OSDN Git Service

Merge tag 'pinctrl-for-3.7-late' of git://git.kernel.org/pub/scm/linux/kernel/git...
[uclinux-h8/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30
31 #define LEAK_DEBUG 0
32 #if LEAK_DEBUG
33 static DEFINE_SPINLOCK(leak_lock);
34 #endif
35
36 #define BUFFER_LRU_MAX 64
37
38 struct tree_entry {
39         u64 start;
40         u64 end;
41         struct rb_node rb_node;
42 };
43
44 struct extent_page_data {
45         struct bio *bio;
46         struct extent_io_tree *tree;
47         get_extent_t *get_extent;
48         unsigned long bio_flags;
49
50         /* tells writepage not to lock the state bits for this range
51          * it still does the unlocking
52          */
53         unsigned int extent_locked:1;
54
55         /* tells the submit_bio code to use a WRITE_SYNC */
56         unsigned int sync_io:1;
57 };
58
59 static noinline void flush_write_bio(void *data);
60 static inline struct btrfs_fs_info *
61 tree_fs_info(struct extent_io_tree *tree)
62 {
63         return btrfs_sb(tree->mapping->host->i_sb);
64 }
65
66 int __init extent_io_init(void)
67 {
68         extent_state_cache = kmem_cache_create("btrfs_extent_state",
69                         sizeof(struct extent_state), 0,
70                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
71         if (!extent_state_cache)
72                 return -ENOMEM;
73
74         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
75                         sizeof(struct extent_buffer), 0,
76                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
77         if (!extent_buffer_cache)
78                 goto free_state_cache;
79         return 0;
80
81 free_state_cache:
82         kmem_cache_destroy(extent_state_cache);
83         return -ENOMEM;
84 }
85
86 void extent_io_exit(void)
87 {
88         struct extent_state *state;
89         struct extent_buffer *eb;
90
91         while (!list_empty(&states)) {
92                 state = list_entry(states.next, struct extent_state, leak_list);
93                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
94                        "state %lu in tree %p refs %d\n",
95                        (unsigned long long)state->start,
96                        (unsigned long long)state->end,
97                        state->state, state->tree, atomic_read(&state->refs));
98                 list_del(&state->leak_list);
99                 kmem_cache_free(extent_state_cache, state);
100
101         }
102
103         while (!list_empty(&buffers)) {
104                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
105                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
106                        "refs %d\n", (unsigned long long)eb->start,
107                        eb->len, atomic_read(&eb->refs));
108                 list_del(&eb->leak_list);
109                 kmem_cache_free(extent_buffer_cache, eb);
110         }
111
112         /*
113          * Make sure all delayed rcu free are flushed before we
114          * destroy caches.
115          */
116         rcu_barrier();
117         if (extent_state_cache)
118                 kmem_cache_destroy(extent_state_cache);
119         if (extent_buffer_cache)
120                 kmem_cache_destroy(extent_buffer_cache);
121 }
122
123 void extent_io_tree_init(struct extent_io_tree *tree,
124                          struct address_space *mapping)
125 {
126         tree->state = RB_ROOT;
127         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
128         tree->ops = NULL;
129         tree->dirty_bytes = 0;
130         spin_lock_init(&tree->lock);
131         spin_lock_init(&tree->buffer_lock);
132         tree->mapping = mapping;
133 }
134
135 static struct extent_state *alloc_extent_state(gfp_t mask)
136 {
137         struct extent_state *state;
138 #if LEAK_DEBUG
139         unsigned long flags;
140 #endif
141
142         state = kmem_cache_alloc(extent_state_cache, mask);
143         if (!state)
144                 return state;
145         state->state = 0;
146         state->private = 0;
147         state->tree = NULL;
148 #if LEAK_DEBUG
149         spin_lock_irqsave(&leak_lock, flags);
150         list_add(&state->leak_list, &states);
151         spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153         atomic_set(&state->refs, 1);
154         init_waitqueue_head(&state->wq);
155         trace_alloc_extent_state(state, mask, _RET_IP_);
156         return state;
157 }
158
159 void free_extent_state(struct extent_state *state)
160 {
161         if (!state)
162                 return;
163         if (atomic_dec_and_test(&state->refs)) {
164 #if LEAK_DEBUG
165                 unsigned long flags;
166 #endif
167                 WARN_ON(state->tree);
168 #if LEAK_DEBUG
169                 spin_lock_irqsave(&leak_lock, flags);
170                 list_del(&state->leak_list);
171                 spin_unlock_irqrestore(&leak_lock, flags);
172 #endif
173                 trace_free_extent_state(state, _RET_IP_);
174                 kmem_cache_free(extent_state_cache, state);
175         }
176 }
177
178 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
179                                    struct rb_node *node)
180 {
181         struct rb_node **p = &root->rb_node;
182         struct rb_node *parent = NULL;
183         struct tree_entry *entry;
184
185         while (*p) {
186                 parent = *p;
187                 entry = rb_entry(parent, struct tree_entry, rb_node);
188
189                 if (offset < entry->start)
190                         p = &(*p)->rb_left;
191                 else if (offset > entry->end)
192                         p = &(*p)->rb_right;
193                 else
194                         return parent;
195         }
196
197         rb_link_node(node, parent, p);
198         rb_insert_color(node, root);
199         return NULL;
200 }
201
202 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
203                                      struct rb_node **prev_ret,
204                                      struct rb_node **next_ret)
205 {
206         struct rb_root *root = &tree->state;
207         struct rb_node *n = root->rb_node;
208         struct rb_node *prev = NULL;
209         struct rb_node *orig_prev = NULL;
210         struct tree_entry *entry;
211         struct tree_entry *prev_entry = NULL;
212
213         while (n) {
214                 entry = rb_entry(n, struct tree_entry, rb_node);
215                 prev = n;
216                 prev_entry = entry;
217
218                 if (offset < entry->start)
219                         n = n->rb_left;
220                 else if (offset > entry->end)
221                         n = n->rb_right;
222                 else
223                         return n;
224         }
225
226         if (prev_ret) {
227                 orig_prev = prev;
228                 while (prev && offset > prev_entry->end) {
229                         prev = rb_next(prev);
230                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231                 }
232                 *prev_ret = prev;
233                 prev = orig_prev;
234         }
235
236         if (next_ret) {
237                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
238                 while (prev && offset < prev_entry->start) {
239                         prev = rb_prev(prev);
240                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
241                 }
242                 *next_ret = prev;
243         }
244         return NULL;
245 }
246
247 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
248                                           u64 offset)
249 {
250         struct rb_node *prev = NULL;
251         struct rb_node *ret;
252
253         ret = __etree_search(tree, offset, &prev, NULL);
254         if (!ret)
255                 return prev;
256         return ret;
257 }
258
259 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
260                      struct extent_state *other)
261 {
262         if (tree->ops && tree->ops->merge_extent_hook)
263                 tree->ops->merge_extent_hook(tree->mapping->host, new,
264                                              other);
265 }
266
267 /*
268  * utility function to look for merge candidates inside a given range.
269  * Any extents with matching state are merged together into a single
270  * extent in the tree.  Extents with EXTENT_IO in their state field
271  * are not merged because the end_io handlers need to be able to do
272  * operations on them without sleeping (or doing allocations/splits).
273  *
274  * This should be called with the tree lock held.
275  */
276 static void merge_state(struct extent_io_tree *tree,
277                         struct extent_state *state)
278 {
279         struct extent_state *other;
280         struct rb_node *other_node;
281
282         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
283                 return;
284
285         other_node = rb_prev(&state->rb_node);
286         if (other_node) {
287                 other = rb_entry(other_node, struct extent_state, rb_node);
288                 if (other->end == state->start - 1 &&
289                     other->state == state->state) {
290                         merge_cb(tree, state, other);
291                         state->start = other->start;
292                         other->tree = NULL;
293                         rb_erase(&other->rb_node, &tree->state);
294                         free_extent_state(other);
295                 }
296         }
297         other_node = rb_next(&state->rb_node);
298         if (other_node) {
299                 other = rb_entry(other_node, struct extent_state, rb_node);
300                 if (other->start == state->end + 1 &&
301                     other->state == state->state) {
302                         merge_cb(tree, state, other);
303                         state->end = other->end;
304                         other->tree = NULL;
305                         rb_erase(&other->rb_node, &tree->state);
306                         free_extent_state(other);
307                 }
308         }
309 }
310
311 static void set_state_cb(struct extent_io_tree *tree,
312                          struct extent_state *state, int *bits)
313 {
314         if (tree->ops && tree->ops->set_bit_hook)
315                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
316 }
317
318 static void clear_state_cb(struct extent_io_tree *tree,
319                            struct extent_state *state, int *bits)
320 {
321         if (tree->ops && tree->ops->clear_bit_hook)
322                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
323 }
324
325 static void set_state_bits(struct extent_io_tree *tree,
326                            struct extent_state *state, int *bits);
327
328 /*
329  * insert an extent_state struct into the tree.  'bits' are set on the
330  * struct before it is inserted.
331  *
332  * This may return -EEXIST if the extent is already there, in which case the
333  * state struct is freed.
334  *
335  * The tree lock is not taken internally.  This is a utility function and
336  * probably isn't what you want to call (see set/clear_extent_bit).
337  */
338 static int insert_state(struct extent_io_tree *tree,
339                         struct extent_state *state, u64 start, u64 end,
340                         int *bits)
341 {
342         struct rb_node *node;
343
344         if (end < start) {
345                 printk(KERN_ERR "btrfs end < start %llu %llu\n",
346                        (unsigned long long)end,
347                        (unsigned long long)start);
348                 WARN_ON(1);
349         }
350         state->start = start;
351         state->end = end;
352
353         set_state_bits(tree, state, bits);
354
355         node = tree_insert(&tree->state, end, &state->rb_node);
356         if (node) {
357                 struct extent_state *found;
358                 found = rb_entry(node, struct extent_state, rb_node);
359                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
360                        "%llu %llu\n", (unsigned long long)found->start,
361                        (unsigned long long)found->end,
362                        (unsigned long long)start, (unsigned long long)end);
363                 return -EEXIST;
364         }
365         state->tree = tree;
366         merge_state(tree, state);
367         return 0;
368 }
369
370 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
371                      u64 split)
372 {
373         if (tree->ops && tree->ops->split_extent_hook)
374                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
375 }
376
377 /*
378  * split a given extent state struct in two, inserting the preallocated
379  * struct 'prealloc' as the newly created second half.  'split' indicates an
380  * offset inside 'orig' where it should be split.
381  *
382  * Before calling,
383  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
384  * are two extent state structs in the tree:
385  * prealloc: [orig->start, split - 1]
386  * orig: [ split, orig->end ]
387  *
388  * The tree locks are not taken by this function. They need to be held
389  * by the caller.
390  */
391 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
392                        struct extent_state *prealloc, u64 split)
393 {
394         struct rb_node *node;
395
396         split_cb(tree, orig, split);
397
398         prealloc->start = orig->start;
399         prealloc->end = split - 1;
400         prealloc->state = orig->state;
401         orig->start = split;
402
403         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
404         if (node) {
405                 free_extent_state(prealloc);
406                 return -EEXIST;
407         }
408         prealloc->tree = tree;
409         return 0;
410 }
411
412 static struct extent_state *next_state(struct extent_state *state)
413 {
414         struct rb_node *next = rb_next(&state->rb_node);
415         if (next)
416                 return rb_entry(next, struct extent_state, rb_node);
417         else
418                 return NULL;
419 }
420
421 /*
422  * utility function to clear some bits in an extent state struct.
423  * it will optionally wake up any one waiting on this state (wake == 1).
424  *
425  * If no bits are set on the state struct after clearing things, the
426  * struct is freed and removed from the tree
427  */
428 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
429                                             struct extent_state *state,
430                                             int *bits, int wake)
431 {
432         struct extent_state *next;
433         int bits_to_clear = *bits & ~EXTENT_CTLBITS;
434
435         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
436                 u64 range = state->end - state->start + 1;
437                 WARN_ON(range > tree->dirty_bytes);
438                 tree->dirty_bytes -= range;
439         }
440         clear_state_cb(tree, state, bits);
441         state->state &= ~bits_to_clear;
442         if (wake)
443                 wake_up(&state->wq);
444         if (state->state == 0) {
445                 next = next_state(state);
446                 if (state->tree) {
447                         rb_erase(&state->rb_node, &tree->state);
448                         state->tree = NULL;
449                         free_extent_state(state);
450                 } else {
451                         WARN_ON(1);
452                 }
453         } else {
454                 merge_state(tree, state);
455                 next = next_state(state);
456         }
457         return next;
458 }
459
460 static struct extent_state *
461 alloc_extent_state_atomic(struct extent_state *prealloc)
462 {
463         if (!prealloc)
464                 prealloc = alloc_extent_state(GFP_ATOMIC);
465
466         return prealloc;
467 }
468
469 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
470 {
471         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
472                     "Extent tree was modified by another "
473                     "thread while locked.");
474 }
475
476 /*
477  * clear some bits on a range in the tree.  This may require splitting
478  * or inserting elements in the tree, so the gfp mask is used to
479  * indicate which allocations or sleeping are allowed.
480  *
481  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
482  * the given range from the tree regardless of state (ie for truncate).
483  *
484  * the range [start, end] is inclusive.
485  *
486  * This takes the tree lock, and returns 0 on success and < 0 on error.
487  */
488 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
489                      int bits, int wake, int delete,
490                      struct extent_state **cached_state,
491                      gfp_t mask)
492 {
493         struct extent_state *state;
494         struct extent_state *cached;
495         struct extent_state *prealloc = NULL;
496         struct rb_node *node;
497         u64 last_end;
498         int err;
499         int clear = 0;
500
501         if (delete)
502                 bits |= ~EXTENT_CTLBITS;
503         bits |= EXTENT_FIRST_DELALLOC;
504
505         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
506                 clear = 1;
507 again:
508         if (!prealloc && (mask & __GFP_WAIT)) {
509                 prealloc = alloc_extent_state(mask);
510                 if (!prealloc)
511                         return -ENOMEM;
512         }
513
514         spin_lock(&tree->lock);
515         if (cached_state) {
516                 cached = *cached_state;
517
518                 if (clear) {
519                         *cached_state = NULL;
520                         cached_state = NULL;
521                 }
522
523                 if (cached && cached->tree && cached->start <= start &&
524                     cached->end > start) {
525                         if (clear)
526                                 atomic_dec(&cached->refs);
527                         state = cached;
528                         goto hit_next;
529                 }
530                 if (clear)
531                         free_extent_state(cached);
532         }
533         /*
534          * this search will find the extents that end after
535          * our range starts
536          */
537         node = tree_search(tree, start);
538         if (!node)
539                 goto out;
540         state = rb_entry(node, struct extent_state, rb_node);
541 hit_next:
542         if (state->start > end)
543                 goto out;
544         WARN_ON(state->end < start);
545         last_end = state->end;
546
547         /* the state doesn't have the wanted bits, go ahead */
548         if (!(state->state & bits)) {
549                 state = next_state(state);
550                 goto next;
551         }
552
553         /*
554          *     | ---- desired range ---- |
555          *  | state | or
556          *  | ------------- state -------------- |
557          *
558          * We need to split the extent we found, and may flip
559          * bits on second half.
560          *
561          * If the extent we found extends past our range, we
562          * just split and search again.  It'll get split again
563          * the next time though.
564          *
565          * If the extent we found is inside our range, we clear
566          * the desired bit on it.
567          */
568
569         if (state->start < start) {
570                 prealloc = alloc_extent_state_atomic(prealloc);
571                 BUG_ON(!prealloc);
572                 err = split_state(tree, state, prealloc, start);
573                 if (err)
574                         extent_io_tree_panic(tree, err);
575
576                 prealloc = NULL;
577                 if (err)
578                         goto out;
579                 if (state->end <= end) {
580                         state = clear_state_bit(tree, state, &bits, wake);
581                         goto next;
582                 }
583                 goto search_again;
584         }
585         /*
586          * | ---- desired range ---- |
587          *                        | state |
588          * We need to split the extent, and clear the bit
589          * on the first half
590          */
591         if (state->start <= end && state->end > end) {
592                 prealloc = alloc_extent_state_atomic(prealloc);
593                 BUG_ON(!prealloc);
594                 err = split_state(tree, state, prealloc, end + 1);
595                 if (err)
596                         extent_io_tree_panic(tree, err);
597
598                 if (wake)
599                         wake_up(&state->wq);
600
601                 clear_state_bit(tree, prealloc, &bits, wake);
602
603                 prealloc = NULL;
604                 goto out;
605         }
606
607         state = clear_state_bit(tree, state, &bits, wake);
608 next:
609         if (last_end == (u64)-1)
610                 goto out;
611         start = last_end + 1;
612         if (start <= end && state && !need_resched())
613                 goto hit_next;
614         goto search_again;
615
616 out:
617         spin_unlock(&tree->lock);
618         if (prealloc)
619                 free_extent_state(prealloc);
620
621         return 0;
622
623 search_again:
624         if (start > end)
625                 goto out;
626         spin_unlock(&tree->lock);
627         if (mask & __GFP_WAIT)
628                 cond_resched();
629         goto again;
630 }
631
632 static void wait_on_state(struct extent_io_tree *tree,
633                           struct extent_state *state)
634                 __releases(tree->lock)
635                 __acquires(tree->lock)
636 {
637         DEFINE_WAIT(wait);
638         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
639         spin_unlock(&tree->lock);
640         schedule();
641         spin_lock(&tree->lock);
642         finish_wait(&state->wq, &wait);
643 }
644
645 /*
646  * waits for one or more bits to clear on a range in the state tree.
647  * The range [start, end] is inclusive.
648  * The tree lock is taken by this function
649  */
650 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
651 {
652         struct extent_state *state;
653         struct rb_node *node;
654
655         spin_lock(&tree->lock);
656 again:
657         while (1) {
658                 /*
659                  * this search will find all the extents that end after
660                  * our range starts
661                  */
662                 node = tree_search(tree, start);
663                 if (!node)
664                         break;
665
666                 state = rb_entry(node, struct extent_state, rb_node);
667
668                 if (state->start > end)
669                         goto out;
670
671                 if (state->state & bits) {
672                         start = state->start;
673                         atomic_inc(&state->refs);
674                         wait_on_state(tree, state);
675                         free_extent_state(state);
676                         goto again;
677                 }
678                 start = state->end + 1;
679
680                 if (start > end)
681                         break;
682
683                 cond_resched_lock(&tree->lock);
684         }
685 out:
686         spin_unlock(&tree->lock);
687 }
688
689 static void set_state_bits(struct extent_io_tree *tree,
690                            struct extent_state *state,
691                            int *bits)
692 {
693         int bits_to_set = *bits & ~EXTENT_CTLBITS;
694
695         set_state_cb(tree, state, bits);
696         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
697                 u64 range = state->end - state->start + 1;
698                 tree->dirty_bytes += range;
699         }
700         state->state |= bits_to_set;
701 }
702
703 static void cache_state(struct extent_state *state,
704                         struct extent_state **cached_ptr)
705 {
706         if (cached_ptr && !(*cached_ptr)) {
707                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
708                         *cached_ptr = state;
709                         atomic_inc(&state->refs);
710                 }
711         }
712 }
713
714 static void uncache_state(struct extent_state **cached_ptr)
715 {
716         if (cached_ptr && (*cached_ptr)) {
717                 struct extent_state *state = *cached_ptr;
718                 *cached_ptr = NULL;
719                 free_extent_state(state);
720         }
721 }
722
723 /*
724  * set some bits on a range in the tree.  This may require allocations or
725  * sleeping, so the gfp mask is used to indicate what is allowed.
