3370         /*
3371          * one reference for us, and we leave it for the
3372          * caller
3373          */
3374         device->flush_bio = NULL;
3375         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3376         if (!bio)
3377                 return -ENOMEM;
3378
3379         bio->bi_end_io = btrfs_end_empty_barrier;
3380         bio->bi_bdev = device->bdev;
3381         init_completion(&device->flush_wait);
3382         bio->bi_private = &device->flush_wait;
3383         device->flush_bio = bio;
3384
3385         bio_get(bio);
3386         btrfsic_submit_bio(WRITE_FLUSH, bio);
3387
3388         return 0;
3389 }
3390
3391 /*
3392  * send an empty flush down to each device in parallel,
3393  * then wait for them
3394  */
3395 static int barrier_all_devices(struct btrfs_fs_info *info)
3396 {
3397         struct list_head *head;
3398         struct btrfs_device *dev;
3399         int errors_send = 0;
3400         int errors_wait = 0;
3401         int ret;
3402
3403         /* send down all the barriers */
3404         head = &info->fs_devices->devices;
3405         list_for_each_entry_rcu(dev, head, dev_list) {
3406                 if (dev->missing)
3407                         continue;
3408                 if (!dev->bdev) {
3409                         errors_send++;
3410                         continue;
3411                 }
3412                 if (!dev->in_fs_metadata || !dev->writeable)
3413                         continue;
3414
3415                 ret = write_dev_flush(dev, 0);
3416                 if (ret)
3417                         errors_send++;
3418         }
3419
3420         /* wait for all the barriers */
3421         list_for_each_entry_rcu(dev, head, dev_list) {
3422                 if (dev->missing)
3423                         continue;
3424                 if (!dev->bdev) {
3425                         errors_wait++;
3426                         continue;
3427                 }
3428                 if (!dev->in_fs_metadata || !dev->writeable)
3429                         continue;
3430
3431                 ret = write_dev_flush(dev, 1);
3432                 if (ret)
3433                         errors_wait++;
3434         }
3435         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3436             errors_wait > info->num_tolerated_disk_barrier_failures)
3437                 return -EIO;
3438         return 0;
3439 }
3440
3441 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3442 {
3443         int raid_type;
3444         int min_tolerated = INT_MAX;
3445
3446         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3447             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3448                 min_tolerated = min(min_tolerated,
3449                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3450                                     tolerated_failures);
3451
3452         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3453                 if (raid_type == BTRFS_RAID_SINGLE)
3454                         continue;
3455                 if (!(flags & btrfs_raid_group[raid_type]))
3456                         continue;
3457                 min_tolerated = min(min_tolerated,
3458                                     btrfs_raid_array[raid_type].
3459                                     tolerated_failures);
3460         }
3461
3462         if (min_tolerated == INT_MAX) {
3463                 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3464                 min_tolerated = 0;
3465         }
3466
3467         return min_tolerated;
3468 }
3469
3470 int btrfs_calc_num_tolerated_disk_barrier_failures(
3471         struct btrfs_fs_info *fs_info)
3472 {
3473         struct btrfs_ioctl_space_info space;
3474         struct btrfs_space_info *sinfo;
3475         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3476                        BTRFS_BLOCK_GROUP_SYSTEM,
3477                        BTRFS_BLOCK_GROUP_METADATA,
3478                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3479         int i;
3480         int c;
3481         int num_tolerated_disk_barrier_failures =
3482                 (int)fs_info->fs_devices->num_devices;
3483
3484         for (i = 0; i < ARRAY_SIZE(types); i++) {
3485                 struct btrfs_space_info *tmp;
3486
3487                 sinfo = NULL;
3488                 rcu_read_lock();
3489                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3490                         if (tmp->flags == types[i]) {
3491                                 sinfo = tmp;
3492                                 break;
3493                         }
3494                 }
3495                 rcu_read_unlock();
3496
3497                 if (!sinfo)
3498                         continue;
3499
3500                 down_read(&sinfo->groups_sem);
3501                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3502                         u64 flags;
3503
3504                         if (list_empty(&sinfo->block_groups[c]))
3505                                 continue;
3506
3507                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3508                                                    &space);
3509                         if (space.total_bytes == 0 || space.used_bytes == 0)
3510                                 continue;
3511                         flags = space.flags;
3512
