OSDN Git Service

scsi: target/iblock: fix WRITE SAME zeroing
[tomoyo/tomoyo-test1.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
33 /*
34  * when auto defrag is enabled we
35  * queue up these defrag structs to remember which
36  * inodes need defragging passes
37  */
38 struct inode_defrag {
39         struct rb_node rb_node;
40         /* objectid */
41         u64 ino;
42         /*
43          * transid where the defrag was added, we search for
44          * extents newer than this
45          */
46         u64 transid;
47
48         /* root objectid */
49         u64 root;
50
51         /* last offset we were able to defrag */
52         u64 last_offset;
53
54         /* if we've wrapped around back to zero once already */
55         int cycled;
56 };
57
58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59                                   struct inode_defrag *defrag2)
60 {
61         if (defrag1->root > defrag2->root)
62                 return 1;
63         else if (defrag1->root < defrag2->root)
64                 return -1;
65         else if (defrag1->ino > defrag2->ino)
66                 return 1;
67         else if (defrag1->ino < defrag2->ino)
68                 return -1;
69         else
70                 return 0;
71 }
72
73 /* pop a record for an inode into the defrag tree.  The lock
74  * must be held already
75  *
76  * If you're inserting a record for an older transid than an
77  * existing record, the transid already in the tree is lowered
78  *
79  * If an existing record is found the defrag item you
80  * pass in is freed
81  */
82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83                                     struct inode_defrag *defrag)
84 {
85         struct btrfs_fs_info *fs_info = inode->root->fs_info;
86         struct inode_defrag *entry;
87         struct rb_node **p;
88         struct rb_node *parent = NULL;
89         int ret;
90
91         p = &fs_info->defrag_inodes.rb_node;
92         while (*p) {
93                 parent = *p;
94                 entry = rb_entry(parent, struct inode_defrag, rb_node);
95
96                 ret = __compare_inode_defrag(defrag, entry);
97                 if (ret < 0)
98                         p = &parent->rb_left;
99                 else if (ret > 0)
100                         p = &parent->rb_right;
101                 else {
102                         /* if we're reinserting an entry for
103                          * an old defrag run, make sure to
104                          * lower the transid of our existing record
105                          */
106                         if (defrag->transid < entry->transid)
107                                 entry->transid = defrag->transid;
108                         if (defrag->last_offset > entry->last_offset)
109                                 entry->last_offset = defrag->last_offset;
110                         return -EEXIST;
111                 }
112         }
113         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114         rb_link_node(&defrag->rb_node, parent, p);
115         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
116         return 0;
117 }
118
119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
120 {
121         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
122                 return 0;
123
124         if (btrfs_fs_closing(fs_info))
125                 return 0;
126
127         return 1;
128 }
129
130 /*
131  * insert a defrag record for this inode if auto defrag is
132  * enabled
133  */
134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135                            struct btrfs_inode *inode)
136 {
137         struct btrfs_root *root = inode->root;
138         struct btrfs_fs_info *fs_info = root->fs_info;
139         struct inode_defrag *defrag;
140         u64 transid;
141         int ret;
142
143         if (!__need_auto_defrag(fs_info))
144                 return 0;
145
146         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
147                 return 0;
148
149         if (trans)
150                 transid = trans->transid;
151         else
152                 transid = inode->root->last_trans;
153
154         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
155         if (!defrag)
156                 return -ENOMEM;
157
158         defrag->ino = btrfs_ino(inode);
159         defrag->transid = transid;
160         defrag->root = root->root_key.objectid;
161
162         spin_lock(&fs_info->defrag_inodes_lock);
163         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
164                 /*
165                  * If we set IN_DEFRAG flag and evict the inode from memory,
166                  * and then re-read this inode, this new inode doesn't have
167                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
168                  */
169                 ret = __btrfs_add_inode_defrag(inode, defrag);
170                 if (ret)
171                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172         } else {
173                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174         }
175         spin_unlock(&fs_info->defrag_inodes_lock);
176         return 0;
177 }
178
179 /*
180  * Requeue the defrag object. If there is a defrag object that points to
181  * the same inode in the tree, we will merge them together (by
182  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
183  */
184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185                                        struct inode_defrag *defrag)
186 {
187         struct btrfs_fs_info *fs_info = inode->root->fs_info;
188         int ret;
189
190         if (!__need_auto_defrag(fs_info))
191                 goto out;
192
193         /*
194          * Here we don't check the IN_DEFRAG flag, because we need merge
195          * them together.
196          */
197         spin_lock(&fs_info->defrag_inodes_lock);
198         ret = __btrfs_add_inode_defrag(inode, defrag);
199         spin_unlock(&fs_info->defrag_inodes_lock);
200         if (ret)
201                 goto out;
202         return;
203 out:
204         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205 }
206
207 /*
208  * pick the defragable inode that we want, if it doesn't exist, we will get
209  * the next one.
210  */
211 static struct inode_defrag *
212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
213 {
214         struct inode_defrag *entry = NULL;
215         struct inode_defrag tmp;
216         struct rb_node *p;
217         struct rb_node *parent = NULL;
218         int ret;
219
220         tmp.ino = ino;
221         tmp.root = root;
222
223         spin_lock(&fs_info->defrag_inodes_lock);
224         p = fs_info->defrag_inodes.rb_node;
225         while (p) {
226                 parent = p;
227                 entry = rb_entry(parent, struct inode_defrag, rb_node);
228
229                 ret = __compare_inode_defrag(&tmp, entry);
230                 if (ret < 0)
231                         p = parent->rb_left;
232                 else if (ret > 0)
233                         p = parent->rb_right;
234                 else
235                         goto out;
236         }
237
238         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239                 parent = rb_next(parent);
240                 if (parent)
241                         entry = rb_entry(parent, struct inode_defrag, rb_node);
242                 else
243                         entry = NULL;
244         }
245 out:
246         if (entry)
247                 rb_erase(parent, &fs_info->defrag_inodes);
248         spin_unlock(&fs_info->defrag_inodes_lock);
249         return entry;
250 }
251
252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
253 {
254         struct inode_defrag *defrag;
255         struct rb_node *node;
256
257         spin_lock(&fs_info->defrag_inodes_lock);
258         node = rb_first(&fs_info->defrag_inodes);
259         while (node) {
260                 rb_erase(node, &fs_info->defrag_inodes);
261                 defrag = rb_entry(node, struct inode_defrag, rb_node);
262                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263
264                 cond_resched_lock(&fs_info->defrag_inodes_lock);
265
266                 node = rb_first(&fs_info->defrag_inodes);
267         }
268         spin_unlock(&fs_info->defrag_inodes_lock);
269 }
270
271 #define BTRFS_DEFRAG_BATCH      1024
272
273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274                                     struct inode_defrag *defrag)
275 {
276         struct btrfs_root *inode_root;
277         struct inode *inode;
278         struct btrfs_key key;
279         struct btrfs_ioctl_defrag_range_args range;
280         int num_defrag;
281         int ret;
282
283         /* get the inode */
284         key.objectid = defrag->root;
285         key.type = BTRFS_ROOT_ITEM_KEY;
286         key.offset = (u64)-1;
287
288         inode_root = btrfs_get_fs_root(fs_info, &key, true);
289         if (IS_ERR(inode_root)) {
290                 ret = PTR_ERR(inode_root);
291                 goto cleanup;
292         }
293
294         key.objectid = defrag->ino;
295         key.type = BTRFS_INODE_ITEM_KEY;
296         key.offset = 0;
297         inode = btrfs_iget(fs_info->sb, &key, inode_root);
298         btrfs_put_root(inode_root);
299         if (IS_ERR(inode)) {
300                 ret = PTR_ERR(inode);
301                 goto cleanup;
302         }
303
304         /* do a chunk of defrag */
305         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
306         memset(&range, 0, sizeof(range));
307         range.len = (u64)-1;
308         range.start = defrag->last_offset;
309
310         sb_start_write(fs_info->sb);
311         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
312                                        BTRFS_DEFRAG_BATCH);
313         sb_end_write(fs_info->sb);
314         /*
315          * if we filled the whole defrag batch, there
316          * must be more work to do.  Queue this defrag
317          * again
318          */
319         if (num_defrag == BTRFS_DEFRAG_BATCH) {
320                 defrag->last_offset = range.start;
321                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
322         } else if (defrag->last_offset && !defrag->cycled) {
323                 /*
324                  * we didn't fill our defrag batch, but
325                  * we didn't start at zero.  Make sure we loop
326                  * around to the start of the file.
327                  */
328                 defrag->last_offset = 0;
329                 defrag->cycled = 1;
330                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
331         } else {
332                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
333         }
334
335         iput(inode);
336         return 0;
337 cleanup:
338         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
339         return ret;
340 }
341
342 /*
343  * run through the list of inodes in the FS that need
344  * defragging
345  */
346 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
347 {
348         struct inode_defrag *defrag;
349         u64 first_ino = 0;
350         u64 root_objectid = 0;
351
352         atomic_inc(&fs_info->defrag_running);
353         while (1) {
354                 /* Pause the auto defragger. */
355                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
356                              &fs_info->fs_state))
357                         break;
358
359                 if (!__need_auto_defrag(fs_info))
360                         break;
361
362                 /* find an inode to defrag */
363                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
364                                                  first_ino);
365                 if (!defrag) {
366                         if (root_objectid || first_ino) {
367                                 root_objectid = 0;
368                                 first_ino = 0;
369                                 continue;
370                         } else {
371                                 break;
372                         }
373                 }
374
375                 first_ino = defrag->ino + 1;
376                 root_objectid = defrag->root;
377
378                 __btrfs_run_defrag_inode(fs_info, defrag);
379         }
380         atomic_dec(&fs_info->defrag_running);
381
382         /*
383          * during unmount, we use the transaction_wait queue to
384          * wait for the defragger to stop
385          */
386         wake_up(&fs_info->transaction_wait);
387         return 0;
388 }
389
390 /* simple helper to fault in pages and copy.  This should go away
391  * and be replaced with calls into generic code.
392  */
393 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
394                                          struct page **prepared_pages,
395                                          struct iov_iter *i)
396 {
397         size_t copied = 0;
398         size_t total_copied = 0;
399         int pg = 0;
400         int offset = offset_in_page(pos);
401
402         while (write_bytes > 0) {
403                 size_t count = min_t(size_t,
404                                      PAGE_SIZE - offset, write_bytes);
405                 struct page *page = prepared_pages[pg];
406                 /*
407                  * Copy data from userspace to the current page
408                  */
409                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
410
411                 /* Flush processor's dcache for this page */
412                 flush_dcache_page(page);
413
414                 /*
415                  * if we get a partial write, we can end up with
416                  * partially up to date pages.  These add
417                  * a lot of complexity, so make sure they don't
418                  * happen by forcing this copy to be retried.
419                  *
420                  * The rest of the btrfs_file_write code will fall
421                  * back to page at a time copies after we return 0.
422                  */
423                 if (!PageUptodate(page) && copied < count)
424                         copied = 0;
425
426                 iov_iter_advance(i, copied);
427                 write_bytes -= copied;
428                 total_copied += copied;
429
430                 /* Return to btrfs_file_write_iter to fault page */
431                 if (unlikely(copied == 0))
432                         break;
433
434                 if (copied < PAGE_SIZE - offset) {
435                         offset += copied;
436                 } else {
437                         pg++;
438                         offset = 0;
439                 }
440         }
441         return total_copied;
442 }
443
444 /*
445  * unlocks pages after btrfs_file_write is done with them
446  */
447 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
448 {
449         size_t i;
450         for (i = 0; i < num_pages; i++) {
451                 /* page checked is some magic around finding pages that
452                  * have been modified without going through btrfs_set_page_dirty
453                  * clear it here. There should be no need to mark the pages
454                  * accessed as prepare_pages should have marked them accessed
455                  * in prepare_pages via find_or_create_page()
456                  */
457                 ClearPageChecked(pages[i]);
458                 unlock_page(pages[i]);
459                 put_page(pages[i]);
460         }
461 }
462
463 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
464                                          const u64 start,
465                                          const u64 len,
466                                          struct extent_state **cached_state)
467 {
468         u64 search_start = start;
469         const u64 end = start + len - 1;
470
471         while (search_start < end) {
472                 const u64 search_len = end - search_start + 1;
473                 struct extent_map *em;
474                 u64 em_len;
475                 int ret = 0;
476
477                 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
478                 if (IS_ERR(em))
479                         return PTR_ERR(em);
480
481                 if (em->block_start != EXTENT_MAP_HOLE)
482                         goto next;
483
484                 em_len = em->len;
485                 if (em->start < search_start)
486                         em_len -= search_start - em->start;
487                 if (em_len > search_len)
488                         em_len = search_len;
489
490                 ret = set_extent_bit(&inode->io_tree, search_start,
491                                      search_start + em_len - 1,
492                                      EXTENT_DELALLOC_NEW,
493                                      NULL, cached_state, GFP_NOFS);
494 next:
495                 search_start = extent_map_end(em);
496                 free_extent_map(em);
497                 if (ret)
498                         return ret;
499         }
500         return 0;
501 }
502
503 /*
504  * after copy_from_user, pages need to be dirtied and we need to make
505  * sure holes are created between the current EOF and the start of
506  * any next extents (if required).
507  *
508  * this also makes the decision about creating an inline extent vs
509  * doing real data extents, marking pages dirty and delalloc as required.
