OSDN Git Service

Merge remote-tracking branch 'spi/for-5.8' into spi-next
[tomoyo/tomoyo-test1.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  * OVERCOMMIT
144  *
145  *   Because we hold so many reservations for metadata we will allow you to
146  *   reserve more space than is currently free in the currently allocate
147  *   metadata space.  This only happens with metadata, data does not allow
148  *   overcommitting.
149  *
150  *   You can see the current logic for when we allow overcommit in
151  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
152  *   is no unallocated space to be had, all reservations are kept within the
153  *   free space in the allocated metadata chunks.
154  *
155  *   Because of overcommitting, you generally want to use the
156  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
157  *   thing with or without extra unallocated space.
158  */
159
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161                           bool may_use_included)
162 {
163         ASSERT(s_info);
164         return s_info->bytes_used + s_info->bytes_reserved +
165                 s_info->bytes_pinned + s_info->bytes_readonly +
166                 (may_use_included ? s_info->bytes_may_use : 0);
167 }
168
169 /*
170  * after adding space to the filesystem, we need to clear the full flags
171  * on all the space infos.
172  */
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174 {
175         struct list_head *head = &info->space_info;
176         struct btrfs_space_info *found;
177
178         rcu_read_lock();
179         list_for_each_entry_rcu(found, head, list)
180                 found->full = 0;
181         rcu_read_unlock();
182 }
183
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186
187         struct btrfs_space_info *space_info;
188         int i;
189         int ret;
190
191         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192         if (!space_info)
193                 return -ENOMEM;
194
195         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
196                                  GFP_KERNEL);
197         if (ret) {
198                 kfree(space_info);
199                 return ret;
200         }
201
202         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
203                 INIT_LIST_HEAD(&space_info->block_groups[i]);
204         init_rwsem(&space_info->groups_sem);
205         spin_lock_init(&space_info->lock);
206         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
207         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
208         INIT_LIST_HEAD(&space_info->ro_bgs);
209         INIT_LIST_HEAD(&space_info->tickets);
210         INIT_LIST_HEAD(&space_info->priority_tickets);
211
212         ret = btrfs_sysfs_add_space_info_type(info, space_info);
213         if (ret)
214                 return ret;
215
216         list_add_rcu(&space_info->list, &info->space_info);
217         if (flags & BTRFS_BLOCK_GROUP_DATA)
218                 info->data_sinfo = space_info;
219
220         return ret;
221 }
222
223 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
224 {
225         struct btrfs_super_block *disk_super;
226         u64 features;
227         u64 flags;
228         int mixed = 0;
229         int ret;
230
231         disk_super = fs_info->super_copy;
232         if (!btrfs_super_root(disk_super))
233                 return -EINVAL;
234
235         features = btrfs_super_incompat_flags(disk_super);
236         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
237                 mixed = 1;
238
239         flags = BTRFS_BLOCK_GROUP_SYSTEM;
240         ret = create_space_info(fs_info, flags);
241         if (ret)
242                 goto out;
243
244         if (mixed) {
245                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
246                 ret = create_space_info(fs_info, flags);
247         } else {
248                 flags = BTRFS_BLOCK_GROUP_METADATA;
249                 ret = create_space_info(fs_info, flags);
250                 if (ret)
251                         goto out;
252
253                 flags = BTRFS_BLOCK_GROUP_DATA;
254                 ret = create_space_info(fs_info, flags);
255         }
256 out:
257         return ret;
258 }
259
260 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
261                              u64 total_bytes, u64 bytes_used,
262                              u64 bytes_readonly,
263                              struct btrfs_space_info **space_info)
264 {
265         struct btrfs_space_info *found;
266         int factor;
267
268         factor = btrfs_bg_type_to_factor(flags);
269
270         found = btrfs_find_space_info(info, flags);
271         ASSERT(found);
272         spin_lock(&found->lock);
273         found->total_bytes += total_bytes;
274         found->disk_total += total_bytes * factor;
275         found->bytes_used += bytes_used;
276         found->disk_used += bytes_used * factor;
277         found->bytes_readonly += bytes_readonly;
278         if (total_bytes > 0)
279                 found->full = 0;
280         btrfs_try_granting_tickets(info, found);
281         spin_unlock(&found->lock);
282         *space_info = found;
283 }
284
285 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
286                                                u64 flags)
287 {
288         struct list_head *head = &info->space_info;
289         struct btrfs_space_info *found;
290
291         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(found, head, list) {
295                 if (found->flags & flags) {
296                         rcu_read_unlock();
297                         return found;
298                 }
299         }
300         rcu_read_unlock();
301         return NULL;
302 }
303
304 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
305 {
306         return (global->size << 1);
307 }
308
309 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
310                           struct btrfs_space_info *space_info,
311                           enum btrfs_reserve_flush_enum flush)
312 {
313         u64 profile;
314         u64 avail;
315         int factor;
316
317         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
318                 profile = btrfs_system_alloc_profile(fs_info);
319         else
320                 profile = btrfs_metadata_alloc_profile(fs_info);
321
322         avail = atomic64_read(&fs_info->free_chunk_space);
323
324         /*
325          * If we have dup, raid1 or raid10 then only half of the free
326          * space is actually usable.  For raid56, the space info used
327          * doesn't include the parity drive, so we don't have to
328          * change the math
329          */
330         factor = btrfs_bg_type_to_factor(profile);
331         avail = div_u64(avail, factor);
332
333         /*
334          * If we aren't flushing all things, let us overcommit up to
335          * 1/2th of the space. If we can flush, don't let us overcommit
336          * too much, let it overcommit up to 1/8 of the space.
