OSDN Git Service

Btrfs: do not async metadata csumming in certain situations
[uclinux-h8/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30
31 #define LEAK_DEBUG 0
32 #if LEAK_DEBUG
33 static DEFINE_SPINLOCK(leak_lock);
34 #endif
35
36 #define BUFFER_LRU_MAX 64
37
38 struct tree_entry {
39         u64 start;
40         u64 end;
41         struct rb_node rb_node;
42 };
43
44 struct extent_page_data {
45         struct bio *bio;
46         struct extent_io_tree *tree;
47         get_extent_t *get_extent;
48         unsigned long bio_flags;
49
50         /* tells writepage not to lock the state bits for this range
51          * it still does the unlocking
52          */
53         unsigned int extent_locked:1;
54
55         /* tells the submit_bio code to use a WRITE_SYNC */
56         unsigned int sync_io:1;
57 };
58
59 static noinline void flush_write_bio(void *data);
60 static inline struct btrfs_fs_info *
61 tree_fs_info(struct extent_io_tree *tree)
62 {
63         return btrfs_sb(tree->mapping->host->i_sb);
64 }
65
66 int __init extent_io_init(void)
67 {
68         extent_state_cache = kmem_cache_create("btrfs_extent_state",
69                         sizeof(struct extent_state), 0,
70                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
71         if (!extent_state_cache)
72                 return -ENOMEM;
73
74         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
75                         sizeof(struct extent_buffer), 0,
76                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
77         if (!extent_buffer_cache)
78                 goto free_state_cache;
79         return 0;
80
81 free_state_cache:
82         kmem_cache_destroy(extent_state_cache);
83         return -ENOMEM;
84 }
85
86 void extent_io_exit(void)
87 {
88         struct extent_state *state;
89         struct extent_buffer *eb;
90
91         while (!list_empty(&states)) {
92                 state = list_entry(states.next, struct extent_state, leak_list);
93                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
94                        "state %lu in tree %p refs %d\n",
95                        (unsigned long long)state->start,
96                        (unsigned long long)state->end,
97                        state->state, state->tree, atomic_read(&state->refs));
98                 list_del(&state->leak_list);
99                 kmem_cache_free(extent_state_cache, state);
100
101         }
102
103         while (!list_empty(&buffers)) {
104                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
105                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
106                        "refs %d\n", (unsigned long long)eb->start,
107                        eb->len, atomic_read(&eb->refs));
108                 list_del(&eb->leak_list);
109                 kmem_cache_free(extent_buffer_cache, eb);
110         }
111         if (extent_state_cache)
112                 kmem_cache_destroy(extent_state_cache);
113         if (extent_buffer_cache)
114                 kmem_cache_destroy(extent_buffer_cache);
115 }
116
117 void extent_io_tree_init(struct extent_io_tree *tree,
118                          struct address_space *mapping)
119 {
120         tree->state = RB_ROOT;
121         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
122         tree->ops = NULL;
123         tree->dirty_bytes = 0;
124         spin_lock_init(&tree->lock);
125         spin_lock_init(&tree->buffer_lock);
126         tree->mapping = mapping;
127 }
128
129 static struct extent_state *alloc_extent_state(gfp_t mask)
130 {
131         struct extent_state *state;
132 #if LEAK_DEBUG
133         unsigned long flags;
134 #endif
135
136         state = kmem_cache_alloc(extent_state_cache, mask);
137         if (!state)
138                 return state;
139         state->state = 0;
140         state->private = 0;
141         state->tree = NULL;
142 #if LEAK_DEBUG
143         spin_lock_irqsave(&leak_lock, flags);
144         list_add(&state->leak_list, &states);
145         spin_unlock_irqrestore(&leak_lock, flags);
146 #endif
147         atomic_set(&state->refs, 1);
148         init_waitqueue_head(&state->wq);
149         trace_alloc_extent_state(state, mask, _RET_IP_);
150         return state;
151 }
152
153 void free_extent_state(struct extent_state *state)
154 {
155         if (!state)
156                 return;
157         if (atomic_dec_and_test(&state->refs)) {
158 #if LEAK_DEBUG
159                 unsigned long flags;
160 #endif
161                 WARN_ON(state->tree);
162 #if LEAK_DEBUG
163                 spin_lock_irqsave(&leak_lock, flags);
164                 list_del(&state->leak_list);
165                 spin_unlock_irqrestore(&leak_lock, flags);
166 #endif
167                 trace_free_extent_state(state, _RET_IP_);
168                 kmem_cache_free(extent_state_cache, state);
169         }
170 }
171
172 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
173                                    struct rb_node *node)
174 {
175         struct rb_node **p = &root->rb_node;
176         struct rb_node *parent = NULL;
177         struct tree_entry *entry;
178
179         while (*p) {
180                 parent = *p;
181                 entry = rb_entry(parent, struct tree_entry, rb_node);
182
183                 if (offset < entry->start)
184                         p = &(*p)->rb_left;
185                 else if (offset > entry->end)
186                         p = &(*p)->rb_right;
187                 else
188                         return parent;
189         }
190
191         rb_link_node(node, parent, p);
192         rb_insert_color(node, root);
193         return NULL;
194 }
195
196 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
197                                      struct rb_node **prev_ret,
198                                      struct rb_node **next_ret)
199 {
200         struct rb_root *root = &tree->state;
201         struct rb_node *n = root->rb_node;
202         struct rb_node *prev = NULL;
203         struct rb_node *orig_prev = NULL;
204         struct tree_entry *entry;
205         struct tree_entry *prev_entry = NULL;
206
207         while (n) {
208                 entry = rb_entry(n, struct tree_entry, rb_node);
209                 prev = n;
210                 prev_entry = entry;
211
212                 if (offset < entry->start)
213                         n = n->rb_left;
214                 else if (offset > entry->end)
215                         n = n->rb_right;
216                 else
217                         return n;
218         }
219
220         if (prev_ret) {
221                 orig_prev = prev;
222                 while (prev && offset > prev_entry->end) {
223                         prev = rb_next(prev);
224                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
225                 }
226                 *prev_ret = prev;
227                 prev = orig_prev;
228         }
229
230         if (next_ret) {
231                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
232                 while (prev && offset < prev_entry->start) {
233                         prev = rb_prev(prev);
234                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
235                 }
236                 *next_ret = prev;
237         }
238         return NULL;
239 }
240
241 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
242                                           u64 offset)
243 {
244         struct rb_node *prev = NULL;
245         struct rb_node *ret;
246
247         ret = __etree_search(tree, offset, &prev, NULL);
248         if (!ret)
249                 return prev;
250         return ret;
251 }
252
253 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
254                      struct extent_state *other)
255 {
256         if (tree->ops && tree->ops->merge_extent_hook)
257                 tree->ops->merge_extent_hook(tree->mapping->host, new,
258                                              other);
259 }
260
261 /*
262  * utility function to look for merge candidates inside a given range.
263  * Any extents with matching state are merged together into a single
264  * extent in the tree.  Extents with EXTENT_IO in their state field
265  * are not merged because the end_io handlers need to be able to do
266  * operations on them without sleeping (or doing allocations/splits).
267  *
268  * This should be called with the tree lock held.
269  */
270 static void merge_state(struct extent_io_tree *tree,
271                         struct extent_state *state)
272 {
273         struct extent_state *other;
274         struct rb_node *other_node;
275
276         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
277                 return;
278
279         other_node = rb_prev(&state->rb_node);
280         if (other_node) {
281                 other = rb_entry(other_node, struct extent_state, rb_node);
282                 if (other->end == state->start - 1 &&
283                     other->state == state->state) {
284                         merge_cb(tree, state, other);
285                         state->start = other->start;
286                         other->tree = NULL;
287                         rb_erase(&other->rb_node, &tree->state);
288                         free_extent_state(other);
289                 }
290         }
291         other_node = rb_next(&state->rb_node);
292         if (other_node) {
293                 other = rb_entry(other_node, struct extent_state, rb_node);
294                 if (other->start == state->end + 1 &&
295                     other->state == state->state) {
296                         merge_cb(tree, state, other);
297                         state->end = other->end;
298                         other->tree = NULL;
299                         rb_erase(&other->rb_node, &tree->state);
300                         free_extent_state(other);
301                 }
302         }
303 }
304
305 static void set_state_cb(struct extent_io_tree *tree,
306                          struct extent_state *state, int *bits)
307 {
308         if (tree->ops && tree->ops->set_bit_hook)
309                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
310 }
311
312 static void clear_state_cb(struct extent_io_tree *tree,
313                            struct extent_state *state, int *bits)
314 {
315         if (tree->ops && tree->ops->clear_bit_hook)
316                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
317 }
318
319 static void set_state_bits(struct extent_io_tree *tree,
320                            struct extent_state *state, int *bits);
321
322 /*
323  * insert an extent_state struct into the tree.  'bits' are set on the
324  * struct before it is inserted.
325  *
326  * This may return -EEXIST if the extent is already there, in which case the
327  * state struct is freed.
328  *
329  * The tree lock is not taken internally.  This is a utility function and
330  * probably isn't what you want to call (see set/clear_extent_bit).
331  */
332 static int insert_state(struct extent_io_tree *tree,
333                         struct extent_state *state, u64 start, u64 end,
334                         int *bits)
335 {
336         struct rb_node *node;
337
338         if (end < start) {
339                 printk(KERN_ERR "btrfs end < start %llu %llu\n",
340                        (unsigned long long)end,
341                        (unsigned long long)start);
342                 WARN_ON(1);
343         }
344         state->start = start;
345         state->end = end;
346
347         set_state_bits(tree, state, bits);
348
349         node = tree_insert(&tree->state, end, &state->rb_node);
350         if (node) {
351                 struct extent_state *found;
352                 found = rb_entry(node, struct extent_state, rb_node);
353                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
354                        "%llu %llu\n", (unsigned long long)found->start,
355                        (unsigned long long)found->end,
356                        (unsigned long long)start, (unsigned long long)end);
357                 return -EEXIST;
358         }
359         state->tree = tree;
360         merge_state(tree, state);
361         return 0;
362 }
363
364 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
365                      u64 split)
366 {
367         if (tree->ops && tree->ops->split_extent_hook)
368                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
369 }
370
371 /*
372  * split a given extent state struct in two, inserting the preallocated
373  * struct 'prealloc' as the newly created second half.  'split' indicates an
374  * offset inside 'orig' where it should be split.
375  *
376  * Before calling,
377  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
378  * are two extent state structs in the tree:
379  * prealloc: [orig->start, split - 1]
380  * orig: [ split, orig->end ]
381  *
382  * The tree locks are not taken by this function. They need to be held
383  * by the caller.
384  */
385 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
386                        struct extent_state *prealloc, u64 split)
387 {
388         struct rb_node *node;
389
390         split_cb(tree, orig, split);
391
392         prealloc->start = orig->start;
393         prealloc->end = split - 1;
394         prealloc->state = orig->state;
395         orig->start = split;
396
397         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
398         if (node) {
399                 free_extent_state(prealloc);
400                 return -EEXIST;
401         }
402         prealloc->tree = tree;
403         return 0;
404 }
405
406 static struct extent_state *next_state(struct extent_state *state)
407 {
408         struct rb_node *next = rb_next(&state->rb_node);
409         if (next)
410                 return rb_entry(next, struct extent_state, rb_node);
411         else
412                 return NULL;
413 }
414
415 /*
416  * utility function to clear some bits in an extent state struct.
417  * it will optionally wake up any one waiting on this state (wake == 1).
418  *
419  * If no bits are set on the state struct after clearing things, the
420  * struct is freed and removed from the tree
421  */
422 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
423                                             struct extent_state *state,
424                                             int *bits, int wake)
425 {
426         struct extent_state *next;
427         int bits_to_clear = *bits & ~EXTENT_CTLBITS;
428
429         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
430                 u64 range = state->end - state->start + 1;
431                 WARN_ON(range > tree->dirty_bytes);
432                 tree->dirty_bytes -= range;
433         }
434         clear_state_cb(tree, state, bits);
435         state->state &= ~bits_to_clear;
436         if (wake)
437                 wake_up(&state->wq);
438         if (state->state == 0) {
439                 next = next_state(state);
440                 if (state->tree) {
441                         rb_erase(&state->rb_node, &tree->state);
442                         state->tree = NULL;
443                         free_extent_state(state);
444                 } else {
445                         WARN_ON(1);
446                 }
447         } else {
448                 merge_state(tree, state);
449                 next = next_state(state);
450         }
451         return next;
452 }
453
454 static struct extent_state *
455 alloc_extent_state_atomic(struct extent_state *prealloc)
456 {
457         if (!prealloc)
458                 prealloc = alloc_extent_state(GFP_ATOMIC);
459
460         return prealloc;
461 }
462
463 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
464 {
465         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
466                     "Extent tree was modified by another "
467                     "thread while locked.");
468 }
469
470 /*
471  * clear some bits on a range in the tree.  This may require splitting
472  * or inserting elements in the tree, so the gfp mask is used to
473  * indicate which allocations or sleeping are allowed.
474  *
475  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
476  * the given range from the tree regardless of state (ie for truncate).
477  *
478  * the range [start, end] is inclusive.
479  *
480  * This takes the tree lock, and returns 0 on success and < 0 on error.
481  */
482 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
483                      int bits, int wake, int delete,
484                      struct extent_state **cached_state,
485                      gfp_t mask)
486 {
487         struct extent_state *state;
488         struct extent_state *cached;
489         struct extent_state *prealloc = NULL;
490         struct rb_node *node;
491         u64 last_end;
492         int err;
493         int clear = 0;
494
495         if (delete)
496                 bits |= ~EXTENT_CTLBITS;
497         bits |= EXTENT_FIRST_DELALLOC;
498
499         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
500                 clear = 1;
501 again:
502         if (!prealloc && (mask & __GFP_WAIT)) {
503                 prealloc = alloc_extent_state(mask);
504                 if (!prealloc)
505                         return -ENOMEM;
506         }
507
508         spin_lock(&tree->lock);
509         if (cached_state) {
510                 cached = *cached_state;
511
512                 if (clear) {
513                         *cached_state = NULL;
514                         cached_state = NULL;
515                 }
516
517                 if (cached && cached->tree && cached->start <= start &&
518                     cached->end > start) {
519                         if (clear)
520                                 atomic_dec(&cached->refs);
521                         state = cached;
522                         goto hit_next;
523                 }
524                 if (clear)
525                         free_extent_state(cached);
526         }
527         /*
528          * this search will find the extents that end after
529          * our range starts
530          */
531         node = tree_search(tree, start);
532         if (!node)
533                 goto out;
534         state = rb_entry(node, struct extent_state, rb_node);
535 hit_next:
536         if (state->start > end)
537                 goto out;
538         WARN_ON(state->end < start);
539         last_end = state->end;
540
541         /* the state doesn't have the wanted bits, go ahead */
542         if (!(state->state & bits)) {
543                 state = next_state(state);
544                 goto next;
545         }
546
547         /*
548          *     | ---- desired range ---- |
549          *  | state | or
550          *  | ------------- state -------------- |
551          *
552          * We need to split the extent we found, and may flip
553          * bits on second half.
554          *
555          * If the extent we found extends past our range, we
556          * just split and search again.  It'll get split again
557          * the next time though.
558          *
559          * If the extent we found is inside our range, we clear
560          * the desired bit on it.
561          */
562
563         if (state->start < start) {
564                 prealloc = alloc_extent_state_atomic(prealloc);
565                 BUG_ON(!prealloc);
566                 err = split_state(tree, state, prealloc, start);
567                 if (err)
568                         extent_io_tree_panic(tree, err);
569
570                 prealloc = NULL;
571                 if (err)
572                         goto out;
573                 if (state->end <= end) {
574                         state = clear_state_bit(tree, state, &bits, wake);
575                         goto next;
576                 }
577                 goto search_again;
578         }
579         /*
580          * | ---- desired range ---- |
581          *                        | state |
582          * We need to split the extent, and clear the bit
583          * on the first half
584          */
585         if (state->start <= end && state->end > end) {
586                 prealloc = alloc_extent_state_atomic(prealloc);
587                 BUG_ON(!prealloc);
588                 err = split_state(tree, state, prealloc, end + 1);
589                 if (err)
590                         extent_io_tree_panic(tree, err);
591
592                 if (wake)
593                         wake_up(&state->wq);
594
595                 clear_state_bit(tree, prealloc, &bits, wake);
596
597                 prealloc = NULL;
598                 goto out;
599         }
600
601         state = clear_state_bit(tree, state, &bits, wake);
602 next:
603         if (last_end == (u64)-1)
604                 goto out;
605         start = last_end + 1;
606         if (start <= end && state && !need_resched())
607                 goto hit_next;
608         goto search_again;
609
610 out:
611         spin_unlock(&tree->lock);
612         if (prealloc)
613                 free_extent_state(prealloc);
614
615         return 0;
616
617 search_again:
618         if (start > end)
619                 goto out;
620         spin_unlock(&tree->lock);
621         if (mask & __GFP_WAIT)
622                 cond_resched();
623         goto again;
624 }
625
626 static void wait_on_state(struct extent_io_tree *tree,
627                           struct extent_state *state)
628                 __releases(tree->lock)
629                 __acquires(tree->lock)
630 {
631         DEFINE_WAIT(wait);
632         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
633         spin_unlock(&tree->lock);
634         schedule();
635         spin_lock(&tree->lock);
636         finish_wait(&state->wq, &wait);
637 }
638
639 /*
640  * waits for one or more bits to clear on a range in the state tree.
641  * The range [start, end] is inclusive.
642  * The tree lock is taken by this function
643  */
644 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
645 {
646         struct extent_state *state;
647         struct rb_node *node;
648
649         spin_lock(&tree->lock);
650 again:
651         while (1) {
652                 /*
653                  * this search will find all the extents that end after
654                  * our range starts
655                  */
656                 node = tree_search(tree, start);
657                 if (!node)
658                         break;
659
660                 state = rb_entry(node, struct extent_state, rb_node);
661
662                 if (state->start > end)
663                         goto out;
664
665                 if (state->state & bits) {
666                         start = state->start;
667                         atomic_inc(&state->refs);
668                         wait_on_state(tree, state);
669                         free_extent_state(state);
670                         goto again;
671                 }
672                 start = state->end + 1;
673
674                 if (start > end)
675                         break;
676
677                 cond_resched_lock(&tree->lock);
678         }
679 out:
680         spin_unlock(&tree->lock);
681 }
682
683 static void set_state_bits(struct extent_io_tree *tree,
684                            struct extent_state *state,
685                            int *bits)
686 {
687         int bits_to_set = *bits & ~EXTENT_CTLBITS;
688
689         set_state_cb(tree, state, bits);
690         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
691                 u64 range = state->end - state->start + 1;
692                 tree->dirty_bytes += range;
693         }
694         state->state |= bits_to_set;
695 }
696
697 static void cache_state(struct extent_state *state,
698                         struct extent_state **cached_ptr)
699 {
700         if (cached_ptr && !(*cached_ptr)) {
701                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
702                         *cached_ptr = state;
703                         atomic_inc(&state->refs);
704                 }
705         }
706 }
707
708 static void uncache_state(struct extent_state **cached_ptr)
709 {
710         if (cached_ptr && (*cached_ptr)) {
711                 struct extent_state *state = *cached_ptr;
712                 *cached_ptr = NULL;
713                 free_extent_state(state);
714         }
715 }
716
717 /*
718  * set some bits on a range in the tree.  This may require allocations or
719  * sleeping, so the gfp mask is used to indicate what is allowed.