510  */
511 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
512                       size_t num_pages, loff_t pos, size_t write_bytes,
513                       struct extent_state **cached)
514 {
515         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
516         int err = 0;
517         int i;
518         u64 num_bytes;
519         u64 start_pos;
520         u64 end_of_last_block;
521         u64 end_pos = pos + write_bytes;
522         loff_t isize = i_size_read(inode);
523         unsigned int extra_bits = 0;
524
525         start_pos = pos & ~((u64) fs_info->sectorsize - 1);
526         num_bytes = round_up(write_bytes + pos - start_pos,
527                              fs_info->sectorsize);
528
529         end_of_last_block = start_pos + num_bytes - 1;
530
531         /*
532          * The pages may have already been dirty, clear out old accounting so
533          * we can set things up properly
534          */
535         clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
536                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
537                          0, 0, cached);
538
539         if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
540                 if (start_pos >= isize &&
541                     !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
542                         /*
543                          * There can't be any extents following eof in this case
544                          * so just set the delalloc new bit for the range
545                          * directly.
546                          */
547                         extra_bits |= EXTENT_DELALLOC_NEW;
548                 } else {
549                         err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
550                                                             start_pos,
551                                                             num_bytes, cached);
552                         if (err)
553                                 return err;
554                 }
555         }
556
557         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
558                                         extra_bits, cached);
559         if (err)
560                 return err;
561
562         for (i = 0; i < num_pages; i++) {
563                 struct page *p = pages[i];
564                 SetPageUptodate(p);
565                 ClearPageChecked(p);
566                 set_page_dirty(p);
567         }
568
569         /*
570          * we've only changed i_size in ram, and we haven't updated
571          * the disk i_size.  There is no need to log the inode
572          * at this time.
573          */
574         if (end_pos > isize)
575                 i_size_write(inode, end_pos);
576         return 0;
577 }
578
579 /*
580  * this drops all the extents in the cache that intersect the range
581  * [start, end].  Existing extents are split as required.
582  */
583 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
584                              int skip_pinned)
585 {
586         struct extent_map *em;
587         struct extent_map *split = NULL;
588         struct extent_map *split2 = NULL;
589         struct extent_map_tree *em_tree = &inode->extent_tree;
590         u64 len = end - start + 1;
591         u64 gen;
592         int ret;
593         int testend = 1;
594         unsigned long flags;
595         int compressed = 0;
596         bool modified;
597
598         WARN_ON(end < start);
599         if (end == (u64)-1) {
600                 len = (u64)-1;
601                 testend = 0;
602         }
603         while (1) {
604                 int no_splits = 0;
605
606                 modified = false;
607                 if (!split)
608                         split = alloc_extent_map();
609                 if (!split2)
610                         split2 = alloc_extent_map();
611                 if (!split || !split2)
612                         no_splits = 1;
613
614                 write_lock(&em_tree->lock);
615                 em = lookup_extent_mapping(em_tree, start, len);
616                 if (!em) {
617                         write_unlock(&em_tree->lock);
618                         break;
619                 }
620                 flags = em->flags;
621                 gen = em->generation;
622                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
623                         if (testend && em->start + em->len >= start + len) {
624                                 free_extent_map(em);
625                                 write_unlock(&em_tree->lock);
626                                 break;
627                         }
628                         start = em->start + em->len;
629                         if (testend)
630                                 len = start + len - (em->start + em->len);
631                         free_extent_map(em);
632                         write_unlock(&em_tree->lock);
633                         continue;
634                 }
635                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
636                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
637                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
638                 modified = !list_empty(&em->list);
639                 if (no_splits)
640                         goto next;
641
642                 if (em->start < start) {
643                         split->start = em->start;
644                         split->len = start - em->start;
645
646                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
647                                 split->orig_start = em->orig_start;
648                                 split->block_start = em->block_start;
649
650                                 if (compressed)
651                                         split->block_len = em->block_len;
652                                 else
653                                         split->block_len = split->len;
654                                 split->orig_block_len = max(split->block_len,
655                                                 em->orig_block_len);
656                                 split->ram_bytes = em->ram_bytes;
657                         } else {
658                                 split->orig_start = split->start;
659                                 split->block_len = 0;
660                                 split->block_start = em->block_start;
661                                 split->orig_block_len = 0;
662                                 split->ram_bytes = split->len;
663                         }
664
665                         split->generation = gen;
666                         split->flags = flags;
667                         split->compress_type = em->compress_type;
668                         replace_extent_mapping(em_tree, em, split, modified);
669                         free_extent_map(split);
670                         split = split2;
671                         split2 = NULL;
672                 }
673                 if (testend && em->start + em->len > start + len) {
674                         u64 diff = start + len - em->start;
675
676                         split->start = start + len;
677                         split->len = em->start + em->len - (start + len);
678                         split->flags = flags;
679                         split->compress_type = em->compress_type;
680                         split->generation = gen;
681
682                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
683                                 split->orig_block_len = max(em->block_len,
684                                                     em->orig_block_len);
685
686                                 split->ram_bytes = em->ram_bytes;
687                                 if (compressed) {
688                                         split->block_len = em->block_len;
689                                         split->block_start = em->block_start;
690                                         split->orig_start = em->orig_start;
691                                 } else {
692                                         split->block_len = split->len;
693                                         split->block_start = em->block_start
694                                                 + diff;
695                                         split->orig_start = em->orig_start;
696                                 }
697                         } else {
698                                 split->ram_bytes = split->len;
699                                 split->orig_start = split->start;
700                                 split->block_len = 0;
701                                 split->block_start = em->block_start;
702                                 split->orig_block_len = 0;
703                         }
704
705                         if (extent_map_in_tree(em)) {
706                                 replace_extent_mapping(em_tree, em, split,
707                                                        modified);
708                         } else {
709                                 ret = add_extent_mapping(em_tree, split,
710                                                          modified);
711                                 ASSERT(ret == 0); /* Logic error */
712                         }
713                         free_extent_map(split);
714                         split = NULL;
715                 }
716 next:
717                 if (extent_map_in_tree(em))
718                         remove_extent_mapping(em_tree, em);
719                 write_unlock(&em_tree->lock);
720
721                 /* once for us */
722                 free_extent_map(em);
723                 /* once for the tree*/
724                 free_extent_map(em);
725         }
726         if (split)
727                 free_extent_map(split);
728         if (split2)
729                 free_extent_map(split2);
730 }
731
732 /*
733  * this is very complex, but the basic idea is to drop all extents
734  * in the range start - end.  hint_block is filled in with a block number
735  * that would be a good hint to the block allocator for this file.
736  *
737  * If an extent intersects the range but is not entirely inside the range
738  * it is either truncated or split.  Anything entirely inside the range
739  * is deleted from the tree.
740  */
741 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
742                          struct btrfs_root *root, struct inode *inode,
743                          struct btrfs_path *path, u64 start, u64 end,
744                          u64 *drop_end, int drop_cache,
745                          int replace_extent,
746                          u32 extent_item_size,
747                          int *key_inserted)
748 {
749         struct btrfs_fs_info *fs_info = root->fs_info;
750         struct extent_buffer *leaf;
751         struct btrfs_file_extent_item *fi;
752         struct btrfs_ref ref = { 0 };
753         struct btrfs_key key;
754         struct btrfs_key new_key;
755         u64 ino = btrfs_ino(BTRFS_I(inode));
756         u64 search_start = start;
757         u64 disk_bytenr = 0;
758         u64 num_bytes = 0;
759         u64 extent_offset = 0;
760         u64 extent_end = 0;
761         u64 last_end = start;
762         int del_nr = 0;
763         int del_slot = 0;
764         int extent_type;
765         int recow;
766         int ret;
767         int modify_tree = -1;
768         int update_refs;
769         int found = 0;
770         int leafs_visited = 0;
771
772         if (drop_cache)
773                 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
774
775         if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
776                 modify_tree = 0;
777
778         update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
779                        root == fs_info->tree_root);
780         while (1) {
781                 recow = 0;
782                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
783                                                search_start, modify_tree);
784                 if (ret < 0)
785                         break;
786                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
787                         leaf = path->nodes[0];
788                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
789                         if (key.objectid == ino &&
790                             key.type == BTRFS_EXTENT_DATA_KEY)
791                                 path->slots[0]--;
792                 }
793                 ret = 0;
794                 leafs_visited++;
795 next_slot:
796                 leaf = path->nodes[0];
797                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
798                         BUG_ON(del_nr > 0);
799                         ret = btrfs_next_leaf(root, path);
800                         if (ret < 0)
801                                 break;
802                         if (ret > 0) {
803                                 ret = 0;
804                                 break;
805                         }
806                         leafs_visited++;
807                         leaf = path->nodes[0];
808                         recow = 1;
809                 }
810
811                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
812
813                 if (key.objectid > ino)
814                         break;
815                 if (WARN_ON_ONCE(key.objectid < ino) ||
816                     key.type < BTRFS_EXTENT_DATA_KEY) {
817                         ASSERT(del_nr == 0);
818                         path->slots[0]++;
819                         goto next_slot;
820                 }
821                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
822                         break;
823
824                 fi = btrfs_item_ptr(leaf, path->slots[0],
825                                     struct btrfs_file_extent_item);
826                 extent_type = btrfs_file_extent_type(leaf, fi);
827
828                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
829                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
830                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
831                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
832                         extent_offset = btrfs_file_extent_offset(leaf, fi);
833                         extent_end = key.offset +
834                                 btrfs_file_extent_num_bytes(leaf, fi);
835                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
836                         extent_end = key.offset +
837                                 btrfs_file_extent_ram_bytes(leaf, fi);
838                 } else {
839                         /* can't happen */
840                         BUG();
841                 }
842
843                 /*
844                  * Don't skip extent items representing 0 byte lengths. They
845                  * used to be created (bug) if while punching holes we hit
846                  * -ENOSPC condition. So if we find one here, just ensure we
847                  * delete it, otherwise we would insert a new file extent item
848                  * with the same key (offset) as that 0 bytes length file
849                  * extent item in the call to setup_items_for_insert() later
850                  * in this function.
851                  */
852                 if (extent_end == key.offset && extent_end >= search_start) {
853                         last_end = extent_end;
854                         goto delete_extent_item;
855                 }
856
857                 if (extent_end <= search_start) {
858                         path->slots[0]++;
859                         goto next_slot;
860                 }
861
862                 found = 1;
863                 search_start = max(key.offset, start);
864                 if (recow || !modify_tree) {
865                         modify_tree = -1;
866                         btrfs_release_path(path);
867                         continue;
868                 }
869
870                 /*
871                  *     | - range to drop - |
872                  *  | -------- extent -------- |
873                  */
874                 if (start > key.offset && end < extent_end) {
875                         BUG_ON(del_nr > 0);
876                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
877                                 ret = -EOPNOTSUPP;
878                                 break;
879                         }
880
881                         memcpy(&new_key, &key, sizeof(new_key));
882                         new_key.offset = start;
883                         ret = btrfs_duplicate_item(trans, root, path,
884                                                    &new_key);
885                         if (ret == -EAGAIN) {
886                                 btrfs_release_path(path);
887                                 continue;
888                         }
889                         if (ret < 0)
890                                 break;
891
892                         leaf = path->nodes[0];
893                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
894                                             struct btrfs_file_extent_item);
895                         btrfs_set_file_extent_num_bytes(leaf, fi,
896                                                         start - key.offset);
897
898                         fi = btrfs_item_ptr(leaf, path->slots[0],
899                                             struct btrfs_file_extent_item);
900
901                         extent_offset += start - key.offset;
902                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
903                         btrfs_set_file_extent_num_bytes(leaf, fi,
904                                                         extent_end - start);
905                         btrfs_mark_buffer_dirty(leaf);
906
907                         if (update_refs && disk_bytenr > 0) {
908                                 btrfs_init_generic_ref(&ref,
909                                                 BTRFS_ADD_DELAYED_REF,
910                                                 disk_bytenr, num_bytes, 0);
911                                 btrfs_init_data_ref(&ref,
912                                                 root->root_key.objectid,
913                                                 new_key.objectid,
914                                                 start - extent_offset);
915                                 ret = btrfs_inc_extent_ref(trans, &ref);
916                                 BUG_ON(ret); /* -ENOMEM */
917                         }
918                         key.offset = start;
919                 }
920                 /*
921                  * From here on out we will have actually dropped something, so
922                  * last_end can be updated.
923                  */
924                 last_end = extent_end;
925
926                 /*
927                  *  | ---- range to drop ----- |
928                  *      | -------- extent -------- |
929                  */
930                 if (start <= key.offset && end < extent_end) {
931                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
932                                 ret = -EOPNOTSUPP;
933                                 break;
934                         }
935
936                         memcpy(&new_key, &key, sizeof(new_key));
937                         new_key.offset = end;
938                         btrfs_set_item_key_safe(fs_info, path, &new_key);
939
940                         extent_offset += end - key.offset;
941                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
942                         btrfs_set_file_extent_num_bytes(leaf, fi,
943                                                         extent_end - end);
944                         btrfs_mark_buffer_dirty(leaf);
945                         if (update_refs && disk_bytenr > 0)
946                                 inode_sub_bytes(inode, end - key.offset);
947                         break;
948                 }
949
950                 search_start = extent_end;
951                 /*
952                  *       | ---- range to drop ----- |
953                  *  | -------- extent -------- |
954                  */
955                 if (start > key.offset && end >= extent_end) {
956                         BUG_ON(del_nr > 0);
957                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
958                                 ret = -EOPNOTSUPP;
959                                 break;
960                         }
961
962                         btrfs_set_file_extent_num_bytes(leaf, fi,
963                                                         start - key.offset);
964                         btrfs_mark_buffer_dirty(leaf);
965                         if (update_refs && disk_bytenr > 0)
966                                 inode_sub_bytes(inode, extent_end - start);
967                         if (end == extent_end)
968                                 break;
969
970                         path->slots[0]++;
971                         goto next_slot;
972                 }
973
974                 /*
975                  *  | ---- range to drop ----- |
976                  *    | ------ extent ------ |
977                  */
978                 if (start <= key.offset && end >= extent_end) {
979 delete_extent_item:
980                         if (del_nr == 0) {
981                                 del_slot = path->slots[0];
982                                 del_nr = 1;
983                         } else {
984                                 BUG_ON(del_slot + del_nr != path->slots[0]);
985                                 del_nr++;
986                         }
987
988                         if (update_refs &&
989                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
990                                 inode_sub_bytes(inode,
991                                                 extent_end - key.offset);
992                                 extent_end = ALIGN(extent_end,
993                                                    fs_info->sectorsize);
994                         } else if (update_refs && disk_bytenr > 0) {
995                                 btrfs_init_generic_ref(&ref,
996                                                 BTRFS_DROP_DELAYED_REF,
997                                                 disk_bytenr, num_bytes, 0);
998                                 btrfs_init_data_ref(&ref,
999                                                 root->root_key.objectid,
1000                                                 key.objectid,
1001                                                 key.offset - extent_offset);
1002                                 ret = btrfs_free_extent(trans, &ref);
1003                                 BUG_ON(ret); /* -ENOMEM */
1004                                 inode_sub_bytes(inode,
1005                                                 extent_end - key.offset);
1006                         }
1007
1008                         if (end == extent_end)
1009                                 break;
1010
1011                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1012                                 path->slots[0]++;
1013                                 goto next_slot;
1014                         }
1015
1016                         ret = btrfs_del_items(trans, root, path, del_slot,
1017                                               del_nr);
1018                         if (ret) {
1019                                 btrfs_abort_transaction(trans, ret);
1020                                 break;
1021                         }
1022
1023                         del_nr = 0;
1024                         del_slot = 0;
1025
1026                         btrfs_release_path(path);
1027                         continue;
1028                 }
1029
1030                 BUG();
1031         }
1032
1033         if (!ret && del_nr > 0) {
1034                 /*
1035                  * Set path->slots[0] to first slot, so that after the delete
1036                  * if items are move off from our leaf to its immediate left or
1037                  * right neighbor leafs, we end up with a correct and adjusted
1038                  * path->slots[0] for our insertion (if replace_extent != 0).