337          */
338         if (flush == BTRFS_RESERVE_FLUSH_ALL)
339                 avail >>= 3;
340         else
341                 avail >>= 1;
342         return avail;
343 }
344
345 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
346                          struct btrfs_space_info *space_info, u64 bytes,
347                          enum btrfs_reserve_flush_enum flush)
348 {
349         u64 avail;
350         u64 used;
351
352         /* Don't overcommit when in mixed mode */
353         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
354                 return 0;
355
356         used = btrfs_space_info_used(space_info, true);
357         avail = calc_available_free_space(fs_info, space_info, flush);
358
359         if (used + bytes < space_info->total_bytes + avail)
360                 return 1;
361         return 0;
362 }
363
364 static void remove_ticket(struct btrfs_space_info *space_info,
365                           struct reserve_ticket *ticket)
366 {
367         if (!list_empty(&ticket->list)) {
368                 list_del_init(&ticket->list);
369                 ASSERT(space_info->reclaim_size >= ticket->bytes);
370                 space_info->reclaim_size -= ticket->bytes;
371         }
372 }
373
374 /*
375  * This is for space we already have accounted in space_info->bytes_may_use, so
376  * basically when we're returning space from block_rsv's.
377  */
378 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
379                                 struct btrfs_space_info *space_info)
380 {
381         struct list_head *head;
382         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
383
384         lockdep_assert_held(&space_info->lock);
385
386         head = &space_info->priority_tickets;
387 again:
388         while (!list_empty(head)) {
389                 struct reserve_ticket *ticket;
390                 u64 used = btrfs_space_info_used(space_info, true);
391
392                 ticket = list_first_entry(head, struct reserve_ticket, list);
393
394                 /* Check and see if our ticket can be satisified now. */
395                 if ((used + ticket->bytes <= space_info->total_bytes) ||
396                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
397                                          flush)) {
398                         btrfs_space_info_update_bytes_may_use(fs_info,
399                                                               space_info,
400                                                               ticket->bytes);
401                         remove_ticket(space_info, ticket);
402                         ticket->bytes = 0;
403                         space_info->tickets_id++;
404                         wake_up(&ticket->wait);
405                 } else {
406                         break;
407                 }
408         }
409
410         if (head == &space_info->priority_tickets) {
411                 head = &space_info->tickets;
412                 flush = BTRFS_RESERVE_FLUSH_ALL;
413                 goto again;
414         }
415 }
416
417 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
418 do {                                                                    \
419         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
420         spin_lock(&__rsv->lock);                                        \
421         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
422                    __rsv->size, __rsv->reserved);                       \
423         spin_unlock(&__rsv->lock);                                      \
424 } while (0)
425
426 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
427                                     struct btrfs_space_info *info)
428 {
429         lockdep_assert_held(&info->lock);
430
431         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
432                    info->flags,
433                    info->total_bytes - btrfs_space_info_used(info, true),
434                    info->full ? "" : "not ");
435         btrfs_info(fs_info,
436                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
437                 info->total_bytes, info->bytes_used, info->bytes_pinned,
438                 info->bytes_reserved, info->bytes_may_use,
439                 info->bytes_readonly);
440
441         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
442         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
443         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
444         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
445         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
446
447 }
448
449 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
450                            struct btrfs_space_info *info, u64 bytes,
451                            int dump_block_groups)
452 {
453         struct btrfs_block_group *cache;
454         int index = 0;
455
456         spin_lock(&info->lock);
457         __btrfs_dump_space_info(fs_info, info);
458         spin_unlock(&info->lock);
459
460         if (!dump_block_groups)
461                 return;
462
463         down_read(&info->groups_sem);
464 again:
465         list_for_each_entry(cache, &info->block_groups[index], list) {
466                 spin_lock(&cache->lock);
467                 btrfs_info(fs_info,
468                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
469                         cache->start, cache->length, cache->used, cache->pinned,
470                         cache->reserved, cache->ro ? "[readonly]" : "");
471                 btrfs_dump_free_space(cache, bytes);
472                 spin_unlock(&cache->lock);
473         }
474         if (++index < BTRFS_NR_RAID_TYPES)
475                 goto again;
476         up_read(&info->groups_sem);
477 }
478
479 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
480                                          unsigned long nr_pages, int nr_items)
481 {
482         struct super_block *sb = fs_info->sb;
483
484         if (down_read_trylock(&sb->s_umount)) {
485                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
486                 up_read(&sb->s_umount);
487         } else {
488                 /*
489                  * We needn't worry the filesystem going from r/w to r/o though
490                  * we don't acquire ->s_umount mutex, because the filesystem
491                  * should guarantee the delalloc inodes list be empty after
492                  * the filesystem is readonly(all dirty pages are written to
493                  * the disk).