720  *
721  * If any of the exclusive bits are set, this will fail with -EEXIST if some
722  * part of the range already has the desired bits set.  The start of the
723  * existing range is returned in failed_start in this case.
724  *
725  * [start, end] is inclusive This takes the tree lock.
726  */
727
728 static int __must_check
729 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
730                  int bits, int exclusive_bits, u64 *failed_start,
731                  struct extent_state **cached_state, gfp_t mask)
732 {
733         struct extent_state *state;
734         struct extent_state *prealloc = NULL;
735         struct rb_node *node;
736         int err = 0;
737         u64 last_start;
738         u64 last_end;
739
740         bits |= EXTENT_FIRST_DELALLOC;
741 again:
742         if (!prealloc && (mask & __GFP_WAIT)) {
743                 prealloc = alloc_extent_state(mask);
744                 BUG_ON(!prealloc);
745         }
746
747         spin_lock(&tree->lock);
748         if (cached_state && *cached_state) {
749                 state = *cached_state;
750                 if (state->start <= start && state->end > start &&
751                     state->tree) {
752                         node = &state->rb_node;
753                         goto hit_next;
754                 }
755         }
756         /*
757          * this search will find all the extents that end after
758          * our range starts.
759          */
760         node = tree_search(tree, start);
761         if (!node) {
762                 prealloc = alloc_extent_state_atomic(prealloc);
763                 BUG_ON(!prealloc);
764                 err = insert_state(tree, prealloc, start, end, &bits);
765                 if (err)
766                         extent_io_tree_panic(tree, err);
767
768                 prealloc = NULL;
769                 goto out;
770         }
771         state = rb_entry(node, struct extent_state, rb_node);
772 hit_next:
773         last_start = state->start;
774         last_end = state->end;
775
776         /*
777          * | ---- desired range ---- |
778          * | state |
779          *
780          * Just lock what we found and keep going
781          */
782         if (state->start == start && state->end <= end) {
783                 if (state->state & exclusive_bits) {
784                         *failed_start = state->start;
785                         err = -EEXIST;
786                         goto out;
787                 }
788
789                 set_state_bits(tree, state, &bits);
790                 cache_state(state, cached_state);
791                 merge_state(tree, state);
792                 if (last_end == (u64)-1)
793                         goto out;
794                 start = last_end + 1;
795                 state = next_state(state);
796                 if (start < end && state && state->start == start &&
797                     !need_resched())
798                         goto hit_next;
799                 goto search_again;
800         }
801
802         /*
803          *     | ---- desired range ---- |
804          * | state |
805          *   or
806          * | ------------- state -------------- |
807          *
808          * We need to split the extent we found, and may flip bits on
809          * second half.
810          *
811          * If the extent we found extends past our
812          * range, we just split and search again.  It'll get split
813          * again the next time though.
814          *
815          * If the extent we found is inside our range, we set the
816          * desired bit on it.
817          */
818         if (state->start < start) {
819                 if (state->state & exclusive_bits) {
820                         *failed_start = start;
821                         err = -EEXIST;
822                         goto out;
823                 }
824
825                 prealloc = alloc_extent_state_atomic(prealloc);
826                 BUG_ON(!prealloc);
827                 err = split_state(tree, state, prealloc, start);
828                 if (err)
829                         extent_io_tree_panic(tree, err);
830
831                 prealloc = NULL;
832                 if (err)
833                         goto out;
834                 if (state->end <= end) {
835                         set_state_bits(tree, state, &bits);
836                         cache_state(state, cached_state);
837                         merge_state(tree, state);
838                         if (last_end == (u64)-1)
839                                 goto out;
840                         start = last_end + 1;
841                         state = next_state(state);
842                         if (start < end && state && state->start == start &&
843                             !need_resched())
844                                 goto hit_next;
845                 }
846                 goto search_again;
847         }
848         /*
849          * | ---- desired range ---- |
850          *     | state | or               | state |
851          *
852          * There's a hole, we need to insert something in it and
853          * ignore the extent we found.
854          */
855         if (state->start > start) {
856                 u64 this_end;
857                 if (end < last_start)
858                         this_end = end;
859                 else
860                         this_end = last_start - 1;
861
862                 prealloc = alloc_extent_state_atomic(prealloc);
863                 BUG_ON(!prealloc);
864
865                 /*
866                  * Avoid to free 'prealloc' if it can be merged with
867                  * the later extent.
868                  */
869                 err = insert_state(tree, prealloc, start, this_end,
870                                    &bits);
871                 if (err)
872                         extent_io_tree_panic(tree, err);
873
874                 cache_state(prealloc, cached_state);
875                 prealloc = NULL;
876                 start = this_end + 1;
877                 goto search_again;
878         }
879         /*
880          * | ---- desired range ---- |
881          *                        | state |
882          * We need to split the extent, and set the bit
883          * on the first half
884          */
885         if (state->start <= end && state->end > end) {
886                 if (state->state & exclusive_bits) {
887                         *failed_start = start;
888                         err = -EEXIST;
889                         goto out;
890                 }
891
892                 prealloc = alloc_extent_state_atomic(prealloc);
893                 BUG_ON(!prealloc);
894                 err = split_state(tree, state, prealloc, end + 1);
895                 if (err)
896                         extent_io_tree_panic(tree, err);
897
898                 set_state_bits(tree, prealloc, &bits);
899                 cache_state(prealloc, cached_state);
900                 merge_state(tree, prealloc);
901                 prealloc = NULL;
902                 goto out;
903         }
904
905         goto search_again;
906
907 out:
908         spin_unlock(&tree->lock);
909         if (prealloc)
910                 free_extent_state(prealloc);
911
912         return err;
913
914 search_again:
915         if (start > end)
916                 goto out;
917         spin_unlock(&tree->lock);
918         if (mask & __GFP_WAIT)
919                 cond_resched();
920         goto again;
921 }
922
923 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
924                    u64 *failed_start, struct extent_state **cached_state,
925                    gfp_t mask)
926 {
927         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
928                                 cached_state, mask);
929 }
930
931
932 /**
933  * convert_extent_bit - convert all bits in a given range from one bit to
934  *                      another
935  * @tree:       the io tree to search
936  * @start:      the start offset in bytes
937  * @end:        the end offset in bytes (inclusive)
938  * @bits:       the bits to set in this range
939  * @clear_bits: the bits to clear in this range
940  * @mask:       the allocation mask
941  *
942  * This will go through and set bits for the given range.  If any states exist
943  * already in this range they are set with the given bit and cleared of the
944  * clear_bits.  This is only meant to be used by things that are mergeable, ie
945  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
946  * boundary bits like LOCK.
947  */
948 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
949                        int bits, int clear_bits, gfp_t mask)
950 {
951         struct extent_state *state;
952         struct extent_state *prealloc = NULL;
953         struct rb_node *node;
954         int err = 0;
955         u64 last_start;
956         u64 last_end;
957
958 again:
959         if (!prealloc && (mask & __GFP_WAIT)) {
960                 prealloc = alloc_extent_state(mask);
961                 if (!prealloc)
962                         return -ENOMEM;
963         }
964
965         spin_lock(&tree->lock);
966         /*
967          * this search will find all the extents that end after
968          * our range starts.
969          */
970         node = tree_search(tree, start);
971         if (!node) {
972                 prealloc = alloc_extent_state_atomic(prealloc);
973                 if (!prealloc) {
974                         err = -ENOMEM;
975                         goto out;
976                 }
977                 err = insert_state(tree, prealloc, start, end, &bits);
978                 prealloc = NULL;
979                 if (err)
980                         extent_io_tree_panic(tree, err);
981                 goto out;
982         }
983         state = rb_entry(node, struct extent_state, rb_node);
984 hit_next:
985         last_start = state->start;
986         last_end = state->end;
987
988         /*
989          * | ---- desired range ---- |
990          * | state |
991          *
992          * Just lock what we found and keep going
993          */
994         if (state->start == start && state->end <= end) {
995                 set_state_bits(tree, state, &bits);
996                 state = clear_state_bit(tree, state, &clear_bits, 0);
997                 if (last_end == (u64)-1)
998                         goto out;
999                 start = last_end + 1;
1000                 if (start < end && state && state->start == start &&
1001                     !need_resched())
1002                         goto hit_next;
1003                 goto search_again;
1004         }
1005
1006         /*
1007          *     | ---- desired range ---- |
1008          * | state |
1009          *   or
1010          * | ------------- state -------------- |
1011          *
1012          * We need to split the extent we found, and may flip bits on
1013          * second half.
1014          *
1015          * If the extent we found extends past our
1016          * range, we just split and search again.  It'll get split
1017          * again the next time though.
1018          *
1019          * If the extent we found is inside our range, we set the
1020          * desired bit on it.
1021          */
1022         if (state->start < start) {
1023                 prealloc = alloc_extent_state_atomic(prealloc);
1024                 if (!prealloc) {
1025                         err = -ENOMEM;
1026                         goto out;
1027                 }
1028                 err = split_state(tree, state, prealloc, start);
1029                 if (err)
1030                         extent_io_tree_panic(tree, err);
1031                 prealloc = NULL;
1032                 if (err)
1033                         goto out;
1034                 if (state->end <= end) {
1035                         set_state_bits(tree, state, &bits);
1036                         state = clear_state_bit(tree, state, &clear_bits, 0);
1037                         if (last_end == (u64)-1)
1038                                 goto out;
1039                         start = last_end + 1;
1040                         if (start < end && state && state->start == start &&
1041                             !need_resched())
1042                                 goto hit_next;
1043                 }
1044                 goto search_again;
1045         }
1046         /*
1047          * | ---- desired range ---- |
1048          *     | state | or               | state |
1049          *
1050          * There's a hole, we need to insert something in it and
1051          * ignore the extent we found.
1052          */
1053         if (state->start > start) {
1054                 u64 this_end;
1055                 if (end < last_start)
1056                         this_end = end;
1057                 else
1058                         this_end = last_start - 1;
1059
1060                 prealloc = alloc_extent_state_atomic(prealloc);
1061                 if (!prealloc) {
1062                         err = -ENOMEM;
1063                         goto out;
1064                 }
1065
1066                 /*
1067                  * Avoid to free 'prealloc' if it can be merged with
1068                  * the later extent.
1069                  */
1070                 err = insert_state(tree, prealloc, start, this_end,
1071                                    &bits);
1072                 if (err)
1073                         extent_io_tree_panic(tree, err);
1074                 prealloc = NULL;
1075                 start = this_end + 1;
1076                 goto search_again;
1077         }
1078         /*
1079          * | ---- desired range ---- |
1080          *                        | state |
1081          * We need to split the extent, and set the bit
1082          * on the first half
1083          */
1084         if (state->start <= end && state->end > end) {
1085                 prealloc = alloc_extent_state_atomic(prealloc);
1086                 if (!prealloc) {
1087                         err = -ENOMEM;
1088                         goto out;
1089                 }
1090
1091                 err = split_state(tree, state, prealloc, end + 1);
1092                 if (err)
1093                         extent_io_tree_panic(tree, err);
1094
1095                 set_state_bits(tree, prealloc, &bits);
1096                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1097                 prealloc = NULL;
1098                 goto out;
1099         }
1100
1101         goto search_again;
1102
1103 out:
1104         spin_unlock(&tree->lock);
1105         if (prealloc)
1106                 free_extent_state(prealloc);
1107
1108         return err;
1109
1110 search_again:
1111         if (start > end)
1112                 goto out;
1113         spin_unlock(&tree->lock);
1114         if (mask & __GFP_WAIT)
1115                 cond_resched();
1116         goto again;
1117 }
1118
1119 /* wrappers around set/clear extent bit */
1120 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1121                      gfp_t mask)
1122 {
1123         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1124                               NULL, mask);
1125 }
1126
1127 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1128                     int bits, gfp_t mask)
1129 {
1130         return set_extent_bit(tree, start, end, bits, NULL,
1131                               NULL, mask);
1132 }
1133
1134 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1135                       int bits, gfp_t mask)
1136 {
1137         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1138 }
1139
1140 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1141                         struct extent_state **cached_state, gfp_t mask)
1142 {
1143         return set_extent_bit(tree, start, end,
1144                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1145                               NULL, cached_state, mask);
1146 }
1147
1148 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1149                       struct extent_state **cached_state, gfp_t mask)
1150 {
1151         return set_extent_bit(tree, start, end,
1152                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1153                               NULL, cached_state, mask);
1154 }
1155
1156 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1157                        gfp_t mask)
1158 {
1159         return clear_extent_bit(tree, start, end,
1160                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1161                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1162 }
1163
1164 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1165                      gfp_t mask)
1166 {
1167         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1168                               NULL, mask);
1169 }
1170
1171 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1172                         struct extent_state **cached_state, gfp_t mask)
1173 {
1174         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1175                               cached_state, mask);
1176 }
1177
1178 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1179                           struct extent_state **cached_state, gfp_t mask)
1180 {
1181         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1182                                 cached_state, mask);
1183 }
1184
1185 /*
1186  * either insert or lock state struct between start and end use mask to tell
1187  * us if waiting is desired.
1188  */
1189 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1190                      int bits, struct extent_state **cached_state)
1191 {
1192         int err;
1193         u64 failed_start;
1194         while (1) {
1195                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1196                                        EXTENT_LOCKED, &failed_start,
1197                                        cached_state, GFP_NOFS);
1198                 if (err == -EEXIST) {
1199                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1200                         start = failed_start;
1201                 } else
1202                         break;
1203                 WARN_ON(start > end);
1204         }
1205         return err;
1206 }
1207
1208 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1209 {
1210         return lock_extent_bits(tree, start, end, 0, NULL);
1211 }
1212
1213 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1214 {
1215         int err;
1216         u64 failed_start;
1217
1218         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1219                                &failed_start, NULL, GFP_NOFS);
1220         if (err == -EEXIST) {
1221                 if (failed_start > start)
1222                         clear_extent_bit(tree, start, failed_start - 1,
1223                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1224                 return 0;
1225         }
1226         return 1;
1227 }
1228
1229 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1230                          struct extent_state **cached, gfp_t mask)
1231 {
1232         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1233                                 mask);
1234 }
1235
1236 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1237 {
1238         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1239                                 GFP_NOFS);
1240 }
1241
1242 /*
1243  * helper function to set both pages and extents in the tree writeback
1244  */
1245 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1246 {
1247         unsigned long index = start >> PAGE_CACHE_SHIFT;
1248         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1249         struct page *page;
1250
1251         while (index <= end_index) {
1252                 page = find_get_page(tree->mapping, index);
1253                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1254                 set_page_writeback(page);
1255                 page_cache_release(page);
1256                 index++;
1257         }
1258         return 0;
1259 }
1260
1261 /* find the first state struct with 'bits' set after 'start', and
1262  * return it.  tree->lock must be held.  NULL will returned if
1263  * nothing was found after 'start'
1264  */
1265 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1266                                                  u64 start, int bits)
1267 {
1268         struct rb_node *node;
1269         struct extent_state *state;
1270
1271         /*
1272          * this search will find all the extents that end after
1273          * our range starts.
1274          */
1275         node = tree_search(tree, start);
1276         if (!node)
1277                 goto out;
1278
1279         while (1) {
1280                 state = rb_entry(node, struct extent_state, rb_node);
1281                 if (state->end >= start && (state->state & bits))
1282                         return state;
1283
1284                 node = rb_next(node);
1285                 if (!node)
1286                         break;
1287         }
1288 out:
1289         return NULL;
1290 }
1291
1292 /*
1293  * find the first offset in the io tree with 'bits' set. zero is
1294  * returned if we find something, and *start_ret and *end_ret are
1295  * set to reflect the state struct that was found.
1296  *
1297  * If nothing was found, 1 is returned. If found something, return 0.
1298  */
1299 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1300                           u64 *start_ret, u64 *end_ret, int bits)
1301 {
1302         struct extent_state *state;
1303         int ret = 1;
1304
1305         spin_lock(&tree->lock);
1306         state = find_first_extent_bit_state(tree, start, bits);
1307         if (state) {
1308                 *start_ret = state->start;
1309                 *end_ret = state->end;
1310                 ret = 0;
1311         }
1312         spin_unlock(&tree->lock);
1313         return ret;
1314 }
1315
1316 /*
1317  * find a contiguous range of bytes in the file marked as delalloc, not
1318  * more than 'max_bytes'.  start and end are used to return the range,
1319  *
1320  * 1 is returned if we find something, 0 if nothing was in the tree
1321  */
1322 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1323                                         u64 *start, u64 *end, u64 max_bytes,
1324                                         struct extent_state **cached_state)
1325 {
1326         struct rb_node *node;
1327         struct extent_state *state;
1328         u64 cur_start = *start;
1329         u64 found = 0;
1330         u64 total_bytes = 0;
1331
1332         spin_lock(&tree->lock);
1333
1334         /*
1335          * this search will find all the extents that end after
1336          * our range starts.