1039                  */
1040                 path->slots[0] = del_slot;
1041                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1042                 if (ret)
1043                         btrfs_abort_transaction(trans, ret);
1044         }
1045
1046         leaf = path->nodes[0];
1047         /*
1048          * If btrfs_del_items() was called, it might have deleted a leaf, in
1049          * which case it unlocked our path, so check path->locks[0] matches a
1050          * write lock.
1051          */
1052         if (!ret && replace_extent && leafs_visited == 1 &&
1053             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1054              path->locks[0] == BTRFS_WRITE_LOCK) &&
1055             btrfs_leaf_free_space(leaf) >=
1056             sizeof(struct btrfs_item) + extent_item_size) {
1057
1058                 key.objectid = ino;
1059                 key.type = BTRFS_EXTENT_DATA_KEY;
1060                 key.offset = start;
1061                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1062                         struct btrfs_key slot_key;
1063
1064                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1065                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1066                                 path->slots[0]++;
1067                 }
1068                 setup_items_for_insert(root, path, &key,
1069                                        &extent_item_size,
1070                                        extent_item_size,
1071                                        sizeof(struct btrfs_item) +
1072                                        extent_item_size, 1);
1073                 *key_inserted = 1;
1074         }
1075
1076         if (!replace_extent || !(*key_inserted))
1077                 btrfs_release_path(path);
1078         if (drop_end)
1079                 *drop_end = found ? min(end, last_end) : end;
1080         return ret;
1081 }
1082
1083 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1084                        struct btrfs_root *root, struct inode *inode, u64 start,
1085                        u64 end, int drop_cache)
1086 {
1087         struct btrfs_path *path;
1088         int ret;
1089
1090         path = btrfs_alloc_path();
1091         if (!path)
1092                 return -ENOMEM;
1093         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1094                                    drop_cache, 0, 0, NULL);
1095         btrfs_free_path(path);
1096         return ret;
1097 }
1098
1099 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1100                             u64 objectid, u64 bytenr, u64 orig_offset,
1101                             u64 *start, u64 *end)
1102 {
1103         struct btrfs_file_extent_item *fi;
1104         struct btrfs_key key;
1105         u64 extent_end;
1106
1107         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1108                 return 0;
1109
1110         btrfs_item_key_to_cpu(leaf, &key, slot);
1111         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1112                 return 0;
1113
1114         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1115         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1116             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1117             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1118             btrfs_file_extent_compression(leaf, fi) ||
1119             btrfs_file_extent_encryption(leaf, fi) ||
1120             btrfs_file_extent_other_encoding(leaf, fi))
1121                 return 0;
1122
1123         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1124         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1125                 return 0;
1126
1127         *start = key.offset;
1128         *end = extent_end;
1129         return 1;
1130 }
1131
1132 /*
1133  * Mark extent in the range start - end as written.
1134  *
1135  * This changes extent type from 'pre-allocated' to 'regular'. If only
1136  * part of extent is marked as written, the extent will be split into
1137  * two or three.
1138  */
1139 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1140                               struct btrfs_inode *inode, u64 start, u64 end)
1141 {
1142         struct btrfs_fs_info *fs_info = trans->fs_info;
1143         struct btrfs_root *root = inode->root;
1144         struct extent_buffer *leaf;
1145         struct btrfs_path *path;
1146         struct btrfs_file_extent_item *fi;
1147         struct btrfs_ref ref = { 0 };
1148         struct btrfs_key key;
1149         struct btrfs_key new_key;
1150         u64 bytenr;
1151         u64 num_bytes;
1152         u64 extent_end;
1153         u64 orig_offset;
1154         u64 other_start;
1155         u64 other_end;
1156         u64 split;
1157         int del_nr = 0;
1158         int del_slot = 0;
1159         int recow;
1160         int ret;
1161         u64 ino = btrfs_ino(inode);
1162
1163         path = btrfs_alloc_path();
1164         if (!path)
1165                 return -ENOMEM;
1166 again:
1167         recow = 0;
1168         split = start;
1169         key.objectid = ino;
1170         key.type = BTRFS_EXTENT_DATA_KEY;
1171         key.offset = split;
1172
1173         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1174         if (ret < 0)
1175                 goto out;
1176         if (ret > 0 && path->slots[0] > 0)
1177                 path->slots[0]--;
1178
1179         leaf = path->nodes[0];
1180         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1181         if (key.objectid != ino ||
1182             key.type != BTRFS_EXTENT_DATA_KEY) {
1183                 ret = -EINVAL;
1184                 btrfs_abort_transaction(trans, ret);
1185                 goto out;
1186         }
1187         fi = btrfs_item_ptr(leaf, path->slots[0],
1188                             struct btrfs_file_extent_item);
1189         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1190                 ret = -EINVAL;
1191                 btrfs_abort_transaction(trans, ret);
1192                 goto out;
1193         }
1194         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1195         if (key.offset > start || extent_end < end) {
1196                 ret = -EINVAL;
1197                 btrfs_abort_transaction(trans, ret);
1198                 goto out;
1199         }
1200
1201         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1202         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1203         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1204         memcpy(&new_key, &key, sizeof(new_key));
1205
1206         if (start == key.offset && end < extent_end) {
1207                 other_start = 0;
1208                 other_end = start;
1209                 if (extent_mergeable(leaf, path->slots[0] - 1,
1210                                      ino, bytenr, orig_offset,
1211                                      &other_start, &other_end)) {
1212                         new_key.offset = end;
1213                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1214                         fi = btrfs_item_ptr(leaf, path->slots[0],
1215                                             struct btrfs_file_extent_item);
1216                         btrfs_set_file_extent_generation(leaf, fi,
1217                                                          trans->transid);
1218                         btrfs_set_file_extent_num_bytes(leaf, fi,
1219                                                         extent_end - end);
1220                         btrfs_set_file_extent_offset(leaf, fi,
1221                                                      end - orig_offset);
1222                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1223                                             struct btrfs_file_extent_item);
1224                         btrfs_set_file_extent_generation(leaf, fi,
1225                                                          trans->transid);
1226                         btrfs_set_file_extent_num_bytes(leaf, fi,
1227                                                         end - other_start);
1228                         btrfs_mark_buffer_dirty(leaf);
1229                         goto out;
1230                 }
1231         }
1232
1233         if (start > key.offset && end == extent_end) {
1234                 other_start = end;
1235                 other_end = 0;
1236                 if (extent_mergeable(leaf, path->slots[0] + 1,
1237                                      ino, bytenr, orig_offset,
1238                                      &other_start, &other_end)) {
1239                         fi = btrfs_item_ptr(leaf, path->slots[0],
1240                                             struct btrfs_file_extent_item);
1241                         btrfs_set_file_extent_num_bytes(leaf, fi,
1242                                                         start - key.offset);
1243                         btrfs_set_file_extent_generation(leaf, fi,
1244                                                          trans->transid);
1245                         path->slots[0]++;
1246                         new_key.offset = start;
1247                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1248
1249                         fi = btrfs_item_ptr(leaf, path->slots[0],
1250                                             struct btrfs_file_extent_item);
1251                         btrfs_set_file_extent_generation(leaf, fi,
1252                                                          trans->transid);
1253                         btrfs_set_file_extent_num_bytes(leaf, fi,
1254                                                         other_end - start);
1255                         btrfs_set_file_extent_offset(leaf, fi,
1256                                                      start - orig_offset);
1257                         btrfs_mark_buffer_dirty(leaf);
1258                         goto out;
1259                 }
1260         }
1261
1262         while (start > key.offset || end < extent_end) {
1263                 if (key.offset == start)
1264                         split = end;
1265
1266                 new_key.offset = split;
1267                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1268                 if (ret == -EAGAIN) {
1269                         btrfs_release_path(path);
1270                         goto again;
1271                 }
1272                 if (ret < 0) {
1273                         btrfs_abort_transaction(trans, ret);
1274                         goto out;
1275                 }
1276
1277                 leaf = path->nodes[0];
1278                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1279                                     struct btrfs_file_extent_item);
1280                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1281                 btrfs_set_file_extent_num_bytes(leaf, fi,
1282                                                 split - key.offset);
1283
1284                 fi = btrfs_item_ptr(leaf, path->slots[0],
1285                                     struct btrfs_file_extent_item);
1286
1287                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1288                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1289                 btrfs_set_file_extent_num_bytes(leaf, fi,
1290                                                 extent_end - split);
1291                 btrfs_mark_buffer_dirty(leaf);
1292
1293                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1294                                        num_bytes, 0);
1295                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1296                                     orig_offset);
1297                 ret = btrfs_inc_extent_ref(trans, &ref);
1298                 if (ret) {
1299                         btrfs_abort_transaction(trans, ret);
1300                         goto out;
1301                 }
1302
1303                 if (split == start) {
1304                         key.offset = start;
1305                 } else {
1306                         if (start != key.offset) {
1307                                 ret = -EINVAL;
1308                                 btrfs_abort_transaction(trans, ret);
1309                                 goto out;
1310                         }
1311                         path->slots[0]--;
1312                         extent_end = end;
1313                 }
1314                 recow = 1;
1315         }
1316
1317         other_start = end;
1318         other_end = 0;
1319         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1320                                num_bytes, 0);
1321         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1322         if (extent_mergeable(leaf, path->slots[0] + 1,
1323                              ino, bytenr, orig_offset,
1324                              &other_start, &other_end)) {
1325                 if (recow) {
1326                         btrfs_release_path(path);
1327                         goto again;
1328                 }
1329                 extent_end = other_end;
1330                 del_slot = path->slots[0] + 1;
1331                 del_nr++;
1332                 ret = btrfs_free_extent(trans, &ref);
1333                 if (ret) {
1334                         btrfs_abort_transaction(trans, ret);
1335                         goto out;
1336                 }
1337         }
1338         other_start = 0;
1339         other_end = start;
1340         if (extent_mergeable(leaf, path->slots[0] - 1,
1341                              ino, bytenr, orig_offset,
1342                              &other_start, &other_end)) {
1343                 if (recow) {
1344                         btrfs_release_path(path);
1345                         goto again;
1346                 }
1347                 key.offset = other_start;
1348                 del_slot = path->slots[0];
1349                 del_nr++;
1350                 ret = btrfs_free_extent(trans, &ref);
1351                 if (ret) {
1352                         btrfs_abort_transaction(trans, ret);
1353                         goto out;
1354                 }
1355         }
1356         if (del_nr == 0) {
1357                 fi = btrfs_item_ptr(leaf, path->slots[0],
1358                            struct btrfs_file_extent_item);
1359                 btrfs_set_file_extent_type(leaf, fi,
1360                                            BTRFS_FILE_EXTENT_REG);
1361                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1362                 btrfs_mark_buffer_dirty(leaf);
1363         } else {
1364                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1365                            struct btrfs_file_extent_item);
1366                 btrfs_set_file_extent_type(leaf, fi,
1367                                            BTRFS_FILE_EXTENT_REG);
1368                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1369                 btrfs_set_file_extent_num_bytes(leaf, fi,
1370                                                 extent_end - key.offset);
1371                 btrfs_mark_buffer_dirty(leaf);
1372
1373                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1374                 if (ret < 0) {
1375                         btrfs_abort_transaction(trans, ret);
1376                         goto out;
1377                 }
1378         }
1379 out:
1380         btrfs_free_path(path);
1381         return 0;
1382 }
1383
1384 /*
1385  * on error we return an unlocked page and the error value
1386  * on success we return a locked page and 0
1387  */
1388 static int prepare_uptodate_page(struct inode *inode,
1389                                  struct page *page, u64 pos,
1390                                  bool force_uptodate)
1391 {
1392         int ret = 0;
1393
1394         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1395             !PageUptodate(page)) {
1396                 ret = btrfs_readpage(NULL, page);
1397                 if (ret)
1398                         return ret;
1399                 lock_page(page);
1400                 if (!PageUptodate(page)) {
1401                         unlock_page(page);
1402                         return -EIO;
1403                 }
1404                 if (page->mapping != inode->i_mapping) {
1405                         unlock_page(page);
1406                         return -EAGAIN;
1407                 }
1408         }
1409         return 0;
1410 }
1411
1412 /*
1413  * this just gets pages into the page cache and locks them down.
