OSDN Git Service

btrfs: push __setup_root into btrfs_alloc_root
[tomoyo/tomoyo-test1.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44 #include "discard.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 /*
102  * async submit bios are used to offload expensive checksumming
103  * onto the worker threads.  They checksum file and metadata bios
104  * just before they are sent down the IO stack.
105  */
106 struct async_submit_bio {
107         void *private_data;
108         struct bio *bio;
109         extent_submit_bio_start_t *submit_bio_start;
110         int mirror_num;
111         /*
112          * bio_offset is optional, can be used if the pages in the bio
113          * can't tell us where in the file the bio should go
114          */
115         u64 bio_offset;
116         struct btrfs_work work;
117         blk_status_t status;
118 };
119
120 /*
121  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
122  * eb, the lockdep key is determined by the btrfs_root it belongs to and
123  * the level the eb occupies in the tree.
124  *
125  * Different roots are used for different purposes and may nest inside each
126  * other and they require separate keysets.  As lockdep keys should be
127  * static, assign keysets according to the purpose of the root as indicated
128  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
129  * roots have separate keysets.
130  *
131  * Lock-nesting across peer nodes is always done with the immediate parent
132  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
133  * subclass to avoid triggering lockdep warning in such cases.
134  *
135  * The key is set by the readpage_end_io_hook after the buffer has passed
136  * csum validation but before the pages are unlocked.  It is also set by
137  * btrfs_init_new_buffer on freshly allocated blocks.
138  *
139  * We also add a check to make sure the highest level of the tree is the
140  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
141  * needs update as well.
142  */
143 #ifdef CONFIG_DEBUG_LOCK_ALLOC
144 # if BTRFS_MAX_LEVEL != 8
145 #  error
146 # endif
147
148 static struct btrfs_lockdep_keyset {
149         u64                     id;             /* root objectid */
150         const char              *name_stem;     /* lock name stem */
151         char                    names[BTRFS_MAX_LEVEL + 1][20];
152         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
153 } btrfs_lockdep_keysets[] = {
154         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
155         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
156         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
157         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
158         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
159         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
160         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
161         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
162         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
163         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
164         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
165         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
166         { .id = 0,                              .name_stem = "tree"     },
167 };
168
169 void __init btrfs_init_lockdep(void)
170 {
171         int i, j;
172
173         /* initialize lockdep class names */
174         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178                         snprintf(ks->names[j], sizeof(ks->names[j]),
179                                  "btrfs-%s-%02d", ks->name_stem, j);
180         }
181 }
182
183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184                                     int level)
185 {
186         struct btrfs_lockdep_keyset *ks;
187
188         BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190         /* find the matching keyset, id 0 is the default entry */
191         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192                 if (ks->id == objectid)
193                         break;
194
195         lockdep_set_class_and_name(&eb->lock,
196                                    &ks->keys[level], ks->names[level]);
197 }
198
199 #endif
200
201 /*
202  * extents on the btree inode are pretty simple, there's one extent
203  * that covers the entire device
204  */
205 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
206                                     struct page *page, size_t pg_offset,
207                                     u64 start, u64 len)
208 {
209         struct extent_map_tree *em_tree = &inode->extent_tree;
210         struct extent_map *em;
211         int ret;
212
213         read_lock(&em_tree->lock);
214         em = lookup_extent_mapping(em_tree, start, len);
215         if (em) {
216                 read_unlock(&em_tree->lock);
217                 goto out;
218         }
219         read_unlock(&em_tree->lock);
220
221         em = alloc_extent_map();
222         if (!em) {
223                 em = ERR_PTR(-ENOMEM);
224                 goto out;
225         }
226         em->start = 0;
227         em->len = (u64)-1;
228         em->block_len = (u64)-1;
229         em->block_start = 0;
230
231         write_lock(&em_tree->lock);
232         ret = add_extent_mapping(em_tree, em, 0);
233         if (ret == -EEXIST) {
234                 free_extent_map(em);
235                 em = lookup_extent_mapping(em_tree, start, len);
236                 if (!em)
237                         em = ERR_PTR(-EIO);
238         } else if (ret) {
239                 free_extent_map(em);
240                 em = ERR_PTR(ret);
241         }
242         write_unlock(&em_tree->lock);
243
244 out:
245         return em;
246 }
247
248 /*
249  * Compute the csum of a btree block and store the result to provided buffer.
250  *
251  * Returns error if the extent buffer cannot be mapped.
252  */
253 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
254 {
255         struct btrfs_fs_info *fs_info = buf->fs_info;
256         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
257         unsigned long len;
258         unsigned long cur_len;
259         unsigned long offset = BTRFS_CSUM_SIZE;
260         char *kaddr;
261         unsigned long map_start;
262         unsigned long map_len;
263         int err;
264
265         shash->tfm = fs_info->csum_shash;
266         crypto_shash_init(shash);
267
268         len = buf->len - offset;
269
270         while (len > 0) {
271                 /*
272                  * Note: we don't need to check for the err == 1 case here, as
273                  * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
274                  * and 'min_len = 32' and the currently implemented mapping
275                  * algorithm we cannot cross a page boundary.
276                  */
277                 err = map_private_extent_buffer(buf, offset, 32,
278                                         &kaddr, &map_start, &map_len);
279                 if (WARN_ON(err))
280                         return err;
281                 cur_len = min(len, map_len - (offset - map_start));
282                 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         memset(result, 0, BTRFS_CSUM_SIZE);
287
288         crypto_shash_final(shash, result);
289
290         return 0;
291 }
292
293 /*
294  * we can't consider a given block up to date unless the transid of the
295  * block matches the transid in the parent node's pointer.  This is how we
296  * detect blocks that either didn't get written at all or got written
297  * in the wrong place.
298  */
299 static int verify_parent_transid(struct extent_io_tree *io_tree,
300                                  struct extent_buffer *eb, u64 parent_transid,
301                                  int atomic)
302 {
303         struct extent_state *cached_state = NULL;
304         int ret;
305         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
306
307         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
308                 return 0;
309
310         if (atomic)
311                 return -EAGAIN;
312
313         if (need_lock) {
314                 btrfs_tree_read_lock(eb);
315                 btrfs_set_lock_blocking_read(eb);
316         }
317
318         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
319                          &cached_state);
320         if (extent_buffer_uptodate(eb) &&
321             btrfs_header_generation(eb) == parent_transid) {
322                 ret = 0;
323                 goto out;
324         }
325         btrfs_err_rl(eb->fs_info,
326                 "parent transid verify failed on %llu wanted %llu found %llu",
327                         eb->start,
328                         parent_transid, btrfs_header_generation(eb));
329         ret = 1;
330
331         /*
332          * Things reading via commit roots that don't have normal protection,
333          * like send, can have a really old block in cache that may point at a
334          * block that has been freed and re-allocated.  So don't clear uptodate
335          * if we find an eb that is under IO (dirty/writeback) because we could
336          * end up reading in the stale data and then writing it back out and
337          * making everybody very sad.
338          */
339         if (!extent_buffer_under_io(eb))
340                 clear_extent_buffer_uptodate(eb);
341 out:
342         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
343                              &cached_state);
344         if (need_lock)
345                 btrfs_tree_read_unlock_blocking(eb);
346         return ret;
347 }
348
349 static bool btrfs_supported_super_csum(u16 csum_type)
350 {
351         switch (csum_type) {
352         case BTRFS_CSUM_TYPE_CRC32:
353         case BTRFS_CSUM_TYPE_XXHASH:
354         case BTRFS_CSUM_TYPE_SHA256:
355         case BTRFS_CSUM_TYPE_BLAKE2:
356                 return true;
357         default:
358                 return false;
359         }
360 }
361
362 /*
363  * Return 0 if the superblock checksum type matches the checksum value of that
364  * algorithm. Pass the raw disk superblock data.
365  */
366 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
367                                   char *raw_disk_sb)
368 {
369         struct btrfs_super_block *disk_sb =
370                 (struct btrfs_super_block *)raw_disk_sb;
371         char result[BTRFS_CSUM_SIZE];
372         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
373
374         shash->tfm = fs_info->csum_shash;
375         crypto_shash_init(shash);
376
377         /*
378          * The super_block structure does not span the whole
379          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
380          * filled with zeros and is included in the checksum.
381          */
382         crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
383                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
384         crypto_shash_final(shash, result);
385
386         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
387                 return 1;
388
389         return 0;
390 }
391
392 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
393                            struct btrfs_key *first_key, u64 parent_transid)
394 {
395         struct btrfs_fs_info *fs_info = eb->fs_info;
396         int found_level;
397         struct btrfs_key found_key;
398         int ret;
399
400         found_level = btrfs_header_level(eb);
401         if (found_level != level) {
402                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
403                      KERN_ERR "BTRFS: tree level check failed\n");
404                 btrfs_err(fs_info,
405 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
406                           eb->start, level, found_level);
407                 return -EIO;
408         }
409
410         if (!first_key)
411                 return 0;
412
413         /*
414          * For live tree block (new tree blocks in current transaction),
415          * we need proper lock context to avoid race, which is impossible here.
416          * So we only checks tree blocks which is read from disk, whose
417          * generation <= fs_info->last_trans_committed.
418          */
419         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
420                 return 0;
421
422         /* We have @first_key, so this @eb must have at least one item */
423         if (btrfs_header_nritems(eb) == 0) {
424                 btrfs_err(fs_info,
425                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
426                           eb->start);
427                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
428                 return -EUCLEAN;
429         }
430
431         if (found_level)
432                 btrfs_node_key_to_cpu(eb, &found_key, 0);
433         else
434                 btrfs_item_key_to_cpu(eb, &found_key, 0);
435         ret = btrfs_comp_cpu_keys(first_key, &found_key);
436
437         if (ret) {
438                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
439                      KERN_ERR "BTRFS: tree first key check failed\n");
440                 btrfs_err(fs_info,
441 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442                           eb->start, parent_transid, first_key->objectid,
443                           first_key->type, first_key->offset,
444                           found_key.objectid, found_key.type,
445                           found_key.offset);
446         }
447         return ret;
448 }
449
450 /*
451  * helper to read a given tree block, doing retries as required when
452  * the checksums don't match and we have alternate mirrors to try.
453  *
454  * @parent_transid:     expected transid, skip check if 0
455  * @level:              expected level, mandatory check
456  * @first_key:          expected key of first slot, skip check if NULL
457  */
458 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
459                                           u64 parent_transid, int level,
460                                           struct btrfs_key *first_key)
461 {
462         struct btrfs_fs_info *fs_info = eb->fs_info;
463         struct extent_io_tree *io_tree;
464         int failed = 0;
465         int ret;
466         int num_copies = 0;
467         int mirror_num = 0;
468         int failed_mirror = 0;
469
470         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
471         while (1) {
472                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
473                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
474                 if (!ret) {
475                         if (verify_parent_transid(io_tree, eb,
476                                                    parent_transid, 0))
477                                 ret = -EIO;
478                         else if (btrfs_verify_level_key(eb, level,
479                                                 first_key, parent_transid))
480                                 ret = -EUCLEAN;
481                         else
482                                 break;
483                 }
484
485                 num_copies = btrfs_num_copies(fs_info,
486                                               eb->start, eb->len);
487                 if (num_copies == 1)
488                         break;
489
490                 if (!failed_mirror) {
491                         failed = 1;
492                         failed_mirror = eb->read_mirror;
493                 }
494
495                 mirror_num++;
496                 if (mirror_num == failed_mirror)
497                         mirror_num++;
498
499                 if (mirror_num > num_copies)
500                         break;
501         }
502
503         if (failed && !ret && failed_mirror)
504                 btrfs_repair_eb_io_failure(eb, failed_mirror);
505
506         return ret;
507 }
508
509 /*
510  * checksum a dirty tree block before IO.  This has extra checks to make sure
511  * we only fill in the checksum field in the first page of a multi-page block
512  */
513
514 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
515 {
516         u64 start = page_offset(page);
517         u64 found_start;
518         u8 result[BTRFS_CSUM_SIZE];
519         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
520         struct extent_buffer *eb;
521         int ret;
522
523         eb = (struct extent_buffer *)page->private;
524         if (page != eb->pages[0])
525                 return 0;
526
527         found_start = btrfs_header_bytenr(eb);
528         /*
529          * Please do not consolidate these warnings into a single if.
530          * It is useful to know what went wrong.
531          */
532         if (WARN_ON(found_start != start))
533                 return -EUCLEAN;
534         if (WARN_ON(!PageUptodate(page)))
535                 return -EUCLEAN;
536
537         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
538                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
539
540         if (csum_tree_block(eb, result))
541                 return -EINVAL;
542
543         if (btrfs_header_level(eb))
544                 ret = btrfs_check_node(eb);
545         else
546                 ret = btrfs_check_leaf_full(eb);
547
548         if (ret < 0) {
549                 btrfs_print_tree(eb, 0);
550                 btrfs_err(fs_info,
551                 "block=%llu write time tree block corruption detected",
552                           eb->start);
553                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
554                 return ret;
555         }
556         write_extent_buffer(eb, result, 0, csum_size);
557
558         return 0;
559 }
560
561 static int check_tree_block_fsid(struct extent_buffer *eb)
562 {
563         struct btrfs_fs_info *fs_info = eb->fs_info;
564         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
565         u8 fsid[BTRFS_FSID_SIZE];
566         int ret = 1;
567
568         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
569         while (fs_devices) {
570                 u8 *metadata_uuid;
571
572                 /*
573                  * Checking the incompat flag is only valid for the current
574                  * fs. For seed devices it's forbidden to have their uuid
575                  * changed so reading ->fsid in this case is fine
576                  */
577                 if (fs_devices == fs_info->fs_devices &&
578                     btrfs_fs_incompat(fs_info, METADATA_UUID))
579                         metadata_uuid = fs_devices->metadata_uuid;
580                 else
581                         metadata_uuid = fs_devices->fsid;
582
583                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
584                         ret = 0;
585                         break;
586                 }
587                 fs_devices = fs_devices->seed;
588         }
589         return ret;
590 }
591
592 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
593                                       u64 phy_offset, struct page *page,
594                                       u64 start, u64 end, int mirror)
595 {
596         u64 found_start;
597         int found_level;
598         struct extent_buffer *eb;
599         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
600         struct btrfs_fs_info *fs_info = root->fs_info;
601         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
602         int ret = 0;
603         u8 result[BTRFS_CSUM_SIZE];
604         int reads_done;
605
606         if (!page->private)
607                 goto out;
608
609         eb = (struct extent_buffer *)page->private;
610
611         /* the pending IO might have been the only thing that kept this buffer
612          * in memory.  Make sure we have a ref for all this other checks
613          */
614         atomic_inc(&eb->refs);
615
616         reads_done = atomic_dec_and_test(&eb->io_pages);
617         if (!reads_done)
618                 goto err;
619
620         eb->read_mirror = mirror;
621         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
622                 ret = -EIO;
623                 goto err;
624         }
625
626         found_start = btrfs_header_bytenr(eb);
627         if (found_start != eb->start) {
628                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
629                              eb->start, found_start);
630                 ret = -EIO;
631                 goto err;
632         }
633         if (check_tree_block_fsid(eb)) {
634                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
635                              eb->start);
636                 ret = -EIO;
637                 goto err;
638         }
639         found_level = btrfs_header_level(eb);
640         if (found_level >= BTRFS_MAX_LEVEL) {
641                 btrfs_err(fs_info, "bad tree block level %d on %llu",
642                           (int)btrfs_header_level(eb), eb->start);
643                 ret = -EIO;
644                 goto err;
645         }
646
647         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
648                                        eb, found_level);
649
650         ret = csum_tree_block(eb, result);
651         if (ret)
652                 goto err;
653
654         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
655                 u32 val;
656                 u32 found = 0;
657
658                 memcpy(&found, result, csum_size);
659
660                 read_extent_buffer(eb, &val, 0, csum_size);
661                 btrfs_warn_rl(fs_info,
662                 "%s checksum verify failed on %llu wanted %x found %x level %d",
663                               fs_info->sb->s_id, eb->start,
664                               val, found, btrfs_header_level(eb));
665                 ret = -EUCLEAN;
666                 goto err;
667         }
668
669         /*
670          * If this is a leaf block and it is corrupt, set the corrupt bit so
671          * that we don't try and read the other copies of this block, just
672          * return -EIO.
