OSDN Git Service

Merge tag 'for-linus-2023083101' of git://git.kernel.org/pub/scm/linux/kernel/git...
[tomoyo/tomoyo-test1.git] / fs / btrfs / relocation.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39
40 /*
41  * Relocation overview
42  *
43  * [What does relocation do]
44  *
45  * The objective of relocation is to relocate all extents of the target block
46  * group to other block groups.
47  * This is utilized by resize (shrink only), profile converting, compacting
48  * space, or balance routine to spread chunks over devices.
49  *
50  *              Before          |               After
51  * ------------------------------------------------------------------
52  *  BG A: 10 data extents       | BG A: deleted
53  *  BG B:  2 data extents       | BG B: 10 data extents (2 old + 8 relocated)
54  *  BG C:  1 extents            | BG C:  3 data extents (1 old + 2 relocated)
55  *
56  * [How does relocation work]
57  *
58  * 1.   Mark the target block group read-only
59  *      New extents won't be allocated from the target block group.
60  *
61  * 2.1  Record each extent in the target block group
62  *      To build a proper map of extents to be relocated.
63  *
64  * 2.2  Build data reloc tree and reloc trees
65  *      Data reloc tree will contain an inode, recording all newly relocated
66  *      data extents.
67  *      There will be only one data reloc tree for one data block group.
68  *
69  *      Reloc tree will be a special snapshot of its source tree, containing
70  *      relocated tree blocks.
71  *      Each tree referring to a tree block in target block group will get its
72  *      reloc tree built.
73  *
74  * 2.3  Swap source tree with its corresponding reloc tree
75  *      Each involved tree only refers to new extents after swap.
76  *
77  * 3.   Cleanup reloc trees and data reloc tree.
78  *      As old extents in the target block group are still referenced by reloc
79  *      trees, we need to clean them up before really freeing the target block
80  *      group.
81  *
82  * The main complexity is in steps 2.2 and 2.3.
83  *
84  * The entry point of relocation is relocate_block_group() function.
85  */
86
87 #define RELOCATION_RESERVED_NODES       256
88 /*
89  * map address of tree root to tree
90  */
91 struct mapping_node {
92         struct {
93                 struct rb_node rb_node;
94                 u64 bytenr;
95         }; /* Use rb_simle_node for search/insert */
96         void *data;
97 };
98
99 struct mapping_tree {
100         struct rb_root rb_root;
101         spinlock_t lock;
102 };
103
104 /*
105  * present a tree block to process
106  */
107 struct tree_block {
108         struct {
109                 struct rb_node rb_node;
110                 u64 bytenr;
111         }; /* Use rb_simple_node for search/insert */
112         u64 owner;
113         struct btrfs_key key;
114         unsigned int level:8;
115         unsigned int key_ready:1;
116 };
117
118 #define MAX_EXTENTS 128
119
120 struct file_extent_cluster {
121         u64 start;
122         u64 end;
123         u64 boundary[MAX_EXTENTS];
124         unsigned int nr;
125 };
126
127 struct reloc_control {
128         /* block group to relocate */
129         struct btrfs_block_group *block_group;
130         /* extent tree */
131         struct btrfs_root *extent_root;
132         /* inode for moving data */
133         struct inode *data_inode;
134
135         struct btrfs_block_rsv *block_rsv;
136
137         struct btrfs_backref_cache backref_cache;
138
139         struct file_extent_cluster cluster;
140         /* tree blocks have been processed */
141         struct extent_io_tree processed_blocks;
142         /* map start of tree root to corresponding reloc tree */
143         struct mapping_tree reloc_root_tree;
144         /* list of reloc trees */
145         struct list_head reloc_roots;
146         /* list of subvolume trees that get relocated */
147         struct list_head dirty_subvol_roots;
148         /* size of metadata reservation for merging reloc trees */
149         u64 merging_rsv_size;
150         /* size of relocated tree nodes */
151         u64 nodes_relocated;
152         /* reserved size for block group relocation*/
153         u64 reserved_bytes;
154
155         u64 search_start;
156         u64 extents_found;
157
158         unsigned int stage:8;
159         unsigned int create_reloc_tree:1;
160         unsigned int merge_reloc_tree:1;
161         unsigned int found_file_extent:1;
162 };
163
164 /* stages of data relocation */
165 #define MOVE_DATA_EXTENTS       0
166 #define UPDATE_DATA_PTRS        1
167
168 static void mark_block_processed(struct reloc_control *rc,
169                                  struct btrfs_backref_node *node)
170 {
171         u32 blocksize;
172
173         if (node->level == 0 ||
174             in_range(node->bytenr, rc->block_group->start,
175                      rc->block_group->length)) {
176                 blocksize = rc->extent_root->fs_info->nodesize;
177                 set_extent_bit(&rc->processed_blocks, node->bytenr,
178                                node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
179         }
180         node->processed = 1;
181 }
182
183
184 static void mapping_tree_init(struct mapping_tree *tree)
185 {
186         tree->rb_root = RB_ROOT;
187         spin_lock_init(&tree->lock);
188 }
189
190 /*
191  * walk up backref nodes until reach node presents tree root
192  */
193 static struct btrfs_backref_node *walk_up_backref(
194                 struct btrfs_backref_node *node,
195                 struct btrfs_backref_edge *edges[], int *index)
196 {
197         struct btrfs_backref_edge *edge;
198         int idx = *index;
199
200         while (!list_empty(&node->upper)) {
201                 edge = list_entry(node->upper.next,
202                                   struct btrfs_backref_edge, list[LOWER]);
203                 edges[idx++] = edge;
204                 node = edge->node[UPPER];
205         }
206         BUG_ON(node->detached);
207         *index = idx;
208         return node;
209 }
210
211 /*
212  * walk down backref nodes to find start of next reference path
213  */
214 static struct btrfs_backref_node *walk_down_backref(
215                 struct btrfs_backref_edge *edges[], int *index)
216 {
217         struct btrfs_backref_edge *edge;
218         struct btrfs_backref_node *lower;
219         int idx = *index;
220
221         while (idx > 0) {
222                 edge = edges[idx - 1];
223                 lower = edge->node[LOWER];
224                 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
225                         idx--;
226                         continue;
227                 }
228                 edge = list_entry(edge->list[LOWER].next,
229                                   struct btrfs_backref_edge, list[LOWER]);
230                 edges[idx - 1] = edge;
231                 *index = idx;
232                 return edge->node[UPPER];
233         }
234         *index = 0;
235         return NULL;
236 }
237
238 static void update_backref_node(struct btrfs_backref_cache *cache,
239                                 struct btrfs_backref_node *node, u64 bytenr)
240 {
241         struct rb_node *rb_node;
242         rb_erase(&node->rb_node, &cache->rb_root);
243         node->bytenr = bytenr;
244         rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
245         if (rb_node)
246                 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
247 }
248
249 /*
250  * update backref cache after a transaction commit
251  */
252 static int update_backref_cache(struct btrfs_trans_handle *trans,
253                                 struct btrfs_backref_cache *cache)
254 {
255         struct btrfs_backref_node *node;
256         int level = 0;
257
258         if (cache->last_trans == 0) {
259                 cache->last_trans = trans->transid;
260                 return 0;
261         }
262
263         if (cache->last_trans == trans->transid)
264                 return 0;
265
266         /*
267          * detached nodes are used to avoid unnecessary backref
268          * lookup. transaction commit changes the extent tree.
269          * so the detached nodes are no longer useful.
270          */
271         while (!list_empty(&cache->detached)) {
272                 node = list_entry(cache->detached.next,
273                                   struct btrfs_backref_node, list);
274                 btrfs_backref_cleanup_node(cache, node);
275         }
276
277         while (!list_empty(&cache->changed)) {
278                 node = list_entry(cache->changed.next,
279                                   struct btrfs_backref_node, list);
280                 list_del_init(&node->list);
281                 BUG_ON(node->pending);
282                 update_backref_node(cache, node, node->new_bytenr);
283         }
284
285         /*
286          * some nodes can be left in the pending list if there were
287          * errors during processing the pending nodes.
288          */
289         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
290                 list_for_each_entry(node, &cache->pending[level], list) {
291                         BUG_ON(!node->pending);
292                         if (node->bytenr == node->new_bytenr)
293                                 continue;
294                         update_backref_node(cache, node, node->new_bytenr);
295                 }
296         }
297
298         cache->last_trans = 0;
299         return 1;
300 }
301
302 static bool reloc_root_is_dead(struct btrfs_root *root)
303 {
304         /*
305          * Pair with set_bit/clear_bit in clean_dirty_subvols and
306          * btrfs_update_reloc_root. We need to see the updated bit before
307          * trying to access reloc_root
308          */
309         smp_rmb();
310         if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
311                 return true;
312         return false;
313 }
314
315 /*
316  * Check if this subvolume tree has valid reloc tree.
317  *
318  * Reloc tree after swap is considered dead, thus not considered as valid.
319  * This is enough for most callers, as they don't distinguish dead reloc root
320  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
321  * special case.
322  */
323 static bool have_reloc_root(struct btrfs_root *root)
324 {
325         if (reloc_root_is_dead(root))
326                 return false;
327         if (!root->reloc_root)
328                 return false;
329         return true;
330 }
331
332 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
333 {
334         struct btrfs_root *reloc_root;
335
336         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
337                 return 0;
338
339         /* This root has been merged with its reloc tree, we can ignore it */
340         if (reloc_root_is_dead(root))
341                 return 1;
342
343         reloc_root = root->reloc_root;
344         if (!reloc_root)
345                 return 0;
346
347         if (btrfs_header_generation(reloc_root->commit_root) ==
348             root->fs_info->running_transaction->transid)
349                 return 0;
350         /*
351          * if there is reloc tree and it was created in previous
352          * transaction backref lookup can find the reloc tree,
353          * so backref node for the fs tree root is useless for
354          * relocation.
355          */
356         return 1;
357 }
358
359 /*
360  * find reloc tree by address of tree root
361  */
362 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
363 {
364         struct reloc_control *rc = fs_info->reloc_ctl;
365         struct rb_node *rb_node;
366         struct mapping_node *node;
367         struct btrfs_root *root = NULL;
368
369         ASSERT(rc);
370         spin_lock(&rc->reloc_root_tree.lock);
371         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
372         if (rb_node) {
373                 node = rb_entry(rb_node, struct mapping_node, rb_node);
374                 root = node->data;
375         }
376         spin_unlock(&rc->reloc_root_tree.lock);
377         return btrfs_grab_root(root);
378 }
379
380 /*
381  * For useless nodes, do two major clean ups:
382  *
383  * - Cleanup the children edges and nodes
384  *   If child node is also orphan (no parent) during cleanup, then the child
385  *   node will also be cleaned up.
386  *
387  * - Freeing up leaves (level 0), keeps nodes detached
388  *   For nodes, the node is still cached as "detached"
389  *
390  * Return false if @node is not in the @useless_nodes list.
391  * Return true if @node is in the @useless_nodes list.
392  */
393 static bool handle_useless_nodes(struct reloc_control *rc,
394                                  struct btrfs_backref_node *node)
395 {
396         struct btrfs_backref_cache *cache = &rc->backref_cache;
397         struct list_head *useless_node = &cache->useless_node;
398         bool ret = false;
399
400         while (!list_empty(useless_node)) {
401                 struct btrfs_backref_node *cur;
402
403                 cur = list_first_entry(useless_node, struct btrfs_backref_node,
404                                  list);
405                 list_del_init(&cur->list);
406
407                 /* Only tree root nodes can be added to @useless_nodes */
408                 ASSERT(list_empty(&cur->upper));
409
410                 if (cur == node)
411                         ret = true;
412
413                 /* The node is the lowest node */
414                 if (cur->lowest) {
415                         list_del_init(&cur->lower);
416                         cur->lowest = 0;
417                 }
418
419                 /* Cleanup the lower edges */
420                 while (!list_empty(&cur->lower)) {
421                         struct btrfs_backref_edge *edge;
422                         struct btrfs_backref_node *lower;
423
424                         edge = list_entry(cur->lower.next,
425                                         struct btrfs_backref_edge, list[UPPER]);
426                         list_del(&edge->list[UPPER]);
427                         list_del(&edge->list[LOWER]);
428                         lower = edge->node[LOWER];
429                         btrfs_backref_free_edge(cache, edge);
430
431                         /* Child node is also orphan, queue for cleanup */
432                         if (list_empty(&lower->upper))
433                                 list_add(&lower->list, useless_node);
434                 }
435                 /* Mark this block processed for relocation */
436                 mark_block_processed(rc, cur);
437
438                 /*
439                  * Backref nodes for tree leaves are deleted from the cache.
440                  * Backref nodes for upper level tree blocks are left in the
441                  * cache to avoid unnecessary backref lookup.
442                  */
443                 if (cur->level > 0) {
444                         list_add(&cur->list, &cache->detached);
445                         cur->detached = 1;
446                 } else {
447                         rb_erase(&cur->rb_node, &cache->rb_root);
448                         btrfs_backref_free_node(cache, cur);
449                 }
450         }
451         return ret;
452 }
453
454 /*
455  * Build backref tree for a given tree block. Root of the backref tree
456  * corresponds the tree block, leaves of the backref tree correspond roots of
457  * b-trees that reference the tree block.
458  *
459  * The basic idea of this function is check backrefs of a given block to find
460  * upper level blocks that reference the block, and then check backrefs of
461  * these upper level blocks recursively. The recursion stops when tree root is
462  * reached or backrefs for the block is cached.
463  *
464  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
465  * all upper level blocks that directly/indirectly reference the block are also
466  * cached.
467  */
468 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
469                         struct reloc_control *rc, struct btrfs_key *node_key,
470                         int level, u64 bytenr)
471 {
472         struct btrfs_backref_iter *iter;
473         struct btrfs_backref_cache *cache = &rc->backref_cache;
474         /* For searching parent of TREE_BLOCK_REF */
475         struct btrfs_path *path;
476         struct btrfs_backref_node *cur;
477         struct btrfs_backref_node *node = NULL;
478         struct btrfs_backref_edge *edge;
479         int ret;
480         int err = 0;
481
482         iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
483         if (!iter)
484                 return ERR_PTR(-ENOMEM);
485         path = btrfs_alloc_path();
486         if (!path) {
487                 err = -ENOMEM;
488                 goto out;
489         }
490
491         node = btrfs_backref_alloc_node(cache, bytenr, level);
492         if (!node) {
493                 err = -ENOMEM;
494                 goto out;
495         }
496
497         node->lowest = 1;
498         cur = node;
499
500         /* Breadth-first search to build backref cache */
501         do {
502                 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
503                                                   cur);
504                 if (ret < 0) {
505                         err = ret;
506                         goto out;
507                 }
508                 edge = list_first_entry_or_null(&cache->pending_edge,
509                                 struct btrfs_backref_edge, list[UPPER]);
510                 /*
511                  * The pending list isn't empty, take the first block to
512                  * process
513                  */
514                 if (edge) {
515                         list_del_init(&edge->list[UPPER]);
516                         cur = edge->node[UPPER];
517                 }
518         } while (edge);
519
520         /* Finish the upper linkage of newly added edges/nodes */
521         ret = btrfs_backref_finish_upper_links(cache, node);
522         if (ret < 0) {
523                 err = ret;
524                 goto out;
525         }
526
527         if (handle_useless_nodes(rc, node))
528                 node = NULL;
529 out:
530         btrfs_backref_iter_free(iter);
531         btrfs_free_path(path);
532         if (err) {
533                 btrfs_backref_error_cleanup(cache, node);
534                 return ERR_PTR(err);
535         }
536         ASSERT(!node || !node->detached);
537         ASSERT(list_empty(&cache->useless_node) &&
538                list_empty(&cache->pending_edge));
539         return node;
540 }
541
542 /*
543  * helper to add backref node for the newly created snapshot.