3513                         num_tolerated_disk_barrier_failures = min(
3514                                 num_tolerated_disk_barrier_failures,
3515                                 btrfs_get_num_tolerated_disk_barrier_failures(
3516                                         flags));
3517                 }
3518                 up_read(&sinfo->groups_sem);
3519         }
3520
3521         return num_tolerated_disk_barrier_failures;
3522 }
3523
3524 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3525 {
3526         struct list_head *head;
3527         struct btrfs_device *dev;
3528         struct btrfs_super_block *sb;
3529         struct btrfs_dev_item *dev_item;
3530         int ret;
3531         int do_barriers;
3532         int max_errors;
3533         int total_errors = 0;
3534         u64 flags;
3535
3536         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3537         backup_super_roots(root->fs_info);
3538
3539         sb = root->fs_info->super_for_commit;
3540         dev_item = &sb->dev_item;
3541
3542         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3543         head = &root->fs_info->fs_devices->devices;
3544         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3545
3546         if (do_barriers) {
3547                 ret = barrier_all_devices(root->fs_info);
3548                 if (ret) {
3549                         mutex_unlock(
3550                                 &root->fs_info->fs_devices->device_list_mutex);
3551                         btrfs_std_error(root->fs_info, ret,
3552                                     "errors while submitting device barriers.");
3553                         return ret;
3554                 }
3555         }
3556
3557         list_for_each_entry_rcu(dev, head, dev_list) {
3558                 if (!dev->bdev) {
3559                         total_errors++;
3560                         continue;
3561                 }
3562                 if (!dev->in_fs_metadata || !dev->writeable)
3563                         continue;
3564
3565                 btrfs_set_stack_device_generation(dev_item, 0);
3566                 btrfs_set_stack_device_type(dev_item, dev->type);
3567                 btrfs_set_stack_device_id(dev_item, dev->devid);
3568                 btrfs_set_stack_device_total_bytes(dev_item,
3569                                                    dev->commit_total_bytes);
3570                 btrfs_set_stack_device_bytes_used(dev_item,
3571                                                   dev->commit_bytes_used);
3572                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3573                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3574                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3575                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3576                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3577
3578                 flags = btrfs_super_flags(sb);
3579                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3580
3581                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3582                 if (ret)
3583                         total_errors++;
3584         }
3585         if (total_errors > max_errors) {
3586                 btrfs_err(root->fs_info, "%d errors while writing supers",
3587                        total_errors);
3588                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3589
3590                 /* FUA is masked off if unsupported and can't be the reason */
3591                 btrfs_std_error(root->fs_info, -EIO,
3592                             "%d errors while writing supers", total_errors);
3593                 return -EIO;
3594         }
3595
3596         total_errors = 0;
3597         list_for_each_entry_rcu(dev, head, dev_list) {
3598                 if (!dev->bdev)
3599                         continue;
3600                 if (!dev->in_fs_metadata || !dev->writeable)
3601                         continue;
3602
3603                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3604                 if (ret)
3605                         total_errors++;
3606         }
3607         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3608         if (total_errors > max_errors) {
3609                 btrfs_std_error(root->fs_info, -EIO,
3610                             "%d errors while writing supers", total_errors);
3611                 return -EIO;
3612         }
3613         return 0;
3614 }
3615
3616 int write_ctree_super(struct btrfs_trans_handle *trans,
3617                       struct btrfs_root *root, int max_mirrors)
3618 {
3619         return write_all_supers(root, max_mirrors);
3620 }
3621
3622 /* Drop a fs root from the radix tree and free it. */
3623 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3624                                   struct btrfs_root *root)
3625 {
3626         spin_lock(&fs_info->fs_roots_radix_lock);
3627         radix_tree_delete(&fs_info->fs_roots_radix,
3628                           (unsigned long)root->root_key.objectid);
3629         spin_unlock(&fs_info->fs_roots_radix_lock);
3630
3631         if (btrfs_root_refs(&root->root_item) == 0)
3632                 synchronize_srcu(&fs_info->subvol_srcu);
3633
3634         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3635                 btrfs_free_log(NULL, root);
3636