494                  */
495                 btrfs_start_delalloc_roots(fs_info, nr_items);
496                 if (!current->journal_info)
497                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
498         }
499 }
500
501 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
502                                         u64 to_reclaim)
503 {
504         u64 bytes;
505         u64 nr;
506
507         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
508         nr = div64_u64(to_reclaim, bytes);
509         if (!nr)
510                 nr = 1;
511         return nr;
512 }
513
514 #define EXTENT_SIZE_PER_ITEM    SZ_256K
515
516 /*
517  * shrink metadata reservation for delalloc
518  */
519 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
520                             u64 orig, bool wait_ordered)
521 {
522         struct btrfs_space_info *space_info;
523         struct btrfs_trans_handle *trans;
524         u64 delalloc_bytes;
525         u64 dio_bytes;
526         u64 async_pages;
527         u64 items;
528         long time_left;
529         unsigned long nr_pages;
530         int loops;
531
532         /* Calc the number of the pages we need flush for space reservation */
533         items = calc_reclaim_items_nr(fs_info, to_reclaim);
534         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
535
536         trans = (struct btrfs_trans_handle *)current->journal_info;
537         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
538
539         delalloc_bytes = percpu_counter_sum_positive(
540                                                 &fs_info->delalloc_bytes);
541         dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
542         if (delalloc_bytes == 0 && dio_bytes == 0) {
543                 if (trans)
544                         return;
545                 if (wait_ordered)
546                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
547                 return;
548         }
549
550         /*
551          * If we are doing more ordered than delalloc we need to just wait on
552          * ordered extents, otherwise we'll waste time trying to flush delalloc
553          * that likely won't give us the space back we need.
554          */
555         if (dio_bytes > delalloc_bytes)
556                 wait_ordered = true;
557
558         loops = 0;
559         while ((delalloc_bytes || dio_bytes) && loops < 3) {
560                 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
561
562                 /*
563                  * Triggers inode writeback for up to nr_pages. This will invoke
564                  * ->writepages callback and trigger delalloc filling
565                  *  (btrfs_run_delalloc_range()).
566                  */
567                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
568
569                 /*
570                  * We need to wait for the compressed pages to start before
571                  * we continue.
572                  */
573                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
574                 if (!async_pages)
575                         goto skip_async;
576
577                 /*
578                  * Calculate how many compressed pages we want to be written
579                  * before we continue. I.e if there are more async pages than we
580                  * require wait_event will wait until nr_pages are written.
581                  */
582                 if (async_pages <= nr_pages)
583                         async_pages = 0;
584                 else
585                         async_pages -= nr_pages;
586
587                 wait_event(fs_info->async_submit_wait,
588                            atomic_read(&fs_info->async_delalloc_pages) <=
589                            (int)async_pages);
590 skip_async:
591                 spin_lock(&space_info->lock);
592                 if (list_empty(&space_info->tickets) &&
593                     list_empty(&space_info->priority_tickets)) {
594                         spin_unlock(&space_info->lock);
595                         break;
596                 }
597                 spin_unlock(&space_info->lock);
598
599                 loops++;
600                 if (wait_ordered && !trans) {
601                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
602                 } else {
603                         time_left = schedule_timeout_killable(1);
604                         if (time_left)
605                                 break;
606                 }
607                 delalloc_bytes = percpu_counter_sum_positive(
608                                                 &fs_info->delalloc_bytes);
609                 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
610         }
611 }
612
613 /**
614  * maybe_commit_transaction - possibly commit the transaction if its ok to
615  * @root - the root we're allocating for
616  * @bytes - the number of bytes we want to reserve
617  * @force - force the commit
618  *
619  * This will check to make sure that committing the transaction will actually
620  * get us somewhere and then commit the transaction if it does.  Otherwise it
621  * will return -ENOSPC.