673          */
674         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
675                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
676                 ret = -EIO;
677         }
678
679         if (found_level > 0 && btrfs_check_node(eb))
680                 ret = -EIO;
681
682         if (!ret)
683                 set_extent_buffer_uptodate(eb);
684         else
685                 btrfs_err(fs_info,
686                           "block=%llu read time tree block corruption detected",
687                           eb->start);
688 err:
689         if (reads_done &&
690             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
691                 btree_readahead_hook(eb, ret);
692
693         if (ret) {
694                 /*
695                  * our io error hook is going to dec the io pages
696                  * again, we have to make sure it has something
697                  * to decrement
698                  */
699                 atomic_inc(&eb->io_pages);
700                 clear_extent_buffer_uptodate(eb);
701         }
702         free_extent_buffer(eb);
703 out:
704         return ret;
705 }
706
707 static void end_workqueue_bio(struct bio *bio)
708 {
709         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
710         struct btrfs_fs_info *fs_info;
711         struct btrfs_workqueue *wq;
712
713         fs_info = end_io_wq->info;
714         end_io_wq->status = bio->bi_status;
715
716         if (bio_op(bio) == REQ_OP_WRITE) {
717                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
718                         wq = fs_info->endio_meta_write_workers;
719                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
720                         wq = fs_info->endio_freespace_worker;
721                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
722                         wq = fs_info->endio_raid56_workers;
723                 else
724                         wq = fs_info->endio_write_workers;
725         } else {
726                 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
727                         wq = fs_info->endio_repair_workers;
728                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
729                         wq = fs_info->endio_raid56_workers;
730                 else if (end_io_wq->metadata)
731                         wq = fs_info->endio_meta_workers;
732                 else
733                         wq = fs_info->endio_workers;
734         }
735
736         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
737         btrfs_queue_work(wq, &end_io_wq->work);
738 }
739
740 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
741                         enum btrfs_wq_endio_type metadata)
742 {
743         struct btrfs_end_io_wq *end_io_wq;
744
745         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
746         if (!end_io_wq)
747                 return BLK_STS_RESOURCE;
748
749         end_io_wq->private = bio->bi_private;
750         end_io_wq->end_io = bio->bi_end_io;
751         end_io_wq->info = info;
752         end_io_wq->status = 0;
753         end_io_wq->bio = bio;
754         end_io_wq->metadata = metadata;
755
756         bio->bi_private = end_io_wq;
757         bio->bi_end_io = end_workqueue_bio;
758         return 0;
759 }
760
761 static void run_one_async_start(struct btrfs_work *work)
762 {
763         struct async_submit_bio *async;
764         blk_status_t ret;
765
766         async = container_of(work, struct  async_submit_bio, work);
767         ret = async->submit_bio_start(async->private_data, async->bio,
768                                       async->bio_offset);
769         if (ret)
770                 async->status = ret;
771 }
772
773 /*
774  * In order to insert checksums into the metadata in large chunks, we wait
775  * until bio submission time.   All the pages in the bio are checksummed and
776  * sums are attached onto the ordered extent record.
777  *
778  * At IO completion time the csums attached on the ordered extent record are
779  * inserted into the tree.
780  */
781 static void run_one_async_done(struct btrfs_work *work)
782 {
783         struct async_submit_bio *async;
784         struct inode *inode;
785         blk_status_t ret;
786
787         async = container_of(work, struct  async_submit_bio, work);
788         inode = async->private_data;
789
790         /* If an error occurred we just want to clean up the bio and move on */
791         if (async->status) {
792                 async->bio->bi_status = async->status;
793                 bio_endio(async->bio);
794                 return;
795         }
796
797         /*
798          * All of the bios that pass through here are from async helpers.
799          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
800          * This changes nothing when cgroups aren't in use.
801          */
802         async->bio->bi_opf |= REQ_CGROUP_PUNT;
803         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
804         if (ret) {
805                 async->bio->bi_status = ret;
806                 bio_endio(async->bio);
807         }
808 }
809
810 static void run_one_async_free(struct btrfs_work *work)
811 {
812         struct async_submit_bio *async;
813
814         async = container_of(work, struct  async_submit_bio, work);
815         kfree(async);
816 }
817
818 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
819                                  int mirror_num, unsigned long bio_flags,
820                                  u64 bio_offset, void *private_data,
821                                  extent_submit_bio_start_t *submit_bio_start)
822 {
823         struct async_submit_bio *async;
824
825         async = kmalloc(sizeof(*async), GFP_NOFS);
826         if (!async)
827                 return BLK_STS_RESOURCE;
828
829         async->private_data = private_data;
830         async->bio = bio;
831         async->mirror_num = mirror_num;
832         async->submit_bio_start = submit_bio_start;
833
834         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
835                         run_one_async_free);
836
837         async->bio_offset = bio_offset;
838
839         async->status = 0;
840
841         if (op_is_sync(bio->bi_opf))
842                 btrfs_set_work_high_priority(&async->work);
843
844         btrfs_queue_work(fs_info->workers, &async->work);
845         return 0;
846 }
847
848 static blk_status_t btree_csum_one_bio(struct bio *bio)
849 {
850         struct bio_vec *bvec;
851         struct btrfs_root *root;
852         int ret = 0;
853         struct bvec_iter_all iter_all;
854
855         ASSERT(!bio_flagged(bio, BIO_CLONED));
856         bio_for_each_segment_all(bvec, bio, iter_all) {
857                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
858                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
859                 if (ret)
860                         break;
861         }
862
863         return errno_to_blk_status(ret);
864 }
865
866 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
867                                              u64 bio_offset)
868 {
869         /*
870          * when we're called for a write, we're already in the async
871          * submission context.  Just jump into btrfs_map_bio
872          */
873         return btree_csum_one_bio(bio);
874 }
875
876 static int check_async_write(struct btrfs_fs_info *fs_info,
877                              struct btrfs_inode *bi)
878 {
879         if (atomic_read(&bi->sync_writers))
880                 return 0;
881         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
882                 return 0;
883         return 1;
884 }
885
886 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
887                                           int mirror_num,
888                                           unsigned long bio_flags)
889 {
890         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
891         int async = check_async_write(fs_info, BTRFS_I(inode));
892         blk_status_t ret;
893
894         if (bio_op(bio) != REQ_OP_WRITE) {
895                 /*
896                  * called for a read, do the setup so that checksum validation
897                  * can happen in the async kernel threads
898                  */
899                 ret = btrfs_bio_wq_end_io(fs_info, bio,
900                                           BTRFS_WQ_ENDIO_METADATA);
901                 if (ret)
902                         goto out_w_error;
903                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
904         } else if (!async) {
905                 ret = btree_csum_one_bio(bio);
906                 if (ret)
907                         goto out_w_error;
908                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
909         } else {
910                 /*
911                  * kthread helpers are used to submit writes so that
912                  * checksumming can happen in parallel across all CPUs
913                  */
914                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
915                                           0, inode, btree_submit_bio_start);
916         }
917
918         if (ret)
919                 goto out_w_error;
920         return 0;
921
922 out_w_error:
923         bio->bi_status = ret;
924         bio_endio(bio);
925         return ret;
926 }
927
928 #ifdef CONFIG_MIGRATION
929 static int btree_migratepage(struct address_space *mapping,
930                         struct page *newpage, struct page *page,
931                         enum migrate_mode mode)
932 {
933         /*
934          * we can't safely write a btree page from here,
935          * we haven't done the locking hook
936          */
937         if (PageDirty(page))
938                 return -EAGAIN;
939         /*
940          * Buffers may be managed in a filesystem specific way.
941          * We must have no buffers or drop them.
942          */
943         if (page_has_private(page) &&
944             !try_to_release_page(page, GFP_KERNEL))
945                 return -EAGAIN;
946         return migrate_page(mapping, newpage, page, mode);
947 }
948 #endif
949
950
951 static int btree_writepages(struct address_space *mapping,
952                             struct writeback_control *wbc)
953 {
954         struct btrfs_fs_info *fs_info;
955         int ret;
956
957         if (wbc->sync_mode == WB_SYNC_NONE) {
958
959                 if (wbc->for_kupdate)
960                         return 0;
961
962                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
963                 /* this is a bit racy, but that's ok */
964                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
965                                              BTRFS_DIRTY_METADATA_THRESH,
966                                              fs_info->dirty_metadata_batch);
967                 if (ret < 0)
968                         return 0;
969         }
970         return btree_write_cache_pages(mapping, wbc);
971 }
972
973 static int btree_readpage(struct file *file, struct page *page)
974 {
975         struct extent_io_tree *tree;
976         tree = &BTRFS_I(page->mapping->host)->io_tree;
977         return extent_read_full_page(tree, page, btree_get_extent, 0);
978 }
979
980 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
981 {
982         if (PageWriteback(page) || PageDirty(page))
983                 return 0;
984
985         return try_release_extent_buffer(page);
986 }
987
988 static void btree_invalidatepage(struct page *page, unsigned int offset,
989                                  unsigned int length)
990 {
991         struct extent_io_tree *tree;
992         tree = &BTRFS_I(page->mapping->host)->io_tree;
993         extent_invalidatepage(tree, page, offset);
994         btree_releasepage(page, GFP_NOFS);
995         if (PagePrivate(page)) {
996                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
997                            "page private not zero on page %llu",
998                            (unsigned long long)page_offset(page));
999                 ClearPagePrivate(page);
1000                 set_page_private(page, 0);
1001                 put_page(page);
1002         }
1003 }
1004
1005 static int btree_set_page_dirty(struct page *page)
1006 {
1007 #ifdef DEBUG
1008         struct extent_buffer *eb;
1009
1010         BUG_ON(!PagePrivate(page));
1011         eb = (struct extent_buffer *)page->private;
1012         BUG_ON(!eb);
1013         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1014         BUG_ON(!atomic_read(&eb->refs));
1015         btrfs_assert_tree_locked(eb);
1016 #endif
1017         return __set_page_dirty_nobuffers(page);
1018 }
1019
1020 static const struct address_space_operations btree_aops = {
1021         .readpage       = btree_readpage,
1022         .writepages     = btree_writepages,
1023         .releasepage    = btree_releasepage,
1024         .invalidatepage = btree_invalidatepage,
1025 #ifdef CONFIG_MIGRATION
1026         .migratepage    = btree_migratepage,
1027 #endif
1028         .set_page_dirty = btree_set_page_dirty,
1029 };
1030
1031 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1032 {
1033         struct extent_buffer *buf = NULL;
1034         int ret;
1035
1036         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1037         if (IS_ERR(buf))
1038                 return;
1039
1040         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1041         if (ret < 0)
1042                 free_extent_buffer_stale(buf);
1043         else
1044                 free_extent_buffer(buf);
1045 }
1046
1047 struct extent_buffer *btrfs_find_create_tree_block(
1048                                                 struct btrfs_fs_info *fs_info,
1049                                                 u64 bytenr)
1050 {
1051         if (btrfs_is_testing(fs_info))
1052                 return alloc_test_extent_buffer(fs_info, bytenr);
1053         return alloc_extent_buffer(fs_info, bytenr);
1054 }
1055
1056 /*
1057  * Read tree block at logical address @bytenr and do variant basic but critical
1058  * verification.
1059  *
1060  * @parent_transid:     expected transid of this tree block, skip check if 0
1061  * @level:              expected level, mandatory check
1062  * @first_key:          expected key in slot 0, skip check if NULL
1063  */
1064 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1065                                       u64 parent_transid, int level,
1066                                       struct btrfs_key *first_key)
1067 {
1068         struct extent_buffer *buf = NULL;
1069         int ret;
1070
1071         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1072         if (IS_ERR(buf))
1073                 return buf;
1074
1075         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1076                                              level, first_key);
1077         if (ret) {
1078                 free_extent_buffer_stale(buf);
1079                 return ERR_PTR(ret);
1080         }
1081         return buf;
1082
1083 }
1084
1085 void btrfs_clean_tree_block(struct extent_buffer *buf)
1086 {
1087         struct btrfs_fs_info *fs_info = buf->fs_info;
1088         if (btrfs_header_generation(buf) ==
1089             fs_info->running_transaction->transid) {
1090                 btrfs_assert_tree_locked(buf);
1091
1092                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1093                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1094                                                  -buf->len,
1095                                                  fs_info->dirty_metadata_batch);
1096                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1097                         btrfs_set_lock_blocking_write(buf);
1098                         clear_extent_buffer_dirty(buf);
1099                 }
1100         }
1101 }
1102
1103 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1104 {
1105         struct btrfs_subvolume_writers *writers;
1106         int ret;
1107
1108         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1109         if (!writers)
1110                 return ERR_PTR(-ENOMEM);
1111
1112         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1113         if (ret < 0) {
1114                 kfree(writers);
1115                 return ERR_PTR(ret);
1116         }
1117
1118         init_waitqueue_head(&writers->wait);
1119         return writers;
1120 }
1121
1122 static void
1123 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1124 {
1125         percpu_counter_destroy(&writers->counter);
1126         kfree(writers);
1127 }
1128
1129 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1130                          u64 objectid)
1131 {
1132         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1133         root->fs_info = fs_info;
1134         root->node = NULL;
1135         root->commit_root = NULL;
1136         root->state = 0;
1137         root->orphan_cleanup_state = 0;
1138
1139         root->last_trans = 0;
1140         root->highest_objectid = 0;
1141         root->nr_delalloc_inodes = 0;
1142         root->nr_ordered_extents = 0;
1143         root->inode_tree = RB_ROOT;
1144         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1145         root->block_rsv = NULL;
1146
1147         INIT_LIST_HEAD(&root->dirty_list);
1148         INIT_LIST_HEAD(&root->root_list);
1149         INIT_LIST_HEAD(&root->delalloc_inodes);
1150         INIT_LIST_HEAD(&root->delalloc_root);
1151         INIT_LIST_HEAD(&root->ordered_extents);
1152         INIT_LIST_HEAD(&root->ordered_root);
1153         INIT_LIST_HEAD(&root->reloc_dirty_list);
1154         INIT_LIST_HEAD(&root->logged_list[0]);
1155         INIT_LIST_HEAD(&root->logged_list[1]);
1156         spin_lock_init(&root->inode_lock);
1157         spin_lock_init(&root->delalloc_lock);
1158         spin_lock_init(&root->ordered_extent_lock);
1159         spin_lock_init(&root->accounting_lock);
1160         spin_lock_init(&root->log_extents_lock[0]);
1161         spin_lock_init(&root->log_extents_lock[1]);
1162         spin_lock_init(&root->qgroup_meta_rsv_lock);
1163         mutex_init(&root->objectid_mutex);
1164         mutex_init(&root->log_mutex);
1165         mutex_init(&root->ordered_extent_mutex);
1166         mutex_init(&root->delalloc_mutex);
1167         init_waitqueue_head(&root->log_writer_wait);
1168         init_waitqueue_head(&root->log_commit_wait[0]);
1169         init_waitqueue_head(&root->log_commit_wait[1]);
1170         INIT_LIST_HEAD(&root->log_ctxs[0]);
1171         INIT_LIST_HEAD(&root->log_ctxs[1]);
1172         atomic_set(&root->log_commit[0], 0);
1173         atomic_set(&root->log_commit[1], 0);
1174         atomic_set(&root->log_writers, 0);
1175         atomic_set(&root->log_batch, 0);
1176         refcount_set(&root->refs, 1);
1177         atomic_set(&root->will_be_snapshotted, 0);
1178         atomic_set(&root->snapshot_force_cow, 0);
1179         atomic_set(&root->nr_swapfiles, 0);
1180         root->log_transid = 0;
1181         root->log_transid_committed = -1;
1182         root->last_log_commit = 0;
1183         if (!dummy)
1184                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1185                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1186
1187         memset(&root->root_key, 0, sizeof(root->root_key));
1188         memset(&root->root_item, 0, sizeof(root->root_item));
1189         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1190         if (!dummy)
1191                 root->defrag_trans_start = fs_info->generation;
1192         else
1193                 root->defrag_trans_start = 0;
1194         root->root_key.objectid = objectid;
1195         root->anon_dev = 0;
1196
1197         spin_lock_init(&root->root_item_lock);
1198         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1199 }
1200
1201 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1202                                            u64 objectid, gfp_t flags)
1203 {
1204         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1205         if (root)
1206                 __setup_root(root, fs_info, objectid);
1207         return root;
1208 }
1209
1210 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1211 /* Should only be used by the testing infrastructure */
1212 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1213 {
1214         struct btrfs_root *root;
1215
1216         if (!fs_info)
1217                 return ERR_PTR(-EINVAL);
1218
1219         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1220         if (!root)
1221                 return ERR_PTR(-ENOMEM);
1222
1223         /* We don't use the stripesize in selftest, set it as sectorsize */
1224         root->alloc_bytenr = 0;
1225
1226         return root;
1227 }
1228 #endif
1229
1230 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1231                                      u64 objectid)
1232 {
1233         struct btrfs_fs_info *fs_info = trans->fs_info;
1234         struct extent_buffer *leaf;
1235         struct btrfs_root *tree_root = fs_info->tree_root;
1236         struct btrfs_root *root;
1237         struct btrfs_key key;
1238         unsigned int nofs_flag;
1239         int ret = 0;
1240         uuid_le uuid = NULL_UUID_LE;
1241
1242         /*
1243          * We're holding a transaction handle, so use a NOFS memory allocation
1244          * context to avoid deadlock if reclaim happens.