544  * the backref node is created by cloning backref node that
545  * corresponds to root of source tree
546  */
547 static int clone_backref_node(struct btrfs_trans_handle *trans,
548                               struct reloc_control *rc,
549                               struct btrfs_root *src,
550                               struct btrfs_root *dest)
551 {
552         struct btrfs_root *reloc_root = src->reloc_root;
553         struct btrfs_backref_cache *cache = &rc->backref_cache;
554         struct btrfs_backref_node *node = NULL;
555         struct btrfs_backref_node *new_node;
556         struct btrfs_backref_edge *edge;
557         struct btrfs_backref_edge *new_edge;
558         struct rb_node *rb_node;
559
560         if (cache->last_trans > 0)
561                 update_backref_cache(trans, cache);
562
563         rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
564         if (rb_node) {
565                 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
566                 if (node->detached)
567                         node = NULL;
568                 else
569                         BUG_ON(node->new_bytenr != reloc_root->node->start);
570         }
571
572         if (!node) {
573                 rb_node = rb_simple_search(&cache->rb_root,
574                                            reloc_root->commit_root->start);
575                 if (rb_node) {
576                         node = rb_entry(rb_node, struct btrfs_backref_node,
577                                         rb_node);
578                         BUG_ON(node->detached);
579                 }
580         }
581
582         if (!node)
583                 return 0;
584
585         new_node = btrfs_backref_alloc_node(cache, dest->node->start,
586                                             node->level);
587         if (!new_node)
588                 return -ENOMEM;
589
590         new_node->lowest = node->lowest;
591         new_node->checked = 1;
592         new_node->root = btrfs_grab_root(dest);
593         ASSERT(new_node->root);
594
595         if (!node->lowest) {
596                 list_for_each_entry(edge, &node->lower, list[UPPER]) {
597                         new_edge = btrfs_backref_alloc_edge(cache);
598                         if (!new_edge)
599                                 goto fail;
600
601                         btrfs_backref_link_edge(new_edge, edge->node[LOWER],
602                                                 new_node, LINK_UPPER);
603                 }
604         } else {
605                 list_add_tail(&new_node->lower, &cache->leaves);
606         }
607
608         rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
609                                    &new_node->rb_node);
610         if (rb_node)
611                 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
612
613         if (!new_node->lowest) {
614                 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
615                         list_add_tail(&new_edge->list[LOWER],
616                                       &new_edge->node[LOWER]->upper);
617                 }
618         }
619         return 0;
620 fail:
621         while (!list_empty(&new_node->lower)) {
622                 new_edge = list_entry(new_node->lower.next,
623                                       struct btrfs_backref_edge, list[UPPER]);
624                 list_del(&new_edge->list[UPPER]);
625                 btrfs_backref_free_edge(cache, new_edge);
626         }
627         btrfs_backref_free_node(cache, new_node);
628         return -ENOMEM;
629 }
630
631 /*
632  * helper to add 'address of tree root -> reloc tree' mapping
633  */
634 static int __must_check __add_reloc_root(struct btrfs_root *root)
635 {
636         struct btrfs_fs_info *fs_info = root->fs_info;
637         struct rb_node *rb_node;
638         struct mapping_node *node;
639         struct reloc_control *rc = fs_info->reloc_ctl;
640
641         node = kmalloc(sizeof(*node), GFP_NOFS);
642         if (!node)
643                 return -ENOMEM;
644
645         node->bytenr = root->commit_root->start;
646         node->data = root;
647
648         spin_lock(&rc->reloc_root_tree.lock);
649         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
650                                    node->bytenr, &node->rb_node);
651         spin_unlock(&rc->reloc_root_tree.lock);
652         if (rb_node) {
653                 btrfs_err(fs_info,
654                             "Duplicate root found for start=%llu while inserting into relocation tree",
655                             node->bytenr);
656                 return -EEXIST;
657         }
658
659         list_add_tail(&root->root_list, &rc->reloc_roots);
660         return 0;
661 }
662
663 /*
664  * helper to delete the 'address of tree root -> reloc tree'
665  * mapping
666  */
667 static void __del_reloc_root(struct btrfs_root *root)
668 {
669         struct btrfs_fs_info *fs_info = root->fs_info;
670         struct rb_node *rb_node;
671         struct mapping_node *node = NULL;
672         struct reloc_control *rc = fs_info->reloc_ctl;
673         bool put_ref = false;
674
675         if (rc && root->node) {
676                 spin_lock(&rc->reloc_root_tree.lock);
677                 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
678                                            root->commit_root->start);
679                 if (rb_node) {
680                         node = rb_entry(rb_node, struct mapping_node, rb_node);
681                         rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
682                         RB_CLEAR_NODE(&node->rb_node);
683                 }
684                 spin_unlock(&rc->reloc_root_tree.lock);
685                 ASSERT(!node || (struct btrfs_root *)node->data == root);
686         }
687
688         /*
689          * We only put the reloc root here if it's on the list.  There's a lot
690          * of places where the pattern is to splice the rc->reloc_roots, process
691          * the reloc roots, and then add the reloc root back onto
692          * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
693          * list we don't want the reference being dropped, because the guy
694          * messing with the list is in charge of the reference.
695          */
696         spin_lock(&fs_info->trans_lock);
697         if (!list_empty(&root->root_list)) {
698                 put_ref = true;
699                 list_del_init(&root->root_list);
700         }
701         spin_unlock(&fs_info->trans_lock);
702         if (put_ref)
703                 btrfs_put_root(root);
704         kfree(node);
705 }
706
707 /*
708  * helper to update the 'address of tree root -> reloc tree'
709  * mapping
710  */
711 static int __update_reloc_root(struct btrfs_root *root)
712 {
713         struct btrfs_fs_info *fs_info = root->fs_info;
714         struct rb_node *rb_node;
715         struct mapping_node *node = NULL;
716         struct reloc_control *rc = fs_info->reloc_ctl;
717
718         spin_lock(&rc->reloc_root_tree.lock);
719         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
720                                    root->commit_root->start);
721         if (rb_node) {
722                 node = rb_entry(rb_node, struct mapping_node, rb_node);
723                 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
724         }
725         spin_unlock(&rc->reloc_root_tree.lock);
726
727         if (!node)
728                 return 0;
729         BUG_ON((struct btrfs_root *)node->data != root);
730
731         spin_lock(&rc->reloc_root_tree.lock);
732         node->bytenr = root->node->start;
733         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
734                                    node->bytenr, &node->rb_node);
735         spin_unlock(&rc->reloc_root_tree.lock);
736         if (rb_node)
737                 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
738         return 0;
739 }
740
741 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
742                                         struct btrfs_root *root, u64 objectid)
743 {
744         struct btrfs_fs_info *fs_info = root->fs_info;
745         struct btrfs_root *reloc_root;
746         struct extent_buffer *eb;
747         struct btrfs_root_item *root_item;
748         struct btrfs_key root_key;
749         int ret = 0;
750         bool must_abort = false;
751
752         root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
753         if (!root_item)
754                 return ERR_PTR(-ENOMEM);
755
756         root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
757         root_key.type = BTRFS_ROOT_ITEM_KEY;
758         root_key.offset = objectid;
759
760         if (root->root_key.objectid == objectid) {
761                 u64 commit_root_gen;
762
763                 /* called by btrfs_init_reloc_root */
764                 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
765                                       BTRFS_TREE_RELOC_OBJECTID);
766                 if (ret)
767                         goto fail;
768
769                 /*
770                  * Set the last_snapshot field to the generation of the commit
771                  * root - like this ctree.c:btrfs_block_can_be_shared() behaves
772                  * correctly (returns true) when the relocation root is created
773                  * either inside the critical section of a transaction commit
774                  * (through transaction.c:qgroup_account_snapshot()) and when
775                  * it's created before the transaction commit is started.
776                  */
777                 commit_root_gen = btrfs_header_generation(root->commit_root);
778                 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
779         } else {
780                 /*
781                  * called by btrfs_reloc_post_snapshot_hook.
782                  * the source tree is a reloc tree, all tree blocks
783                  * modified after it was created have RELOC flag
784                  * set in their headers. so it's OK to not update
785                  * the 'last_snapshot'.
786                  */
787                 ret = btrfs_copy_root(trans, root, root->node, &eb,
788                                       BTRFS_TREE_RELOC_OBJECTID);
789                 if (ret)
790                         goto fail;
791         }
792
793         /*
794          * We have changed references at this point, we must abort the
795          * transaction if anything fails.
796          */
797         must_abort = true;
798
799         memcpy(root_item, &root->root_item, sizeof(*root_item));
800         btrfs_set_root_bytenr(root_item, eb->start);
801         btrfs_set_root_level(root_item, btrfs_header_level(eb));
802         btrfs_set_root_generation(root_item, trans->transid);
803
804         if (root->root_key.objectid == objectid) {
805                 btrfs_set_root_refs(root_item, 0);
806                 memset(&root_item->drop_progress, 0,
807                        sizeof(struct btrfs_disk_key));
808                 btrfs_set_root_drop_level(root_item, 0);
809         }
810
811         btrfs_tree_unlock(eb);
812         free_extent_buffer(eb);
813
814         ret = btrfs_insert_root(trans, fs_info->tree_root,
815                                 &root_key, root_item);
816         if (ret)
817                 goto fail;
818
819         kfree(root_item);
820
821         reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
822         if (IS_ERR(reloc_root)) {
823                 ret = PTR_ERR(reloc_root);
824                 goto abort;
825         }
826         set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
827         reloc_root->last_trans = trans->transid;
828         return reloc_root;
829 fail:
830         kfree(root_item);
831 abort:
832         if (must_abort)
833                 btrfs_abort_transaction(trans, ret);
834         return ERR_PTR(ret);
835 }
836
837 /*
838  * create reloc tree for a given fs tree. reloc tree is just a
839  * snapshot of the fs tree with special root objectid.
840  *
841  * The reloc_root comes out of here with two references, one for
842  * root->reloc_root, and another for being on the rc->reloc_roots list.
843  */
844 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
845                           struct btrfs_root *root)
846 {
847         struct btrfs_fs_info *fs_info = root->fs_info;
848         struct btrfs_root *reloc_root;
849         struct reloc_control *rc = fs_info->reloc_ctl;
850         struct btrfs_block_rsv *rsv;
851         int clear_rsv = 0;
852         int ret;
853
854         if (!rc)
855                 return 0;
856
857         /*
858          * The subvolume has reloc tree but the swap is finished, no need to
859          * create/update the dead reloc tree
860          */
861         if (reloc_root_is_dead(root))
862                 return 0;
863
864         /*
865          * This is subtle but important.  We do not do
866          * record_root_in_transaction for reloc roots, instead we record their
867          * corresponding fs root, and then here we update the last trans for the
868          * reloc root.  This means that we have to do this for the entire life
869          * of the reloc root, regardless of which stage of the relocation we are
870          * in.
871          */
872         if (root->reloc_root) {
873                 reloc_root = root->reloc_root;
874                 reloc_root->last_trans = trans->transid;
875                 return 0;
876         }
877
878         /*
879          * We are merging reloc roots, we do not need new reloc trees.  Also
880          * reloc trees never need their own reloc tree.
881          */
882         if (!rc->create_reloc_tree ||
883             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
884                 return 0;
885
886         if (!trans->reloc_reserved) {
887                 rsv = trans->block_rsv;
888                 trans->block_rsv = rc->block_rsv;
889                 clear_rsv = 1;
890         }
891         reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
892         if (clear_rsv)
893                 trans->block_rsv = rsv;
894         if (IS_ERR(reloc_root))
895                 return PTR_ERR(reloc_root);
896
897         ret = __add_reloc_root(reloc_root);
898         ASSERT(ret != -EEXIST);
899         if (ret) {
900                 /* Pairs with create_reloc_root */
901                 btrfs_put_root(reloc_root);
902                 return ret;
903         }
904         root->reloc_root = btrfs_grab_root(reloc_root);
905         return 0;
906 }
907
908 /*
909  * update root item of reloc tree
910  */
911 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
912                             struct btrfs_root *root)
913 {
914         struct btrfs_fs_info *fs_info = root->fs_info;
915         struct btrfs_root *reloc_root;
916         struct btrfs_root_item *root_item;
917         int ret;
918
919         if (!have_reloc_root(root))
920                 return 0;
921
922         reloc_root = root->reloc_root;
923         root_item = &reloc_root->root_item;
924
925         /*
926          * We are probably ok here, but __del_reloc_root() will drop its ref of
927          * the root.  We have the ref for root->reloc_root, but just in case
928          * hold it while we update the reloc root.
929          */
930         btrfs_grab_root(reloc_root);
931
932         /* root->reloc_root will stay until current relocation finished */
933         if (fs_info->reloc_ctl->merge_reloc_tree &&
934             btrfs_root_refs(root_item) == 0) {
935                 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
936                 /*
937                  * Mark the tree as dead before we change reloc_root so
938                  * have_reloc_root will not touch it from now on.
939                  */
940                 smp_wmb();
941                 __del_reloc_root(reloc_root);
942         }
943
944         if (reloc_root->commit_root != reloc_root->node) {
945                 __update_reloc_root(reloc_root);
946                 btrfs_set_root_node(root_item, reloc_root->node);
947                 free_extent_buffer(reloc_root->commit_root);
948                 reloc_root->commit_root = btrfs_root_node(reloc_root);
949         }
950
951         ret = btrfs_update_root(trans, fs_info->tree_root,
952                                 &reloc_root->root_key, root_item);
953         btrfs_put_root(reloc_root);
954         return ret;
955 }
956
957 /*
958  * helper to find first cached inode with inode number >= objectid
959  * in a subvolume
960  */
961 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
962 {
963         struct rb_node *node;
964         struct rb_node *prev;
965         struct btrfs_inode *entry;
966         struct inode *inode;
967
968         spin_lock(&root->inode_lock);
969 again:
970         node = root->inode_tree.rb_node;
971         prev = NULL;
972         while (node) {
973                 prev = node;
974                 entry = rb_entry(node, struct btrfs_inode, rb_node);
975
976                 if (objectid < btrfs_ino(entry))
977                         node = node->rb_left;
978                 else if (objectid > btrfs_ino(entry))
979                         node = node->rb_right;
980                 else
981                         break;
982         }
983         if (!node) {
984                 while (prev) {
985                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
986                         if (objectid <= btrfs_ino(entry)) {
987                                 node = prev;
988                                 break;
989                         }
990                         prev = rb_next(prev);
991                 }
992         }
993         while (node) {
994                 entry = rb_entry(node, struct btrfs_inode, rb_node);
995                 inode = igrab(&entry->vfs_inode);
996                 if (inode) {
997                         spin_unlock(&root->inode_lock);
998                         return inode;
999                 }
1000
1001                 objectid = btrfs_ino(entry) + 1;
1002                 if (cond_resched_lock(&root->inode_lock))
1003                         goto again;
1004
1005                 node = rb_next(node);
1006         }
1007         spin_unlock(&root->inode_lock);
1008         return NULL;
1009 }
1010
1011 /*
1012  * get new location of data
1013  */
1014 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1015                             u64 bytenr, u64 num_bytes)
1016 {
1017         struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1018         struct btrfs_path *path;
1019         struct btrfs_file_extent_item *fi;
1020         struct extent_buffer *leaf;
1021         int ret;
1022
1023         path = btrfs_alloc_path();
1024         if (!path)
1025                 return -ENOMEM;
1026
1027         bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1028         ret = btrfs_lookup_file_extent(NULL, root, path,
1029                         btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1030         if (ret < 0)
1031                 goto out;
1032         if (ret > 0) {
1033                 ret = -ENOENT;
1034                 goto out;
1035         }
1036
1037         leaf = path->nodes[0];
1038         fi = btrfs_item_ptr(leaf, path->slots[0],
1039                             struct btrfs_file_extent_item);
1040
1041         BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1042                btrfs_file_extent_compression(leaf, fi) ||
1043                btrfs_file_extent_encryption(leaf, fi) ||
1044                btrfs_file_extent_other_encoding(leaf, fi));
1045
1046         if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1047                 ret = -EINVAL;
1048                 goto out;
1049         }
1050
1051         *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1052         ret = 0;
1053 out:
1054         btrfs_free_path(path);
1055         return ret;
1056 }
1057
1058 /*
1059  * update file extent items in the tree leaf to point to
1060  * the new locations.
1061  */
1062 static noinline_for_stack
1063 int replace_file_extents(struct btrfs_trans_handle *trans,
1064                          struct reloc_control *rc,
1065                          struct btrfs_root *root,
1066                          struct extent_buffer *leaf)
1067 {
1068         struct btrfs_fs_info *fs_info = root->fs_info;
1069         struct btrfs_key key;
1070         struct btrfs_file_extent_item *fi;
1071         struct inode *inode = NULL;
1072         u64 parent;
1073         u64 bytenr;
1074         u64 new_bytenr = 0;
1075         u64 num_bytes;
1076         u64 end;
1077         u32 nritems;
1078         u32 i;
1079         int ret = 0;
1080         int first = 1;
1081         int dirty = 0;
1082
1083         if (rc->stage != UPDATE_DATA_PTRS)
1084                 return 0;
1085
1086         /* reloc trees always use full backref */
1087         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1088                 parent = leaf->start;
1089         else
1090                 parent = 0;
1091
1092         nritems = btrfs_header_nritems(leaf);
1093         for (i = 0; i < nritems; i++) {
1094                 struct btrfs_ref ref = { 0 };
1095
1096                 cond_resched();
1097                 btrfs_item_key_to_cpu(leaf, &key, i);
1098                 if (key.type != BTRFS_EXTENT_DATA_KEY)
1099                         continue;
1100                 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1101                 if (btrfs_file_extent_type(leaf, fi) ==
1102                     BTRFS_FILE_EXTENT_INLINE)
1103                         continue;
1104                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1105                 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1106                 if (bytenr == 0)
1107                         continue;
1108                 if (!in_range(bytenr, rc->block_group->start,
1109                               rc->block_group->length))
1110                         continue;
1111
1112                 /*
1113                  * if we are modifying block in fs tree, wait for read_folio
1114                  * to complete and drop the extent cache
1115                  */
1116                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1117                         if (first) {
1118                                 inode = find_next_inode(root, key.objectid);
1119                                 first = 0;
1120                         } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1121                                 btrfs_add_delayed_iput(BTRFS_I(inode));
1122                                 inode = find_next_inode(root, key.objectid);
1123                         }
1124                         if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1125                                 struct extent_state *cached_state = NULL;
1126
1127                                 end = key.offset +
1128                                       btrfs_file_extent_num_bytes(leaf, fi);
1129                                 WARN_ON(!IS_ALIGNED(key.offset,
1130                                                     fs_info->sectorsize));
1131                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1132                                 end--;
1133                                 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1134                                                       key.offset, end,
1135                                                       &cached_state);
1136                                 if (!ret)
1137                                         continue;
1138
1139                                 btrfs_drop_extent_map_range(BTRFS_I(inode),
1140                                                             key.offset, end, true);
1141                                 unlock_extent(&BTRFS_I(inode)->io_tree,
1142                                               key.offset, end, &cached_state);
1143                         }
1144                 }
1145
1146                 ret = get_new_location(rc->data_inode, &new_bytenr,
1147                                        bytenr, num_bytes);
1148                 if (ret) {
1149                         /*
1150                          * Don't have to abort since we've not changed anything
1151                          * in the file extent yet.