622  */
623 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
624                                   struct btrfs_space_info *space_info)
625 {
626         struct reserve_ticket *ticket = NULL;
627         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
628         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
629         struct btrfs_trans_handle *trans;
630         u64 bytes_needed;
631         u64 reclaim_bytes = 0;
632         u64 cur_free_bytes = 0;
633
634         trans = (struct btrfs_trans_handle *)current->journal_info;
635         if (trans)
636                 return -EAGAIN;
637
638         spin_lock(&space_info->lock);
639         cur_free_bytes = btrfs_space_info_used(space_info, true);
640         if (cur_free_bytes < space_info->total_bytes)
641                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
642         else
643                 cur_free_bytes = 0;
644
645         if (!list_empty(&space_info->priority_tickets))
646                 ticket = list_first_entry(&space_info->priority_tickets,
647                                           struct reserve_ticket, list);
648         else if (!list_empty(&space_info->tickets))
649                 ticket = list_first_entry(&space_info->tickets,
650                                           struct reserve_ticket, list);
651         bytes_needed = (ticket) ? ticket->bytes : 0;
652
653         if (bytes_needed > cur_free_bytes)
654                 bytes_needed -= cur_free_bytes;
655         else
656                 bytes_needed = 0;
657         spin_unlock(&space_info->lock);
658
659         if (!bytes_needed)
660                 return 0;
661
662         trans = btrfs_join_transaction(fs_info->extent_root);
663         if (IS_ERR(trans))
664                 return PTR_ERR(trans);
665
666         /*
667          * See if there is enough pinned space to make this reservation, or if
668          * we have block groups that are going to be freed, allowing us to
669          * possibly do a chunk allocation the next loop through.
670          */
671         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
672             __percpu_counter_compare(&space_info->total_bytes_pinned,
673                                      bytes_needed,
674                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
675                 goto commit;
676
677         /*
678          * See if there is some space in the delayed insertion reservation for
679          * this reservation.
680          */
681         if (space_info != delayed_rsv->space_info)
682                 goto enospc;
683
684         spin_lock(&delayed_rsv->lock);
685         reclaim_bytes += delayed_rsv->reserved;
686         spin_unlock(&delayed_rsv->lock);
687
688         spin_lock(&delayed_refs_rsv->lock);
689         reclaim_bytes += delayed_refs_rsv->reserved;
690         spin_unlock(&delayed_refs_rsv->lock);
691         if (reclaim_bytes >= bytes_needed)
692                 goto commit;
693         bytes_needed -= reclaim_bytes;
694
695         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
696                                    bytes_needed,
697                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
698                 goto enospc;
699
700 commit:
701         return btrfs_commit_transaction(trans);
702 enospc:
703         btrfs_end_transaction(trans);
704         return -ENOSPC;
705 }
706
707 /*
708  * Try to flush some data based on policy set by @state. This is only advisory
709  * and may fail for various reasons. The caller is supposed to examine the
710  * state of @space_info to detect the outcome.