3637         if (root->free_ino_pinned)
3638                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3639         if (root->free_ino_ctl)
3640                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3641         free_fs_root(root);
3642 }
3643
3644 static void free_fs_root(struct btrfs_root *root)
3645 {
3646         iput(root->ino_cache_inode);
3647         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3648         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3649         root->orphan_block_rsv = NULL;
3650         if (root->anon_dev)
3651                 free_anon_bdev(root->anon_dev);
3652         if (root->subv_writers)
3653                 btrfs_free_subvolume_writers(root->subv_writers);
3654         free_extent_buffer(root->node);
3655         free_extent_buffer(root->commit_root);
3656         kfree(root->free_ino_ctl);
3657         kfree(root->free_ino_pinned);
3658         kfree(root->name);
3659         btrfs_put_fs_root(root);
3660 }
3661
3662 void btrfs_free_fs_root(struct btrfs_root *root)
3663 {
3664         free_fs_root(root);
3665 }
3666
3667 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3668 {
3669         u64 root_objectid = 0;
3670         struct btrfs_root *gang[8];
3671         int i = 0;
3672         int err = 0;
3673         unsigned int ret = 0;
3674         int index;
3675
3676         while (1) {
3677                 index = srcu_read_lock(&fs_info->subvol_srcu);
3678                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3679                                              (void **)gang, root_objectid,
3680                                              ARRAY_SIZE(gang));
3681                 if (!ret) {
3682                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3683                         break;
3684                 }
3685                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3686
3687                 for (i = 0; i < ret; i++) {
3688                         /* Avoid to grab roots in dead_roots */
3689                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3690                                 gang[i] = NULL;
3691                                 continue;
3692                         }
3693                         /* grab all the search result for later use */
3694                         gang[i] = btrfs_grab_fs_root(gang[i]);
3695                 }
3696                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3697
3698                 for (i = 0; i < ret; i++) {
3699                         if (!gang[i])
3700                                 continue;
3701                         root_objectid = gang[i]->root_key.objectid;
3702                         err = btrfs_orphan_cleanup(gang[i]);
3703                         if (err)
3704                                 break;
3705                         btrfs_put_fs_root(gang[i]);
3706                 }
3707                 root_objectid++;
3708         }
3709
3710         /* release the uncleaned roots due to error */
3711         for (; i < ret; i++) {
3712                 if (gang[i])
3713                         btrfs_put_fs_root(gang[i]);
3714         }
3715         return err;
3716 }
3717
3718 int btrfs_commit_super(struct btrfs_root *root)
3719 {
3720         struct btrfs_trans_handle *trans;
3721
3722         mutex_lock(&root->fs_info->cleaner_mutex);
3723         btrfs_run_delayed_iputs(root);
3724         mutex_unlock(&root->fs_info->cleaner_mutex);
3725         wake_up_process(root->fs_info->cleaner_kthread);
3726
3727         /* wait until ongoing cleanup work done */
3728         down_write(&root->fs_info->cleanup_work_sem);
3729         up_write(&root->fs_info->cleanup_work_sem);
3730
3731         trans = btrfs_join_transaction(root);
3732         if (IS_ERR(trans))
3733                 return PTR_ERR(trans);
3734         return btrfs_commit_transaction(trans, root);
3735 }
3736
3737 void close_ctree(struct btrfs_root *root)
3738 {
3739         struct btrfs_fs_info *fs_info = root->fs_info;
3740         int ret;
3741
3742         fs_info->closing = 1;
3743         smp_mb();
3744
3745         /* wait for the qgroup rescan worker to stop */
3746         btrfs_qgroup_wait_for_completion(fs_info, false);
3747
3748         /* wait for the uuid_scan task to finish */
3749         down(&fs_info->uuid_tree_rescan_sem);
3750         /* avoid complains from lockdep et al., set sem back to initial state */
3751         up(&fs_info->uuid_tree_rescan_sem);
3752
3753         /* pause restriper - we want to resume on mount */
3754         btrfs_pause_balance(fs_info);
3755
3756         btrfs_dev_replace_suspend_for_unmount(fs_info);
3757
3758         btrfs_scrub_cancel(fs_info);
3759
3760         /* wait for any defraggers to finish */
3761         wait_event(fs_info->transaction_wait,
3762                    (atomic_read(&fs_info->defrag_running) == 0));
3763
3764         /* clear out the rbtree of defraggable inodes */
3765         btrfs_cleanup_defrag_inodes(fs_info);
3766
3767         cancel_work_sync(&fs_info->async_reclaim_work);
3768
3769         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3770                 /*
3771                  * If the cleaner thread is stopped and there are
3772                  * block groups queued for removal, the deletion will be
3773                  * skipped when we quit the cleaner thread.