1152                          */
1153                         break;
1154                 }
1155
1156                 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1157                 dirty = 1;
1158
1159                 key.offset -= btrfs_file_extent_offset(leaf, fi);
1160                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1161                                        num_bytes, parent);
1162                 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1163                                     key.objectid, key.offset,
1164                                     root->root_key.objectid, false);
1165                 ret = btrfs_inc_extent_ref(trans, &ref);
1166                 if (ret) {
1167                         btrfs_abort_transaction(trans, ret);
1168                         break;
1169                 }
1170
1171                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1172                                        num_bytes, parent);
1173                 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1174                                     key.objectid, key.offset,
1175                                     root->root_key.objectid, false);
1176                 ret = btrfs_free_extent(trans, &ref);
1177                 if (ret) {
1178                         btrfs_abort_transaction(trans, ret);
1179                         break;
1180                 }
1181         }
1182         if (dirty)
1183                 btrfs_mark_buffer_dirty(leaf);
1184         if (inode)
1185                 btrfs_add_delayed_iput(BTRFS_I(inode));
1186         return ret;
1187 }
1188
1189 static noinline_for_stack
1190 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1191                      struct btrfs_path *path, int level)
1192 {
1193         struct btrfs_disk_key key1;
1194         struct btrfs_disk_key key2;
1195         btrfs_node_key(eb, &key1, slot);
1196         btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1197         return memcmp(&key1, &key2, sizeof(key1));
1198 }
1199
1200 /*
1201  * try to replace tree blocks in fs tree with the new blocks
1202  * in reloc tree. tree blocks haven't been modified since the
1203  * reloc tree was create can be replaced.
1204  *
1205  * if a block was replaced, level of the block + 1 is returned.
1206  * if no block got replaced, 0 is returned. if there are other
1207  * errors, a negative error number is returned.
1208  */
1209 static noinline_for_stack
1210 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1211                  struct btrfs_root *dest, struct btrfs_root *src,
1212                  struct btrfs_path *path, struct btrfs_key *next_key,
1213                  int lowest_level, int max_level)
1214 {
1215         struct btrfs_fs_info *fs_info = dest->fs_info;
1216         struct extent_buffer *eb;
1217         struct extent_buffer *parent;
1218         struct btrfs_ref ref = { 0 };
1219         struct btrfs_key key;
1220         u64 old_bytenr;
1221         u64 new_bytenr;
1222         u64 old_ptr_gen;
1223         u64 new_ptr_gen;
1224         u64 last_snapshot;
1225         u32 blocksize;
1226         int cow = 0;
1227         int level;
1228         int ret;
1229         int slot;
1230
1231         ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1232         ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1233
1234         last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1235 again:
1236         slot = path->slots[lowest_level];
1237         btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1238
1239         eb = btrfs_lock_root_node(dest);
1240         level = btrfs_header_level(eb);
1241
1242         if (level < lowest_level) {
1243                 btrfs_tree_unlock(eb);
1244                 free_extent_buffer(eb);
1245                 return 0;
1246         }
1247
1248         if (cow) {
1249                 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1250                                       BTRFS_NESTING_COW);
1251                 if (ret) {
1252                         btrfs_tree_unlock(eb);
1253                         free_extent_buffer(eb);
1254                         return ret;
1255                 }
1256         }
1257
1258         if (next_key) {
1259                 next_key->objectid = (u64)-1;
1260                 next_key->type = (u8)-1;
1261                 next_key->offset = (u64)-1;
1262         }
1263
1264         parent = eb;
1265         while (1) {
1266                 level = btrfs_header_level(parent);
1267                 ASSERT(level >= lowest_level);
1268
1269                 ret = btrfs_bin_search(parent, 0, &key, &slot);
1270                 if (ret < 0)
1271                         break;
1272                 if (ret && slot > 0)
1273                         slot--;
1274
1275                 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1276                         btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1277
1278                 old_bytenr = btrfs_node_blockptr(parent, slot);
1279                 blocksize = fs_info->nodesize;
1280                 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1281
1282                 if (level <= max_level) {
1283                         eb = path->nodes[level];
1284                         new_bytenr = btrfs_node_blockptr(eb,
1285                                                         path->slots[level]);
1286                         new_ptr_gen = btrfs_node_ptr_generation(eb,
1287                                                         path->slots[level]);
1288                 } else {
1289                         new_bytenr = 0;
1290                         new_ptr_gen = 0;
1291                 }
1292
1293                 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1294                         ret = level;
1295                         break;
1296                 }
1297
1298                 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1299                     memcmp_node_keys(parent, slot, path, level)) {
1300                         if (level <= lowest_level) {
1301                                 ret = 0;
1302                                 break;
1303                         }
1304
1305                         eb = btrfs_read_node_slot(parent, slot);
1306                         if (IS_ERR(eb)) {
1307                                 ret = PTR_ERR(eb);
1308                                 break;
1309                         }
1310                         btrfs_tree_lock(eb);
1311                         if (cow) {
1312                                 ret = btrfs_cow_block(trans, dest, eb, parent,
1313                                                       slot, &eb,
1314                                                       BTRFS_NESTING_COW);
1315                                 if (ret) {
1316                                         btrfs_tree_unlock(eb);
1317                                         free_extent_buffer(eb);
1318                                         break;
1319                                 }
1320                         }
1321
1322                         btrfs_tree_unlock(parent);
1323                         free_extent_buffer(parent);
1324
1325                         parent = eb;
1326                         continue;
1327                 }
1328
1329                 if (!cow) {
1330                         btrfs_tree_unlock(parent);
1331                         free_extent_buffer(parent);
1332                         cow = 1;
1333                         goto again;
1334                 }
1335
1336                 btrfs_node_key_to_cpu(path->nodes[level], &key,
1337                                       path->slots[level]);
1338                 btrfs_release_path(path);
1339
1340                 path->lowest_level = level;
1341                 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1342                 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1343                 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1344                 path->lowest_level = 0;
1345                 if (ret) {
1346                         if (ret > 0)
1347                                 ret = -ENOENT;
1348                         break;
1349                 }
1350
1351                 /*
1352                  * Info qgroup to trace both subtrees.
1353                  *
1354                  * We must trace both trees.
1355                  * 1) Tree reloc subtree
1356                  *    If not traced, we will leak data numbers
1357                  * 2) Fs subtree
1358                  *    If not traced, we will double count old data
1359                  *
1360                  * We don't scan the subtree right now, but only record
1361                  * the swapped tree blocks.
1362                  * The real subtree rescan is delayed until we have new
1363                  * CoW on the subtree root node before transaction commit.
1364                  */
1365                 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1366                                 rc->block_group, parent, slot,
1367                                 path->nodes[level], path->slots[level],
1368                                 last_snapshot);
1369                 if (ret < 0)
1370                         break;
1371                 /*
1372                  * swap blocks in fs tree and reloc tree.
1373                  */
1374                 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1375                 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1376                 btrfs_mark_buffer_dirty(parent);
1377
1378                 btrfs_set_node_blockptr(path->nodes[level],
1379                                         path->slots[level], old_bytenr);
1380                 btrfs_set_node_ptr_generation(path->nodes[level],
1381                                               path->slots[level], old_ptr_gen);
1382                 btrfs_mark_buffer_dirty(path->nodes[level]);
1383
1384                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1385                                        blocksize, path->nodes[level]->start);
1386                 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1387                                     0, true);
1388                 ret = btrfs_inc_extent_ref(trans, &ref);
1389                 if (ret) {
1390                         btrfs_abort_transaction(trans, ret);
1391                         break;
1392                 }
1393                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1394                                        blocksize, 0);
1395                 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1396                                     true);
1397                 ret = btrfs_inc_extent_ref(trans, &ref);
1398                 if (ret) {
1399                         btrfs_abort_transaction(trans, ret);
1400                         break;
1401                 }
1402
1403                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1404                                        blocksize, path->nodes[level]->start);
1405                 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1406                                     0, true);
1407                 ret = btrfs_free_extent(trans, &ref);
1408                 if (ret) {
1409                         btrfs_abort_transaction(trans, ret);
1410                         break;
1411                 }
1412
1413                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1414                                        blocksize, 0);
1415                 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1416                                     0, true);
1417                 ret = btrfs_free_extent(trans, &ref);
1418                 if (ret) {
1419                         btrfs_abort_transaction(trans, ret);
1420                         break;
1421                 }
1422
1423                 btrfs_unlock_up_safe(path, 0);
1424
1425                 ret = level;
1426                 break;
1427         }
1428         btrfs_tree_unlock(parent);
1429         free_extent_buffer(parent);
1430         return ret;
1431 }
1432
1433 /*
1434  * helper to find next relocated block in reloc tree
1435  */
1436 static noinline_for_stack
1437 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1438                        int *level)
1439 {
1440         struct extent_buffer *eb;
1441         int i;
1442         u64 last_snapshot;
1443         u32 nritems;
1444
1445         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1446
1447         for (i = 0; i < *level; i++) {
1448                 free_extent_buffer(path->nodes[i]);
1449                 path->nodes[i] = NULL;
1450         }
1451
1452         for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1453                 eb = path->nodes[i];
1454                 nritems = btrfs_header_nritems(eb);
1455                 while (path->slots[i] + 1 < nritems) {
1456                         path->slots[i]++;
1457                         if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1458                             last_snapshot)
1459                                 continue;
1460
1461                         *level = i;
1462                         return 0;
1463                 }
1464                 free_extent_buffer(path->nodes[i]);
1465                 path->nodes[i] = NULL;
1466         }
1467         return 1;
1468 }
1469
1470 /*
1471  * walk down reloc tree to find relocated block of lowest level
1472  */
1473 static noinline_for_stack
1474 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1475                          int *level)
1476 {
1477         struct extent_buffer *eb = NULL;
1478         int i;
1479         u64 ptr_gen = 0;
1480         u64 last_snapshot;
1481         u32 nritems;
1482
1483         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1484
1485         for (i = *level; i > 0; i--) {
1486                 eb = path->nodes[i];
1487                 nritems = btrfs_header_nritems(eb);
1488                 while (path->slots[i] < nritems) {
1489                         ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1490                         if (ptr_gen > last_snapshot)
1491                                 break;
1492                         path->slots[i]++;
1493                 }
1494                 if (path->slots[i] >= nritems) {
1495                         if (i == *level)
1496                                 break;
1497                         *level = i + 1;
1498                         return 0;
1499                 }
1500                 if (i == 1) {
1501                         *level = i;
1502                         return 0;
1503                 }
1504
1505                 eb = btrfs_read_node_slot(eb, path->slots[i]);
1506                 if (IS_ERR(eb))
1507                         return PTR_ERR(eb);
1508                 BUG_ON(btrfs_header_level(eb) != i - 1);
1509                 path->nodes[i - 1] = eb;
1510                 path->slots[i - 1] = 0;
1511         }
1512         return 1;
1513 }
1514
1515 /*
1516  * invalidate extent cache for file extents whose key in range of
1517  * [min_key, max_key)
1518  */
1519 static int invalidate_extent_cache(struct btrfs_root *root,
1520                                    struct btrfs_key *min_key,
1521                                    struct btrfs_key *max_key)
1522 {
1523         struct btrfs_fs_info *fs_info = root->fs_info;
1524         struct inode *inode = NULL;
1525         u64 objectid;
1526         u64 start, end;
1527         u64 ino;
1528
1529         objectid = min_key->objectid;
1530         while (1) {
1531                 struct extent_state *cached_state = NULL;
1532
1533                 cond_resched();
1534                 iput(inode);
1535
1536                 if (objectid > max_key->objectid)
1537                         break;
1538
1539                 inode = find_next_inode(root, objectid);
1540                 if (!inode)
1541                         break;
1542                 ino = btrfs_ino(BTRFS_I(inode));
1543
1544                 if (ino > max_key->objectid) {
1545                         iput(inode);
1546                         break;
1547                 }
1548
1549                 objectid = ino + 1;
1550                 if (!S_ISREG(inode->i_mode))
1551                         continue;
1552
1553                 if (unlikely(min_key->objectid == ino)) {
1554                         if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1555                                 continue;
1556                         if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1557                                 start = 0;
1558                         else {
1559                                 start = min_key->offset;
1560                                 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1561                         }
1562                 } else {
1563                         start = 0;
1564                 }
1565
1566                 if (unlikely(max_key->objectid == ino)) {
1567                         if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1568                                 continue;
1569                         if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1570                                 end = (u64)-1;
1571                         } else {
1572                                 if (max_key->offset == 0)
1573                                         continue;
1574                                 end = max_key->offset;
1575                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1576                                 end--;
1577                         }
1578                 } else {
1579                         end = (u64)-1;
1580                 }
1581
1582                 /* the lock_extent waits for read_folio to complete */
1583                 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1584                 btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1585                 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1586         }
1587         return 0;
1588 }
1589
1590 static int find_next_key(struct btrfs_path *path, int level,
1591                          struct btrfs_key *key)
1592
1593 {
1594         while (level < BTRFS_MAX_LEVEL) {
1595                 if (!path->nodes[level])
1596                         break;
1597                 if (path->slots[level] + 1 <
1598                     btrfs_header_nritems(path->nodes[level])) {
1599                         btrfs_node_key_to_cpu(path->nodes[level], key,
1600                                               path->slots[level] + 1);
1601                         return 0;
1602                 }
1603                 level++;
1604         }
1605         return 1;
1606 }
1607
1608 /*
1609  * Insert current subvolume into reloc_control::dirty_subvol_roots
1610  */
1611 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1612                                struct reloc_control *rc,
1613                                struct btrfs_root *root)
1614 {
1615         struct btrfs_root *reloc_root = root->reloc_root;
1616         struct btrfs_root_item *reloc_root_item;
1617         int ret;
1618
1619         /* @root must be a subvolume tree root with a valid reloc tree */
1620         ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1621         ASSERT(reloc_root);
1622
1623         reloc_root_item = &reloc_root->root_item;
1624         memset(&reloc_root_item->drop_progress, 0,
1625                 sizeof(reloc_root_item->drop_progress));
1626         btrfs_set_root_drop_level(reloc_root_item, 0);
1627         btrfs_set_root_refs(reloc_root_item, 0);
1628         ret = btrfs_update_reloc_root(trans, root);
1629         if (ret)
1630                 return ret;
1631
1632         if (list_empty(&root->reloc_dirty_list)) {
1633                 btrfs_grab_root(root);
1634                 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1635         }
1636
1637         return 0;
1638 }
1639
1640 static int clean_dirty_subvols(struct reloc_control *rc)
1641 {
1642         struct btrfs_root *root;
1643         struct btrfs_root *next;
1644         int ret = 0;
1645         int ret2;
1646
1647         list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1648                                  reloc_dirty_list) {
1649                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1650                         /* Merged subvolume, cleanup its reloc root */
1651                         struct btrfs_root *reloc_root = root->reloc_root;
1652
1653                         list_del_init(&root->reloc_dirty_list);
1654                         root->reloc_root = NULL;
1655                         /*
1656                          * Need barrier to ensure clear_bit() only happens after
1657                          * root->reloc_root = NULL. Pairs with have_reloc_root.
1658                          */
1659                         smp_wmb();
1660                         clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1661                         if (reloc_root) {
1662                                 /*
1663                                  * btrfs_drop_snapshot drops our ref we hold for
1664                                  * ->reloc_root.  If it fails however we must
1665                                  * drop the ref ourselves.
1666                                  */
1667                                 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1668                                 if (ret2 < 0) {
1669                                         btrfs_put_root(reloc_root);
1670                                         if (!ret)
1671                                                 ret = ret2;
1672                                 }
1673                         }
1674                         btrfs_put_root(root);
1675                 } else {
1676                         /* Orphan reloc tree, just clean it up */
1677                         ret2 = btrfs_drop_snapshot(root, 0, 1);
1678                         if (ret2 < 0) {
1679                                 btrfs_put_root(root);
1680                                 if (!ret)
1681                                         ret = ret2;
1682                         }
1683                 }
1684         }
1685         return ret;
1686 }
1687
1688 /*
1689  * merge the relocated tree blocks in reloc tree with corresponding
1690  * fs tree.
1691  */
1692 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1693                                                struct btrfs_root *root)
1694 {
1695         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1696         struct btrfs_key key;
1697         struct btrfs_key next_key;
1698         struct btrfs_trans_handle *trans = NULL;
1699         struct btrfs_root *reloc_root;
1700         struct btrfs_root_item *root_item;
1701         struct btrfs_path *path;
1702         struct extent_buffer *leaf;
1703         int reserve_level;
1704         int level;
1705         int max_level;
1706         int replaced = 0;
1707         int ret = 0;
1708         u32 min_reserved;
1709
1710         path = btrfs_alloc_path();
1711         if (!path)
1712                 return -ENOMEM;
1713         path->reada = READA_FORWARD;
1714
1715         reloc_root = root->reloc_root;
1716         root_item = &reloc_root->root_item;
1717
1718         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1719                 level = btrfs_root_level(root_item);
1720                 atomic_inc(&reloc_root->node->refs);
1721                 path->nodes[level] = reloc_root->node;
1722                 path->slots[level] = 0;
1723         } else {
1724                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1725
1726                 level = btrfs_root_drop_level(root_item);
1727                 BUG_ON(level == 0);
1728                 path->lowest_level = level;
1729                 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1730                 path->lowest_level = 0;
1731                 if (ret < 0) {
1732                         btrfs_free_path(path);
1733                         return ret;
1734                 }
1735
1736                 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1737                                       path->slots[level]);
1738                 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1739
1740                 btrfs_unlock_up_safe(path, 0);
1741         }
1742
1743         /*
1744          * In merge_reloc_root(), we modify the upper level pointer to swap the
1745          * tree blocks between reloc tree and subvolume tree.  Thus for tree
1746          * block COW, we COW at most from level 1 to root level for each tree.
1747          *
1748          * Thus the needed metadata size is at most root_level * nodesize,
1749          * and * 2 since we have two trees to COW.
1750          */
1751         reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1752         min_reserved = fs_info->nodesize * reserve_level * 2;
1753         memset(&next_key, 0, sizeof(next_key));
1754
1755         while (1) {
1756                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1757                                              min_reserved,
1758                                              BTRFS_RESERVE_FLUSH_LIMIT);
1759                 if (ret)
1760                         goto out;
1761                 trans = btrfs_start_transaction(root, 0);
1762                 if (IS_ERR(trans)) {
1763                         ret = PTR_ERR(trans);
1764                         trans = NULL;
1765                         goto out;
1766                 }
1767
1768                 /*
1769                  * At this point we no longer have a reloc_control, so we can't
1770                  * depend on btrfs_init_reloc_root to update our last_trans.