711  */
712 static void flush_space(struct btrfs_fs_info *fs_info,
713                        struct btrfs_space_info *space_info, u64 num_bytes,
714                        int state)
715 {
716         struct btrfs_root *root = fs_info->extent_root;
717         struct btrfs_trans_handle *trans;
718         int nr;
719         int ret = 0;
720
721         switch (state) {
722         case FLUSH_DELAYED_ITEMS_NR:
723         case FLUSH_DELAYED_ITEMS:
724                 if (state == FLUSH_DELAYED_ITEMS_NR)
725                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
726                 else
727                         nr = -1;
728
729                 trans = btrfs_join_transaction(root);
730                 if (IS_ERR(trans)) {
731                         ret = PTR_ERR(trans);
732                         break;
733                 }
734                 ret = btrfs_run_delayed_items_nr(trans, nr);
735                 btrfs_end_transaction(trans);
736                 break;
737         case FLUSH_DELALLOC:
738         case FLUSH_DELALLOC_WAIT:
739                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
740                                 state == FLUSH_DELALLOC_WAIT);
741                 break;
742         case FLUSH_DELAYED_REFS_NR:
743         case FLUSH_DELAYED_REFS:
744                 trans = btrfs_join_transaction(root);
745                 if (IS_ERR(trans)) {
746                         ret = PTR_ERR(trans);
747                         break;
748                 }
749                 if (state == FLUSH_DELAYED_REFS_NR)
750                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
751                 else
752                         nr = 0;
753                 btrfs_run_delayed_refs(trans, nr);
754                 btrfs_end_transaction(trans);
755                 break;
756         case ALLOC_CHUNK:
757         case ALLOC_CHUNK_FORCE:
758                 trans = btrfs_join_transaction(root);
759                 if (IS_ERR(trans)) {
760                         ret = PTR_ERR(trans);
761                         break;
762                 }
763                 ret = btrfs_chunk_alloc(trans,
764                                 btrfs_metadata_alloc_profile(fs_info),
765                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
766                                         CHUNK_ALLOC_FORCE);
767                 btrfs_end_transaction(trans);
768                 if (ret > 0 || ret == -ENOSPC)
769                         ret = 0;
770                 break;
771         case RUN_DELAYED_IPUTS:
772                 /*
773                  * If we have pending delayed iputs then we could free up a
774                  * bunch of pinned space, so make sure we run the iputs before
775                  * we do our pinned bytes check below.
776                  */
777                 btrfs_run_delayed_iputs(fs_info);
778                 btrfs_wait_on_delayed_iputs(fs_info);
779                 break;
780         case COMMIT_TRANS:
781                 ret = may_commit_transaction(fs_info, space_info);
782                 break;
783         default:
784                 ret = -ENOSPC;
785                 break;
786         }
787
788         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
789                                 ret);
790         return;
791 }
792
793 static inline u64
794 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
795                                  struct btrfs_space_info *space_info)
796 {
797         u64 used;
798         u64 avail;
799         u64 expected;
800         u64 to_reclaim = space_info->reclaim_size;
801
802         lockdep_assert_held(&space_info->lock);
803
804         avail = calc_available_free_space(fs_info, space_info,
805                                           BTRFS_RESERVE_FLUSH_ALL);
806         used = btrfs_space_info_used(space_info, true);
807
808         /*
809          * We may be flushing because suddenly we have less space than we had
810          * before, and now we're well over-committed based on our current free
811          * space.  If that's the case add in our overage so we make sure to put
812          * appropriate pressure on the flushing state machine.
813          */
814         if (space_info->total_bytes + avail < used)
815                 to_reclaim += used - (space_info->total_bytes + avail);
816
817         if (to_reclaim)
818                 return to_reclaim;
819
820         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
821         if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
822                                  BTRFS_RESERVE_FLUSH_ALL))
823                 return 0;
824
825         used = btrfs_space_info_used(space_info, true);
826
827         if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
828                                  BTRFS_RESERVE_FLUSH_ALL))
829                 expected = div_factor_fine(space_info->total_bytes, 95);
830         else
831                 expected = div_factor_fine(space_info->total_bytes, 90);
832
833         if (used > expected)
834                 to_reclaim = used - expected;
835         else
836                 to_reclaim = 0;
837         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
838                                      space_info->bytes_reserved);
839         return to_reclaim;
840 }
841
842 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
843                                         struct btrfs_space_info *space_info,
844                                         u64 used)
845 {
846         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
847
848         /* If we're just plain full then async reclaim just slows us down. */
849         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
850                 return 0;
851
852         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
853                 return 0;
854
855         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
856                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
857 }
858
859 /*
860  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
861  * @fs_info - fs_info for this fs
862  * @space_info - the space info we were flushing
863  *
864  * We call this when we've exhausted our flushing ability and haven't made
865  * progress in satisfying tickets.  The reservation code handles tickets in
866  * order, so if there is a large ticket first and then smaller ones we could
867  * very well satisfy the smaller tickets.  This will attempt to wake up any
868  * tickets in the list to catch this case.
869  *
870  * This function returns true if it was able to make progress by clearing out
871  * other tickets, or if it stumbles across a ticket that was smaller than the
872  * first ticket.