1245          */
1246         nofs_flag = memalloc_nofs_save();
1247         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1248         memalloc_nofs_restore(nofs_flag);
1249         if (!root)
1250                 return ERR_PTR(-ENOMEM);
1251
1252         root->root_key.objectid = objectid;
1253         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1254         root->root_key.offset = 0;
1255
1256         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1257         if (IS_ERR(leaf)) {
1258                 ret = PTR_ERR(leaf);
1259                 leaf = NULL;
1260                 goto fail;
1261         }
1262
1263         root->node = leaf;
1264         btrfs_mark_buffer_dirty(leaf);
1265
1266         root->commit_root = btrfs_root_node(root);
1267         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1268
1269         root->root_item.flags = 0;
1270         root->root_item.byte_limit = 0;
1271         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1272         btrfs_set_root_generation(&root->root_item, trans->transid);
1273         btrfs_set_root_level(&root->root_item, 0);
1274         btrfs_set_root_refs(&root->root_item, 1);
1275         btrfs_set_root_used(&root->root_item, leaf->len);
1276         btrfs_set_root_last_snapshot(&root->root_item, 0);
1277         btrfs_set_root_dirid(&root->root_item, 0);
1278         if (is_fstree(objectid))
1279                 uuid_le_gen(&uuid);
1280         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1281         root->root_item.drop_level = 0;
1282
1283         key.objectid = objectid;
1284         key.type = BTRFS_ROOT_ITEM_KEY;
1285         key.offset = 0;
1286         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1287         if (ret)
1288                 goto fail;
1289
1290         btrfs_tree_unlock(leaf);
1291
1292         return root;
1293
1294 fail:
1295         if (leaf) {
1296                 btrfs_tree_unlock(leaf);
1297                 free_extent_buffer(root->commit_root);
1298                 free_extent_buffer(leaf);
1299         }
1300         kfree(root);
1301
1302         return ERR_PTR(ret);
1303 }
1304
1305 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1306                                          struct btrfs_fs_info *fs_info)
1307 {
1308         struct btrfs_root *root;
1309         struct extent_buffer *leaf;
1310
1311         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1312         if (!root)
1313                 return ERR_PTR(-ENOMEM);
1314
1315         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1316         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1317         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1318
1319         /*
1320          * DON'T set REF_COWS for log trees
1321          *
1322          * log trees do not get reference counted because they go away
1323          * before a real commit is actually done.  They do store pointers
1324          * to file data extents, and those reference counts still get
1325          * updated (along with back refs to the log tree).
1326          */
1327
1328         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1329                         NULL, 0, 0, 0);
1330         if (IS_ERR(leaf)) {
1331                 kfree(root);
1332                 return ERR_CAST(leaf);
1333         }
1334
1335         root->node = leaf;
1336
1337         btrfs_mark_buffer_dirty(root->node);
1338         btrfs_tree_unlock(root->node);
1339         return root;
1340 }
1341
1342 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1343                              struct btrfs_fs_info *fs_info)
1344 {
1345         struct btrfs_root *log_root;
1346
1347         log_root = alloc_log_tree(trans, fs_info);
1348         if (IS_ERR(log_root))
1349                 return PTR_ERR(log_root);
1350         WARN_ON(fs_info->log_root_tree);
1351         fs_info->log_root_tree = log_root;
1352         return 0;
1353 }
1354
1355 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1356                        struct btrfs_root *root)
1357 {
1358         struct btrfs_fs_info *fs_info = root->fs_info;
1359         struct btrfs_root *log_root;
1360         struct btrfs_inode_item *inode_item;
1361
1362         log_root = alloc_log_tree(trans, fs_info);
1363         if (IS_ERR(log_root))
1364                 return PTR_ERR(log_root);
1365
1366         log_root->last_trans = trans->transid;
1367         log_root->root_key.offset = root->root_key.objectid;
1368
1369         inode_item = &log_root->root_item.inode;
1370         btrfs_set_stack_inode_generation(inode_item, 1);
1371         btrfs_set_stack_inode_size(inode_item, 3);
1372         btrfs_set_stack_inode_nlink(inode_item, 1);
1373         btrfs_set_stack_inode_nbytes(inode_item,
1374                                      fs_info->nodesize);
1375         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1376
1377         btrfs_set_root_node(&log_root->root_item, log_root->node);
1378
1379         WARN_ON(root->log_root);
1380         root->log_root = log_root;
1381         root->log_transid = 0;
1382         root->log_transid_committed = -1;
1383         root->last_log_commit = 0;
1384         return 0;
1385 }
1386
1387 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1388                                                struct btrfs_key *key)
1389 {
1390         struct btrfs_root *root;
1391         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1392         struct btrfs_path *path;
1393         u64 generation;
1394         int ret;
1395         int level;
1396
1397         path = btrfs_alloc_path();
1398         if (!path)
1399                 return ERR_PTR(-ENOMEM);
1400
1401         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1402         if (!root) {
1403                 ret = -ENOMEM;
1404                 goto alloc_fail;
1405         }
1406
1407         ret = btrfs_find_root(tree_root, key, path,
1408                               &root->root_item, &root->root_key);
1409         if (ret) {
1410                 if (ret > 0)
1411                         ret = -ENOENT;
1412                 goto find_fail;
1413         }
1414
1415         generation = btrfs_root_generation(&root->root_item);
1416         level = btrfs_root_level(&root->root_item);
1417         root->node = read_tree_block(fs_info,
1418                                      btrfs_root_bytenr(&root->root_item),
1419                                      generation, level, NULL);
1420         if (IS_ERR(root->node)) {
1421                 ret = PTR_ERR(root->node);
1422                 goto find_fail;
1423         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1424                 ret = -EIO;
1425                 free_extent_buffer(root->node);
1426                 goto find_fail;
1427         }
1428         root->commit_root = btrfs_root_node(root);
1429 out:
1430         btrfs_free_path(path);
1431         return root;
1432
1433 find_fail:
1434         kfree(root);
1435 alloc_fail:
1436         root = ERR_PTR(ret);
1437         goto out;
1438 }
1439
1440 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1441                                       struct btrfs_key *location)
1442 {
1443         struct btrfs_root *root;
1444
1445         root = btrfs_read_tree_root(tree_root, location);
1446         if (IS_ERR(root))
1447                 return root;
1448
1449         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1450                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1451                 btrfs_check_and_init_root_item(&root->root_item);
1452         }
1453
1454         return root;
1455 }
1456
1457 int btrfs_init_fs_root(struct btrfs_root *root)
1458 {
1459         int ret;
1460         struct btrfs_subvolume_writers *writers;
1461
1462         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1463         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1464                                         GFP_NOFS);
1465         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1466                 ret = -ENOMEM;
1467                 goto fail;
1468         }
1469
1470         writers = btrfs_alloc_subvolume_writers();
1471         if (IS_ERR(writers)) {
1472                 ret = PTR_ERR(writers);
1473                 goto fail;
1474         }
1475         root->subv_writers = writers;
1476
1477         btrfs_init_free_ino_ctl(root);
1478         spin_lock_init(&root->ino_cache_lock);
1479         init_waitqueue_head(&root->ino_cache_wait);
1480
1481         ret = get_anon_bdev(&root->anon_dev);
1482         if (ret)
1483                 goto fail;
1484
1485         mutex_lock(&root->objectid_mutex);
1486         ret = btrfs_find_highest_objectid(root,
1487                                         &root->highest_objectid);
1488         if (ret) {
1489                 mutex_unlock(&root->objectid_mutex);
1490                 goto fail;
1491         }
1492
1493         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1494
1495         mutex_unlock(&root->objectid_mutex);
1496
1497         return 0;
1498 fail:
1499         /* The caller is responsible to call btrfs_free_fs_root */
1500         return ret;
1501 }
1502
1503 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1504                                         u64 root_id)
1505 {
1506         struct btrfs_root *root;
1507
1508         spin_lock(&fs_info->fs_roots_radix_lock);
1509         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1510                                  (unsigned long)root_id);
1511         spin_unlock(&fs_info->fs_roots_radix_lock);
1512         return root;
1513 }
1514
1515 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1516                          struct btrfs_root *root)
1517 {
1518         int ret;
1519
1520         ret = radix_tree_preload(GFP_NOFS);
1521         if (ret)
1522                 return ret;
1523
1524         spin_lock(&fs_info->fs_roots_radix_lock);
1525         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1526                                 (unsigned long)root->root_key.objectid,
1527                                 root);
1528         if (ret == 0)
1529                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1530         spin_unlock(&fs_info->fs_roots_radix_lock);
1531         radix_tree_preload_end();
1532
1533         return ret;
1534 }
1535
1536 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1537                                      struct btrfs_key *location,
1538                                      bool check_ref)
1539 {
1540         struct btrfs_root *root;
1541         struct btrfs_path *path;
1542         struct btrfs_key key;
1543         int ret;
1544
1545         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1546                 return fs_info->tree_root;
1547         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1548                 return fs_info->extent_root;
1549         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1550                 return fs_info->chunk_root;
1551         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1552                 return fs_info->dev_root;
1553         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1554                 return fs_info->csum_root;
1555         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1556                 return fs_info->quota_root ? fs_info->quota_root :
1557                                              ERR_PTR(-ENOENT);
1558         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1559                 return fs_info->uuid_root ? fs_info->uuid_root :
1560                                             ERR_PTR(-ENOENT);
1561         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1562                 return fs_info->free_space_root ? fs_info->free_space_root :
1563                                                   ERR_PTR(-ENOENT);
1564 again:
1565         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1566         if (root) {
1567                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1568                         return ERR_PTR(-ENOENT);
1569                 return root;
1570         }
1571
1572         root = btrfs_read_fs_root(fs_info->tree_root, location);
1573         if (IS_ERR(root))
1574                 return root;
1575
1576         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1577                 ret = -ENOENT;
1578                 goto fail;
1579         }
1580
1581         ret = btrfs_init_fs_root(root);
1582         if (ret)
1583                 goto fail;
1584
1585         path = btrfs_alloc_path();
1586         if (!path) {
1587                 ret = -ENOMEM;
1588                 goto fail;
1589         }
1590         key.objectid = BTRFS_ORPHAN_OBJECTID;
1591         key.type = BTRFS_ORPHAN_ITEM_KEY;
1592         key.offset = location->objectid;
1593
1594         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1595         btrfs_free_path(path);
1596         if (ret < 0)
1597                 goto fail;
1598         if (ret == 0)
1599                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1600
1601         ret = btrfs_insert_fs_root(fs_info, root);
1602         if (ret) {
1603                 if (ret == -EEXIST) {
1604                         btrfs_free_fs_root(root);
1605                         goto again;
1606                 }
1607                 goto fail;
1608         }
1609         return root;
1610 fail:
1611         btrfs_free_fs_root(root);
1612         return ERR_PTR(ret);
1613 }
1614
1615 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1616 {
1617         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1618         int ret = 0;
1619         struct btrfs_device *device;
1620         struct backing_dev_info *bdi;
1621
1622         rcu_read_lock();
1623         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1624                 if (!device->bdev)
1625                         continue;
1626                 bdi = device->bdev->bd_bdi;
1627                 if (bdi_congested(bdi, bdi_bits)) {
1628                         ret = 1;
1629                         break;
1630                 }
1631         }
1632         rcu_read_unlock();
1633         return ret;
1634 }
1635
1636 /*
1637  * called by the kthread helper functions to finally call the bio end_io
1638  * functions.  This is where read checksum verification actually happens
1639  */
1640 static void end_workqueue_fn(struct btrfs_work *work)
1641 {
1642         struct bio *bio;
1643         struct btrfs_end_io_wq *end_io_wq;
1644
1645         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1646         bio = end_io_wq->bio;
1647
1648         bio->bi_status = end_io_wq->status;
1649         bio->bi_private = end_io_wq->private;
1650         bio->bi_end_io = end_io_wq->end_io;
1651         bio_endio(bio);
1652         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1653 }
1654
1655 static int cleaner_kthread(void *arg)
1656 {
1657         struct btrfs_root *root = arg;
1658         struct btrfs_fs_info *fs_info = root->fs_info;
1659         int again;
1660
1661         while (1) {
1662                 again = 0;
1663
1664                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1665
1666                 /* Make the cleaner go to sleep early. */
1667                 if (btrfs_need_cleaner_sleep(fs_info))
1668                         goto sleep;
1669
1670                 /*
1671                  * Do not do anything if we might cause open_ctree() to block
1672                  * before we have finished mounting the filesystem.
1673                  */
1674                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1675                         goto sleep;
1676
1677                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1678                         goto sleep;
1679
1680                 /*
1681                  * Avoid the problem that we change the status of the fs
1682                  * during the above check and trylock.
1683                  */
1684                 if (btrfs_need_cleaner_sleep(fs_info)) {
1685                         mutex_unlock(&fs_info->cleaner_mutex);
1686                         goto sleep;
1687                 }
1688
1689                 btrfs_run_delayed_iputs(fs_info);
1690
1691                 again = btrfs_clean_one_deleted_snapshot(root);
1692                 mutex_unlock(&fs_info->cleaner_mutex);
1693
1694                 /*
1695                  * The defragger has dealt with the R/O remount and umount,
1696                  * needn't do anything special here.
1697                  */
1698                 btrfs_run_defrag_inodes(fs_info);
1699
1700                 /*
1701                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1702                  * with relocation (btrfs_relocate_chunk) and relocation
1703                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1704                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1705                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1706                  * unused block groups.
1707                  */
1708                 btrfs_delete_unused_bgs(fs_info);
1709 sleep:
1710                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1711                 if (kthread_should_park())
1712                         kthread_parkme();
1713                 if (kthread_should_stop())
1714                         return 0;
1715                 if (!again) {
1716                         set_current_state(TASK_INTERRUPTIBLE);
1717                         schedule();
1718                         __set_current_state(TASK_RUNNING);
1719                 }
1720         }
1721 }
1722
1723 static int transaction_kthread(void *arg)
1724 {
1725         struct btrfs_root *root = arg;
1726         struct btrfs_fs_info *fs_info = root->fs_info;
1727         struct btrfs_trans_handle *trans;
1728         struct btrfs_transaction *cur;
1729         u64 transid;
1730         time64_t now;
1731         unsigned long delay;
1732         bool cannot_commit;
1733
1734         do {
1735                 cannot_commit = false;
1736                 delay = HZ * fs_info->commit_interval;
1737                 mutex_lock(&fs_info->transaction_kthread_mutex);
1738
1739                 spin_lock(&fs_info->trans_lock);
1740                 cur = fs_info->running_transaction;
1741                 if (!cur) {
1742                         spin_unlock(&fs_info->trans_lock);
1743                         goto sleep;
1744                 }
1745
1746                 now = ktime_get_seconds();
1747                 if (cur->state < TRANS_STATE_COMMIT_START &&
1748                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1749                     (now < cur->start_time ||
1750                      now - cur->start_time < fs_info->commit_interval)) {
1751                         spin_unlock(&fs_info->trans_lock);
1752                         delay = HZ * 5;
1753                         goto sleep;
1754                 }
1755                 transid = cur->transid;
1756                 spin_unlock(&fs_info->trans_lock);
1757
1758                 /* If the file system is aborted, this will always fail. */
1759                 trans = btrfs_attach_transaction(root);
1760                 if (IS_ERR(trans)) {
1761                         if (PTR_ERR(trans) != -ENOENT)
1762                                 cannot_commit = true;
1763                         goto sleep;
1764                 }
1765                 if (transid == trans->transid) {
1766                         btrfs_commit_transaction(trans);
1767                 } else {
1768                         btrfs_end_transaction(trans);
1769                 }
1770 sleep:
1771                 wake_up_process(fs_info->cleaner_kthread);
1772                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1773
1774                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1775                                       &fs_info->fs_state)))
1776                         btrfs_cleanup_transaction(fs_info);
1777                 if (!kthread_should_stop() &&
1778                                 (!btrfs_transaction_blocked(fs_info) ||
1779                                  cannot_commit))
1780                         schedule_timeout_interruptible(delay);
1781         } while (!kthread_should_stop());
1782         return 0;
1783 }
1784
1785 /*
1786  * This will find the highest generation in the array of root backups.  The
1787  * index of the highest array is returned, or -EINVAL if we can't find
1788  * anything.
1789  *
1790  * We check to make sure the array is valid by comparing the
1791  * generation of the latest  root in the array with the generation
1792  * in the super block.  If they don't match we pitch it.
1793  */
1794 static int find_newest_super_backup(struct btrfs_fs_info *info)
1795 {
1796         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1797         u64 cur;
1798         struct btrfs_root_backup *root_backup;
1799         int i;
1800
1801         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1802                 root_backup = info->super_copy->super_roots + i;
1803                 cur = btrfs_backup_tree_root_gen(root_backup);
1804                 if (cur == newest_gen)
1805                         return i;
1806         }
1807
1808         return -EINVAL;
1809 }
1810
1811 /*
1812  * copy all the root pointers into the super backup array.