1771                  *
1772                  * But that's ok, we started the trans handle on our
1773                  * corresponding fs_root, which means it's been added to the
1774                  * dirty list.  At commit time we'll still call
1775                  * btrfs_update_reloc_root() and update our root item
1776                  * appropriately.
1777                  */
1778                 reloc_root->last_trans = trans->transid;
1779                 trans->block_rsv = rc->block_rsv;
1780
1781                 replaced = 0;
1782                 max_level = level;
1783
1784                 ret = walk_down_reloc_tree(reloc_root, path, &level);
1785                 if (ret < 0)
1786                         goto out;
1787                 if (ret > 0)
1788                         break;
1789
1790                 if (!find_next_key(path, level, &key) &&
1791                     btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1792                         ret = 0;
1793                 } else {
1794                         ret = replace_path(trans, rc, root, reloc_root, path,
1795                                            &next_key, level, max_level);
1796                 }
1797                 if (ret < 0)
1798                         goto out;
1799                 if (ret > 0) {
1800                         level = ret;
1801                         btrfs_node_key_to_cpu(path->nodes[level], &key,
1802                                               path->slots[level]);
1803                         replaced = 1;
1804                 }
1805
1806                 ret = walk_up_reloc_tree(reloc_root, path, &level);
1807                 if (ret > 0)
1808                         break;
1809
1810                 BUG_ON(level == 0);
1811                 /*
1812                  * save the merging progress in the drop_progress.
1813                  * this is OK since root refs == 1 in this case.
1814                  */
1815                 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1816                                path->slots[level]);
1817                 btrfs_set_root_drop_level(root_item, level);
1818
1819                 btrfs_end_transaction_throttle(trans);
1820                 trans = NULL;
1821
1822                 btrfs_btree_balance_dirty(fs_info);
1823
1824                 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1825                         invalidate_extent_cache(root, &key, &next_key);
1826         }
1827
1828         /*
1829          * handle the case only one block in the fs tree need to be
1830          * relocated and the block is tree root.
1831          */
1832         leaf = btrfs_lock_root_node(root);
1833         ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1834                               BTRFS_NESTING_COW);
1835         btrfs_tree_unlock(leaf);
1836         free_extent_buffer(leaf);
1837 out:
1838         btrfs_free_path(path);
1839
1840         if (ret == 0) {
1841                 ret = insert_dirty_subvol(trans, rc, root);
1842                 if (ret)
1843                         btrfs_abort_transaction(trans, ret);
1844         }
1845
1846         if (trans)
1847                 btrfs_end_transaction_throttle(trans);
1848
1849         btrfs_btree_balance_dirty(fs_info);
1850
1851         if (replaced && rc->stage == UPDATE_DATA_PTRS)
1852                 invalidate_extent_cache(root, &key, &next_key);
1853
1854         return ret;
1855 }
1856
1857 static noinline_for_stack
1858 int prepare_to_merge(struct reloc_control *rc, int err)
1859 {
1860         struct btrfs_root *root = rc->extent_root;
1861         struct btrfs_fs_info *fs_info = root->fs_info;
1862         struct btrfs_root *reloc_root;
1863         struct btrfs_trans_handle *trans;
1864         LIST_HEAD(reloc_roots);
1865         u64 num_bytes = 0;
1866         int ret;
1867
1868         mutex_lock(&fs_info->reloc_mutex);
1869         rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1870         rc->merging_rsv_size += rc->nodes_relocated * 2;
1871         mutex_unlock(&fs_info->reloc_mutex);
1872
1873 again:
1874         if (!err) {
1875                 num_bytes = rc->merging_rsv_size;
1876                 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1877                                           BTRFS_RESERVE_FLUSH_ALL);
1878                 if (ret)
1879                         err = ret;
1880         }
1881
1882         trans = btrfs_join_transaction(rc->extent_root);
1883         if (IS_ERR(trans)) {
1884                 if (!err)
1885                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1886                                                 num_bytes, NULL);
1887                 return PTR_ERR(trans);
1888         }
1889
1890         if (!err) {
1891                 if (num_bytes != rc->merging_rsv_size) {
1892                         btrfs_end_transaction(trans);
1893                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1894                                                 num_bytes, NULL);
1895                         goto again;
1896                 }
1897         }
1898
1899         rc->merge_reloc_tree = 1;
1900
1901         while (!list_empty(&rc->reloc_roots)) {
1902                 reloc_root = list_entry(rc->reloc_roots.next,
1903                                         struct btrfs_root, root_list);
1904                 list_del_init(&reloc_root->root_list);
1905
1906                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1907                                 false);
1908                 if (IS_ERR(root)) {
1909                         /*
1910                          * Even if we have an error we need this reloc root
1911                          * back on our list so we can clean up properly.
1912                          */
1913                         list_add(&reloc_root->root_list, &reloc_roots);
1914                         btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1915                         if (!err)
1916                                 err = PTR_ERR(root);
1917                         break;
1918                 }
1919
1920                 if (unlikely(root->reloc_root != reloc_root)) {
1921                         if (root->reloc_root) {
1922                                 btrfs_err(fs_info,
1923 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1924                                           root->root_key.objectid,
1925                                           root->reloc_root->root_key.objectid,
1926                                           root->reloc_root->root_key.type,
1927                                           root->reloc_root->root_key.offset,
1928                                           btrfs_root_generation(
1929                                                   &root->reloc_root->root_item),
1930                                           reloc_root->root_key.objectid,
1931                                           reloc_root->root_key.type,
1932                                           reloc_root->root_key.offset,
1933                                           btrfs_root_generation(
1934                                                   &reloc_root->root_item));
1935                         } else {
1936                                 btrfs_err(fs_info,
1937 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1938                                           root->root_key.objectid,
1939                                           reloc_root->root_key.objectid,
1940                                           reloc_root->root_key.type,
1941                                           reloc_root->root_key.offset,
1942                                           btrfs_root_generation(
1943                                                   &reloc_root->root_item));
1944                         }
1945                         list_add(&reloc_root->root_list, &reloc_roots);
1946                         btrfs_put_root(root);
1947                         btrfs_abort_transaction(trans, -EUCLEAN);
1948                         if (!err)
1949                                 err = -EUCLEAN;
1950                         break;
1951                 }
1952
1953                 /*
1954                  * set reference count to 1, so btrfs_recover_relocation
1955                  * knows it should resumes merging
1956                  */
1957                 if (!err)
1958                         btrfs_set_root_refs(&reloc_root->root_item, 1);
1959                 ret = btrfs_update_reloc_root(trans, root);
1960
1961                 /*
1962                  * Even if we have an error we need this reloc root back on our
1963                  * list so we can clean up properly.
1964                  */
1965                 list_add(&reloc_root->root_list, &reloc_roots);
1966                 btrfs_put_root(root);
1967
1968                 if (ret) {
1969                         btrfs_abort_transaction(trans, ret);
1970                         if (!err)
1971                                 err = ret;
1972                         break;
1973                 }
1974         }
1975
1976         list_splice(&reloc_roots, &rc->reloc_roots);
1977
1978         if (!err)
1979                 err = btrfs_commit_transaction(trans);
1980         else
1981                 btrfs_end_transaction(trans);
1982         return err;
1983 }
1984
1985 static noinline_for_stack
1986 void free_reloc_roots(struct list_head *list)
1987 {
1988         struct btrfs_root *reloc_root, *tmp;
1989
1990         list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1991                 __del_reloc_root(reloc_root);
1992 }
1993
1994 static noinline_for_stack
1995 void merge_reloc_roots(struct reloc_control *rc)
1996 {
1997         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1998         struct btrfs_root *root;
1999         struct btrfs_root *reloc_root;
2000         LIST_HEAD(reloc_roots);
2001         int found = 0;
2002         int ret = 0;
2003 again:
2004         root = rc->extent_root;
2005
2006         /*
2007          * this serializes us with btrfs_record_root_in_transaction,
2008          * we have to make sure nobody is in the middle of
2009          * adding their roots to the list while we are
2010          * doing this splice
2011          */
2012         mutex_lock(&fs_info->reloc_mutex);
2013         list_splice_init(&rc->reloc_roots, &reloc_roots);
2014         mutex_unlock(&fs_info->reloc_mutex);
2015
2016         while (!list_empty(&reloc_roots)) {
2017                 found = 1;
2018                 reloc_root = list_entry(reloc_roots.next,
2019                                         struct btrfs_root, root_list);
2020
2021                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
2022                                          false);
2023                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2024                         if (WARN_ON(IS_ERR(root))) {
2025                                 /*
2026                                  * For recovery we read the fs roots on mount,
2027                                  * and if we didn't find the root then we marked
2028                                  * the reloc root as a garbage root.  For normal
2029                                  * relocation obviously the root should exist in
2030                                  * memory.  However there's no reason we can't
2031                                  * handle the error properly here just in case.
2032                                  */
2033                                 ret = PTR_ERR(root);
2034                                 goto out;
2035                         }
2036                         if (WARN_ON(root->reloc_root != reloc_root)) {
2037                                 /*
2038                                  * This can happen if on-disk metadata has some
2039                                  * corruption, e.g. bad reloc tree key offset.
2040                                  */
2041                                 ret = -EINVAL;
2042                                 goto out;
2043                         }
2044                         ret = merge_reloc_root(rc, root);
2045                         btrfs_put_root(root);
2046                         if (ret) {
2047                                 if (list_empty(&reloc_root->root_list))
2048                                         list_add_tail(&reloc_root->root_list,
2049                                                       &reloc_roots);
2050                                 goto out;
2051                         }
2052                 } else {
2053                         if (!IS_ERR(root)) {
2054                                 if (root->reloc_root == reloc_root) {
2055                                         root->reloc_root = NULL;
2056                                         btrfs_put_root(reloc_root);
2057                                 }
2058                                 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2059                                           &root->state);
2060                                 btrfs_put_root(root);
2061                         }
2062
2063                         list_del_init(&reloc_root->root_list);
2064                         /* Don't forget to queue this reloc root for cleanup */
2065                         list_add_tail(&reloc_root->reloc_dirty_list,
2066                                       &rc->dirty_subvol_roots);
2067                 }
2068         }
2069
2070         if (found) {
2071                 found = 0;
2072                 goto again;
2073         }
2074 out:
2075         if (ret) {
2076                 btrfs_handle_fs_error(fs_info, ret, NULL);
2077                 free_reloc_roots(&reloc_roots);
2078
2079                 /* new reloc root may be added */
2080                 mutex_lock(&fs_info->reloc_mutex);
2081                 list_splice_init(&rc->reloc_roots, &reloc_roots);
2082                 mutex_unlock(&fs_info->reloc_mutex);
2083                 free_reloc_roots(&reloc_roots);
2084         }
2085
2086         /*
2087          * We used to have
2088          *
2089          * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2090          *
2091          * here, but it's wrong.  If we fail to start the transaction in
2092          * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2093          * have actually been removed from the reloc_root_tree rb tree.  This is
2094          * fine because we're bailing here, and we hold a reference on the root
2095          * for the list that holds it, so these roots will be cleaned up when we
2096          * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2097          * will be cleaned up on unmount.
2098          *
2099          * The remaining nodes will be cleaned up by free_reloc_control.
2100          */
2101 }
2102
2103 static void free_block_list(struct rb_root *blocks)
2104 {
2105         struct tree_block *block;
2106         struct rb_node *rb_node;
2107         while ((rb_node = rb_first(blocks))) {
2108                 block = rb_entry(rb_node, struct tree_block, rb_node);
2109                 rb_erase(rb_node, blocks);
2110                 kfree(block);
2111         }
2112 }
2113
2114 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2115                                       struct btrfs_root *reloc_root)
2116 {
2117         struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2118         struct btrfs_root *root;
2119         int ret;
2120
2121         if (reloc_root->last_trans == trans->transid)
2122                 return 0;
2123
2124         root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2125
2126         /*
2127          * This should succeed, since we can't have a reloc root without having
2128          * already looked up the actual root and created the reloc root for this
2129          * root.
2130          *
2131          * However if there's some sort of corruption where we have a ref to a
2132          * reloc root without a corresponding root this could return ENOENT.
2133          */
2134         if (IS_ERR(root)) {
2135                 ASSERT(0);
2136                 return PTR_ERR(root);
2137         }
2138         if (root->reloc_root != reloc_root) {
2139                 ASSERT(0);
2140                 btrfs_err(fs_info,
2141                           "root %llu has two reloc roots associated with it",
2142                           reloc_root->root_key.offset);
2143                 btrfs_put_root(root);
2144                 return -EUCLEAN;
2145         }
2146         ret = btrfs_record_root_in_trans(trans, root);
2147         btrfs_put_root(root);
2148
2149         return ret;
2150 }
2151
2152 static noinline_for_stack
2153 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2154                                      struct reloc_control *rc,
2155                                      struct btrfs_backref_node *node,
2156                                      struct btrfs_backref_edge *edges[])
2157 {
2158         struct btrfs_backref_node *next;
2159         struct btrfs_root *root;
2160         int index = 0;
2161         int ret;
2162
2163         next = node;
2164         while (1) {
2165                 cond_resched();
2166                 next = walk_up_backref(next, edges, &index);
2167                 root = next->root;
2168
2169                 /*
2170                  * If there is no root, then our references for this block are
2171                  * incomplete, as we should be able to walk all the way up to a
2172                  * block that is owned by a root.
2173                  *
2174                  * This path is only for SHAREABLE roots, so if we come upon a
2175                  * non-SHAREABLE root then we have backrefs that resolve
2176                  * improperly.
2177                  *
2178                  * Both of these cases indicate file system corruption, or a bug
2179                  * in the backref walking code.
2180                  */
2181                 if (!root) {
2182                         ASSERT(0);
2183                         btrfs_err(trans->fs_info,
2184                 "bytenr %llu doesn't have a backref path ending in a root",
2185                                   node->bytenr);
2186                         return ERR_PTR(-EUCLEAN);
2187                 }
2188                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2189                         ASSERT(0);
2190                         btrfs_err(trans->fs_info,
2191         "bytenr %llu has multiple refs with one ending in a non-shareable root",
2192                                   node->bytenr);
2193                         return ERR_PTR(-EUCLEAN);
2194                 }
2195
2196                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2197                         ret = record_reloc_root_in_trans(trans, root);
2198                         if (ret)
2199                                 return ERR_PTR(ret);
2200                         break;
2201                 }
2202
2203                 ret = btrfs_record_root_in_trans(trans, root);
2204                 if (ret)
2205                         return ERR_PTR(ret);
2206                 root = root->reloc_root;
2207
2208                 /*
2209                  * We could have raced with another thread which failed, so
2210                  * root->reloc_root may not be set, return ENOENT in this case.
2211                  */
2212                 if (!root)
2213                         return ERR_PTR(-ENOENT);
2214
2215                 if (next->new_bytenr != root->node->start) {
2216                         /*
2217                          * We just created the reloc root, so we shouldn't have
2218                          * ->new_bytenr set and this shouldn't be in the changed
2219                          *  list.  If it is then we have multiple roots pointing
2220                          *  at the same bytenr which indicates corruption, or
2221                          *  we've made a mistake in the backref walking code.
2222                          */
2223                         ASSERT(next->new_bytenr == 0);
2224                         ASSERT(list_empty(&next->list));
2225                         if (next->new_bytenr || !list_empty(&next->list)) {
2226                                 btrfs_err(trans->fs_info,
2227         "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2228                                           node->bytenr, next->bytenr);
2229                                 return ERR_PTR(-EUCLEAN);
2230                         }
2231
2232                         next->new_bytenr = root->node->start;
2233                         btrfs_put_root(next->root);
2234                         next->root = btrfs_grab_root(root);
2235                         ASSERT(next->root);
2236                         list_add_tail(&next->list,
2237                                       &rc->backref_cache.changed);
2238                         mark_block_processed(rc, next);
2239                         break;
2240                 }
2241
2242                 WARN_ON(1);
2243                 root = NULL;
2244                 next = walk_down_backref(edges, &index);
2245                 if (!next || next->level <= node->level)
2246                         break;
2247         }
2248         if (!root) {
2249                 /*
2250                  * This can happen if there's fs corruption or if there's a bug
2251                  * in the backref lookup code.
2252                  */
2253                 ASSERT(0);
2254                 return ERR_PTR(-ENOENT);
2255         }
2256
2257         next = node;
2258         /* setup backref node path for btrfs_reloc_cow_block */
2259         while (1) {
2260                 rc->backref_cache.path[next->level] = next;
2261                 if (--index < 0)
2262                         break;
2263                 next = edges[index]->node[UPPER];
2264         }
2265         return root;
2266 }
2267
2268 /*
2269  * Select a tree root for relocation.
2270  *
2271  * Return NULL if the block is not shareable. We should use do_relocation() in
2272  * this case.
2273  *
2274  * Return a tree root pointer if the block is shareable.
2275  * Return -ENOENT if the block is root of reloc tree.
2276  */
2277 static noinline_for_stack
2278 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2279 {
2280         struct btrfs_backref_node *next;
2281         struct btrfs_root *root;
2282         struct btrfs_root *fs_root = NULL;
2283         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2284         int index = 0;
2285
2286         next = node;
2287         while (1) {
2288                 cond_resched();
2289                 next = walk_up_backref(next, edges, &index);
2290                 root = next->root;
2291
2292                 /*
2293                  * This can occur if we have incomplete extent refs leading all
2294                  * the way up a particular path, in this case return -EUCLEAN.