873  */
874 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
875                                    struct btrfs_space_info *space_info)
876 {
877         struct reserve_ticket *ticket;
878         u64 tickets_id = space_info->tickets_id;
879         u64 first_ticket_bytes = 0;
880
881         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
882                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
883                 __btrfs_dump_space_info(fs_info, space_info);
884         }
885
886         while (!list_empty(&space_info->tickets) &&
887                tickets_id == space_info->tickets_id) {
888                 ticket = list_first_entry(&space_info->tickets,
889                                           struct reserve_ticket, list);
890
891                 /*
892                  * may_commit_transaction will avoid committing the transaction
893                  * if it doesn't feel like the space reclaimed by the commit
894                  * would result in the ticket succeeding.  However if we have a
895                  * smaller ticket in the queue it may be small enough to be
896                  * satisified by committing the transaction, so if any
897                  * subsequent ticket is smaller than the first ticket go ahead
898                  * and send us back for another loop through the enospc flushing
899                  * code.
900                  */
901                 if (first_ticket_bytes == 0)
902                         first_ticket_bytes = ticket->bytes;
903                 else if (first_ticket_bytes > ticket->bytes)
904                         return true;
905
906                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
907                         btrfs_info(fs_info, "failing ticket with %llu bytes",
908                                    ticket->bytes);
909
910                 remove_ticket(space_info, ticket);
911                 ticket->error = -ENOSPC;
912                 wake_up(&ticket->wait);
913
914                 /*
915                  * We're just throwing tickets away, so more flushing may not
916                  * trip over btrfs_try_granting_tickets, so we need to call it
917                  * here to see if we can make progress with the next ticket in
918                  * the list.
919                  */
920                 btrfs_try_granting_tickets(fs_info, space_info);
921         }
922         return (tickets_id != space_info->tickets_id);
923 }
924
925 /*
926  * This is for normal flushers, we can wait all goddamned day if we want to.  We
927  * will loop and continuously try to flush as long as we are making progress.
928  * We count progress as clearing off tickets each time we have to loop.
929  */
930 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
931 {
932         struct btrfs_fs_info *fs_info;
933         struct btrfs_space_info *space_info;
934         u64 to_reclaim;
935         int flush_state;
936         int commit_cycles = 0;
937         u64 last_tickets_id;
938
939         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
940         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
941
942         spin_lock(&space_info->lock);
943         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
944         if (!to_reclaim) {
945                 space_info->flush = 0;
946                 spin_unlock(&space_info->lock);
947                 return;
948         }
949         last_tickets_id = space_info->tickets_id;
950         spin_unlock(&space_info->lock);
951
952         flush_state = FLUSH_DELAYED_ITEMS_NR;
953         do {
954                 flush_space(fs_info, space_info, to_reclaim, flush_state);
955                 spin_lock(&space_info->lock);
956                 if (list_empty(&space_info->tickets)) {
957                         space_info->flush = 0;
958                         spin_unlock(&space_info->lock);
959                         return;
960                 }
961                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
962                                                               space_info);
963                 if (last_tickets_id == space_info->tickets_id) {
964                         flush_state++;
965                 } else {
966                         last_tickets_id = space_info->tickets_id;
967                         flush_state = FLUSH_DELAYED_ITEMS_NR;
968                         if (commit_cycles)
969                                 commit_cycles--;
970                 }
971
972                 /*
973                  * We don't want to force a chunk allocation until we've tried
974                  * pretty hard to reclaim space.  Think of the case where we
975                  * freed up a bunch of space and so have a lot of pinned space
976                  * to reclaim.  We would rather use that than possibly create a
977                  * underutilized metadata chunk.  So if this is our first run
978                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
979                  * commit the transaction.  If nothing has changed the next go
980                  * around then we can force a chunk allocation.