1337          */
1338         node = tree_search(tree, cur_start);
1339         if (!node) {
1340                 if (!found)
1341                         *end = (u64)-1;
1342                 goto out;
1343         }
1344
1345         while (1) {
1346                 state = rb_entry(node, struct extent_state, rb_node);
1347                 if (found && (state->start != cur_start ||
1348                               (state->state & EXTENT_BOUNDARY))) {
1349                         goto out;
1350                 }
1351                 if (!(state->state & EXTENT_DELALLOC)) {
1352                         if (!found)
1353                                 *end = state->end;
1354                         goto out;
1355                 }
1356                 if (!found) {
1357                         *start = state->start;
1358                         *cached_state = state;
1359                         atomic_inc(&state->refs);
1360                 }
1361                 found++;
1362                 *end = state->end;
1363                 cur_start = state->end + 1;
1364                 node = rb_next(node);
1365                 if (!node)
1366                         break;
1367                 total_bytes += state->end - state->start + 1;
1368                 if (total_bytes >= max_bytes)
1369                         break;
1370         }
1371 out:
1372         spin_unlock(&tree->lock);
1373         return found;
1374 }
1375
1376 static noinline void __unlock_for_delalloc(struct inode *inode,
1377                                            struct page *locked_page,
1378                                            u64 start, u64 end)
1379 {
1380         int ret;
1381         struct page *pages[16];
1382         unsigned long index = start >> PAGE_CACHE_SHIFT;
1383         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1384         unsigned long nr_pages = end_index - index + 1;
1385         int i;
1386
1387         if (index == locked_page->index && end_index == index)
1388                 return;
1389
1390         while (nr_pages > 0) {
1391                 ret = find_get_pages_contig(inode->i_mapping, index,
1392                                      min_t(unsigned long, nr_pages,
1393                                      ARRAY_SIZE(pages)), pages);
1394                 for (i = 0; i < ret; i++) {
1395                         if (pages[i] != locked_page)
1396                                 unlock_page(pages[i]);
1397                         page_cache_release(pages[i]);
1398                 }
1399                 nr_pages -= ret;
1400                 index += ret;
1401                 cond_resched();
1402         }
1403 }
1404
1405 static noinline int lock_delalloc_pages(struct inode *inode,
1406                                         struct page *locked_page,
1407                                         u64 delalloc_start,
1408                                         u64 delalloc_end)
1409 {
1410         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1411         unsigned long start_index = index;
1412         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1413         unsigned long pages_locked = 0;
1414         struct page *pages[16];
1415         unsigned long nrpages;
1416         int ret;
1417         int i;
1418
1419         /* the caller is responsible for locking the start index */
1420         if (index == locked_page->index && index == end_index)
1421                 return 0;
1422
1423         /* skip the page at the start index */
1424         nrpages = end_index - index + 1;
1425         while (nrpages > 0) {
1426                 ret = find_get_pages_contig(inode->i_mapping, index,
1427                                      min_t(unsigned long,
1428                                      nrpages, ARRAY_SIZE(pages)), pages);
1429                 if (ret == 0) {
1430                         ret = -EAGAIN;
1431                         goto done;
1432                 }
1433                 /* now we have an array of pages, lock them all */
1434                 for (i = 0; i < ret; i++) {
1435                         /*
1436                          * the caller is taking responsibility for
1437                          * locked_page
1438                          */
1439                         if (pages[i] != locked_page) {
1440                                 lock_page(pages[i]);
1441                                 if (!PageDirty(pages[i]) ||
1442                                     pages[i]->mapping != inode->i_mapping) {
1443                                         ret = -EAGAIN;
1444                                         unlock_page(pages[i]);
1445                                         page_cache_release(pages[i]);
1446                                         goto done;
1447                                 }
1448                         }
1449                         page_cache_release(pages[i]);
1450                         pages_locked++;
1451                 }
1452                 nrpages -= ret;
1453                 index += ret;
1454                 cond_resched();
1455         }
1456         ret = 0;
1457 done:
1458         if (ret && pages_locked) {
1459                 __unlock_for_delalloc(inode, locked_page,
1460                               delalloc_start,
1461                               ((u64)(start_index + pages_locked - 1)) <<
1462                               PAGE_CACHE_SHIFT);
1463         }
1464         return ret;
1465 }
1466
1467 /*
1468  * find a contiguous range of bytes in the file marked as delalloc, not
1469  * more than 'max_bytes'.  start and end are used to return the range,
1470  *
1471  * 1 is returned if we find something, 0 if nothing was in the tree
1472  */
1473 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1474                                              struct extent_io_tree *tree,
1475                                              struct page *locked_page,
1476                                              u64 *start, u64 *end,
1477                                              u64 max_bytes)
1478 {
1479         u64 delalloc_start;
1480         u64 delalloc_end;
1481         u64 found;
1482         struct extent_state *cached_state = NULL;
1483         int ret;
1484         int loops = 0;
1485
1486 again:
1487         /* step one, find a bunch of delalloc bytes starting at start */
1488         delalloc_start = *start;
1489         delalloc_end = 0;
1490         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1491                                     max_bytes, &cached_state);
1492         if (!found || delalloc_end <= *start) {
1493                 *start = delalloc_start;
1494                 *end = delalloc_end;
1495                 free_extent_state(cached_state);
1496                 return found;
1497         }
1498
1499         /*
1500          * start comes from the offset of locked_page.  We have to lock
1501          * pages in order, so we can't process delalloc bytes before
1502          * locked_page
1503          */
1504         if (delalloc_start < *start)
1505                 delalloc_start = *start;
1506
1507         /*
1508          * make sure to limit the number of pages we try to lock down
1509          * if we're looping.
1510          */
1511         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1512                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1513
1514         /* step two, lock all the pages after the page that has start */
1515         ret = lock_delalloc_pages(inode, locked_page,
1516                                   delalloc_start, delalloc_end);
1517         if (ret == -EAGAIN) {
1518                 /* some of the pages are gone, lets avoid looping by
1519                  * shortening the size of the delalloc range we're searching
1520                  */
1521                 free_extent_state(cached_state);
1522                 if (!loops) {
1523                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1524                         max_bytes = PAGE_CACHE_SIZE - offset;
1525                         loops = 1;
1526                         goto again;
1527                 } else {
1528                         found = 0;
1529                         goto out_failed;
1530                 }
1531         }
1532         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1533
1534         /* step three, lock the state bits for the whole range */
1535         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1536
1537         /* then test to make sure it is all still delalloc */
1538         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1539                              EXTENT_DELALLOC, 1, cached_state);
1540         if (!ret) {
1541                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1542                                      &cached_state, GFP_NOFS);
1543                 __unlock_for_delalloc(inode, locked_page,
1544                               delalloc_start, delalloc_end);
1545                 cond_resched();
1546                 goto again;
1547         }
1548         free_extent_state(cached_state);
1549         *start = delalloc_start;
1550         *end = delalloc_end;
1551 out_failed:
1552         return found;
1553 }
1554
1555 int extent_clear_unlock_delalloc(struct inode *inode,
1556                                 struct extent_io_tree *tree,
1557                                 u64 start, u64 end, struct page *locked_page,
1558                                 unsigned long op)
1559 {
1560         int ret;
1561         struct page *pages[16];
1562         unsigned long index = start >> PAGE_CACHE_SHIFT;
1563         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1564         unsigned long nr_pages = end_index - index + 1;
1565         int i;
1566         int clear_bits = 0;
1567
1568         if (op & EXTENT_CLEAR_UNLOCK)
1569                 clear_bits |= EXTENT_LOCKED;
1570         if (op & EXTENT_CLEAR_DIRTY)
1571                 clear_bits |= EXTENT_DIRTY;
1572
1573         if (op & EXTENT_CLEAR_DELALLOC)
1574                 clear_bits |= EXTENT_DELALLOC;
1575
1576         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1577         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1578                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1579                     EXTENT_SET_PRIVATE2)))
1580                 return 0;
1581
1582         while (nr_pages > 0) {
1583                 ret = find_get_pages_contig(inode->i_mapping, index,
1584                                      min_t(unsigned long,
1585                                      nr_pages, ARRAY_SIZE(pages)), pages);
1586                 for (i = 0; i < ret; i++) {
1587
1588                         if (op & EXTENT_SET_PRIVATE2)
1589                                 SetPagePrivate2(pages[i]);
1590
1591                         if (pages[i] == locked_page) {
1592                                 page_cache_release(pages[i]);
1593                                 continue;
1594                         }
1595                         if (op & EXTENT_CLEAR_DIRTY)
1596                                 clear_page_dirty_for_io(pages[i]);
1597                         if (op & EXTENT_SET_WRITEBACK)
1598                                 set_page_writeback(pages[i]);
1599                         if (op & EXTENT_END_WRITEBACK)
1600                                 end_page_writeback(pages[i]);
1601                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1602                                 unlock_page(pages[i]);
1603                         page_cache_release(pages[i]);
1604                 }
1605                 nr_pages -= ret;
1606                 index += ret;
1607                 cond_resched();
1608         }
1609         return 0;
1610 }
1611
1612 /*
1613  * count the number of bytes in the tree that have a given bit(s)
1614  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1615  * cached.  The total number found is returned.
1616  */
1617 u64 count_range_bits(struct extent_io_tree *tree,
1618                      u64 *start, u64 search_end, u64 max_bytes,
1619                      unsigned long bits, int contig)
1620 {
1621         struct rb_node *node;
1622         struct extent_state *state;
1623         u64 cur_start = *start;
1624         u64 total_bytes = 0;
1625         u64 last = 0;
1626         int found = 0;
1627
1628         if (search_end <= cur_start) {
1629                 WARN_ON(1);
1630                 return 0;
1631         }
1632
1633         spin_lock(&tree->lock);
1634         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1635                 total_bytes = tree->dirty_bytes;
1636                 goto out;
1637         }
1638         /*
1639          * this search will find all the extents that end after
1640          * our range starts.
1641          */
1642         node = tree_search(tree, cur_start);
1643         if (!node)
1644                 goto out;
1645
1646         while (1) {
1647                 state = rb_entry(node, struct extent_state, rb_node);
1648                 if (state->start > search_end)
1649                         break;
1650                 if (contig && found && state->start > last + 1)
1651                         break;
1652                 if (state->end >= cur_start && (state->state & bits) == bits) {
1653                         total_bytes += min(search_end, state->end) + 1 -
1654                                        max(cur_start, state->start);
1655                         if (total_bytes >= max_bytes)
1656                                 break;
1657                         if (!found) {
1658                                 *start = max(cur_start, state->start);
1659                                 found = 1;
1660                         }
1661                         last = state->end;
1662                 } else if (contig && found) {
1663                         break;
1664                 }
1665                 node = rb_next(node);
1666                 if (!node)
1667                         break;
1668         }
1669 out:
1670         spin_unlock(&tree->lock);
1671         return total_bytes;
1672 }
1673
1674 /*
1675  * set the private field for a given byte offset in the tree.  If there isn't
1676  * an extent_state there already, this does nothing.
1677  */
1678 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1679 {
1680         struct rb_node *node;
1681         struct extent_state *state;
1682         int ret = 0;
1683
1684         spin_lock(&tree->lock);
1685         /*
1686          * this search will find all the extents that end after
1687          * our range starts.
1688          */
1689         node = tree_search(tree, start);
1690         if (!node) {
1691                 ret = -ENOENT;
1692                 goto out;
1693         }
1694         state = rb_entry(node, struct extent_state, rb_node);
1695         if (state->start != start) {
1696                 ret = -ENOENT;
1697                 goto out;
1698         }
1699         state->private = private;
1700 out:
1701         spin_unlock(&tree->lock);
1702         return ret;
1703 }
1704
1705 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1706 {
1707         struct rb_node *node;
1708         struct extent_state *state;
1709         int ret = 0;
1710
1711         spin_lock(&tree->lock);
1712         /*
1713          * this search will find all the extents that end after
1714          * our range starts.
1715          */
1716         node = tree_search(tree, start);
1717         if (!node) {
1718                 ret = -ENOENT;
1719                 goto out;
1720         }
1721         state = rb_entry(node, struct extent_state, rb_node);
1722         if (state->start != start) {
1723                 ret = -ENOENT;
1724                 goto out;
1725         }
1726         *private = state->private;
1727 out:
1728         spin_unlock(&tree->lock);
1729         return ret;
1730 }
1731
1732 /*
1733  * searches a range in the state tree for a given mask.
1734  * If 'filled' == 1, this returns 1 only if every extent in the tree
1735  * has the bits set.  Otherwise, 1 is returned if any bit in the
1736  * range is found set.
1737  */
1738 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1739                    int bits, int filled, struct extent_state *cached)
1740 {
1741         struct extent_state *state = NULL;
1742         struct rb_node *node;
1743         int bitset = 0;
1744
1745         spin_lock(&tree->lock);
1746         if (cached && cached->tree && cached->start <= start &&
1747             cached->end > start)
1748                 node = &cached->rb_node;
1749         else
1750                 node = tree_search(tree, start);
1751         while (node && start <= end) {
1752                 state = rb_entry(node, struct extent_state, rb_node);
1753
1754                 if (filled && state->start > start) {
1755                         bitset = 0;
1756                         break;
1757                 }
1758
1759                 if (state->start > end)
1760                         break;
1761
1762                 if (state->state & bits) {
1763                         bitset = 1;
1764                         if (!filled)
1765                                 break;
1766                 } else if (filled) {
1767                         bitset = 0;
1768                         break;
1769                 }
1770
1771                 if (state->end == (u64)-1)
1772                         break;
1773
1774                 start = state->end + 1;
1775                 if (start > end)
1776                         break;
1777                 node = rb_next(node);
1778                 if (!node) {
1779                         if (filled)
1780                                 bitset = 0;
1781                         break;
1782                 }
1783         }
1784         spin_unlock(&tree->lock);
1785         return bitset;
1786 }
1787
1788 /*
1789  * helper function to set a given page up to date if all the
1790  * extents in the tree for that page are up to date
1791  */
1792 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1793 {
1794         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1795         u64 end = start + PAGE_CACHE_SIZE - 1;
1796         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1797                 SetPageUptodate(page);
1798 }
1799
1800 /*
1801  * helper function to unlock a page if all the extents in the tree
1802  * for that page are unlocked
1803  */
1804 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1805 {
1806         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1807         u64 end = start + PAGE_CACHE_SIZE - 1;
1808         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1809                 unlock_page(page);
1810 }
1811
1812 /*
1813  * helper function to end page writeback if all the extents
1814  * in the tree for that page are done with writeback
1815  */
1816 static void check_page_writeback(struct extent_io_tree *tree,
1817                                  struct page *page)
1818 {
1819         end_page_writeback(page);
1820 }
1821
1822 /*
1823  * When IO fails, either with EIO or csum verification fails, we
1824  * try other mirrors that might have a good copy of the data.  This
1825  * io_failure_record is used to record state as we go through all the
1826  * mirrors.  If another mirror has good data, the page is set up to date
1827  * and things continue.  If a good mirror can't be found, the original
1828  * bio end_io callback is called to indicate things have failed.
1829  */
1830 struct io_failure_record {
1831         struct page *page;
1832         u64 start;
1833         u64 len;
1834         u64 logical;
1835         unsigned long bio_flags;
1836         int this_mirror;
1837         int failed_mirror;
1838         int in_validation;
1839 };
1840
1841 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1842                                 int did_repair)
1843 {
1844         int ret;
1845         int err = 0;
1846         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1847
1848         set_state_private(failure_tree, rec->start, 0);
1849         ret = clear_extent_bits(failure_tree, rec->start,
1850                                 rec->start + rec->len - 1,
1851                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1852         if (ret)
1853                 err = ret;
1854
1855         if (did_repair) {
1856                 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1857                                         rec->start + rec->len - 1,
1858                                         EXTENT_DAMAGED, GFP_NOFS);
1859                 if (ret && !err)
1860                         err = ret;
1861         }
1862
1863         kfree(rec);
1864         return err;
1865 }
1866
1867 static void repair_io_failure_callback(struct bio *bio, int err)
1868 {
1869         complete(bio->bi_private);
1870 }
1871
1872 /*
1873  * this bypasses the standard btrfs submit functions deliberately, as
1874  * the standard behavior is to write all copies in a raid setup. here we only
1875  * want to write the one bad copy. so we do the mapping for ourselves and issue
1876  * submit_bio directly.
1877  * to avoid any synchonization issues, wait for the data after writing, which
1878  * actually prevents the read that triggered the error from finishing.
1879  * currently, there can be no more than two copies of every data bit. thus,
1880  * exactly one rewrite is required.