3774                  */
3775                 btrfs_delete_unused_bgs(root->fs_info);
3776
3777                 ret = btrfs_commit_super(root);
3778                 if (ret)
3779                         btrfs_err(fs_info, "commit super ret %d", ret);
3780         }
3781
3782         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3783                 btrfs_error_commit_super(root);
3784
3785         kthread_stop(fs_info->transaction_kthread);
3786         kthread_stop(fs_info->cleaner_kthread);
3787
3788         fs_info->closing = 2;
3789         smp_mb();
3790
3791         btrfs_free_qgroup_config(fs_info);
3792
3793         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3794                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3795                        percpu_counter_sum(&fs_info->delalloc_bytes));
3796         }
3797
3798         btrfs_sysfs_remove_mounted(fs_info);
3799         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3800
3801         btrfs_free_fs_roots(fs_info);
3802
3803         btrfs_put_block_group_cache(fs_info);
3804
3805         btrfs_free_block_groups(fs_info);
3806
3807         /*
3808          * we must make sure there is not any read request to
3809          * submit after we stopping all workers.
3810          */
3811         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3812         btrfs_stop_all_workers(fs_info);
3813
3814         fs_info->open = 0;
3815         free_root_pointers(fs_info, 1);
3816
3817         iput(fs_info->btree_inode);
3818
3819 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3820         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3821                 btrfsic_unmount(root, fs_info->fs_devices);
3822 #endif
3823
3824         btrfs_close_devices(fs_info->fs_devices);
3825         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3826
3827         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3828         percpu_counter_destroy(&fs_info->delalloc_bytes);
3829         percpu_counter_destroy(&fs_info->bio_counter);
3830         bdi_destroy(&fs_info->bdi);
3831         cleanup_srcu_struct(&fs_info->subvol_srcu);
3832
3833         btrfs_free_stripe_hash_table(fs_info);
3834
3835         __btrfs_free_block_rsv(root->orphan_block_rsv);
3836         root->orphan_block_rsv = NULL;
3837
3838         lock_chunks(root);
3839         while (!list_empty(&fs_info->pinned_chunks)) {
3840                 struct extent_map *em;
3841
3842                 em = list_first_entry(&fs_info->pinned_chunks,
3843                                       struct extent_map, list);
3844                 list_del_init(&em->list);
3845                 free_extent_map(em);
3846         }
3847         unlock_chunks(root);
3848 }
3849
3850 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3851                           int atomic)
3852 {
3853         int ret;
3854         struct inode *btree_inode = buf->pages[0]->mapping->host;
3855
3856         ret = extent_buffer_uptodate(buf);
3857         if (!ret)
3858                 return ret;
3859
3860         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3861                                     parent_transid, atomic);
3862         if (ret == -EAGAIN)
3863                 return ret;
3864         return !ret;
3865 }
3866
3867 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3868 {
3869         return set_extent_buffer_uptodate(buf);
3870 }
3871
3872 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3873 {
3874         struct btrfs_root *root;
3875         u64 transid = btrfs_header_generation(buf);
3876         int was_dirty;
3877
3878 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3879         /*
3880          * This is a fast path so only do this check if we have sanity tests
3881          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3882          * outside of the sanity tests.
3883          */
3884         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3885                 return;
3886 #endif
3887         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3888         btrfs_assert_tree_locked(buf);
3889         if (transid != root->fs_info->generation)
3890                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3891                        "found %llu running %llu\n",
3892                         buf->start, transid, root->fs_info->generation);
3893         was_dirty = set_extent_buffer_dirty(buf);
3894         if (!was_dirty)
3895                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3896                                      buf->len,
3897                                      root->fs_info->dirty_metadata_batch);
3898 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3899         /*
3900          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3901          * but item data not updated.