1813  * this will bump the backup pointer by one when it is
1814  * done
1815  */
1816 static void backup_super_roots(struct btrfs_fs_info *info)
1817 {
1818         const int next_backup = info->backup_root_index;
1819         struct btrfs_root_backup *root_backup;
1820
1821         root_backup = info->super_for_commit->super_roots + next_backup;
1822
1823         /*
1824          * make sure all of our padding and empty slots get zero filled
1825          * regardless of which ones we use today
1826          */
1827         memset(root_backup, 0, sizeof(*root_backup));
1828
1829         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1830
1831         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1832         btrfs_set_backup_tree_root_gen(root_backup,
1833                                btrfs_header_generation(info->tree_root->node));
1834
1835         btrfs_set_backup_tree_root_level(root_backup,
1836                                btrfs_header_level(info->tree_root->node));
1837
1838         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1839         btrfs_set_backup_chunk_root_gen(root_backup,
1840                                btrfs_header_generation(info->chunk_root->node));
1841         btrfs_set_backup_chunk_root_level(root_backup,
1842                                btrfs_header_level(info->chunk_root->node));
1843
1844         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1845         btrfs_set_backup_extent_root_gen(root_backup,
1846                                btrfs_header_generation(info->extent_root->node));
1847         btrfs_set_backup_extent_root_level(root_backup,
1848                                btrfs_header_level(info->extent_root->node));
1849
1850         /*
1851          * we might commit during log recovery, which happens before we set
1852          * the fs_root.  Make sure it is valid before we fill it in.
1853          */
1854         if (info->fs_root && info->fs_root->node) {
1855                 btrfs_set_backup_fs_root(root_backup,
1856                                          info->fs_root->node->start);
1857                 btrfs_set_backup_fs_root_gen(root_backup,
1858                                btrfs_header_generation(info->fs_root->node));
1859                 btrfs_set_backup_fs_root_level(root_backup,
1860                                btrfs_header_level(info->fs_root->node));
1861         }
1862
1863         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1864         btrfs_set_backup_dev_root_gen(root_backup,
1865                                btrfs_header_generation(info->dev_root->node));
1866         btrfs_set_backup_dev_root_level(root_backup,
1867                                        btrfs_header_level(info->dev_root->node));
1868
1869         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1870         btrfs_set_backup_csum_root_gen(root_backup,
1871                                btrfs_header_generation(info->csum_root->node));
1872         btrfs_set_backup_csum_root_level(root_backup,
1873                                btrfs_header_level(info->csum_root->node));
1874
1875         btrfs_set_backup_total_bytes(root_backup,
1876                              btrfs_super_total_bytes(info->super_copy));
1877         btrfs_set_backup_bytes_used(root_backup,
1878                              btrfs_super_bytes_used(info->super_copy));
1879         btrfs_set_backup_num_devices(root_backup,
1880                              btrfs_super_num_devices(info->super_copy));
1881
1882         /*
1883          * if we don't copy this out to the super_copy, it won't get remembered
1884          * for the next commit
1885          */
1886         memcpy(&info->super_copy->super_roots,
1887                &info->super_for_commit->super_roots,
1888                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1889 }
1890
1891 /*
1892  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1893  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1894  *
1895  * fs_info - filesystem whose backup roots need to be read
1896  * priority - priority of backup root required
1897  *
1898  * Returns backup root index on success and -EINVAL otherwise.
1899  */
1900 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1901 {
1902         int backup_index = find_newest_super_backup(fs_info);
1903         struct btrfs_super_block *super = fs_info->super_copy;
1904         struct btrfs_root_backup *root_backup;
1905
1906         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1907                 if (priority == 0)
1908                         return backup_index;
1909
1910                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1911                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1912         } else {
1913                 return -EINVAL;
1914         }
1915
1916         root_backup = super->super_roots + backup_index;
1917
1918         btrfs_set_super_generation(super,
1919                                    btrfs_backup_tree_root_gen(root_backup));
1920         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1921         btrfs_set_super_root_level(super,
1922                                    btrfs_backup_tree_root_level(root_backup));
1923         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1924
1925         /*
1926          * Fixme: the total bytes and num_devices need to match or we should
1927          * need a fsck
1928          */
1929         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1930         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1931
1932         return backup_index;
1933 }
1934
1935 /* helper to cleanup workers */
1936 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1937 {
1938         btrfs_destroy_workqueue(fs_info->fixup_workers);
1939         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1940         btrfs_destroy_workqueue(fs_info->workers);
1941         btrfs_destroy_workqueue(fs_info->endio_workers);
1942         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1943         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1944         btrfs_destroy_workqueue(fs_info->rmw_workers);
1945         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1946         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1947         btrfs_destroy_workqueue(fs_info->delayed_workers);
1948         btrfs_destroy_workqueue(fs_info->caching_workers);
1949         btrfs_destroy_workqueue(fs_info->readahead_workers);
1950         btrfs_destroy_workqueue(fs_info->flush_workers);
1951         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1952         if (fs_info->discard_ctl.discard_workers)
1953                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1954         /*
1955          * Now that all other work queues are destroyed, we can safely destroy
1956          * the queues used for metadata I/O, since tasks from those other work
1957          * queues can do metadata I/O operations.
1958          */
1959         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1960         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1961 }
1962
1963 static void free_root_extent_buffers(struct btrfs_root *root)
1964 {
1965         if (root) {
1966                 free_extent_buffer(root->node);
1967                 free_extent_buffer(root->commit_root);
1968                 root->node = NULL;
1969                 root->commit_root = NULL;
1970         }
1971 }
1972
1973 /* helper to cleanup tree roots */
1974 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1975 {
1976         free_root_extent_buffers(info->tree_root);
1977
1978         free_root_extent_buffers(info->dev_root);
1979         free_root_extent_buffers(info->extent_root);
1980         free_root_extent_buffers(info->csum_root);
1981         free_root_extent_buffers(info->quota_root);
1982         free_root_extent_buffers(info->uuid_root);
1983         if (free_chunk_root)
1984                 free_root_extent_buffers(info->chunk_root);
1985         free_root_extent_buffers(info->free_space_root);
1986 }
1987
1988 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1989 {
1990         int ret;
1991         struct btrfs_root *gang[8];
1992         int i;
1993
1994         while (!list_empty(&fs_info->dead_roots)) {
1995                 gang[0] = list_entry(fs_info->dead_roots.next,
1996                                      struct btrfs_root, root_list);
1997                 list_del(&gang[0]->root_list);
1998
1999                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2000                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2001                 } else {
2002                         free_extent_buffer(gang[0]->node);
2003                         free_extent_buffer(gang[0]->commit_root);
2004                         btrfs_put_fs_root(gang[0]);
2005                 }
2006         }
2007
2008         while (1) {
2009                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2010                                              (void **)gang, 0,
2011                                              ARRAY_SIZE(gang));
2012                 if (!ret)
2013                         break;
2014                 for (i = 0; i < ret; i++)
2015                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2016         }
2017
2018         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2019                 btrfs_free_log_root_tree(NULL, fs_info);
2020                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2021         }
2022 }
2023
2024 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2025 {
2026         mutex_init(&fs_info->scrub_lock);
2027         atomic_set(&fs_info->scrubs_running, 0);
2028         atomic_set(&fs_info->scrub_pause_req, 0);
2029         atomic_set(&fs_info->scrubs_paused, 0);
2030         atomic_set(&fs_info->scrub_cancel_req, 0);
2031         init_waitqueue_head(&fs_info->scrub_pause_wait);
2032         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2033 }
2034
2035 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2036 {
2037         spin_lock_init(&fs_info->balance_lock);
2038         mutex_init(&fs_info->balance_mutex);
2039         atomic_set(&fs_info->balance_pause_req, 0);
2040         atomic_set(&fs_info->balance_cancel_req, 0);
2041         fs_info->balance_ctl = NULL;
2042         init_waitqueue_head(&fs_info->balance_wait_q);
2043 }
2044
2045 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2046 {
2047         struct inode *inode = fs_info->btree_inode;
2048
2049         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2050         set_nlink(inode, 1);
2051         /*
2052          * we set the i_size on the btree inode to the max possible int.
2053          * the real end of the address space is determined by all of
2054          * the devices in the system
2055          */
2056         inode->i_size = OFFSET_MAX;
2057         inode->i_mapping->a_ops = &btree_aops;
2058
2059         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2060         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2061                             IO_TREE_INODE_IO, inode);
2062         BTRFS_I(inode)->io_tree.track_uptodate = false;
2063         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2064
2065         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2066
2067         BTRFS_I(inode)->root = fs_info->tree_root;
2068         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2069         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2070         btrfs_insert_inode_hash(inode);
2071 }
2072
2073 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2074 {
2075         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2076         init_rwsem(&fs_info->dev_replace.rwsem);
2077         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2078 }
2079
2080 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2081 {
2082         spin_lock_init(&fs_info->qgroup_lock);
2083         mutex_init(&fs_info->qgroup_ioctl_lock);
2084         fs_info->qgroup_tree = RB_ROOT;
2085         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2086         fs_info->qgroup_seq = 1;
2087         fs_info->qgroup_ulist = NULL;
2088         fs_info->qgroup_rescan_running = false;
2089         mutex_init(&fs_info->qgroup_rescan_lock);
2090 }
2091
2092 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2093                 struct btrfs_fs_devices *fs_devices)
2094 {
2095         u32 max_active = fs_info->thread_pool_size;
2096         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2097
2098         fs_info->workers =
2099                 btrfs_alloc_workqueue(fs_info, "worker",
2100                                       flags | WQ_HIGHPRI, max_active, 16);
2101
2102         fs_info->delalloc_workers =
2103                 btrfs_alloc_workqueue(fs_info, "delalloc",
2104                                       flags, max_active, 2);
2105
2106         fs_info->flush_workers =
2107                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2108                                       flags, max_active, 0);
2109
2110         fs_info->caching_workers =
2111                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2112
2113         fs_info->fixup_workers =
2114                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2115
2116         /*
2117          * endios are largely parallel and should have a very
2118          * low idle thresh
2119          */
2120         fs_info->endio_workers =
2121                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2122         fs_info->endio_meta_workers =
2123                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2124                                       max_active, 4);
2125         fs_info->endio_meta_write_workers =
2126                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2127                                       max_active, 2);
2128         fs_info->endio_raid56_workers =
2129                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2130                                       max_active, 4);
2131         fs_info->endio_repair_workers =
2132                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2133         fs_info->rmw_workers =
2134                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2135         fs_info->endio_write_workers =
2136                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2137                                       max_active, 2);
2138         fs_info->endio_freespace_worker =
2139                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2140                                       max_active, 0);
2141         fs_info->delayed_workers =
2142                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2143                                       max_active, 0);
2144         fs_info->readahead_workers =
2145                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2146                                       max_active, 2);
2147         fs_info->qgroup_rescan_workers =
2148                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2149         fs_info->discard_ctl.discard_workers =
2150                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2151
2152         if (!(fs_info->workers && fs_info->delalloc_workers &&
2153               fs_info->flush_workers &&
2154               fs_info->endio_workers && fs_info->endio_meta_workers &&
2155               fs_info->endio_meta_write_workers &&
2156               fs_info->endio_repair_workers &&
2157               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2158               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2159               fs_info->caching_workers && fs_info->readahead_workers &&
2160               fs_info->fixup_workers && fs_info->delayed_workers &&
2161               fs_info->qgroup_rescan_workers &&
2162               fs_info->discard_ctl.discard_workers)) {
2163                 return -ENOMEM;
2164         }
2165
2166         return 0;
2167 }
2168
2169 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2170 {
2171         struct crypto_shash *csum_shash;
2172         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2173
2174         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2175
2176         if (IS_ERR(csum_shash)) {
2177                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2178                           csum_driver);
2179                 return PTR_ERR(csum_shash);
2180         }
2181
2182         fs_info->csum_shash = csum_shash;
2183
2184         return 0;
2185 }
2186
2187 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2188 {
2189         crypto_free_shash(fs_info->csum_shash);
2190 }
2191
2192 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2193                             struct btrfs_fs_devices *fs_devices)
2194 {
2195         int ret;
2196         struct btrfs_root *log_tree_root;
2197         struct btrfs_super_block *disk_super = fs_info->super_copy;
2198         u64 bytenr = btrfs_super_log_root(disk_super);
2199         int level = btrfs_super_log_root_level(disk_super);
2200
2201         if (fs_devices->rw_devices == 0) {
2202                 btrfs_warn(fs_info, "log replay required on RO media");
2203                 return -EIO;
2204         }
2205
2206         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2207                                          GFP_KERNEL);
2208         if (!log_tree_root)
2209                 return -ENOMEM;
2210
2211         log_tree_root->node = read_tree_block(fs_info, bytenr,
2212                                               fs_info->generation + 1,
2213                                               level, NULL);
2214         if (IS_ERR(log_tree_root->node)) {
2215                 btrfs_warn(fs_info, "failed to read log tree");
2216                 ret = PTR_ERR(log_tree_root->node);
2217                 kfree(log_tree_root);
2218                 return ret;
2219         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2220                 btrfs_err(fs_info, "failed to read log tree");
2221                 free_extent_buffer(log_tree_root->node);
2222                 kfree(log_tree_root);
2223                 return -EIO;
2224         }
2225         /* returns with log_tree_root freed on success */
2226         ret = btrfs_recover_log_trees(log_tree_root);
2227         if (ret) {
2228                 btrfs_handle_fs_error(fs_info, ret,
2229                                       "Failed to recover log tree");
2230                 free_extent_buffer(log_tree_root->node);
2231                 kfree(log_tree_root);
2232                 return ret;
2233         }
2234
2235         if (sb_rdonly(fs_info->sb)) {
2236                 ret = btrfs_commit_super(fs_info);
2237                 if (ret)
2238                         return ret;
2239         }
2240
2241         return 0;
2242 }
2243
2244 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2245 {
2246         struct btrfs_root *tree_root = fs_info->tree_root;
2247         struct btrfs_root *root;
2248         struct btrfs_key location;
2249         int ret;
2250
2251         BUG_ON(!fs_info->tree_root);
2252
2253         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2254         location.type = BTRFS_ROOT_ITEM_KEY;
2255         location.offset = 0;
2256
2257         root = btrfs_read_tree_root(tree_root, &location);
2258         if (IS_ERR(root)) {
2259                 ret = PTR_ERR(root);
2260                 goto out;
2261         }
2262         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2263         fs_info->extent_root = root;
2264
2265         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2266         root = btrfs_read_tree_root(tree_root, &location);
2267         if (IS_ERR(root)) {
2268                 ret = PTR_ERR(root);
2269                 goto out;
2270         }
2271         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2272         fs_info->dev_root = root;
2273         btrfs_init_devices_late(fs_info);
2274
2275         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2276         root = btrfs_read_tree_root(tree_root, &location);
2277         if (IS_ERR(root)) {
2278                 ret = PTR_ERR(root);
2279                 goto out;
2280         }
2281         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2282         fs_info->csum_root = root;
2283
2284         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2285         root = btrfs_read_tree_root(tree_root, &location);
2286         if (!IS_ERR(root)) {
2287                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2288                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2289                 fs_info->quota_root = root;
2290         }
2291
2292         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2293         root = btrfs_read_tree_root(tree_root, &location);
2294         if (IS_ERR(root)) {
2295                 ret = PTR_ERR(root);
2296                 if (ret != -ENOENT)
2297                         goto out;
2298         } else {
2299                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2300                 fs_info->uuid_root = root;
2301         }
2302
2303         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2304                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2305                 root = btrfs_read_tree_root(tree_root, &location);
2306                 if (IS_ERR(root)) {
2307                         ret = PTR_ERR(root);
2308                         goto out;
2309                 }
2310                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2311                 fs_info->free_space_root = root;
2312         }
2313
2314         return 0;
2315 out:
2316         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2317                    location.objectid, ret);
2318         return ret;
2319 }
2320
2321 /*
2322  * Real super block validation
2323  * NOTE: super csum type and incompat features will not be checked here.
2324  *
2325  * @sb:         super block to check
2326  * @mirror_num: the super block number to check its bytenr:
2327  *              0       the primary (1st) sb
2328  *              1, 2    2nd and 3rd backup copy
2329  *             -1       skip bytenr check
2330  */
2331 static int validate_super(struct btrfs_fs_info *fs_info,
2332                             struct btrfs_super_block *sb, int mirror_num)
2333 {
2334         u64 nodesize = btrfs_super_nodesize(sb);
2335         u64 sectorsize = btrfs_super_sectorsize(sb);
2336         int ret = 0;
2337
2338         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2339                 btrfs_err(fs_info, "no valid FS found");
2340                 ret = -EINVAL;
2341         }
2342         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2343                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2344                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2345                 ret = -EINVAL;
2346         }
2347         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2348                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2349                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2350                 ret = -EINVAL;
2351         }
2352         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2353                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2354                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2355                 ret = -EINVAL;
2356         }
2357         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2358                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2359                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2360                 ret = -EINVAL;
2361         }
2362
2363         /*
2364          * Check sectorsize and nodesize first, other check will need it.