1881  */
1882 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1883                         u64 length, u64 logical, struct page *page,
1884                         int mirror_num)
1885 {
1886         struct bio *bio;
1887         struct btrfs_device *dev;
1888         DECLARE_COMPLETION_ONSTACK(compl);
1889         u64 map_length = 0;
1890         u64 sector;
1891         struct btrfs_bio *bbio = NULL;
1892         int ret;
1893
1894         BUG_ON(!mirror_num);
1895
1896         bio = bio_alloc(GFP_NOFS, 1);
1897         if (!bio)
1898                 return -EIO;
1899         bio->bi_private = &compl;
1900         bio->bi_end_io = repair_io_failure_callback;
1901         bio->bi_size = 0;
1902         map_length = length;
1903
1904         ret = btrfs_map_block(map_tree, WRITE, logical,
1905                               &map_length, &bbio, mirror_num);
1906         if (ret) {
1907                 bio_put(bio);
1908                 return -EIO;
1909         }
1910         BUG_ON(mirror_num != bbio->mirror_num);
1911         sector = bbio->stripes[mirror_num-1].physical >> 9;
1912         bio->bi_sector = sector;
1913         dev = bbio->stripes[mirror_num-1].dev;
1914         kfree(bbio);
1915         if (!dev || !dev->bdev || !dev->writeable) {
1916                 bio_put(bio);
1917                 return -EIO;
1918         }
1919         bio->bi_bdev = dev->bdev;
1920         bio_add_page(bio, page, length, start-page_offset(page));
1921         btrfsic_submit_bio(WRITE_SYNC, bio);
1922         wait_for_completion(&compl);
1923
1924         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1925                 /* try to remap that extent elsewhere? */
1926                 bio_put(bio);
1927                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1928                 return -EIO;
1929         }
1930
1931         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1932                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1933                       start, rcu_str_deref(dev->name), sector);
1934
1935         bio_put(bio);
1936         return 0;
1937 }
1938
1939 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1940                          int mirror_num)
1941 {
1942         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1943         u64 start = eb->start;
1944         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1945         int ret = 0;
1946
1947         for (i = 0; i < num_pages; i++) {
1948                 struct page *p = extent_buffer_page(eb, i);
1949                 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1950                                         start, p, mirror_num);
1951                 if (ret)
1952                         break;
1953                 start += PAGE_CACHE_SIZE;
1954         }
1955
1956         return ret;
1957 }
1958
1959 /*
1960  * each time an IO finishes, we do a fast check in the IO failure tree
1961  * to see if we need to process or clean up an io_failure_record
1962  */
1963 static int clean_io_failure(u64 start, struct page *page)
1964 {
1965         u64 private;
1966         u64 private_failure;
1967         struct io_failure_record *failrec;
1968         struct btrfs_mapping_tree *map_tree;
1969         struct extent_state *state;
1970         int num_copies;
1971         int did_repair = 0;
1972         int ret;
1973         struct inode *inode = page->mapping->host;
1974
1975         private = 0;
1976         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1977                                 (u64)-1, 1, EXTENT_DIRTY, 0);
1978         if (!ret)
1979                 return 0;
1980
1981         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1982                                 &private_failure);
1983         if (ret)
1984                 return 0;
1985
1986         failrec = (struct io_failure_record *)(unsigned long) private_failure;
1987         BUG_ON(!failrec->this_mirror);
1988
1989         if (failrec->in_validation) {
1990                 /* there was no real error, just free the record */
1991                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1992                          failrec->start);
1993                 did_repair = 1;
1994                 goto out;
1995         }
1996
1997         spin_lock(&BTRFS_I(inode)->io_tree.lock);
1998         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1999                                             failrec->start,
2000                                             EXTENT_LOCKED);
2001         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2002
2003         if (state && state->start == failrec->start) {
2004                 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2005                 num_copies = btrfs_num_copies(map_tree, failrec->logical,
2006                                                 failrec->len);
2007                 if (num_copies > 1)  {
2008                         ret = repair_io_failure(map_tree, start, failrec->len,
2009                                                 failrec->logical, page,
2010                                                 failrec->failed_mirror);
2011                         did_repair = !ret;
2012                 }
2013         }
2014
2015 out:
2016         if (!ret)
2017                 ret = free_io_failure(inode, failrec, did_repair);
2018
2019         return ret;
2020 }
2021
2022 /*
2023  * this is a generic handler for readpage errors (default
2024  * readpage_io_failed_hook). if other copies exist, read those and write back
2025  * good data to the failed position. does not investigate in remapping the
2026  * failed extent elsewhere, hoping the device will be smart enough to do this as
2027  * needed
2028  */
2029
2030 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2031                                 u64 start, u64 end, int failed_mirror,
2032                                 struct extent_state *state)
2033 {
2034         struct io_failure_record *failrec = NULL;
2035         u64 private;
2036         struct extent_map *em;
2037         struct inode *inode = page->mapping->host;
2038         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2039         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2040         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2041         struct bio *bio;
2042         int num_copies;
2043         int ret;
2044         int read_mode;
2045         u64 logical;
2046
2047         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2048
2049         ret = get_state_private(failure_tree, start, &private);
2050         if (ret) {
2051                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2052                 if (!failrec)
2053                         return -ENOMEM;
2054                 failrec->start = start;
2055                 failrec->len = end - start + 1;
2056                 failrec->this_mirror = 0;
2057                 failrec->bio_flags = 0;
2058                 failrec->in_validation = 0;
2059
2060                 read_lock(&em_tree->lock);
2061                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2062                 if (!em) {
2063                         read_unlock(&em_tree->lock);
2064                         kfree(failrec);
2065                         return -EIO;
2066                 }
2067
2068                 if (em->start > start || em->start + em->len < start) {
2069                         free_extent_map(em);
2070                         em = NULL;
2071                 }
2072                 read_unlock(&em_tree->lock);
2073
2074                 if (!em || IS_ERR(em)) {
2075                         kfree(failrec);
2076                         return -EIO;
2077                 }
2078                 logical = start - em->start;
2079                 logical = em->block_start + logical;
2080                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2081                         logical = em->block_start;
2082                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2083                         extent_set_compress_type(&failrec->bio_flags,
2084                                                  em->compress_type);
2085                 }
2086                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2087                          "len=%llu\n", logical, start, failrec->len);
2088                 failrec->logical = logical;
2089                 free_extent_map(em);
2090
2091                 /* set the bits in the private failure tree */
2092                 ret = set_extent_bits(failure_tree, start, end,
2093                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2094                 if (ret >= 0)
2095                         ret = set_state_private(failure_tree, start,
2096                                                 (u64)(unsigned long)failrec);
2097                 /* set the bits in the inode's tree */
2098                 if (ret >= 0)
2099                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2100                                                 GFP_NOFS);
2101                 if (ret < 0) {
2102                         kfree(failrec);
2103                         return ret;
2104                 }
2105         } else {
2106                 failrec = (struct io_failure_record *)(unsigned long)private;
2107                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2108                          "start=%llu, len=%llu, validation=%d\n",
2109                          failrec->logical, failrec->start, failrec->len,
2110                          failrec->in_validation);
2111                 /*
2112                  * when data can be on disk more than twice, add to failrec here
2113                  * (e.g. with a list for failed_mirror) to make
2114                  * clean_io_failure() clean all those errors at once.
2115                  */
2116         }
2117         num_copies = btrfs_num_copies(
2118                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
2119                               failrec->logical, failrec->len);
2120         if (num_copies == 1) {
2121                 /*
2122                  * we only have a single copy of the data, so don't bother with
2123                  * all the retry and error correction code that follows. no
2124                  * matter what the error is, it is very likely to persist.
2125                  */
2126                 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2127                          "state=%p, num_copies=%d, next_mirror %d, "
2128                          "failed_mirror %d\n", state, num_copies,
2129                          failrec->this_mirror, failed_mirror);
2130                 free_io_failure(inode, failrec, 0);
2131                 return -EIO;
2132         }
2133
2134         if (!state) {
2135                 spin_lock(&tree->lock);
2136                 state = find_first_extent_bit_state(tree, failrec->start,
2137                                                     EXTENT_LOCKED);
2138                 if (state && state->start != failrec->start)
2139                         state = NULL;
2140                 spin_unlock(&tree->lock);
2141         }
2142
2143         /*
2144          * there are two premises:
2145          *      a) deliver good data to the caller
2146          *      b) correct the bad sectors on disk
2147          */
2148         if (failed_bio->bi_vcnt > 1) {
2149                 /*
2150                  * to fulfill b), we need to know the exact failing sectors, as
2151                  * we don't want to rewrite any more than the failed ones. thus,
2152                  * we need separate read requests for the failed bio
2153                  *
2154                  * if the following BUG_ON triggers, our validation request got
2155                  * merged. we need separate requests for our algorithm to work.
2156                  */
2157                 BUG_ON(failrec->in_validation);
2158                 failrec->in_validation = 1;
2159                 failrec->this_mirror = failed_mirror;
2160                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2161         } else {
2162                 /*
2163                  * we're ready to fulfill a) and b) alongside. get a good copy
2164                  * of the failed sector and if we succeed, we have setup
2165                  * everything for repair_io_failure to do the rest for us.
2166                  */
2167                 if (failrec->in_validation) {
2168                         BUG_ON(failrec->this_mirror != failed_mirror);
2169                         failrec->in_validation = 0;
2170                         failrec->this_mirror = 0;
2171                 }
2172                 failrec->failed_mirror = failed_mirror;
2173                 failrec->this_mirror++;
2174                 if (failrec->this_mirror == failed_mirror)
2175                         failrec->this_mirror++;
2176                 read_mode = READ_SYNC;
2177         }
2178
2179         if (!state || failrec->this_mirror > num_copies) {
2180                 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2181                          "next_mirror %d, failed_mirror %d\n", state,
2182                          num_copies, failrec->this_mirror, failed_mirror);
2183                 free_io_failure(inode, failrec, 0);
2184                 return -EIO;
2185         }
2186
2187         bio = bio_alloc(GFP_NOFS, 1);
2188         if (!bio) {
2189                 free_io_failure(inode, failrec, 0);
2190                 return -EIO;
2191         }
2192         bio->bi_private = state;
2193         bio->bi_end_io = failed_bio->bi_end_io;
2194         bio->bi_sector = failrec->logical >> 9;
2195         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2196         bio->bi_size = 0;
2197
2198         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2199
2200         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2201                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2202                  failrec->this_mirror, num_copies, failrec->in_validation);
2203
2204         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2205                                          failrec->this_mirror,
2206                                          failrec->bio_flags, 0);
2207         return ret;
2208 }
2209
2210 /* lots and lots of room for performance fixes in the end_bio funcs */
2211
2212 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2213 {
2214         int uptodate = (err == 0);
2215         struct extent_io_tree *tree;
2216         int ret;
2217
2218         tree = &BTRFS_I(page->mapping->host)->io_tree;
2219
2220         if (tree->ops && tree->ops->writepage_end_io_hook) {
2221                 ret = tree->ops->writepage_end_io_hook(page, start,
2222                                                end, NULL, uptodate);
2223                 if (ret)
2224                         uptodate = 0;
2225         }
2226
2227         if (!uptodate) {
2228                 ClearPageUptodate(page);
2229                 SetPageError(page);
2230         }
2231         return 0;
2232 }
2233
2234 /*
2235  * after a writepage IO is done, we need to:
2236  * clear the uptodate bits on error
2237  * clear the writeback bits in the extent tree for this IO
2238  * end_page_writeback if the page has no more pending IO
2239  *
2240  * Scheduling is not allowed, so the extent state tree is expected
2241  * to have one and only one object corresponding to this IO.
2242  */
2243 static void end_bio_extent_writepage(struct bio *bio, int err)
2244 {
2245         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2246         struct extent_io_tree *tree;
2247         u64 start;
2248         u64 end;
2249         int whole_page;
2250
2251         do {
2252                 struct page *page = bvec->bv_page;
2253                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2254
2255                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2256                          bvec->bv_offset;
2257                 end = start + bvec->bv_len - 1;
2258
2259                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2260                         whole_page = 1;
2261                 else
2262                         whole_page = 0;
2263
2264                 if (--bvec >= bio->bi_io_vec)
2265                         prefetchw(&bvec->bv_page->flags);
2266
2267                 if (end_extent_writepage(page, err, start, end))
2268                         continue;
2269
2270                 if (whole_page)
2271                         end_page_writeback(page);
2272                 else
2273                         check_page_writeback(tree, page);
2274         } while (bvec >= bio->bi_io_vec);
2275
2276         bio_put(bio);
2277 }
2278
2279 /*
2280  * after a readpage IO is done, we need to:
2281  * clear the uptodate bits on error
2282  * set the uptodate bits if things worked
2283  * set the page up to date if all extents in the tree are uptodate
2284  * clear the lock bit in the extent tree
2285  * unlock the page if there are no other extents locked for it
2286  *
2287  * Scheduling is not allowed, so the extent state tree is expected
2288  * to have one and only one object corresponding to this IO.
2289  */
2290 static void end_bio_extent_readpage(struct bio *bio, int err)
2291 {
2292         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2293         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2294         struct bio_vec *bvec = bio->bi_io_vec;
2295         struct extent_io_tree *tree;
2296         u64 start;
2297         u64 end;
2298         int whole_page;
2299         int mirror;
2300         int ret;
2301
2302         if (err)
2303                 uptodate = 0;
2304
2305         do {
2306                 struct page *page = bvec->bv_page;
2307                 struct extent_state *cached = NULL;
2308                 struct extent_state *state;
2309
2310                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2311                          "mirror=%ld\n", (u64)bio->bi_sector, err,
2312                          (long int)bio->bi_bdev);
2313                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2314
2315                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2316                         bvec->bv_offset;
2317                 end = start + bvec->bv_len - 1;
2318
2319                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2320                         whole_page = 1;
2321                 else
2322                         whole_page = 0;
2323
2324                 if (++bvec <= bvec_end)
2325                         prefetchw(&bvec->bv_page->flags);
2326
2327                 spin_lock(&tree->lock);
2328                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2329                 if (state && state->start == start) {
2330                         /*
2331                          * take a reference on the state, unlock will drop
2332                          * the ref
2333                          */
2334                         cache_state(state, &cached);
2335                 }
2336                 spin_unlock(&tree->lock);
2337
2338                 mirror = (int)(unsigned long)bio->bi_bdev;
2339                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2340                         ret = tree->ops->readpage_end_io_hook(page, start, end,
2341                                                               state, mirror);
2342                         if (ret)
2343                                 uptodate = 0;
2344                         else
2345                                 clean_io_failure(start, page);
2346                 }
2347
2348                 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2349                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2350                         if (!ret && !err &&
2351                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2352                                 uptodate = 1;
2353                 } else if (!uptodate) {
2354                         /*
2355                          * The generic bio_readpage_error handles errors the
2356                          * following way: If possible, new read requests are
2357                          * created and submitted and will end up in
2358                          * end_bio_extent_readpage as well (if we're lucky, not
2359                          * in the !uptodate case). In that case it returns 0 and
2360                          * we just go on with the next page in our bio. If it
2361                          * can't handle the error it will return -EIO and we
2362                          * remain responsible for that page.
2363                          */
2364                         ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2365                         if (ret == 0) {
2366                                 uptodate =
2367                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2368                                 if (err)
2369                                         uptodate = 0;
2370                                 uncache_state(&cached);
2371                                 continue;
2372                         }
2373                 }
2374
2375                 if (uptodate && tree->track_uptodate) {
2376                         set_extent_uptodate(tree, start, end, &cached,
2377                                             GFP_ATOMIC);
2378                 }
2379                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2380
2381                 if (whole_page) {
2382                         if (uptodate) {
2383                                 SetPageUptodate(page);
2384                         } else {
2385                                 ClearPageUptodate(page);
2386                                 SetPageError(page);
2387                         }
2388                         unlock_page(page);
2389                 } else {
2390                         if (uptodate) {
2391                                 check_page_uptodate(tree, page);
2392                         } else {
2393                                 ClearPageUptodate(page);
2394                                 SetPageError(page);
2395                         }
2396                         check_page_locked(tree, page);
2397                 }
2398         } while (bvec <= bvec_end);
2399
2400         bio_put(bio);
2401 }
2402
2403 struct bio *
2404 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2405                 gfp_t gfp_flags)
2406 {
2407         struct bio *bio;
2408
2409         bio = bio_alloc(gfp_flags, nr_vecs);
2410
2411         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2412                 while (!bio && (nr_vecs /= 2))
2413                         bio = bio_alloc(gfp_flags, nr_vecs);
2414         }
2415
2416         if (bio) {
2417                 bio->bi_size = 0;
2418                 bio->bi_bdev = bdev;
2419                 bio->bi_sector = first_sector;
2420         }
2421         return bio;
2422 }
2423
2424 /*
2425  * Since writes are async, they will only return -ENOMEM.
2426  * Reads can return the full range of I/O error conditions.