3902          * So here we should only check item pointers, not item data.
3903          */
3904         if (btrfs_header_level(buf) == 0 &&
3905             btrfs_check_leaf_relaxed(root, buf)) {
3906                 btrfs_print_leaf(root, buf);
3907                 ASSERT(0);
3908         }
3909 #endif
3910 }
3911
3912 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3913                                         int flush_delayed)
3914 {
3915         /*
3916          * looks as though older kernels can get into trouble with
3917          * this code, they end up stuck in balance_dirty_pages forever
3918          */
3919         int ret;
3920
3921         if (current->flags & PF_MEMALLOC)
3922                 return;
3923
3924         if (flush_delayed)
3925                 btrfs_balance_delayed_items(root);
3926
3927         ret = __percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3928                                      BTRFS_DIRTY_METADATA_THRESH,
3929                                      root->fs_info->dirty_metadata_batch);
3930         if (ret > 0) {
3931                 balance_dirty_pages_ratelimited(
3932                                    root->fs_info->btree_inode->i_mapping);
3933         }
3934         return;
3935 }
3936
3937 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3938 {
3939         __btrfs_btree_balance_dirty(root, 1);
3940 }
3941
3942 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3943 {
3944         __btrfs_btree_balance_dirty(root, 0);
3945 }
3946
3947 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3948 {
3949         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3950         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3951 }
3952
3953 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3954                               int read_only)
3955 {
3956         struct btrfs_super_block *sb = fs_info->super_copy;
3957         int ret = 0;
3958
3959         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3960                 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3961                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3962                 ret = -EINVAL;
3963         }
3964         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3965                 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3966                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3967                 ret = -EINVAL;
3968         }
3969         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3970                 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3971                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3972                 ret = -EINVAL;
3973         }
3974
3975         /*
3976          * The common minimum, we don't know if we can trust the nodesize/sectorsize
3977          * items yet, they'll be verified later. Issue just a warning.
3978          */
3979         if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3980                 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3981                                 btrfs_super_root(sb));
3982         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3983                 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3984                                 btrfs_super_chunk_root(sb));
3985         if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3986                 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3987                                 btrfs_super_log_root(sb));
3988
3989         /*
3990          * Check the lower bound, the alignment and other constraints are
3991          * checked later.
3992          */
3993         if (btrfs_super_nodesize(sb) < 4096) {
3994                 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3995                                 btrfs_super_nodesize(sb));
3996                 ret = -EINVAL;
3997         }
3998         if (btrfs_super_sectorsize(sb) < 4096) {
3999                 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4000                                 btrfs_super_sectorsize(sb));
4001                 ret = -EINVAL;
4002         }
4003
4004         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4005                 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4006                                 fs_info->fsid, sb->dev_item.fsid);
4007                 ret = -EINVAL;
4008         }
4009
4010         /*
4011          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4012          * done later
4013          */
4014         if (btrfs_super_num_devices(sb) > (1UL << 31))
4015                 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4016                                 btrfs_super_num_devices(sb));
4017         if (btrfs_super_num_devices(sb) == 0) {
4018                 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4019                 ret = -EINVAL;
4020         }
4021
4022         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4023                 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4024                                 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4025                 ret = -EINVAL;
4026         }
4027
4028         /*
4029          * Obvious sys_chunk_array corruptions, it must hold at least one key
4030          * and one chunk
4031          */
4032         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4033                 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4034                                 btrfs_super_sys_array_size(sb),
4035                                 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4036                 ret = -EINVAL;
4037         }
4038         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4039                         + sizeof(struct btrfs_chunk)) {
4040                 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4041                                 btrfs_super_sys_array_size(sb),
4042                                 sizeof(struct btrfs_disk_key)
4043                                 + sizeof(struct btrfs_chunk));
4044                 ret = -EINVAL;
4045         }
4046
4047         /*
4048          * The generation is a global counter, we'll trust it more than the others
4049          * but it's still possible that it's the one that's wrong.