2365          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2366          */
2367         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2368             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2369                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2370                 ret = -EINVAL;
2371         }
2372         /* Only PAGE SIZE is supported yet */
2373         if (sectorsize != PAGE_SIZE) {
2374                 btrfs_err(fs_info,
2375                         "sectorsize %llu not supported yet, only support %lu",
2376                         sectorsize, PAGE_SIZE);
2377                 ret = -EINVAL;
2378         }
2379         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2380             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2381                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2382                 ret = -EINVAL;
2383         }
2384         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2385                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2386                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2387                 ret = -EINVAL;
2388         }
2389
2390         /* Root alignment check */
2391         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2392                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2393                            btrfs_super_root(sb));
2394                 ret = -EINVAL;
2395         }
2396         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2397                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2398                            btrfs_super_chunk_root(sb));
2399                 ret = -EINVAL;
2400         }
2401         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2402                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2403                            btrfs_super_log_root(sb));
2404                 ret = -EINVAL;
2405         }
2406
2407         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2408                    BTRFS_FSID_SIZE) != 0) {
2409                 btrfs_err(fs_info,
2410                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2411                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2412                 ret = -EINVAL;
2413         }
2414
2415         /*
2416          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2417          * done later
2418          */
2419         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2420                 btrfs_err(fs_info, "bytes_used is too small %llu",
2421                           btrfs_super_bytes_used(sb));
2422                 ret = -EINVAL;
2423         }
2424         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2425                 btrfs_err(fs_info, "invalid stripesize %u",
2426                           btrfs_super_stripesize(sb));
2427                 ret = -EINVAL;
2428         }
2429         if (btrfs_super_num_devices(sb) > (1UL << 31))
2430                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2431                            btrfs_super_num_devices(sb));
2432         if (btrfs_super_num_devices(sb) == 0) {
2433                 btrfs_err(fs_info, "number of devices is 0");
2434                 ret = -EINVAL;
2435         }
2436
2437         if (mirror_num >= 0 &&
2438             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2439                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2440                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2441                 ret = -EINVAL;
2442         }
2443
2444         /*
2445          * Obvious sys_chunk_array corruptions, it must hold at least one key
2446          * and one chunk
2447          */
2448         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2449                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2450                           btrfs_super_sys_array_size(sb),
2451                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2452                 ret = -EINVAL;
2453         }
2454         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2455                         + sizeof(struct btrfs_chunk)) {
2456                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2457                           btrfs_super_sys_array_size(sb),
2458                           sizeof(struct btrfs_disk_key)
2459                           + sizeof(struct btrfs_chunk));
2460                 ret = -EINVAL;
2461         }
2462
2463         /*
2464          * The generation is a global counter, we'll trust it more than the others
2465          * but it's still possible that it's the one that's wrong.
2466          */
2467         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2468                 btrfs_warn(fs_info,
2469                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2470                         btrfs_super_generation(sb),
2471                         btrfs_super_chunk_root_generation(sb));
2472         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2473             && btrfs_super_cache_generation(sb) != (u64)-1)
2474                 btrfs_warn(fs_info,
2475                         "suspicious: generation < cache_generation: %llu < %llu",
2476                         btrfs_super_generation(sb),
2477                         btrfs_super_cache_generation(sb));
2478
2479         return ret;
2480 }
2481
2482 /*
2483  * Validation of super block at mount time.
2484  * Some checks already done early at mount time, like csum type and incompat
2485  * flags will be skipped.
2486  */
2487 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2488 {
2489         return validate_super(fs_info, fs_info->super_copy, 0);
2490 }
2491
2492 /*
2493  * Validation of super block at write time.
2494  * Some checks like bytenr check will be skipped as their values will be
2495  * overwritten soon.
2496  * Extra checks like csum type and incompat flags will be done here.
2497  */
2498 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2499                                       struct btrfs_super_block *sb)
2500 {
2501         int ret;
2502
2503         ret = validate_super(fs_info, sb, -1);
2504         if (ret < 0)
2505                 goto out;
2506         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2507                 ret = -EUCLEAN;
2508                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2509                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2510                 goto out;
2511         }
2512         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2513                 ret = -EUCLEAN;
2514                 btrfs_err(fs_info,
2515                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2516                           btrfs_super_incompat_flags(sb),
2517                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2518                 goto out;
2519         }
2520 out:
2521         if (ret < 0)
2522                 btrfs_err(fs_info,
2523                 "super block corruption detected before writing it to disk");
2524         return ret;
2525 }
2526
2527 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2528 {
2529         int backup_index = find_newest_super_backup(fs_info);
2530         struct btrfs_super_block *sb = fs_info->super_copy;
2531         struct btrfs_root *tree_root = fs_info->tree_root;
2532         bool handle_error = false;
2533         int ret = 0;
2534         int i;
2535
2536         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2537                 u64 generation;
2538                 int level;
2539
2540                 if (handle_error) {
2541                         if (!IS_ERR(tree_root->node))
2542                                 free_extent_buffer(tree_root->node);
2543                         tree_root->node = NULL;
2544
2545                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2546                                 break;
2547
2548                         free_root_pointers(fs_info, 0);
2549
2550                         /*
2551                          * Don't use the log in recovery mode, it won't be
2552                          * valid
2553                          */
2554                         btrfs_set_super_log_root(sb, 0);
2555
2556                         /* We can't trust the free space cache either */
2557                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2558
2559                         ret = read_backup_root(fs_info, i);
2560                         backup_index = ret;
2561                         if (ret < 0)
2562                                 return ret;
2563                 }
2564                 generation = btrfs_super_generation(sb);
2565                 level = btrfs_super_root_level(sb);
2566                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2567                                                   generation, level, NULL);
2568                 if (IS_ERR(tree_root->node) ||
2569                     !extent_buffer_uptodate(tree_root->node)) {
2570                         handle_error = true;
2571
2572                         if (IS_ERR(tree_root->node))
2573                                 ret = PTR_ERR(tree_root->node);
2574                         else if (!extent_buffer_uptodate(tree_root->node))
2575                                 ret = -EUCLEAN;
2576
2577                         btrfs_warn(fs_info, "failed to read tree root");
2578                         continue;
2579                 }
2580
2581                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2582                 tree_root->commit_root = btrfs_root_node(tree_root);
2583                 btrfs_set_root_refs(&tree_root->root_item, 1);
2584
2585                 /*
2586                  * No need to hold btrfs_root::objectid_mutex since the fs
2587                  * hasn't been fully initialised and we are the only user
2588                  */
2589                 ret = btrfs_find_highest_objectid(tree_root,
2590                                                 &tree_root->highest_objectid);
2591                 if (ret < 0) {
2592                         handle_error = true;
2593                         continue;
2594                 }
2595
2596                 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2597
2598                 ret = btrfs_read_roots(fs_info);
2599                 if (ret < 0) {
2600                         handle_error = true;
2601                         continue;
2602                 }
2603
2604                 /* All successful */
2605                 fs_info->generation = generation;
2606                 fs_info->last_trans_committed = generation;
2607
2608                 /* Always begin writing backup roots after the one being used */
2609                 if (backup_index < 0) {
2610                         fs_info->backup_root_index = 0;
2611                 } else {
2612                         fs_info->backup_root_index = backup_index + 1;
2613                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2614                 }
2615                 break;
2616         }
2617
2618         return ret;
2619 }
2620
2621 int __cold open_ctree(struct super_block *sb,
2622                struct btrfs_fs_devices *fs_devices,
2623                char *options)
2624 {
2625         u32 sectorsize;
2626         u32 nodesize;
2627         u32 stripesize;
2628         u64 generation;
2629         u64 features;
2630         u16 csum_type;
2631         struct btrfs_key location;
2632         struct buffer_head *bh;
2633         struct btrfs_super_block *disk_super;
2634         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2635         struct btrfs_root *tree_root;
2636         struct btrfs_root *chunk_root;
2637         int ret;
2638         int err = -EINVAL;
2639         int clear_free_space_tree = 0;
2640         int level;
2641
2642         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2643                                      GFP_KERNEL);
2644         fs_info->tree_root = tree_root;
2645         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2646                                       GFP_KERNEL);
2647         fs_info->chunk_root = chunk_root;
2648         if (!tree_root || !chunk_root) {
2649                 err = -ENOMEM;
2650                 goto fail;
2651         }
2652
2653         ret = init_srcu_struct(&fs_info->subvol_srcu);
2654         if (ret) {
2655                 err = ret;
2656                 goto fail;
2657         }
2658
2659         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2660         if (ret) {
2661                 err = ret;
2662                 goto fail_srcu;
2663         }
2664
2665         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2666         if (ret) {
2667                 err = ret;
2668                 goto fail_dio_bytes;
2669         }
2670         fs_info->dirty_metadata_batch = PAGE_SIZE *
2671                                         (1 + ilog2(nr_cpu_ids));
2672
2673         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2674         if (ret) {
2675                 err = ret;
2676                 goto fail_dirty_metadata_bytes;
2677         }
2678
2679         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2680                         GFP_KERNEL);
2681         if (ret) {
2682                 err = ret;
2683                 goto fail_delalloc_bytes;
2684         }
2685
2686         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2687         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2688         INIT_LIST_HEAD(&fs_info->trans_list);
2689         INIT_LIST_HEAD(&fs_info->dead_roots);
2690         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2691         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2692         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2693         spin_lock_init(&fs_info->delalloc_root_lock);
2694         spin_lock_init(&fs_info->trans_lock);
2695         spin_lock_init(&fs_info->fs_roots_radix_lock);
2696         spin_lock_init(&fs_info->delayed_iput_lock);
2697         spin_lock_init(&fs_info->defrag_inodes_lock);
2698         spin_lock_init(&fs_info->super_lock);
2699         spin_lock_init(&fs_info->buffer_lock);
2700         spin_lock_init(&fs_info->unused_bgs_lock);
2701         rwlock_init(&fs_info->tree_mod_log_lock);
2702         mutex_init(&fs_info->unused_bg_unpin_mutex);
2703         mutex_init(&fs_info->delete_unused_bgs_mutex);
2704         mutex_init(&fs_info->reloc_mutex);
2705         mutex_init(&fs_info->delalloc_root_mutex);
2706         seqlock_init(&fs_info->profiles_lock);
2707
2708         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2709         INIT_LIST_HEAD(&fs_info->space_info);
2710         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2711         INIT_LIST_HEAD(&fs_info->unused_bgs);
2712         extent_map_tree_init(&fs_info->mapping_tree);
2713         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2714                              BTRFS_BLOCK_RSV_GLOBAL);
2715         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2716         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2717         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2718         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2719                              BTRFS_BLOCK_RSV_DELOPS);
2720         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2721                              BTRFS_BLOCK_RSV_DELREFS);
2722
2723         atomic_set(&fs_info->async_delalloc_pages, 0);
2724         atomic_set(&fs_info->defrag_running, 0);
2725         atomic_set(&fs_info->reada_works_cnt, 0);
2726         atomic_set(&fs_info->nr_delayed_iputs, 0);
2727         atomic64_set(&fs_info->tree_mod_seq, 0);
2728         fs_info->sb = sb;
2729         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2730         fs_info->metadata_ratio = 0;
2731         fs_info->defrag_inodes = RB_ROOT;
2732         atomic64_set(&fs_info->free_chunk_space, 0);
2733         fs_info->tree_mod_log = RB_ROOT;
2734         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2735         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2736         /* readahead state */
2737         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2738         spin_lock_init(&fs_info->reada_lock);
2739         btrfs_init_ref_verify(fs_info);
2740
2741         fs_info->thread_pool_size = min_t(unsigned long,
2742                                           num_online_cpus() + 2, 8);
2743
2744         INIT_LIST_HEAD(&fs_info->ordered_roots);
2745         spin_lock_init(&fs_info->ordered_root_lock);
2746
2747         fs_info->btree_inode = new_inode(sb);
2748         if (!fs_info->btree_inode) {
2749                 err = -ENOMEM;
2750                 goto fail_bio_counter;
2751         }
2752         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2753
2754         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2755                                         GFP_KERNEL);
2756         if (!fs_info->delayed_root) {
2757                 err = -ENOMEM;
2758                 goto fail_iput;
2759         }
2760         btrfs_init_delayed_root(fs_info->delayed_root);
2761
2762         btrfs_init_scrub(fs_info);
2763 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2764         fs_info->check_integrity_print_mask = 0;
2765 #endif
2766         btrfs_init_balance(fs_info);
2767         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2768
2769         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2770         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2771
2772         btrfs_init_btree_inode(fs_info);
2773
2774         spin_lock_init(&fs_info->block_group_cache_lock);
2775         fs_info->block_group_cache_tree = RB_ROOT;
2776         fs_info->first_logical_byte = (u64)-1;
2777
2778         extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2779                             IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2780         extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2781                             IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2782         fs_info->pinned_extents = &fs_info->freed_extents[0];
2783         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2784
2785         mutex_init(&fs_info->ordered_operations_mutex);
2786         mutex_init(&fs_info->tree_log_mutex);
2787         mutex_init(&fs_info->chunk_mutex);
2788         mutex_init(&fs_info->transaction_kthread_mutex);
2789         mutex_init(&fs_info->cleaner_mutex);
2790         mutex_init(&fs_info->ro_block_group_mutex);
2791         init_rwsem(&fs_info->commit_root_sem);
2792         init_rwsem(&fs_info->cleanup_work_sem);
2793         init_rwsem(&fs_info->subvol_sem);
2794         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2795
2796         btrfs_init_dev_replace_locks(fs_info);
2797         btrfs_init_qgroup(fs_info);
2798         btrfs_discard_init(fs_info);
2799
2800         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2801         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2802
2803         init_waitqueue_head(&fs_info->transaction_throttle);
2804         init_waitqueue_head(&fs_info->transaction_wait);
2805         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2806         init_waitqueue_head(&fs_info->async_submit_wait);
2807         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2808
2809         /* Usable values until the real ones are cached from the superblock */
2810         fs_info->nodesize = 4096;
2811         fs_info->sectorsize = 4096;
2812         fs_info->stripesize = 4096;
2813
2814         spin_lock_init(&fs_info->swapfile_pins_lock);
2815         fs_info->swapfile_pins = RB_ROOT;
2816
2817         fs_info->send_in_progress = 0;
2818
2819         ret = btrfs_alloc_stripe_hash_table(fs_info);
2820         if (ret) {
2821                 err = ret;
2822                 goto fail_alloc;
2823         }
2824
2825         invalidate_bdev(fs_devices->latest_bdev);
2826
2827         /*
2828          * Read super block and check the signature bytes only
2829          */
2830         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2831         if (IS_ERR(bh)) {
2832                 err = PTR_ERR(bh);
2833                 goto fail_alloc;
2834         }
2835
2836         /*
2837          * Verify the type first, if that or the the checksum value are
2838          * corrupted, we'll find out
2839          */
2840         csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2841         if (!btrfs_supported_super_csum(csum_type)) {
2842                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2843                           csum_type);
2844                 err = -EINVAL;
2845                 brelse(bh);
2846                 goto fail_alloc;
2847         }
2848
2849         ret = btrfs_init_csum_hash(fs_info, csum_type);
2850         if (ret) {
2851                 err = ret;
2852                 goto fail_alloc;
2853         }
2854
2855         /*
2856          * We want to check superblock checksum, the type is stored inside.
2857          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2858          */
2859         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2860                 btrfs_err(fs_info, "superblock checksum mismatch");
2861                 err = -EINVAL;
2862                 brelse(bh);
2863                 goto fail_csum;
2864         }
2865
2866         /*
2867          * super_copy is zeroed at allocation time and we never touch the
2868          * following bytes up to INFO_SIZE, the checksum is calculated from
2869          * the whole block of INFO_SIZE
2870          */
2871         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2872         brelse(bh);
2873
2874         disk_super = fs_info->super_copy;
2875
2876         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2877                        BTRFS_FSID_SIZE));
2878
2879         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2880                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2881                                 fs_info->super_copy->metadata_uuid,
2882                                 BTRFS_FSID_SIZE));
2883         }
2884
2885         features = btrfs_super_flags(disk_super);
2886         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2887                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2888                 btrfs_set_super_flags(disk_super, features);
2889                 btrfs_info(fs_info,
2890                         "found metadata UUID change in progress flag, clearing");
2891         }
2892
2893         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2894                sizeof(*fs_info->super_for_commit));
2895
2896         ret = btrfs_validate_mount_super(fs_info);
2897         if (ret) {
2898                 btrfs_err(fs_info, "superblock contains fatal errors");
2899                 err = -EINVAL;
2900                 goto fail_csum;
2901         }
2902
2903         if (!btrfs_super_root(disk_super))
2904                 goto fail_csum;
2905
2906         /* check FS state, whether FS is broken. */
2907         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2908                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2909
2910         /*
2911          * In the long term, we'll store the compression type in the super
2912          * block, and it'll be used for per file compression control.