726  *
727  * If any of the exclusive bits are set, this will fail with -EEXIST if some
728  * part of the range already has the desired bits set.  The start of the
729  * existing range is returned in failed_start in this case.
730  *
731  * [start, end] is inclusive This takes the tree lock.
732  */
733
734 static int __must_check
735 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
736                  int bits, int exclusive_bits, u64 *failed_start,
737                  struct extent_state **cached_state, gfp_t mask)
738 {
739         struct extent_state *state;
740         struct extent_state *prealloc = NULL;
741         struct rb_node *node;
742         int err = 0;
743         u64 last_start;
744         u64 last_end;
745
746         bits |= EXTENT_FIRST_DELALLOC;
747 again:
748         if (!prealloc && (mask & __GFP_WAIT)) {
749                 prealloc = alloc_extent_state(mask);
750                 BUG_ON(!prealloc);
751         }
752
753         spin_lock(&tree->lock);
754         if (cached_state && *cached_state) {
755                 state = *cached_state;
756                 if (state->start <= start && state->end > start &&
757                     state->tree) {
758                         node = &state->rb_node;
759                         goto hit_next;
760                 }
761         }
762         /*
763          * this search will find all the extents that end after
764          * our range starts.
765          */
766         node = tree_search(tree, start);
767         if (!node) {
768                 prealloc = alloc_extent_state_atomic(prealloc);
769                 BUG_ON(!prealloc);
770                 err = insert_state(tree, prealloc, start, end, &bits);
771                 if (err)
772                         extent_io_tree_panic(tree, err);
773
774                 prealloc = NULL;
775                 goto out;
776         }
777         state = rb_entry(node, struct extent_state, rb_node);
778 hit_next:
779         last_start = state->start;
780         last_end = state->end;
781
782         /*
783          * | ---- desired range ---- |
784          * | state |
785          *
786          * Just lock what we found and keep going
787          */
788         if (state->start == start && state->end <= end) {
789                 if (state->state & exclusive_bits) {
790                         *failed_start = state->start;
791                         err = -EEXIST;
792                         goto out;
793                 }
794
795                 set_state_bits(tree, state, &bits);
796                 cache_state(state, cached_state);
797                 merge_state(tree, state);
798                 if (last_end == (u64)-1)
799                         goto out;
800                 start = last_end + 1;
801                 state = next_state(state);
802                 if (start < end && state && state->start == start &&
803                     !need_resched())
804                         goto hit_next;
805                 goto search_again;
806         }
807
808         /*
809          *     | ---- desired range ---- |
810          * | state |
811          *   or
812          * | ------------- state -------------- |
813          *
814          * We need to split the extent we found, and may flip bits on
815          * second half.
816          *
817          * If the extent we found extends past our
818          * range, we just split and search again.  It'll get split
819          * again the next time though.
820          *
821          * If the extent we found is inside our range, we set the
822          * desired bit on it.
823          */
824         if (state->start < start) {
825                 if (state->state & exclusive_bits) {
826                         *failed_start = start;
827                         err = -EEXIST;
828                         goto out;
829                 }
830
831                 prealloc = alloc_extent_state_atomic(prealloc);
832                 BUG_ON(!prealloc);
833                 err = split_state(tree, state, prealloc, start);
834                 if (err)
835                         extent_io_tree_panic(tree, err);
836
837                 prealloc = NULL;
838                 if (err)
839                         goto out;
840                 if (state->end <= end) {
841                         set_state_bits(tree, state, &bits);
842                         cache_state(state, cached_state);
843                         merge_state(tree, state);
844                         if (last_end == (u64)-1)
845                                 goto out;
846                         start = last_end + 1;
847                         state = next_state(state);
848                         if (start < end && state && state->start == start &&
849                             !need_resched())
850                                 goto hit_next;
851                 }
852                 goto search_again;
853         }
854         /*
855          * | ---- desired range ---- |
856          *     | state | or               | state |
857          *
858          * There's a hole, we need to insert something in it and
859          * ignore the extent we found.
860          */
861         if (state->start > start) {
862                 u64 this_end;
863                 if (end < last_start)
864                         this_end = end;
865                 else
866                         this_end = last_start - 1;
867
868                 prealloc = alloc_extent_state_atomic(prealloc);
869                 BUG_ON(!prealloc);
870
871                 /*
872                  * Avoid to free 'prealloc' if it can be merged with
873                  * the later extent.
874                  */
875                 err = insert_state(tree, prealloc, start, this_end,
876                                    &bits);
877                 if (err)
878                         extent_io_tree_panic(tree, err);
879
880                 cache_state(prealloc, cached_state);
881                 prealloc = NULL;
882                 start = this_end + 1;
883                 goto search_again;
884         }
885         /*
886          * | ---- desired range ---- |
887          *                        | state |
888          * We need to split the extent, and set the bit
889          * on the first half
890          */
891         if (state->start <= end && state->end > end) {
892                 if (state->state & exclusive_bits) {
893                         *failed_start = start;
894                         err = -EEXIST;
895                         goto out;
896                 }
897
898                 prealloc = alloc_extent_state_atomic(prealloc);
899                 BUG_ON(!prealloc);
900                 err = split_state(tree, state, prealloc, end + 1);
901                 if (err)
902                         extent_io_tree_panic(tree, err);
903
904                 set_state_bits(tree, prealloc, &bits);
905                 cache_state(prealloc, cached_state);
906                 merge_state(tree, prealloc);
907                 prealloc = NULL;
908                 goto out;
909         }
910
911         goto search_again;
912
913 out:
914         spin_unlock(&tree->lock);
915         if (prealloc)
916                 free_extent_state(prealloc);
917
918         return err;
919
920 search_again:
921         if (start > end)
922                 goto out;
923         spin_unlock(&tree->lock);
924         if (mask & __GFP_WAIT)
925                 cond_resched();
926         goto again;
927 }
928
929 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
930                    u64 *failed_start, struct extent_state **cached_state,
931                    gfp_t mask)
932 {
933         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
934                                 cached_state, mask);
935 }
936
937
938 /**
939  * convert_extent_bit - convert all bits in a given range from one bit to
940  *                      another
941  * @tree:       the io tree to search
942  * @start:      the start offset in bytes
943  * @end:        the end offset in bytes (inclusive)
944  * @bits:       the bits to set in this range
945  * @clear_bits: the bits to clear in this range
946  * @cached_state:       state that we're going to cache
947  * @mask:       the allocation mask
948  *
949  * This will go through and set bits for the given range.  If any states exist
950  * already in this range they are set with the given bit and cleared of the
951  * clear_bits.  This is only meant to be used by things that are mergeable, ie
952  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
953  * boundary bits like LOCK.
954  */
955 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
956                        int bits, int clear_bits,
957                        struct extent_state **cached_state, gfp_t mask)
958 {
959         struct extent_state *state;
960         struct extent_state *prealloc = NULL;
961         struct rb_node *node;
962         int err = 0;
963         u64 last_start;
964         u64 last_end;
965
966 again:
967         if (!prealloc && (mask & __GFP_WAIT)) {
968                 prealloc = alloc_extent_state(mask);
969                 if (!prealloc)
970                         return -ENOMEM;
971         }
972
973         spin_lock(&tree->lock);
974         if (cached_state && *cached_state) {
975                 state = *cached_state;
976                 if (state->start <= start && state->end > start &&
977                     state->tree) {
978                         node = &state->rb_node;
979                         goto hit_next;
980                 }
981         }
982
983         /*
984          * this search will find all the extents that end after
985          * our range starts.
986          */
987         node = tree_search(tree, start);
988         if (!node) {
989                 prealloc = alloc_extent_state_atomic(prealloc);
990                 if (!prealloc) {
991                         err = -ENOMEM;
992                         goto out;
993                 }
994                 err = insert_state(tree, prealloc, start, end, &bits);
995                 prealloc = NULL;
996                 if (err)
997                         extent_io_tree_panic(tree, err);
998                 goto out;
999         }
1000         state = rb_entry(node, struct extent_state, rb_node);
1001 hit_next:
1002         last_start = state->start;
1003         last_end = state->end;
1004
1005         /*
1006          * | ---- desired range ---- |
1007          * | state |
1008          *
1009          * Just lock what we found and keep going
1010          */
1011         if (state->start == start && state->end <= end) {
1012                 set_state_bits(tree, state, &bits);
1013                 cache_state(state, cached_state);
1014                 state = clear_state_bit(tree, state, &clear_bits, 0);
1015                 if (last_end == (u64)-1)
1016                         goto out;
1017                 start = last_end + 1;
1018                 if (start < end && state && state->start == start &&
1019                     !need_resched())
1020                         goto hit_next;
1021                 goto search_again;
1022         }
1023
1024         /*
1025          *     | ---- desired range ---- |
1026          * | state |
1027          *   or
1028          * | ------------- state -------------- |
1029          *
1030          * We need to split the extent we found, and may flip bits on
1031          * second half.
1032          *
1033          * If the extent we found extends past our
1034          * range, we just split and search again.  It'll get split
1035          * again the next time though.
1036          *
1037          * If the extent we found is inside our range, we set the
1038          * desired bit on it.
1039          */
1040         if (state->start < start) {
1041                 prealloc = alloc_extent_state_atomic(prealloc);
1042                 if (!prealloc) {
1043                         err = -ENOMEM;
1044                         goto out;
1045                 }
1046                 err = split_state(tree, state, prealloc, start);
1047                 if (err)
1048                         extent_io_tree_panic(tree, err);
1049                 prealloc = NULL;
1050                 if (err)
1051                         goto out;
1052                 if (state->end <= end) {
1053                         set_state_bits(tree, state, &bits);
1054                         cache_state(state, cached_state);
1055                         state = clear_state_bit(tree, state, &clear_bits, 0);
1056                         if (last_end == (u64)-1)
1057                                 goto out;
1058                         start = last_end + 1;
1059                         if (start < end && state && state->start == start &&
1060                             !need_resched())
1061                                 goto hit_next;
1062                 }
1063                 goto search_again;
1064         }
1065         /*
1066          * | ---- desired range ---- |
1067          *     | state | or               | state |
1068          *
1069          * There's a hole, we need to insert something in it and
1070          * ignore the extent we found.
1071          */
1072         if (state->start > start) {
1073                 u64 this_end;
1074                 if (end < last_start)
1075                         this_end = end;
1076                 else
1077                         this_end = last_start - 1;
1078
1079                 prealloc = alloc_extent_state_atomic(prealloc);
1080                 if (!prealloc) {
1081                         err = -ENOMEM;
1082                         goto out;
1083                 }
1084
1085                 /*
1086                  * Avoid to free 'prealloc' if it can be merged with
1087                  * the later extent.
1088                  */
1089                 err = insert_state(tree, prealloc, start, this_end,
1090                                    &bits);
1091                 if (err)
1092                         extent_io_tree_panic(tree, err);
1093                 cache_state(prealloc, cached_state);
1094                 prealloc = NULL;
1095                 start = this_end + 1;
1096                 goto search_again;
1097         }
1098         /*
1099          * | ---- desired range ---- |
1100          *                        | state |
1101          * We need to split the extent, and set the bit
1102          * on the first half
1103          */
1104         if (state->start <= end && state->end > end) {
1105                 prealloc = alloc_extent_state_atomic(prealloc);
1106                 if (!prealloc) {
1107                         err = -ENOMEM;
1108                         goto out;
1109                 }
1110
1111                 err = split_state(tree, state, prealloc, end + 1);
1112                 if (err)
1113                         extent_io_tree_panic(tree, err);
1114
1115                 set_state_bits(tree, prealloc, &bits);
1116                 cache_state(prealloc, cached_state);
1117                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1118                 prealloc = NULL;
1119                 goto out;
1120         }
1121
1122         goto search_again;
1123
1124 out:
1125         spin_unlock(&tree->lock);
1126         if (prealloc)
1127                 free_extent_state(prealloc);
1128
1129         return err;
1130
1131 search_again:
1132         if (start > end)
1133                 goto out;
1134         spin_unlock(&tree->lock);
1135         if (mask & __GFP_WAIT)
1136                 cond_resched();
1137         goto again;
1138 }
1139
1140 /* wrappers around set/clear extent bit */
1141 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1142                      gfp_t mask)
1143 {
1144         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1145                               NULL, mask);
1146 }
1147
1148 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1149                     int bits, gfp_t mask)
1150 {
1151         return set_extent_bit(tree, start, end, bits, NULL,
1152                               NULL, mask);
1153 }
1154
1155 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1156                       int bits, gfp_t mask)
1157 {
1158         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1159 }
1160
1161 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1162                         struct extent_state **cached_state, gfp_t mask)
1163 {
1164         return set_extent_bit(tree, start, end,
1165                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1166                               NULL, cached_state, mask);
1167 }
1168
1169 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1170                       struct extent_state **cached_state, gfp_t mask)
1171 {
1172         return set_extent_bit(tree, start, end,
1173                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1174                               NULL, cached_state, mask);
1175 }
1176
1177 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1178                        gfp_t mask)
1179 {
1180         return clear_extent_bit(tree, start, end,
1181                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1182                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1183 }
1184
1185 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1186                      gfp_t mask)
1187 {
1188         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1189                               NULL, mask);
1190 }
1191
1192 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1193                         struct extent_state **cached_state, gfp_t mask)
1194 {
1195         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1196                               cached_state, mask);
1197 }
1198
1199 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1200                           struct extent_state **cached_state, gfp_t mask)
1201 {
1202         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1203                                 cached_state, mask);
1204 }
1205
1206 /*
1207  * either insert or lock state struct between start and end use mask to tell
1208  * us if waiting is desired.
1209  */
1210 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1211                      int bits, struct extent_state **cached_state)
1212 {
1213         int err;
1214         u64 failed_start;
1215         while (1) {
1216                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1217                                        EXTENT_LOCKED, &failed_start,
1218                                        cached_state, GFP_NOFS);
1219                 if (err == -EEXIST) {
1220                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1221                         start = failed_start;
1222                 } else
1223                         break;
1224                 WARN_ON(start > end);
1225         }
1226         return err;
1227 }
1228
1229 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1230 {
1231         return lock_extent_bits(tree, start, end, 0, NULL);
1232 }
1233
1234 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1235 {
1236         int err;
1237         u64 failed_start;
1238
1239         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1240                                &failed_start, NULL, GFP_NOFS);
1241         if (err == -EEXIST) {
1242                 if (failed_start > start)
1243                         clear_extent_bit(tree, start, failed_start - 1,
1244                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1245                 return 0;
1246         }
1247         return 1;
1248 }
1249
1250 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1251                          struct extent_state **cached, gfp_t mask)
1252 {
1253         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1254                                 mask);
1255 }
1256
1257 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1258 {
1259         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1260                                 GFP_NOFS);
1261 }
1262
1263 /*
1264  * helper function to set both pages and extents in the tree writeback
1265  */
1266 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1267 {
1268         unsigned long index = start >> PAGE_CACHE_SHIFT;
1269         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1270         struct page *page;
1271
1272         while (index <= end_index) {
1273                 page = find_get_page(tree->mapping, index);
1274                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1275                 set_page_writeback(page);
1276                 page_cache_release(page);
1277                 index++;
1278         }
1279         return 0;
1280 }
1281
1282 /* find the first state struct with 'bits' set after 'start', and
1283  * return it.  tree->lock must be held.  NULL will returned if
1284  * nothing was found after 'start'
1285  */
1286 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1287                                                  u64 start, int bits)
1288 {
1289         struct rb_node *node;
1290         struct extent_state *state;
1291
1292         /*
1293          * this search will find all the extents that end after
1294          * our range starts.
1295          */
1296         node = tree_search(tree, start);
1297         if (!node)
1298                 goto out;
1299
1300         while (1) {
1301                 state = rb_entry(node, struct extent_state, rb_node);
1302                 if (state->end >= start && (state->state & bits))
1303                         return state;
1304
1305                 node = rb_next(node);
1306                 if (!node)
1307                         break;
1308         }
1309 out:
1310         return NULL;
1311 }
1312
1313 /*
1314  * find the first offset in the io tree with 'bits' set. zero is
1315  * returned if we find something, and *start_ret and *end_ret are
1316  * set to reflect the state struct that was found.
1317  *
1318  * If nothing was found, 1 is returned. If found something, return 0.
1319  */
1320 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1321                           u64 *start_ret, u64 *end_ret, int bits,
1322                           struct extent_state **cached_state)
1323 {
1324         struct extent_state *state;
1325         struct rb_node *n;
1326         int ret = 1;
1327
1328         spin_lock(&tree->lock);
1329         if (cached_state && *cached_state) {
1330                 state = *cached_state;
1331                 if (state->end == start - 1 && state->tree) {
1332                         n = rb_next(&state->rb_node);
1333                         while (n) {
1334                                 state = rb_entry(n, struct extent_state,
1335                                                  rb_node);
1336                                 if (state->state & bits)
1337                                         goto got_it;
1338                                 n = rb_next(n);
1339                         }
1340                         free_extent_state(*cached_state);
1341                         *cached_state = NULL;
1342                         goto out;
1343                 }
1344                 free_extent_state(*cached_state);
1345                 *cached_state = NULL;
1346         }
1347
1348         state = find_first_extent_bit_state(tree, start, bits);
1349 got_it:
1350         if (state) {
1351                 cache_state(state, cached_state);
1352                 *start_ret = state->start;
1353                 *end_ret = state->end;
1354                 ret = 0;
1355         }
1356 out:
1357         spin_unlock(&tree->lock);
1358         return ret;
1359 }
1360
1361 /*
1362  * find a contiguous range of bytes in the file marked as delalloc, not
1363  * more than 'max_bytes'.  start and end are used to return the range,
1364  *
1365  * 1 is returned if we find something, 0 if nothing was in the tree
1366  */
1367 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1368                                         u64 *start, u64 *end, u64 max_bytes,
1369                                         struct extent_state **cached_state)
1370 {
1371         struct rb_node *node;
1372         struct extent_state *state;
1373         u64 cur_start = *start;
1374         u64 found = 0;
1375         u64 total_bytes = 0;
1376
1377         spin_lock(&tree->lock);
1378
1379         /*
1380          * this search will find all the extents that end after
1381          * our range starts.