1414  */
1415 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1416                                   size_t num_pages, loff_t pos,
1417                                   size_t write_bytes, bool force_uptodate)
1418 {
1419         int i;
1420         unsigned long index = pos >> PAGE_SHIFT;
1421         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1422         int err = 0;
1423         int faili;
1424
1425         for (i = 0; i < num_pages; i++) {
1426 again:
1427                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1428                                                mask | __GFP_WRITE);
1429                 if (!pages[i]) {
1430                         faili = i - 1;
1431                         err = -ENOMEM;
1432                         goto fail;
1433                 }
1434
1435                 if (i == 0)
1436                         err = prepare_uptodate_page(inode, pages[i], pos,
1437                                                     force_uptodate);
1438                 if (!err && i == num_pages - 1)
1439                         err = prepare_uptodate_page(inode, pages[i],
1440                                                     pos + write_bytes, false);
1441                 if (err) {
1442                         put_page(pages[i]);
1443                         if (err == -EAGAIN) {
1444                                 err = 0;
1445                                 goto again;
1446                         }
1447                         faili = i - 1;
1448                         goto fail;
1449                 }
1450                 wait_on_page_writeback(pages[i]);
1451         }
1452
1453         return 0;
1454 fail:
1455         while (faili >= 0) {
1456                 unlock_page(pages[faili]);
1457                 put_page(pages[faili]);
1458                 faili--;
1459         }
1460         return err;
1461
1462 }
1463
1464 /*
1465  * This function locks the extent and properly waits for data=ordered extents
1466  * to finish before allowing the pages to be modified if need.
1467  *
1468  * The return value:
1469  * 1 - the extent is locked
1470  * 0 - the extent is not locked, and everything is OK
1471  * -EAGAIN - need re-prepare the pages
1472  * the other < 0 number - Something wrong happens
1473  */
1474 static noinline int
1475 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1476                                 size_t num_pages, loff_t pos,
1477                                 size_t write_bytes,
1478                                 u64 *lockstart, u64 *lockend,
1479                                 struct extent_state **cached_state)
1480 {
1481         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1482         u64 start_pos;
1483         u64 last_pos;
1484         int i;
1485         int ret = 0;
1486
1487         start_pos = round_down(pos, fs_info->sectorsize);
1488         last_pos = start_pos
1489                 + round_up(pos + write_bytes - start_pos,
1490                            fs_info->sectorsize) - 1;
1491
1492         if (start_pos < inode->vfs_inode.i_size) {
1493                 struct btrfs_ordered_extent *ordered;
1494
1495                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1496                                 cached_state);
1497                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1498                                                      last_pos - start_pos + 1);
1499                 if (ordered &&
1500                     ordered->file_offset + ordered->num_bytes > start_pos &&
1501                     ordered->file_offset <= last_pos) {
1502                         unlock_extent_cached(&inode->io_tree, start_pos,
1503                                         last_pos, cached_state);
1504                         for (i = 0; i < num_pages; i++) {
1505                                 unlock_page(pages[i]);
1506                                 put_page(pages[i]);
1507                         }
1508                         btrfs_start_ordered_extent(&inode->vfs_inode,
1509                                         ordered, 1);
1510                         btrfs_put_ordered_extent(ordered);
1511                         return -EAGAIN;
1512                 }
1513                 if (ordered)
1514                         btrfs_put_ordered_extent(ordered);
1515
1516                 *lockstart = start_pos;
1517                 *lockend = last_pos;
1518                 ret = 1;
1519         }
1520
1521         /*
1522          * It's possible the pages are dirty right now, but we don't want
1523          * to clean them yet because copy_from_user may catch a page fault
1524          * and we might have to fall back to one page at a time.  If that
1525          * happens, we'll unlock these pages and we'd have a window where
1526          * reclaim could sneak in and drop the once-dirty page on the floor
1527          * without writing it.
1528          *
1529          * We have the pages locked and the extent range locked, so there's
1530          * no way someone can start IO on any dirty pages in this range.
1531          *
1532          * We'll call btrfs_dirty_pages() later on, and that will flip around
1533          * delalloc bits and dirty the pages as required.
1534          */
1535         for (i = 0; i < num_pages; i++) {
1536                 set_page_extent_mapped(pages[i]);
1537                 WARN_ON(!PageLocked(pages[i]));
1538         }
1539
1540         return ret;
1541 }
1542
1543 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1544                                     size_t *write_bytes)
1545 {
1546         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1547         struct btrfs_root *root = inode->root;
1548         u64 lockstart, lockend;
1549         u64 num_bytes;
1550         int ret;
1551
1552         if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1553                 return -EAGAIN;
1554
1555         lockstart = round_down(pos, fs_info->sectorsize);
1556         lockend = round_up(pos + *write_bytes,
1557                            fs_info->sectorsize) - 1;
1558
1559         btrfs_lock_and_flush_ordered_range(inode, lockstart,
1560                                            lockend, NULL);
1561
1562         num_bytes = lockend - lockstart + 1;
1563         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1564                         NULL, NULL, NULL);
1565         if (ret <= 0) {
1566                 ret = 0;
1567                 btrfs_drew_write_unlock(&root->snapshot_lock);
1568         } else {
1569                 *write_bytes = min_t(size_t, *write_bytes ,
1570                                      num_bytes - pos + lockstart);
1571         }
1572
1573         unlock_extent(&inode->io_tree, lockstart, lockend);
1574
1575         return ret;
1576 }
1577
1578 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1579                                                struct iov_iter *i)
1580 {
1581         struct file *file = iocb->ki_filp;
1582         loff_t pos = iocb->ki_pos;
1583         struct inode *inode = file_inode(file);
1584         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1585         struct btrfs_root *root = BTRFS_I(inode)->root;
1586         struct page **pages = NULL;
1587         struct extent_changeset *data_reserved = NULL;
1588         u64 release_bytes = 0;
1589         u64 lockstart;
1590         u64 lockend;
1591         size_t num_written = 0;
1592         int nrptrs;
1593         int ret = 0;
1594         bool only_release_metadata = false;
1595         bool force_page_uptodate = false;
1596
1597         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1598                         PAGE_SIZE / (sizeof(struct page *)));
1599         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1600         nrptrs = max(nrptrs, 8);
1601         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1602         if (!pages)
1603                 return -ENOMEM;
1604
1605         while (iov_iter_count(i) > 0) {
1606                 struct extent_state *cached_state = NULL;
1607                 size_t offset = offset_in_page(pos);
1608                 size_t sector_offset;
1609                 size_t write_bytes = min(iov_iter_count(i),
1610                                          nrptrs * (size_t)PAGE_SIZE -
1611                                          offset);
1612                 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1613                                                 PAGE_SIZE);
1614                 size_t reserve_bytes;
1615                 size_t dirty_pages;
1616                 size_t copied;
1617                 size_t dirty_sectors;
1618                 size_t num_sectors;
1619                 int extents_locked;
1620
1621                 WARN_ON(num_pages > nrptrs);
1622
1623                 /*
1624                  * Fault pages before locking them in prepare_pages
1625                  * to avoid recursive lock
1626                  */
1627                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1628                         ret = -EFAULT;
1629                         break;
1630                 }
1631
1632                 only_release_metadata = false;
1633                 sector_offset = pos & (fs_info->sectorsize - 1);
1634                 reserve_bytes = round_up(write_bytes + sector_offset,
1635                                 fs_info->sectorsize);
1636
1637                 extent_changeset_release(data_reserved);
1638                 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1639                                                   write_bytes);
1640                 if (ret < 0) {
1641                         if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1642                                                       BTRFS_INODE_PREALLOC)) &&
1643                             check_can_nocow(BTRFS_I(inode), pos,
1644                                         &write_bytes) > 0) {
1645                                 /*
1646                                  * For nodata cow case, no need to reserve
1647                                  * data space.
1648                                  */
1649                                 only_release_metadata = true;
1650                                 /*
1651                                  * our prealloc extent may be smaller than
1652                                  * write_bytes, so scale down.
1653                                  */
1654                                 num_pages = DIV_ROUND_UP(write_bytes + offset,
1655                                                          PAGE_SIZE);
1656                                 reserve_bytes = round_up(write_bytes +
1657                                                          sector_offset,
1658                                                          fs_info->sectorsize);
1659                         } else {
1660                                 break;
1661                         }
1662                 }
1663
1664                 WARN_ON(reserve_bytes == 0);
1665                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1666                                 reserve_bytes);
1667                 if (ret) {
1668                         if (!only_release_metadata)
1669                                 btrfs_free_reserved_data_space(inode,
1670                                                 data_reserved, pos,
1671                                                 write_bytes);
1672                         else
1673                                 btrfs_drew_write_unlock(&root->snapshot_lock);
1674                         break;
1675                 }
1676
1677                 release_bytes = reserve_bytes;
1678 again:
1679                 /*
1680                  * This is going to setup the pages array with the number of
1681                  * pages we want, so we don't really need to worry about the
1682                  * contents of pages from loop to loop
1683                  */
1684                 ret = prepare_pages(inode, pages, num_pages,
1685                                     pos, write_bytes,
1686                                     force_page_uptodate);
1687                 if (ret) {
1688                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1689                                                        reserve_bytes);
1690                         break;
1691                 }
1692
1693                 extents_locked = lock_and_cleanup_extent_if_need(
1694                                 BTRFS_I(inode), pages,
1695                                 num_pages, pos, write_bytes, &lockstart,
1696                                 &lockend, &cached_state);
1697                 if (extents_locked < 0) {
1698                         if (extents_locked == -EAGAIN)
1699                                 goto again;
1700                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1701                                                        reserve_bytes);
1702                         ret = extents_locked;
1703                         break;
1704                 }
1705
1706                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1707
1708                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1709                 dirty_sectors = round_up(copied + sector_offset,
1710                                         fs_info->sectorsize);
1711                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1712
1713                 /*
1714                  * if we have trouble faulting in the pages, fall
1715                  * back to one page at a time
1716                  */
1717                 if (copied < write_bytes)
1718                         nrptrs = 1;
1719
1720                 if (copied == 0) {
1721                         force_page_uptodate = true;
1722                         dirty_sectors = 0;
1723                         dirty_pages = 0;
1724                 } else {
1725                         force_page_uptodate = false;
1726                         dirty_pages = DIV_ROUND_UP(copied + offset,
1727                                                    PAGE_SIZE);
1728                 }
1729
1730                 if (num_sectors > dirty_sectors) {
1731                         /* release everything except the sectors we dirtied */
1732                         release_bytes -= dirty_sectors <<
1733                                                 fs_info->sb->s_blocksize_bits;
1734                         if (only_release_metadata) {
1735                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1736                                                         release_bytes, true);
1737                         } else {
1738                                 u64 __pos;
1739
1740                                 __pos = round_down(pos,
1741                                                    fs_info->sectorsize) +
1742                                         (dirty_pages << PAGE_SHIFT);
1743                                 btrfs_delalloc_release_space(inode,
1744                                                 data_reserved, __pos,
1745                                                 release_bytes, true);
1746                         }
1747                 }
1748
1749                 release_bytes = round_up(copied + sector_offset,
1750                                         fs_info->sectorsize);
1751
1752                 if (copied > 0)
1753                         ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1754                                                 pos, copied, &cached_state);
1755
1756                 /*
1757                  * If we have not locked the extent range, because the range's
1758                  * start offset is >= i_size, we might still have a non-NULL
1759                  * cached extent state, acquired while marking the extent range
1760                  * as delalloc through btrfs_dirty_pages(). Therefore free any
1761                  * possible cached extent state to avoid a memory leak.
1762                  */
1763                 if (extents_locked)
1764                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1765                                              lockstart, lockend, &cached_state);
1766                 else
1767                         free_extent_state(cached_state);
1768
1769                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1770                 if (ret) {
1771                         btrfs_drop_pages(pages, num_pages);
1772                         break;
1773                 }
1774
1775                 release_bytes = 0;
1776                 if (only_release_metadata)
1777                         btrfs_drew_write_unlock(&root->snapshot_lock);
1778
1779                 if (only_release_metadata && copied > 0) {
1780                         lockstart = round_down(pos,
1781                                                fs_info->sectorsize);
1782                         lockend = round_up(pos + copied,
1783                                            fs_info->sectorsize) - 1;
1784
1785                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1786                                        lockend, EXTENT_NORESERVE, NULL,
1787                                        NULL, GFP_NOFS);
1788                 }
1789
1790                 btrfs_drop_pages(pages, num_pages);
1791
1792                 cond_resched();
1793
1794                 balance_dirty_pages_ratelimited(inode->i_mapping);
1795                 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1796                         btrfs_btree_balance_dirty(fs_info);
1797
1798                 pos += copied;
1799                 num_written += copied;
1800         }
1801
1802         kfree(pages);
1803
1804         if (release_bytes) {
1805                 if (only_release_metadata) {
1806                         btrfs_drew_write_unlock(&root->snapshot_lock);
1807                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1808                                         release_bytes, true);
1809                 } else {
1810                         btrfs_delalloc_release_space(inode, data_reserved,
1811                                         round_down(pos, fs_info->sectorsize),
1812                                         release_bytes, true);
1813                 }
1814         }
1815
1816         extent_changeset_free(data_reserved);
1817         return num_written ? num_written : ret;
1818 }
1819
1820 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1821 {
1822         struct file *file = iocb->ki_filp;
1823         struct inode *inode = file_inode(file);
1824         loff_t pos;
1825         ssize_t written;
1826         ssize_t written_buffered;
1827         loff_t endbyte;
1828         int err;
1829
1830         written = generic_file_direct_write(iocb, from);
1831
1832         if (written < 0 || !iov_iter_count(from))
1833                 return written;
1834
1835         pos = iocb->ki_pos;
1836         written_buffered = btrfs_buffered_write(iocb, from);
1837         if (written_buffered < 0) {
1838                 err = written_buffered;
1839                 goto out;
1840         }
1841         /*
1842          * Ensure all data is persisted. We want the next direct IO read to be
1843          * able to read what was just written.