981                  */
982                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
983                         flush_state++;
984
985                 if (flush_state > COMMIT_TRANS) {
986                         commit_cycles++;
987                         if (commit_cycles > 2) {
988                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
989                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
990                                         commit_cycles--;
991                                 } else {
992                                         space_info->flush = 0;
993                                 }
994                         } else {
995                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
996                         }
997                 }
998                 spin_unlock(&space_info->lock);
999         } while (flush_state <= COMMIT_TRANS);
1000 }
1001
1002 void btrfs_init_async_reclaim_work(struct work_struct *work)
1003 {
1004         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
1005 }
1006
1007 static const enum btrfs_flush_state priority_flush_states[] = {
1008         FLUSH_DELAYED_ITEMS_NR,
1009         FLUSH_DELAYED_ITEMS,
1010         ALLOC_CHUNK,
1011 };
1012
1013 static const enum btrfs_flush_state evict_flush_states[] = {
1014         FLUSH_DELAYED_ITEMS_NR,
1015         FLUSH_DELAYED_ITEMS,
1016         FLUSH_DELAYED_REFS_NR,
1017         FLUSH_DELAYED_REFS,
1018         FLUSH_DELALLOC,
1019         FLUSH_DELALLOC_WAIT,
1020         ALLOC_CHUNK,
1021         COMMIT_TRANS,
1022 };
1023
1024 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1025                                 struct btrfs_space_info *space_info,
1026                                 struct reserve_ticket *ticket,
1027                                 const enum btrfs_flush_state *states,
1028                                 int states_nr)
1029 {
1030         u64 to_reclaim;
1031         int flush_state;
1032
1033         spin_lock(&space_info->lock);
1034         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1035         if (!to_reclaim) {
1036                 spin_unlock(&space_info->lock);
1037                 return;
1038         }
1039         spin_unlock(&space_info->lock);
1040
1041         flush_state = 0;
1042         do {
1043                 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1044                 flush_state++;
1045                 spin_lock(&space_info->lock);
1046                 if (ticket->bytes == 0) {
1047                         spin_unlock(&space_info->lock);
1048                         return;
1049                 }
1050                 spin_unlock(&space_info->lock);
1051         } while (flush_state < states_nr);
1052 }
1053
1054 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1055                                 struct btrfs_space_info *space_info,
1056                                 struct reserve_ticket *ticket)
1057
1058 {
1059         DEFINE_WAIT(wait);
1060         int ret = 0;
1061
1062         spin_lock(&space_info->lock);
1063         while (ticket->bytes > 0 && ticket->error == 0) {
1064                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1065                 if (ret) {
1066                         /*
1067                          * Delete us from the list. After we unlock the space
1068                          * info, we don't want the async reclaim job to reserve
1069                          * space for this ticket. If that would happen, then the
1070                          * ticket's task would not known that space was reserved
1071                          * despite getting an error, resulting in a space leak
1072                          * (bytes_may_use counter of our space_info).
1073                          */
1074                         remove_ticket(space_info, ticket);
1075                         ticket->error = -EINTR;
1076                         break;
1077                 }
1078                 spin_unlock(&space_info->lock);
1079
1080                 schedule();
1081
1082                 finish_wait(&ticket->wait, &wait);
1083                 spin_lock(&space_info->lock);
1084         }
1085         spin_unlock(&space_info->lock);
1086 }
1087
1088 /**
1089  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1090  * @fs_info - the fs
1091  * @space_info - the space_info for the reservation
1092  * @ticket - the ticket for the reservation
1093  * @flush - how much we can flush
1094  *
1095  * This does the work of figuring out how to flush for the ticket, waiting for
1096  * the reservation, and returning the appropriate error if there is one.
1097  */
1098 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1099                                  struct btrfs_space_info *space_info,
1100                                  struct reserve_ticket *ticket,
1101                                  enum btrfs_reserve_flush_enum flush)
1102 {
1103         int ret;
1104
1105         switch (flush) {
1106         case BTRFS_RESERVE_FLUSH_ALL:
1107                 wait_reserve_ticket(fs_info, space_info, ticket);
1108                 break;
1109         case BTRFS_RESERVE_FLUSH_LIMIT:
1110                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1111                                                 priority_flush_states,
1112                                                 ARRAY_SIZE(priority_flush_states));
1113                 break;
1114         case BTRFS_RESERVE_FLUSH_EVICT:
1115                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1116                                                 evict_flush_states,
1117                                                 ARRAY_SIZE(evict_flush_states));
1118                 break;
1119         default:
1120                 ASSERT(0);
1121                 break;
1122         }
1123
1124         spin_lock(&space_info->lock);
1125         ret = ticket->error;
1126         if (ticket->bytes || ticket->error) {
1127                 /*
1128                  * Need to delete here for priority tickets. For regular tickets
1129                  * either the async reclaim job deletes the ticket from the list
1130                  * or we delete it ourselves at wait_reserve_ticket().
1131                  */
1132                 remove_ticket(space_info, ticket);
1133                 if (!ret)
1134                         ret = -ENOSPC;
1135         }
1136         spin_unlock(&space_info->lock);
1137         ASSERT(list_empty(&ticket->list));
1138         /*
1139          * Check that we can't have an error set if the reservation succeeded,
1140          * as that would confuse tasks and lead them to error out without
1141          * releasing reserved space (if an error happens the expectation is that
1142          * space wasn't reserved at all).
1143          */
1144         ASSERT(!(ticket->bytes == 0 && ticket->error));
1145         return ret;
1146 }
1147
1148 /**
1149  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1150  * @root - the root we're allocating for
1151  * @space_info - the space info we want to allocate from
1152  * @orig_bytes - the number of bytes we want
1153  * @flush - whether or not we can flush to make our reservation
1154  *
1155  * This will reserve orig_bytes number of bytes from the space info associated
1156  * with the block_rsv.  If there is not enough space it will make an attempt to
1157  * flush out space to make room.  It will do this by flushing delalloc if
1158  * possible or committing the transaction.  If flush is 0 then no attempts to
1159  * regain reservations will be made and this will fail if there is not enough
1160  * space already.