1382          */
1383         node = tree_search(tree, cur_start);
1384         if (!node) {
1385                 if (!found)
1386                         *end = (u64)-1;
1387                 goto out;
1388         }
1389
1390         while (1) {
1391                 state = rb_entry(node, struct extent_state, rb_node);
1392                 if (found && (state->start != cur_start ||
1393                               (state->state & EXTENT_BOUNDARY))) {
1394                         goto out;
1395                 }
1396                 if (!(state->state & EXTENT_DELALLOC)) {
1397                         if (!found)
1398                                 *end = state->end;
1399                         goto out;
1400                 }
1401                 if (!found) {
1402                         *start = state->start;
1403                         *cached_state = state;
1404                         atomic_inc(&state->refs);
1405                 }
1406                 found++;
1407                 *end = state->end;
1408                 cur_start = state->end + 1;
1409                 node = rb_next(node);
1410                 if (!node)
1411                         break;
1412                 total_bytes += state->end - state->start + 1;
1413                 if (total_bytes >= max_bytes)
1414                         break;
1415         }
1416 out:
1417         spin_unlock(&tree->lock);
1418         return found;
1419 }
1420
1421 static noinline void __unlock_for_delalloc(struct inode *inode,
1422                                            struct page *locked_page,
1423                                            u64 start, u64 end)
1424 {
1425         int ret;
1426         struct page *pages[16];
1427         unsigned long index = start >> PAGE_CACHE_SHIFT;
1428         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1429         unsigned long nr_pages = end_index - index + 1;
1430         int i;
1431
1432         if (index == locked_page->index && end_index == index)
1433                 return;
1434
1435         while (nr_pages > 0) {
1436                 ret = find_get_pages_contig(inode->i_mapping, index,
1437                                      min_t(unsigned long, nr_pages,
1438                                      ARRAY_SIZE(pages)), pages);
1439                 for (i = 0; i < ret; i++) {
1440                         if (pages[i] != locked_page)
1441                                 unlock_page(pages[i]);
1442                         page_cache_release(pages[i]);
1443                 }
1444                 nr_pages -= ret;
1445                 index += ret;
1446                 cond_resched();
1447         }
1448 }
1449
1450 static noinline int lock_delalloc_pages(struct inode *inode,
1451                                         struct page *locked_page,
1452                                         u64 delalloc_start,
1453                                         u64 delalloc_end)
1454 {
1455         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1456         unsigned long start_index = index;
1457         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1458         unsigned long pages_locked = 0;
1459         struct page *pages[16];
1460         unsigned long nrpages;
1461         int ret;
1462         int i;
1463
1464         /* the caller is responsible for locking the start index */
1465         if (index == locked_page->index && index == end_index)
1466                 return 0;
1467
1468         /* skip the page at the start index */
1469         nrpages = end_index - index + 1;
1470         while (nrpages > 0) {
1471                 ret = find_get_pages_contig(inode->i_mapping, index,
1472                                      min_t(unsigned long,
1473                                      nrpages, ARRAY_SIZE(pages)), pages);
1474                 if (ret == 0) {
1475                         ret = -EAGAIN;
1476                         goto done;
1477                 }
1478                 /* now we have an array of pages, lock them all */
1479                 for (i = 0; i < ret; i++) {
1480                         /*
1481                          * the caller is taking responsibility for
1482                          * locked_page
1483                          */
1484                         if (pages[i] != locked_page) {
1485                                 lock_page(pages[i]);
1486                                 if (!PageDirty(pages[i]) ||
1487                                     pages[i]->mapping != inode->i_mapping) {
1488                                         ret = -EAGAIN;
1489                                         unlock_page(pages[i]);
1490                                         page_cache_release(pages[i]);
1491                                         goto done;
1492                                 }
1493                         }
1494                         page_cache_release(pages[i]);
1495                         pages_locked++;
1496                 }
1497                 nrpages -= ret;
1498                 index += ret;
1499                 cond_resched();
1500         }
1501         ret = 0;
1502 done:
1503         if (ret && pages_locked) {
1504                 __unlock_for_delalloc(inode, locked_page,
1505                               delalloc_start,
1506                               ((u64)(start_index + pages_locked - 1)) <<
1507                               PAGE_CACHE_SHIFT);
1508         }
1509         return ret;
1510 }
1511
1512 /*
1513  * find a contiguous range of bytes in the file marked as delalloc, not
1514  * more than 'max_bytes'.  start and end are used to return the range,
1515  *
1516  * 1 is returned if we find something, 0 if nothing was in the tree
1517  */
1518 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1519                                              struct extent_io_tree *tree,
1520                                              struct page *locked_page,
1521                                              u64 *start, u64 *end,
1522                                              u64 max_bytes)
1523 {
1524         u64 delalloc_start;
1525         u64 delalloc_end;
1526         u64 found;
1527         struct extent_state *cached_state = NULL;
1528         int ret;
1529         int loops = 0;
1530
1531 again:
1532         /* step one, find a bunch of delalloc bytes starting at start */
1533         delalloc_start = *start;
1534         delalloc_end = 0;
1535         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1536                                     max_bytes, &cached_state);
1537         if (!found || delalloc_end <= *start) {
1538                 *start = delalloc_start;
1539                 *end = delalloc_end;
1540                 free_extent_state(cached_state);
1541                 return found;
1542         }
1543
1544         /*
1545          * start comes from the offset of locked_page.  We have to lock
1546          * pages in order, so we can't process delalloc bytes before
1547          * locked_page
1548          */
1549         if (delalloc_start < *start)
1550                 delalloc_start = *start;
1551
1552         /*
1553          * make sure to limit the number of pages we try to lock down
1554          * if we're looping.
1555          */
1556         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1557                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1558
1559         /* step two, lock all the pages after the page that has start */
1560         ret = lock_delalloc_pages(inode, locked_page,
1561                                   delalloc_start, delalloc_end);
1562         if (ret == -EAGAIN) {
1563                 /* some of the pages are gone, lets avoid looping by
1564                  * shortening the size of the delalloc range we're searching
1565                  */
1566                 free_extent_state(cached_state);
1567                 if (!loops) {
1568                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1569                         max_bytes = PAGE_CACHE_SIZE - offset;
1570                         loops = 1;
1571                         goto again;
1572                 } else {
1573                         found = 0;
1574                         goto out_failed;
1575                 }
1576         }
1577         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1578
1579         /* step three, lock the state bits for the whole range */
1580         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1581
1582         /* then test to make sure it is all still delalloc */
1583         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1584                              EXTENT_DELALLOC, 1, cached_state);
1585         if (!ret) {
1586                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1587                                      &cached_state, GFP_NOFS);
1588                 __unlock_for_delalloc(inode, locked_page,
1589                               delalloc_start, delalloc_end);
1590                 cond_resched();
1591                 goto again;
1592         }
1593         free_extent_state(cached_state);
1594         *start = delalloc_start;
1595         *end = delalloc_end;
1596 out_failed:
1597         return found;
1598 }
1599
1600 int extent_clear_unlock_delalloc(struct inode *inode,
1601                                 struct extent_io_tree *tree,
1602                                 u64 start, u64 end, struct page *locked_page,
1603                                 unsigned long op)
1604 {
1605         int ret;
1606         struct page *pages[16];
1607         unsigned long index = start >> PAGE_CACHE_SHIFT;
1608         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1609         unsigned long nr_pages = end_index - index + 1;
1610         int i;
1611         int clear_bits = 0;
1612
1613         if (op & EXTENT_CLEAR_UNLOCK)
1614                 clear_bits |= EXTENT_LOCKED;
1615         if (op & EXTENT_CLEAR_DIRTY)
1616                 clear_bits |= EXTENT_DIRTY;
1617
1618         if (op & EXTENT_CLEAR_DELALLOC)
1619                 clear_bits |= EXTENT_DELALLOC;
1620
1621         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1622         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1623                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1624                     EXTENT_SET_PRIVATE2)))
1625                 return 0;
1626
1627         while (nr_pages > 0) {
1628                 ret = find_get_pages_contig(inode->i_mapping, index,
1629                                      min_t(unsigned long,
1630                                      nr_pages, ARRAY_SIZE(pages)), pages);
1631                 for (i = 0; i < ret; i++) {
1632
1633                         if (op & EXTENT_SET_PRIVATE2)
1634                                 SetPagePrivate2(pages[i]);
1635
1636                         if (pages[i] == locked_page) {
1637                                 page_cache_release(pages[i]);
1638                                 continue;
1639                         }
1640                         if (op & EXTENT_CLEAR_DIRTY)
1641                                 clear_page_dirty_for_io(pages[i]);
1642                         if (op & EXTENT_SET_WRITEBACK)
1643                                 set_page_writeback(pages[i]);
1644                         if (op & EXTENT_END_WRITEBACK)
1645                                 end_page_writeback(pages[i]);
1646                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1647                                 unlock_page(pages[i]);
1648                         page_cache_release(pages[i]);
1649                 }
1650                 nr_pages -= ret;
1651                 index += ret;
1652                 cond_resched();
1653         }
1654         return 0;
1655 }
1656
1657 /*
1658  * count the number of bytes in the tree that have a given bit(s)
1659  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1660  * cached.  The total number found is returned.
1661  */
1662 u64 count_range_bits(struct extent_io_tree *tree,
1663                      u64 *start, u64 search_end, u64 max_bytes,
1664                      unsigned long bits, int contig)
1665 {
1666         struct rb_node *node;
1667         struct extent_state *state;
1668         u64 cur_start = *start;
1669         u64 total_bytes = 0;
1670         u64 last = 0;
1671         int found = 0;
1672
1673         if (search_end <= cur_start) {
1674                 WARN_ON(1);
1675                 return 0;
1676         }
1677
1678         spin_lock(&tree->lock);
1679         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1680                 total_bytes = tree->dirty_bytes;
1681                 goto out;
1682         }
1683         /*
1684          * this search will find all the extents that end after
1685          * our range starts.
1686          */
1687         node = tree_search(tree, cur_start);
1688         if (!node)
1689                 goto out;
1690
1691         while (1) {
1692                 state = rb_entry(node, struct extent_state, rb_node);
1693                 if (state->start > search_end)
1694                         break;
1695                 if (contig && found && state->start > last + 1)
1696                         break;
1697                 if (state->end >= cur_start && (state->state & bits) == bits) {
1698                         total_bytes += min(search_end, state->end) + 1 -
1699                                        max(cur_start, state->start);
1700                         if (total_bytes >= max_bytes)
1701                                 break;
1702                         if (!found) {
1703                                 *start = max(cur_start, state->start);
1704                                 found = 1;
1705                         }
1706                         last = state->end;
1707                 } else if (contig && found) {
1708                         break;
1709                 }
1710                 node = rb_next(node);
1711                 if (!node)
1712                         break;
1713         }
1714 out:
1715         spin_unlock(&tree->lock);
1716         return total_bytes;
1717 }
1718
1719 /*
1720  * set the private field for a given byte offset in the tree.  If there isn't
1721  * an extent_state there already, this does nothing.
1722  */
1723 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1724 {
1725         struct rb_node *node;
1726         struct extent_state *state;
1727         int ret = 0;
1728
1729         spin_lock(&tree->lock);
1730         /*
1731          * this search will find all the extents that end after
1732          * our range starts.
1733          */
1734         node = tree_search(tree, start);
1735         if (!node) {
1736                 ret = -ENOENT;
1737                 goto out;
1738         }
1739         state = rb_entry(node, struct extent_state, rb_node);
1740         if (state->start != start) {
1741                 ret = -ENOENT;
1742                 goto out;
1743         }
1744         state->private = private;
1745 out:
1746         spin_unlock(&tree->lock);
1747         return ret;
1748 }
1749
1750 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1751 {
1752         struct rb_node *node;
1753         struct extent_state *state;
1754         int ret = 0;
1755
1756         spin_lock(&tree->lock);
1757         /*
1758          * this search will find all the extents that end after
1759          * our range starts.
1760          */
1761         node = tree_search(tree, start);
1762         if (!node) {
1763                 ret = -ENOENT;
1764                 goto out;
1765         }
1766         state = rb_entry(node, struct extent_state, rb_node);
1767         if (state->start != start) {
1768                 ret = -ENOENT;
1769                 goto out;
1770         }
1771         *private = state->private;
1772 out:
1773         spin_unlock(&tree->lock);
1774         return ret;
1775 }
1776
1777 /*
1778  * searches a range in the state tree for a given mask.
1779  * If 'filled' == 1, this returns 1 only if every extent in the tree
1780  * has the bits set.  Otherwise, 1 is returned if any bit in the
1781  * range is found set.
1782  */
1783 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1784                    int bits, int filled, struct extent_state *cached)
1785 {
1786         struct extent_state *state = NULL;
1787         struct rb_node *node;
1788         int bitset = 0;
1789
1790         spin_lock(&tree->lock);
1791         if (cached && cached->tree && cached->start <= start &&
1792             cached->end > start)
1793                 node = &cached->rb_node;
1794         else
1795                 node = tree_search(tree, start);
1796         while (node && start <= end) {
1797                 state = rb_entry(node, struct extent_state, rb_node);
1798
1799                 if (filled && state->start > start) {
1800                         bitset = 0;
1801                         break;
1802                 }
1803
1804                 if (state->start > end)
1805                         break;
1806
1807                 if (state->state & bits) {
1808                         bitset = 1;
1809                         if (!filled)
1810                                 break;
1811                 } else if (filled) {
1812                         bitset = 0;
1813                         break;
1814                 }
1815
1816                 if (state->end == (u64)-1)
1817                         break;
1818
1819                 start = state->end + 1;
1820                 if (start > end)
1821                         break;
1822                 node = rb_next(node);
1823                 if (!node) {
1824                         if (filled)
1825                                 bitset = 0;
1826                         break;
1827                 }
1828         }
1829         spin_unlock(&tree->lock);
1830         return bitset;
1831 }
1832
1833 /*
1834  * helper function to set a given page up to date if all the
1835  * extents in the tree for that page are up to date
1836  */
1837 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1838 {
1839         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1840         u64 end = start + PAGE_CACHE_SIZE - 1;
1841         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1842                 SetPageUptodate(page);
1843 }
1844
1845 /*
1846  * helper function to unlock a page if all the extents in the tree
1847  * for that page are unlocked
1848  */
1849 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1850 {
1851         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1852         u64 end = start + PAGE_CACHE_SIZE - 1;
1853         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1854                 unlock_page(page);
1855 }
1856
1857 /*
1858  * helper function to end page writeback if all the extents
1859  * in the tree for that page are done with writeback
1860  */
1861 static void check_page_writeback(struct extent_io_tree *tree,
1862                                  struct page *page)
1863 {
1864         end_page_writeback(page);
1865 }
1866
1867 /*
1868  * When IO fails, either with EIO or csum verification fails, we
1869  * try other mirrors that might have a good copy of the data.  This
1870  * io_failure_record is used to record state as we go through all the
1871  * mirrors.  If another mirror has good data, the page is set up to date
1872  * and things continue.  If a good mirror can't be found, the original
1873  * bio end_io callback is called to indicate things have failed.
1874  */
1875 struct io_failure_record {
1876         struct page *page;
1877         u64 start;
1878         u64 len;
1879         u64 logical;
1880         unsigned long bio_flags;
1881         int this_mirror;
1882         int failed_mirror;
1883         int in_validation;
1884 };
1885
1886 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1887                                 int did_repair)
1888 {
1889         int ret;
1890         int err = 0;
1891         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1892
1893         set_state_private(failure_tree, rec->start, 0);
1894         ret = clear_extent_bits(failure_tree, rec->start,
1895                                 rec->start + rec->len - 1,
1896                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1897         if (ret)
1898                 err = ret;
1899
1900         if (did_repair) {
1901                 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1902                                         rec->start + rec->len - 1,
1903                                         EXTENT_DAMAGED, GFP_NOFS);
1904                 if (ret && !err)
1905                         err = ret;
1906         }
1907
1908         kfree(rec);
1909         return err;
1910 }
1911
1912 static void repair_io_failure_callback(struct bio *bio, int err)
1913 {
1914         complete(bio->bi_private);
1915 }
1916
1917 /*
1918  * this bypasses the standard btrfs submit functions deliberately, as
1919  * the standard behavior is to write all copies in a raid setup. here we only
1920  * want to write the one bad copy. so we do the mapping for ourselves and issue
1921  * submit_bio directly.
1922  * to avoid any synchonization issues, wait for the data after writing, which
1923  * actually prevents the read that triggered the error from finishing.
1924  * currently, there can be no more than two copies of every data bit. thus,
1925  * exactly one rewrite is required.