2427  */
2428 static int __must_check submit_one_bio(int rw, struct bio *bio,
2429                                        int mirror_num, unsigned long bio_flags)
2430 {
2431         int ret = 0;
2432         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2433         struct page *page = bvec->bv_page;
2434         struct extent_io_tree *tree = bio->bi_private;
2435         u64 start;
2436
2437         start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2438
2439         bio->bi_private = NULL;
2440
2441         bio_get(bio);
2442
2443         if (tree->ops && tree->ops->submit_bio_hook)
2444                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2445                                            mirror_num, bio_flags, start);
2446         else
2447                 btrfsic_submit_bio(rw, bio);
2448
2449         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2450                 ret = -EOPNOTSUPP;
2451         bio_put(bio);
2452         return ret;
2453 }
2454
2455 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2456                      unsigned long offset, size_t size, struct bio *bio,
2457                      unsigned long bio_flags)
2458 {
2459         int ret = 0;
2460         if (tree->ops && tree->ops->merge_bio_hook)
2461                 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2462                                                 bio_flags);
2463         BUG_ON(ret < 0);
2464         return ret;
2465
2466 }
2467
2468 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2469                               struct page *page, sector_t sector,
2470                               size_t size, unsigned long offset,
2471                               struct block_device *bdev,
2472                               struct bio **bio_ret,
2473                               unsigned long max_pages,
2474                               bio_end_io_t end_io_func,
2475                               int mirror_num,
2476                               unsigned long prev_bio_flags,
2477                               unsigned long bio_flags)
2478 {
2479         int ret = 0;
2480         struct bio *bio;
2481         int nr;
2482         int contig = 0;
2483         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2484         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2485         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2486
2487         if (bio_ret && *bio_ret) {
2488                 bio = *bio_ret;
2489                 if (old_compressed)
2490                         contig = bio->bi_sector == sector;
2491                 else
2492                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
2493                                 sector;
2494
2495                 if (prev_bio_flags != bio_flags || !contig ||
2496                     merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2497                     bio_add_page(bio, page, page_size, offset) < page_size) {
2498                         ret = submit_one_bio(rw, bio, mirror_num,
2499                                              prev_bio_flags);
2500                         if (ret < 0)
2501                                 return ret;
2502                         bio = NULL;
2503                 } else {
2504                         return 0;
2505                 }
2506         }
2507         if (this_compressed)
2508                 nr = BIO_MAX_PAGES;
2509         else
2510                 nr = bio_get_nr_vecs(bdev);
2511
2512         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2513         if (!bio)
2514                 return -ENOMEM;
2515
2516         bio_add_page(bio, page, page_size, offset);
2517         bio->bi_end_io = end_io_func;
2518         bio->bi_private = tree;
2519
2520         if (bio_ret)
2521                 *bio_ret = bio;
2522         else
2523                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2524
2525         return ret;
2526 }
2527
2528 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2529 {
2530         if (!PagePrivate(page)) {
2531                 SetPagePrivate(page);
2532                 page_cache_get(page);
2533                 set_page_private(page, (unsigned long)eb);
2534         } else {
2535                 WARN_ON(page->private != (unsigned long)eb);
2536         }
2537 }
2538
2539 void set_page_extent_mapped(struct page *page)
2540 {
2541         if (!PagePrivate(page)) {
2542                 SetPagePrivate(page);
2543                 page_cache_get(page);
2544                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2545         }
2546 }
2547
2548 /*
2549  * basic readpage implementation.  Locked extent state structs are inserted
2550  * into the tree that are removed when the IO is done (by the end_io
2551  * handlers)
2552  * XXX JDM: This needs looking at to ensure proper page locking
2553  */
2554 static int __extent_read_full_page(struct extent_io_tree *tree,
2555                                    struct page *page,
2556                                    get_extent_t *get_extent,
2557                                    struct bio **bio, int mirror_num,
2558                                    unsigned long *bio_flags)
2559 {
2560         struct inode *inode = page->mapping->host;
2561         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2562         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2563         u64 end;
2564         u64 cur = start;
2565         u64 extent_offset;
2566         u64 last_byte = i_size_read(inode);
2567         u64 block_start;
2568         u64 cur_end;
2569         sector_t sector;
2570         struct extent_map *em;
2571         struct block_device *bdev;
2572         struct btrfs_ordered_extent *ordered;
2573         int ret;
2574         int nr = 0;
2575         size_t pg_offset = 0;
2576         size_t iosize;
2577         size_t disk_io_size;
2578         size_t blocksize = inode->i_sb->s_blocksize;
2579         unsigned long this_bio_flag = 0;
2580
2581         set_page_extent_mapped(page);
2582
2583         if (!PageUptodate(page)) {
2584                 if (cleancache_get_page(page) == 0) {
2585                         BUG_ON(blocksize != PAGE_SIZE);
2586                         goto out;
2587                 }
2588         }
2589
2590         end = page_end;
2591         while (1) {
2592                 lock_extent(tree, start, end);
2593                 ordered = btrfs_lookup_ordered_extent(inode, start);
2594                 if (!ordered)
2595                         break;
2596                 unlock_extent(tree, start, end);
2597                 btrfs_start_ordered_extent(inode, ordered, 1);
2598                 btrfs_put_ordered_extent(ordered);
2599         }
2600
2601         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2602                 char *userpage;
2603                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2604
2605                 if (zero_offset) {
2606                         iosize = PAGE_CACHE_SIZE - zero_offset;
2607                         userpage = kmap_atomic(page);
2608                         memset(userpage + zero_offset, 0, iosize);
2609                         flush_dcache_page(page);
2610                         kunmap_atomic(userpage);
2611                 }
2612         }
2613         while (cur <= end) {
2614                 if (cur >= last_byte) {
2615                         char *userpage;
2616                         struct extent_state *cached = NULL;
2617
2618                         iosize = PAGE_CACHE_SIZE - pg_offset;
2619                         userpage = kmap_atomic(page);
2620                         memset(userpage + pg_offset, 0, iosize);
2621                         flush_dcache_page(page);
2622                         kunmap_atomic(userpage);
2623                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2624                                             &cached, GFP_NOFS);
2625                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2626                                              &cached, GFP_NOFS);
2627                         break;
2628                 }
2629                 em = get_extent(inode, page, pg_offset, cur,
2630                                 end - cur + 1, 0);
2631                 if (IS_ERR_OR_NULL(em)) {
2632                         SetPageError(page);
2633                         unlock_extent(tree, cur, end);
2634                         break;
2635                 }
2636                 extent_offset = cur - em->start;
2637                 BUG_ON(extent_map_end(em) <= cur);
2638                 BUG_ON(end < cur);
2639
2640                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2641                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2642                         extent_set_compress_type(&this_bio_flag,
2643                                                  em->compress_type);
2644                 }
2645
2646                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2647                 cur_end = min(extent_map_end(em) - 1, end);
2648                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2649                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2650                         disk_io_size = em->block_len;
2651                         sector = em->block_start >> 9;
2652                 } else {
2653                         sector = (em->block_start + extent_offset) >> 9;
2654                         disk_io_size = iosize;
2655                 }
2656                 bdev = em->bdev;
2657                 block_start = em->block_start;
2658                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2659                         block_start = EXTENT_MAP_HOLE;
2660                 free_extent_map(em);
2661                 em = NULL;
2662
2663                 /* we've found a hole, just zero and go on */
2664                 if (block_start == EXTENT_MAP_HOLE) {
2665                         char *userpage;
2666                         struct extent_state *cached = NULL;
2667
2668                         userpage = kmap_atomic(page);
2669                         memset(userpage + pg_offset, 0, iosize);
2670                         flush_dcache_page(page);
2671                         kunmap_atomic(userpage);
2672
2673                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2674                                             &cached, GFP_NOFS);
2675                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2676                                              &cached, GFP_NOFS);
2677                         cur = cur + iosize;
2678                         pg_offset += iosize;
2679                         continue;
2680                 }
2681                 /* the get_extent function already copied into the page */
2682                 if (test_range_bit(tree, cur, cur_end,
2683                                    EXTENT_UPTODATE, 1, NULL)) {
2684                         check_page_uptodate(tree, page);
2685                         unlock_extent(tree, cur, cur + iosize - 1);
2686                         cur = cur + iosize;
2687                         pg_offset += iosize;
2688                         continue;
2689                 }
2690                 /* we have an inline extent but it didn't get marked up
2691                  * to date.  Error out
2692                  */
2693                 if (block_start == EXTENT_MAP_INLINE) {
2694                         SetPageError(page);
2695                         unlock_extent(tree, cur, cur + iosize - 1);
2696                         cur = cur + iosize;
2697                         pg_offset += iosize;
2698                         continue;
2699                 }
2700
2701                 ret = 0;
2702                 if (tree->ops && tree->ops->readpage_io_hook) {
2703                         ret = tree->ops->readpage_io_hook(page, cur,
2704                                                           cur + iosize - 1);
2705                 }
2706                 if (!ret) {
2707                         unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2708                         pnr -= page->index;
2709                         ret = submit_extent_page(READ, tree, page,
2710                                          sector, disk_io_size, pg_offset,
2711                                          bdev, bio, pnr,
2712                                          end_bio_extent_readpage, mirror_num,
2713                                          *bio_flags,
2714                                          this_bio_flag);
2715                         BUG_ON(ret == -ENOMEM);
2716                         nr++;
2717                         *bio_flags = this_bio_flag;
2718                 }
2719                 if (ret)
2720                         SetPageError(page);
2721                 cur = cur + iosize;
2722                 pg_offset += iosize;
2723         }
2724 out:
2725         if (!nr) {
2726                 if (!PageError(page))
2727                         SetPageUptodate(page);
2728                 unlock_page(page);
2729         }
2730         return 0;
2731 }
2732
2733 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2734                             get_extent_t *get_extent, int mirror_num)
2735 {
2736         struct bio *bio = NULL;
2737         unsigned long bio_flags = 0;
2738         int ret;
2739
2740         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2741                                       &bio_flags);
2742         if (bio)
2743                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2744         return ret;
2745 }
2746
2747 static noinline void update_nr_written(struct page *page,
2748                                       struct writeback_control *wbc,
2749                                       unsigned long nr_written)
2750 {
2751         wbc->nr_to_write -= nr_written;
2752         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2753             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2754                 page->mapping->writeback_index = page->index + nr_written;
2755 }
2756
2757 /*
2758  * the writepage semantics are similar to regular writepage.  extent
2759  * records are inserted to lock ranges in the tree, and as dirty areas
2760  * are found, they are marked writeback.  Then the lock bits are removed
2761  * and the end_io handler clears the writeback ranges
2762  */
2763 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2764                               void *data)
2765 {
2766         struct inode *inode = page->mapping->host;
2767         struct extent_page_data *epd = data;
2768         struct extent_io_tree *tree = epd->tree;
2769         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2770         u64 delalloc_start;
2771         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2772         u64 end;
2773         u64 cur = start;
2774         u64 extent_offset;
2775         u64 last_byte = i_size_read(inode);
2776         u64 block_start;
2777         u64 iosize;
2778         sector_t sector;
2779         struct extent_state *cached_state = NULL;
2780         struct extent_map *em;
2781         struct block_device *bdev;
2782         int ret;
2783         int nr = 0;
2784         size_t pg_offset = 0;
2785         size_t blocksize;
2786         loff_t i_size = i_size_read(inode);
2787         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2788         u64 nr_delalloc;
2789         u64 delalloc_end;
2790         int page_started;
2791         int compressed;
2792         int write_flags;
2793         unsigned long nr_written = 0;
2794         bool fill_delalloc = true;
2795
2796         if (wbc->sync_mode == WB_SYNC_ALL)
2797                 write_flags = WRITE_SYNC;
2798         else
2799                 write_flags = WRITE;
2800
2801         trace___extent_writepage(page, inode, wbc);
2802
2803         WARN_ON(!PageLocked(page));
2804
2805         ClearPageError(page);
2806
2807         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2808         if (page->index > end_index ||
2809            (page->index == end_index && !pg_offset)) {
2810                 page->mapping->a_ops->invalidatepage(page, 0);
2811                 unlock_page(page);
2812                 return 0;
2813         }
2814
2815         if (page->index == end_index) {
2816                 char *userpage;
2817
2818                 userpage = kmap_atomic(page);
2819                 memset(userpage + pg_offset, 0,
2820                        PAGE_CACHE_SIZE - pg_offset);
2821                 kunmap_atomic(userpage);
2822                 flush_dcache_page(page);
2823         }
2824         pg_offset = 0;
2825
2826         set_page_extent_mapped(page);
2827
2828         if (!tree->ops || !tree->ops->fill_delalloc)
2829                 fill_delalloc = false;
2830
2831         delalloc_start = start;
2832         delalloc_end = 0;
2833         page_started = 0;
2834         if (!epd->extent_locked && fill_delalloc) {
2835                 u64 delalloc_to_write = 0;
2836                 /*
2837                  * make sure the wbc mapping index is at least updated
2838                  * to this page.
2839                  */
2840                 update_nr_written(page, wbc, 0);
2841
2842                 while (delalloc_end < page_end) {
2843                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2844                                                        page,
2845                                                        &delalloc_start,
2846                                                        &delalloc_end,
2847                                                        128 * 1024 * 1024);
2848                         if (nr_delalloc == 0) {
2849                                 delalloc_start = delalloc_end + 1;
2850                                 continue;
2851                         }
2852                         ret = tree->ops->fill_delalloc(inode, page,
2853                                                        delalloc_start,
2854                                                        delalloc_end,
2855                                                        &page_started,
2856                                                        &nr_written);
2857                         /* File system has been set read-only */
2858                         if (ret) {
2859                                 SetPageError(page);
2860                                 goto done;
2861                         }
2862                         /*
2863                          * delalloc_end is already one less than the total
2864                          * length, so we don't subtract one from
2865                          * PAGE_CACHE_SIZE
2866                          */
2867                         delalloc_to_write += (delalloc_end - delalloc_start +
2868                                               PAGE_CACHE_SIZE) >>
2869                                               PAGE_CACHE_SHIFT;
2870                         delalloc_start = delalloc_end + 1;
2871                 }
2872                 if (wbc->nr_to_write < delalloc_to_write) {
2873                         int thresh = 8192;
2874
2875                         if (delalloc_to_write < thresh * 2)
2876                                 thresh = delalloc_to_write;
2877                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
2878                                                  thresh);
2879                 }
2880
2881                 /* did the fill delalloc function already unlock and start
2882                  * the IO?
2883                  */
2884                 if (page_started) {
2885                         ret = 0;
2886                         /*
2887                          * we've unlocked the page, so we can't update
2888                          * the mapping's writeback index, just update
2889                          * nr_to_write.
2890                          */
2891                         wbc->nr_to_write -= nr_written;
2892                         goto done_unlocked;
2893                 }
2894         }
2895         if (tree->ops && tree->ops->writepage_start_hook) {
2896                 ret = tree->ops->writepage_start_hook(page, start,
2897                                                       page_end);
2898                 if (ret) {
2899                         /* Fixup worker will requeue */
2900                         if (ret == -EBUSY)
2901                                 wbc->pages_skipped++;
2902                         else
2903                                 redirty_page_for_writepage(wbc, page);
2904                         update_nr_written(page, wbc, nr_written);
2905                         unlock_page(page);
2906                         ret = 0;
2907                         goto done_unlocked;
2908                 }
2909         }
2910
2911         /*
2912          * we don't want to touch the inode after unlocking the page,
2913          * so we update the mapping writeback index now
2914          */
2915         update_nr_written(page, wbc, nr_written + 1);
2916
2917         end = page_end;
2918         if (last_byte <= start) {
2919                 if (tree->ops && tree->ops->writepage_end_io_hook)
2920                         tree->ops->writepage_end_io_hook(page, start,
2921                                                          page_end, NULL, 1);
2922                 goto done;
2923         }
2924
2925         blocksize = inode->i_sb->s_blocksize;
2926
2927         while (cur <= end) {
2928                 if (cur >= last_byte) {
2929                         if (tree->ops && tree->ops->writepage_end_io_hook)
2930                                 tree->ops->writepage_end_io_hook(page, cur,
2931                                                          page_end, NULL, 1);
2932                         break;
2933                 }
2934                 em = epd->get_extent(inode, page, pg_offset, cur,
2935                                      end - cur + 1, 1);
2936                 if (IS_ERR_OR_NULL(em)) {
2937                         SetPageError(page);
2938                         break;
2939                 }
2940
2941                 extent_offset = cur - em->start;
2942                 BUG_ON(extent_map_end(em) <= cur);
2943                 BUG_ON(end < cur);
2944                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2945                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2946                 sector = (em->block_start + extent_offset) >> 9;
2947                 bdev = em->bdev;
2948                 block_start = em->block_start;
2949                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2950                 free_extent_map(em);
2951                 em = NULL;
2952
2953                 /*
2954                  * compressed and inline extents are written through other
2955                  * paths in the FS
2956                  */
2957                 if (compressed || block_start == EXTENT_MAP_HOLE ||
2958                     block_start == EXTENT_MAP_INLINE) {
2959                         /*
2960                          * end_io notification does not happen here for
2961                          * compressed extents
2962                          */
2963                         if (!compressed && tree->ops &&
2964                             tree->ops->writepage_end_io_hook)
2965                                 tree->ops->writepage_end_io_hook(page, cur,
2966                                                          cur + iosize - 1,
2967                                                          NULL, 1);
2968                         else if (compressed) {
2969                                 /* we don't want to end_page_writeback on
2970                                  * a compressed extent.  this happens
2971                                  * elsewhere
2972                                  */
2973                                 nr++;
2974                         }
2975
2976                         cur += iosize;
2977                         pg_offset += iosize;
2978                         continue;
2979                 }
2980                 /* leave this out until we have a page_mkwrite call */
2981                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2982                                    EXTENT_DIRTY, 0, NULL)) {
2983                         cur = cur + iosize;
2984                         pg_offset += iosize;
2985                         continue;
2986                 }
2987
2988                 if (tree->ops && tree->ops->writepage_io_hook) {
2989                         ret = tree->ops->writepage_io_hook(page, cur,
2990                                                 cur + iosize - 1);
2991                 } else {
2992                         ret = 0;
2993                 }
2994                 if (ret) {
2995                         SetPageError(page);
2996                 } else {
2997                         unsigned long max_nr = end_index + 1;
2998
2999                         set_range_writeback(tree, cur, cur + iosize - 1);
3000                         if (!PageWriteback(page)) {
3001                                 printk(KERN_ERR "btrfs warning page %lu not "
3002                                        "writeback, cur %llu end %llu\n",
3003                                        page->index, (unsigned long long)cur,
3004                                        (unsigned long long)end);
3005                         }
3006
3007                         ret = submit_extent_page(write_flags, tree, page,
3008                                                  sector, iosize, pg_offset,
3009                                                  bdev, &epd->bio, max_nr,
3010                                                  end_bio_extent_writepage,
3011                                                  0, 0, 0);
3012                         if (ret)
3013                                 SetPageError(page);
3014                 }
3015                 cur = cur + iosize;
3016                 pg_offset += iosize;
3017                 nr++;
3018         }
3019 done:
3020         if (nr == 0) {
3021                 /* make sure the mapping tag for page dirty gets cleared */
3022                 set_page_writeback(page);
3023                 end_page_writeback(page);
3024         }
3025         unlock_page(page);
3026
3027 done_unlocked:
3028
3029         /* drop our reference on any cached states */
3030         free_extent_state(cached_state);
3031         return 0;
3032 }
3033
3034 static int eb_wait(void *word)
3035 {
3036         io_schedule();
3037         return 0;
3038 }
3039
3040 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3041 {
3042         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3043                     TASK_UNINTERRUPTIBLE);
3044 }
3045
3046 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3047                                      struct btrfs_fs_info *fs_info,
3048                                      struct extent_page_data *epd)
3049 {
3050         unsigned long i, num_pages;
3051         int flush = 0;
3052         int ret = 0;
3053
3054         if (!btrfs_try_tree_write_lock(eb)) {
3055                 flush = 1;
3056                 flush_write_bio(epd);
3057                 btrfs_tree_lock(eb);
3058         }
3059
3060         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3061                 btrfs_tree_unlock(eb);
3062                 if (!epd->sync_io)
3063                         return 0;
3064                 if (!flush) {
3065                         flush_write_bio(epd);
3066                         flush = 1;
3067                 }
3068                 while (1) {
3069                         wait_on_extent_buffer_writeback(eb);
3070                         btrfs_tree_lock(eb);
3071                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3072                                 break;
3073                         btrfs_tree_unlock(eb);
3074                 }
3075         }
3076
3077         /*
3078          * We need to do this to prevent races in people who check if the eb is
3079          * under IO since we can end up having no IO bits set for a short period
3080          * of time.