4050          */
4051         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4052                 printk(KERN_WARNING
4053                         "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4054                         btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4055         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4056             && btrfs_super_cache_generation(sb) != (u64)-1)
4057                 printk(KERN_WARNING
4058                         "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4059                         btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4060
4061         return ret;
4062 }
4063
4064 static void btrfs_error_commit_super(struct btrfs_root *root)
4065 {
4066         mutex_lock(&root->fs_info->cleaner_mutex);
4067         btrfs_run_delayed_iputs(root);
4068         mutex_unlock(&root->fs_info->cleaner_mutex);
4069
4070         down_write(&root->fs_info->cleanup_work_sem);
4071         up_write(&root->fs_info->cleanup_work_sem);
4072
4073         /* cleanup FS via transaction */
4074         btrfs_cleanup_transaction(root);
4075 }
4076
4077 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4078 {
4079         struct btrfs_ordered_extent *ordered;
4080
4081         spin_lock(&root->ordered_extent_lock);
4082         /*
4083          * This will just short circuit the ordered completion stuff which will
4084          * make sure the ordered extent gets properly cleaned up.
4085          */
4086         list_for_each_entry(ordered, &root->ordered_extents,
4087                             root_extent_list)
4088                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4089         spin_unlock(&root->ordered_extent_lock);
4090 }
4091
4092 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4093 {
4094         struct btrfs_root *root;
4095         struct list_head splice;
4096
4097         INIT_LIST_HEAD(&splice);
4098
4099         spin_lock(&fs_info->ordered_root_lock);
4100         list_splice_init(&fs_info->ordered_roots, &splice);
4101         while (!list_empty(&splice)) {
4102                 root = list_first_entry(&splice, struct btrfs_root,
4103                                         ordered_root);
4104                 list_move_tail(&root->ordered_root,
4105                                &fs_info->ordered_roots);
4106
4107                 spin_unlock(&fs_info->ordered_root_lock);
4108                 btrfs_destroy_ordered_extents(root);
4109
4110                 cond_resched();
4111                 spin_lock(&fs_info->ordered_root_lock);
4112         }
4113         spin_unlock(&fs_info->ordered_root_lock);
4114
4115         /*
4116          * We need this here because if we've been flipped read-only we won't
4117          * get sync() from the umount, so we need to make sure any ordered
4118          * extents that haven't had their dirty pages IO start writeout yet
4119          * actually get run and error out properly.
4120          */
4121         btrfs_wait_ordered_roots(fs_info, -1);
4122 }
4123
4124 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4125                                       struct btrfs_root *root)
4126 {
4127         struct rb_node *node;
4128         struct btrfs_delayed_ref_root *delayed_refs;
4129         struct btrfs_delayed_ref_node *ref;
4130         int ret = 0;
4131
4132         delayed_refs = &trans->delayed_refs;
4133
4134         spin_lock(&delayed_refs->lock);
4135         if (atomic_read(&delayed_refs->num_entries) == 0) {
4136                 spin_unlock(&delayed_refs->lock);
4137                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4138                 return ret;
4139         }
4140
4141         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4142                 struct btrfs_delayed_ref_head *head;
4143                 struct btrfs_delayed_ref_node *tmp;
4144                 bool pin_bytes = false;
4145
4146                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4147                                 href_node);
4148                 if (!mutex_trylock(&head->mutex)) {
4149                         atomic_inc(&head->node.refs);
4150                         spin_unlock(&delayed_refs->lock);
4151
4152                         mutex_lock(&head->mutex);
4153                         mutex_unlock(&head->mutex);
4154                         btrfs_put_delayed_ref(&head->node);
4155                         spin_lock(&delayed_refs->lock);
4156                         continue;
4157                 }
4158                 spin_lock(&head->lock);
4159                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4160                                                  list) {
4161                         ref->in_tree = 0;
4162                         list_del(&ref->list);
4163                         atomic_dec(&delayed_refs->num_entries);
4164                         btrfs_put_delayed_ref(ref);
4165                 }
4166                 if (head->must_insert_reserved)