1844          */
1845         endbyte = pos + written_buffered - 1;
1846         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1847         if (err)
1848                 goto out;
1849         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1850         if (err)
1851                 goto out;
1852         written += written_buffered;
1853         iocb->ki_pos = pos + written_buffered;
1854         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1855                                  endbyte >> PAGE_SHIFT);
1856 out:
1857         return written ? written : err;
1858 }
1859
1860 static void update_time_for_write(struct inode *inode)
1861 {
1862         struct timespec64 now;
1863
1864         if (IS_NOCMTIME(inode))
1865                 return;
1866
1867         now = current_time(inode);
1868         if (!timespec64_equal(&inode->i_mtime, &now))
1869                 inode->i_mtime = now;
1870
1871         if (!timespec64_equal(&inode->i_ctime, &now))
1872                 inode->i_ctime = now;
1873
1874         if (IS_I_VERSION(inode))
1875                 inode_inc_iversion(inode);
1876 }
1877
1878 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1879                                     struct iov_iter *from)
1880 {
1881         struct file *file = iocb->ki_filp;
1882         struct inode *inode = file_inode(file);
1883         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1884         struct btrfs_root *root = BTRFS_I(inode)->root;
1885         u64 start_pos;
1886         u64 end_pos;
1887         ssize_t num_written = 0;
1888         const bool sync = iocb->ki_flags & IOCB_DSYNC;
1889         ssize_t err;
1890         loff_t pos;
1891         size_t count;
1892         loff_t oldsize;
1893         int clean_page = 0;
1894
1895         if (!(iocb->ki_flags & IOCB_DIRECT) &&
1896             (iocb->ki_flags & IOCB_NOWAIT))
1897                 return -EOPNOTSUPP;
1898
1899         if (iocb->ki_flags & IOCB_NOWAIT) {
1900                 if (!inode_trylock(inode))
1901                         return -EAGAIN;
1902         } else {
1903                 inode_lock(inode);
1904         }
1905
1906         err = generic_write_checks(iocb, from);
1907         if (err <= 0) {
1908                 inode_unlock(inode);
1909                 return err;
1910         }
1911
1912         pos = iocb->ki_pos;
1913         count = iov_iter_count(from);
1914         if (iocb->ki_flags & IOCB_NOWAIT) {
1915                 /*
1916                  * We will allocate space in case nodatacow is not set,
1917                  * so bail
1918                  */
1919                 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1920                                               BTRFS_INODE_PREALLOC)) ||
1921                     check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1922                         inode_unlock(inode);
1923                         return -EAGAIN;
1924                 }
1925         }
1926
1927         current->backing_dev_info = inode_to_bdi(inode);
1928         err = file_remove_privs(file);
1929         if (err) {
1930                 inode_unlock(inode);
1931                 goto out;
1932         }
1933
1934         /*
1935          * If BTRFS flips readonly due to some impossible error
1936          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1937          * although we have opened a file as writable, we have
1938          * to stop this write operation to ensure FS consistency.
1939          */
1940         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1941                 inode_unlock(inode);
1942                 err = -EROFS;
1943                 goto out;
1944         }
1945
1946         /*
1947          * We reserve space for updating the inode when we reserve space for the
1948          * extent we are going to write, so we will enospc out there.  We don't
1949          * need to start yet another transaction to update the inode as we will
1950          * update the inode when we finish writing whatever data we write.
1951          */
1952         update_time_for_write(inode);
1953
1954         start_pos = round_down(pos, fs_info->sectorsize);
1955         oldsize = i_size_read(inode);
1956         if (start_pos > oldsize) {
1957                 /* Expand hole size to cover write data, preventing empty gap */
1958                 end_pos = round_up(pos + count,
1959                                    fs_info->sectorsize);
1960                 err = btrfs_cont_expand(inode, oldsize, end_pos);
1961                 if (err) {
1962                         inode_unlock(inode);
1963                         goto out;
1964                 }
1965                 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1966                         clean_page = 1;
1967         }
1968
1969         if (sync)
1970                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1971
1972         if (iocb->ki_flags & IOCB_DIRECT) {
1973                 num_written = __btrfs_direct_write(iocb, from);
1974         } else {
1975                 num_written = btrfs_buffered_write(iocb, from);
1976                 if (num_written > 0)
1977                         iocb->ki_pos = pos + num_written;
1978                 if (clean_page)
1979                         pagecache_isize_extended(inode, oldsize,
1980                                                 i_size_read(inode));
1981         }
1982
1983         inode_unlock(inode);
1984
1985         /*
1986          * We also have to set last_sub_trans to the current log transid,
1987          * otherwise subsequent syncs to a file that's been synced in this
1988          * transaction will appear to have already occurred.
1989          */
1990         spin_lock(&BTRFS_I(inode)->lock);
1991         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1992         spin_unlock(&BTRFS_I(inode)->lock);
1993         if (num_written > 0)
1994                 num_written = generic_write_sync(iocb, num_written);
1995
1996         if (sync)
1997                 atomic_dec(&BTRFS_I(inode)->sync_writers);
1998 out:
1999         current->backing_dev_info = NULL;
2000         return num_written ? num_written : err;
2001 }
2002
2003 int btrfs_release_file(struct inode *inode, struct file *filp)
2004 {
2005         struct btrfs_file_private *private = filp->private_data;
2006
2007         if (private && private->filldir_buf)
2008                 kfree(private->filldir_buf);
2009         kfree(private);
2010         filp->private_data = NULL;
2011
2012         /*
2013          * ordered_data_close is set by setattr when we are about to truncate
2014          * a file from a non-zero size to a zero size.  This tries to
2015          * flush down new bytes that may have been written if the
2016          * application were using truncate to replace a file in place.
2017          */
2018         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2019                                &BTRFS_I(inode)->runtime_flags))
2020                         filemap_flush(inode->i_mapping);
2021         return 0;
2022 }
2023
2024 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2025 {
2026         int ret;
2027         struct blk_plug plug;
2028
2029         /*
2030          * This is only called in fsync, which would do synchronous writes, so
2031          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2032          * multiple disks using raid profile, a large IO can be split to
2033          * several segments of stripe length (currently 64K).
2034          */
2035         blk_start_plug(&plug);
2036         atomic_inc(&BTRFS_I(inode)->sync_writers);
2037         ret = btrfs_fdatawrite_range(inode, start, end);
2038         atomic_dec(&BTRFS_I(inode)->sync_writers);
2039         blk_finish_plug(&plug);
2040
2041         return ret;
2042 }
2043
2044 /*
2045  * fsync call for both files and directories.  This logs the inode into
2046  * the tree log instead of forcing full commits whenever possible.
2047  *
2048  * It needs to call filemap_fdatawait so that all ordered extent updates are
2049  * in the metadata btree are up to date for copying to the log.
2050  *
2051  * It drops the inode mutex before doing the tree log commit.  This is an
2052  * important optimization for directories because holding the mutex prevents
2053  * new operations on the dir while we write to disk.
2054  */
2055 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2056 {
2057         struct dentry *dentry = file_dentry(file);
2058         struct inode *inode = d_inode(dentry);
2059         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2060         struct btrfs_root *root = BTRFS_I(inode)->root;
2061         struct btrfs_trans_handle *trans;
2062         struct btrfs_log_ctx ctx;
2063         int ret = 0, err;
2064
2065         trace_btrfs_sync_file(file, datasync);
2066
2067         btrfs_init_log_ctx(&ctx, inode);
2068
2069         /*
2070          * Set the range to full if the NO_HOLES feature is not enabled.
2071          * This is to avoid missing file extent items representing holes after
2072          * replaying the log.
2073          */
2074         if (!btrfs_fs_incompat(fs_info, NO_HOLES)) {
2075                 start = 0;
2076                 end = LLONG_MAX;
2077         }
2078
2079         /*
2080          * We write the dirty pages in the range and wait until they complete
2081          * out of the ->i_mutex. If so, we can flush the dirty pages by
2082          * multi-task, and make the performance up.  See
2083          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2084          */
2085         ret = start_ordered_ops(inode, start, end);
2086         if (ret)
2087                 goto out;
2088
2089         inode_lock(inode);
2090
2091         /*
2092          * We take the dio_sem here because the tree log stuff can race with
2093          * lockless dio writes and get an extent map logged for an extent we
2094          * never waited on.  We need it this high up for lockdep reasons.
2095          */
2096         down_write(&BTRFS_I(inode)->dio_sem);
2097
2098         atomic_inc(&root->log_batch);
2099
2100         /*
2101          * Before we acquired the inode's lock, someone may have dirtied more
2102          * pages in the target range. We need to make sure that writeback for
2103          * any such pages does not start while we are logging the inode, because
2104          * if it does, any of the following might happen when we are not doing a
2105          * full inode sync:
2106          *
2107          * 1) We log an extent after its writeback finishes but before its
2108          *    checksums are added to the csum tree, leading to -EIO errors
2109          *    when attempting to read the extent after a log replay.
2110          *
2111          * 2) We can end up logging an extent before its writeback finishes.
2112          *    Therefore after the log replay we will have a file extent item
2113          *    pointing to an unwritten extent (and no data checksums as well).
2114          *
2115          * So trigger writeback for any eventual new dirty pages and then we
2116          * wait for all ordered extents to complete below.
2117          */
2118         ret = start_ordered_ops(inode, start, end);
2119         if (ret) {
2120                 up_write(&BTRFS_I(inode)->dio_sem);
2121                 inode_unlock(inode);
2122                 goto out;
2123         }
2124
2125         /*
2126          * We have to do this here to avoid the priority inversion of waiting on
2127          * IO of a lower priority task while holding a transaction open.
2128          *
2129          * Also, the range length can be represented by u64, we have to do the
2130          * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
2131          */
2132         ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
2133         if (ret) {
2134                 up_write(&BTRFS_I(inode)->dio_sem);
2135                 inode_unlock(inode);
2136                 goto out;
2137         }
2138         atomic_inc(&root->log_batch);
2139
2140         smp_mb();
2141         if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2142             BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2143                 /*
2144                  * We've had everything committed since the last time we were
2145                  * modified so clear this flag in case it was set for whatever
2146                  * reason, it's no longer relevant.
2147                  */
2148                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2149                           &BTRFS_I(inode)->runtime_flags);
2150                 /*
2151                  * An ordered extent might have started before and completed
2152                  * already with io errors, in which case the inode was not
2153                  * updated and we end up here. So check the inode's mapping
2154                  * for any errors that might have happened since we last
2155                  * checked called fsync.
2156                  */
2157                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2158                 up_write(&BTRFS_I(inode)->dio_sem);
2159                 inode_unlock(inode);
2160                 goto out;
2161         }
2162
2163         /*
2164          * We use start here because we will need to wait on the IO to complete
2165          * in btrfs_sync_log, which could require joining a transaction (for
2166          * example checking cross references in the nocow path).  If we use join
2167          * here we could get into a situation where we're waiting on IO to
2168          * happen that is blocked on a transaction trying to commit.  With start
2169          * we inc the extwriter counter, so we wait for all extwriters to exit
2170          * before we start blocking joiners.  This comment is to keep somebody
2171          * from thinking they are super smart and changing this to
2172          * btrfs_join_transaction *cough*Josef*cough*.
2173          */
2174         trans = btrfs_start_transaction(root, 0);
2175         if (IS_ERR(trans)) {
2176                 ret = PTR_ERR(trans);
2177                 up_write(&BTRFS_I(inode)->dio_sem);
2178                 inode_unlock(inode);
2179                 goto out;
2180         }
2181
2182         ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2183         if (ret < 0) {
2184                 /* Fallthrough and commit/free transaction. */
2185                 ret = 1;
2186         }
2187
2188         /* we've logged all the items and now have a consistent
2189          * version of the file in the log.  It is possible that
2190          * someone will come in and modify the file, but that's
2191          * fine because the log is consistent on disk, and we
2192          * have references to all of the file's extents
2193          *
2194          * It is possible that someone will come in and log the
2195          * file again, but that will end up using the synchronization
2196          * inside btrfs_sync_log to keep things safe.