2295                  */
2296                 if (!root)
2297                         return ERR_PTR(-EUCLEAN);
2298
2299                 /* No other choice for non-shareable tree */
2300                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2301                         return root;
2302
2303                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2304                         fs_root = root;
2305
2306                 if (next != node)
2307                         return NULL;
2308
2309                 next = walk_down_backref(edges, &index);
2310                 if (!next || next->level <= node->level)
2311                         break;
2312         }
2313
2314         if (!fs_root)
2315                 return ERR_PTR(-ENOENT);
2316         return fs_root;
2317 }
2318
2319 static noinline_for_stack
2320 u64 calcu_metadata_size(struct reloc_control *rc,
2321                         struct btrfs_backref_node *node, int reserve)
2322 {
2323         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2324         struct btrfs_backref_node *next = node;
2325         struct btrfs_backref_edge *edge;
2326         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2327         u64 num_bytes = 0;
2328         int index = 0;
2329
2330         BUG_ON(reserve && node->processed);
2331
2332         while (next) {
2333                 cond_resched();
2334                 while (1) {
2335                         if (next->processed && (reserve || next != node))
2336                                 break;
2337
2338                         num_bytes += fs_info->nodesize;
2339
2340                         if (list_empty(&next->upper))
2341                                 break;
2342
2343                         edge = list_entry(next->upper.next,
2344                                         struct btrfs_backref_edge, list[LOWER]);
2345                         edges[index++] = edge;
2346                         next = edge->node[UPPER];
2347                 }
2348                 next = walk_down_backref(edges, &index);
2349         }
2350         return num_bytes;
2351 }
2352
2353 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2354                                   struct reloc_control *rc,
2355                                   struct btrfs_backref_node *node)
2356 {
2357         struct btrfs_root *root = rc->extent_root;
2358         struct btrfs_fs_info *fs_info = root->fs_info;
2359         u64 num_bytes;
2360         int ret;
2361         u64 tmp;
2362
2363         num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2364
2365         trans->block_rsv = rc->block_rsv;
2366         rc->reserved_bytes += num_bytes;
2367
2368         /*
2369          * We are under a transaction here so we can only do limited flushing.
2370          * If we get an enospc just kick back -EAGAIN so we know to drop the
2371          * transaction and try to refill when we can flush all the things.
2372          */
2373         ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2374                                      BTRFS_RESERVE_FLUSH_LIMIT);
2375         if (ret) {
2376                 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2377                 while (tmp <= rc->reserved_bytes)
2378                         tmp <<= 1;
2379                 /*
2380                  * only one thread can access block_rsv at this point,
2381                  * so we don't need hold lock to protect block_rsv.
2382                  * we expand more reservation size here to allow enough
2383                  * space for relocation and we will return earlier in
2384                  * enospc case.
2385                  */
2386                 rc->block_rsv->size = tmp + fs_info->nodesize *
2387                                       RELOCATION_RESERVED_NODES;
2388                 return -EAGAIN;
2389         }
2390
2391         return 0;
2392 }
2393
2394 /*
2395  * relocate a block tree, and then update pointers in upper level
2396  * blocks that reference the block to point to the new location.
2397  *
2398  * if called by link_to_upper, the block has already been relocated.
2399  * in that case this function just updates pointers.
2400  */
2401 static int do_relocation(struct btrfs_trans_handle *trans,
2402                          struct reloc_control *rc,
2403                          struct btrfs_backref_node *node,
2404                          struct btrfs_key *key,
2405                          struct btrfs_path *path, int lowest)
2406 {
2407         struct btrfs_backref_node *upper;
2408         struct btrfs_backref_edge *edge;
2409         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2410         struct btrfs_root *root;
2411         struct extent_buffer *eb;
2412         u32 blocksize;
2413         u64 bytenr;
2414         int slot;
2415         int ret = 0;
2416
2417         /*
2418          * If we are lowest then this is the first time we're processing this
2419          * block, and thus shouldn't have an eb associated with it yet.
2420          */
2421         ASSERT(!lowest || !node->eb);
2422
2423         path->lowest_level = node->level + 1;
2424         rc->backref_cache.path[node->level] = node;
2425         list_for_each_entry(edge, &node->upper, list[LOWER]) {
2426                 struct btrfs_ref ref = { 0 };
2427
2428                 cond_resched();
2429
2430                 upper = edge->node[UPPER];
2431                 root = select_reloc_root(trans, rc, upper, edges);
2432                 if (IS_ERR(root)) {
2433                         ret = PTR_ERR(root);
2434                         goto next;
2435                 }
2436
2437                 if (upper->eb && !upper->locked) {
2438                         if (!lowest) {
2439                                 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2440                                 if (ret < 0)
2441                                         goto next;
2442                                 BUG_ON(ret);
2443                                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2444                                 if (node->eb->start == bytenr)
2445                                         goto next;
2446                         }
2447                         btrfs_backref_drop_node_buffer(upper);
2448                 }
2449
2450                 if (!upper->eb) {
2451                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2452                         if (ret) {
2453                                 if (ret > 0)
2454                                         ret = -ENOENT;
2455
2456                                 btrfs_release_path(path);
2457                                 break;
2458                         }
2459
2460                         if (!upper->eb) {
2461                                 upper->eb = path->nodes[upper->level];
2462                                 path->nodes[upper->level] = NULL;
2463                         } else {
2464                                 BUG_ON(upper->eb != path->nodes[upper->level]);
2465                         }
2466
2467                         upper->locked = 1;
2468                         path->locks[upper->level] = 0;
2469
2470                         slot = path->slots[upper->level];
2471                         btrfs_release_path(path);
2472                 } else {
2473                         ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2474                         if (ret < 0)
2475                                 goto next;
2476                         BUG_ON(ret);
2477                 }
2478
2479                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2480                 if (lowest) {
2481                         if (bytenr != node->bytenr) {
2482                                 btrfs_err(root->fs_info,
2483                 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2484                                           bytenr, node->bytenr, slot,
2485                                           upper->eb->start);
2486                                 ret = -EIO;
2487                                 goto next;
2488                         }
2489                 } else {
2490                         if (node->eb->start == bytenr)
2491                                 goto next;
2492                 }
2493
2494                 blocksize = root->fs_info->nodesize;
2495                 eb = btrfs_read_node_slot(upper->eb, slot);
2496                 if (IS_ERR(eb)) {
2497                         ret = PTR_ERR(eb);
2498                         goto next;
2499                 }
2500                 btrfs_tree_lock(eb);
2501
2502                 if (!node->eb) {
2503                         ret = btrfs_cow_block(trans, root, eb, upper->eb,
2504                                               slot, &eb, BTRFS_NESTING_COW);
2505                         btrfs_tree_unlock(eb);
2506                         free_extent_buffer(eb);
2507                         if (ret < 0)
2508                                 goto next;
2509                         /*
2510                          * We've just COWed this block, it should have updated
2511                          * the correct backref node entry.
2512                          */
2513                         ASSERT(node->eb == eb);
2514                 } else {
2515                         btrfs_set_node_blockptr(upper->eb, slot,
2516                                                 node->eb->start);
2517                         btrfs_set_node_ptr_generation(upper->eb, slot,
2518                                                       trans->transid);
2519                         btrfs_mark_buffer_dirty(upper->eb);
2520
2521                         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2522                                                node->eb->start, blocksize,
2523                                                upper->eb->start);
2524                         btrfs_init_tree_ref(&ref, node->level,
2525                                             btrfs_header_owner(upper->eb),
2526                                             root->root_key.objectid, false);
2527                         ret = btrfs_inc_extent_ref(trans, &ref);
2528                         if (!ret)
2529                                 ret = btrfs_drop_subtree(trans, root, eb,
2530                                                          upper->eb);
2531                         if (ret)
2532                                 btrfs_abort_transaction(trans, ret);
2533                 }
2534 next:
2535                 if (!upper->pending)
2536                         btrfs_backref_drop_node_buffer(upper);
2537                 else
2538                         btrfs_backref_unlock_node_buffer(upper);
2539                 if (ret)
2540                         break;
2541         }
2542
2543         if (!ret && node->pending) {
2544                 btrfs_backref_drop_node_buffer(node);
2545                 list_move_tail(&node->list, &rc->backref_cache.changed);
2546                 node->pending = 0;
2547         }
2548
2549         path->lowest_level = 0;
2550
2551         /*
2552          * We should have allocated all of our space in the block rsv and thus
2553          * shouldn't ENOSPC.
2554          */
2555         ASSERT(ret != -ENOSPC);
2556         return ret;
2557 }
2558
2559 static int link_to_upper(struct btrfs_trans_handle *trans,
2560                          struct reloc_control *rc,
2561                          struct btrfs_backref_node *node,
2562                          struct btrfs_path *path)
2563 {
2564         struct btrfs_key key;
2565
2566         btrfs_node_key_to_cpu(node->eb, &key, 0);
2567         return do_relocation(trans, rc, node, &key, path, 0);
2568 }
2569
2570 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2571                                 struct reloc_control *rc,
2572                                 struct btrfs_path *path, int err)
2573 {
2574         LIST_HEAD(list);
2575         struct btrfs_backref_cache *cache = &rc->backref_cache;
2576         struct btrfs_backref_node *node;
2577         int level;
2578         int ret;
2579
2580         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2581                 while (!list_empty(&cache->pending[level])) {
2582                         node = list_entry(cache->pending[level].next,
2583                                           struct btrfs_backref_node, list);
2584                         list_move_tail(&node->list, &list);
2585                         BUG_ON(!node->pending);
2586
2587                         if (!err) {
2588                                 ret = link_to_upper(trans, rc, node, path);
2589                                 if (ret < 0)
2590                                         err = ret;
2591                         }
2592                 }
2593                 list_splice_init(&list, &cache->pending[level]);
2594         }
2595         return err;
2596 }
2597
2598 /*
2599  * mark a block and all blocks directly/indirectly reference the block
2600  * as processed.
2601  */
2602 static void update_processed_blocks(struct reloc_control *rc,
2603                                     struct btrfs_backref_node *node)
2604 {
2605         struct btrfs_backref_node *next = node;
2606         struct btrfs_backref_edge *edge;
2607         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2608         int index = 0;
2609
2610         while (next) {
2611                 cond_resched();
2612                 while (1) {
2613                         if (next->processed)
2614                                 break;
2615
2616                         mark_block_processed(rc, next);
2617
2618                         if (list_empty(&next->upper))
2619                                 break;
2620
2621                         edge = list_entry(next->upper.next,
2622                                         struct btrfs_backref_edge, list[LOWER]);
2623                         edges[index++] = edge;
2624                         next = edge->node[UPPER];
2625                 }
2626                 next = walk_down_backref(edges, &index);
2627         }
2628 }
2629
2630 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2631 {
2632         u32 blocksize = rc->extent_root->fs_info->nodesize;
2633
2634         if (test_range_bit(&rc->processed_blocks, bytenr,
2635                            bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2636                 return 1;
2637         return 0;
2638 }
2639
2640 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2641                               struct tree_block *block)
2642 {
2643         struct btrfs_tree_parent_check check = {
2644                 .level = block->level,
2645                 .owner_root = block->owner,
2646                 .transid = block->key.offset
2647         };
2648         struct extent_buffer *eb;
2649
2650         eb = read_tree_block(fs_info, block->bytenr, &check);
2651         if (IS_ERR(eb))
2652                 return PTR_ERR(eb);
2653         if (!extent_buffer_uptodate(eb)) {
2654                 free_extent_buffer(eb);
2655                 return -EIO;
2656         }
2657         if (block->level == 0)
2658                 btrfs_item_key_to_cpu(eb, &block->key, 0);
2659         else
2660                 btrfs_node_key_to_cpu(eb, &block->key, 0);
2661         free_extent_buffer(eb);
2662         block->key_ready = 1;
2663         return 0;
2664 }
2665
2666 /*
2667  * helper function to relocate a tree block
2668  */
2669 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2670                                 struct reloc_control *rc,
2671                                 struct btrfs_backref_node *node,
2672                                 struct btrfs_key *key,
2673                                 struct btrfs_path *path)
2674 {
2675         struct btrfs_root *root;
2676         int ret = 0;
2677
2678         if (!node)
2679                 return 0;
2680
2681         /*
2682          * If we fail here we want to drop our backref_node because we are going
2683          * to start over and regenerate the tree for it.
2684          */
2685         ret = reserve_metadata_space(trans, rc, node);
2686         if (ret)
2687                 goto out;
2688
2689         BUG_ON(node->processed);
2690         root = select_one_root(node);
2691         if (IS_ERR(root)) {
2692                 ret = PTR_ERR(root);
2693
2694                 /* See explanation in select_one_root for the -EUCLEAN case. */
2695                 ASSERT(ret == -ENOENT);
2696                 if (ret == -ENOENT) {
2697                         ret = 0;
2698                         update_processed_blocks(rc, node);
2699                 }
2700                 goto out;
2701         }
2702
2703         if (root) {
2704                 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2705                         /*
2706                          * This block was the root block of a root, and this is
2707                          * the first time we're processing the block and thus it
2708                          * should not have had the ->new_bytenr modified and
2709                          * should have not been included on the changed list.
2710                          *
2711                          * However in the case of corruption we could have
2712                          * multiple refs pointing to the same block improperly,
2713                          * and thus we would trip over these checks.  ASSERT()
2714                          * for the developer case, because it could indicate a
2715                          * bug in the backref code, however error out for a
2716                          * normal user in the case of corruption.
2717                          */
2718                         ASSERT(node->new_bytenr == 0);
2719                         ASSERT(list_empty(&node->list));
2720                         if (node->new_bytenr || !list_empty(&node->list)) {
2721                                 btrfs_err(root->fs_info,
2722                                   "bytenr %llu has improper references to it",
2723                                           node->bytenr);
2724                                 ret = -EUCLEAN;
2725                                 goto out;
2726                         }
2727                         ret = btrfs_record_root_in_trans(trans, root);
2728                         if (ret)
2729                                 goto out;
2730                         /*
2731                          * Another thread could have failed, need to check if we
2732                          * have reloc_root actually set.
2733                          */
2734                         if (!root->reloc_root) {
2735                                 ret = -ENOENT;
2736                                 goto out;
2737                         }
2738                         root = root->reloc_root;
2739                         node->new_bytenr = root->node->start;
2740                         btrfs_put_root(node->root);
2741                         node->root = btrfs_grab_root(root);
2742                         ASSERT(node->root);
2743                         list_add_tail(&node->list, &rc->backref_cache.changed);
2744                 } else {
2745                         path->lowest_level = node->level;
2746                         if (root == root->fs_info->chunk_root)
2747                                 btrfs_reserve_chunk_metadata(trans, false);
2748                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2749                         btrfs_release_path(path);
2750                         if (root == root->fs_info->chunk_root)
2751                                 btrfs_trans_release_chunk_metadata(trans);
2752                         if (ret > 0)
2753                                 ret = 0;
2754                 }
2755                 if (!ret)
2756                         update_processed_blocks(rc, node);
2757         } else {
2758                 ret = do_relocation(trans, rc, node, key, path, 1);
2759         }
2760 out:
2761         if (ret || node->level == 0 || node->cowonly)
2762                 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2763         return ret;
2764 }
2765
2766 /*
2767  * relocate a list of blocks
2768  */
2769 static noinline_for_stack
2770 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2771                          struct reloc_control *rc, struct rb_root *blocks)
2772 {
2773         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2774         struct btrfs_backref_node *node;
2775         struct btrfs_path *path;
2776         struct tree_block *block;
2777         struct tree_block *next;
2778         int ret;
2779         int err = 0;
2780
2781         path = btrfs_alloc_path();
2782         if (!path) {
2783                 err = -ENOMEM;
2784                 goto out_free_blocks;
2785         }
2786
2787         /* Kick in readahead for tree blocks with missing keys */
2788         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2789                 if (!block->key_ready)
2790                         btrfs_readahead_tree_block(fs_info, block->bytenr,
2791                                                    block->owner, 0,
2792                                                    block->level);
2793         }
2794
2795         /* Get first keys */
2796         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2797                 if (!block->key_ready) {
2798                         err = get_tree_block_key(fs_info, block);
2799                         if (err)
2800                                 goto out_free_path;
2801                 }
2802         }
2803
2804         /* Do tree relocation */
2805         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2806                 node = build_backref_tree(rc, &block->key,
2807                                           block->level, block->bytenr);
2808                 if (IS_ERR(node)) {
2809                         err = PTR_ERR(node);
2810                         goto out;
2811                 }
2812
2813                 ret = relocate_tree_block(trans, rc, node, &block->key,
2814                                           path);
2815                 if (ret < 0) {
2816                         err = ret;
2817                         break;
2818                 }
2819         }
2820 out:
2821         err = finish_pending_nodes(trans, rc, path, err);
2822
2823 out_free_path:
2824         btrfs_free_path(path);
2825 out_free_blocks:
2826         free_block_list(blocks);
2827         return err;
2828 }
2829
2830 static noinline_for_stack int prealloc_file_extent_cluster(
2831                                 struct btrfs_inode *inode,
2832                                 struct file_extent_cluster *cluster)
2833 {
2834         u64 alloc_hint = 0;
2835         u64 start;
2836         u64 end;
2837         u64 offset = inode->index_cnt;
2838         u64 num_bytes;
2839         int nr;
2840         int ret = 0;
2841         u64 i_size = i_size_read(&inode->vfs_inode);
2842         u64 prealloc_start = cluster->start - offset;
2843         u64 prealloc_end = cluster->end - offset;
2844         u64 cur_offset = prealloc_start;
2845
2846         /*
2847          * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2848          * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2849          * btrfs_do_readpage() call of previously relocated file cluster.
2850          *
2851          * If the current cluster starts in the above range, btrfs_do_readpage()
2852          * will skip the read, and relocate_one_page() will later writeback
2853          * the padding zeros as new data, causing data corruption.
2854          *
2855          * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2856          */
2857         if (!PAGE_ALIGNED(i_size)) {
2858                 struct address_space *mapping = inode->vfs_inode.i_mapping;
2859                 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2860                 const u32 sectorsize = fs_info->sectorsize;
2861                 struct page *page;
2862
2863                 ASSERT(sectorsize < PAGE_SIZE);
2864                 ASSERT(IS_ALIGNED(i_size, sectorsize));
2865
2866                 /*
2867                  * Subpage can't handle page with DIRTY but without UPTODATE
2868                  * bit as it can lead to the following deadlock:
2869                  *
2870                  * btrfs_read_folio()
2871                  * | Page already *locked*
2872                  * |- btrfs_lock_and_flush_ordered_range()
2873                  *    |- btrfs_start_ordered_extent()
2874                  *       |- extent_write_cache_pages()
2875                  *          |- lock_page()
2876                  *             We try to lock the page we already hold.