1926  */
1927 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1928                         u64 length, u64 logical, struct page *page,
1929                         int mirror_num)
1930 {
1931         struct bio *bio;
1932         struct btrfs_device *dev;
1933         DECLARE_COMPLETION_ONSTACK(compl);
1934         u64 map_length = 0;
1935         u64 sector;
1936         struct btrfs_bio *bbio = NULL;
1937         int ret;
1938
1939         BUG_ON(!mirror_num);
1940
1941         bio = bio_alloc(GFP_NOFS, 1);
1942         if (!bio)
1943                 return -EIO;
1944         bio->bi_private = &compl;
1945         bio->bi_end_io = repair_io_failure_callback;
1946         bio->bi_size = 0;
1947         map_length = length;
1948
1949         ret = btrfs_map_block(map_tree, WRITE, logical,
1950                               &map_length, &bbio, mirror_num);
1951         if (ret) {
1952                 bio_put(bio);
1953                 return -EIO;
1954         }
1955         BUG_ON(mirror_num != bbio->mirror_num);
1956         sector = bbio->stripes[mirror_num-1].physical >> 9;
1957         bio->bi_sector = sector;
1958         dev = bbio->stripes[mirror_num-1].dev;
1959         kfree(bbio);
1960         if (!dev || !dev->bdev || !dev->writeable) {
1961                 bio_put(bio);
1962                 return -EIO;
1963         }
1964         bio->bi_bdev = dev->bdev;
1965         bio_add_page(bio, page, length, start-page_offset(page));
1966         btrfsic_submit_bio(WRITE_SYNC, bio);
1967         wait_for_completion(&compl);
1968
1969         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1970                 /* try to remap that extent elsewhere? */
1971                 bio_put(bio);
1972                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1973                 return -EIO;
1974         }
1975
1976         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1977                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1978                       start, rcu_str_deref(dev->name), sector);
1979
1980         bio_put(bio);
1981         return 0;
1982 }
1983
1984 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1985                          int mirror_num)
1986 {
1987         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1988         u64 start = eb->start;
1989         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1990         int ret = 0;
1991
1992         for (i = 0; i < num_pages; i++) {
1993                 struct page *p = extent_buffer_page(eb, i);
1994                 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1995                                         start, p, mirror_num);
1996                 if (ret)
1997                         break;
1998                 start += PAGE_CACHE_SIZE;
1999         }
2000
2001         return ret;
2002 }
2003
2004 /*
2005  * each time an IO finishes, we do a fast check in the IO failure tree
2006  * to see if we need to process or clean up an io_failure_record
2007  */
2008 static int clean_io_failure(u64 start, struct page *page)
2009 {
2010         u64 private;
2011         u64 private_failure;
2012         struct io_failure_record *failrec;
2013         struct btrfs_mapping_tree *map_tree;
2014         struct extent_state *state;
2015         int num_copies;
2016         int did_repair = 0;
2017         int ret;
2018         struct inode *inode = page->mapping->host;
2019
2020         private = 0;
2021         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2022                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2023         if (!ret)
2024                 return 0;
2025
2026         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2027                                 &private_failure);
2028         if (ret)
2029                 return 0;
2030
2031         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2032         BUG_ON(!failrec->this_mirror);
2033
2034         if (failrec->in_validation) {
2035                 /* there was no real error, just free the record */
2036                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2037                          failrec->start);
2038                 did_repair = 1;
2039                 goto out;
2040         }
2041
2042         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2043         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2044                                             failrec->start,
2045                                             EXTENT_LOCKED);
2046         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2047
2048         if (state && state->start == failrec->start) {
2049                 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2050                 num_copies = btrfs_num_copies(map_tree, failrec->logical,
2051                                                 failrec->len);
2052                 if (num_copies > 1)  {
2053                         ret = repair_io_failure(map_tree, start, failrec->len,
2054                                                 failrec->logical, page,
2055                                                 failrec->failed_mirror);
2056                         did_repair = !ret;
2057                 }
2058         }
2059
2060 out:
2061         if (!ret)
2062                 ret = free_io_failure(inode, failrec, did_repair);
2063
2064         return ret;
2065 }
2066
2067 /*
2068  * this is a generic handler for readpage errors (default
2069  * readpage_io_failed_hook). if other copies exist, read those and write back
2070  * good data to the failed position. does not investigate in remapping the
2071  * failed extent elsewhere, hoping the device will be smart enough to do this as
2072  * needed
2073  */
2074
2075 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2076                                 u64 start, u64 end, int failed_mirror,
2077                                 struct extent_state *state)
2078 {
2079         struct io_failure_record *failrec = NULL;
2080         u64 private;
2081         struct extent_map *em;
2082         struct inode *inode = page->mapping->host;
2083         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2084         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2085         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2086         struct bio *bio;
2087         int num_copies;
2088         int ret;
2089         int read_mode;
2090         u64 logical;
2091
2092         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2093
2094         ret = get_state_private(failure_tree, start, &private);
2095         if (ret) {
2096                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2097                 if (!failrec)
2098                         return -ENOMEM;
2099                 failrec->start = start;
2100                 failrec->len = end - start + 1;
2101                 failrec->this_mirror = 0;
2102                 failrec->bio_flags = 0;
2103                 failrec->in_validation = 0;
2104
2105                 read_lock(&em_tree->lock);
2106                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2107                 if (!em) {
2108                         read_unlock(&em_tree->lock);
2109                         kfree(failrec);
2110                         return -EIO;
2111                 }
2112
2113                 if (em->start > start || em->start + em->len < start) {
2114                         free_extent_map(em);
2115                         em = NULL;
2116                 }
2117                 read_unlock(&em_tree->lock);
2118
2119                 if (!em) {
2120                         kfree(failrec);
2121                         return -EIO;
2122                 }
2123                 logical = start - em->start;
2124                 logical = em->block_start + logical;
2125                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2126                         logical = em->block_start;
2127                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2128                         extent_set_compress_type(&failrec->bio_flags,
2129                                                  em->compress_type);
2130                 }
2131                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2132                          "len=%llu\n", logical, start, failrec->len);
2133                 failrec->logical = logical;
2134                 free_extent_map(em);
2135
2136                 /* set the bits in the private failure tree */
2137                 ret = set_extent_bits(failure_tree, start, end,
2138                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2139                 if (ret >= 0)
2140                         ret = set_state_private(failure_tree, start,
2141                                                 (u64)(unsigned long)failrec);
2142                 /* set the bits in the inode's tree */
2143                 if (ret >= 0)
2144                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2145                                                 GFP_NOFS);
2146                 if (ret < 0) {
2147                         kfree(failrec);
2148                         return ret;
2149                 }
2150         } else {
2151                 failrec = (struct io_failure_record *)(unsigned long)private;
2152                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2153                          "start=%llu, len=%llu, validation=%d\n",
2154                          failrec->logical, failrec->start, failrec->len,
2155                          failrec->in_validation);
2156                 /*
2157                  * when data can be on disk more than twice, add to failrec here
2158                  * (e.g. with a list for failed_mirror) to make
2159                  * clean_io_failure() clean all those errors at once.
2160                  */
2161         }
2162         num_copies = btrfs_num_copies(
2163                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
2164                               failrec->logical, failrec->len);
2165         if (num_copies == 1) {
2166                 /*
2167                  * we only have a single copy of the data, so don't bother with
2168                  * all the retry and error correction code that follows. no
2169                  * matter what the error is, it is very likely to persist.
2170                  */
2171                 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2172                          "state=%p, num_copies=%d, next_mirror %d, "
2173                          "failed_mirror %d\n", state, num_copies,
2174                          failrec->this_mirror, failed_mirror);
2175                 free_io_failure(inode, failrec, 0);
2176                 return -EIO;
2177         }
2178
2179         if (!state) {
2180                 spin_lock(&tree->lock);
2181                 state = find_first_extent_bit_state(tree, failrec->start,
2182                                                     EXTENT_LOCKED);
2183                 if (state && state->start != failrec->start)
2184                         state = NULL;
2185                 spin_unlock(&tree->lock);
2186         }
2187
2188         /*
2189          * there are two premises:
2190          *      a) deliver good data to the caller
2191          *      b) correct the bad sectors on disk
2192          */
2193         if (failed_bio->bi_vcnt > 1) {
2194                 /*
2195                  * to fulfill b), we need to know the exact failing sectors, as
2196                  * we don't want to rewrite any more than the failed ones. thus,
2197                  * we need separate read requests for the failed bio
2198                  *
2199                  * if the following BUG_ON triggers, our validation request got
2200                  * merged. we need separate requests for our algorithm to work.
2201                  */
2202                 BUG_ON(failrec->in_validation);
2203                 failrec->in_validation = 1;
2204                 failrec->this_mirror = failed_mirror;
2205                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2206         } else {
2207                 /*
2208                  * we're ready to fulfill a) and b) alongside. get a good copy
2209                  * of the failed sector and if we succeed, we have setup
2210                  * everything for repair_io_failure to do the rest for us.
2211                  */
2212                 if (failrec->in_validation) {
2213                         BUG_ON(failrec->this_mirror != failed_mirror);
2214                         failrec->in_validation = 0;
2215                         failrec->this_mirror = 0;
2216                 }
2217                 failrec->failed_mirror = failed_mirror;
2218                 failrec->this_mirror++;
2219                 if (failrec->this_mirror == failed_mirror)
2220                         failrec->this_mirror++;
2221                 read_mode = READ_SYNC;
2222         }
2223
2224         if (!state || failrec->this_mirror > num_copies) {
2225                 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2226                          "next_mirror %d, failed_mirror %d\n", state,
2227                          num_copies, failrec->this_mirror, failed_mirror);
2228                 free_io_failure(inode, failrec, 0);
2229                 return -EIO;
2230         }
2231
2232         bio = bio_alloc(GFP_NOFS, 1);
2233         if (!bio) {
2234                 free_io_failure(inode, failrec, 0);
2235                 return -EIO;
2236         }
2237         bio->bi_private = state;
2238         bio->bi_end_io = failed_bio->bi_end_io;
2239         bio->bi_sector = failrec->logical >> 9;
2240         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2241         bio->bi_size = 0;
2242
2243         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2244
2245         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2246                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2247                  failrec->this_mirror, num_copies, failrec->in_validation);
2248
2249         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2250                                          failrec->this_mirror,
2251                                          failrec->bio_flags, 0);
2252         return ret;
2253 }
2254
2255 /* lots and lots of room for performance fixes in the end_bio funcs */
2256
2257 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2258 {
2259         int uptodate = (err == 0);
2260         struct extent_io_tree *tree;
2261         int ret;
2262
2263         tree = &BTRFS_I(page->mapping->host)->io_tree;
2264
2265         if (tree->ops && tree->ops->writepage_end_io_hook) {
2266                 ret = tree->ops->writepage_end_io_hook(page, start,
2267                                                end, NULL, uptodate);
2268                 if (ret)
2269                         uptodate = 0;
2270         }
2271
2272         if (!uptodate) {
2273                 ClearPageUptodate(page);
2274                 SetPageError(page);
2275         }
2276         return 0;
2277 }
2278
2279 /*
2280  * after a writepage IO is done, we need to:
2281  * clear the uptodate bits on error
2282  * clear the writeback bits in the extent tree for this IO
2283  * end_page_writeback if the page has no more pending IO
2284  *
2285  * Scheduling is not allowed, so the extent state tree is expected
2286  * to have one and only one object corresponding to this IO.
2287  */
2288 static void end_bio_extent_writepage(struct bio *bio, int err)
2289 {
2290         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2291         struct extent_io_tree *tree;
2292         u64 start;
2293         u64 end;
2294         int whole_page;
2295
2296         do {
2297                 struct page *page = bvec->bv_page;
2298                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2299
2300                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2301                          bvec->bv_offset;
2302                 end = start + bvec->bv_len - 1;
2303
2304                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2305                         whole_page = 1;
2306                 else
2307                         whole_page = 0;
2308
2309                 if (--bvec >= bio->bi_io_vec)
2310                         prefetchw(&bvec->bv_page->flags);
2311
2312                 if (end_extent_writepage(page, err, start, end))
2313                         continue;
2314
2315                 if (whole_page)
2316                         end_page_writeback(page);
2317                 else
2318                         check_page_writeback(tree, page);
2319         } while (bvec >= bio->bi_io_vec);
2320
2321         bio_put(bio);
2322 }
2323
2324 /*
2325  * after a readpage IO is done, we need to:
2326  * clear the uptodate bits on error
2327  * set the uptodate bits if things worked
2328  * set the page up to date if all extents in the tree are uptodate
2329  * clear the lock bit in the extent tree
2330  * unlock the page if there are no other extents locked for it
2331  *
2332  * Scheduling is not allowed, so the extent state tree is expected
2333  * to have one and only one object corresponding to this IO.
2334  */
2335 static void end_bio_extent_readpage(struct bio *bio, int err)
2336 {
2337         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2338         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2339         struct bio_vec *bvec = bio->bi_io_vec;
2340         struct extent_io_tree *tree;
2341         u64 start;
2342         u64 end;
2343         int whole_page;
2344         int mirror;
2345         int ret;
2346
2347         if (err)
2348                 uptodate = 0;
2349
2350         do {
2351                 struct page *page = bvec->bv_page;
2352                 struct extent_state *cached = NULL;
2353                 struct extent_state *state;
2354
2355                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2356                          "mirror=%ld\n", (u64)bio->bi_sector, err,
2357                          (long int)bio->bi_bdev);
2358                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2359
2360                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2361                         bvec->bv_offset;
2362                 end = start + bvec->bv_len - 1;
2363
2364                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2365                         whole_page = 1;
2366                 else
2367                         whole_page = 0;
2368
2369                 if (++bvec <= bvec_end)
2370                         prefetchw(&bvec->bv_page->flags);
2371
2372                 spin_lock(&tree->lock);
2373                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2374                 if (state && state->start == start) {
2375                         /*
2376                          * take a reference on the state, unlock will drop
2377                          * the ref
2378                          */
2379                         cache_state(state, &cached);
2380                 }
2381                 spin_unlock(&tree->lock);
2382
2383                 mirror = (int)(unsigned long)bio->bi_bdev;
2384                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2385                         ret = tree->ops->readpage_end_io_hook(page, start, end,
2386                                                               state, mirror);
2387                         if (ret)
2388                                 uptodate = 0;
2389                         else
2390                                 clean_io_failure(start, page);
2391                 }
2392
2393                 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2394                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2395                         if (!ret && !err &&
2396                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2397                                 uptodate = 1;
2398                 } else if (!uptodate) {
2399                         /*
2400                          * The generic bio_readpage_error handles errors the
2401                          * following way: If possible, new read requests are
2402                          * created and submitted and will end up in
2403                          * end_bio_extent_readpage as well (if we're lucky, not
2404                          * in the !uptodate case). In that case it returns 0 and
2405                          * we just go on with the next page in our bio. If it
2406                          * can't handle the error it will return -EIO and we
2407                          * remain responsible for that page.
2408                          */
2409                         ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2410                         if (ret == 0) {
2411                                 uptodate =
2412                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2413                                 if (err)
2414                                         uptodate = 0;
2415                                 uncache_state(&cached);
2416                                 continue;
2417                         }
2418                 }
2419
2420                 if (uptodate && tree->track_uptodate) {
2421                         set_extent_uptodate(tree, start, end, &cached,
2422                                             GFP_ATOMIC);
2423                 }
2424                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2425
2426                 if (whole_page) {
2427                         if (uptodate) {
2428                                 SetPageUptodate(page);
2429                         } else {
2430                                 ClearPageUptodate(page);
2431                                 SetPageError(page);
2432                         }
2433                         unlock_page(page);
2434                 } else {
2435                         if (uptodate) {
2436                                 check_page_uptodate(tree, page);
2437                         } else {
2438                                 ClearPageUptodate(page);
2439                                 SetPageError(page);
2440                         }
2441                         check_page_locked(tree, page);
2442                 }
2443         } while (bvec <= bvec_end);
2444
2445         bio_put(bio);
2446 }
2447
2448 struct bio *
2449 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2450                 gfp_t gfp_flags)
2451 {
2452         struct bio *bio;
2453
2454         bio = bio_alloc(gfp_flags, nr_vecs);
2455
2456         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2457                 while (!bio && (nr_vecs /= 2))
2458                         bio = bio_alloc(gfp_flags, nr_vecs);
2459         }
2460
2461         if (bio) {
2462                 bio->bi_size = 0;
2463                 bio->bi_bdev = bdev;
2464                 bio->bi_sector = first_sector;
2465         }
2466         return bio;
2467 }
2468
2469 /*
2470  * Since writes are async, they will only return -ENOMEM.
2471  * Reads can return the full range of I/O error conditions.