3081          */
3082         spin_lock(&eb->refs_lock);
3083         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3084                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3085                 spin_unlock(&eb->refs_lock);
3086                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3087                 spin_lock(&fs_info->delalloc_lock);
3088                 if (fs_info->dirty_metadata_bytes >= eb->len)
3089                         fs_info->dirty_metadata_bytes -= eb->len;
3090                 else
3091                         WARN_ON(1);
3092                 spin_unlock(&fs_info->delalloc_lock);
3093                 ret = 1;
3094         } else {
3095                 spin_unlock(&eb->refs_lock);
3096         }
3097
3098         btrfs_tree_unlock(eb);
3099
3100         if (!ret)
3101                 return ret;
3102
3103         num_pages = num_extent_pages(eb->start, eb->len);
3104         for (i = 0; i < num_pages; i++) {
3105                 struct page *p = extent_buffer_page(eb, i);
3106
3107                 if (!trylock_page(p)) {
3108                         if (!flush) {
3109                                 flush_write_bio(epd);
3110                                 flush = 1;
3111                         }
3112                         lock_page(p);
3113                 }
3114         }
3115
3116         return ret;
3117 }
3118
3119 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3120 {
3121         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3122         smp_mb__after_clear_bit();
3123         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3124 }
3125
3126 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3127 {
3128         int uptodate = err == 0;
3129         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3130         struct extent_buffer *eb;
3131         int done;
3132
3133         do {
3134                 struct page *page = bvec->bv_page;
3135
3136                 bvec--;
3137                 eb = (struct extent_buffer *)page->private;
3138                 BUG_ON(!eb);
3139                 done = atomic_dec_and_test(&eb->io_pages);
3140
3141                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3142                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3143                         ClearPageUptodate(page);
3144                         SetPageError(page);
3145                 }
3146
3147                 end_page_writeback(page);
3148
3149                 if (!done)
3150                         continue;
3151
3152                 end_extent_buffer_writeback(eb);
3153         } while (bvec >= bio->bi_io_vec);
3154
3155         bio_put(bio);
3156
3157 }
3158
3159 static int write_one_eb(struct extent_buffer *eb,
3160                         struct btrfs_fs_info *fs_info,
3161                         struct writeback_control *wbc,
3162                         struct extent_page_data *epd)
3163 {
3164         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3165         u64 offset = eb->start;
3166         unsigned long i, num_pages;
3167         unsigned long bio_flags = 0;
3168         int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3169         int ret = 0;
3170
3171         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3172         num_pages = num_extent_pages(eb->start, eb->len);
3173         atomic_set(&eb->io_pages, num_pages);
3174         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3175                 bio_flags = EXTENT_BIO_TREE_LOG;
3176
3177         for (i = 0; i < num_pages; i++) {
3178                 struct page *p = extent_buffer_page(eb, i);
3179
3180                 clear_page_dirty_for_io(p);
3181                 set_page_writeback(p);
3182                 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3183                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3184                                          -1, end_bio_extent_buffer_writepage,
3185                                          0, epd->bio_flags, bio_flags);
3186                 epd->bio_flags = bio_flags;
3187                 if (ret) {
3188                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3189                         SetPageError(p);
3190                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3191                                 end_extent_buffer_writeback(eb);
3192                         ret = -EIO;
3193                         break;
3194                 }
3195                 offset += PAGE_CACHE_SIZE;
3196                 update_nr_written(p, wbc, 1);
3197                 unlock_page(p);
3198         }
3199
3200         if (unlikely(ret)) {
3201                 for (; i < num_pages; i++) {
3202                         struct page *p = extent_buffer_page(eb, i);
3203                         unlock_page(p);
3204                 }
3205         }
3206
3207         return ret;
3208 }
3209
3210 int btree_write_cache_pages(struct address_space *mapping,
3211                                    struct writeback_control *wbc)
3212 {
3213         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3214         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3215         struct extent_buffer *eb, *prev_eb = NULL;
3216         struct extent_page_data epd = {
3217                 .bio = NULL,
3218                 .tree = tree,
3219                 .extent_locked = 0,
3220                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3221                 .bio_flags = 0,
3222         };
3223         int ret = 0;
3224         int done = 0;
3225         int nr_to_write_done = 0;
3226         struct pagevec pvec;
3227         int nr_pages;
3228         pgoff_t index;
3229         pgoff_t end;            /* Inclusive */
3230         int scanned = 0;
3231         int tag;
3232
3233         pagevec_init(&pvec, 0);
3234         if (wbc->range_cyclic) {
3235                 index = mapping->writeback_index; /* Start from prev offset */
3236                 end = -1;
3237         } else {
3238                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3239                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3240                 scanned = 1;
3241         }
3242         if (wbc->sync_mode == WB_SYNC_ALL)
3243                 tag = PAGECACHE_TAG_TOWRITE;
3244         else
3245                 tag = PAGECACHE_TAG_DIRTY;
3246 retry:
3247         if (wbc->sync_mode == WB_SYNC_ALL)
3248                 tag_pages_for_writeback(mapping, index, end);
3249         while (!done && !nr_to_write_done && (index <= end) &&
3250                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3251                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3252                 unsigned i;
3253
3254                 scanned = 1;
3255                 for (i = 0; i < nr_pages; i++) {
3256                         struct page *page = pvec.pages[i];
3257
3258                         if (!PagePrivate(page))
3259                                 continue;
3260
3261                         if (!wbc->range_cyclic && page->index > end) {
3262                                 done = 1;
3263                                 break;
3264                         }
3265
3266                         spin_lock(&mapping->private_lock);
3267                         if (!PagePrivate(page)) {
3268                                 spin_unlock(&mapping->private_lock);
3269                                 continue;
3270                         }
3271
3272                         eb = (struct extent_buffer *)page->private;
3273
3274                         /*
3275                          * Shouldn't happen and normally this would be a BUG_ON
3276                          * but no sense in crashing the users box for something
3277                          * we can survive anyway.
3278                          */
3279                         if (!eb) {
3280                                 spin_unlock(&mapping->private_lock);
3281                                 WARN_ON(1);
3282                                 continue;
3283                         }
3284
3285                         if (eb == prev_eb) {
3286                                 spin_unlock(&mapping->private_lock);
3287                                 continue;
3288                         }
3289
3290                         ret = atomic_inc_not_zero(&eb->refs);
3291                         spin_unlock(&mapping->private_lock);
3292                         if (!ret)
3293                                 continue;
3294
3295                         prev_eb = eb;
3296                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3297                         if (!ret) {
3298                                 free_extent_buffer(eb);
3299                                 continue;
3300                         }
3301
3302                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3303                         if (ret) {
3304                                 done = 1;
3305                                 free_extent_buffer(eb);
3306                                 break;
3307                         }
3308                         free_extent_buffer(eb);
3309
3310                         /*
3311                          * the filesystem may choose to bump up nr_to_write.
3312                          * We have to make sure to honor the new nr_to_write
3313                          * at any time
3314                          */
3315                         nr_to_write_done = wbc->nr_to_write <= 0;
3316                 }
3317                 pagevec_release(&pvec);
3318                 cond_resched();
3319         }
3320         if (!scanned && !done) {
3321                 /*
3322                  * We hit the last page and there is more work to be done: wrap
3323                  * back to the start of the file
3324                  */
3325                 scanned = 1;
3326                 index = 0;
3327                 goto retry;
3328         }
3329         flush_write_bio(&epd);
3330         return ret;
3331 }
3332
3333 /**
3334  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3335  * @mapping: address space structure to write
3336  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3337  * @writepage: function called for each page
3338  * @data: data passed to writepage function
3339  *
3340  * If a page is already under I/O, write_cache_pages() skips it, even
3341  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3342  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3343  * and msync() need to guarantee that all the data which was dirty at the time
3344  * the call was made get new I/O started against them.  If wbc->sync_mode is
3345  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3346  * existing IO to complete.
3347  */
3348 static int extent_write_cache_pages(struct extent_io_tree *tree,
3349                              struct address_space *mapping,
3350                              struct writeback_control *wbc,
3351                              writepage_t writepage, void *data,
3352                              void (*flush_fn)(void *))
3353 {
3354         struct inode *inode = mapping->host;
3355         int ret = 0;
3356         int done = 0;
3357         int nr_to_write_done = 0;
3358         struct pagevec pvec;
3359         int nr_pages;
3360         pgoff_t index;
3361         pgoff_t end;            /* Inclusive */
3362         int scanned = 0;
3363         int tag;
3364
3365         /*
3366          * We have to hold onto the inode so that ordered extents can do their
3367          * work when the IO finishes.  The alternative to this is failing to add
3368          * an ordered extent if the igrab() fails there and that is a huge pain
3369          * to deal with, so instead just hold onto the inode throughout the
3370          * writepages operation.  If it fails here we are freeing up the inode
3371          * anyway and we'd rather not waste our time writing out stuff that is
3372          * going to be truncated anyway.
3373          */
3374         if (!igrab(inode))
3375                 return 0;
3376
3377         pagevec_init(&pvec, 0);
3378         if (wbc->range_cyclic) {
3379                 index = mapping->writeback_index; /* Start from prev offset */
3380                 end = -1;
3381         } else {
3382                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3383                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3384                 scanned = 1;
3385         }
3386         if (wbc->sync_mode == WB_SYNC_ALL)
3387                 tag = PAGECACHE_TAG_TOWRITE;
3388         else
3389                 tag = PAGECACHE_TAG_DIRTY;
3390 retry:
3391         if (wbc->sync_mode == WB_SYNC_ALL)
3392                 tag_pages_for_writeback(mapping, index, end);
3393         while (!done && !nr_to_write_done && (index <= end) &&
3394                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3395                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3396                 unsigned i;
3397
3398                 scanned = 1;
3399                 for (i = 0; i < nr_pages; i++) {
3400                         struct page *page = pvec.pages[i];
3401
3402                         /*
3403                          * At this point we hold neither mapping->tree_lock nor
3404                          * lock on the page itself: the page may be truncated or
3405                          * invalidated (changing page->mapping to NULL), or even
3406                          * swizzled back from swapper_space to tmpfs file
3407                          * mapping
3408                          */
3409                         if (tree->ops &&
3410                             tree->ops->write_cache_pages_lock_hook) {
3411                                 tree->ops->write_cache_pages_lock_hook(page,
3412                                                                data, flush_fn);
3413                         } else {
3414                                 if (!trylock_page(page)) {
3415                                         flush_fn(data);
3416                                         lock_page(page);
3417                                 }
3418                         }
3419
3420                         if (unlikely(page->mapping != mapping)) {
3421                                 unlock_page(page);
3422                                 continue;
3423                         }
3424
3425                         if (!wbc->range_cyclic && page->index > end) {
3426                                 done = 1;
3427                                 unlock_page(page);
3428                                 continue;
3429                         }
3430
3431                         if (wbc->sync_mode != WB_SYNC_NONE) {
3432                                 if (PageWriteback(page))
3433                                         flush_fn(data);
3434                                 wait_on_page_writeback(page);
3435                         }
3436
3437                         if (PageWriteback(page) ||
3438                             !clear_page_dirty_for_io(page)) {
3439                                 unlock_page(page);
3440                                 continue;
3441                         }
3442
3443                         ret = (*writepage)(page, wbc, data);
3444
3445                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3446                                 unlock_page(page);
3447                                 ret = 0;
3448                         }
3449                         if (ret)
3450                                 done = 1;
3451
3452                         /*
3453                          * the filesystem may choose to bump up nr_to_write.
3454                          * We have to make sure to honor the new nr_to_write
3455                          * at any time
3456                          */
3457                         nr_to_write_done = wbc->nr_to_write <= 0;
3458                 }
3459                 pagevec_release(&pvec);
3460                 cond_resched();
3461         }
3462         if (!scanned && !done) {
3463                 /*
3464                  * We hit the last page and there is more work to be done: wrap
3465                  * back to the start of the file
3466                  */
3467                 scanned = 1;
3468                 index = 0;
3469                 goto retry;
3470         }
3471         btrfs_add_delayed_iput(inode);
3472         return ret;
3473 }
3474
3475 static void flush_epd_write_bio(struct extent_page_data *epd)
3476 {
3477         if (epd->bio) {
3478                 int rw = WRITE;
3479                 int ret;
3480
3481                 if (epd->sync_io)
3482                         rw = WRITE_SYNC;
3483
3484                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3485                 BUG_ON(ret < 0); /* -ENOMEM */
3486                 epd->bio = NULL;
3487         }
3488 }
3489
3490 static noinline void flush_write_bio(void *data)
3491 {
3492         struct extent_page_data *epd = data;
3493         flush_epd_write_bio(epd);
3494 }
3495
3496 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3497                           get_extent_t *get_extent,
3498                           struct writeback_control *wbc)
3499 {
3500         int ret;
3501         struct extent_page_data epd = {
3502                 .bio = NULL,
3503                 .tree = tree,
3504                 .get_extent = get_extent,
3505                 .extent_locked = 0,
3506                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3507                 .bio_flags = 0,
3508         };
3509
3510         ret = __extent_writepage(page, wbc, &epd);
3511
3512         flush_epd_write_bio(&epd);
3513         return ret;
3514 }
3515
3516 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3517                               u64 start, u64 end, get_extent_t *get_extent,
3518                               int mode)
3519 {
3520         int ret = 0;
3521         struct address_space *mapping = inode->i_mapping;
3522         struct page *page;
3523         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3524                 PAGE_CACHE_SHIFT;
3525
3526         struct extent_page_data epd = {
3527                 .bio = NULL,
3528                 .tree = tree,
3529                 .get_extent = get_extent,
3530                 .extent_locked = 1,
3531                 .sync_io = mode == WB_SYNC_ALL,
3532                 .bio_flags = 0,
3533         };
3534         struct writeback_control wbc_writepages = {
3535                 .sync_mode      = mode,
3536                 .nr_to_write    = nr_pages * 2,
3537                 .range_start    = start,
3538                 .range_end      = end + 1,
3539         };
3540
3541         while (start <= end) {
3542                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3543                 if (clear_page_dirty_for_io(page))
3544                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3545                 else {
3546                         if (tree->ops && tree->ops->writepage_end_io_hook)
3547                                 tree->ops->writepage_end_io_hook(page, start,
3548                                                  start + PAGE_CACHE_SIZE - 1,
3549                                                  NULL, 1);
3550                         unlock_page(page);
3551                 }
3552                 page_cache_release(page);
3553                 start += PAGE_CACHE_SIZE;
3554         }
3555
3556         flush_epd_write_bio(&epd);
3557         return ret;
3558 }
3559
3560 int extent_writepages(struct extent_io_tree *tree,
3561                       struct address_space *mapping,
3562                       get_extent_t *get_extent,
3563                       struct writeback_control *wbc)
3564 {
3565         int ret = 0;
3566         struct extent_page_data epd = {
3567                 .bio = NULL,
3568                 .tree = tree,
3569                 .get_extent = get_extent,
3570                 .extent_locked = 0,
3571                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3572                 .bio_flags = 0,
3573         };
3574
3575         ret = extent_write_cache_pages(tree, mapping, wbc,
3576                                        __extent_writepage, &epd,
3577                                        flush_write_bio);
3578         flush_epd_write_bio(&epd);
3579         return ret;
3580 }
3581
3582 int extent_readpages(struct extent_io_tree *tree,
3583                      struct address_space *mapping,
3584                      struct list_head *pages, unsigned nr_pages,
3585                      get_extent_t get_extent)
3586 {
3587         struct bio *bio = NULL;
3588         unsigned page_idx;
3589         unsigned long bio_flags = 0;
3590         struct page *pagepool[16];
3591         struct page *page;
3592         int i = 0;
3593         int nr = 0;
3594
3595         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3596                 page = list_entry(pages->prev, struct page, lru);
3597
3598                 prefetchw(&page->flags);
3599                 list_del(&page->lru);
3600                 if (add_to_page_cache_lru(page, mapping,
3601                                         page->index, GFP_NOFS)) {
3602                         page_cache_release(page);
3603                         continue;
3604                 }
3605
3606                 pagepool[nr++] = page;
3607                 if (nr < ARRAY_SIZE(pagepool))
3608                         continue;
3609                 for (i = 0; i < nr; i++) {
3610                         __extent_read_full_page(tree, pagepool[i], get_extent,
3611                                         &bio, 0, &bio_flags);
3612                         page_cache_release(pagepool[i]);
3613                 }
3614                 nr = 0;
3615         }
3616         for (i = 0; i < nr; i++) {
3617                 __extent_read_full_page(tree, pagepool[i], get_extent,
3618                                         &bio, 0, &bio_flags);
3619                 page_cache_release(pagepool[i]);
3620         }
3621
3622         BUG_ON(!list_empty(pages));
3623         if (bio)
3624                 return submit_one_bio(READ, bio, 0, bio_flags);
3625         return 0;
3626 }
3627
3628 /*
3629  * basic invalidatepage code, this waits on any locked or writeback
3630  * ranges corresponding to the page, and then deletes any extent state
3631  * records from the tree
3632  */
3633 int extent_invalidatepage(struct extent_io_tree *tree,
3634                           struct page *page, unsigned long offset)
3635 {
3636         struct extent_state *cached_state = NULL;
3637         u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3638         u64 end = start + PAGE_CACHE_SIZE - 1;
3639         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3640
3641         start += (offset + blocksize - 1) & ~(blocksize - 1);
3642         if (start > end)
3643                 return 0;
3644
3645         lock_extent_bits(tree, start, end, 0, &cached_state);
3646         wait_on_page_writeback(page);
3647         clear_extent_bit(tree, start, end,
3648                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3649                          EXTENT_DO_ACCOUNTING,
3650                          1, 1, &cached_state, GFP_NOFS);
3651         return 0;
3652 }
3653
3654 /*
3655  * a helper for releasepage, this tests for areas of the page that
3656  * are locked or under IO and drops the related state bits if it is safe
3657  * to drop the page.
3658  */
3659 int try_release_extent_state(struct extent_map_tree *map,
3660                              struct extent_io_tree *tree, struct page *page,
3661                              gfp_t mask)
3662 {
3663         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3664         u64 end = start + PAGE_CACHE_SIZE - 1;
3665         int ret = 1;
3666
3667         if (test_range_bit(tree, start, end,
3668                            EXTENT_IOBITS, 0, NULL))
3669                 ret = 0;
3670         else {
3671                 if ((mask & GFP_NOFS) == GFP_NOFS)
3672                         mask = GFP_NOFS;
3673                 /*
3674                  * at this point we can safely clear everything except the
3675                  * locked bit and the nodatasum bit
3676                  */
3677                 ret = clear_extent_bit(tree, start, end,
3678                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3679                                  0, 0, NULL, mask);
3680
3681                 /* if clear_extent_bit failed for enomem reasons,
3682                  * we can't allow the release to continue.
3683                  */
3684                 if (ret < 0)
3685                         ret = 0;
3686                 else
3687                         ret = 1;
3688         }
3689         return ret;
3690 }
3691
3692 /*
3693  * a helper for releasepage.  As long as there are no locked extents
3694  * in the range corresponding to the page, both state records and extent
3695  * map records are removed
3696  */
3697 int try_release_extent_mapping(struct extent_map_tree *map,
3698                                struct extent_io_tree *tree, struct page *page,
3699                                gfp_t mask)
3700 {
3701         struct extent_map *em;
3702         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3703         u64 end = start + PAGE_CACHE_SIZE - 1;
3704
3705         if ((mask & __GFP_WAIT) &&
3706             page->mapping->host->i_size > 16 * 1024 * 1024) {
3707                 u64 len;
3708                 while (start <= end) {
3709                         len = end - start + 1;
3710                         write_lock(&map->lock);
3711                         em = lookup_extent_mapping(map, start, len);
3712                         if (!em) {
3713                                 write_unlock(&map->lock);
3714                                 break;
3715                         }
3716                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3717                             em->start != start) {
3718                                 write_unlock(&map->lock);
3719                                 free_extent_map(em);
3720                                 break;
3721                         }
3722                         if (!test_range_bit(tree, em->start,
3723                                             extent_map_end(em) - 1,
3724                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3725                                             0, NULL)) {
3726                                 remove_extent_mapping(map, em);
3727                                 /* once for the rb tree */
3728                                 free_extent_map(em);
3729                         }
3730                         start = extent_map_end(em);
3731                         write_unlock(&map->lock);
3732
3733                         /* once for us */
3734                         free_extent_map(em);
3735                 }
3736         }
3737         return try_release_extent_state(map, tree, page, mask);
3738 }
3739
3740 /*
3741  * helper function for fiemap, which doesn't want to see any holes.