1161  */
1162 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1163                                     struct btrfs_space_info *space_info,
1164                                     u64 orig_bytes,
1165                                     enum btrfs_reserve_flush_enum flush)
1166 {
1167         struct reserve_ticket ticket;
1168         u64 used;
1169         int ret = 0;
1170         bool pending_tickets;
1171
1172         ASSERT(orig_bytes);
1173         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1174
1175         spin_lock(&space_info->lock);
1176         ret = -ENOSPC;
1177         used = btrfs_space_info_used(space_info, true);
1178         pending_tickets = !list_empty(&space_info->tickets) ||
1179                 !list_empty(&space_info->priority_tickets);
1180
1181         /*
1182          * Carry on if we have enough space (short-circuit) OR call
1183          * can_overcommit() to ensure we can overcommit to continue.
1184          */
1185         if (!pending_tickets &&
1186             ((used + orig_bytes <= space_info->total_bytes) ||
1187              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1188                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1189                                                       orig_bytes);
1190                 ret = 0;
1191         }
1192
1193         /*
1194          * If we couldn't make a reservation then setup our reservation ticket
1195          * and kick the async worker if it's not already running.
1196          *
1197          * If we are a priority flusher then we just need to add our ticket to
1198          * the list and we will do our own flushing further down.
1199          */
1200         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1201                 ASSERT(space_info->reclaim_size >= 0);
1202                 ticket.bytes = orig_bytes;
1203                 ticket.error = 0;
1204                 space_info->reclaim_size += ticket.bytes;
1205                 init_waitqueue_head(&ticket.wait);
1206                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
1207                         list_add_tail(&ticket.list, &space_info->tickets);
1208                         if (!space_info->flush) {
1209                                 space_info->flush = 1;
1210                                 trace_btrfs_trigger_flush(fs_info,
1211                                                           space_info->flags,
1212                                                           orig_bytes, flush,
1213                                                           "enospc");
1214                                 queue_work(system_unbound_wq,
1215                                            &fs_info->async_reclaim_work);
1216                         }
1217                 } else {
1218                         list_add_tail(&ticket.list,
1219                                       &space_info->priority_tickets);
1220                 }
1221         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1222                 used += orig_bytes;
1223                 /*
1224                  * We will do the space reservation dance during log replay,
1225                  * which means we won't have fs_info->fs_root set, so don't do
1226                  * the async reclaim as we will panic.
1227                  */
1228                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1229                     need_do_async_reclaim(fs_info, space_info, used) &&
1230                     !work_busy(&fs_info->async_reclaim_work)) {
1231                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1232                                                   orig_bytes, flush, "preempt");
1233                         queue_work(system_unbound_wq,
1234                                    &fs_info->async_reclaim_work);
1235                 }
1236         }
1237         spin_unlock(&space_info->lock);
1238         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1239                 return ret;
1240
1241         return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1242 }
1243
1244 /**
1245  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1246  * @root - the root we're allocating for
1247  * @block_rsv - the block_rsv we're allocating for
1248  * @orig_bytes - the number of bytes we want
1249  * @flush - whether or not we can flush to make our reservation
1250  *
1251  * This will reserve orig_bytes number of bytes from the space info associated
1252  * with the block_rsv.  If there is not enough space it will make an attempt to
1253  * flush out space to make room.  It will do this by flushing delalloc if
1254  * possible or committing the transaction.  If flush is 0 then no attempts to
1255  * regain reservations will be made and this will fail if there is not enough
1256  * space already.
1257  */
1258 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1259                                  struct btrfs_block_rsv *block_rsv,
1260                                  u64 orig_bytes,
1261                                  enum btrfs_reserve_flush_enum flush)
1262 {
1263         struct btrfs_fs_info *fs_info = root->fs_info;
1264         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1265         int ret;
1266
1267         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1268                                        orig_bytes, flush);
1269         if (ret == -ENOSPC &&
1270             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1271                 if (block_rsv != global_rsv &&
1272                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1273                         ret = 0;
1274         }
1275         if (ret == -ENOSPC) {
1276                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1277                                               block_rsv->space_info->flags,
1278                                               orig_bytes, 1);
1279
1280                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1281                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1282                                               orig_bytes, 0);
1283         }
1284         return ret;
1285 }