2472  */
2473 static int __must_check submit_one_bio(int rw, struct bio *bio,
2474                                        int mirror_num, unsigned long bio_flags)
2475 {
2476         int ret = 0;
2477         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2478         struct page *page = bvec->bv_page;
2479         struct extent_io_tree *tree = bio->bi_private;
2480         u64 start;
2481
2482         start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2483
2484         bio->bi_private = NULL;
2485
2486         bio_get(bio);
2487
2488         if (tree->ops && tree->ops->submit_bio_hook)
2489                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2490                                            mirror_num, bio_flags, start);
2491         else
2492                 btrfsic_submit_bio(rw, bio);
2493
2494         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2495                 ret = -EOPNOTSUPP;
2496         bio_put(bio);
2497         return ret;
2498 }
2499
2500 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2501                      unsigned long offset, size_t size, struct bio *bio,
2502                      unsigned long bio_flags)
2503 {
2504         int ret = 0;
2505         if (tree->ops && tree->ops->merge_bio_hook)
2506                 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2507                                                 bio_flags);
2508         BUG_ON(ret < 0);
2509         return ret;
2510
2511 }
2512
2513 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2514                               struct page *page, sector_t sector,
2515                               size_t size, unsigned long offset,
2516                               struct block_device *bdev,
2517                               struct bio **bio_ret,
2518                               unsigned long max_pages,
2519                               bio_end_io_t end_io_func,
2520                               int mirror_num,
2521                               unsigned long prev_bio_flags,
2522                               unsigned long bio_flags)
2523 {
2524         int ret = 0;
2525         struct bio *bio;
2526         int nr;
2527         int contig = 0;
2528         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2529         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2530         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2531
2532         if (bio_ret && *bio_ret) {
2533                 bio = *bio_ret;
2534                 if (old_compressed)
2535                         contig = bio->bi_sector == sector;
2536                 else
2537                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
2538                                 sector;
2539
2540                 if (prev_bio_flags != bio_flags || !contig ||
2541                     merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2542                     bio_add_page(bio, page, page_size, offset) < page_size) {
2543                         ret = submit_one_bio(rw, bio, mirror_num,
2544                                              prev_bio_flags);
2545                         if (ret < 0)
2546                                 return ret;
2547                         bio = NULL;
2548                 } else {
2549                         return 0;
2550                 }
2551         }
2552         if (this_compressed)
2553                 nr = BIO_MAX_PAGES;
2554         else
2555                 nr = bio_get_nr_vecs(bdev);
2556
2557         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2558         if (!bio)
2559                 return -ENOMEM;
2560
2561         bio_add_page(bio, page, page_size, offset);
2562         bio->bi_end_io = end_io_func;
2563         bio->bi_private = tree;
2564
2565         if (bio_ret)
2566                 *bio_ret = bio;
2567         else
2568                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2569
2570         return ret;
2571 }
2572
2573 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2574 {
2575         if (!PagePrivate(page)) {
2576                 SetPagePrivate(page);
2577                 page_cache_get(page);
2578                 set_page_private(page, (unsigned long)eb);
2579         } else {
2580                 WARN_ON(page->private != (unsigned long)eb);
2581         }
2582 }
2583
2584 void set_page_extent_mapped(struct page *page)
2585 {
2586         if (!PagePrivate(page)) {
2587                 SetPagePrivate(page);
2588                 page_cache_get(page);
2589                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2590         }
2591 }
2592
2593 /*
2594  * basic readpage implementation.  Locked extent state structs are inserted
2595  * into the tree that are removed when the IO is done (by the end_io
2596  * handlers)
2597  * XXX JDM: This needs looking at to ensure proper page locking
2598  */
2599 static int __extent_read_full_page(struct extent_io_tree *tree,
2600                                    struct page *page,
2601                                    get_extent_t *get_extent,
2602                                    struct bio **bio, int mirror_num,
2603                                    unsigned long *bio_flags)
2604 {
2605         struct inode *inode = page->mapping->host;
2606         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2607         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2608         u64 end;
2609         u64 cur = start;
2610         u64 extent_offset;
2611         u64 last_byte = i_size_read(inode);
2612         u64 block_start;
2613         u64 cur_end;
2614         sector_t sector;
2615         struct extent_map *em;
2616         struct block_device *bdev;
2617         struct btrfs_ordered_extent *ordered;
2618         int ret;
2619         int nr = 0;
2620         size_t pg_offset = 0;
2621         size_t iosize;
2622         size_t disk_io_size;
2623         size_t blocksize = inode->i_sb->s_blocksize;
2624         unsigned long this_bio_flag = 0;
2625
2626         set_page_extent_mapped(page);
2627
2628         if (!PageUptodate(page)) {
2629                 if (cleancache_get_page(page) == 0) {
2630                         BUG_ON(blocksize != PAGE_SIZE);
2631                         goto out;
2632                 }
2633         }
2634
2635         end = page_end;
2636         while (1) {
2637                 lock_extent(tree, start, end);
2638                 ordered = btrfs_lookup_ordered_extent(inode, start);
2639                 if (!ordered)
2640                         break;
2641                 unlock_extent(tree, start, end);
2642                 btrfs_start_ordered_extent(inode, ordered, 1);
2643                 btrfs_put_ordered_extent(ordered);
2644         }
2645
2646         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2647                 char *userpage;
2648                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2649
2650                 if (zero_offset) {
2651                         iosize = PAGE_CACHE_SIZE - zero_offset;
2652                         userpage = kmap_atomic(page);
2653                         memset(userpage + zero_offset, 0, iosize);
2654                         flush_dcache_page(page);
2655                         kunmap_atomic(userpage);
2656                 }
2657         }
2658         while (cur <= end) {
2659                 if (cur >= last_byte) {
2660                         char *userpage;
2661                         struct extent_state *cached = NULL;
2662
2663                         iosize = PAGE_CACHE_SIZE - pg_offset;
2664                         userpage = kmap_atomic(page);
2665                         memset(userpage + pg_offset, 0, iosize);
2666                         flush_dcache_page(page);
2667                         kunmap_atomic(userpage);
2668                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2669                                             &cached, GFP_NOFS);
2670                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2671                                              &cached, GFP_NOFS);
2672                         break;
2673                 }
2674                 em = get_extent(inode, page, pg_offset, cur,
2675                                 end - cur + 1, 0);
2676                 if (IS_ERR_OR_NULL(em)) {
2677                         SetPageError(page);
2678                         unlock_extent(tree, cur, end);
2679                         break;
2680                 }
2681                 extent_offset = cur - em->start;
2682                 BUG_ON(extent_map_end(em) <= cur);
2683                 BUG_ON(end < cur);
2684
2685                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2686                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2687                         extent_set_compress_type(&this_bio_flag,
2688                                                  em->compress_type);
2689                 }
2690
2691                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2692                 cur_end = min(extent_map_end(em) - 1, end);
2693                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2694                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2695                         disk_io_size = em->block_len;
2696                         sector = em->block_start >> 9;
2697                 } else {
2698                         sector = (em->block_start + extent_offset) >> 9;
2699                         disk_io_size = iosize;
2700                 }
2701                 bdev = em->bdev;
2702                 block_start = em->block_start;
2703                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2704                         block_start = EXTENT_MAP_HOLE;
2705                 free_extent_map(em);
2706                 em = NULL;
2707
2708                 /* we've found a hole, just zero and go on */
2709                 if (block_start == EXTENT_MAP_HOLE) {
2710                         char *userpage;
2711                         struct extent_state *cached = NULL;
2712
2713                         userpage = kmap_atomic(page);
2714                         memset(userpage + pg_offset, 0, iosize);
2715                         flush_dcache_page(page);
2716                         kunmap_atomic(userpage);
2717
2718                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2719                                             &cached, GFP_NOFS);
2720                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2721                                              &cached, GFP_NOFS);
2722                         cur = cur + iosize;
2723                         pg_offset += iosize;
2724                         continue;
2725                 }
2726                 /* the get_extent function already copied into the page */
2727                 if (test_range_bit(tree, cur, cur_end,
2728                                    EXTENT_UPTODATE, 1, NULL)) {
2729                         check_page_uptodate(tree, page);
2730                         unlock_extent(tree, cur, cur + iosize - 1);
2731                         cur = cur + iosize;
2732                         pg_offset += iosize;
2733                         continue;
2734                 }
2735                 /* we have an inline extent but it didn't get marked up
2736                  * to date.  Error out
2737                  */
2738                 if (block_start == EXTENT_MAP_INLINE) {
2739                         SetPageError(page);
2740                         unlock_extent(tree, cur, cur + iosize - 1);
2741                         cur = cur + iosize;
2742                         pg_offset += iosize;
2743                         continue;
2744                 }
2745
2746                 ret = 0;
2747                 if (tree->ops && tree->ops->readpage_io_hook) {
2748                         ret = tree->ops->readpage_io_hook(page, cur,
2749                                                           cur + iosize - 1);
2750                 }
2751                 if (!ret) {
2752                         unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2753                         pnr -= page->index;
2754                         ret = submit_extent_page(READ, tree, page,
2755                                          sector, disk_io_size, pg_offset,
2756                                          bdev, bio, pnr,
2757                                          end_bio_extent_readpage, mirror_num,
2758                                          *bio_flags,
2759                                          this_bio_flag);
2760                         if (!ret) {
2761                                 nr++;
2762                                 *bio_flags = this_bio_flag;
2763                         }
2764                 }
2765                 if (ret) {
2766                         SetPageError(page);
2767                         unlock_extent(tree, cur, cur + iosize - 1);
2768                 }
2769                 cur = cur + iosize;
2770                 pg_offset += iosize;
2771         }
2772 out:
2773         if (!nr) {
2774                 if (!PageError(page))
2775                         SetPageUptodate(page);
2776                 unlock_page(page);
2777         }
2778         return 0;
2779 }
2780
2781 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2782                             get_extent_t *get_extent, int mirror_num)
2783 {
2784         struct bio *bio = NULL;
2785         unsigned long bio_flags = 0;
2786         int ret;
2787
2788         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2789                                       &bio_flags);
2790         if (bio)
2791                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2792         return ret;
2793 }
2794
2795 static noinline void update_nr_written(struct page *page,
2796                                       struct writeback_control *wbc,
2797                                       unsigned long nr_written)
2798 {
2799         wbc->nr_to_write -= nr_written;
2800         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2801             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2802                 page->mapping->writeback_index = page->index + nr_written;
2803 }
2804
2805 /*
2806  * the writepage semantics are similar to regular writepage.  extent
2807  * records are inserted to lock ranges in the tree, and as dirty areas
2808  * are found, they are marked writeback.  Then the lock bits are removed
2809  * and the end_io handler clears the writeback ranges
2810  */
2811 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2812                               void *data)
2813 {
2814         struct inode *inode = page->mapping->host;
2815         struct extent_page_data *epd = data;
2816         struct extent_io_tree *tree = epd->tree;
2817         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2818         u64 delalloc_start;
2819         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2820         u64 end;
2821         u64 cur = start;
2822         u64 extent_offset;
2823         u64 last_byte = i_size_read(inode);
2824         u64 block_start;
2825         u64 iosize;
2826         sector_t sector;
2827         struct extent_state *cached_state = NULL;
2828         struct extent_map *em;
2829         struct block_device *bdev;
2830         int ret;
2831         int nr = 0;
2832         size_t pg_offset = 0;
2833         size_t blocksize;
2834         loff_t i_size = i_size_read(inode);
2835         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2836         u64 nr_delalloc;
2837         u64 delalloc_end;
2838         int page_started;
2839         int compressed;
2840         int write_flags;
2841         unsigned long nr_written = 0;
2842         bool fill_delalloc = true;
2843
2844         if (wbc->sync_mode == WB_SYNC_ALL)
2845                 write_flags = WRITE_SYNC;
2846         else
2847                 write_flags = WRITE;
2848
2849         trace___extent_writepage(page, inode, wbc);
2850
2851         WARN_ON(!PageLocked(page));
2852
2853         ClearPageError(page);
2854
2855         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2856         if (page->index > end_index ||
2857            (page->index == end_index && !pg_offset)) {
2858                 page->mapping->a_ops->invalidatepage(page, 0);
2859                 unlock_page(page);
2860                 return 0;
2861         }
2862
2863         if (page->index == end_index) {
2864                 char *userpage;
2865
2866                 userpage = kmap_atomic(page);
2867                 memset(userpage + pg_offset, 0,
2868                        PAGE_CACHE_SIZE - pg_offset);
2869                 kunmap_atomic(userpage);
2870                 flush_dcache_page(page);
2871         }
2872         pg_offset = 0;
2873
2874         set_page_extent_mapped(page);
2875
2876         if (!tree->ops || !tree->ops->fill_delalloc)
2877                 fill_delalloc = false;
2878
2879         delalloc_start = start;
2880         delalloc_end = 0;
2881         page_started = 0;
2882         if (!epd->extent_locked && fill_delalloc) {
2883                 u64 delalloc_to_write = 0;
2884                 /*
2885                  * make sure the wbc mapping index is at least updated
2886                  * to this page.
2887                  */
2888                 update_nr_written(page, wbc, 0);
2889
2890                 while (delalloc_end < page_end) {
2891                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2892                                                        page,
2893                                                        &delalloc_start,
2894                                                        &delalloc_end,
2895                                                        128 * 1024 * 1024);
2896                         if (nr_delalloc == 0) {
2897                                 delalloc_start = delalloc_end + 1;
2898                                 continue;
2899                         }
2900                         ret = tree->ops->fill_delalloc(inode, page,
2901                                                        delalloc_start,
2902                                                        delalloc_end,
2903                                                        &page_started,
2904                                                        &nr_written);
2905                         /* File system has been set read-only */
2906                         if (ret) {
2907                                 SetPageError(page);
2908                                 goto done;
2909                         }
2910                         /*
2911                          * delalloc_end is already one less than the total
2912                          * length, so we don't subtract one from
2913                          * PAGE_CACHE_SIZE
2914                          */
2915                         delalloc_to_write += (delalloc_end - delalloc_start +
2916                                               PAGE_CACHE_SIZE) >>
2917                                               PAGE_CACHE_SHIFT;
2918                         delalloc_start = delalloc_end + 1;
2919                 }
2920                 if (wbc->nr_to_write < delalloc_to_write) {
2921                         int thresh = 8192;
2922
2923                         if (delalloc_to_write < thresh * 2)
2924                                 thresh = delalloc_to_write;
2925                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
2926                                                  thresh);
2927                 }
2928
2929                 /* did the fill delalloc function already unlock and start
2930                  * the IO?
2931                  */
2932                 if (page_started) {
2933                         ret = 0;
2934                         /*
2935                          * we've unlocked the page, so we can't update
2936                          * the mapping's writeback index, just update
2937                          * nr_to_write.
2938                          */
2939                         wbc->nr_to_write -= nr_written;
2940                         goto done_unlocked;
2941                 }
2942         }
2943         if (tree->ops && tree->ops->writepage_start_hook) {
2944                 ret = tree->ops->writepage_start_hook(page, start,
2945                                                       page_end);
2946                 if (ret) {
2947                         /* Fixup worker will requeue */
2948                         if (ret == -EBUSY)
2949                                 wbc->pages_skipped++;
2950                         else
2951                                 redirty_page_for_writepage(wbc, page);
2952                         update_nr_written(page, wbc, nr_written);
2953                         unlock_page(page);
2954                         ret = 0;
2955                         goto done_unlocked;
2956                 }
2957         }
2958
2959         /*
2960          * we don't want to touch the inode after unlocking the page,
2961          * so we update the mapping writeback index now
2962          */
2963         update_nr_written(page, wbc, nr_written + 1);
2964
2965         end = page_end;
2966         if (last_byte <= start) {
2967                 if (tree->ops && tree->ops->writepage_end_io_hook)
2968                         tree->ops->writepage_end_io_hook(page, start,
2969                                                          page_end, NULL, 1);
2970                 goto done;
2971         }
2972
2973         blocksize = inode->i_sb->s_blocksize;
2974
2975         while (cur <= end) {
2976                 if (cur >= last_byte) {
2977                         if (tree->ops && tree->ops->writepage_end_io_hook)
2978                                 tree->ops->writepage_end_io_hook(page, cur,
2979                                                          page_end, NULL, 1);
2980                         break;
2981                 }
2982                 em = epd->get_extent(inode, page, pg_offset, cur,
2983                                      end - cur + 1, 1);
2984                 if (IS_ERR_OR_NULL(em)) {
2985                         SetPageError(page);
2986                         break;
2987                 }
2988
2989                 extent_offset = cur - em->start;
2990                 BUG_ON(extent_map_end(em) <= cur);
2991                 BUG_ON(end < cur);
2992                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2993                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2994                 sector = (em->block_start + extent_offset) >> 9;
2995                 bdev = em->bdev;
2996                 block_start = em->block_start;
2997                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2998                 free_extent_map(em);
2999                 em = NULL;
3000
3001                 /*
3002                  * compressed and inline extents are written through other
3003                  * paths in the FS
3004                  */
3005                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3006                     block_start == EXTENT_MAP_INLINE) {
3007                         /*
3008                          * end_io notification does not happen here for
3009                          * compressed extents
3010                          */
3011                         if (!compressed && tree->ops &&
3012                             tree->ops->writepage_end_io_hook)
3013                                 tree->ops->writepage_end_io_hook(page, cur,
3014                                                          cur + iosize - 1,
3015                                                          NULL, 1);
3016                         else if (compressed) {
3017                                 /* we don't want to end_page_writeback on
3018                                  * a compressed extent.  this happens
3019                                  * elsewhere
3020                                  */
3021                                 nr++;
3022                         }
3023
3024                         cur += iosize;
3025                         pg_offset += iosize;
3026                         continue;
3027                 }
3028                 /* leave this out until we have a page_mkwrite call */
3029                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3030                                    EXTENT_DIRTY, 0, NULL)) {
3031                         cur = cur + iosize;
3032                         pg_offset += iosize;
3033                         continue;
3034                 }
3035
3036                 if (tree->ops && tree->ops->writepage_io_hook) {
3037                         ret = tree->ops->writepage_io_hook(page, cur,
3038                                                 cur + iosize - 1);
3039                 } else {
3040                         ret = 0;
3041                 }
3042                 if (ret) {
3043                         SetPageError(page);
3044                 } else {
3045                         unsigned long max_nr = end_index + 1;
3046
3047                         set_range_writeback(tree, cur, cur + iosize - 1);
3048                         if (!PageWriteback(page)) {
3049                                 printk(KERN_ERR "btrfs warning page %lu not "
3050                                        "writeback, cur %llu end %llu\n",
3051                                        page->index, (unsigned long long)cur,
3052                                        (unsigned long long)end);
3053                         }
3054
3055                         ret = submit_extent_page(write_flags, tree, page,
3056                                                  sector, iosize, pg_offset,
3057                                                  bdev, &epd->bio, max_nr,
3058                                                  end_bio_extent_writepage,
3059                                                  0, 0, 0);
3060                         if (ret)
3061                                 SetPageError(page);
3062                 }
3063                 cur = cur + iosize;
3064                 pg_offset += iosize;
3065                 nr++;
3066         }
3067 done:
3068         if (nr == 0) {
3069                 /* make sure the mapping tag for page dirty gets cleared */
3070                 set_page_writeback(page);
3071                 end_page_writeback(page);
3072         }
3073         unlock_page(page);
3074
3075 done_unlocked:
3076
3077         /* drop our reference on any cached states */
3078         free_extent_state(cached_state);
3079         return 0;
3080 }
3081
3082 static int eb_wait(void *word)
3083 {
3084         io_schedule();
3085         return 0;
3086 }
3087
3088 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3089 {
3090         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3091                     TASK_UNINTERRUPTIBLE);
3092 }
3093
3094 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3095                                      struct btrfs_fs_info *fs_info,
3096                                      struct extent_page_data *epd)
3097 {
3098         unsigned long i, num_pages;
3099         int flush = 0;
3100         int ret = 0;
3101
3102         if (!btrfs_try_tree_write_lock(eb)) {
3103                 flush = 1;
3104                 flush_write_bio(epd);
3105                 btrfs_tree_lock(eb);
3106         }
3107
3108         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3109                 btrfs_tree_unlock(eb);
3110                 if (!epd->sync_io)
3111                         return 0;
3112                 if (!flush) {
3113                         flush_write_bio(epd);
3114                         flush = 1;
3115                 }
3116                 while (1) {
3117                         wait_on_extent_buffer_writeback(eb);
3118                         btrfs_tree_lock(eb);
3119                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3120                                 break;
3121                         btrfs_tree_unlock(eb);
3122                 }
3123         }
3124
3125         /*
3126          * We need to do this to prevent races in people who check if the eb is
3127          * under IO since we can end up having no IO bits set for a short period
3128          * of time.