2877                  *
2878                  * Here we just writeback the whole data reloc inode, so that
2879                  * we will be ensured to have no dirty range in the page, and
2880                  * are safe to clear the uptodate bits.
2881                  *
2882                  * This shouldn't cause too much overhead, as we need to write
2883                  * the data back anyway.
2884                  */
2885                 ret = filemap_write_and_wait(mapping);
2886                 if (ret < 0)
2887                         return ret;
2888
2889                 clear_extent_bits(&inode->io_tree, i_size,
2890                                   round_up(i_size, PAGE_SIZE) - 1,
2891                                   EXTENT_UPTODATE);
2892                 page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2893                 /*
2894                  * If page is freed we don't need to do anything then, as we
2895                  * will re-read the whole page anyway.
2896                  */
2897                 if (page) {
2898                         btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2899                                         round_up(i_size, PAGE_SIZE) - i_size);
2900                         unlock_page(page);
2901                         put_page(page);
2902                 }
2903         }
2904
2905         BUG_ON(cluster->start != cluster->boundary[0]);
2906         ret = btrfs_alloc_data_chunk_ondemand(inode,
2907                                               prealloc_end + 1 - prealloc_start);
2908         if (ret)
2909                 return ret;
2910
2911         btrfs_inode_lock(inode, 0);
2912         for (nr = 0; nr < cluster->nr; nr++) {
2913                 struct extent_state *cached_state = NULL;
2914
2915                 start = cluster->boundary[nr] - offset;
2916                 if (nr + 1 < cluster->nr)
2917                         end = cluster->boundary[nr + 1] - 1 - offset;
2918                 else
2919                         end = cluster->end - offset;
2920
2921                 lock_extent(&inode->io_tree, start, end, &cached_state);
2922                 num_bytes = end + 1 - start;
2923                 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2924                                                 num_bytes, num_bytes,
2925                                                 end + 1, &alloc_hint);
2926                 cur_offset = end + 1;
2927                 unlock_extent(&inode->io_tree, start, end, &cached_state);
2928                 if (ret)
2929                         break;
2930         }
2931         btrfs_inode_unlock(inode, 0);
2932
2933         if (cur_offset < prealloc_end)
2934                 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2935                                                prealloc_end + 1 - cur_offset);
2936         return ret;
2937 }
2938
2939 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2940                                 u64 start, u64 end, u64 block_start)
2941 {
2942         struct extent_map *em;
2943         struct extent_state *cached_state = NULL;
2944         int ret = 0;
2945
2946         em = alloc_extent_map();
2947         if (!em)
2948                 return -ENOMEM;
2949
2950         em->start = start;
2951         em->len = end + 1 - start;
2952         em->block_len = em->len;
2953         em->block_start = block_start;
2954         set_bit(EXTENT_FLAG_PINNED, &em->flags);
2955
2956         lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2957         ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2958         unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2959         free_extent_map(em);
2960
2961         return ret;
2962 }
2963
2964 /*
2965  * Allow error injection to test balance/relocation cancellation
2966  */
2967 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2968 {
2969         return atomic_read(&fs_info->balance_cancel_req) ||
2970                 atomic_read(&fs_info->reloc_cancel_req) ||
2971                 fatal_signal_pending(current);
2972 }
2973 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2974
2975 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2976                                     int cluster_nr)
2977 {
2978         /* Last extent, use cluster end directly */
2979         if (cluster_nr >= cluster->nr - 1)
2980                 return cluster->end;
2981
2982         /* Use next boundary start*/
2983         return cluster->boundary[cluster_nr + 1] - 1;
2984 }
2985
2986 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2987                              struct file_extent_cluster *cluster,
2988                              int *cluster_nr, unsigned long page_index)
2989 {
2990         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2991         u64 offset = BTRFS_I(inode)->index_cnt;
2992         const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2993         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2994         struct page *page;
2995         u64 page_start;
2996         u64 page_end;
2997         u64 cur;
2998         int ret;
2999
3000         ASSERT(page_index <= last_index);
3001         page = find_lock_page(inode->i_mapping, page_index);
3002         if (!page) {
3003                 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
3004                                 page_index, last_index + 1 - page_index);
3005                 page = find_or_create_page(inode->i_mapping, page_index, mask);
3006                 if (!page)
3007                         return -ENOMEM;
3008         }
3009
3010         if (PageReadahead(page))
3011                 page_cache_async_readahead(inode->i_mapping, ra, NULL,
3012                                 page_folio(page), page_index,
3013                                 last_index + 1 - page_index);
3014
3015         if (!PageUptodate(page)) {
3016                 btrfs_read_folio(NULL, page_folio(page));
3017                 lock_page(page);
3018                 if (!PageUptodate(page)) {
3019                         ret = -EIO;
3020                         goto release_page;
3021                 }
3022         }
3023
3024         /*
3025          * We could have lost page private when we dropped the lock to read the
3026          * page above, make sure we set_page_extent_mapped here so we have any
3027          * of the subpage blocksize stuff we need in place.
3028          */
3029         ret = set_page_extent_mapped(page);
3030         if (ret < 0)
3031                 goto release_page;
3032
3033         page_start = page_offset(page);
3034         page_end = page_start + PAGE_SIZE - 1;
3035
3036         /*
3037          * Start from the cluster, as for subpage case, the cluster can start
3038          * inside the page.
3039          */
3040         cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3041         while (cur <= page_end) {
3042                 struct extent_state *cached_state = NULL;
3043                 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3044                 u64 extent_end = get_cluster_boundary_end(cluster,
3045                                                 *cluster_nr) - offset;
3046                 u64 clamped_start = max(page_start, extent_start);
3047                 u64 clamped_end = min(page_end, extent_end);
3048                 u32 clamped_len = clamped_end + 1 - clamped_start;
3049
3050                 /* Reserve metadata for this range */
3051                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3052                                                       clamped_len, clamped_len,
3053                                                       false);
3054                 if (ret)
3055                         goto release_page;
3056
3057                 /* Mark the range delalloc and dirty for later writeback */
3058                 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3059                             &cached_state);
3060                 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3061                                                 clamped_end, 0, &cached_state);
3062                 if (ret) {
3063                         clear_extent_bit(&BTRFS_I(inode)->io_tree,
3064                                          clamped_start, clamped_end,
3065                                          EXTENT_LOCKED | EXTENT_BOUNDARY,
3066                                          &cached_state);
3067                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
3068                                                         clamped_len, true);
3069                         btrfs_delalloc_release_extents(BTRFS_I(inode),
3070                                                        clamped_len);
3071                         goto release_page;
3072                 }
3073                 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3074
3075                 /*
3076                  * Set the boundary if it's inside the page.
3077                  * Data relocation requires the destination extents to have the
3078                  * same size as the source.
3079                  * EXTENT_BOUNDARY bit prevents current extent from being merged
3080                  * with previous extent.
3081                  */
3082                 if (in_range(cluster->boundary[*cluster_nr] - offset,
3083                              page_start, PAGE_SIZE)) {
3084                         u64 boundary_start = cluster->boundary[*cluster_nr] -
3085                                                 offset;
3086                         u64 boundary_end = boundary_start +
3087                                            fs_info->sectorsize - 1;
3088
3089                         set_extent_bit(&BTRFS_I(inode)->io_tree,
3090                                        boundary_start, boundary_end,
3091                                        EXTENT_BOUNDARY, NULL);
3092                 }
3093                 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3094                               &cached_state);
3095                 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3096                 cur += clamped_len;
3097
3098                 /* Crossed extent end, go to next extent */
3099                 if (cur >= extent_end) {
3100                         (*cluster_nr)++;
3101                         /* Just finished the last extent of the cluster, exit. */
3102                         if (*cluster_nr >= cluster->nr)
3103                                 break;
3104                 }
3105         }
3106         unlock_page(page);
3107         put_page(page);
3108
3109         balance_dirty_pages_ratelimited(inode->i_mapping);
3110         btrfs_throttle(fs_info);
3111         if (btrfs_should_cancel_balance(fs_info))
3112                 ret = -ECANCELED;
3113         return ret;
3114
3115 release_page:
3116         unlock_page(page);
3117         put_page(page);
3118         return ret;
3119 }
3120
3121 static int relocate_file_extent_cluster(struct inode *inode,
3122                                         struct file_extent_cluster *cluster)
3123 {
3124         u64 offset = BTRFS_I(inode)->index_cnt;
3125         unsigned long index;
3126         unsigned long last_index;
3127         struct file_ra_state *ra;
3128         int cluster_nr = 0;
3129         int ret = 0;
3130
3131         if (!cluster->nr)
3132                 return 0;
3133
3134         ra = kzalloc(sizeof(*ra), GFP_NOFS);
3135         if (!ra)
3136                 return -ENOMEM;
3137
3138         ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3139         if (ret)
3140                 goto out;
3141
3142         file_ra_state_init(ra, inode->i_mapping);
3143
3144         ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3145                                    cluster->end - offset, cluster->start);
3146         if (ret)
3147                 goto out;
3148
3149         last_index = (cluster->end - offset) >> PAGE_SHIFT;
3150         for (index = (cluster->start - offset) >> PAGE_SHIFT;
3151              index <= last_index && !ret; index++)
3152                 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3153         if (ret == 0)
3154                 WARN_ON(cluster_nr != cluster->nr);
3155 out:
3156         kfree(ra);
3157         return ret;
3158 }
3159
3160 static noinline_for_stack
3161 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3162                          struct file_extent_cluster *cluster)
3163 {
3164         int ret;
3165
3166         if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3167                 ret = relocate_file_extent_cluster(inode, cluster);
3168                 if (ret)
3169                         return ret;
3170                 cluster->nr = 0;
3171         }
3172
3173         if (!cluster->nr)
3174                 cluster->start = extent_key->objectid;
3175         else
3176                 BUG_ON(cluster->nr >= MAX_EXTENTS);
3177         cluster->end = extent_key->objectid + extent_key->offset - 1;
3178         cluster->boundary[cluster->nr] = extent_key->objectid;
3179         cluster->nr++;
3180
3181         if (cluster->nr >= MAX_EXTENTS) {
3182                 ret = relocate_file_extent_cluster(inode, cluster);
3183                 if (ret)
3184                         return ret;
3185                 cluster->nr = 0;
3186         }
3187         return 0;
3188 }
3189
3190 /*
3191  * helper to add a tree block to the list.
3192  * the major work is getting the generation and level of the block
3193  */
3194 static int add_tree_block(struct reloc_control *rc,
3195                           struct btrfs_key *extent_key,
3196                           struct btrfs_path *path,
3197                           struct rb_root *blocks)
3198 {
3199         struct extent_buffer *eb;
3200         struct btrfs_extent_item *ei;
3201         struct btrfs_tree_block_info *bi;
3202         struct tree_block *block;
3203         struct rb_node *rb_node;
3204         u32 item_size;
3205         int level = -1;
3206         u64 generation;
3207         u64 owner = 0;
3208
3209         eb =  path->nodes[0];
3210         item_size = btrfs_item_size(eb, path->slots[0]);
3211
3212         if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3213             item_size >= sizeof(*ei) + sizeof(*bi)) {
3214                 unsigned long ptr = 0, end;
3215
3216                 ei = btrfs_item_ptr(eb, path->slots[0],
3217                                 struct btrfs_extent_item);
3218                 end = (unsigned long)ei + item_size;
3219                 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3220                         bi = (struct btrfs_tree_block_info *)(ei + 1);
3221                         level = btrfs_tree_block_level(eb, bi);
3222                         ptr = (unsigned long)(bi + 1);
3223                 } else {
3224                         level = (int)extent_key->offset;
3225                         ptr = (unsigned long)(ei + 1);
3226                 }
3227                 generation = btrfs_extent_generation(eb, ei);
3228
3229                 /*
3230                  * We're reading random blocks without knowing their owner ahead
3231                  * of time.  This is ok most of the time, as all reloc roots and
3232                  * fs roots have the same lock type.  However normal trees do
3233                  * not, and the only way to know ahead of time is to read the
3234                  * inline ref offset.  We know it's an fs root if
3235                  *
3236                  * 1. There's more than one ref.
3237                  * 2. There's a SHARED_DATA_REF_KEY set.
3238                  * 3. FULL_BACKREF is set on the flags.
3239                  *
3240                  * Otherwise it's safe to assume that the ref offset == the
3241                  * owner of this block, so we can use that when calling
3242                  * read_tree_block.
3243                  */
3244                 if (btrfs_extent_refs(eb, ei) == 1 &&
3245                     !(btrfs_extent_flags(eb, ei) &
3246                       BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3247                     ptr < end) {
3248                         struct btrfs_extent_inline_ref *iref;
3249                         int type;
3250
3251                         iref = (struct btrfs_extent_inline_ref *)ptr;
3252                         type = btrfs_get_extent_inline_ref_type(eb, iref,
3253                                                         BTRFS_REF_TYPE_BLOCK);
3254                         if (type == BTRFS_REF_TYPE_INVALID)
3255                                 return -EINVAL;
3256                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
3257                                 owner = btrfs_extent_inline_ref_offset(eb, iref);
3258                 }
3259         } else {
3260                 btrfs_print_leaf(eb);
3261                 btrfs_err(rc->block_group->fs_info,
3262                           "unrecognized tree backref at tree block %llu slot %u",
3263                           eb->start, path->slots[0]);
3264                 btrfs_release_path(path);
3265                 return -EUCLEAN;
3266         }
3267
3268         btrfs_release_path(path);
3269
3270         BUG_ON(level == -1);
3271
3272         block = kmalloc(sizeof(*block), GFP_NOFS);
3273         if (!block)
3274                 return -ENOMEM;
3275
3276         block->bytenr = extent_key->objectid;
3277         block->key.objectid = rc->extent_root->fs_info->nodesize;
3278         block->key.offset = generation;
3279         block->level = level;
3280         block->key_ready = 0;
3281         block->owner = owner;
3282
3283         rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3284         if (rb_node)
3285                 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3286                                     -EEXIST);
3287
3288         return 0;
3289 }
3290
3291 /*
3292  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3293  */
3294 static int __add_tree_block(struct reloc_control *rc,
3295                             u64 bytenr, u32 blocksize,
3296                             struct rb_root *blocks)
3297 {
3298         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3299         struct btrfs_path *path;
3300         struct btrfs_key key;
3301         int ret;
3302         bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3303
3304         if (tree_block_processed(bytenr, rc))
3305                 return 0;
3306
3307         if (rb_simple_search(blocks, bytenr))
3308                 return 0;
3309
3310         path = btrfs_alloc_path();
3311         if (!path)
3312                 return -ENOMEM;
3313 again:
3314         key.objectid = bytenr;
3315         if (skinny) {
3316                 key.type = BTRFS_METADATA_ITEM_KEY;
3317                 key.offset = (u64)-1;
3318         } else {
3319                 key.type = BTRFS_EXTENT_ITEM_KEY;
3320                 key.offset = blocksize;
3321         }
3322
3323         path->search_commit_root = 1;
3324         path->skip_locking = 1;
3325         ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3326         if (ret < 0)
3327                 goto out;
3328
3329         if (ret > 0 && skinny) {
3330                 if (path->slots[0]) {
3331                         path->slots[0]--;
3332                         btrfs_item_key_to_cpu(path->nodes[0], &key,
3333                                               path->slots[0]);
3334                         if (key.objectid == bytenr &&
3335                             (key.type == BTRFS_METADATA_ITEM_KEY ||
3336                              (key.type == BTRFS_EXTENT_ITEM_KEY &&
3337                               key.offset == blocksize)))
3338                                 ret = 0;
3339                 }
3340
3341                 if (ret) {
3342                         skinny = false;
3343                         btrfs_release_path(path);
3344                         goto again;
3345                 }
3346         }
3347         if (ret) {
3348                 ASSERT(ret == 1);
3349                 btrfs_print_leaf(path->nodes[0]);
3350                 btrfs_err(fs_info,
3351              "tree block extent item (%llu) is not found in extent tree",
3352                      bytenr);
3353                 WARN_ON(1);
3354                 ret = -EINVAL;
3355                 goto out;
3356         }
3357
3358         ret = add_tree_block(rc, &key, path, blocks);
3359 out:
3360         btrfs_free_path(path);
3361         return ret;
3362 }
3363
3364 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3365                                     struct btrfs_block_group *block_group,
3366                                     struct inode *inode,
3367                                     u64 ino)
3368 {
3369         struct btrfs_root *root = fs_info->tree_root;
3370         struct btrfs_trans_handle *trans;
3371         int ret = 0;
3372
3373         if (inode)
3374                 goto truncate;
3375
3376         inode = btrfs_iget(fs_info->sb, ino, root);
3377         if (IS_ERR(inode))
3378                 return -ENOENT;
3379
3380 truncate:
3381         ret = btrfs_check_trunc_cache_free_space(fs_info,
3382                                                  &fs_info->global_block_rsv);
3383         if (ret)
3384                 goto out;
3385
3386         trans = btrfs_join_transaction(root);
3387         if (IS_ERR(trans)) {
3388                 ret = PTR_ERR(trans);
3389                 goto out;
3390         }
3391
3392         ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3393
3394         btrfs_end_transaction(trans);
3395         btrfs_btree_balance_dirty(fs_info);
3396 out:
3397         iput(inode);
3398         return ret;
3399 }
3400
3401 /*
3402  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3403  * cache inode, to avoid free space cache data extent blocking data relocation.