2197          */
2198         up_write(&BTRFS_I(inode)->dio_sem);
2199         inode_unlock(inode);
2200
2201         if (ret != BTRFS_NO_LOG_SYNC) {
2202                 if (!ret) {
2203                         ret = btrfs_sync_log(trans, root, &ctx);
2204                         if (!ret) {
2205                                 ret = btrfs_end_transaction(trans);
2206                                 goto out;
2207                         }
2208                 }
2209                 ret = btrfs_commit_transaction(trans);
2210         } else {
2211                 ret = btrfs_end_transaction(trans);
2212         }
2213 out:
2214         ASSERT(list_empty(&ctx.list));
2215         err = file_check_and_advance_wb_err(file);
2216         if (!ret)
2217                 ret = err;
2218         return ret > 0 ? -EIO : ret;
2219 }
2220
2221 static const struct vm_operations_struct btrfs_file_vm_ops = {
2222         .fault          = filemap_fault,
2223         .map_pages      = filemap_map_pages,
2224         .page_mkwrite   = btrfs_page_mkwrite,
2225 };
2226
2227 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2228 {
2229         struct address_space *mapping = filp->f_mapping;
2230
2231         if (!mapping->a_ops->readpage)
2232                 return -ENOEXEC;
2233
2234         file_accessed(filp);
2235         vma->vm_ops = &btrfs_file_vm_ops;
2236
2237         return 0;
2238 }
2239
2240 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2241                           int slot, u64 start, u64 end)
2242 {
2243         struct btrfs_file_extent_item *fi;
2244         struct btrfs_key key;
2245
2246         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2247                 return 0;
2248
2249         btrfs_item_key_to_cpu(leaf, &key, slot);
2250         if (key.objectid != btrfs_ino(inode) ||
2251             key.type != BTRFS_EXTENT_DATA_KEY)
2252                 return 0;
2253
2254         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2255
2256         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2257                 return 0;
2258
2259         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2260                 return 0;
2261
2262         if (key.offset == end)
2263                 return 1;
2264         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2265                 return 1;
2266         return 0;
2267 }
2268
2269 static int fill_holes(struct btrfs_trans_handle *trans,
2270                 struct btrfs_inode *inode,
2271                 struct btrfs_path *path, u64 offset, u64 end)
2272 {
2273         struct btrfs_fs_info *fs_info = trans->fs_info;
2274         struct btrfs_root *root = inode->root;
2275         struct extent_buffer *leaf;
2276         struct btrfs_file_extent_item *fi;
2277         struct extent_map *hole_em;
2278         struct extent_map_tree *em_tree = &inode->extent_tree;
2279         struct btrfs_key key;
2280         int ret;
2281
2282         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2283                 goto out;
2284
2285         key.objectid = btrfs_ino(inode);
2286         key.type = BTRFS_EXTENT_DATA_KEY;
2287         key.offset = offset;
2288
2289         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2290         if (ret <= 0) {
2291                 /*
2292                  * We should have dropped this offset, so if we find it then
2293                  * something has gone horribly wrong.
2294                  */
2295                 if (ret == 0)
2296                         ret = -EINVAL;
2297                 return ret;
2298         }
2299
2300         leaf = path->nodes[0];
2301         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2302                 u64 num_bytes;
2303
2304                 path->slots[0]--;
2305                 fi = btrfs_item_ptr(leaf, path->slots[0],
2306                                     struct btrfs_file_extent_item);
2307                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2308                         end - offset;
2309                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2310                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2311                 btrfs_set_file_extent_offset(leaf, fi, 0);
2312                 btrfs_mark_buffer_dirty(leaf);
2313                 goto out;
2314         }
2315
2316         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2317                 u64 num_bytes;
2318
2319                 key.offset = offset;
2320                 btrfs_set_item_key_safe(fs_info, path, &key);
2321                 fi = btrfs_item_ptr(leaf, path->slots[0],
2322                                     struct btrfs_file_extent_item);
2323                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2324                         offset;
2325                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2326                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2327                 btrfs_set_file_extent_offset(leaf, fi, 0);
2328                 btrfs_mark_buffer_dirty(leaf);
2329                 goto out;
2330         }
2331         btrfs_release_path(path);
2332
2333         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2334                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2335         if (ret)
2336                 return ret;
2337
2338 out:
2339         btrfs_release_path(path);
2340
2341         hole_em = alloc_extent_map();
2342         if (!hole_em) {
2343                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2344                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2345         } else {
2346                 hole_em->start = offset;
2347                 hole_em->len = end - offset;
2348                 hole_em->ram_bytes = hole_em->len;
2349                 hole_em->orig_start = offset;
2350
2351                 hole_em->block_start = EXTENT_MAP_HOLE;
2352                 hole_em->block_len = 0;
2353                 hole_em->orig_block_len = 0;
2354                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2355                 hole_em->generation = trans->transid;
2356
2357                 do {
2358                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2359                         write_lock(&em_tree->lock);
2360                         ret = add_extent_mapping(em_tree, hole_em, 1);
2361                         write_unlock(&em_tree->lock);
2362                 } while (ret == -EEXIST);
2363                 free_extent_map(hole_em);
2364                 if (ret)
2365                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2366                                         &inode->runtime_flags);
2367         }
2368
2369         return 0;
2370 }
2371
2372 /*
2373  * Find a hole extent on given inode and change start/len to the end of hole
2374  * extent.(hole/vacuum extent whose em->start <= start &&
2375  *         em->start + em->len > start)
2376  * When a hole extent is found, return 1 and modify start/len.
2377  */
2378 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2379 {
2380         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2381         struct extent_map *em;
2382         int ret = 0;
2383
2384         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2385                               round_down(*start, fs_info->sectorsize),
2386                               round_up(*len, fs_info->sectorsize));
2387         if (IS_ERR(em))
2388                 return PTR_ERR(em);
2389
2390         /* Hole or vacuum extent(only exists in no-hole mode) */
2391         if (em->block_start == EXTENT_MAP_HOLE) {
2392                 ret = 1;
2393                 *len = em->start + em->len > *start + *len ?
2394                        0 : *start + *len - em->start - em->len;
2395                 *start = em->start + em->len;
2396         }
2397         free_extent_map(em);
2398         return ret;
2399 }
2400
2401 static int btrfs_punch_hole_lock_range(struct inode *inode,
2402                                        const u64 lockstart,
2403                                        const u64 lockend,
2404                                        struct extent_state **cached_state)
2405 {
2406         while (1) {
2407                 struct btrfs_ordered_extent *ordered;
2408                 int ret;
2409
2410                 truncate_pagecache_range(inode, lockstart, lockend);
2411
2412                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2413                                  cached_state);
2414                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2415
2416                 /*
2417                  * We need to make sure we have no ordered extents in this range
2418                  * and nobody raced in and read a page in this range, if we did
2419                  * we need to try again.
2420                  */
2421                 if ((!ordered ||
2422                     (ordered->file_offset + ordered->num_bytes <= lockstart ||
2423                      ordered->file_offset > lockend)) &&
2424                      !filemap_range_has_page(inode->i_mapping,
2425                                              lockstart, lockend)) {
2426                         if (ordered)
2427                                 btrfs_put_ordered_extent(ordered);
2428                         break;
2429                 }
2430                 if (ordered)
2431                         btrfs_put_ordered_extent(ordered);
2432                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2433                                      lockend, cached_state);
2434                 ret = btrfs_wait_ordered_range(inode, lockstart,
2435                                                lockend - lockstart + 1);
2436                 if (ret)
2437                         return ret;
2438         }
2439         return 0;
2440 }
2441
2442 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2443                                      struct inode *inode,
2444                                      struct btrfs_path *path,
2445                                      struct btrfs_clone_extent_info *clone_info,
2446                                      const u64 clone_len)
2447 {
2448         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2449         struct btrfs_root *root = BTRFS_I(inode)->root;
2450         struct btrfs_file_extent_item *extent;
2451         struct extent_buffer *leaf;
2452         struct btrfs_key key;
2453         int slot;
2454         struct btrfs_ref ref = { 0 };
2455         u64 ref_offset;
2456         int ret;
2457
2458         if (clone_len == 0)
2459                 return 0;
2460
2461         if (clone_info->disk_offset == 0 &&
2462             btrfs_fs_incompat(fs_info, NO_HOLES))
2463                 return 0;
2464
2465         key.objectid = btrfs_ino(BTRFS_I(inode));
2466         key.type = BTRFS_EXTENT_DATA_KEY;
2467         key.offset = clone_info->file_offset;
2468         ret = btrfs_insert_empty_item(trans, root, path, &key,
2469                                       clone_info->item_size);
2470         if (ret)
2471                 return ret;
2472         leaf = path->nodes[0];
2473         slot = path->slots[0];
2474         write_extent_buffer(leaf, clone_info->extent_buf,
2475                             btrfs_item_ptr_offset(leaf, slot),
2476                             clone_info->item_size);
2477         extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2478         btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2479         btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2480         btrfs_mark_buffer_dirty(leaf);
2481         btrfs_release_path(path);
2482
2483         ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2484                         clone_info->file_offset, clone_len);
2485         if (ret)
2486                 return ret;
2487
2488         /* If it's a hole, nothing more needs to be done. */
2489         if (clone_info->disk_offset == 0)
2490                 return 0;
2491
2492         inode_add_bytes(inode, clone_len);
2493         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2494                                clone_info->disk_offset,
2495                                clone_info->disk_len, 0);
2496         ref_offset = clone_info->file_offset - clone_info->data_offset;
2497         btrfs_init_data_ref(&ref, root->root_key.objectid,
2498                             btrfs_ino(BTRFS_I(inode)), ref_offset);
2499         ret = btrfs_inc_extent_ref(trans, &ref);
2500
2501         return ret;
2502 }
2503
2504 /*
2505  * The respective range must have been previously locked, as well as the inode.
2506  * The end offset is inclusive (last byte of the range).
2507  * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2508  * cloning.
2509  * When cloning, we don't want to end up in a state where we dropped extents
2510  * without inserting a new one, so we must abort the transaction to avoid a
2511  * corruption.
2512  */
2513 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2514                            const u64 start, const u64 end,
2515                            struct btrfs_clone_extent_info *clone_info,
2516                            struct btrfs_trans_handle **trans_out)
2517 {
2518         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2519         u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2520         u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2521         struct btrfs_root *root = BTRFS_I(inode)->root;
2522         struct btrfs_trans_handle *trans = NULL;
2523         struct btrfs_block_rsv *rsv;
2524         unsigned int rsv_count;
2525         u64 cur_offset;
2526         u64 drop_end;
2527         u64 len = end - start;
2528         int ret = 0;
2529
2530         if (end <= start)
2531                 return -EINVAL;
2532
2533         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2534         if (!rsv) {
2535                 ret = -ENOMEM;
2536                 goto out;
2537         }
2538         rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2539         rsv->failfast = 1;
2540
2541         /*
2542          * 1 - update the inode
2543          * 1 - removing the extents in the range
2544          * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2545          *     an extent
2546          */
2547         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2548                 rsv_count = 3;
2549         else
2550                 rsv_count = 2;
2551
2552         trans = btrfs_start_transaction(root, rsv_count);
2553         if (IS_ERR(trans)) {
2554                 ret = PTR_ERR(trans);
2555                 trans = NULL;
2556                 goto out_free;
2557         }
2558
2559         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2560                                       min_size, false);
2561         BUG_ON(ret);
2562         trans->block_rsv = rsv;
2563
2564         cur_offset = start;
2565         while (cur_offset < end) {
2566                 ret = __btrfs_drop_extents(trans, root, inode, path,
2567                                            cur_offset, end + 1, &drop_end,
2568                                            1, 0, 0, NULL);
2569                 if (ret != -ENOSPC) {
2570                         /*
2571                          * When cloning we want to avoid transaction aborts when
2572                          * nothing was done and we are attempting to clone parts
2573                          * of inline extents, in such cases -EOPNOTSUPP is
2574                          * returned by __btrfs_drop_extents() without having
2575                          * changed anything in the file.
2576                          */
2577                         if (clone_info && ret && ret != -EOPNOTSUPP)
2578                                 btrfs_abort_transaction(trans, ret);
2579                         break;
2580                 }
2581
2582                 trans->block_rsv = &fs_info->trans_block_rsv;
2583
2584                 if (!clone_info && cur_offset < drop_end &&
2585                     cur_offset < ino_size) {
2586                         ret = fill_holes(trans, BTRFS_I(inode), path,
2587                                         cur_offset, drop_end);
2588                         if (ret) {
2589                                 /*
2590                                  * If we failed then we didn't insert our hole
2591                                  * entries for the area we dropped, so now the
2592                                  * fs is corrupted, so we must abort the
2593                                  * transaction.
2594                                  */
2595                                 btrfs_abort_transaction(trans, ret);
2596                                 break;
2597                         }
2598                 } else if (!clone_info && cur_offset < drop_end) {
2599                         /*
2600                          * We are past the i_size here, but since we didn't
2601                          * insert holes we need to clear the mapped area so we
2602                          * know to not set disk_i_size in this area until a new
2603                          * file extent is inserted here.
2604                          */
2605                         ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2606                                         cur_offset, drop_end - cur_offset);
2607                         if (ret) {
2608                                 /*
2609                                  * We couldn't clear our area, so we could
2610                                  * presumably adjust up and corrupt the fs, so
2611                                  * we need to abort.
2612                                  */
2613                                 btrfs_abort_transaction(trans, ret);
2614                                 break;
2615                         }
2616                 }
2617
2618                 if (clone_info && drop_end > clone_info->file_offset) {
2619                         u64 clone_len = drop_end - clone_info->file_offset;
2620
2621                         ret = btrfs_insert_clone_extent(trans, inode, path,
2622                                                         clone_info, clone_len);
2623                         if (ret) {
2624                                 btrfs_abort_transaction(trans, ret);
2625                                 break;
2626                         }
2627                         clone_info->data_len -= clone_len;
2628                         clone_info->data_offset += clone_len;
2629                         clone_info->file_offset += clone_len;
2630                 }
2631
2632                 cur_offset = drop_end;
2633
2634                 ret = btrfs_update_inode(trans, root, inode);
2635                 if (ret)
2636                         break;
2637
2638                 btrfs_end_transaction(trans);
2639                 btrfs_btree_balance_dirty(fs_info);
2640
2641                 trans = btrfs_start_transaction(root, rsv_count);
2642                 if (IS_ERR(trans)) {
2643                         ret = PTR_ERR(trans);
2644                         trans = NULL;
2645                         break;
2646                 }
2647
2648                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2649                                               rsv, min_size, false);
2650                 BUG_ON(ret);    /* shouldn't happen */
2651                 trans->block_rsv = rsv;
2652
2653                 if (!clone_info) {
2654                         ret = find_first_non_hole(inode, &cur_offset, &len);
2655                         if (unlikely(ret < 0))
2656                                 break;
2657                         if (ret && !len) {
2658                                 ret = 0;
2659                                 break;
2660                         }
2661                 }
2662         }
2663
2664         /*
2665          * If we were cloning, force the next fsync to be a full one since we
2666          * we replaced (or just dropped in the case of cloning holes when
2667          * NO_HOLES is enabled) extents and extent maps.