3129          */
3130         spin_lock(&eb->refs_lock);
3131         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3132                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3133                 spin_unlock(&eb->refs_lock);
3134                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3135                 spin_lock(&fs_info->delalloc_lock);
3136                 if (fs_info->dirty_metadata_bytes >= eb->len)
3137                         fs_info->dirty_metadata_bytes -= eb->len;
3138                 else
3139                         WARN_ON(1);
3140                 spin_unlock(&fs_info->delalloc_lock);
3141                 ret = 1;
3142         } else {
3143                 spin_unlock(&eb->refs_lock);
3144         }
3145
3146         btrfs_tree_unlock(eb);
3147
3148         if (!ret)
3149                 return ret;
3150
3151         num_pages = num_extent_pages(eb->start, eb->len);
3152         for (i = 0; i < num_pages; i++) {
3153                 struct page *p = extent_buffer_page(eb, i);
3154
3155                 if (!trylock_page(p)) {
3156                         if (!flush) {
3157                                 flush_write_bio(epd);
3158                                 flush = 1;
3159                         }
3160                         lock_page(p);
3161                 }
3162         }
3163
3164         return ret;
3165 }
3166
3167 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3168 {
3169         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3170         smp_mb__after_clear_bit();
3171         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3172 }
3173
3174 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3175 {
3176         int uptodate = err == 0;
3177         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3178         struct extent_buffer *eb;
3179         int done;
3180
3181         do {
3182                 struct page *page = bvec->bv_page;
3183
3184                 bvec--;
3185                 eb = (struct extent_buffer *)page->private;
3186                 BUG_ON(!eb);
3187                 done = atomic_dec_and_test(&eb->io_pages);
3188
3189                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3190                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3191                         ClearPageUptodate(page);
3192                         SetPageError(page);
3193                 }
3194
3195                 end_page_writeback(page);
3196
3197                 if (!done)
3198                         continue;
3199
3200                 end_extent_buffer_writeback(eb);
3201         } while (bvec >= bio->bi_io_vec);
3202
3203         bio_put(bio);
3204
3205 }
3206
3207 static int write_one_eb(struct extent_buffer *eb,
3208                         struct btrfs_fs_info *fs_info,
3209                         struct writeback_control *wbc,
3210                         struct extent_page_data *epd)
3211 {
3212         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3213         u64 offset = eb->start;
3214         unsigned long i, num_pages;
3215         unsigned long bio_flags = 0;
3216         int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3217         int ret = 0;
3218
3219         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3220         num_pages = num_extent_pages(eb->start, eb->len);
3221         atomic_set(&eb->io_pages, num_pages);
3222         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3223                 bio_flags = EXTENT_BIO_TREE_LOG;
3224
3225         for (i = 0; i < num_pages; i++) {
3226                 struct page *p = extent_buffer_page(eb, i);
3227
3228                 clear_page_dirty_for_io(p);
3229                 set_page_writeback(p);
3230                 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3231                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3232                                          -1, end_bio_extent_buffer_writepage,
3233                                          0, epd->bio_flags, bio_flags);
3234                 epd->bio_flags = bio_flags;
3235                 if (ret) {
3236                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3237                         SetPageError(p);
3238                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3239                                 end_extent_buffer_writeback(eb);
3240                         ret = -EIO;
3241                         break;
3242                 }
3243                 offset += PAGE_CACHE_SIZE;
3244                 update_nr_written(p, wbc, 1);
3245                 unlock_page(p);
3246         }
3247
3248         if (unlikely(ret)) {
3249                 for (; i < num_pages; i++) {
3250                         struct page *p = extent_buffer_page(eb, i);
3251                         unlock_page(p);
3252                 }
3253         }
3254
3255         return ret;
3256 }
3257
3258 int btree_write_cache_pages(struct address_space *mapping,
3259                                    struct writeback_control *wbc)
3260 {
3261         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3262         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3263         struct extent_buffer *eb, *prev_eb = NULL;
3264         struct extent_page_data epd = {
3265                 .bio = NULL,
3266                 .tree = tree,
3267                 .extent_locked = 0,
3268                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3269                 .bio_flags = 0,
3270         };
3271         int ret = 0;
3272         int done = 0;
3273         int nr_to_write_done = 0;
3274         struct pagevec pvec;
3275         int nr_pages;
3276         pgoff_t index;
3277         pgoff_t end;            /* Inclusive */
3278         int scanned = 0;
3279         int tag;
3280
3281         pagevec_init(&pvec, 0);
3282         if (wbc->range_cyclic) {
3283                 index = mapping->writeback_index; /* Start from prev offset */
3284                 end = -1;
3285         } else {
3286                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3287                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3288                 scanned = 1;
3289         }
3290         if (wbc->sync_mode == WB_SYNC_ALL)
3291                 tag = PAGECACHE_TAG_TOWRITE;
3292         else
3293                 tag = PAGECACHE_TAG_DIRTY;
3294 retry:
3295         if (wbc->sync_mode == WB_SYNC_ALL)
3296                 tag_pages_for_writeback(mapping, index, end);
3297         while (!done && !nr_to_write_done && (index <= end) &&
3298                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3299                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3300                 unsigned i;
3301
3302                 scanned = 1;
3303                 for (i = 0; i < nr_pages; i++) {
3304                         struct page *page = pvec.pages[i];
3305
3306                         if (!PagePrivate(page))
3307                                 continue;
3308
3309                         if (!wbc->range_cyclic && page->index > end) {
3310                                 done = 1;
3311                                 break;
3312                         }
3313
3314                         spin_lock(&mapping->private_lock);
3315                         if (!PagePrivate(page)) {
3316                                 spin_unlock(&mapping->private_lock);
3317                                 continue;
3318                         }
3319
3320                         eb = (struct extent_buffer *)page->private;
3321
3322                         /*
3323                          * Shouldn't happen and normally this would be a BUG_ON
3324                          * but no sense in crashing the users box for something
3325                          * we can survive anyway.
3326                          */
3327                         if (!eb) {
3328                                 spin_unlock(&mapping->private_lock);
3329                                 WARN_ON(1);
3330                                 continue;
3331                         }
3332
3333                         if (eb == prev_eb) {
3334                                 spin_unlock(&mapping->private_lock);
3335                                 continue;
3336                         }
3337
3338                         ret = atomic_inc_not_zero(&eb->refs);
3339                         spin_unlock(&mapping->private_lock);
3340                         if (!ret)
3341                                 continue;
3342
3343                         prev_eb = eb;
3344                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3345                         if (!ret) {
3346                                 free_extent_buffer(eb);
3347                                 continue;
3348                         }
3349
3350                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3351                         if (ret) {
3352                                 done = 1;
3353                                 free_extent_buffer(eb);
3354                                 break;
3355                         }
3356                         free_extent_buffer(eb);
3357
3358                         /*
3359                          * the filesystem may choose to bump up nr_to_write.
3360                          * We have to make sure to honor the new nr_to_write
3361                          * at any time
3362                          */
3363                         nr_to_write_done = wbc->nr_to_write <= 0;
3364                 }
3365                 pagevec_release(&pvec);
3366                 cond_resched();
3367         }
3368         if (!scanned && !done) {
3369                 /*
3370                  * We hit the last page and there is more work to be done: wrap
3371                  * back to the start of the file
3372                  */
3373                 scanned = 1;
3374                 index = 0;
3375                 goto retry;
3376         }
3377         flush_write_bio(&epd);
3378         return ret;
3379 }
3380
3381 /**
3382  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3383  * @mapping: address space structure to write
3384  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3385  * @writepage: function called for each page
3386  * @data: data passed to writepage function
3387  *
3388  * If a page is already under I/O, write_cache_pages() skips it, even
3389  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3390  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3391  * and msync() need to guarantee that all the data which was dirty at the time
3392  * the call was made get new I/O started against them.  If wbc->sync_mode is
3393  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3394  * existing IO to complete.
3395  */
3396 static int extent_write_cache_pages(struct extent_io_tree *tree,
3397                              struct address_space *mapping,
3398                              struct writeback_control *wbc,
3399                              writepage_t writepage, void *data,
3400                              void (*flush_fn)(void *))
3401 {
3402         struct inode *inode = mapping->host;
3403         int ret = 0;
3404         int done = 0;
3405         int nr_to_write_done = 0;
3406         struct pagevec pvec;
3407         int nr_pages;
3408         pgoff_t index;
3409         pgoff_t end;            /* Inclusive */
3410         int scanned = 0;
3411         int tag;
3412
3413         /*
3414          * We have to hold onto the inode so that ordered extents can do their
3415          * work when the IO finishes.  The alternative to this is failing to add
3416          * an ordered extent if the igrab() fails there and that is a huge pain
3417          * to deal with, so instead just hold onto the inode throughout the
3418          * writepages operation.  If it fails here we are freeing up the inode
3419          * anyway and we'd rather not waste our time writing out stuff that is
3420          * going to be truncated anyway.
3421          */
3422         if (!igrab(inode))
3423                 return 0;
3424
3425         pagevec_init(&pvec, 0);
3426         if (wbc->range_cyclic) {
3427                 index = mapping->writeback_index; /* Start from prev offset */
3428                 end = -1;
3429         } else {
3430                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3431                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3432                 scanned = 1;
3433         }
3434         if (wbc->sync_mode == WB_SYNC_ALL)
3435                 tag = PAGECACHE_TAG_TOWRITE;
3436         else
3437                 tag = PAGECACHE_TAG_DIRTY;
3438 retry:
3439         if (wbc->sync_mode == WB_SYNC_ALL)
3440                 tag_pages_for_writeback(mapping, index, end);
3441         while (!done && !nr_to_write_done && (index <= end) &&
3442                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3443                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3444                 unsigned i;
3445
3446                 scanned = 1;
3447                 for (i = 0; i < nr_pages; i++) {
3448                         struct page *page = pvec.pages[i];
3449
3450                         /*
3451                          * At this point we hold neither mapping->tree_lock nor
3452                          * lock on the page itself: the page may be truncated or
3453                          * invalidated (changing page->mapping to NULL), or even
3454                          * swizzled back from swapper_space to tmpfs file
3455                          * mapping
3456                          */
3457                         if (tree->ops &&
3458                             tree->ops->write_cache_pages_lock_hook) {
3459                                 tree->ops->write_cache_pages_lock_hook(page,
3460                                                                data, flush_fn);
3461                         } else {
3462                                 if (!trylock_page(page)) {
3463                                         flush_fn(data);
3464                                         lock_page(page);
3465                                 }
3466                         }
3467
3468                         if (unlikely(page->mapping != mapping)) {
3469                                 unlock_page(page);
3470                                 continue;
3471                         }
3472
3473                         if (!wbc->range_cyclic && page->index > end) {
3474                                 done = 1;
3475                                 unlock_page(page);
3476                                 continue;
3477                         }
3478
3479                         if (wbc->sync_mode != WB_SYNC_NONE) {
3480                                 if (PageWriteback(page))
3481                                         flush_fn(data);
3482                                 wait_on_page_writeback(page);
3483                         }
3484
3485                         if (PageWriteback(page) ||
3486                             !clear_page_dirty_for_io(page)) {
3487                                 unlock_page(page);
3488                                 continue;
3489                         }
3490
3491                         ret = (*writepage)(page, wbc, data);
3492
3493                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3494                                 unlock_page(page);
3495                                 ret = 0;
3496                         }
3497                         if (ret)
3498                                 done = 1;
3499
3500                         /*
3501                          * the filesystem may choose to bump up nr_to_write.
3502                          * We have to make sure to honor the new nr_to_write
3503                          * at any time
3504                          */
3505                         nr_to_write_done = wbc->nr_to_write <= 0;
3506                 }
3507                 pagevec_release(&pvec);
3508                 cond_resched();
3509         }
3510         if (!scanned && !done) {
3511                 /*
3512                  * We hit the last page and there is more work to be done: wrap
3513                  * back to the start of the file
3514                  */
3515                 scanned = 1;
3516                 index = 0;
3517                 goto retry;
3518         }
3519         btrfs_add_delayed_iput(inode);
3520         return ret;
3521 }
3522
3523 static void flush_epd_write_bio(struct extent_page_data *epd)
3524 {
3525         if (epd->bio) {
3526                 int rw = WRITE;
3527                 int ret;
3528
3529                 if (epd->sync_io)
3530                         rw = WRITE_SYNC;
3531
3532                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3533                 BUG_ON(ret < 0); /* -ENOMEM */
3534                 epd->bio = NULL;
3535         }
3536 }
3537
3538 static noinline void flush_write_bio(void *data)
3539 {
3540         struct extent_page_data *epd = data;
3541         flush_epd_write_bio(epd);
3542 }
3543
3544 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3545                           get_extent_t *get_extent,
3546                           struct writeback_control *wbc)
3547 {
3548         int ret;
3549         struct extent_page_data epd = {
3550                 .bio = NULL,
3551                 .tree = tree,
3552                 .get_extent = get_extent,
3553                 .extent_locked = 0,
3554                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3555                 .bio_flags = 0,
3556         };
3557
3558         ret = __extent_writepage(page, wbc, &epd);
3559
3560         flush_epd_write_bio(&epd);
3561         return ret;
3562 }
3563
3564 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3565                               u64 start, u64 end, get_extent_t *get_extent,
3566                               int mode)
3567 {
3568         int ret = 0;
3569         struct address_space *mapping = inode->i_mapping;
3570         struct page *page;
3571         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3572                 PAGE_CACHE_SHIFT;
3573
3574         struct extent_page_data epd = {
3575                 .bio = NULL,
3576                 .tree = tree,
3577                 .get_extent = get_extent,
3578                 .extent_locked = 1,
3579                 .sync_io = mode == WB_SYNC_ALL,
3580                 .bio_flags = 0,
3581         };
3582         struct writeback_control wbc_writepages = {
3583                 .sync_mode      = mode,
3584                 .nr_to_write    = nr_pages * 2,
3585                 .range_start    = start,
3586                 .range_end      = end + 1,
3587         };
3588
3589         while (start <= end) {
3590                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3591                 if (clear_page_dirty_for_io(page))
3592                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3593                 else {
3594                         if (tree->ops && tree->ops->writepage_end_io_hook)
3595                                 tree->ops->writepage_end_io_hook(page, start,
3596                                                  start + PAGE_CACHE_SIZE - 1,
3597                                                  NULL, 1);
3598                         unlock_page(page);
3599                 }
3600                 page_cache_release(page);
3601                 start += PAGE_CACHE_SIZE;
3602         }
3603
3604         flush_epd_write_bio(&epd);
3605         return ret;
3606 }
3607
3608 int extent_writepages(struct extent_io_tree *tree,
3609                       struct address_space *mapping,
3610                       get_extent_t *get_extent,
3611                       struct writeback_control *wbc)
3612 {
3613         int ret = 0;
3614         struct extent_page_data epd = {
3615                 .bio = NULL,
3616                 .tree = tree,
3617                 .get_extent = get_extent,
3618                 .extent_locked = 0,
3619                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3620                 .bio_flags = 0,
3621         };
3622
3623         ret = extent_write_cache_pages(tree, mapping, wbc,
3624                                        __extent_writepage, &epd,
3625                                        flush_write_bio);
3626         flush_epd_write_bio(&epd);
3627         return ret;
3628 }
3629
3630 int extent_readpages(struct extent_io_tree *tree,
3631                      struct address_space *mapping,
3632                      struct list_head *pages, unsigned nr_pages,
3633                      get_extent_t get_extent)
3634 {
3635         struct bio *bio = NULL;
3636         unsigned page_idx;
3637         unsigned long bio_flags = 0;
3638         struct page *pagepool[16];
3639         struct page *page;
3640         int i = 0;
3641         int nr = 0;
3642
3643         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3644                 page = list_entry(pages->prev, struct page, lru);
3645
3646                 prefetchw(&page->flags);
3647                 list_del(&page->lru);
3648                 if (add_to_page_cache_lru(page, mapping,
3649                                         page->index, GFP_NOFS)) {
3650                         page_cache_release(page);
3651                         continue;
3652                 }
3653
3654                 pagepool[nr++] = page;
3655                 if (nr < ARRAY_SIZE(pagepool))
3656                         continue;
3657                 for (i = 0; i < nr; i++) {
3658                         __extent_read_full_page(tree, pagepool[i], get_extent,
3659                                         &bio, 0, &bio_flags);
3660                         page_cache_release(pagepool[i]);
3661                 }
3662                 nr = 0;
3663         }
3664         for (i = 0; i < nr; i++) {
3665                 __extent_read_full_page(tree, pagepool[i], get_extent,
3666                                         &bio, 0, &bio_flags);
3667                 page_cache_release(pagepool[i]);
3668         }
3669
3670         BUG_ON(!list_empty(pages));
3671         if (bio)
3672                 return submit_one_bio(READ, bio, 0, bio_flags);
3673         return 0;
3674 }
3675
3676 /*
3677  * basic invalidatepage code, this waits on any locked or writeback
3678  * ranges corresponding to the page, and then deletes any extent state
3679  * records from the tree
3680  */
3681 int extent_invalidatepage(struct extent_io_tree *tree,
3682                           struct page *page, unsigned long offset)
3683 {
3684         struct extent_state *cached_state = NULL;
3685         u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3686         u64 end = start + PAGE_CACHE_SIZE - 1;
3687         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3688
3689         start += (offset + blocksize - 1) & ~(blocksize - 1);
3690         if (start > end)
3691                 return 0;
3692
3693         lock_extent_bits(tree, start, end, 0, &cached_state);
3694         wait_on_page_writeback(page);
3695         clear_extent_bit(tree, start, end,
3696                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3697                          EXTENT_DO_ACCOUNTING,
3698                          1, 1, &cached_state, GFP_NOFS);
3699         return 0;
3700 }
3701
3702 /*
3703  * a helper for releasepage, this tests for areas of the page that
3704  * are locked or under IO and drops the related state bits if it is safe
3705  * to drop the page.
3706  */
3707 int try_release_extent_state(struct extent_map_tree *map,
3708                              struct extent_io_tree *tree, struct page *page,
3709                              gfp_t mask)
3710 {
3711         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3712         u64 end = start + PAGE_CACHE_SIZE - 1;
3713         int ret = 1;
3714
3715         if (test_range_bit(tree, start, end,
3716                            EXTENT_IOBITS, 0, NULL))
3717                 ret = 0;
3718         else {
3719                 if ((mask & GFP_NOFS) == GFP_NOFS)
3720                         mask = GFP_NOFS;
3721                 /*
3722                  * at this point we can safely clear everything except the
3723                  * locked bit and the nodatasum bit
3724                  */
3725                 ret = clear_extent_bit(tree, start, end,
3726                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3727                                  0, 0, NULL, mask);
3728
3729                 /* if clear_extent_bit failed for enomem reasons,
3730                  * we can't allow the release to continue.
3731                  */
3732                 if (ret < 0)
3733                         ret = 0;
3734                 else
3735                         ret = 1;
3736         }
3737         return ret;
3738 }
3739
3740 /*
3741  * a helper for releasepage.  As long as there are no locked extents
3742  * in the range corresponding to the page, both state records and extent
3743  * map records are removed
3744  */
3745 int try_release_extent_mapping(struct extent_map_tree *map,
3746                                struct extent_io_tree *tree, struct page *page,
3747                                gfp_t mask)
3748 {
3749         struct extent_map *em;
3750         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3751         u64 end = start + PAGE_CACHE_SIZE - 1;
3752
3753         if ((mask & __GFP_WAIT) &&
3754             page->mapping->host->i_size > 16 * 1024 * 1024) {
3755                 u64 len;
3756                 while (start <= end) {
3757                         len = end - start + 1;
3758                         write_lock(&map->lock);
3759                         em = lookup_extent_mapping(map, start, len);
3760                         if (!em) {
3761                                 write_unlock(&map->lock);
3762                                 break;
3763                         }
3764                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3765                             em->start != start) {
3766                                 write_unlock(&map->lock);
3767                                 free_extent_map(em);
3768                                 break;
3769                         }
3770                         if (!test_range_bit(tree, em->start,
3771                                             extent_map_end(em) - 1,
3772                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3773                                             0, NULL)) {
3774                                 remove_extent_mapping(map, em);
3775                                 /* once for the rb tree */
3776                                 free_extent_map(em);
3777                         }
3778                         start = extent_map_end(em);
3779                         write_unlock(&map->lock);
3780
3781                         /* once for us */
3782                         free_extent_map(em);
3783                 }
3784         }
3785         return try_release_extent_state(map, tree, page, mask);
3786 }
3787
3788 /*
3789  * helper function for fiemap, which doesn't want to see any holes.