2913          */
2914         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2915
2916         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2917         if (ret) {
2918                 err = ret;
2919                 goto fail_csum;
2920         }
2921
2922         features = btrfs_super_incompat_flags(disk_super) &
2923                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2924         if (features) {
2925                 btrfs_err(fs_info,
2926                     "cannot mount because of unsupported optional features (%llx)",
2927                     features);
2928                 err = -EINVAL;
2929                 goto fail_csum;
2930         }
2931
2932         features = btrfs_super_incompat_flags(disk_super);
2933         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2934         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2935                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2936         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2937                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2938
2939         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2940                 btrfs_info(fs_info, "has skinny extents");
2941
2942         /*
2943          * flag our filesystem as having big metadata blocks if
2944          * they are bigger than the page size
2945          */
2946         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2947                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2948                         btrfs_info(fs_info,
2949                                 "flagging fs with big metadata feature");
2950                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2951         }
2952
2953         nodesize = btrfs_super_nodesize(disk_super);
2954         sectorsize = btrfs_super_sectorsize(disk_super);
2955         stripesize = sectorsize;
2956         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2957         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2958
2959         /* Cache block sizes */
2960         fs_info->nodesize = nodesize;
2961         fs_info->sectorsize = sectorsize;
2962         fs_info->stripesize = stripesize;
2963
2964         /*
2965          * mixed block groups end up with duplicate but slightly offset
2966          * extent buffers for the same range.  It leads to corruptions
2967          */
2968         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2969             (sectorsize != nodesize)) {
2970                 btrfs_err(fs_info,
2971 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2972                         nodesize, sectorsize);
2973                 goto fail_csum;
2974         }
2975
2976         /*
2977          * Needn't use the lock because there is no other task which will
2978          * update the flag.
2979          */
2980         btrfs_set_super_incompat_flags(disk_super, features);
2981
2982         features = btrfs_super_compat_ro_flags(disk_super) &
2983                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2984         if (!sb_rdonly(sb) && features) {
2985                 btrfs_err(fs_info,
2986         "cannot mount read-write because of unsupported optional features (%llx)",
2987                        features);
2988                 err = -EINVAL;
2989                 goto fail_csum;
2990         }
2991
2992         ret = btrfs_init_workqueues(fs_info, fs_devices);
2993         if (ret) {
2994                 err = ret;
2995                 goto fail_sb_buffer;
2996         }
2997
2998         sb->s_bdi->congested_fn = btrfs_congested_fn;
2999         sb->s_bdi->congested_data = fs_info;
3000         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3001         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3002         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3003         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3004
3005         sb->s_blocksize = sectorsize;
3006         sb->s_blocksize_bits = blksize_bits(sectorsize);
3007         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3008
3009         mutex_lock(&fs_info->chunk_mutex);
3010         ret = btrfs_read_sys_array(fs_info);
3011         mutex_unlock(&fs_info->chunk_mutex);
3012         if (ret) {
3013                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3014                 goto fail_sb_buffer;
3015         }
3016
3017         generation = btrfs_super_chunk_root_generation(disk_super);
3018         level = btrfs_super_chunk_root_level(disk_super);
3019
3020         chunk_root->node = read_tree_block(fs_info,
3021                                            btrfs_super_chunk_root(disk_super),
3022                                            generation, level, NULL);
3023         if (IS_ERR(chunk_root->node) ||
3024             !extent_buffer_uptodate(chunk_root->node)) {
3025                 btrfs_err(fs_info, "failed to read chunk root");
3026                 if (!IS_ERR(chunk_root->node))
3027                         free_extent_buffer(chunk_root->node);
3028                 chunk_root->node = NULL;
3029                 goto fail_tree_roots;
3030         }
3031         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3032         chunk_root->commit_root = btrfs_root_node(chunk_root);
3033
3034         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3035            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3036
3037         ret = btrfs_read_chunk_tree(fs_info);
3038         if (ret) {
3039                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3040                 goto fail_tree_roots;
3041         }
3042
3043         /*
3044          * Keep the devid that is marked to be the target device for the
3045          * device replace procedure
3046          */
3047         btrfs_free_extra_devids(fs_devices, 0);
3048
3049         if (!fs_devices->latest_bdev) {
3050                 btrfs_err(fs_info, "failed to read devices");
3051                 goto fail_tree_roots;
3052         }
3053
3054         ret = init_tree_roots(fs_info);
3055         if (ret)
3056                 goto fail_tree_roots;
3057
3058         ret = btrfs_verify_dev_extents(fs_info);
3059         if (ret) {
3060                 btrfs_err(fs_info,
3061                           "failed to verify dev extents against chunks: %d",
3062                           ret);
3063                 goto fail_block_groups;
3064         }
3065         ret = btrfs_recover_balance(fs_info);
3066         if (ret) {
3067                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3068                 goto fail_block_groups;
3069         }
3070
3071         ret = btrfs_init_dev_stats(fs_info);
3072         if (ret) {
3073                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3074                 goto fail_block_groups;
3075         }
3076
3077         ret = btrfs_init_dev_replace(fs_info);
3078         if (ret) {
3079                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3080                 goto fail_block_groups;
3081         }
3082
3083         btrfs_free_extra_devids(fs_devices, 1);
3084
3085         ret = btrfs_sysfs_add_fsid(fs_devices);
3086         if (ret) {
3087                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3088                                 ret);
3089                 goto fail_block_groups;
3090         }
3091
3092         ret = btrfs_sysfs_add_mounted(fs_info);
3093         if (ret) {
3094                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3095                 goto fail_fsdev_sysfs;
3096         }
3097
3098         ret = btrfs_init_space_info(fs_info);
3099         if (ret) {
3100                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3101                 goto fail_sysfs;
3102         }
3103
3104         ret = btrfs_read_block_groups(fs_info);
3105         if (ret) {
3106                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3107                 goto fail_sysfs;
3108         }
3109
3110         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3111                 btrfs_warn(fs_info,
3112                 "writable mount is not allowed due to too many missing devices");
3113                 goto fail_sysfs;
3114         }
3115
3116         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3117                                                "btrfs-cleaner");
3118         if (IS_ERR(fs_info->cleaner_kthread))
3119                 goto fail_sysfs;
3120
3121         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3122                                                    tree_root,
3123                                                    "btrfs-transaction");
3124         if (IS_ERR(fs_info->transaction_kthread))
3125                 goto fail_cleaner;
3126
3127         if (!btrfs_test_opt(fs_info, NOSSD) &&
3128             !fs_info->fs_devices->rotating) {
3129                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3130         }
3131
3132         /*
3133          * Mount does not set all options immediately, we can do it now and do
3134          * not have to wait for transaction commit
3135          */
3136         btrfs_apply_pending_changes(fs_info);
3137
3138 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3139         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3140                 ret = btrfsic_mount(fs_info, fs_devices,
3141                                     btrfs_test_opt(fs_info,
3142                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3143                                     1 : 0,
3144                                     fs_info->check_integrity_print_mask);
3145                 if (ret)
3146                         btrfs_warn(fs_info,
3147                                 "failed to initialize integrity check module: %d",
3148                                 ret);
3149         }
3150 #endif
3151         ret = btrfs_read_qgroup_config(fs_info);
3152         if (ret)
3153                 goto fail_trans_kthread;
3154
3155         if (btrfs_build_ref_tree(fs_info))
3156                 btrfs_err(fs_info, "couldn't build ref tree");
3157
3158         /* do not make disk changes in broken FS or nologreplay is given */
3159         if (btrfs_super_log_root(disk_super) != 0 &&
3160             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3161                 btrfs_info(fs_info, "start tree-log replay");
3162                 ret = btrfs_replay_log(fs_info, fs_devices);
3163                 if (ret) {
3164                         err = ret;
3165                         goto fail_qgroup;
3166                 }
3167         }
3168
3169         ret = btrfs_find_orphan_roots(fs_info);
3170         if (ret)
3171                 goto fail_qgroup;
3172
3173         if (!sb_rdonly(sb)) {
3174                 ret = btrfs_cleanup_fs_roots(fs_info);
3175                 if (ret)
3176                         goto fail_qgroup;
3177
3178                 mutex_lock(&fs_info->cleaner_mutex);
3179                 ret = btrfs_recover_relocation(tree_root);
3180                 mutex_unlock(&fs_info->cleaner_mutex);
3181                 if (ret < 0) {
3182                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3183                                         ret);
3184                         err = -EINVAL;
3185                         goto fail_qgroup;
3186                 }
3187         }
3188
3189         location.objectid = BTRFS_FS_TREE_OBJECTID;
3190         location.type = BTRFS_ROOT_ITEM_KEY;
3191         location.offset = 0;
3192
3193         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3194         if (IS_ERR(fs_info->fs_root)) {
3195                 err = PTR_ERR(fs_info->fs_root);
3196                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3197                 fs_info->fs_root = NULL;
3198                 goto fail_qgroup;
3199         }
3200
3201         if (sb_rdonly(sb))
3202                 return 0;
3203
3204         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3205             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3206                 clear_free_space_tree = 1;
3207         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3208                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3209                 btrfs_warn(fs_info, "free space tree is invalid");
3210                 clear_free_space_tree = 1;
3211         }
3212
3213         if (clear_free_space_tree) {
3214                 btrfs_info(fs_info, "clearing free space tree");
3215                 ret = btrfs_clear_free_space_tree(fs_info);
3216                 if (ret) {
3217                         btrfs_warn(fs_info,
3218                                    "failed to clear free space tree: %d", ret);
3219                         close_ctree(fs_info);
3220                         return ret;
3221                 }
3222         }
3223
3224         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3225             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3226                 btrfs_info(fs_info, "creating free space tree");
3227                 ret = btrfs_create_free_space_tree(fs_info);
3228                 if (ret) {
3229                         btrfs_warn(fs_info,
3230                                 "failed to create free space tree: %d", ret);
3231                         close_ctree(fs_info);
3232                         return ret;
3233                 }
3234         }
3235
3236         down_read(&fs_info->cleanup_work_sem);
3237         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3238             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3239                 up_read(&fs_info->cleanup_work_sem);
3240                 close_ctree(fs_info);
3241                 return ret;
3242         }
3243         up_read(&fs_info->cleanup_work_sem);
3244
3245         ret = btrfs_resume_balance_async(fs_info);
3246         if (ret) {
3247                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3248                 close_ctree(fs_info);
3249                 return ret;
3250         }
3251
3252         ret = btrfs_resume_dev_replace_async(fs_info);
3253         if (ret) {
3254                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3255                 close_ctree(fs_info);
3256                 return ret;
3257         }
3258
3259         btrfs_qgroup_rescan_resume(fs_info);
3260         btrfs_discard_resume(fs_info);
3261
3262         if (!fs_info->uuid_root) {
3263                 btrfs_info(fs_info, "creating UUID tree");
3264                 ret = btrfs_create_uuid_tree(fs_info);
3265                 if (ret) {
3266                         btrfs_warn(fs_info,
3267                                 "failed to create the UUID tree: %d", ret);
3268                         close_ctree(fs_info);
3269                         return ret;
3270                 }
3271         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3272                    fs_info->generation !=
3273                                 btrfs_super_uuid_tree_generation(disk_super)) {
3274                 btrfs_info(fs_info, "checking UUID tree");
3275                 ret = btrfs_check_uuid_tree(fs_info);
3276                 if (ret) {
3277                         btrfs_warn(fs_info,
3278                                 "failed to check the UUID tree: %d", ret);
3279                         close_ctree(fs_info);
3280                         return ret;
3281                 }
3282         } else {
3283                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3284         }
3285         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3286
3287         /*
3288          * backuproot only affect mount behavior, and if open_ctree succeeded,
3289          * no need to keep the flag
3290          */
3291         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3292
3293         return 0;
3294
3295 fail_qgroup:
3296         btrfs_free_qgroup_config(fs_info);
3297 fail_trans_kthread:
3298         kthread_stop(fs_info->transaction_kthread);
3299         btrfs_cleanup_transaction(fs_info);
3300         btrfs_free_fs_roots(fs_info);
3301 fail_cleaner:
3302         kthread_stop(fs_info->cleaner_kthread);
3303
3304         /*
3305          * make sure we're done with the btree inode before we stop our
3306          * kthreads
3307          */
3308         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3309
3310 fail_sysfs:
3311         btrfs_sysfs_remove_mounted(fs_info);
3312
3313 fail_fsdev_sysfs:
3314         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3315
3316 fail_block_groups:
3317         btrfs_put_block_group_cache(fs_info);
3318
3319 fail_tree_roots:
3320         free_root_pointers(fs_info, true);
3321         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3322
3323 fail_sb_buffer:
3324         btrfs_stop_all_workers(fs_info);
3325         btrfs_free_block_groups(fs_info);
3326 fail_csum:
3327         btrfs_free_csum_hash(fs_info);
3328 fail_alloc:
3329 fail_iput:
3330         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3331
3332         iput(fs_info->btree_inode);
3333 fail_bio_counter:
3334         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3335 fail_delalloc_bytes:
3336         percpu_counter_destroy(&fs_info->delalloc_bytes);
3337 fail_dirty_metadata_bytes:
3338         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3339 fail_dio_bytes:
3340         percpu_counter_destroy(&fs_info->dio_bytes);
3341 fail_srcu:
3342         cleanup_srcu_struct(&fs_info->subvol_srcu);
3343 fail:
3344         btrfs_free_stripe_hash_table(fs_info);
3345         btrfs_close_devices(fs_info->fs_devices);
3346         return err;
3347 }
3348 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3349
3350 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3351 {
3352         if (uptodate) {
3353                 set_buffer_uptodate(bh);
3354         } else {
3355                 struct btrfs_device *device = (struct btrfs_device *)
3356                         bh->b_private;
3357
3358                 btrfs_warn_rl_in_rcu(device->fs_info,
3359                                 "lost page write due to IO error on %s",
3360                                           rcu_str_deref(device->name));
3361                 /* note, we don't set_buffer_write_io_error because we have
3362                  * our own ways of dealing with the IO errors
3363                  */
3364                 clear_buffer_uptodate(bh);
3365                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3366         }
3367         unlock_buffer(bh);
3368         put_bh(bh);
3369 }
3370
3371 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3372                         struct buffer_head **bh_ret)
3373 {
3374         struct buffer_head *bh;
3375         struct btrfs_super_block *super;
3376         u64 bytenr;
3377
3378         bytenr = btrfs_sb_offset(copy_num);
3379         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3380                 return -EINVAL;
3381
3382         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3383         /*
3384          * If we fail to read from the underlying devices, as of now
3385          * the best option we have is to mark it EIO.
3386          */
3387         if (!bh)
3388                 return -EIO;
3389
3390         super = (struct btrfs_super_block *)bh->b_data;
3391         if (btrfs_super_bytenr(super) != bytenr ||
3392                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3393                 brelse(bh);
3394                 return -EINVAL;
3395         }
3396
3397         *bh_ret = bh;
3398         return 0;
3399 }
3400
3401
3402 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3403 {
3404         struct buffer_head *bh;
3405         struct buffer_head *latest = NULL;
3406         struct btrfs_super_block *super;
3407         int i;
3408         u64 transid = 0;
3409         int ret = -EINVAL;
3410
3411         /* we would like to check all the supers, but that would make
3412          * a btrfs mount succeed after a mkfs from a different FS.
3413          * So, we need to add a special mount option to scan for
3414          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3415          */
3416         for (i = 0; i < 1; i++) {
3417                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3418                 if (ret)
3419                         continue;
3420
3421                 super = (struct btrfs_super_block *)bh->b_data;
3422
3423                 if (!latest || btrfs_super_generation(super) > transid) {
3424                         brelse(latest);
3425                         latest = bh;
3426                         transid = btrfs_super_generation(super);
3427                 } else {
3428                         brelse(bh);
3429                 }
3430         }
3431
3432         if (!latest)
3433                 return ERR_PTR(ret);
3434
3435         return latest;
3436 }
3437
3438 /*
3439  * Write superblock @sb to the @device. Do not wait for completion, all the
3440  * buffer heads we write are pinned.
3441  *
3442  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3443  * the expected device size at commit time. Note that max_mirrors must be
3444  * same for write and wait phases.
3445  *
3446  * Return number of errors when buffer head is not found or submission fails.
3447  */
3448 static int write_dev_supers(struct btrfs_device *device,
3449                             struct btrfs_super_block *sb, int max_mirrors)
3450 {
3451         struct btrfs_fs_info *fs_info = device->fs_info;
3452         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3453         struct buffer_head *bh;
3454         int i;
3455         int ret;
3456         int errors = 0;
3457         u64 bytenr;
3458         int op_flags;
3459
3460         if (max_mirrors == 0)
3461                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3462
3463         shash->tfm = fs_info->csum_shash;
3464
3465         for (i = 0; i < max_mirrors; i++) {
3466                 bytenr = btrfs_sb_offset(i);
3467                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3468                     device->commit_total_bytes)
3469                         break;
3470
3471                 btrfs_set_super_bytenr(sb, bytenr);
3472
3473                 crypto_shash_init(shash);
3474                 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3475                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3476                 crypto_shash_final(shash, sb->csum);
3477
3478                 /* One reference for us, and we leave it for the caller */
3479                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3480                               BTRFS_SUPER_INFO_SIZE);
3481                 if (!bh) {
3482                         btrfs_err(device->fs_info,
3483                             "couldn't get super buffer head for bytenr %llu",
3484                             bytenr);
3485                         errors++;
3486                         continue;
3487                 }
3488
3489                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3490
3491                 /* one reference for submit_bh */
3492                 get_bh(bh);
3493
3494                 set_buffer_uptodate(bh);
3495                 lock_buffer(bh);
3496                 bh->b_end_io = btrfs_end_buffer_write_sync;
3497                 bh->b_private = device;
3498
3499                 /*
3500                  * we fua the first super.  The others we allow
3501                  * to go down lazy.