3404  */
3405 static int delete_v1_space_cache(struct extent_buffer *leaf,
3406                                  struct btrfs_block_group *block_group,
3407                                  u64 data_bytenr)
3408 {
3409         u64 space_cache_ino;
3410         struct btrfs_file_extent_item *ei;
3411         struct btrfs_key key;
3412         bool found = false;
3413         int i;
3414         int ret;
3415
3416         if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3417                 return 0;
3418
3419         for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3420                 u8 type;
3421
3422                 btrfs_item_key_to_cpu(leaf, &key, i);
3423                 if (key.type != BTRFS_EXTENT_DATA_KEY)
3424                         continue;
3425                 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3426                 type = btrfs_file_extent_type(leaf, ei);
3427
3428                 if ((type == BTRFS_FILE_EXTENT_REG ||
3429                      type == BTRFS_FILE_EXTENT_PREALLOC) &&
3430                     btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3431                         found = true;
3432                         space_cache_ino = key.objectid;
3433                         break;
3434                 }
3435         }
3436         if (!found)
3437                 return -ENOENT;
3438         ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3439                                         space_cache_ino);
3440         return ret;
3441 }
3442
3443 /*
3444  * helper to find all tree blocks that reference a given data extent
3445  */
3446 static noinline_for_stack
3447 int add_data_references(struct reloc_control *rc,
3448                         struct btrfs_key *extent_key,
3449                         struct btrfs_path *path,
3450                         struct rb_root *blocks)
3451 {
3452         struct btrfs_backref_walk_ctx ctx = { 0 };
3453         struct ulist_iterator leaf_uiter;
3454         struct ulist_node *ref_node = NULL;
3455         const u32 blocksize = rc->extent_root->fs_info->nodesize;
3456         int ret = 0;
3457
3458         btrfs_release_path(path);
3459
3460         ctx.bytenr = extent_key->objectid;
3461         ctx.skip_inode_ref_list = true;
3462         ctx.fs_info = rc->extent_root->fs_info;
3463
3464         ret = btrfs_find_all_leafs(&ctx);
3465         if (ret < 0)
3466                 return ret;
3467
3468         ULIST_ITER_INIT(&leaf_uiter);
3469         while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3470                 struct btrfs_tree_parent_check check = { 0 };
3471                 struct extent_buffer *eb;
3472
3473                 eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3474                 if (IS_ERR(eb)) {
3475                         ret = PTR_ERR(eb);
3476                         break;
3477                 }
3478                 ret = delete_v1_space_cache(eb, rc->block_group,
3479                                             extent_key->objectid);
3480                 free_extent_buffer(eb);
3481                 if (ret < 0)
3482                         break;
3483                 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3484                 if (ret < 0)
3485                         break;
3486         }
3487         if (ret < 0)
3488                 free_block_list(blocks);
3489         ulist_free(ctx.refs);
3490         return ret;
3491 }
3492
3493 /*
3494  * helper to find next unprocessed extent
3495  */
3496 static noinline_for_stack
3497 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3498                      struct btrfs_key *extent_key)
3499 {
3500         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3501         struct btrfs_key key;
3502         struct extent_buffer *leaf;
3503         u64 start, end, last;
3504         int ret;
3505
3506         last = rc->block_group->start + rc->block_group->length;
3507         while (1) {
3508                 bool block_found;
3509
3510                 cond_resched();
3511                 if (rc->search_start >= last) {
3512                         ret = 1;
3513                         break;
3514                 }
3515
3516                 key.objectid = rc->search_start;
3517                 key.type = BTRFS_EXTENT_ITEM_KEY;
3518                 key.offset = 0;
3519
3520                 path->search_commit_root = 1;
3521                 path->skip_locking = 1;
3522                 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3523                                         0, 0);
3524                 if (ret < 0)
3525                         break;
3526 next:
3527                 leaf = path->nodes[0];
3528                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3529                         ret = btrfs_next_leaf(rc->extent_root, path);
3530                         if (ret != 0)
3531                                 break;
3532                         leaf = path->nodes[0];
3533                 }
3534
3535                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3536                 if (key.objectid >= last) {
3537                         ret = 1;
3538                         break;
3539                 }
3540
3541                 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3542                     key.type != BTRFS_METADATA_ITEM_KEY) {
3543                         path->slots[0]++;
3544                         goto next;
3545                 }
3546
3547                 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3548                     key.objectid + key.offset <= rc->search_start) {
3549                         path->slots[0]++;
3550                         goto next;
3551                 }
3552
3553                 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3554                     key.objectid + fs_info->nodesize <=
3555                     rc->search_start) {
3556                         path->slots[0]++;
3557                         goto next;
3558                 }
3559
3560                 block_found = find_first_extent_bit(&rc->processed_blocks,
3561                                                     key.objectid, &start, &end,
3562                                                     EXTENT_DIRTY, NULL);
3563
3564                 if (block_found && start <= key.objectid) {
3565                         btrfs_release_path(path);
3566                         rc->search_start = end + 1;
3567                 } else {
3568                         if (key.type == BTRFS_EXTENT_ITEM_KEY)
3569                                 rc->search_start = key.objectid + key.offset;
3570                         else
3571                                 rc->search_start = key.objectid +
3572                                         fs_info->nodesize;
3573                         memcpy(extent_key, &key, sizeof(key));
3574                         return 0;
3575                 }
3576         }
3577         btrfs_release_path(path);
3578         return ret;
3579 }
3580
3581 static void set_reloc_control(struct reloc_control *rc)
3582 {
3583         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3584
3585         mutex_lock(&fs_info->reloc_mutex);
3586         fs_info->reloc_ctl = rc;
3587         mutex_unlock(&fs_info->reloc_mutex);
3588 }
3589
3590 static void unset_reloc_control(struct reloc_control *rc)
3591 {
3592         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3593
3594         mutex_lock(&fs_info->reloc_mutex);
3595         fs_info->reloc_ctl = NULL;
3596         mutex_unlock(&fs_info->reloc_mutex);
3597 }
3598
3599 static noinline_for_stack
3600 int prepare_to_relocate(struct reloc_control *rc)
3601 {
3602         struct btrfs_trans_handle *trans;
3603         int ret;
3604
3605         rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3606                                               BTRFS_BLOCK_RSV_TEMP);
3607         if (!rc->block_rsv)
3608                 return -ENOMEM;
3609
3610         memset(&rc->cluster, 0, sizeof(rc->cluster));
3611         rc->search_start = rc->block_group->start;
3612         rc->extents_found = 0;
3613         rc->nodes_relocated = 0;
3614         rc->merging_rsv_size = 0;
3615         rc->reserved_bytes = 0;
3616         rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3617                               RELOCATION_RESERVED_NODES;
3618         ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3619                                      rc->block_rsv, rc->block_rsv->size,
3620                                      BTRFS_RESERVE_FLUSH_ALL);
3621         if (ret)
3622                 return ret;
3623
3624         rc->create_reloc_tree = 1;
3625         set_reloc_control(rc);
3626
3627         trans = btrfs_join_transaction(rc->extent_root);
3628         if (IS_ERR(trans)) {
3629                 unset_reloc_control(rc);
3630                 /*
3631                  * extent tree is not a ref_cow tree and has no reloc_root to
3632                  * cleanup.  And callers are responsible to free the above
3633                  * block rsv.
3634                  */
3635                 return PTR_ERR(trans);
3636         }
3637
3638         ret = btrfs_commit_transaction(trans);
3639         if (ret)
3640                 unset_reloc_control(rc);
3641
3642         return ret;
3643 }
3644
3645 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3646 {
3647         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3648         struct rb_root blocks = RB_ROOT;
3649         struct btrfs_key key;
3650         struct btrfs_trans_handle *trans = NULL;
3651         struct btrfs_path *path;
3652         struct btrfs_extent_item *ei;
3653         u64 flags;
3654         int ret;
3655         int err = 0;
3656         int progress = 0;
3657
3658         path = btrfs_alloc_path();
3659         if (!path)
3660                 return -ENOMEM;
3661         path->reada = READA_FORWARD;
3662
3663         ret = prepare_to_relocate(rc);
3664         if (ret) {
3665                 err = ret;
3666                 goto out_free;
3667         }
3668
3669         while (1) {
3670                 rc->reserved_bytes = 0;
3671                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3672                                              rc->block_rsv->size,
3673                                              BTRFS_RESERVE_FLUSH_ALL);
3674                 if (ret) {
3675                         err = ret;
3676                         break;
3677                 }
3678                 progress++;
3679                 trans = btrfs_start_transaction(rc->extent_root, 0);
3680                 if (IS_ERR(trans)) {
3681                         err = PTR_ERR(trans);
3682                         trans = NULL;
3683                         break;
3684                 }
3685 restart:
3686                 if (update_backref_cache(trans, &rc->backref_cache)) {
3687                         btrfs_end_transaction(trans);
3688                         trans = NULL;
3689                         continue;
3690                 }
3691
3692                 ret = find_next_extent(rc, path, &key);
3693                 if (ret < 0)
3694                         err = ret;
3695                 if (ret != 0)
3696                         break;
3697
3698                 rc->extents_found++;
3699
3700                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3701                                     struct btrfs_extent_item);
3702                 flags = btrfs_extent_flags(path->nodes[0], ei);
3703
3704                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3705                         ret = add_tree_block(rc, &key, path, &blocks);
3706                 } else if (rc->stage == UPDATE_DATA_PTRS &&
3707                            (flags & BTRFS_EXTENT_FLAG_DATA)) {
3708                         ret = add_data_references(rc, &key, path, &blocks);
3709                 } else {
3710                         btrfs_release_path(path);
3711                         ret = 0;
3712                 }
3713                 if (ret < 0) {
3714                         err = ret;
3715                         break;
3716                 }
3717
3718                 if (!RB_EMPTY_ROOT(&blocks)) {
3719                         ret = relocate_tree_blocks(trans, rc, &blocks);
3720                         if (ret < 0) {
3721                                 if (ret != -EAGAIN) {
3722                                         err = ret;
3723                                         break;
3724                                 }
3725                                 rc->extents_found--;
3726                                 rc->search_start = key.objectid;
3727                         }
3728                 }
3729
3730                 btrfs_end_transaction_throttle(trans);
3731                 btrfs_btree_balance_dirty(fs_info);
3732                 trans = NULL;
3733
3734                 if (rc->stage == MOVE_DATA_EXTENTS &&
3735                     (flags & BTRFS_EXTENT_FLAG_DATA)) {
3736                         rc->found_file_extent = 1;
3737                         ret = relocate_data_extent(rc->data_inode,
3738                                                    &key, &rc->cluster);
3739                         if (ret < 0) {
3740                                 err = ret;
3741                                 break;
3742                         }
3743                 }
3744                 if (btrfs_should_cancel_balance(fs_info)) {
3745                         err = -ECANCELED;
3746                         break;
3747                 }
3748         }
3749         if (trans && progress && err == -ENOSPC) {
3750                 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3751                 if (ret == 1) {
3752                         err = 0;
3753                         progress = 0;
3754                         goto restart;
3755                 }
3756         }
3757
3758         btrfs_release_path(path);
3759         clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3760
3761         if (trans) {
3762                 btrfs_end_transaction_throttle(trans);
3763                 btrfs_btree_balance_dirty(fs_info);
3764         }
3765
3766         if (!err) {
3767                 ret = relocate_file_extent_cluster(rc->data_inode,
3768                                                    &rc->cluster);
3769                 if (ret < 0)
3770                         err = ret;
3771         }
3772
3773         rc->create_reloc_tree = 0;
3774         set_reloc_control(rc);
3775
3776         btrfs_backref_release_cache(&rc->backref_cache);
3777         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3778
3779         /*
3780          * Even in the case when the relocation is cancelled, we should all go
3781          * through prepare_to_merge() and merge_reloc_roots().
3782          *
3783          * For error (including cancelled balance), prepare_to_merge() will
3784          * mark all reloc trees orphan, then queue them for cleanup in
3785          * merge_reloc_roots()
3786          */
3787         err = prepare_to_merge(rc, err);
3788
3789         merge_reloc_roots(rc);
3790
3791         rc->merge_reloc_tree = 0;
3792         unset_reloc_control(rc);
3793         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3794
3795         /* get rid of pinned extents */
3796         trans = btrfs_join_transaction(rc->extent_root);
3797         if (IS_ERR(trans)) {
3798                 err = PTR_ERR(trans);
3799                 goto out_free;
3800         }
3801         ret = btrfs_commit_transaction(trans);
3802         if (ret && !err)
3803                 err = ret;
3804 out_free:
3805         ret = clean_dirty_subvols(rc);
3806         if (ret < 0 && !err)
3807                 err = ret;
3808         btrfs_free_block_rsv(fs_info, rc->block_rsv);
3809         btrfs_free_path(path);
3810         return err;
3811 }
3812
3813 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3814                                  struct btrfs_root *root, u64 objectid)
3815 {
3816         struct btrfs_path *path;
3817         struct btrfs_inode_item *item;
3818         struct extent_buffer *leaf;
3819         int ret;
3820
3821         path = btrfs_alloc_path();
3822         if (!path)
3823                 return -ENOMEM;
3824
3825         ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3826         if (ret)
3827                 goto out;
3828
3829         leaf = path->nodes[0];
3830         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3831         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3832         btrfs_set_inode_generation(leaf, item, 1);
3833         btrfs_set_inode_size(leaf, item, 0);
3834         btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3835         btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3836                                           BTRFS_INODE_PREALLOC);
3837         btrfs_mark_buffer_dirty(leaf);
3838 out:
3839         btrfs_free_path(path);
3840         return ret;
3841 }
3842
3843 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3844                                 struct btrfs_root *root, u64 objectid)
3845 {
3846         struct btrfs_path *path;
3847         struct btrfs_key key;
3848         int ret = 0;
3849
3850         path = btrfs_alloc_path();
3851         if (!path) {
3852                 ret = -ENOMEM;
3853                 goto out;
3854         }
3855
3856         key.objectid = objectid;
3857         key.type = BTRFS_INODE_ITEM_KEY;
3858         key.offset = 0;
3859         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3860         if (ret) {
3861                 if (ret > 0)
3862                         ret = -ENOENT;
3863                 goto out;
3864         }
3865         ret = btrfs_del_item(trans, root, path);
3866 out:
3867         if (ret)
3868                 btrfs_abort_transaction(trans, ret);
3869         btrfs_free_path(path);
3870 }
3871
3872 /*
3873  * helper to create inode for data relocation.
3874  * the inode is in data relocation tree and its link count is 0
3875  */
3876 static noinline_for_stack
3877 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3878                                  struct btrfs_block_group *group)
3879 {
3880         struct inode *inode = NULL;
3881         struct btrfs_trans_handle *trans;
3882         struct btrfs_root *root;
3883         u64 objectid;
3884         int err = 0;
3885
3886         root = btrfs_grab_root(fs_info->data_reloc_root);
3887         trans = btrfs_start_transaction(root, 6);
3888         if (IS_ERR(trans)) {
3889                 btrfs_put_root(root);
3890                 return ERR_CAST(trans);
3891         }
3892
3893         err = btrfs_get_free_objectid(root, &objectid);
3894         if (err)
3895                 goto out;
3896
3897         err = __insert_orphan_inode(trans, root, objectid);
3898         if (err)
3899                 goto out;
3900
3901         inode = btrfs_iget(fs_info->sb, objectid, root);
3902         if (IS_ERR(inode)) {
3903                 delete_orphan_inode(trans, root, objectid);
3904                 err = PTR_ERR(inode);
3905                 inode = NULL;
3906                 goto out;
3907         }
3908         BTRFS_I(inode)->index_cnt = group->start;
3909
3910         err = btrfs_orphan_add(trans, BTRFS_I(inode));
3911 out:
3912         btrfs_put_root(root);
3913         btrfs_end_transaction(trans);
3914         btrfs_btree_balance_dirty(fs_info);
3915         if (err) {
3916                 iput(inode);
3917                 inode = ERR_PTR(err);
3918         }
3919         return inode;
3920 }
3921
3922 /*
3923  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3924  * has been requested meanwhile and don't start in that case.
3925  *
3926  * Return:
3927  *   0             success
3928  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3929  *   -ECANCELED    cancellation request was set before the operation started
3930  */
3931 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3932 {
3933         if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3934                 /* This should not happen */
3935                 btrfs_err(fs_info, "reloc already running, cannot start");
3936                 return -EINPROGRESS;
3937         }
3938
3939         if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3940                 btrfs_info(fs_info, "chunk relocation canceled on start");
3941                 /*
3942                  * On cancel, clear all requests but let the caller mark
3943                  * the end after cleanup operations.
3944                  */
3945                 atomic_set(&fs_info->reloc_cancel_req, 0);
3946                 return -ECANCELED;
3947         }
3948         return 0;
3949 }
3950
3951 /*
3952  * Mark end of chunk relocation that is cancellable and wake any waiters.
3953  */
3954 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3955 {
3956         /* Requested after start, clear bit first so any waiters can continue */
3957         if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3958                 btrfs_info(fs_info, "chunk relocation canceled during operation");
3959         clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3960         atomic_set(&fs_info->reloc_cancel_req, 0);
3961 }
3962
3963 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3964 {
3965         struct reloc_control *rc;
3966
3967         rc = kzalloc(sizeof(*rc), GFP_NOFS);
3968         if (!rc)
3969                 return NULL;
3970
3971         INIT_LIST_HEAD(&rc->reloc_roots);
3972         INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3973         btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3974         mapping_tree_init(&rc->reloc_root_tree);
3975         extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3976         return rc;
3977 }
3978
3979 static void free_reloc_control(struct reloc_control *rc)
3980 {
3981         struct mapping_node *node, *tmp;
3982
3983         free_reloc_roots(&rc->reloc_roots);
3984         rbtree_postorder_for_each_entry_safe(node, tmp,
3985                         &rc->reloc_root_tree.rb_root, rb_node)
3986                 kfree(node);
3987
3988         kfree(rc);
3989 }
3990
3991 /*
3992  * Print the block group being relocated
3993  */
3994 static void describe_relocation(struct btrfs_fs_info *fs_info,
3995                                 struct btrfs_block_group *block_group)
3996 {
3997         char buf[128] = {'\0'};
3998
3999         btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4000
4001         btrfs_info(fs_info,
4002                    "relocating block group %llu flags %s",
4003                    block_group->start, buf);
4004 }
4005
4006 static const char *stage_to_string(int stage)
4007 {
4008         if (stage == MOVE_DATA_EXTENTS)
4009                 return "move data extents";
4010         if (stage == UPDATE_DATA_PTRS)
4011                 return "update data pointers";
4012         return "unknown";
4013 }
4014
4015 /*
4016  * function to relocate all extents in a block group.