2668          * This is for the sake of simplicity, and cloning into files larger
2669          * than 16Mb would force the full fsync any way (when
2670          * try_release_extent_mapping() is invoked during page cache truncation.
2671          */
2672         if (clone_info)
2673                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2674                         &BTRFS_I(inode)->runtime_flags);
2675
2676         if (ret)
2677                 goto out_trans;
2678
2679         trans->block_rsv = &fs_info->trans_block_rsv;
2680         /*
2681          * If we are using the NO_HOLES feature we might have had already an
2682          * hole that overlaps a part of the region [lockstart, lockend] and
2683          * ends at (or beyond) lockend. Since we have no file extent items to
2684          * represent holes, drop_end can be less than lockend and so we must
2685          * make sure we have an extent map representing the existing hole (the
2686          * call to __btrfs_drop_extents() might have dropped the existing extent
2687          * map representing the existing hole), otherwise the fast fsync path
2688          * will not record the existence of the hole region
2689          * [existing_hole_start, lockend].
2690          */
2691         if (drop_end <= end)
2692                 drop_end = end + 1;
2693         /*
2694          * Don't insert file hole extent item if it's for a range beyond eof
2695          * (because it's useless) or if it represents a 0 bytes range (when
2696          * cur_offset == drop_end).
2697          */
2698         if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
2699                 ret = fill_holes(trans, BTRFS_I(inode), path,
2700                                 cur_offset, drop_end);
2701                 if (ret) {
2702                         /* Same comment as above. */
2703                         btrfs_abort_transaction(trans, ret);
2704                         goto out_trans;
2705                 }
2706         } else if (!clone_info && cur_offset < drop_end) {
2707                 /* See the comment in the loop above for the reasoning here. */
2708                 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2709                                         cur_offset, drop_end - cur_offset);
2710                 if (ret) {
2711                         btrfs_abort_transaction(trans, ret);
2712                         goto out_trans;
2713                 }
2714
2715         }
2716         if (clone_info) {
2717                 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2718                                                 clone_info->data_len);
2719                 if (ret) {
2720                         btrfs_abort_transaction(trans, ret);
2721                         goto out_trans;
2722                 }
2723         }
2724
2725 out_trans:
2726         if (!trans)
2727                 goto out_free;
2728
2729         trans->block_rsv = &fs_info->trans_block_rsv;
2730         if (ret)
2731                 btrfs_end_transaction(trans);
2732         else
2733                 *trans_out = trans;
2734 out_free:
2735         btrfs_free_block_rsv(fs_info, rsv);
2736 out:
2737         return ret;
2738 }
2739
2740 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2741 {
2742         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2743         struct btrfs_root *root = BTRFS_I(inode)->root;
2744         struct extent_state *cached_state = NULL;
2745         struct btrfs_path *path;
2746         struct btrfs_trans_handle *trans = NULL;
2747         u64 lockstart;
2748         u64 lockend;
2749         u64 tail_start;
2750         u64 tail_len;
2751         u64 orig_start = offset;
2752         int ret = 0;
2753         bool same_block;
2754         u64 ino_size;
2755         bool truncated_block = false;
2756         bool updated_inode = false;
2757
2758         ret = btrfs_wait_ordered_range(inode, offset, len);
2759         if (ret)
2760                 return ret;
2761
2762         inode_lock(inode);
2763         ino_size = round_up(inode->i_size, fs_info->sectorsize);
2764         ret = find_first_non_hole(inode, &offset, &len);
2765         if (ret < 0)
2766                 goto out_only_mutex;
2767         if (ret && !len) {
2768                 /* Already in a large hole */
2769                 ret = 0;
2770                 goto out_only_mutex;
2771         }
2772
2773         lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2774         lockend = round_down(offset + len,
2775                              btrfs_inode_sectorsize(inode)) - 1;
2776         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2777                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2778         /*
2779          * We needn't truncate any block which is beyond the end of the file
2780          * because we are sure there is no data there.
2781          */
2782         /*
2783          * Only do this if we are in the same block and we aren't doing the
2784          * entire block.
2785          */
2786         if (same_block && len < fs_info->sectorsize) {
2787                 if (offset < ino_size) {
2788                         truncated_block = true;
2789                         ret = btrfs_truncate_block(inode, offset, len, 0);
2790                 } else {
2791                         ret = 0;
2792                 }
2793                 goto out_only_mutex;
2794         }
2795
2796         /* zero back part of the first block */
2797         if (offset < ino_size) {
2798                 truncated_block = true;
2799                 ret = btrfs_truncate_block(inode, offset, 0, 0);
2800                 if (ret) {
2801                         inode_unlock(inode);
2802                         return ret;
2803                 }
2804         }
2805
2806         /* Check the aligned pages after the first unaligned page,
2807          * if offset != orig_start, which means the first unaligned page
2808          * including several following pages are already in holes,
2809          * the extra check can be skipped */
2810         if (offset == orig_start) {
2811                 /* after truncate page, check hole again */
2812                 len = offset + len - lockstart;
2813                 offset = lockstart;
2814                 ret = find_first_non_hole(inode, &offset, &len);
2815                 if (ret < 0)
2816                         goto out_only_mutex;
2817                 if (ret && !len) {
2818                         ret = 0;
2819                         goto out_only_mutex;
2820                 }
2821                 lockstart = offset;
2822         }
2823
2824         /* Check the tail unaligned part is in a hole */
2825         tail_start = lockend + 1;
2826         tail_len = offset + len - tail_start;
2827         if (tail_len) {
2828                 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2829                 if (unlikely(ret < 0))
2830                         goto out_only_mutex;
2831                 if (!ret) {
2832                         /* zero the front end of the last page */
2833                         if (tail_start + tail_len < ino_size) {
2834                                 truncated_block = true;
2835                                 ret = btrfs_truncate_block(inode,
2836                                                         tail_start + tail_len,
2837                                                         0, 1);
2838                                 if (ret)
2839                                         goto out_only_mutex;
2840                         }
2841                 }
2842         }
2843
2844         if (lockend < lockstart) {
2845                 ret = 0;
2846                 goto out_only_mutex;
2847         }
2848
2849         ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2850                                           &cached_state);
2851         if (ret)
2852                 goto out_only_mutex;
2853
2854         path = btrfs_alloc_path();
2855         if (!path) {
2856                 ret = -ENOMEM;
2857                 goto out;
2858         }
2859
2860         ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2861                                      &trans);
2862         btrfs_free_path(path);
2863         if (ret)
2864                 goto out;
2865
2866         ASSERT(trans != NULL);
2867         inode_inc_iversion(inode);
2868         inode->i_mtime = inode->i_ctime = current_time(inode);
2869         ret = btrfs_update_inode(trans, root, inode);
2870         updated_inode = true;
2871         btrfs_end_transaction(trans);
2872         btrfs_btree_balance_dirty(fs_info);
2873 out:
2874         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2875                              &cached_state);
2876 out_only_mutex:
2877         if (!updated_inode && truncated_block && !ret) {
2878                 /*
2879                  * If we only end up zeroing part of a page, we still need to
2880                  * update the inode item, so that all the time fields are
2881                  * updated as well as the necessary btrfs inode in memory fields
2882                  * for detecting, at fsync time, if the inode isn't yet in the
2883                  * log tree or it's there but not up to date.
2884                  */
2885                 struct timespec64 now = current_time(inode);
2886
2887                 inode_inc_iversion(inode);
2888                 inode->i_mtime = now;
2889                 inode->i_ctime = now;
2890                 trans = btrfs_start_transaction(root, 1);
2891                 if (IS_ERR(trans)) {
2892                         ret = PTR_ERR(trans);
2893                 } else {
2894                         int ret2;
2895
2896                         ret = btrfs_update_inode(trans, root, inode);
2897                         ret2 = btrfs_end_transaction(trans);
2898                         if (!ret)
2899                                 ret = ret2;
2900                 }
2901         }
2902         inode_unlock(inode);
2903         return ret;
2904 }
2905
2906 /* Helper structure to record which range is already reserved */
2907 struct falloc_range {
2908         struct list_head list;
2909         u64 start;
2910         u64 len;
2911 };
2912
2913 /*
2914  * Helper function to add falloc range
2915  *
2916  * Caller should have locked the larger range of extent containing
2917  * [start, len)
2918  */
2919 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2920 {
2921         struct falloc_range *prev = NULL;
2922         struct falloc_range *range = NULL;
2923
2924         if (list_empty(head))
2925                 goto insert;
2926
2927         /*
2928          * As fallocate iterate by bytenr order, we only need to check
2929          * the last range.
2930          */
2931         prev = list_entry(head->prev, struct falloc_range, list);
2932         if (prev->start + prev->len == start) {
2933                 prev->len += len;
2934                 return 0;
2935         }
2936 insert:
2937         range = kmalloc(sizeof(*range), GFP_KERNEL);
2938         if (!range)
2939                 return -ENOMEM;
2940         range->start = start;
2941         range->len = len;
2942         list_add_tail(&range->list, head);
2943         return 0;
2944 }
2945
2946 static int btrfs_fallocate_update_isize(struct inode *inode,
2947                                         const u64 end,
2948                                         const int mode)
2949 {
2950         struct btrfs_trans_handle *trans;
2951         struct btrfs_root *root = BTRFS_I(inode)->root;
2952         int ret;
2953         int ret2;
2954
2955         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2956                 return 0;
2957
2958         trans = btrfs_start_transaction(root, 1);
2959         if (IS_ERR(trans))
2960                 return PTR_ERR(trans);
2961
2962         inode->i_ctime = current_time(inode);
2963         i_size_write(inode, end);
2964         btrfs_inode_safe_disk_i_size_write(inode, 0);
2965         ret = btrfs_update_inode(trans, root, inode);
2966         ret2 = btrfs_end_transaction(trans);
2967
2968         return ret ? ret : ret2;
2969 }
2970
2971 enum {
2972         RANGE_BOUNDARY_WRITTEN_EXTENT,
2973         RANGE_BOUNDARY_PREALLOC_EXTENT,
2974         RANGE_BOUNDARY_HOLE,
2975 };
2976
2977 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2978                                                  u64 offset)
2979 {
2980         const u64 sectorsize = btrfs_inode_sectorsize(inode);
2981         struct extent_map *em;
2982         int ret;
2983
2984         offset = round_down(offset, sectorsize);
2985         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize);
2986         if (IS_ERR(em))
2987                 return PTR_ERR(em);
2988
2989         if (em->block_start == EXTENT_MAP_HOLE)
2990                 ret = RANGE_BOUNDARY_HOLE;
2991         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2992                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2993         else
2994                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2995
2996         free_extent_map(em);
2997         return ret;
2998 }
2999
3000 static int btrfs_zero_range(struct inode *inode,
3001                             loff_t offset,
3002                             loff_t len,
3003                             const int mode)
3004 {
3005         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3006         struct extent_map *em;
3007         struct extent_changeset *data_reserved = NULL;
3008         int ret;
3009         u64 alloc_hint = 0;
3010         const u64 sectorsize = btrfs_inode_sectorsize(inode);
3011         u64 alloc_start = round_down(offset, sectorsize);
3012         u64 alloc_end = round_up(offset + len, sectorsize);
3013         u64 bytes_to_reserve = 0;
3014         bool space_reserved = false;
3015
3016         inode_dio_wait(inode);
3017
3018         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3019                               alloc_end - alloc_start);
3020         if (IS_ERR(em)) {
3021                 ret = PTR_ERR(em);
3022                 goto out;
3023         }
3024
3025         /*
3026          * Avoid hole punching and extent allocation for some cases. More cases
3027          * could be considered, but these are unlikely common and we keep things
3028          * as simple as possible for now. Also, intentionally, if the target
3029          * range contains one or more prealloc extents together with regular
3030          * extents and holes, we drop all the existing extents and allocate a
3031          * new prealloc extent, so that we get a larger contiguous disk extent.
3032          */
3033         if (em->start <= alloc_start &&
3034             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3035                 const u64 em_end = em->start + em->len;
3036
3037                 if (em_end >= offset + len) {
3038                         /*
3039                          * The whole range is already a prealloc extent,
3040                          * do nothing except updating the inode's i_size if
3041                          * needed.
3042                          */
3043                         free_extent_map(em);
3044                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3045                                                            mode);
3046                         goto out;
3047                 }
3048                 /*
3049                  * Part of the range is already a prealloc extent, so operate
3050                  * only on the remaining part of the range.
3051                  */
3052                 alloc_start = em_end;
3053                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3054                 len = offset + len - alloc_start;
3055                 offset = alloc_start;
3056                 alloc_hint = em->block_start + em->len;
3057         }
3058         free_extent_map(em);
3059
3060         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3061             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3062                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3063                                       sectorsize);
3064                 if (IS_ERR(em)) {
3065                         ret = PTR_ERR(em);
3066                         goto out;
3067                 }
3068
3069                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3070                         free_extent_map(em);
3071                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3072                                                            mode);
3073                         goto out;
3074                 }
3075                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3076                         free_extent_map(em);
3077                         ret = btrfs_truncate_block(inode, offset, len, 0);
3078                         if (!ret)
3079                                 ret = btrfs_fallocate_update_isize(inode,
3080                                                                    offset + len,
3081                                                                    mode);
3082                         return ret;
3083                 }
3084                 free_extent_map(em);
3085                 alloc_start = round_down(offset, sectorsize);
3086                 alloc_end = alloc_start + sectorsize;
3087                 goto reserve_space;
3088         }
3089
3090         alloc_start = round_up(offset, sectorsize);
3091         alloc_end = round_down(offset + len, sectorsize);
3092
3093         /*
3094          * For unaligned ranges, check the pages at the boundaries, they might
3095          * map to an extent, in which case we need to partially zero them, or
3096          * they might map to a hole, in which case we need our allocation range
3097          * to cover them.