3502                  */
3503                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3504                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3505                         op_flags |= REQ_FUA;
3506                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3507                 if (ret)
3508                         errors++;
3509         }
3510         return errors < i ? 0 : -1;
3511 }
3512
3513 /*
3514  * Wait for write completion of superblocks done by write_dev_supers,
3515  * @max_mirrors same for write and wait phases.
3516  *
3517  * Return number of errors when buffer head is not found or not marked up to
3518  * date.
3519  */
3520 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3521 {
3522         struct buffer_head *bh;
3523         int i;
3524         int errors = 0;
3525         bool primary_failed = false;
3526         u64 bytenr;
3527
3528         if (max_mirrors == 0)
3529                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3530
3531         for (i = 0; i < max_mirrors; i++) {
3532                 bytenr = btrfs_sb_offset(i);
3533                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3534                     device->commit_total_bytes)
3535                         break;
3536
3537                 bh = __find_get_block(device->bdev,
3538                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3539                                       BTRFS_SUPER_INFO_SIZE);
3540                 if (!bh) {
3541                         errors++;
3542                         if (i == 0)
3543                                 primary_failed = true;
3544                         continue;
3545                 }
3546                 wait_on_buffer(bh);
3547                 if (!buffer_uptodate(bh)) {
3548                         errors++;
3549                         if (i == 0)
3550                                 primary_failed = true;
3551                 }
3552
3553                 /* drop our reference */
3554                 brelse(bh);
3555
3556                 /* drop the reference from the writing run */
3557                 brelse(bh);
3558         }
3559
3560         /* log error, force error return */
3561         if (primary_failed) {
3562                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3563                           device->devid);
3564                 return -1;
3565         }
3566
3567         return errors < i ? 0 : -1;
3568 }
3569
3570 /*
3571  * endio for the write_dev_flush, this will wake anyone waiting
3572  * for the barrier when it is done
3573  */
3574 static void btrfs_end_empty_barrier(struct bio *bio)
3575 {
3576         complete(bio->bi_private);
3577 }
3578
3579 /*
3580  * Submit a flush request to the device if it supports it. Error handling is
3581  * done in the waiting counterpart.
3582  */
3583 static void write_dev_flush(struct btrfs_device *device)
3584 {
3585         struct request_queue *q = bdev_get_queue(device->bdev);
3586         struct bio *bio = device->flush_bio;
3587
3588         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3589                 return;
3590
3591         bio_reset(bio);
3592         bio->bi_end_io = btrfs_end_empty_barrier;
3593         bio_set_dev(bio, device->bdev);
3594         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3595         init_completion(&device->flush_wait);
3596         bio->bi_private = &device->flush_wait;
3597
3598         btrfsic_submit_bio(bio);
3599         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3600 }
3601
3602 /*
3603  * If the flush bio has been submitted by write_dev_flush, wait for it.
3604  */
3605 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3606 {
3607         struct bio *bio = device->flush_bio;
3608
3609         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3610                 return BLK_STS_OK;
3611
3612         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3613         wait_for_completion_io(&device->flush_wait);
3614
3615         return bio->bi_status;
3616 }
3617
3618 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3619 {
3620         if (!btrfs_check_rw_degradable(fs_info, NULL))
3621                 return -EIO;
3622         return 0;
3623 }
3624
3625 /*
3626  * send an empty flush down to each device in parallel,
3627  * then wait for them
3628  */
3629 static int barrier_all_devices(struct btrfs_fs_info *info)
3630 {
3631         struct list_head *head;
3632         struct btrfs_device *dev;
3633         int errors_wait = 0;
3634         blk_status_t ret;
3635
3636         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3637         /* send down all the barriers */
3638         head = &info->fs_devices->devices;
3639         list_for_each_entry(dev, head, dev_list) {
3640                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3641                         continue;
3642                 if (!dev->bdev)
3643                         continue;
3644                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3645                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3646                         continue;
3647
3648                 write_dev_flush(dev);
3649                 dev->last_flush_error = BLK_STS_OK;
3650         }
3651
3652         /* wait for all the barriers */
3653         list_for_each_entry(dev, head, dev_list) {
3654                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3655                         continue;
3656                 if (!dev->bdev) {
3657                         errors_wait++;
3658                         continue;
3659                 }
3660                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3661                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3662                         continue;
3663
3664                 ret = wait_dev_flush(dev);
3665                 if (ret) {
3666                         dev->last_flush_error = ret;
3667                         btrfs_dev_stat_inc_and_print(dev,
3668                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3669                         errors_wait++;
3670                 }
3671         }
3672
3673         if (errors_wait) {
3674                 /*
3675                  * At some point we need the status of all disks
3676                  * to arrive at the volume status. So error checking
3677                  * is being pushed to a separate loop.
3678                  */
3679                 return check_barrier_error(info);
3680         }
3681         return 0;
3682 }
3683
3684 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3685 {
3686         int raid_type;
3687         int min_tolerated = INT_MAX;
3688
3689         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3690             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3691                 min_tolerated = min_t(int, min_tolerated,
3692                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3693                                     tolerated_failures);
3694
3695         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3696                 if (raid_type == BTRFS_RAID_SINGLE)
3697                         continue;
3698                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3699                         continue;
3700                 min_tolerated = min_t(int, min_tolerated,
3701                                     btrfs_raid_array[raid_type].
3702                                     tolerated_failures);
3703         }
3704
3705         if (min_tolerated == INT_MAX) {
3706                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3707                 min_tolerated = 0;
3708         }
3709
3710         return min_tolerated;
3711 }
3712
3713 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3714 {
3715         struct list_head *head;
3716         struct btrfs_device *dev;
3717         struct btrfs_super_block *sb;
3718         struct btrfs_dev_item *dev_item;
3719         int ret;
3720         int do_barriers;
3721         int max_errors;
3722         int total_errors = 0;
3723         u64 flags;
3724
3725         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3726
3727         /*
3728          * max_mirrors == 0 indicates we're from commit_transaction,
3729          * not from fsync where the tree roots in fs_info have not
3730          * been consistent on disk.
3731          */
3732         if (max_mirrors == 0)
3733                 backup_super_roots(fs_info);
3734
3735         sb = fs_info->super_for_commit;
3736         dev_item = &sb->dev_item;
3737
3738         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3739         head = &fs_info->fs_devices->devices;
3740         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3741
3742         if (do_barriers) {
3743                 ret = barrier_all_devices(fs_info);
3744                 if (ret) {
3745                         mutex_unlock(
3746                                 &fs_info->fs_devices->device_list_mutex);
3747                         btrfs_handle_fs_error(fs_info, ret,
3748                                               "errors while submitting device barriers.");
3749                         return ret;
3750                 }
3751         }
3752
3753         list_for_each_entry(dev, head, dev_list) {
3754                 if (!dev->bdev) {
3755                         total_errors++;
3756                         continue;
3757                 }
3758                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3759                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3760                         continue;
3761
3762                 btrfs_set_stack_device_generation(dev_item, 0);
3763                 btrfs_set_stack_device_type(dev_item, dev->type);
3764                 btrfs_set_stack_device_id(dev_item, dev->devid);
3765                 btrfs_set_stack_device_total_bytes(dev_item,
3766                                                    dev->commit_total_bytes);
3767                 btrfs_set_stack_device_bytes_used(dev_item,
3768                                                   dev->commit_bytes_used);
3769                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3770                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3771                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3772                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3773                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3774                        BTRFS_FSID_SIZE);
3775
3776                 flags = btrfs_super_flags(sb);
3777                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3778
3779                 ret = btrfs_validate_write_super(fs_info, sb);
3780                 if (ret < 0) {
3781                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3782                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3783                                 "unexpected superblock corruption detected");
3784                         return -EUCLEAN;
3785                 }
3786
3787                 ret = write_dev_supers(dev, sb, max_mirrors);
3788                 if (ret)
3789                         total_errors++;
3790         }
3791         if (total_errors > max_errors) {
3792                 btrfs_err(fs_info, "%d errors while writing supers",
3793                           total_errors);
3794                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3795
3796                 /* FUA is masked off if unsupported and can't be the reason */
3797                 btrfs_handle_fs_error(fs_info, -EIO,
3798                                       "%d errors while writing supers",
3799                                       total_errors);
3800                 return -EIO;
3801         }
3802
3803         total_errors = 0;
3804         list_for_each_entry(dev, head, dev_list) {
3805                 if (!dev->bdev)
3806                         continue;
3807                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3808                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3809                         continue;
3810
3811                 ret = wait_dev_supers(dev, max_mirrors);
3812                 if (ret)
3813                         total_errors++;
3814         }
3815         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3816         if (total_errors > max_errors) {
3817                 btrfs_handle_fs_error(fs_info, -EIO,
3818                                       "%d errors while writing supers",
3819                                       total_errors);
3820                 return -EIO;
3821         }
3822         return 0;
3823 }
3824
3825 /* Drop a fs root from the radix tree and free it. */
3826 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3827                                   struct btrfs_root *root)
3828 {
3829         spin_lock(&fs_info->fs_roots_radix_lock);
3830         radix_tree_delete(&fs_info->fs_roots_radix,
3831                           (unsigned long)root->root_key.objectid);
3832         spin_unlock(&fs_info->fs_roots_radix_lock);
3833
3834         if (btrfs_root_refs(&root->root_item) == 0)
3835                 synchronize_srcu(&fs_info->subvol_srcu);
3836
3837         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3838                 btrfs_free_log(NULL, root);
3839                 if (root->reloc_root) {
3840                         free_extent_buffer(root->reloc_root->node);
3841                         free_extent_buffer(root->reloc_root->commit_root);
3842                         btrfs_put_fs_root(root->reloc_root);
3843                         root->reloc_root = NULL;
3844                 }
3845         }
3846
3847         if (root->free_ino_pinned)
3848                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3849         if (root->free_ino_ctl)
3850                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3851         btrfs_free_fs_root(root);
3852 }
3853
3854 void btrfs_free_fs_root(struct btrfs_root *root)
3855 {
3856         iput(root->ino_cache_inode);
3857         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3858         if (root->anon_dev)
3859                 free_anon_bdev(root->anon_dev);
3860         if (root->subv_writers)
3861                 btrfs_free_subvolume_writers(root->subv_writers);
3862         free_extent_buffer(root->node);
3863         free_extent_buffer(root->commit_root);
3864         kfree(root->free_ino_ctl);
3865         kfree(root->free_ino_pinned);
3866         btrfs_put_fs_root(root);
3867 }
3868
3869 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3870 {
3871         u64 root_objectid = 0;
3872         struct btrfs_root *gang[8];
3873         int i = 0;
3874         int err = 0;
3875         unsigned int ret = 0;
3876         int index;
3877
3878         while (1) {
3879                 index = srcu_read_lock(&fs_info->subvol_srcu);
3880                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3881                                              (void **)gang, root_objectid,
3882                                              ARRAY_SIZE(gang));
3883                 if (!ret) {
3884                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3885                         break;
3886                 }
3887                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3888
3889                 for (i = 0; i < ret; i++) {
3890                         /* Avoid to grab roots in dead_roots */
3891                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3892                                 gang[i] = NULL;
3893                                 continue;
3894                         }
3895                         /* grab all the search result for later use */
3896                         gang[i] = btrfs_grab_fs_root(gang[i]);
3897                 }
3898                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3899
3900                 for (i = 0; i < ret; i++) {
3901                         if (!gang[i])
3902                                 continue;
3903                         root_objectid = gang[i]->root_key.objectid;
3904                         err = btrfs_orphan_cleanup(gang[i]);
3905                         if (err)
3906                                 break;
3907                         btrfs_put_fs_root(gang[i]);
3908                 }
3909                 root_objectid++;
3910         }
3911
3912         /* release the uncleaned roots due to error */
3913         for (; i < ret; i++) {
3914                 if (gang[i])
3915                         btrfs_put_fs_root(gang[i]);
3916         }
3917         return err;
3918 }
3919
3920 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3921 {
3922         struct btrfs_root *root = fs_info->tree_root;
3923         struct btrfs_trans_handle *trans;
3924
3925         mutex_lock(&fs_info->cleaner_mutex);
3926         btrfs_run_delayed_iputs(fs_info);
3927         mutex_unlock(&fs_info->cleaner_mutex);
3928         wake_up_process(fs_info->cleaner_kthread);
3929
3930         /* wait until ongoing cleanup work done */
3931         down_write(&fs_info->cleanup_work_sem);
3932         up_write(&fs_info->cleanup_work_sem);
3933
3934         trans = btrfs_join_transaction(root);
3935         if (IS_ERR(trans))
3936                 return PTR_ERR(trans);
3937         return btrfs_commit_transaction(trans);
3938 }
3939
3940 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3941 {
3942         int ret;
3943
3944         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3945         /*
3946          * We don't want the cleaner to start new transactions, add more delayed
3947          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3948          * because that frees the task_struct, and the transaction kthread might
3949          * still try to wake up the cleaner.
3950          */
3951         kthread_park(fs_info->cleaner_kthread);
3952
3953         /* wait for the qgroup rescan worker to stop */
3954         btrfs_qgroup_wait_for_completion(fs_info, false);
3955
3956         /* wait for the uuid_scan task to finish */
3957         down(&fs_info->uuid_tree_rescan_sem);
3958         /* avoid complains from lockdep et al., set sem back to initial state */
3959         up(&fs_info->uuid_tree_rescan_sem);
3960
3961         /* pause restriper - we want to resume on mount */
3962         btrfs_pause_balance(fs_info);
3963
3964         btrfs_dev_replace_suspend_for_unmount(fs_info);
3965
3966         btrfs_scrub_cancel(fs_info);
3967
3968         /* wait for any defraggers to finish */
3969         wait_event(fs_info->transaction_wait,
3970                    (atomic_read(&fs_info->defrag_running) == 0));
3971
3972         /* clear out the rbtree of defraggable inodes */
3973         btrfs_cleanup_defrag_inodes(fs_info);
3974
3975         cancel_work_sync(&fs_info->async_reclaim_work);
3976
3977         /* Cancel or finish ongoing discard work */
3978         btrfs_discard_cleanup(fs_info);
3979
3980         if (!sb_rdonly(fs_info->sb)) {
3981                 /*
3982                  * The cleaner kthread is stopped, so do one final pass over
3983                  * unused block groups.
3984                  */
3985                 btrfs_delete_unused_bgs(fs_info);
3986
3987                 ret = btrfs_commit_super(fs_info);
3988                 if (ret)
3989                         btrfs_err(fs_info, "commit super ret %d", ret);
3990         }
3991
3992         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3993             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3994                 btrfs_error_commit_super(fs_info);
3995
3996         kthread_stop(fs_info->transaction_kthread);
3997         kthread_stop(fs_info->cleaner_kthread);
3998
3999         ASSERT(list_empty(&fs_info->delayed_iputs));
4000         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4001
4002         btrfs_free_qgroup_config(fs_info);
4003         ASSERT(list_empty(&fs_info->delalloc_roots));
4004
4005         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4006                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4007                        percpu_counter_sum(&fs_info->delalloc_bytes));
4008         }
4009
4010         if (percpu_counter_sum(&fs_info->dio_bytes))
4011                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4012                            percpu_counter_sum(&fs_info->dio_bytes));
4013
4014         btrfs_sysfs_remove_mounted(fs_info);
4015         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4016
4017         btrfs_free_fs_roots(fs_info);
4018
4019         btrfs_put_block_group_cache(fs_info);
4020
4021         /*
4022          * we must make sure there is not any read request to
4023          * submit after we stopping all workers.
4024          */
4025         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4026         btrfs_stop_all_workers(fs_info);
4027
4028         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4029         free_root_pointers(fs_info, true);
4030
4031         /*
4032          * We must free the block groups after dropping the fs_roots as we could
4033          * have had an IO error and have left over tree log blocks that aren't
4034          * cleaned up until the fs roots are freed.  This makes the block group
4035          * accounting appear to be wrong because there's pending reserved bytes,
4036          * so make sure we do the block group cleanup afterwards.