4017  */
4018 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4019 {
4020         struct btrfs_block_group *bg;
4021         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
4022         struct reloc_control *rc;
4023         struct inode *inode;
4024         struct btrfs_path *path;
4025         int ret;
4026         int rw = 0;
4027         int err = 0;
4028
4029         /*
4030          * This only gets set if we had a half-deleted snapshot on mount.  We
4031          * cannot allow relocation to start while we're still trying to clean up
4032          * these pending deletions.
4033          */
4034         ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4035         if (ret)
4036                 return ret;
4037
4038         /* We may have been woken up by close_ctree, so bail if we're closing. */
4039         if (btrfs_fs_closing(fs_info))
4040                 return -EINTR;
4041
4042         bg = btrfs_lookup_block_group(fs_info, group_start);
4043         if (!bg)
4044                 return -ENOENT;
4045
4046         /*
4047          * Relocation of a data block group creates ordered extents.  Without
4048          * sb_start_write(), we can freeze the filesystem while unfinished
4049          * ordered extents are left. Such ordered extents can cause a deadlock
4050          * e.g. when syncfs() is waiting for their completion but they can't
4051          * finish because they block when joining a transaction, due to the
4052          * fact that the freeze locks are being held in write mode.
4053          */
4054         if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4055                 ASSERT(sb_write_started(fs_info->sb));
4056
4057         if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4058                 btrfs_put_block_group(bg);
4059                 return -ETXTBSY;
4060         }
4061
4062         rc = alloc_reloc_control(fs_info);
4063         if (!rc) {
4064                 btrfs_put_block_group(bg);
4065                 return -ENOMEM;
4066         }
4067
4068         ret = reloc_chunk_start(fs_info);
4069         if (ret < 0) {
4070                 err = ret;
4071                 goto out_put_bg;
4072         }
4073
4074         rc->extent_root = extent_root;
4075         rc->block_group = bg;
4076
4077         ret = btrfs_inc_block_group_ro(rc->block_group, true);
4078         if (ret) {
4079                 err = ret;
4080                 goto out;
4081         }
4082         rw = 1;
4083
4084         path = btrfs_alloc_path();
4085         if (!path) {
4086                 err = -ENOMEM;
4087                 goto out;
4088         }
4089
4090         inode = lookup_free_space_inode(rc->block_group, path);
4091         btrfs_free_path(path);
4092
4093         if (!IS_ERR(inode))
4094                 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4095         else
4096                 ret = PTR_ERR(inode);
4097
4098         if (ret && ret != -ENOENT) {
4099                 err = ret;
4100                 goto out;
4101         }
4102
4103         rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4104         if (IS_ERR(rc->data_inode)) {
4105                 err = PTR_ERR(rc->data_inode);
4106                 rc->data_inode = NULL;
4107                 goto out;
4108         }
4109
4110         describe_relocation(fs_info, rc->block_group);
4111
4112         btrfs_wait_block_group_reservations(rc->block_group);
4113         btrfs_wait_nocow_writers(rc->block_group);
4114         btrfs_wait_ordered_roots(fs_info, U64_MAX,
4115                                  rc->block_group->start,
4116                                  rc->block_group->length);
4117
4118         ret = btrfs_zone_finish(rc->block_group);
4119         WARN_ON(ret && ret != -EAGAIN);
4120
4121         while (1) {
4122                 int finishes_stage;
4123
4124                 mutex_lock(&fs_info->cleaner_mutex);
4125                 ret = relocate_block_group(rc);
4126                 mutex_unlock(&fs_info->cleaner_mutex);
4127                 if (ret < 0)
4128                         err = ret;
4129
4130                 finishes_stage = rc->stage;
4131                 /*
4132                  * We may have gotten ENOSPC after we already dirtied some
4133                  * extents.  If writeout happens while we're relocating a
4134                  * different block group we could end up hitting the
4135                  * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4136                  * btrfs_reloc_cow_block.  Make sure we write everything out
4137                  * properly so we don't trip over this problem, and then break
4138                  * out of the loop if we hit an error.
4139                  */
4140                 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4141                         ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4142                                                        (u64)-1);
4143                         if (ret)
4144                                 err = ret;
4145                         invalidate_mapping_pages(rc->data_inode->i_mapping,
4146                                                  0, -1);
4147                         rc->stage = UPDATE_DATA_PTRS;
4148                 }
4149
4150                 if (err < 0)
4151                         goto out;
4152
4153                 if (rc->extents_found == 0)
4154                         break;
4155
4156                 btrfs_info(fs_info, "found %llu extents, stage: %s",
4157                            rc->extents_found, stage_to_string(finishes_stage));
4158         }
4159
4160         WARN_ON(rc->block_group->pinned > 0);
4161         WARN_ON(rc->block_group->reserved > 0);
4162         WARN_ON(rc->block_group->used > 0);
4163 out:
4164         if (err && rw)
4165                 btrfs_dec_block_group_ro(rc->block_group);
4166         iput(rc->data_inode);
4167 out_put_bg:
4168         btrfs_put_block_group(bg);
4169         reloc_chunk_end(fs_info);
4170         free_reloc_control(rc);
4171         return err;
4172 }
4173
4174 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4175 {
4176         struct btrfs_fs_info *fs_info = root->fs_info;
4177         struct btrfs_trans_handle *trans;
4178         int ret, err;
4179
4180         trans = btrfs_start_transaction(fs_info->tree_root, 0);
4181         if (IS_ERR(trans))
4182                 return PTR_ERR(trans);
4183
4184         memset(&root->root_item.drop_progress, 0,
4185                 sizeof(root->root_item.drop_progress));
4186         btrfs_set_root_drop_level(&root->root_item, 0);
4187         btrfs_set_root_refs(&root->root_item, 0);
4188         ret = btrfs_update_root(trans, fs_info->tree_root,
4189                                 &root->root_key, &root->root_item);
4190
4191         err = btrfs_end_transaction(trans);
4192         if (err)
4193                 return err;
4194         return ret;
4195 }
4196
4197 /*
4198  * recover relocation interrupted by system crash.
4199  *
4200  * this function resumes merging reloc trees with corresponding fs trees.
4201  * this is important for keeping the sharing of tree blocks
4202  */
4203 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4204 {
4205         LIST_HEAD(reloc_roots);
4206         struct btrfs_key key;
4207         struct btrfs_root *fs_root;
4208         struct btrfs_root *reloc_root;
4209         struct btrfs_path *path;
4210         struct extent_buffer *leaf;
4211         struct reloc_control *rc = NULL;
4212         struct btrfs_trans_handle *trans;
4213         int ret;
4214         int err = 0;
4215
4216         path = btrfs_alloc_path();
4217         if (!path)
4218                 return -ENOMEM;
4219         path->reada = READA_BACK;
4220
4221         key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4222         key.type = BTRFS_ROOT_ITEM_KEY;
4223         key.offset = (u64)-1;
4224
4225         while (1) {
4226                 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4227                                         path, 0, 0);
4228                 if (ret < 0) {
4229                         err = ret;
4230                         goto out;
4231                 }
4232                 if (ret > 0) {
4233                         if (path->slots[0] == 0)
4234                                 break;
4235                         path->slots[0]--;
4236                 }
4237                 leaf = path->nodes[0];
4238                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4239                 btrfs_release_path(path);
4240
4241                 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4242                     key.type != BTRFS_ROOT_ITEM_KEY)
4243                         break;
4244
4245                 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4246                 if (IS_ERR(reloc_root)) {
4247                         err = PTR_ERR(reloc_root);
4248                         goto out;
4249                 }
4250
4251                 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4252                 list_add(&reloc_root->root_list, &reloc_roots);
4253
4254                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4255                         fs_root = btrfs_get_fs_root(fs_info,
4256                                         reloc_root->root_key.offset, false);
4257                         if (IS_ERR(fs_root)) {
4258                                 ret = PTR_ERR(fs_root);
4259                                 if (ret != -ENOENT) {
4260                                         err = ret;
4261                                         goto out;
4262                                 }
4263                                 ret = mark_garbage_root(reloc_root);
4264                                 if (ret < 0) {
4265                                         err = ret;
4266                                         goto out;
4267                                 }
4268                         } else {
4269                                 btrfs_put_root(fs_root);
4270                         }
4271                 }
4272
4273                 if (key.offset == 0)
4274                         break;
4275
4276                 key.offset--;
4277         }
4278         btrfs_release_path(path);
4279
4280         if (list_empty(&reloc_roots))
4281                 goto out;
4282
4283         rc = alloc_reloc_control(fs_info);
4284         if (!rc) {
4285                 err = -ENOMEM;
4286                 goto out;
4287         }
4288
4289         ret = reloc_chunk_start(fs_info);
4290         if (ret < 0) {
4291                 err = ret;
4292                 goto out_end;
4293         }
4294
4295         rc->extent_root = btrfs_extent_root(fs_info, 0);
4296
4297         set_reloc_control(rc);
4298
4299         trans = btrfs_join_transaction(rc->extent_root);
4300         if (IS_ERR(trans)) {
4301                 err = PTR_ERR(trans);
4302                 goto out_unset;
4303         }
4304
4305         rc->merge_reloc_tree = 1;
4306
4307         while (!list_empty(&reloc_roots)) {
4308                 reloc_root = list_entry(reloc_roots.next,
4309                                         struct btrfs_root, root_list);
4310                 list_del(&reloc_root->root_list);
4311
4312                 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4313                         list_add_tail(&reloc_root->root_list,
4314                                       &rc->reloc_roots);
4315                         continue;
4316                 }
4317
4318                 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4319                                             false);
4320                 if (IS_ERR(fs_root)) {
4321                         err = PTR_ERR(fs_root);
4322                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4323                         btrfs_end_transaction(trans);
4324                         goto out_unset;
4325                 }
4326
4327                 err = __add_reloc_root(reloc_root);
4328                 ASSERT(err != -EEXIST);
4329                 if (err) {
4330                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4331                         btrfs_put_root(fs_root);
4332                         btrfs_end_transaction(trans);
4333                         goto out_unset;
4334                 }
4335                 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4336                 btrfs_put_root(fs_root);
4337         }
4338
4339         err = btrfs_commit_transaction(trans);
4340         if (err)
4341                 goto out_unset;
4342
4343         merge_reloc_roots(rc);
4344
4345         unset_reloc_control(rc);
4346
4347         trans = btrfs_join_transaction(rc->extent_root);
4348         if (IS_ERR(trans)) {
4349                 err = PTR_ERR(trans);
4350                 goto out_clean;
4351         }
4352         err = btrfs_commit_transaction(trans);
4353 out_clean:
4354         ret = clean_dirty_subvols(rc);
4355         if (ret < 0 && !err)
4356                 err = ret;
4357 out_unset:
4358         unset_reloc_control(rc);
4359 out_end:
4360         reloc_chunk_end(fs_info);
4361         free_reloc_control(rc);
4362 out:
4363         free_reloc_roots(&reloc_roots);
4364
4365         btrfs_free_path(path);
4366
4367         if (err == 0) {
4368                 /* cleanup orphan inode in data relocation tree */
4369                 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4370                 ASSERT(fs_root);
4371                 err = btrfs_orphan_cleanup(fs_root);
4372                 btrfs_put_root(fs_root);
4373         }
4374         return err;
4375 }
4376
4377 /*
4378  * helper to add ordered checksum for data relocation.
4379  *
4380  * cloning checksum properly handles the nodatasum extents.
4381  * it also saves CPU time to re-calculate the checksum.
4382  */
4383 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4384 {
4385         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
4386         struct btrfs_fs_info *fs_info = inode->root->fs_info;
4387         u64 disk_bytenr = ordered->file_offset + inode->index_cnt;
4388         struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4389         LIST_HEAD(list);
4390         int ret;
4391
4392         ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4393                                       disk_bytenr + ordered->num_bytes - 1,
4394                                       &list, 0, false);
4395         if (ret)
4396                 return ret;
4397
4398         while (!list_empty(&list)) {
4399                 struct btrfs_ordered_sum *sums =
4400                         list_entry(list.next, struct btrfs_ordered_sum, list);
4401
4402                 list_del_init(&sums->list);
4403
4404                 /*
4405                  * We need to offset the new_bytenr based on where the csum is.
4406                  * We need to do this because we will read in entire prealloc
4407                  * extents but we may have written to say the middle of the
4408                  * prealloc extent, so we need to make sure the csum goes with
4409                  * the right disk offset.
4410                  *
4411                  * We can do this because the data reloc inode refers strictly
4412                  * to the on disk bytes, so we don't have to worry about
4413                  * disk_len vs real len like with real inodes since it's all
4414                  * disk length.
4415                  */
4416                 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4417                 btrfs_add_ordered_sum(ordered, sums);
4418         }
4419
4420         return 0;
4421 }
4422
4423 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4424                           struct btrfs_root *root, struct extent_buffer *buf,
4425                           struct extent_buffer *cow)
4426 {
4427         struct btrfs_fs_info *fs_info = root->fs_info;
4428         struct reloc_control *rc;
4429         struct btrfs_backref_node *node;
4430         int first_cow = 0;
4431         int level;
4432         int ret = 0;
4433
4434         rc = fs_info->reloc_ctl;
4435         if (!rc)
4436                 return 0;
4437
4438         BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4439
4440         level = btrfs_header_level(buf);
4441         if (btrfs_header_generation(buf) <=
4442             btrfs_root_last_snapshot(&root->root_item))
4443                 first_cow = 1;
4444
4445         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4446             rc->create_reloc_tree) {
4447                 WARN_ON(!first_cow && level == 0);
4448
4449                 node = rc->backref_cache.path[level];
4450                 BUG_ON(node->bytenr != buf->start &&
4451                        node->new_bytenr != buf->start);
4452
4453                 btrfs_backref_drop_node_buffer(node);
4454                 atomic_inc(&cow->refs);
4455                 node->eb = cow;
4456                 node->new_bytenr = cow->start;
4457
4458                 if (!node->pending) {
4459                         list_move_tail(&node->list,
4460                                        &rc->backref_cache.pending[level]);
4461                         node->pending = 1;
4462                 }
4463
4464                 if (first_cow)
4465                         mark_block_processed(rc, node);
4466
4467                 if (first_cow && level > 0)
4468                         rc->nodes_relocated += buf->len;
4469         }
4470
4471         if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4472                 ret = replace_file_extents(trans, rc, root, cow);
4473         return ret;
4474 }
4475
4476 /*
4477  * called before creating snapshot. it calculates metadata reservation
4478  * required for relocating tree blocks in the snapshot
4479  */
4480 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4481                               u64 *bytes_to_reserve)
4482 {
4483         struct btrfs_root *root = pending->root;
4484         struct reloc_control *rc = root->fs_info->reloc_ctl;
4485
4486         if (!rc || !have_reloc_root(root))
4487                 return;
4488
4489         if (!rc->merge_reloc_tree)
4490                 return;
4491
4492         root = root->reloc_root;
4493         BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4494         /*
4495          * relocation is in the stage of merging trees. the space
4496          * used by merging a reloc tree is twice the size of
4497          * relocated tree nodes in the worst case. half for cowing
4498          * the reloc tree, half for cowing the fs tree. the space
4499          * used by cowing the reloc tree will be freed after the
4500          * tree is dropped. if we create snapshot, cowing the fs
4501          * tree may use more space than it frees. so we need
4502          * reserve extra space.
4503          */
4504         *bytes_to_reserve += rc->nodes_relocated;
4505 }
4506
4507 /*
4508  * called after snapshot is created. migrate block reservation
4509  * and create reloc root for the newly created snapshot
4510  *
4511  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4512  * references held on the reloc_root, one for root->reloc_root and one for
4513  * rc->reloc_roots.
4514  */
4515 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4516                                struct btrfs_pending_snapshot *pending)
4517 {
4518         struct btrfs_root *root = pending->root;
4519         struct btrfs_root *reloc_root;
4520         struct btrfs_root *new_root;
4521         struct reloc_control *rc = root->fs_info->reloc_ctl;
4522         int ret;
4523
4524         if (!rc || !have_reloc_root(root))
4525                 return 0;
4526
4527         rc = root->fs_info->reloc_ctl;
4528         rc->merging_rsv_size += rc->nodes_relocated;
4529
4530         if (rc->merge_reloc_tree) {
4531                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4532                                               rc->block_rsv,
4533                                               rc->nodes_relocated, true);
4534                 if (ret)
4535                         return ret;
4536         }
4537
4538         new_root = pending->snap;
4539         reloc_root = create_reloc_root(trans, root->reloc_root,
4540                                        new_root->root_key.objectid);
4541         if (IS_ERR(reloc_root))
4542                 return PTR_ERR(reloc_root);
4543
4544         ret = __add_reloc_root(reloc_root);
4545         ASSERT(ret != -EEXIST);
4546         if (ret) {
4547                 /* Pairs with create_reloc_root */
4548                 btrfs_put_root(reloc_root);
4549                 return ret;
4550         }
4551         new_root->reloc_root = btrfs_grab_root(reloc_root);
4552
4553         if (rc->create_reloc_tree)
4554                 ret = clone_backref_node(trans, rc, root, reloc_root);
4555         return ret;
4556 }
4557
4558 /*
4559  * Get the current bytenr for the block group which is being relocated.
4560  *
4561  * Return U64_MAX if no running relocation.
4562  */
4563 u64 btrfs_get_reloc_bg_bytenr(struct btrfs_fs_info *fs_info)
4564 {
4565         u64 logical = U64_MAX;
4566
4567         lockdep_assert_held(&fs_info->reloc_mutex);
4568
4569         if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4570                 logical = fs_info->reloc_ctl->block_group->start;
4571         return logical;
4572 }