4167                         pin_bytes = true;
4168                 btrfs_free_delayed_extent_op(head->extent_op);
4169                 delayed_refs->num_heads--;
4170                 if (head->processing == 0)
4171                         delayed_refs->num_heads_ready--;
4172                 atomic_dec(&delayed_refs->num_entries);
4173                 head->node.in_tree = 0;
4174                 rb_erase(&head->href_node, &delayed_refs->href_root);
4175                 spin_unlock(&head->lock);
4176                 spin_unlock(&delayed_refs->lock);
4177                 mutex_unlock(&head->mutex);
4178
4179                 if (pin_bytes)
4180                         btrfs_pin_extent(root, head->node.bytenr,
4181                                          head->node.num_bytes, 1);
4182                 btrfs_put_delayed_ref(&head->node);
4183                 cond_resched();
4184                 spin_lock(&delayed_refs->lock);
4185         }
4186
4187         spin_unlock(&delayed_refs->lock);
4188
4189         return ret;
4190 }
4191
4192 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4193 {
4194         struct btrfs_inode *btrfs_inode;
4195         struct list_head splice;
4196
4197         INIT_LIST_HEAD(&splice);
4198
4199         spin_lock(&root->delalloc_lock);
4200         list_splice_init(&root->delalloc_inodes, &splice);
4201
4202         while (!list_empty(&splice)) {
4203                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4204                                                delalloc_inodes);
4205
4206                 list_del_init(&btrfs_inode->delalloc_inodes);
4207                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4208                           &btrfs_inode->runtime_flags);
4209                 spin_unlock(&root->delalloc_lock);
4210
4211                 btrfs_invalidate_inodes(btrfs_inode->root);
4212
4213                 spin_lock(&root->delalloc_lock);
4214         }
4215
4216         spin_unlock(&root->delalloc_lock);
4217 }
4218
4219 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4220 {
4221         struct btrfs_root *root;
4222         struct list_head splice;
4223
4224         INIT_LIST_HEAD(&splice);
4225
4226         spin_lock(&fs_info->delalloc_root_lock);
4227         list_splice_init(&fs_info->delalloc_roots, &splice);
4228         while (!list_empty(&splice)) {
4229                 root = list_first_entry(&splice, struct btrfs_root,
4230                                          delalloc_root);
4231                 list_del_init(&root->delalloc_root);
4232                 root = btrfs_grab_fs_root(root);
4233                 BUG_ON(!root);
4234                 spin_unlock(&fs_info->delalloc_root_lock);
4235
4236                 btrfs_destroy_delalloc_inodes(root);
4237                 btrfs_put_fs_root(root);
4238
4239                 spin_lock(&fs_info->delalloc_root_lock);
4240         }
4241         spin_unlock(&fs_info->delalloc_root_lock);
4242 }
4243
4244 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4245                                         struct extent_io_tree *dirty_pages,
4246                                         int mark)
4247 {
4248         int ret;
4249         struct extent_buffer *eb;
4250         u64 start = 0;
4251         u64 end;
4252
4253         while (1) {
4254                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4255                                             mark, NULL);
4256                 if (ret)
4257                         break;
4258
4259                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4260                 while (start <= end) {
4261                         eb = btrfs_find_tree_block(root->fs_info, start);
4262                         start += root->nodesize;
4263                         if (!eb)
4264                                 continue;
4265                         wait_on_extent_buffer_writeback(eb);
4266
4267                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4268                                                &eb->bflags))
4269                                 clear_extent_buffer_dirty(eb);
4270                         free_extent_buffer_stale(eb);
4271                 }
4272         }
4273
4274         return ret;
4275 }
4276
4277 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4278                                        struct extent_io_tree *pinned_extents)
4279 {
4280         struct btrfs_fs_info *fs_info = root->fs_info;
4281         struct extent_io_tree *unpin;
4282         u64 start;
4283         u64 end;
4284         int ret;
4285         bool loop = true;
4286
4287         unpin = pinned_extents;
4288 again:
4289         while (1) {
4290                 /*
4291                  * The btrfs_finish_extent_commit() may get the same range as
4292                  * ours between find_first_extent_bit and clear_extent_dirty.
4293                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4294                  * the same extent range.