3742  * This maps until we find something past 'last'
3743  */
3744 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3745                                                 u64 offset,
3746                                                 u64 last,
3747                                                 get_extent_t *get_extent)
3748 {
3749         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3750         struct extent_map *em;
3751         u64 len;
3752
3753         if (offset >= last)
3754                 return NULL;
3755
3756         while(1) {
3757                 len = last - offset;
3758                 if (len == 0)
3759                         break;
3760                 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3761                 em = get_extent(inode, NULL, 0, offset, len, 0);
3762                 if (IS_ERR_OR_NULL(em))
3763                         return em;
3764
3765                 /* if this isn't a hole return it */
3766                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3767                     em->block_start != EXTENT_MAP_HOLE) {
3768                         return em;
3769                 }
3770
3771                 /* this is a hole, advance to the next extent */
3772                 offset = extent_map_end(em);
3773                 free_extent_map(em);
3774                 if (offset >= last)
3775                         break;
3776         }
3777         return NULL;
3778 }
3779
3780 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3781                 __u64 start, __u64 len, get_extent_t *get_extent)
3782 {
3783         int ret = 0;
3784         u64 off = start;
3785         u64 max = start + len;
3786         u32 flags = 0;
3787         u32 found_type;
3788         u64 last;
3789         u64 last_for_get_extent = 0;
3790         u64 disko = 0;
3791         u64 isize = i_size_read(inode);
3792         struct btrfs_key found_key;
3793         struct extent_map *em = NULL;
3794         struct extent_state *cached_state = NULL;
3795         struct btrfs_path *path;
3796         struct btrfs_file_extent_item *item;
3797         int end = 0;
3798         u64 em_start = 0;
3799         u64 em_len = 0;
3800         u64 em_end = 0;
3801         unsigned long emflags;
3802
3803         if (len == 0)
3804                 return -EINVAL;
3805
3806         path = btrfs_alloc_path();
3807         if (!path)
3808                 return -ENOMEM;
3809         path->leave_spinning = 1;
3810
3811         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3812         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3813
3814         /*
3815          * lookup the last file extent.  We're not using i_size here
3816          * because there might be preallocation past i_size
3817          */
3818         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3819                                        path, btrfs_ino(inode), -1, 0);
3820         if (ret < 0) {
3821                 btrfs_free_path(path);
3822                 return ret;
3823         }
3824         WARN_ON(!ret);
3825         path->slots[0]--;
3826         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3827                               struct btrfs_file_extent_item);
3828         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3829         found_type = btrfs_key_type(&found_key);
3830
3831         /* No extents, but there might be delalloc bits */
3832         if (found_key.objectid != btrfs_ino(inode) ||
3833             found_type != BTRFS_EXTENT_DATA_KEY) {
3834                 /* have to trust i_size as the end */
3835                 last = (u64)-1;
3836                 last_for_get_extent = isize;
3837         } else {
3838                 /*
3839                  * remember the start of the last extent.  There are a
3840                  * bunch of different factors that go into the length of the
3841                  * extent, so its much less complex to remember where it started
3842                  */
3843                 last = found_key.offset;
3844                 last_for_get_extent = last + 1;
3845         }
3846         btrfs_free_path(path);
3847
3848         /*
3849          * we might have some extents allocated but more delalloc past those
3850          * extents.  so, we trust isize unless the start of the last extent is
3851          * beyond isize
3852          */
3853         if (last < isize) {
3854                 last = (u64)-1;
3855                 last_for_get_extent = isize;
3856         }
3857
3858         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3859                          &cached_state);
3860
3861         em = get_extent_skip_holes(inode, start, last_for_get_extent,
3862                                    get_extent);
3863         if (!em)
3864                 goto out;
3865         if (IS_ERR(em)) {
3866                 ret = PTR_ERR(em);
3867                 goto out;
3868         }
3869
3870         while (!end) {
3871                 u64 offset_in_extent;
3872
3873                 /* break if the extent we found is outside the range */
3874                 if (em->start >= max || extent_map_end(em) < off)
3875                         break;
3876
3877                 /*
3878                  * get_extent may return an extent that starts before our
3879                  * requested range.  We have to make sure the ranges
3880                  * we return to fiemap always move forward and don't
3881                  * overlap, so adjust the offsets here
3882                  */
3883                 em_start = max(em->start, off);
3884
3885                 /*
3886                  * record the offset from the start of the extent
3887                  * for adjusting the disk offset below
3888                  */
3889                 offset_in_extent = em_start - em->start;
3890                 em_end = extent_map_end(em);
3891                 em_len = em_end - em_start;
3892                 emflags = em->flags;
3893                 disko = 0;
3894                 flags = 0;
3895
3896                 /*
3897                  * bump off for our next call to get_extent
3898                  */
3899                 off = extent_map_end(em);
3900                 if (off >= max)
3901                         end = 1;
3902
3903                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3904                         end = 1;
3905                         flags |= FIEMAP_EXTENT_LAST;
3906                 } else if (em->block_start == EXTENT_MAP_INLINE) {
3907                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
3908                                   FIEMAP_EXTENT_NOT_ALIGNED);
3909                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3910                         flags |= (FIEMAP_EXTENT_DELALLOC |
3911                                   FIEMAP_EXTENT_UNKNOWN);
3912                 } else {
3913                         disko = em->block_start + offset_in_extent;
3914                 }
3915                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3916                         flags |= FIEMAP_EXTENT_ENCODED;
3917
3918                 free_extent_map(em);
3919                 em = NULL;
3920                 if ((em_start >= last) || em_len == (u64)-1 ||
3921                    (last == (u64)-1 && isize <= em_end)) {
3922                         flags |= FIEMAP_EXTENT_LAST;
3923                         end = 1;
3924                 }
3925
3926                 /* now scan forward to see if this is really the last extent. */
3927                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3928                                            get_extent);
3929                 if (IS_ERR(em)) {
3930                         ret = PTR_ERR(em);
3931                         goto out;
3932                 }
3933                 if (!em) {
3934                         flags |= FIEMAP_EXTENT_LAST;
3935                         end = 1;
3936                 }
3937                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3938                                               em_len, flags);
3939                 if (ret)
3940                         goto out_free;
3941         }
3942 out_free:
3943         free_extent_map(em);
3944 out:
3945         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3946                              &cached_state, GFP_NOFS);
3947         return ret;
3948 }
3949
3950 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3951                                               unsigned long i)
3952 {
3953         return eb->pages[i];
3954 }
3955
3956 inline unsigned long num_extent_pages(u64 start, u64 len)
3957 {
3958         return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3959                 (start >> PAGE_CACHE_SHIFT);
3960 }
3961
3962 static void __free_extent_buffer(struct extent_buffer *eb)
3963 {
3964 #if LEAK_DEBUG
3965         unsigned long flags;
3966         spin_lock_irqsave(&leak_lock, flags);
3967         list_del(&eb->leak_list);
3968         spin_unlock_irqrestore(&leak_lock, flags);
3969 #endif
3970         if (eb->pages && eb->pages != eb->inline_pages)
3971                 kfree(eb->pages);
3972         kmem_cache_free(extent_buffer_cache, eb);
3973 }
3974
3975 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3976                                                    u64 start,
3977                                                    unsigned long len,
3978                                                    gfp_t mask)
3979 {
3980         struct extent_buffer *eb = NULL;
3981 #if LEAK_DEBUG
3982         unsigned long flags;
3983 #endif
3984
3985         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3986         if (eb == NULL)
3987                 return NULL;
3988         eb->start = start;
3989         eb->len = len;
3990         eb->tree = tree;
3991         eb->bflags = 0;
3992         rwlock_init(&eb->lock);
3993         atomic_set(&eb->write_locks, 0);
3994         atomic_set(&eb->read_locks, 0);
3995         atomic_set(&eb->blocking_readers, 0);
3996         atomic_set(&eb->blocking_writers, 0);
3997         atomic_set(&eb->spinning_readers, 0);
3998         atomic_set(&eb->spinning_writers, 0);
3999         eb->lock_nested = 0;
4000         init_waitqueue_head(&eb->write_lock_wq);
4001         init_waitqueue_head(&eb->read_lock_wq);
4002
4003 #if LEAK_DEBUG
4004         spin_lock_irqsave(&leak_lock, flags);
4005         list_add(&eb->leak_list, &buffers);
4006         spin_unlock_irqrestore(&leak_lock, flags);
4007 #endif
4008         spin_lock_init(&eb->refs_lock);
4009         atomic_set(&eb->refs, 1);
4010         atomic_set(&eb->io_pages, 0);
4011
4012         if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
4013                 struct page **pages;
4014                 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
4015                         PAGE_CACHE_SHIFT;
4016                 pages = kzalloc(num_pages, mask);
4017                 if (!pages) {
4018                         __free_extent_buffer(eb);
4019                         return NULL;
4020                 }
4021                 eb->pages = pages;
4022         } else {
4023                 eb->pages = eb->inline_pages;
4024         }
4025
4026         return eb;
4027 }
4028
4029 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4030 {
4031         unsigned long i;
4032         struct page *p;
4033         struct extent_buffer *new;
4034         unsigned long num_pages = num_extent_pages(src->start, src->len);
4035
4036         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4037         if (new == NULL)
4038                 return NULL;
4039
4040         for (i = 0; i < num_pages; i++) {
4041                 p = alloc_page(GFP_ATOMIC);
4042                 BUG_ON(!p);
4043                 attach_extent_buffer_page(new, p);
4044                 WARN_ON(PageDirty(p));
4045                 SetPageUptodate(p);
4046                 new->pages[i] = p;
4047         }
4048
4049         copy_extent_buffer(new, src, 0, 0, src->len);
4050         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4051         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4052
4053         return new;
4054 }
4055
4056 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4057 {
4058         struct extent_buffer *eb;
4059         unsigned long num_pages = num_extent_pages(0, len);
4060         unsigned long i;
4061
4062         eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4063         if (!eb)
4064                 return NULL;
4065
4066         for (i = 0; i < num_pages; i++) {
4067                 eb->pages[i] = alloc_page(GFP_ATOMIC);
4068                 if (!eb->pages[i])
4069                         goto err;
4070         }
4071         set_extent_buffer_uptodate(eb);
4072         btrfs_set_header_nritems(eb, 0);
4073         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4074
4075         return eb;
4076 err:
4077         for (i--; i > 0; i--)
4078                 __free_page(eb->pages[i]);
4079         __free_extent_buffer(eb);
4080         return NULL;
4081 }
4082
4083 static int extent_buffer_under_io(struct extent_buffer *eb)
4084 {
4085         return (atomic_read(&eb->io_pages) ||
4086                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4087                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4088 }
4089
4090 /*
4091  * Helper for releasing extent buffer page.
4092  */
4093 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4094                                                 unsigned long start_idx)
4095 {
4096         unsigned long index;
4097         unsigned long num_pages;
4098         struct page *page;
4099         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4100
4101         BUG_ON(extent_buffer_under_io(eb));
4102
4103         num_pages = num_extent_pages(eb->start, eb->len);
4104         index = start_idx + num_pages;
4105         if (start_idx >= index)
4106                 return;
4107
4108         do {
4109                 index--;
4110                 page = extent_buffer_page(eb, index);
4111                 if (page && mapped) {
4112                         spin_lock(&page->mapping->private_lock);
4113                         /*
4114                          * We do this since we'll remove the pages after we've
4115                          * removed the eb from the radix tree, so we could race
4116                          * and have this page now attached to the new eb.  So
4117                          * only clear page_private if it's still connected to
4118                          * this eb.
4119                          */
4120                         if (PagePrivate(page) &&
4121                             page->private == (unsigned long)eb) {
4122                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4123                                 BUG_ON(PageDirty(page));
4124                                 BUG_ON(PageWriteback(page));
4125                                 /*
4126                                  * We need to make sure we haven't be attached
4127                                  * to a new eb.
4128                                  */
4129                                 ClearPagePrivate(page);
4130                                 set_page_private(page, 0);
4131                                 /* One for the page private */
4132                                 page_cache_release(page);
4133                         }
4134                         spin_unlock(&page->mapping->private_lock);
4135
4136                 }
4137                 if (page) {
4138                         /* One for when we alloced the page */
4139                         page_cache_release(page);
4140                 }
4141         } while (index != start_idx);
4142 }
4143
4144 /*
4145  * Helper for releasing the extent buffer.
4146  */
4147 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4148 {
4149         btrfs_release_extent_buffer_page(eb, 0);
4150         __free_extent_buffer(eb);
4151 }
4152
4153 static void check_buffer_tree_ref(struct extent_buffer *eb)
4154 {
4155         /* the ref bit is tricky.  We have to make sure it is set
4156          * if we have the buffer dirty.   Otherwise the
4157          * code to free a buffer can end up dropping a dirty
4158          * page
4159          *
4160          * Once the ref bit is set, it won't go away while the
4161          * buffer is dirty or in writeback, and it also won't
4162          * go away while we have the reference count on the
4163          * eb bumped.
4164          *
4165          * We can't just set the ref bit without bumping the
4166          * ref on the eb because free_extent_buffer might
4167          * see the ref bit and try to clear it.  If this happens
4168          * free_extent_buffer might end up dropping our original
4169          * ref by mistake and freeing the page before we are able
4170          * to add one more ref.
4171          *
4172          * So bump the ref count first, then set the bit.  If someone
4173          * beat us to it, drop the ref we added.
4174          */
4175         spin_lock(&eb->refs_lock);
4176         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4177                 atomic_inc(&eb->refs);
4178         spin_unlock(&eb->refs_lock);
4179 }
4180
4181 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4182 {
4183         unsigned long num_pages, i;
4184
4185         check_buffer_tree_ref(eb);
4186
4187         num_pages = num_extent_pages(eb->start, eb->len);
4188         for (i = 0; i < num_pages; i++) {
4189                 struct page *p = extent_buffer_page(eb, i);
4190                 mark_page_accessed(p);
4191         }
4192 }
4193
4194 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4195                                           u64 start, unsigned long len)
4196 {
4197         unsigned long num_pages = num_extent_pages(start, len);
4198         unsigned long i;
4199         unsigned long index = start >> PAGE_CACHE_SHIFT;
4200         struct extent_buffer *eb;
4201         struct extent_buffer *exists = NULL;
4202         struct page *p;
4203         struct address_space *mapping = tree->mapping;
4204         int uptodate = 1;
4205         int ret;
4206
4207         rcu_read_lock();
4208         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4209         if (eb && atomic_inc_not_zero(&eb->refs)) {
4210                 rcu_read_unlock();
4211                 mark_extent_buffer_accessed(eb);
4212                 return eb;
4213         }
4214         rcu_read_unlock();
4215
4216         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4217         if (!eb)
4218                 return NULL;
4219
4220         for (i = 0; i < num_pages; i++, index++) {
4221                 p = find_or_create_page(mapping, index, GFP_NOFS);
4222                 if (!p) {
4223                         WARN_ON(1);
4224                         goto free_eb;
4225                 }
4226
4227                 spin_lock(&mapping->private_lock);
4228                 if (PagePrivate(p)) {
4229                         /*
4230                          * We could have already allocated an eb for this page
4231                          * and attached one so lets see if we can get a ref on
4232                          * the existing eb, and if we can we know it's good and
4233                          * we can just return that one, else we know we can just
4234                          * overwrite page->private.
4235                          */
4236                         exists = (struct extent_buffer *)p->private;
4237                         if (atomic_inc_not_zero(&exists->refs)) {
4238                                 spin_unlock(&mapping->private_lock);
4239                                 unlock_page(p);
4240                                 page_cache_release(p);
4241                                 mark_extent_buffer_accessed(exists);
4242                                 goto free_eb;
4243                         }
4244
4245                         /*
4246                          * Do this so attach doesn't complain and we need to
4247                          * drop the ref the old guy had.
4248                          */
4249                         ClearPagePrivate(p);
4250                         WARN_ON(PageDirty(p));
4251                         page_cache_release(p);
4252                 }
4253                 attach_extent_buffer_page(eb, p);
4254                 spin_unlock(&mapping->private_lock);
4255                 WARN_ON(PageDirty(p));
4256                 mark_page_accessed(p);
4257                 eb->pages[i] = p;
4258                 if (!PageUptodate(p))
4259                         uptodate = 0;
4260
4261                 /*
4262                  * see below about how we avoid a nasty race with release page
4263                  * and why we unlock later
4264                  */
4265         }
4266         if (uptodate)
4267                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4268 again:
4269         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4270         if (ret)
4271                 goto free_eb;
4272
4273         spin_lock(&tree->buffer_lock);
4274         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4275         if (ret == -EEXIST) {
4276                 exists = radix_tree_lookup(&tree->buffer,
4277                                                 start >> PAGE_CACHE_SHIFT);
4278                 if (!atomic_inc_not_zero(&exists->refs)) {
4279                         spin_unlock(&tree->buffer_lock);
4280                         radix_tree_preload_end();
4281                         exists = NULL;
4282                         goto again;
4283                 }
4284                 spin_unlock(&tree->buffer_lock);
4285                 radix_tree_preload_end();
4286                 mark_extent_buffer_accessed(exists);
4287                 goto free_eb;
4288         }
4289         /* add one reference for the tree */
4290         check_buffer_tree_ref(eb);
4291         spin_unlock(&tree->buffer_lock);
4292         radix_tree_preload_end();
4293
4294         /*
4295          * there is a race where release page may have
4296          * tried to find this extent buffer in the radix
4297          * but failed.  It will tell the VM it is safe to
4298          * reclaim the, and it will clear the page private bit.
4299          * We must make sure to set the page private bit properly
4300          * after the extent buffer is in the radix tree so
4301          * it doesn't get lost
4302          */
4303         SetPageChecked(eb->pages[0]);
4304         for (i = 1; i < num_pages; i++) {
4305                 p = extent_buffer_page(eb, i);
4306                 ClearPageChecked(p);
4307                 unlock_page(p);
4308         }
4309         unlock_page(eb->pages[0]);
4310         return eb;
4311
4312 free_eb:
4313         for (i = 0; i < num_pages; i++) {
4314                 if (eb->pages[i])
4315                         unlock_page(eb->pages[i]);
4316         }
4317
4318         WARN_ON(!atomic_dec_and_test(&eb->refs));
4319         btrfs_release_extent_buffer(eb);
4320         return exists;
4321 }
4322
4323 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4324                                          u64 start, unsigned long len)
4325 {
4326         struct extent_buffer *eb;
4327
4328         rcu_read_lock();
4329         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4330         if (eb && atomic_inc_not_zero(&eb->refs)) {
4331                 rcu_read_unlock();
4332                 mark_extent_buffer_accessed(eb);
4333                 return eb;
4334         }
4335         rcu_read_unlock();
4336
4337         return NULL;
4338 }
4339
4340 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4341 {
4342         struct extent_buffer *eb =
4343                         container_of(head, struct extent_buffer, rcu_head);
4344
4345         __free_extent_buffer(eb);
4346 }
4347
4348 /* Expects to have eb->eb_lock already held */
4349 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4350 {
4351         WARN_ON(atomic_read(&eb->refs) == 0);
4352         if (atomic_dec_and_test(&eb->refs)) {
4353                 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4354                         spin_unlock(&eb->refs_lock);
4355                 } else {
4356                         struct extent_io_tree *tree = eb->tree;
4357
4358                         spin_unlock(&eb->refs_lock);
4359
4360                         spin_lock(&tree->buffer_lock);
4361                         radix_tree_delete(&tree->buffer,
4362                                           eb->start >> PAGE_CACHE_SHIFT);
4363                         spin_unlock(&tree->buffer_lock);
4364                 }
4365
4366                 /* Should be safe to release our pages at this point */
4367                 btrfs_release_extent_buffer_page(eb, 0);
4368                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4369                 return 1;
4370         }
4371         spin_unlock(&eb->refs_lock);
4372
4373         return 0;
4374 }
4375
4376 void free_extent_buffer(struct extent_buffer *eb)
4377 {
4378         if (!eb)
4379                 return;
4380
4381         spin_lock(&eb->refs_lock);
4382         if (atomic_read(&eb->refs) == 2 &&
4383             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4384                 atomic_dec(&eb->refs);
4385
4386         if (atomic_read(&eb->refs) == 2 &&
4387             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4388             !extent_buffer_under_io(eb) &&
4389             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4390                 atomic_dec(&eb->refs);
4391
4392         /*
4393          * I know this is terrible, but it's temporary until we stop tracking
4394          * the uptodate bits and such for the extent buffers.