3790  * This maps until we find something past 'last'
3791  */
3792 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3793                                                 u64 offset,
3794                                                 u64 last,
3795                                                 get_extent_t *get_extent)
3796 {
3797         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3798         struct extent_map *em;
3799         u64 len;
3800
3801         if (offset >= last)
3802                 return NULL;
3803
3804         while(1) {
3805                 len = last - offset;
3806                 if (len == 0)
3807                         break;
3808                 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3809                 em = get_extent(inode, NULL, 0, offset, len, 0);
3810                 if (IS_ERR_OR_NULL(em))
3811                         return em;
3812
3813                 /* if this isn't a hole return it */
3814                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3815                     em->block_start != EXTENT_MAP_HOLE) {
3816                         return em;
3817                 }
3818
3819                 /* this is a hole, advance to the next extent */
3820                 offset = extent_map_end(em);
3821                 free_extent_map(em);
3822                 if (offset >= last)
3823                         break;
3824         }
3825         return NULL;
3826 }
3827
3828 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3829                 __u64 start, __u64 len, get_extent_t *get_extent)
3830 {
3831         int ret = 0;
3832         u64 off = start;
3833         u64 max = start + len;
3834         u32 flags = 0;
3835         u32 found_type;
3836         u64 last;
3837         u64 last_for_get_extent = 0;
3838         u64 disko = 0;
3839         u64 isize = i_size_read(inode);
3840         struct btrfs_key found_key;
3841         struct extent_map *em = NULL;
3842         struct extent_state *cached_state = NULL;
3843         struct btrfs_path *path;
3844         struct btrfs_file_extent_item *item;
3845         int end = 0;
3846         u64 em_start = 0;
3847         u64 em_len = 0;
3848         u64 em_end = 0;
3849         unsigned long emflags;
3850
3851         if (len == 0)
3852                 return -EINVAL;
3853
3854         path = btrfs_alloc_path();
3855         if (!path)
3856                 return -ENOMEM;
3857         path->leave_spinning = 1;
3858
3859         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3860         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3861
3862         /*
3863          * lookup the last file extent.  We're not using i_size here
3864          * because there might be preallocation past i_size
3865          */
3866         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3867                                        path, btrfs_ino(inode), -1, 0);
3868         if (ret < 0) {
3869                 btrfs_free_path(path);
3870                 return ret;
3871         }
3872         WARN_ON(!ret);
3873         path->slots[0]--;
3874         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3875                               struct btrfs_file_extent_item);
3876         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3877         found_type = btrfs_key_type(&found_key);
3878
3879         /* No extents, but there might be delalloc bits */
3880         if (found_key.objectid != btrfs_ino(inode) ||
3881             found_type != BTRFS_EXTENT_DATA_KEY) {
3882                 /* have to trust i_size as the end */
3883                 last = (u64)-1;
3884                 last_for_get_extent = isize;
3885         } else {
3886                 /*
3887                  * remember the start of the last extent.  There are a
3888                  * bunch of different factors that go into the length of the
3889                  * extent, so its much less complex to remember where it started
3890                  */
3891                 last = found_key.offset;
3892                 last_for_get_extent = last + 1;
3893         }
3894         btrfs_free_path(path);
3895
3896         /*
3897          * we might have some extents allocated but more delalloc past those
3898          * extents.  so, we trust isize unless the start of the last extent is
3899          * beyond isize
3900          */
3901         if (last < isize) {
3902                 last = (u64)-1;
3903                 last_for_get_extent = isize;
3904         }
3905
3906         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3907                          &cached_state);
3908
3909         em = get_extent_skip_holes(inode, start, last_for_get_extent,
3910                                    get_extent);
3911         if (!em)
3912                 goto out;
3913         if (IS_ERR(em)) {
3914                 ret = PTR_ERR(em);
3915                 goto out;
3916         }
3917
3918         while (!end) {
3919                 u64 offset_in_extent;
3920
3921                 /* break if the extent we found is outside the range */
3922                 if (em->start >= max || extent_map_end(em) < off)
3923                         break;
3924
3925                 /*
3926                  * get_extent may return an extent that starts before our
3927                  * requested range.  We have to make sure the ranges
3928                  * we return to fiemap always move forward and don't
3929                  * overlap, so adjust the offsets here
3930                  */
3931                 em_start = max(em->start, off);
3932
3933                 /*
3934                  * record the offset from the start of the extent
3935                  * for adjusting the disk offset below
3936                  */
3937                 offset_in_extent = em_start - em->start;
3938                 em_end = extent_map_end(em);
3939                 em_len = em_end - em_start;
3940                 emflags = em->flags;
3941                 disko = 0;
3942                 flags = 0;
3943
3944                 /*
3945                  * bump off for our next call to get_extent
3946                  */
3947                 off = extent_map_end(em);
3948                 if (off >= max)
3949                         end = 1;
3950
3951                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3952                         end = 1;
3953                         flags |= FIEMAP_EXTENT_LAST;
3954                 } else if (em->block_start == EXTENT_MAP_INLINE) {
3955                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
3956                                   FIEMAP_EXTENT_NOT_ALIGNED);
3957                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3958                         flags |= (FIEMAP_EXTENT_DELALLOC |
3959                                   FIEMAP_EXTENT_UNKNOWN);
3960                 } else {
3961                         disko = em->block_start + offset_in_extent;
3962                 }
3963                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3964                         flags |= FIEMAP_EXTENT_ENCODED;
3965
3966                 free_extent_map(em);
3967                 em = NULL;
3968                 if ((em_start >= last) || em_len == (u64)-1 ||
3969                    (last == (u64)-1 && isize <= em_end)) {
3970                         flags |= FIEMAP_EXTENT_LAST;
3971                         end = 1;
3972                 }
3973
3974                 /* now scan forward to see if this is really the last extent. */
3975                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3976                                            get_extent);
3977                 if (IS_ERR(em)) {
3978                         ret = PTR_ERR(em);
3979                         goto out;
3980                 }
3981                 if (!em) {
3982                         flags |= FIEMAP_EXTENT_LAST;
3983                         end = 1;
3984                 }
3985                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3986                                               em_len, flags);
3987                 if (ret)
3988                         goto out_free;
3989         }
3990 out_free:
3991         free_extent_map(em);
3992 out:
3993         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3994                              &cached_state, GFP_NOFS);
3995         return ret;
3996 }
3997
3998 static void __free_extent_buffer(struct extent_buffer *eb)
3999 {
4000 #if LEAK_DEBUG
4001         unsigned long flags;
4002         spin_lock_irqsave(&leak_lock, flags);
4003         list_del(&eb->leak_list);
4004         spin_unlock_irqrestore(&leak_lock, flags);
4005 #endif
4006         if (eb->pages && eb->pages != eb->inline_pages)
4007                 kfree(eb->pages);
4008         kmem_cache_free(extent_buffer_cache, eb);
4009 }
4010
4011 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4012                                                    u64 start,
4013                                                    unsigned long len,
4014                                                    gfp_t mask)
4015 {
4016         struct extent_buffer *eb = NULL;
4017 #if LEAK_DEBUG
4018         unsigned long flags;
4019 #endif
4020
4021         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4022         if (eb == NULL)
4023                 return NULL;
4024         eb->start = start;
4025         eb->len = len;
4026         eb->tree = tree;
4027         eb->bflags = 0;
4028         rwlock_init(&eb->lock);
4029         atomic_set(&eb->write_locks, 0);
4030         atomic_set(&eb->read_locks, 0);
4031         atomic_set(&eb->blocking_readers, 0);
4032         atomic_set(&eb->blocking_writers, 0);
4033         atomic_set(&eb->spinning_readers, 0);
4034         atomic_set(&eb->spinning_writers, 0);
4035         eb->lock_nested = 0;
4036         init_waitqueue_head(&eb->write_lock_wq);
4037         init_waitqueue_head(&eb->read_lock_wq);
4038
4039 #if LEAK_DEBUG
4040         spin_lock_irqsave(&leak_lock, flags);
4041         list_add(&eb->leak_list, &buffers);
4042         spin_unlock_irqrestore(&leak_lock, flags);
4043 #endif
4044         spin_lock_init(&eb->refs_lock);
4045         atomic_set(&eb->refs, 1);
4046         atomic_set(&eb->io_pages, 0);
4047
4048         if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
4049                 struct page **pages;
4050                 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
4051                         PAGE_CACHE_SHIFT;
4052                 pages = kzalloc(num_pages, mask);
4053                 if (!pages) {
4054                         __free_extent_buffer(eb);
4055                         return NULL;
4056                 }
4057                 eb->pages = pages;
4058         } else {
4059                 eb->pages = eb->inline_pages;
4060         }
4061
4062         return eb;
4063 }
4064
4065 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4066 {
4067         unsigned long i;
4068         struct page *p;
4069         struct extent_buffer *new;
4070         unsigned long num_pages = num_extent_pages(src->start, src->len);
4071
4072         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4073         if (new == NULL)
4074                 return NULL;
4075
4076         for (i = 0; i < num_pages; i++) {
4077                 p = alloc_page(GFP_ATOMIC);
4078                 BUG_ON(!p);
4079                 attach_extent_buffer_page(new, p);
4080                 WARN_ON(PageDirty(p));
4081                 SetPageUptodate(p);
4082                 new->pages[i] = p;
4083         }
4084
4085         copy_extent_buffer(new, src, 0, 0, src->len);
4086         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4087         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4088
4089         return new;
4090 }
4091
4092 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4093 {
4094         struct extent_buffer *eb;
4095         unsigned long num_pages = num_extent_pages(0, len);
4096         unsigned long i;
4097
4098         eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4099         if (!eb)
4100                 return NULL;
4101
4102         for (i = 0; i < num_pages; i++) {
4103                 eb->pages[i] = alloc_page(GFP_ATOMIC);
4104                 if (!eb->pages[i])
4105                         goto err;
4106         }
4107         set_extent_buffer_uptodate(eb);
4108         btrfs_set_header_nritems(eb, 0);
4109         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4110
4111         return eb;
4112 err:
4113         for (i--; i >= 0; i--)
4114                 __free_page(eb->pages[i]);
4115         __free_extent_buffer(eb);
4116         return NULL;
4117 }
4118
4119 static int extent_buffer_under_io(struct extent_buffer *eb)
4120 {
4121         return (atomic_read(&eb->io_pages) ||
4122                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4123                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4124 }
4125
4126 /*
4127  * Helper for releasing extent buffer page.
4128  */
4129 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4130                                                 unsigned long start_idx)
4131 {
4132         unsigned long index;
4133         unsigned long num_pages;
4134         struct page *page;
4135         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4136
4137         BUG_ON(extent_buffer_under_io(eb));
4138
4139         num_pages = num_extent_pages(eb->start, eb->len);
4140         index = start_idx + num_pages;
4141         if (start_idx >= index)
4142                 return;
4143
4144         do {
4145                 index--;
4146                 page = extent_buffer_page(eb, index);
4147                 if (page && mapped) {
4148                         spin_lock(&page->mapping->private_lock);
4149                         /*
4150                          * We do this since we'll remove the pages after we've
4151                          * removed the eb from the radix tree, so we could race
4152                          * and have this page now attached to the new eb.  So
4153                          * only clear page_private if it's still connected to
4154                          * this eb.
4155                          */
4156                         if (PagePrivate(page) &&
4157                             page->private == (unsigned long)eb) {
4158                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4159                                 BUG_ON(PageDirty(page));
4160                                 BUG_ON(PageWriteback(page));
4161                                 /*
4162                                  * We need to make sure we haven't be attached
4163                                  * to a new eb.
4164                                  */
4165                                 ClearPagePrivate(page);
4166                                 set_page_private(page, 0);
4167                                 /* One for the page private */
4168                                 page_cache_release(page);
4169                         }
4170                         spin_unlock(&page->mapping->private_lock);
4171
4172                 }
4173                 if (page) {
4174                         /* One for when we alloced the page */
4175                         page_cache_release(page);
4176                 }
4177         } while (index != start_idx);
4178 }
4179
4180 /*
4181  * Helper for releasing the extent buffer.
4182  */
4183 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4184 {
4185         btrfs_release_extent_buffer_page(eb, 0);
4186         __free_extent_buffer(eb);
4187 }
4188
4189 static void check_buffer_tree_ref(struct extent_buffer *eb)
4190 {
4191         /* the ref bit is tricky.  We have to make sure it is set
4192          * if we have the buffer dirty.   Otherwise the
4193          * code to free a buffer can end up dropping a dirty
4194          * page
4195          *
4196          * Once the ref bit is set, it won't go away while the
4197          * buffer is dirty or in writeback, and it also won't
4198          * go away while we have the reference count on the
4199          * eb bumped.
4200          *
4201          * We can't just set the ref bit without bumping the
4202          * ref on the eb because free_extent_buffer might
4203          * see the ref bit and try to clear it.  If this happens
4204          * free_extent_buffer might end up dropping our original
4205          * ref by mistake and freeing the page before we are able
4206          * to add one more ref.
4207          *
4208          * So bump the ref count first, then set the bit.  If someone
4209          * beat us to it, drop the ref we added.
4210          */
4211         spin_lock(&eb->refs_lock);
4212         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4213                 atomic_inc(&eb->refs);
4214         spin_unlock(&eb->refs_lock);
4215 }
4216
4217 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4218 {
4219         unsigned long num_pages, i;
4220
4221         check_buffer_tree_ref(eb);
4222
4223         num_pages = num_extent_pages(eb->start, eb->len);
4224         for (i = 0; i < num_pages; i++) {
4225                 struct page *p = extent_buffer_page(eb, i);
4226                 mark_page_accessed(p);
4227         }
4228 }
4229
4230 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4231                                           u64 start, unsigned long len)
4232 {
4233         unsigned long num_pages = num_extent_pages(start, len);
4234         unsigned long i;
4235         unsigned long index = start >> PAGE_CACHE_SHIFT;
4236         struct extent_buffer *eb;
4237         struct extent_buffer *exists = NULL;
4238         struct page *p;
4239         struct address_space *mapping = tree->mapping;
4240         int uptodate = 1;
4241         int ret;
4242
4243         rcu_read_lock();
4244         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4245         if (eb && atomic_inc_not_zero(&eb->refs)) {
4246                 rcu_read_unlock();
4247                 mark_extent_buffer_accessed(eb);
4248                 return eb;
4249         }
4250         rcu_read_unlock();
4251
4252         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4253         if (!eb)
4254                 return NULL;
4255
4256         for (i = 0; i < num_pages; i++, index++) {
4257                 p = find_or_create_page(mapping, index, GFP_NOFS);
4258                 if (!p)
4259                         goto free_eb;
4260
4261                 spin_lock(&mapping->private_lock);
4262                 if (PagePrivate(p)) {
4263                         /*
4264                          * We could have already allocated an eb for this page
4265                          * and attached one so lets see if we can get a ref on
4266                          * the existing eb, and if we can we know it's good and
4267                          * we can just return that one, else we know we can just
4268                          * overwrite page->private.
4269                          */
4270                         exists = (struct extent_buffer *)p->private;
4271                         if (atomic_inc_not_zero(&exists->refs)) {
4272                                 spin_unlock(&mapping->private_lock);
4273                                 unlock_page(p);
4274                                 page_cache_release(p);
4275                                 mark_extent_buffer_accessed(exists);
4276                                 goto free_eb;
4277                         }
4278
4279                         /*
4280                          * Do this so attach doesn't complain and we need to
4281                          * drop the ref the old guy had.
4282                          */
4283                         ClearPagePrivate(p);
4284                         WARN_ON(PageDirty(p));
4285                         page_cache_release(p);
4286                 }
4287                 attach_extent_buffer_page(eb, p);
4288                 spin_unlock(&mapping->private_lock);
4289                 WARN_ON(PageDirty(p));
4290                 mark_page_accessed(p);
4291                 eb->pages[i] = p;
4292                 if (!PageUptodate(p))
4293                         uptodate = 0;
4294
4295                 /*
4296                  * see below about how we avoid a nasty race with release page
4297                  * and why we unlock later
4298                  */
4299         }
4300         if (uptodate)
4301                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4302 again:
4303         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4304         if (ret)
4305                 goto free_eb;
4306
4307         spin_lock(&tree->buffer_lock);
4308         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4309         if (ret == -EEXIST) {
4310                 exists = radix_tree_lookup(&tree->buffer,
4311                                                 start >> PAGE_CACHE_SHIFT);
4312                 if (!atomic_inc_not_zero(&exists->refs)) {
4313                         spin_unlock(&tree->buffer_lock);
4314                         radix_tree_preload_end();
4315                         exists = NULL;
4316                         goto again;
4317                 }
4318                 spin_unlock(&tree->buffer_lock);
4319                 radix_tree_preload_end();
4320                 mark_extent_buffer_accessed(exists);
4321                 goto free_eb;
4322         }
4323         /* add one reference for the tree */
4324         check_buffer_tree_ref(eb);
4325         spin_unlock(&tree->buffer_lock);
4326         radix_tree_preload_end();
4327
4328         /*
4329          * there is a race where release page may have
4330          * tried to find this extent buffer in the radix
4331          * but failed.  It will tell the VM it is safe to
4332          * reclaim the, and it will clear the page private bit.
4333          * We must make sure to set the page private bit properly
4334          * after the extent buffer is in the radix tree so
4335          * it doesn't get lost
4336          */
4337         SetPageChecked(eb->pages[0]);
4338         for (i = 1; i < num_pages; i++) {
4339                 p = extent_buffer_page(eb, i);
4340                 ClearPageChecked(p);
4341                 unlock_page(p);
4342         }
4343         unlock_page(eb->pages[0]);
4344         return eb;
4345
4346 free_eb:
4347         for (i = 0; i < num_pages; i++) {
4348                 if (eb->pages[i])
4349                         unlock_page(eb->pages[i]);
4350         }
4351
4352         WARN_ON(!atomic_dec_and_test(&eb->refs));
4353         btrfs_release_extent_buffer(eb);
4354         return exists;
4355 }
4356
4357 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4358                                          u64 start, unsigned long len)
4359 {
4360         struct extent_buffer *eb;
4361
4362         rcu_read_lock();
4363         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4364         if (eb && atomic_inc_not_zero(&eb->refs)) {
4365                 rcu_read_unlock();
4366                 mark_extent_buffer_accessed(eb);
4367                 return eb;
4368         }
4369         rcu_read_unlock();
4370
4371         return NULL;
4372 }
4373
4374 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4375 {
4376         struct extent_buffer *eb =
4377                         container_of(head, struct extent_buffer, rcu_head);
4378
4379         __free_extent_buffer(eb);
4380 }
4381
4382 /* Expects to have eb->eb_lock already held */
4383 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4384 {
4385         WARN_ON(atomic_read(&eb->refs) == 0);
4386         if (atomic_dec_and_test(&eb->refs)) {
4387                 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4388                         spin_unlock(&eb->refs_lock);
4389                 } else {
4390                         struct extent_io_tree *tree = eb->tree;
4391
4392                         spin_unlock(&eb->refs_lock);
4393
4394                         spin_lock(&tree->buffer_lock);
4395                         radix_tree_delete(&tree->buffer,
4396                                           eb->start >> PAGE_CACHE_SHIFT);
4397                         spin_unlock(&tree->buffer_lock);
4398                 }
4399
4400                 /* Should be safe to release our pages at this point */
4401                 btrfs_release_extent_buffer_page(eb, 0);
4402                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4403                 return 1;
4404         }
4405         spin_unlock(&eb->refs_lock);
4406
4407         return 0;
4408 }
4409
4410 void free_extent_buffer(struct extent_buffer *eb)
4411 {
4412         if (!eb)
4413                 return;
4414
4415         spin_lock(&eb->refs_lock);
4416         if (atomic_read(&eb->refs) == 2 &&
4417             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4418                 atomic_dec(&eb->refs);
4419
4420         if (atomic_read(&eb->refs) == 2 &&
4421             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4422             !extent_buffer_under_io(eb) &&
4423             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4424                 atomic_dec(&eb->refs);
4425
4426         /*
4427          * I know this is terrible, but it's temporary until we stop tracking
4428          * the uptodate bits and such for the extent buffers.