4037          */
4038         btrfs_free_block_groups(fs_info);
4039
4040         iput(fs_info->btree_inode);
4041
4042 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4043         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4044                 btrfsic_unmount(fs_info->fs_devices);
4045 #endif
4046
4047         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4048         btrfs_close_devices(fs_info->fs_devices);
4049
4050         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4051         percpu_counter_destroy(&fs_info->delalloc_bytes);
4052         percpu_counter_destroy(&fs_info->dio_bytes);
4053         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4054         cleanup_srcu_struct(&fs_info->subvol_srcu);
4055
4056         btrfs_free_csum_hash(fs_info);
4057         btrfs_free_stripe_hash_table(fs_info);
4058         btrfs_free_ref_cache(fs_info);
4059 }
4060
4061 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4062                           int atomic)
4063 {
4064         int ret;
4065         struct inode *btree_inode = buf->pages[0]->mapping->host;
4066
4067         ret = extent_buffer_uptodate(buf);
4068         if (!ret)
4069                 return ret;
4070
4071         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4072                                     parent_transid, atomic);
4073         if (ret == -EAGAIN)
4074                 return ret;
4075         return !ret;
4076 }
4077
4078 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4079 {
4080         struct btrfs_fs_info *fs_info;
4081         struct btrfs_root *root;
4082         u64 transid = btrfs_header_generation(buf);
4083         int was_dirty;
4084
4085 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4086         /*
4087          * This is a fast path so only do this check if we have sanity tests
4088          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4089          * outside of the sanity tests.
4090          */
4091         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4092                 return;
4093 #endif
4094         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4095         fs_info = root->fs_info;
4096         btrfs_assert_tree_locked(buf);
4097         if (transid != fs_info->generation)
4098                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4099                         buf->start, transid, fs_info->generation);
4100         was_dirty = set_extent_buffer_dirty(buf);
4101         if (!was_dirty)
4102                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4103                                          buf->len,
4104                                          fs_info->dirty_metadata_batch);
4105 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4106         /*
4107          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4108          * but item data not updated.
4109          * So here we should only check item pointers, not item data.
4110          */
4111         if (btrfs_header_level(buf) == 0 &&
4112             btrfs_check_leaf_relaxed(buf)) {
4113                 btrfs_print_leaf(buf);
4114                 ASSERT(0);
4115         }
4116 #endif
4117 }
4118
4119 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4120                                         int flush_delayed)
4121 {
4122         /*
4123          * looks as though older kernels can get into trouble with
4124          * this code, they end up stuck in balance_dirty_pages forever
4125          */
4126         int ret;
4127
4128         if (current->flags & PF_MEMALLOC)
4129                 return;
4130
4131         if (flush_delayed)
4132                 btrfs_balance_delayed_items(fs_info);
4133
4134         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4135                                      BTRFS_DIRTY_METADATA_THRESH,
4136                                      fs_info->dirty_metadata_batch);
4137         if (ret > 0) {
4138                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4139         }
4140 }
4141
4142 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4143 {
4144         __btrfs_btree_balance_dirty(fs_info, 1);
4145 }
4146
4147 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4148 {
4149         __btrfs_btree_balance_dirty(fs_info, 0);
4150 }
4151
4152 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4153                       struct btrfs_key *first_key)
4154 {
4155         return btree_read_extent_buffer_pages(buf, parent_transid,
4156                                               level, first_key);
4157 }
4158
4159 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4160 {
4161         /* cleanup FS via transaction */
4162         btrfs_cleanup_transaction(fs_info);
4163
4164         mutex_lock(&fs_info->cleaner_mutex);
4165         btrfs_run_delayed_iputs(fs_info);
4166         mutex_unlock(&fs_info->cleaner_mutex);
4167
4168         down_write(&fs_info->cleanup_work_sem);
4169         up_write(&fs_info->cleanup_work_sem);
4170 }
4171
4172 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4173 {
4174         struct btrfs_ordered_extent *ordered;
4175
4176         spin_lock(&root->ordered_extent_lock);
4177         /*
4178          * This will just short circuit the ordered completion stuff which will
4179          * make sure the ordered extent gets properly cleaned up.
4180          */
4181         list_for_each_entry(ordered, &root->ordered_extents,
4182                             root_extent_list)
4183                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4184         spin_unlock(&root->ordered_extent_lock);
4185 }
4186
4187 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4188 {
4189         struct btrfs_root *root;
4190         struct list_head splice;
4191
4192         INIT_LIST_HEAD(&splice);
4193
4194         spin_lock(&fs_info->ordered_root_lock);
4195         list_splice_init(&fs_info->ordered_roots, &splice);
4196         while (!list_empty(&splice)) {
4197                 root = list_first_entry(&splice, struct btrfs_root,
4198                                         ordered_root);
4199                 list_move_tail(&root->ordered_root,
4200                                &fs_info->ordered_roots);
4201
4202                 spin_unlock(&fs_info->ordered_root_lock);
4203                 btrfs_destroy_ordered_extents(root);
4204
4205                 cond_resched();
4206                 spin_lock(&fs_info->ordered_root_lock);
4207         }
4208         spin_unlock(&fs_info->ordered_root_lock);
4209
4210         /*
4211          * We need this here because if we've been flipped read-only we won't
4212          * get sync() from the umount, so we need to make sure any ordered
4213          * extents that haven't had their dirty pages IO start writeout yet
4214          * actually get run and error out properly.
4215          */
4216         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4217 }
4218
4219 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4220                                       struct btrfs_fs_info *fs_info)
4221 {
4222         struct rb_node *node;
4223         struct btrfs_delayed_ref_root *delayed_refs;
4224         struct btrfs_delayed_ref_node *ref;
4225         int ret = 0;
4226
4227         delayed_refs = &trans->delayed_refs;
4228
4229         spin_lock(&delayed_refs->lock);
4230         if (atomic_read(&delayed_refs->num_entries) == 0) {
4231                 spin_unlock(&delayed_refs->lock);
4232                 btrfs_info(fs_info, "delayed_refs has NO entry");
4233                 return ret;
4234         }
4235
4236         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4237                 struct btrfs_delayed_ref_head *head;
4238                 struct rb_node *n;
4239                 bool pin_bytes = false;
4240
4241                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4242                                 href_node);
4243                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4244                         continue;
4245
4246                 spin_lock(&head->lock);
4247                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4248                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4249                                        ref_node);
4250                         ref->in_tree = 0;
4251                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4252                         RB_CLEAR_NODE(&ref->ref_node);
4253                         if (!list_empty(&ref->add_list))
4254                                 list_del(&ref->add_list);
4255                         atomic_dec(&delayed_refs->num_entries);
4256                         btrfs_put_delayed_ref(ref);
4257                 }
4258                 if (head->must_insert_reserved)
4259                         pin_bytes = true;
4260                 btrfs_free_delayed_extent_op(head->extent_op);
4261                 btrfs_delete_ref_head(delayed_refs, head);
4262                 spin_unlock(&head->lock);
4263                 spin_unlock(&delayed_refs->lock);
4264                 mutex_unlock(&head->mutex);
4265
4266                 if (pin_bytes)
4267                         btrfs_pin_extent(fs_info, head->bytenr,
4268                                          head->num_bytes, 1);
4269                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4270                 btrfs_put_delayed_ref_head(head);
4271                 cond_resched();
4272                 spin_lock(&delayed_refs->lock);
4273         }
4274         btrfs_qgroup_destroy_extent_records(trans);
4275
4276         spin_unlock(&delayed_refs->lock);
4277
4278         return ret;
4279 }
4280
4281 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4282 {
4283         struct btrfs_inode *btrfs_inode;
4284         struct list_head splice;
4285
4286         INIT_LIST_HEAD(&splice);
4287
4288         spin_lock(&root->delalloc_lock);
4289         list_splice_init(&root->delalloc_inodes, &splice);
4290
4291         while (!list_empty(&splice)) {
4292                 struct inode *inode = NULL;
4293                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4294                                                delalloc_inodes);
4295                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4296                 spin_unlock(&root->delalloc_lock);
4297
4298                 /*
4299                  * Make sure we get a live inode and that it'll not disappear
4300                  * meanwhile.
4301                  */
4302                 inode = igrab(&btrfs_inode->vfs_inode);
4303                 if (inode) {
4304                         invalidate_inode_pages2(inode->i_mapping);
4305                         iput(inode);
4306                 }
4307                 spin_lock(&root->delalloc_lock);
4308         }
4309         spin_unlock(&root->delalloc_lock);
4310 }
4311
4312 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4313 {
4314         struct btrfs_root *root;
4315         struct list_head splice;
4316
4317         INIT_LIST_HEAD(&splice);
4318
4319         spin_lock(&fs_info->delalloc_root_lock);
4320         list_splice_init(&fs_info->delalloc_roots, &splice);
4321         while (!list_empty(&splice)) {
4322                 root = list_first_entry(&splice, struct btrfs_root,
4323                                          delalloc_root);
4324                 root = btrfs_grab_fs_root(root);
4325                 BUG_ON(!root);
4326                 spin_unlock(&fs_info->delalloc_root_lock);
4327
4328                 btrfs_destroy_delalloc_inodes(root);
4329                 btrfs_put_fs_root(root);
4330
4331                 spin_lock(&fs_info->delalloc_root_lock);
4332         }
4333         spin_unlock(&fs_info->delalloc_root_lock);
4334 }
4335
4336 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4337                                         struct extent_io_tree *dirty_pages,
4338                                         int mark)
4339 {
4340         int ret;
4341         struct extent_buffer *eb;
4342         u64 start = 0;
4343         u64 end;
4344
4345         while (1) {
4346                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4347                                             mark, NULL);
4348                 if (ret)
4349                         break;
4350
4351                 clear_extent_bits(dirty_pages, start, end, mark);
4352                 while (start <= end) {
4353                         eb = find_extent_buffer(fs_info, start);
4354                         start += fs_info->nodesize;
4355                         if (!eb)
4356                                 continue;
4357                         wait_on_extent_buffer_writeback(eb);
4358
4359                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4360                                                &eb->bflags))
4361                                 clear_extent_buffer_dirty(eb);
4362                         free_extent_buffer_stale(eb);
4363                 }
4364         }
4365
4366         return ret;
4367 }
4368
4369 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4370                                        struct extent_io_tree *pinned_extents)
4371 {
4372         struct extent_io_tree *unpin;
4373         u64 start;
4374         u64 end;
4375         int ret;
4376         bool loop = true;
4377
4378         unpin = pinned_extents;
4379 again:
4380         while (1) {
4381                 struct extent_state *cached_state = NULL;
4382
4383                 /*
4384                  * The btrfs_finish_extent_commit() may get the same range as
4385                  * ours between find_first_extent_bit and clear_extent_dirty.
4386                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4387                  * the same extent range.
4388                  */
4389                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4390                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4391                                             EXTENT_DIRTY, &cached_state);
4392                 if (ret) {
4393                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4394                         break;
4395                 }
4396
4397                 clear_extent_dirty(unpin, start, end, &cached_state);
4398                 free_extent_state(cached_state);
4399                 btrfs_error_unpin_extent_range(fs_info, start, end);
4400                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4401                 cond_resched();
4402         }
4403
4404         if (loop) {
4405                 if (unpin == &fs_info->freed_extents[0])
4406                         unpin = &fs_info->freed_extents[1];
4407                 else
4408                         unpin = &fs_info->freed_extents[0];
4409                 loop = false;
4410                 goto again;
4411         }
4412
4413         return 0;
4414 }
4415
4416 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4417 {
4418         struct inode *inode;
4419
4420         inode = cache->io_ctl.inode;
4421         if (inode) {
4422                 invalidate_inode_pages2(inode->i_mapping);
4423                 BTRFS_I(inode)->generation = 0;
4424                 cache->io_ctl.inode = NULL;
4425                 iput(inode);
4426         }
4427         btrfs_put_block_group(cache);
4428 }
4429
4430 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4431                              struct btrfs_fs_info *fs_info)
4432 {
4433         struct btrfs_block_group *cache;
4434
4435         spin_lock(&cur_trans->dirty_bgs_lock);
4436         while (!list_empty(&cur_trans->dirty_bgs)) {
4437                 cache = list_first_entry(&cur_trans->dirty_bgs,
4438                                          struct btrfs_block_group,
4439                                          dirty_list);
4440
4441                 if (!list_empty(&cache->io_list)) {
4442                         spin_unlock(&cur_trans->dirty_bgs_lock);
4443                         list_del_init(&cache->io_list);
4444                         btrfs_cleanup_bg_io(cache);
4445                         spin_lock(&cur_trans->dirty_bgs_lock);
4446                 }
4447
4448                 list_del_init(&cache->dirty_list);
4449                 spin_lock(&cache->lock);
4450                 cache->disk_cache_state = BTRFS_DC_ERROR;
4451                 spin_unlock(&cache->lock);
4452
4453                 spin_unlock(&cur_trans->dirty_bgs_lock);
4454                 btrfs_put_block_group(cache);
4455                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4456                 spin_lock(&cur_trans->dirty_bgs_lock);
4457         }
4458         spin_unlock(&cur_trans->dirty_bgs_lock);
4459
4460         /*
4461          * Refer to the definition of io_bgs member for details why it's safe
4462          * to use it without any locking
4463          */
4464         while (!list_empty(&cur_trans->io_bgs)) {
4465                 cache = list_first_entry(&cur_trans->io_bgs,
4466                                          struct btrfs_block_group,
4467                                          io_list);
4468
4469                 list_del_init(&cache->io_list);
4470                 spin_lock(&cache->lock);
4471                 cache->disk_cache_state = BTRFS_DC_ERROR;
4472                 spin_unlock(&cache->lock);
4473                 btrfs_cleanup_bg_io(cache);
4474         }
4475 }
4476
4477 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4478                                    struct btrfs_fs_info *fs_info)
4479 {
4480         struct btrfs_device *dev, *tmp;
4481
4482         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4483         ASSERT(list_empty(&cur_trans->dirty_bgs));
4484         ASSERT(list_empty(&cur_trans->io_bgs));
4485
4486         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4487                                  post_commit_list) {
4488                 list_del_init(&dev->post_commit_list);
4489         }
4490
4491         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4492
4493         cur_trans->state = TRANS_STATE_COMMIT_START;
4494         wake_up(&fs_info->transaction_blocked_wait);
4495
4496         cur_trans->state = TRANS_STATE_UNBLOCKED;
4497         wake_up(&fs_info->transaction_wait);
4498
4499         btrfs_destroy_delayed_inodes(fs_info);
4500
4501         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4502                                      EXTENT_DIRTY);
4503         btrfs_destroy_pinned_extent(fs_info,
4504                                     fs_info->pinned_extents);
4505
4506         cur_trans->state =TRANS_STATE_COMPLETED;
4507         wake_up(&cur_trans->commit_wait);
4508 }
4509
4510 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4511 {
4512         struct btrfs_transaction *t;
4513
4514         mutex_lock(&fs_info->transaction_kthread_mutex);
4515
4516         spin_lock(&fs_info->trans_lock);
4517         while (!list_empty(&fs_info->trans_list)) {
4518                 t = list_first_entry(&fs_info->trans_list,
4519                                      struct btrfs_transaction, list);
4520                 if (t->state >= TRANS_STATE_COMMIT_START) {
4521                         refcount_inc(&t->use_count);
4522                         spin_unlock(&fs_info->trans_lock);
4523                         btrfs_wait_for_commit(fs_info, t->transid);
4524                         btrfs_put_transaction(t);
4525                         spin_lock(&fs_info->trans_lock);
4526                         continue;
4527                 }
4528                 if (t == fs_info->running_transaction) {
4529                         t->state = TRANS_STATE_COMMIT_DOING;
4530                         spin_unlock(&fs_info->trans_lock);
4531                         /*
4532                          * We wait for 0 num_writers since we don't hold a trans
4533                          * handle open currently for this transaction.
4534                          */
4535                         wait_event(t->writer_wait,
4536                                    atomic_read(&t->num_writers) == 0);
4537                 } else {
4538                         spin_unlock(&fs_info->trans_lock);
4539                 }
4540                 btrfs_cleanup_one_transaction(t, fs_info);
4541
4542                 spin_lock(&fs_info->trans_lock);
4543                 if (t == fs_info->running_transaction)
4544                         fs_info->running_transaction = NULL;
4545                 list_del_init(&t->list);
4546                 spin_unlock(&fs_info->trans_lock);
4547
4548                 btrfs_put_transaction(t);
4549                 trace_btrfs_transaction_commit(fs_info->tree_root);
4550                 spin_lock(&fs_info->trans_lock);
4551         }
4552         spin_unlock(&fs_info->trans_lock);
4553         btrfs_destroy_all_ordered_extents(fs_info);
4554         btrfs_destroy_delayed_inodes(fs_info);
4555         btrfs_assert_delayed_root_empty(fs_info);
4556         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4557         btrfs_destroy_all_delalloc_inodes(fs_info);
4558         mutex_unlock(&fs_info->transaction_kthread_mutex);
4559
4560         return 0;
4561 }
4562
4563 static const struct extent_io_ops btree_extent_io_ops = {
4564         /* mandatory callbacks */
4565         .submit_bio_hook = btree_submit_bio_hook,
4566         .readpage_end_io_hook = btree_readpage_end_io_hook,
4567 };