4295                  */
4296                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4297                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4298                                             EXTENT_DIRTY, NULL);
4299                 if (ret) {
4300                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4301                         break;
4302                 }
4303
4304                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4305                 btrfs_error_unpin_extent_range(root, start, end);
4306                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4307                 cond_resched();
4308         }
4309
4310         if (loop) {
4311                 if (unpin == &fs_info->freed_extents[0])
4312                         unpin = &fs_info->freed_extents[1];
4313                 else
4314                         unpin = &fs_info->freed_extents[0];
4315                 loop = false;
4316                 goto again;
4317         }
4318
4319         return 0;
4320 }
4321
4322 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4323                                    struct btrfs_root *root)
4324 {
4325         btrfs_destroy_delayed_refs(cur_trans, root);
4326
4327         cur_trans->state = TRANS_STATE_COMMIT_START;
4328         wake_up(&root->fs_info->transaction_blocked_wait);
4329
4330         cur_trans->state = TRANS_STATE_UNBLOCKED;
4331         wake_up(&root->fs_info->transaction_wait);
4332
4333         btrfs_destroy_delayed_inodes(root);
4334         btrfs_assert_delayed_root_empty(root);
4335
4336         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4337                                      EXTENT_DIRTY);
4338         btrfs_destroy_pinned_extent(root,
4339                                     root->fs_info->pinned_extents);
4340
4341         cur_trans->state =TRANS_STATE_COMPLETED;
4342         wake_up(&cur_trans->commit_wait);
4343
4344         /*
4345         memset(cur_trans, 0, sizeof(*cur_trans));
4346         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4347         */
4348 }
4349
4350 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4351 {
4352         struct btrfs_transaction *t;
4353
4354         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4355
4356         spin_lock(&root->fs_info->trans_lock);
4357         while (!list_empty(&root->fs_info->trans_list)) {
4358                 t = list_first_entry(&root->fs_info->trans_list,
4359                                      struct btrfs_transaction, list);
4360                 if (t->state >= TRANS_STATE_COMMIT_START) {
4361                         atomic_inc(&t->use_count);
4362                         spin_unlock(&root->fs_info->trans_lock);
4363                         btrfs_wait_for_commit(root, t->transid);
4364                         btrfs_put_transaction(t);
4365                         spin_lock(&root->fs_info->trans_lock);
4366                         continue;
4367                 }
4368                 if (t == root->fs_info->running_transaction) {
4369                         t->state = TRANS_STATE_COMMIT_DOING;
4370                         spin_unlock(&root->fs_info->trans_lock);
4371                         /*
4372                          * We wait for 0 num_writers since we don't hold a trans
4373                          * handle open currently for this transaction.
4374                          */
4375                         wait_event(t->writer_wait,
4376                                    atomic_read(&t->num_writers) == 0);
4377                 } else {
4378                         spin_unlock(&root->fs_info->trans_lock);
4379                 }
4380                 btrfs_cleanup_one_transaction(t, root);
4381
4382                 spin_lock(&root->fs_info->trans_lock);
4383                 if (t == root->fs_info->running_transaction)
4384                         root->fs_info->running_transaction = NULL;
4385                 list_del_init(&t->list);
4386                 spin_unlock(&root->fs_info->trans_lock);
4387
4388                 btrfs_put_transaction(t);
4389                 trace_btrfs_transaction_commit(root);
4390                 spin_lock(&root->fs_info->trans_lock);
4391         }
4392         spin_unlock(&root->fs_info->trans_lock);
4393         btrfs_destroy_all_ordered_extents(root->fs_info);
4394         btrfs_destroy_delayed_inodes(root);
4395         btrfs_assert_delayed_root_empty(root);
4396         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4397         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4398         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4399
4400         return 0;
4401 }
4402
4403 static const struct extent_io_ops btree_extent_io_ops = {
4404         .readpage_end_io_hook = btree_readpage_end_io_hook,
4405         .readpage_io_failed_hook = btree_io_failed_hook,
4406         .submit_bio_hook = btree_submit_bio_hook,
4407         /* note we're sharing with inode.c for the merge bio hook */
4408         .merge_bio_hook = btrfs_merge_bio_hook,
4409 };