4429          */
4430         release_extent_buffer(eb, GFP_ATOMIC);
4431 }
4432
4433 void free_extent_buffer_stale(struct extent_buffer *eb)
4434 {
4435         if (!eb)
4436                 return;
4437
4438         spin_lock(&eb->refs_lock);
4439         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4440
4441         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4442             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4443                 atomic_dec(&eb->refs);
4444         release_extent_buffer(eb, GFP_NOFS);
4445 }
4446
4447 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4448 {
4449         unsigned long i;
4450         unsigned long num_pages;
4451         struct page *page;
4452
4453         num_pages = num_extent_pages(eb->start, eb->len);
4454
4455         for (i = 0; i < num_pages; i++) {
4456                 page = extent_buffer_page(eb, i);
4457                 if (!PageDirty(page))
4458                         continue;
4459
4460                 lock_page(page);
4461                 WARN_ON(!PagePrivate(page));
4462
4463                 clear_page_dirty_for_io(page);
4464                 spin_lock_irq(&page->mapping->tree_lock);
4465                 if (!PageDirty(page)) {
4466                         radix_tree_tag_clear(&page->mapping->page_tree,
4467                                                 page_index(page),
4468                                                 PAGECACHE_TAG_DIRTY);
4469                 }
4470                 spin_unlock_irq(&page->mapping->tree_lock);
4471                 ClearPageError(page);
4472                 unlock_page(page);
4473         }
4474         WARN_ON(atomic_read(&eb->refs) == 0);
4475 }
4476
4477 int set_extent_buffer_dirty(struct extent_buffer *eb)
4478 {
4479         unsigned long i;
4480         unsigned long num_pages;
4481         int was_dirty = 0;
4482
4483         check_buffer_tree_ref(eb);
4484
4485         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4486
4487         num_pages = num_extent_pages(eb->start, eb->len);
4488         WARN_ON(atomic_read(&eb->refs) == 0);
4489         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4490
4491         for (i = 0; i < num_pages; i++)
4492                 set_page_dirty(extent_buffer_page(eb, i));
4493         return was_dirty;
4494 }
4495
4496 static int range_straddles_pages(u64 start, u64 len)
4497 {
4498         if (len < PAGE_CACHE_SIZE)
4499                 return 1;
4500         if (start & (PAGE_CACHE_SIZE - 1))
4501                 return 1;
4502         if ((start + len) & (PAGE_CACHE_SIZE - 1))
4503                 return 1;
4504         return 0;
4505 }
4506
4507 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4508 {
4509         unsigned long i;
4510         struct page *page;
4511         unsigned long num_pages;
4512
4513         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4514         num_pages = num_extent_pages(eb->start, eb->len);
4515         for (i = 0; i < num_pages; i++) {
4516                 page = extent_buffer_page(eb, i);
4517                 if (page)
4518                         ClearPageUptodate(page);
4519         }
4520         return 0;
4521 }
4522
4523 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4524 {
4525         unsigned long i;
4526         struct page *page;
4527         unsigned long num_pages;
4528
4529         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4530         num_pages = num_extent_pages(eb->start, eb->len);
4531         for (i = 0; i < num_pages; i++) {
4532                 page = extent_buffer_page(eb, i);
4533                 SetPageUptodate(page);
4534         }
4535         return 0;
4536 }
4537
4538 int extent_range_uptodate(struct extent_io_tree *tree,
4539                           u64 start, u64 end)
4540 {
4541         struct page *page;
4542         int ret;
4543         int pg_uptodate = 1;
4544         int uptodate;
4545         unsigned long index;
4546
4547         if (range_straddles_pages(start, end - start + 1)) {
4548                 ret = test_range_bit(tree, start, end,
4549                                      EXTENT_UPTODATE, 1, NULL);
4550                 if (ret)
4551                         return 1;
4552         }
4553         while (start <= end) {
4554                 index = start >> PAGE_CACHE_SHIFT;
4555                 page = find_get_page(tree->mapping, index);
4556                 if (!page)
4557                         return 1;
4558                 uptodate = PageUptodate(page);
4559                 page_cache_release(page);
4560                 if (!uptodate) {
4561                         pg_uptodate = 0;
4562                         break;
4563                 }
4564                 start += PAGE_CACHE_SIZE;
4565         }
4566         return pg_uptodate;
4567 }
4568
4569 int extent_buffer_uptodate(struct extent_buffer *eb)
4570 {
4571         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4572 }
4573
4574 int read_extent_buffer_pages(struct extent_io_tree *tree,
4575                              struct extent_buffer *eb, u64 start, int wait,
4576                              get_extent_t *get_extent, int mirror_num)
4577 {
4578         unsigned long i;
4579         unsigned long start_i;
4580         struct page *page;
4581         int err;
4582         int ret = 0;
4583         int locked_pages = 0;
4584         int all_uptodate = 1;
4585         unsigned long num_pages;
4586         unsigned long num_reads = 0;
4587         struct bio *bio = NULL;
4588         unsigned long bio_flags = 0;
4589
4590         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4591                 return 0;
4592
4593         if (start) {
4594                 WARN_ON(start < eb->start);
4595                 start_i = (start >> PAGE_CACHE_SHIFT) -
4596                         (eb->start >> PAGE_CACHE_SHIFT);
4597         } else {
4598                 start_i = 0;
4599         }
4600
4601         num_pages = num_extent_pages(eb->start, eb->len);
4602         for (i = start_i; i < num_pages; i++) {
4603                 page = extent_buffer_page(eb, i);
4604                 if (wait == WAIT_NONE) {
4605                         if (!trylock_page(page))
4606                                 goto unlock_exit;
4607                 } else {
4608                         lock_page(page);
4609                 }
4610                 locked_pages++;
4611                 if (!PageUptodate(page)) {
4612                         num_reads++;
4613                         all_uptodate = 0;
4614                 }
4615         }
4616         if (all_uptodate) {
4617                 if (start_i == 0)
4618                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4619                 goto unlock_exit;
4620         }
4621
4622         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4623         eb->read_mirror = 0;
4624         atomic_set(&eb->io_pages, num_reads);
4625         for (i = start_i; i < num_pages; i++) {
4626                 page = extent_buffer_page(eb, i);
4627                 if (!PageUptodate(page)) {
4628                         ClearPageError(page);
4629                         err = __extent_read_full_page(tree, page,
4630                                                       get_extent, &bio,
4631                                                       mirror_num, &bio_flags);
4632                         if (err)
4633                                 ret = err;
4634                 } else {
4635                         unlock_page(page);
4636                 }
4637         }
4638
4639         if (bio) {
4640                 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4641                 if (err)
4642                         return err;
4643         }
4644
4645         if (ret || wait != WAIT_COMPLETE)
4646                 return ret;
4647
4648         for (i = start_i; i < num_pages; i++) {
4649                 page = extent_buffer_page(eb, i);
4650                 wait_on_page_locked(page);
4651                 if (!PageUptodate(page))
4652                         ret = -EIO;
4653         }
4654
4655         return ret;
4656
4657 unlock_exit:
4658         i = start_i;
4659         while (locked_pages > 0) {
4660                 page = extent_buffer_page(eb, i);
4661                 i++;
4662                 unlock_page(page);
4663                 locked_pages--;
4664         }
4665         return ret;
4666 }
4667
4668 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4669                         unsigned long start,
4670                         unsigned long len)
4671 {
4672         size_t cur;
4673         size_t offset;
4674         struct page *page;
4675         char *kaddr;
4676         char *dst = (char *)dstv;
4677         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4678         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4679
4680         WARN_ON(start > eb->len);
4681         WARN_ON(start + len > eb->start + eb->len);
4682
4683         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4684
4685         while (len > 0) {
4686                 page = extent_buffer_page(eb, i);
4687
4688                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4689                 kaddr = page_address(page);
4690                 memcpy(dst, kaddr + offset, cur);
4691
4692                 dst += cur;
4693                 len -= cur;
4694                 offset = 0;
4695                 i++;
4696         }
4697 }
4698
4699 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4700                                unsigned long min_len, char **map,
4701                                unsigned long *map_start,
4702                                unsigned long *map_len)
4703 {
4704         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4705         char *kaddr;
4706         struct page *p;
4707         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4708         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4709         unsigned long end_i = (start_offset + start + min_len - 1) >>
4710                 PAGE_CACHE_SHIFT;
4711
4712         if (i != end_i)
4713                 return -EINVAL;
4714
4715         if (i == 0) {
4716                 offset = start_offset;
4717                 *map_start = 0;
4718         } else {
4719                 offset = 0;
4720                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4721         }
4722
4723         if (start + min_len > eb->len) {
4724                 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4725                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4726                        eb->len, start, min_len);
4727                 WARN_ON(1);
4728                 return -EINVAL;
4729         }
4730
4731         p = extent_buffer_page(eb, i);
4732         kaddr = page_address(p);
4733         *map = kaddr + offset;
4734         *map_len = PAGE_CACHE_SIZE - offset;
4735         return 0;
4736 }
4737
4738 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4739                           unsigned long start,
4740                           unsigned long len)
4741 {
4742         size_t cur;
4743         size_t offset;
4744         struct page *page;
4745         char *kaddr;
4746         char *ptr = (char *)ptrv;
4747         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4748         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4749         int ret = 0;
4750
4751         WARN_ON(start > eb->len);
4752         WARN_ON(start + len > eb->start + eb->len);
4753
4754         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4755
4756         while (len > 0) {
4757                 page = extent_buffer_page(eb, i);
4758
4759                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4760
4761                 kaddr = page_address(page);
4762                 ret = memcmp(ptr, kaddr + offset, cur);
4763                 if (ret)
4764                         break;
4765
4766                 ptr += cur;
4767                 len -= cur;
4768                 offset = 0;
4769                 i++;
4770         }
4771         return ret;
4772 }
4773
4774 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4775                          unsigned long start, unsigned long len)
4776 {
4777         size_t cur;
4778         size_t offset;
4779         struct page *page;
4780         char *kaddr;
4781         char *src = (char *)srcv;
4782         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4783         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4784
4785         WARN_ON(start > eb->len);
4786         WARN_ON(start + len > eb->start + eb->len);
4787
4788         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4789
4790         while (len > 0) {
4791                 page = extent_buffer_page(eb, i);
4792                 WARN_ON(!PageUptodate(page));
4793
4794                 cur = min(len, PAGE_CACHE_SIZE - offset);
4795                 kaddr = page_address(page);
4796                 memcpy(kaddr + offset, src, cur);
4797
4798                 src += cur;
4799                 len -= cur;
4800                 offset = 0;
4801                 i++;
4802         }
4803 }
4804
4805 void memset_extent_buffer(struct extent_buffer *eb, char c,
4806                           unsigned long start, unsigned long len)
4807 {
4808         size_t cur;
4809         size_t offset;
4810         struct page *page;
4811         char *kaddr;
4812         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4813         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4814
4815         WARN_ON(start > eb->len);
4816         WARN_ON(start + len > eb->start + eb->len);
4817
4818         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4819
4820         while (len > 0) {
4821                 page = extent_buffer_page(eb, i);
4822                 WARN_ON(!PageUptodate(page));
4823
4824                 cur = min(len, PAGE_CACHE_SIZE - offset);
4825                 kaddr = page_address(page);
4826                 memset(kaddr + offset, c, cur);
4827
4828                 len -= cur;
4829                 offset = 0;
4830                 i++;
4831         }
4832 }
4833
4834 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4835                         unsigned long dst_offset, unsigned long src_offset,
4836                         unsigned long len)
4837 {
4838         u64 dst_len = dst->len;
4839         size_t cur;
4840         size_t offset;
4841         struct page *page;
4842         char *kaddr;
4843         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4844         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4845
4846         WARN_ON(src->len != dst_len);
4847
4848         offset = (start_offset + dst_offset) &
4849                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4850
4851         while (len > 0) {
4852                 page = extent_buffer_page(dst, i);
4853                 WARN_ON(!PageUptodate(page));
4854
4855                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4856
4857                 kaddr = page_address(page);
4858                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4859
4860                 src_offset += cur;
4861                 len -= cur;
4862                 offset = 0;
4863                 i++;
4864         }
4865 }
4866
4867 static void move_pages(struct page *dst_page, struct page *src_page,
4868                        unsigned long dst_off, unsigned long src_off,
4869                        unsigned long len)
4870 {
4871         char *dst_kaddr = page_address(dst_page);
4872         if (dst_page == src_page) {
4873                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4874         } else {
4875                 char *src_kaddr = page_address(src_page);
4876                 char *p = dst_kaddr + dst_off + len;
4877                 char *s = src_kaddr + src_off + len;
4878
4879                 while (len--)
4880                         *--p = *--s;
4881         }
4882 }
4883
4884 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4885 {
4886         unsigned long distance = (src > dst) ? src - dst : dst - src;
4887         return distance < len;
4888 }
4889
4890 static void copy_pages(struct page *dst_page, struct page *src_page,
4891                        unsigned long dst_off, unsigned long src_off,
4892                        unsigned long len)
4893 {
4894         char *dst_kaddr = page_address(dst_page);
4895         char *src_kaddr;
4896         int must_memmove = 0;
4897
4898         if (dst_page != src_page) {
4899                 src_kaddr = page_address(src_page);
4900         } else {
4901                 src_kaddr = dst_kaddr;
4902                 if (areas_overlap(src_off, dst_off, len))
4903                         must_memmove = 1;
4904         }
4905
4906         if (must_memmove)
4907                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4908         else
4909                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4910 }
4911
4912 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4913                            unsigned long src_offset, unsigned long len)
4914 {
4915         size_t cur;
4916         size_t dst_off_in_page;
4917         size_t src_off_in_page;
4918         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4919         unsigned long dst_i;
4920         unsigned long src_i;
4921
4922         if (src_offset + len > dst->len) {
4923                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4924                        "len %lu dst len %lu\n", src_offset, len, dst->len);
4925                 BUG_ON(1);
4926         }
4927         if (dst_offset + len > dst->len) {
4928                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4929                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
4930                 BUG_ON(1);
4931         }
4932
4933         while (len > 0) {
4934                 dst_off_in_page = (start_offset + dst_offset) &
4935                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4936                 src_off_in_page = (start_offset + src_offset) &
4937                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4938
4939                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4940                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4941
4942                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4943                                                src_off_in_page));
4944                 cur = min_t(unsigned long, cur,
4945                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4946
4947                 copy_pages(extent_buffer_page(dst, dst_i),
4948                            extent_buffer_page(dst, src_i),
4949                            dst_off_in_page, src_off_in_page, cur);
4950
4951                 src_offset += cur;
4952                 dst_offset += cur;
4953                 len -= cur;
4954         }
4955 }
4956
4957 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4958                            unsigned long src_offset, unsigned long len)
4959 {
4960         size_t cur;
4961         size_t dst_off_in_page;
4962         size_t src_off_in_page;
4963         unsigned long dst_end = dst_offset + len - 1;
4964         unsigned long src_end = src_offset + len - 1;
4965         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4966         unsigned long dst_i;
4967         unsigned long src_i;
4968
4969         if (src_offset + len > dst->len) {
4970                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4971                        "len %lu len %lu\n", src_offset, len, dst->len);
4972                 BUG_ON(1);
4973         }
4974         if (dst_offset + len > dst->len) {
4975                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4976                        "len %lu len %lu\n", dst_offset, len, dst->len);
4977                 BUG_ON(1);
4978         }
4979         if (dst_offset < src_offset) {
4980                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4981                 return;
4982         }
4983         while (len > 0) {
4984                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4985                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4986
4987                 dst_off_in_page = (start_offset + dst_end) &
4988                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4989                 src_off_in_page = (start_offset + src_end) &
4990                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4991
4992                 cur = min_t(unsigned long, len, src_off_in_page + 1);
4993                 cur = min(cur, dst_off_in_page + 1);
4994                 move_pages(extent_buffer_page(dst, dst_i),
4995                            extent_buffer_page(dst, src_i),
4996                            dst_off_in_page - cur + 1,
4997                            src_off_in_page - cur + 1, cur);
4998
4999                 dst_end -= cur;
5000                 src_end -= cur;
5001                 len -= cur;
5002         }
5003 }
5004
5005 int try_release_extent_buffer(struct page *page, gfp_t mask)
5006 {
5007         struct extent_buffer *eb;
5008
5009         /*
5010          * We need to make sure noboody is attaching this page to an eb right
5011          * now.
5012          */
5013         spin_lock(&page->mapping->private_lock);
5014         if (!PagePrivate(page)) {
5015                 spin_unlock(&page->mapping->private_lock);
5016                 return 1;
5017         }
5018
5019         eb = (struct extent_buffer *)page->private;
5020         BUG_ON(!eb);
5021
5022         /*
5023          * This is a little awful but should be ok, we need to make sure that
5024          * the eb doesn't disappear out from under us while we're looking at
5025          * this page.
5026          */
5027         spin_lock(&eb->refs_lock);
5028         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5029                 spin_unlock(&eb->refs_lock);
5030                 spin_unlock(&page->mapping->private_lock);
5031                 return 0;
5032         }
5033         spin_unlock(&page->mapping->private_lock);
5034
5035         if ((mask & GFP_NOFS) == GFP_NOFS)
5036                 mask = GFP_NOFS;
5037
5038         /*
5039          * If tree ref isn't set then we know the ref on this eb is a real ref,
5040          * so just return, this page will likely be freed soon anyway.
5041          */
5042         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5043                 spin_unlock(&eb->refs_lock);
5044                 return 0;
5045         }
5046
5047         return release_extent_buffer(eb, mask);
5048 }