3098          */
3099         if (!IS_ALIGNED(offset, sectorsize)) {
3100                 ret = btrfs_zero_range_check_range_boundary(inode, offset);
3101                 if (ret < 0)
3102                         goto out;
3103                 if (ret == RANGE_BOUNDARY_HOLE) {
3104                         alloc_start = round_down(offset, sectorsize);
3105                         ret = 0;
3106                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3107                         ret = btrfs_truncate_block(inode, offset, 0, 0);
3108                         if (ret)
3109                                 goto out;
3110                 } else {
3111                         ret = 0;
3112                 }
3113         }
3114
3115         if (!IS_ALIGNED(offset + len, sectorsize)) {
3116                 ret = btrfs_zero_range_check_range_boundary(inode,
3117                                                             offset + len);
3118                 if (ret < 0)
3119                         goto out;
3120                 if (ret == RANGE_BOUNDARY_HOLE) {
3121                         alloc_end = round_up(offset + len, sectorsize);
3122                         ret = 0;
3123                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3124                         ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3125                         if (ret)
3126                                 goto out;
3127                 } else {
3128                         ret = 0;
3129                 }
3130         }
3131
3132 reserve_space:
3133         if (alloc_start < alloc_end) {
3134                 struct extent_state *cached_state = NULL;
3135                 const u64 lockstart = alloc_start;
3136                 const u64 lockend = alloc_end - 1;
3137
3138                 bytes_to_reserve = alloc_end - alloc_start;
3139                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3140                                                       bytes_to_reserve);
3141                 if (ret < 0)
3142                         goto out;
3143                 space_reserved = true;
3144                 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3145                                                 alloc_start, bytes_to_reserve);
3146                 if (ret)
3147                         goto out;
3148                 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3149                                                   &cached_state);
3150                 if (ret)
3151                         goto out;
3152                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3153                                                 alloc_end - alloc_start,
3154                                                 i_blocksize(inode),
3155                                                 offset + len, &alloc_hint);
3156                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3157                                      lockend, &cached_state);
3158                 /* btrfs_prealloc_file_range releases reserved space on error */
3159                 if (ret) {
3160                         space_reserved = false;
3161                         goto out;
3162                 }
3163         }
3164         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3165  out:
3166         if (ret && space_reserved)
3167                 btrfs_free_reserved_data_space(inode, data_reserved,
3168                                                alloc_start, bytes_to_reserve);
3169         extent_changeset_free(data_reserved);
3170
3171         return ret;
3172 }
3173
3174 static long btrfs_fallocate(struct file *file, int mode,
3175                             loff_t offset, loff_t len)
3176 {
3177         struct inode *inode = file_inode(file);
3178         struct extent_state *cached_state = NULL;
3179         struct extent_changeset *data_reserved = NULL;
3180         struct falloc_range *range;
3181         struct falloc_range *tmp;
3182         struct list_head reserve_list;
3183         u64 cur_offset;
3184         u64 last_byte;
3185         u64 alloc_start;
3186         u64 alloc_end;
3187         u64 alloc_hint = 0;
3188         u64 locked_end;
3189         u64 actual_end = 0;
3190         struct extent_map *em;
3191         int blocksize = btrfs_inode_sectorsize(inode);
3192         int ret;
3193
3194         alloc_start = round_down(offset, blocksize);
3195         alloc_end = round_up(offset + len, blocksize);
3196         cur_offset = alloc_start;
3197
3198         /* Make sure we aren't being give some crap mode */
3199         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3200                      FALLOC_FL_ZERO_RANGE))
3201                 return -EOPNOTSUPP;
3202
3203         if (mode & FALLOC_FL_PUNCH_HOLE)
3204                 return btrfs_punch_hole(inode, offset, len);
3205
3206         /*
3207          * Only trigger disk allocation, don't trigger qgroup reserve
3208          *
3209          * For qgroup space, it will be checked later.
3210          */
3211         if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3212                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3213                                                       alloc_end - alloc_start);
3214                 if (ret < 0)
3215                         return ret;
3216         }
3217
3218         inode_lock(inode);
3219
3220         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3221                 ret = inode_newsize_ok(inode, offset + len);
3222                 if (ret)
3223                         goto out;
3224         }
3225
3226         /*
3227          * TODO: Move these two operations after we have checked
3228          * accurate reserved space, or fallocate can still fail but
3229          * with page truncated or size expanded.
3230          *
3231          * But that's a minor problem and won't do much harm BTW.
3232          */
3233         if (alloc_start > inode->i_size) {
3234                 ret = btrfs_cont_expand(inode, i_size_read(inode),
3235                                         alloc_start);
3236                 if (ret)
3237                         goto out;
3238         } else if (offset + len > inode->i_size) {
3239                 /*
3240                  * If we are fallocating from the end of the file onward we
3241                  * need to zero out the end of the block if i_size lands in the
3242                  * middle of a block.
3243                  */
3244                 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3245                 if (ret)
3246                         goto out;
3247         }
3248
3249         /*
3250          * wait for ordered IO before we have any locks.  We'll loop again
3251          * below with the locks held.
3252          */
3253         ret = btrfs_wait_ordered_range(inode, alloc_start,
3254                                        alloc_end - alloc_start);
3255         if (ret)
3256                 goto out;
3257
3258         if (mode & FALLOC_FL_ZERO_RANGE) {
3259                 ret = btrfs_zero_range(inode, offset, len, mode);
3260                 inode_unlock(inode);
3261                 return ret;
3262         }
3263
3264         locked_end = alloc_end - 1;
3265         while (1) {
3266                 struct btrfs_ordered_extent *ordered;
3267
3268                 /* the extent lock is ordered inside the running
3269                  * transaction
3270                  */
3271                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3272                                  locked_end, &cached_state);
3273                 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3274
3275                 if (ordered &&
3276                     ordered->file_offset + ordered->num_bytes > alloc_start &&
3277                     ordered->file_offset < alloc_end) {
3278                         btrfs_put_ordered_extent(ordered);
3279                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3280                                              alloc_start, locked_end,
3281                                              &cached_state);
3282                         /*
3283                          * we can't wait on the range with the transaction
3284                          * running or with the extent lock held
3285                          */
3286                         ret = btrfs_wait_ordered_range(inode, alloc_start,
3287                                                        alloc_end - alloc_start);
3288                         if (ret)
3289                                 goto out;
3290                 } else {
3291                         if (ordered)
3292                                 btrfs_put_ordered_extent(ordered);
3293                         break;
3294                 }
3295         }
3296
3297         /* First, check if we exceed the qgroup limit */
3298         INIT_LIST_HEAD(&reserve_list);
3299         while (cur_offset < alloc_end) {
3300                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3301                                       alloc_end - cur_offset);
3302                 if (IS_ERR(em)) {
3303                         ret = PTR_ERR(em);
3304                         break;
3305                 }
3306                 last_byte = min(extent_map_end(em), alloc_end);
3307                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3308                 last_byte = ALIGN(last_byte, blocksize);
3309                 if (em->block_start == EXTENT_MAP_HOLE ||
3310                     (cur_offset >= inode->i_size &&
3311                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3312                         ret = add_falloc_range(&reserve_list, cur_offset,
3313                                                last_byte - cur_offset);
3314                         if (ret < 0) {
3315                                 free_extent_map(em);
3316                                 break;
3317                         }
3318                         ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3319                                         cur_offset, last_byte - cur_offset);
3320                         if (ret < 0) {
3321                                 cur_offset = last_byte;
3322                                 free_extent_map(em);
3323                                 break;
3324                         }
3325                 } else {
3326                         /*
3327                          * Do not need to reserve unwritten extent for this
3328                          * range, free reserved data space first, otherwise
3329                          * it'll result in false ENOSPC error.
3330                          */
3331                         btrfs_free_reserved_data_space(inode, data_reserved,
3332                                         cur_offset, last_byte - cur_offset);
3333                 }
3334                 free_extent_map(em);
3335                 cur_offset = last_byte;
3336         }
3337
3338         /*
3339          * If ret is still 0, means we're OK to fallocate.
3340          * Or just cleanup the list and exit.
3341          */
3342         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3343                 if (!ret)
3344                         ret = btrfs_prealloc_file_range(inode, mode,
3345                                         range->start,
3346                                         range->len, i_blocksize(inode),
3347                                         offset + len, &alloc_hint);
3348                 else
3349                         btrfs_free_reserved_data_space(inode,
3350                                         data_reserved, range->start,
3351                                         range->len);
3352                 list_del(&range->list);
3353                 kfree(range);
3354         }
3355         if (ret < 0)
3356                 goto out_unlock;
3357
3358         /*
3359          * We didn't need to allocate any more space, but we still extended the
3360          * size of the file so we need to update i_size and the inode item.
3361          */
3362         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3363 out_unlock:
3364         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3365                              &cached_state);
3366 out:
3367         inode_unlock(inode);
3368         /* Let go of our reservation. */
3369         if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3370                 btrfs_free_reserved_data_space(inode, data_reserved,
3371                                 cur_offset, alloc_end - cur_offset);
3372         extent_changeset_free(data_reserved);
3373         return ret;
3374 }
3375
3376 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3377                                   int whence)
3378 {
3379         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3380         struct extent_map *em = NULL;
3381         struct extent_state *cached_state = NULL;
3382         loff_t i_size = inode->i_size;
3383         u64 lockstart;
3384         u64 lockend;
3385         u64 start;
3386         u64 len;
3387         int ret = 0;
3388
3389         if (i_size == 0 || offset >= i_size)
3390                 return -ENXIO;
3391
3392         /*
3393          * offset can be negative, in this case we start finding DATA/HOLE from
3394          * the very start of the file.
3395          */
3396         start = max_t(loff_t, 0, offset);
3397
3398         lockstart = round_down(start, fs_info->sectorsize);
3399         lockend = round_up(i_size, fs_info->sectorsize);
3400         if (lockend <= lockstart)
3401                 lockend = lockstart + fs_info->sectorsize;
3402         lockend--;
3403         len = lockend - lockstart + 1;
3404
3405         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3406                          &cached_state);
3407
3408         while (start < i_size) {
3409                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3410                 if (IS_ERR(em)) {
3411                         ret = PTR_ERR(em);
3412                         em = NULL;
3413                         break;
3414                 }
3415
3416                 if (whence == SEEK_HOLE &&
3417                     (em->block_start == EXTENT_MAP_HOLE ||
3418                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3419                         break;
3420                 else if (whence == SEEK_DATA &&
3421                            (em->block_start != EXTENT_MAP_HOLE &&
3422                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3423                         break;
3424
3425                 start = em->start + em->len;
3426                 free_extent_map(em);
3427                 em = NULL;
3428                 cond_resched();
3429         }
3430         free_extent_map(em);
3431         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3432                              &cached_state);
3433         if (ret) {
3434                 offset = ret;
3435         } else {
3436                 if (whence == SEEK_DATA && start >= i_size)
3437                         offset = -ENXIO;
3438                 else
3439                         offset = min_t(loff_t, start, i_size);
3440         }
3441
3442         return offset;
3443 }
3444
3445 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3446 {
3447         struct inode *inode = file->f_mapping->host;
3448
3449         switch (whence) {
3450         default:
3451                 return generic_file_llseek(file, offset, whence);
3452         case SEEK_DATA:
3453         case SEEK_HOLE:
3454                 inode_lock_shared(inode);
3455                 offset = find_desired_extent(inode, offset, whence);
3456                 inode_unlock_shared(inode);
3457                 break;
3458         }
3459
3460         if (offset < 0)
3461                 return offset;
3462
3463         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3464 }
3465
3466 static int btrfs_file_open(struct inode *inode, struct file *filp)
3467 {
3468         filp->f_mode |= FMODE_NOWAIT;
3469         return generic_file_open(inode, filp);
3470 }
3471
3472 const struct file_operations btrfs_file_operations = {
3473         .llseek         = btrfs_file_llseek,
3474         .read_iter      = generic_file_read_iter,
3475         .splice_read    = generic_file_splice_read,
3476         .write_iter     = btrfs_file_write_iter,
3477         .mmap           = btrfs_file_mmap,
3478         .open           = btrfs_file_open,
3479         .release        = btrfs_release_file,
3480         .fsync          = btrfs_sync_file,
3481         .fallocate      = btrfs_fallocate,
3482         .unlocked_ioctl = btrfs_ioctl,
3483 #ifdef CONFIG_COMPAT
3484         .compat_ioctl   = btrfs_compat_ioctl,
3485 #endif
3486         .remap_file_range = btrfs_remap_file_range,
3487 };
3488
3489 void __cold btrfs_auto_defrag_exit(void)
3490 {
3491         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3492 }
3493
3494 int __init btrfs_auto_defrag_init(void)
3495 {
3496         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3497                                         sizeof(struct inode_defrag), 0,
3498                                         SLAB_MEM_SPREAD,
3499                                         NULL);
3500         if (!btrfs_inode_defrag_cachep)
3501                 return -ENOMEM;
3502
3503         return 0;
3504 }
3505
3506 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3507 {
3508         int ret;
3509
3510         /*
3511          * So with compression we will find and lock a dirty page and clear the
3512          * first one as dirty, setup an async extent, and immediately return
3513          * with the entire range locked but with nobody actually marked with
3514          * writeback.  So we can't just filemap_write_and_wait_range() and
3515          * expect it to work since it will just kick off a thread to do the
3516          * actual work.  So we need to call filemap_fdatawrite_range _again_
3517          * since it will wait on the page lock, which won't be unlocked until
3518          * after the pages have been marked as writeback and so we're good to go
3519          * from there.  We have to do this otherwise we'll miss the ordered
3520          * extents and that results in badness.  Please Josef, do not think you
3521          * know better and pull this out at some point in the future, it is
3522          * right and you are wrong.
3523          */
3524         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3525         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3526                              &BTRFS_I(inode)->runtime_flags))
3527                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3528
3529         return ret;
3530 }