4395          */
4396         release_extent_buffer(eb, GFP_ATOMIC);
4397 }
4398
4399 void free_extent_buffer_stale(struct extent_buffer *eb)
4400 {
4401         if (!eb)
4402                 return;
4403
4404         spin_lock(&eb->refs_lock);
4405         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4406
4407         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4408             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4409                 atomic_dec(&eb->refs);
4410         release_extent_buffer(eb, GFP_NOFS);
4411 }
4412
4413 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4414 {
4415         unsigned long i;
4416         unsigned long num_pages;
4417         struct page *page;
4418
4419         num_pages = num_extent_pages(eb->start, eb->len);
4420
4421         for (i = 0; i < num_pages; i++) {
4422                 page = extent_buffer_page(eb, i);
4423                 if (!PageDirty(page))
4424                         continue;
4425
4426                 lock_page(page);
4427                 WARN_ON(!PagePrivate(page));
4428
4429                 clear_page_dirty_for_io(page);
4430                 spin_lock_irq(&page->mapping->tree_lock);
4431                 if (!PageDirty(page)) {
4432                         radix_tree_tag_clear(&page->mapping->page_tree,
4433                                                 page_index(page),
4434                                                 PAGECACHE_TAG_DIRTY);
4435                 }
4436                 spin_unlock_irq(&page->mapping->tree_lock);
4437                 ClearPageError(page);
4438                 unlock_page(page);
4439         }
4440         WARN_ON(atomic_read(&eb->refs) == 0);
4441 }
4442
4443 int set_extent_buffer_dirty(struct extent_buffer *eb)
4444 {
4445         unsigned long i;
4446         unsigned long num_pages;
4447         int was_dirty = 0;
4448
4449         check_buffer_tree_ref(eb);
4450
4451         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4452
4453         num_pages = num_extent_pages(eb->start, eb->len);
4454         WARN_ON(atomic_read(&eb->refs) == 0);
4455         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4456
4457         for (i = 0; i < num_pages; i++)
4458                 set_page_dirty(extent_buffer_page(eb, i));
4459         return was_dirty;
4460 }
4461
4462 static int range_straddles_pages(u64 start, u64 len)
4463 {
4464         if (len < PAGE_CACHE_SIZE)
4465                 return 1;
4466         if (start & (PAGE_CACHE_SIZE - 1))
4467                 return 1;
4468         if ((start + len) & (PAGE_CACHE_SIZE - 1))
4469                 return 1;
4470         return 0;
4471 }
4472
4473 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4474 {
4475         unsigned long i;
4476         struct page *page;
4477         unsigned long num_pages;
4478
4479         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4480         num_pages = num_extent_pages(eb->start, eb->len);
4481         for (i = 0; i < num_pages; i++) {
4482                 page = extent_buffer_page(eb, i);
4483                 if (page)
4484                         ClearPageUptodate(page);
4485         }
4486         return 0;
4487 }
4488
4489 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4490 {
4491         unsigned long i;
4492         struct page *page;
4493         unsigned long num_pages;
4494
4495         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4496         num_pages = num_extent_pages(eb->start, eb->len);
4497         for (i = 0; i < num_pages; i++) {
4498                 page = extent_buffer_page(eb, i);
4499                 SetPageUptodate(page);
4500         }
4501         return 0;
4502 }
4503
4504 int extent_range_uptodate(struct extent_io_tree *tree,
4505                           u64 start, u64 end)
4506 {
4507         struct page *page;
4508         int ret;
4509         int pg_uptodate = 1;
4510         int uptodate;
4511         unsigned long index;
4512
4513         if (range_straddles_pages(start, end - start + 1)) {
4514                 ret = test_range_bit(tree, start, end,
4515                                      EXTENT_UPTODATE, 1, NULL);
4516                 if (ret)
4517                         return 1;
4518         }
4519         while (start <= end) {
4520                 index = start >> PAGE_CACHE_SHIFT;
4521                 page = find_get_page(tree->mapping, index);
4522                 if (!page)
4523                         return 1;
4524                 uptodate = PageUptodate(page);
4525                 page_cache_release(page);
4526                 if (!uptodate) {
4527                         pg_uptodate = 0;
4528                         break;
4529                 }
4530                 start += PAGE_CACHE_SIZE;
4531         }
4532         return pg_uptodate;
4533 }
4534
4535 int extent_buffer_uptodate(struct extent_buffer *eb)
4536 {
4537         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4538 }
4539
4540 int read_extent_buffer_pages(struct extent_io_tree *tree,
4541                              struct extent_buffer *eb, u64 start, int wait,
4542                              get_extent_t *get_extent, int mirror_num)
4543 {
4544         unsigned long i;
4545         unsigned long start_i;
4546         struct page *page;
4547         int err;
4548         int ret = 0;
4549         int locked_pages = 0;
4550         int all_uptodate = 1;
4551         unsigned long num_pages;
4552         unsigned long num_reads = 0;
4553         struct bio *bio = NULL;
4554         unsigned long bio_flags = 0;
4555
4556         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4557                 return 0;
4558
4559         if (start) {
4560                 WARN_ON(start < eb->start);
4561                 start_i = (start >> PAGE_CACHE_SHIFT) -
4562                         (eb->start >> PAGE_CACHE_SHIFT);
4563         } else {
4564                 start_i = 0;
4565         }
4566
4567         num_pages = num_extent_pages(eb->start, eb->len);
4568         for (i = start_i; i < num_pages; i++) {
4569                 page = extent_buffer_page(eb, i);
4570                 if (wait == WAIT_NONE) {
4571                         if (!trylock_page(page))
4572                                 goto unlock_exit;
4573                 } else {
4574                         lock_page(page);
4575                 }
4576                 locked_pages++;
4577                 if (!PageUptodate(page)) {
4578                         num_reads++;
4579                         all_uptodate = 0;
4580                 }
4581         }
4582         if (all_uptodate) {
4583                 if (start_i == 0)
4584                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4585                 goto unlock_exit;
4586         }
4587
4588         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4589         eb->read_mirror = 0;
4590         atomic_set(&eb->io_pages, num_reads);
4591         for (i = start_i; i < num_pages; i++) {
4592                 page = extent_buffer_page(eb, i);
4593                 if (!PageUptodate(page)) {
4594                         ClearPageError(page);
4595                         err = __extent_read_full_page(tree, page,
4596                                                       get_extent, &bio,
4597                                                       mirror_num, &bio_flags);
4598                         if (err)
4599                                 ret = err;
4600                 } else {
4601                         unlock_page(page);
4602                 }
4603         }
4604
4605         if (bio) {
4606                 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4607                 if (err)
4608                         return err;
4609         }
4610
4611         if (ret || wait != WAIT_COMPLETE)
4612                 return ret;
4613
4614         for (i = start_i; i < num_pages; i++) {
4615                 page = extent_buffer_page(eb, i);
4616                 wait_on_page_locked(page);
4617                 if (!PageUptodate(page))
4618                         ret = -EIO;
4619         }
4620
4621         return ret;
4622
4623 unlock_exit:
4624         i = start_i;
4625         while (locked_pages > 0) {
4626                 page = extent_buffer_page(eb, i);
4627                 i++;
4628                 unlock_page(page);
4629                 locked_pages--;
4630         }
4631         return ret;
4632 }
4633
4634 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4635                         unsigned long start,
4636                         unsigned long len)
4637 {
4638         size_t cur;
4639         size_t offset;
4640         struct page *page;
4641         char *kaddr;
4642         char *dst = (char *)dstv;
4643         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4644         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4645
4646         WARN_ON(start > eb->len);
4647         WARN_ON(start + len > eb->start + eb->len);
4648
4649         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4650
4651         while (len > 0) {
4652                 page = extent_buffer_page(eb, i);
4653
4654                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4655                 kaddr = page_address(page);
4656                 memcpy(dst, kaddr + offset, cur);
4657
4658                 dst += cur;
4659                 len -= cur;
4660                 offset = 0;
4661                 i++;
4662         }
4663 }
4664
4665 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4666                                unsigned long min_len, char **map,
4667                                unsigned long *map_start,
4668                                unsigned long *map_len)
4669 {
4670         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4671         char *kaddr;
4672         struct page *p;
4673         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4674         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4675         unsigned long end_i = (start_offset + start + min_len - 1) >>
4676                 PAGE_CACHE_SHIFT;
4677
4678         if (i != end_i)
4679                 return -EINVAL;
4680
4681         if (i == 0) {
4682                 offset = start_offset;
4683                 *map_start = 0;
4684         } else {
4685                 offset = 0;
4686                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4687         }
4688
4689         if (start + min_len > eb->len) {
4690                 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4691                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4692                        eb->len, start, min_len);
4693                 WARN_ON(1);
4694                 return -EINVAL;
4695         }
4696
4697         p = extent_buffer_page(eb, i);
4698         kaddr = page_address(p);
4699         *map = kaddr + offset;
4700         *map_len = PAGE_CACHE_SIZE - offset;
4701         return 0;
4702 }
4703
4704 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4705                           unsigned long start,
4706                           unsigned long len)
4707 {
4708         size_t cur;
4709         size_t offset;
4710         struct page *page;
4711         char *kaddr;
4712         char *ptr = (char *)ptrv;
4713         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4714         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4715         int ret = 0;
4716
4717         WARN_ON(start > eb->len);
4718         WARN_ON(start + len > eb->start + eb->len);
4719
4720         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4721
4722         while (len > 0) {
4723                 page = extent_buffer_page(eb, i);
4724
4725                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4726
4727                 kaddr = page_address(page);
4728                 ret = memcmp(ptr, kaddr + offset, cur);
4729                 if (ret)
4730                         break;
4731
4732                 ptr += cur;
4733                 len -= cur;
4734                 offset = 0;
4735                 i++;
4736         }
4737         return ret;
4738 }
4739
4740 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4741                          unsigned long start, unsigned long len)
4742 {
4743         size_t cur;
4744         size_t offset;
4745         struct page *page;
4746         char *kaddr;
4747         char *src = (char *)srcv;
4748         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4749         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4750
4751         WARN_ON(start > eb->len);
4752         WARN_ON(start + len > eb->start + eb->len);
4753
4754         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4755
4756         while (len > 0) {
4757                 page = extent_buffer_page(eb, i);
4758                 WARN_ON(!PageUptodate(page));
4759
4760                 cur = min(len, PAGE_CACHE_SIZE - offset);
4761                 kaddr = page_address(page);
4762                 memcpy(kaddr + offset, src, cur);
4763
4764                 src += cur;
4765                 len -= cur;
4766                 offset = 0;
4767                 i++;
4768         }
4769 }
4770
4771 void memset_extent_buffer(struct extent_buffer *eb, char c,
4772                           unsigned long start, unsigned long len)
4773 {
4774         size_t cur;
4775         size_t offset;
4776         struct page *page;
4777         char *kaddr;
4778         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4779         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4780
4781         WARN_ON(start > eb->len);
4782         WARN_ON(start + len > eb->start + eb->len);
4783
4784         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4785
4786         while (len > 0) {
4787                 page = extent_buffer_page(eb, i);
4788                 WARN_ON(!PageUptodate(page));
4789
4790                 cur = min(len, PAGE_CACHE_SIZE - offset);
4791                 kaddr = page_address(page);
4792                 memset(kaddr + offset, c, cur);
4793
4794                 len -= cur;
4795                 offset = 0;
4796                 i++;
4797         }
4798 }
4799
4800 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4801                         unsigned long dst_offset, unsigned long src_offset,
4802                         unsigned long len)
4803 {
4804         u64 dst_len = dst->len;
4805         size_t cur;
4806         size_t offset;
4807         struct page *page;
4808         char *kaddr;
4809         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4810         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4811
4812         WARN_ON(src->len != dst_len);
4813
4814         offset = (start_offset + dst_offset) &
4815                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4816
4817         while (len > 0) {
4818                 page = extent_buffer_page(dst, i);
4819                 WARN_ON(!PageUptodate(page));
4820
4821                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4822
4823                 kaddr = page_address(page);
4824                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4825
4826                 src_offset += cur;
4827                 len -= cur;
4828                 offset = 0;
4829                 i++;
4830         }
4831 }
4832
4833 static void move_pages(struct page *dst_page, struct page *src_page,
4834                        unsigned long dst_off, unsigned long src_off,
4835                        unsigned long len)
4836 {
4837         char *dst_kaddr = page_address(dst_page);
4838         if (dst_page == src_page) {
4839                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4840         } else {
4841                 char *src_kaddr = page_address(src_page);
4842                 char *p = dst_kaddr + dst_off + len;
4843                 char *s = src_kaddr + src_off + len;
4844
4845                 while (len--)
4846                         *--p = *--s;
4847         }
4848 }
4849
4850 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4851 {
4852         unsigned long distance = (src > dst) ? src - dst : dst - src;
4853         return distance < len;
4854 }
4855
4856 static void copy_pages(struct page *dst_page, struct page *src_page,
4857                        unsigned long dst_off, unsigned long src_off,
4858                        unsigned long len)
4859 {
4860         char *dst_kaddr = page_address(dst_page);
4861         char *src_kaddr;
4862         int must_memmove = 0;
4863
4864         if (dst_page != src_page) {
4865                 src_kaddr = page_address(src_page);
4866         } else {
4867                 src_kaddr = dst_kaddr;
4868                 if (areas_overlap(src_off, dst_off, len))
4869                         must_memmove = 1;
4870         }
4871
4872         if (must_memmove)
4873                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4874         else
4875                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4876 }
4877
4878 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4879                            unsigned long src_offset, unsigned long len)
4880 {
4881         size_t cur;
4882         size_t dst_off_in_page;
4883         size_t src_off_in_page;
4884         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4885         unsigned long dst_i;
4886         unsigned long src_i;
4887
4888         if (src_offset + len > dst->len) {
4889                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4890                        "len %lu dst len %lu\n", src_offset, len, dst->len);
4891                 BUG_ON(1);
4892         }
4893         if (dst_offset + len > dst->len) {
4894                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4895                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
4896                 BUG_ON(1);
4897         }
4898
4899         while (len > 0) {
4900                 dst_off_in_page = (start_offset + dst_offset) &
4901                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4902                 src_off_in_page = (start_offset + src_offset) &
4903                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4904
4905                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4906                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4907
4908                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4909                                                src_off_in_page));
4910                 cur = min_t(unsigned long, cur,
4911                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4912
4913                 copy_pages(extent_buffer_page(dst, dst_i),
4914                            extent_buffer_page(dst, src_i),
4915                            dst_off_in_page, src_off_in_page, cur);
4916
4917                 src_offset += cur;
4918                 dst_offset += cur;
4919                 len -= cur;
4920         }
4921 }
4922
4923 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4924                            unsigned long src_offset, unsigned long len)
4925 {
4926         size_t cur;
4927         size_t dst_off_in_page;
4928         size_t src_off_in_page;
4929         unsigned long dst_end = dst_offset + len - 1;
4930         unsigned long src_end = src_offset + len - 1;
4931         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4932         unsigned long dst_i;
4933         unsigned long src_i;
4934
4935         if (src_offset + len > dst->len) {
4936                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4937                        "len %lu len %lu\n", src_offset, len, dst->len);
4938                 BUG_ON(1);
4939         }
4940         if (dst_offset + len > dst->len) {
4941                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4942                        "len %lu len %lu\n", dst_offset, len, dst->len);
4943                 BUG_ON(1);
4944         }
4945         if (dst_offset < src_offset) {
4946                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4947                 return;
4948         }
4949         while (len > 0) {
4950                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4951                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4952
4953                 dst_off_in_page = (start_offset + dst_end) &
4954                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4955                 src_off_in_page = (start_offset + src_end) &
4956                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4957
4958                 cur = min_t(unsigned long, len, src_off_in_page + 1);
4959                 cur = min(cur, dst_off_in_page + 1);
4960                 move_pages(extent_buffer_page(dst, dst_i),
4961                            extent_buffer_page(dst, src_i),
4962                            dst_off_in_page - cur + 1,
4963                            src_off_in_page - cur + 1, cur);
4964
4965                 dst_end -= cur;
4966                 src_end -= cur;
4967                 len -= cur;
4968         }
4969 }
4970
4971 int try_release_extent_buffer(struct page *page, gfp_t mask)
4972 {
4973         struct extent_buffer *eb;
4974
4975         /*
4976          * We need to make sure noboody is attaching this page to an eb right
4977          * now.
4978          */
4979         spin_lock(&page->mapping->private_lock);
4980         if (!PagePrivate(page)) {
4981                 spin_unlock(&page->mapping->private_lock);
4982                 return 1;
4983         }
4984
4985         eb = (struct extent_buffer *)page->private;
4986         BUG_ON(!eb);
4987
4988         /*
4989          * This is a little awful but should be ok, we need to make sure that
4990          * the eb doesn't disappear out from under us while we're looking at
4991          * this page.
4992          */
4993         spin_lock(&eb->refs_lock);
4994         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4995                 spin_unlock(&eb->refs_lock);
4996                 spin_unlock(&page->mapping->private_lock);
4997                 return 0;
4998         }
4999         spin_unlock(&page->mapping->private_lock);
5000
5001         if ((mask & GFP_NOFS) == GFP_NOFS)
5002                 mask = GFP_NOFS;
5003
5004         /*
5005          * If tree ref isn't set then we know the ref on this eb is a real ref,
5006          * so just return, this page will likely be freed soon anyway.
5007          */
5008         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5009                 spin_unlock(&eb->refs_lock);
5010                 return 0;
5011         }
5012
5013         return release_extent_buffer(eb, mask);
5014 }