OSDN Git Service

Merge tag 'prlimit-tasklist_lock-for-v5.18' of git://git.kernel.org/pub/scm/linux...
[uclinux-h8/linux.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25
26 #define BTRFS_ROOT_TRANS_TAG 0
27
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |                                                Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update     |
83  * | super blocks.                                  |
84  * |                                                |
85  * | At this stage, new transaction is allowed to   |
86  * | start.                                         |
87  * | All new start_transaction() calls will be      |
88  * | attached to transid N+1.                       |
89  * |                                                |
90  * | To next stage:                                 |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices                      |
93  * V                                                |
94  * Transaction N [[TRANS_STATE_COMPLETED]]          V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.            | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100         [TRANS_STATE_RUNNING]           = 0U,
101         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
102         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
103                                            __TRANS_ATTACH |
104                                            __TRANS_JOIN |
105                                            __TRANS_JOIN_NOSTART),
106         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
107                                            __TRANS_ATTACH |
108                                            __TRANS_JOIN |
109                                            __TRANS_JOIN_NOLOCK |
110                                            __TRANS_JOIN_NOSTART),
111         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
112                                            __TRANS_ATTACH |
113                                            __TRANS_JOIN |
114                                            __TRANS_JOIN_NOLOCK |
115                                            __TRANS_JOIN_NOSTART),
116         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
117                                            __TRANS_ATTACH |
118                                            __TRANS_JOIN |
119                                            __TRANS_JOIN_NOLOCK |
120                                            __TRANS_JOIN_NOSTART),
121 };
122
123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125         WARN_ON(refcount_read(&transaction->use_count) == 0);
126         if (refcount_dec_and_test(&transaction->use_count)) {
127                 BUG_ON(!list_empty(&transaction->list));
128                 WARN_ON(!RB_EMPTY_ROOT(
129                                 &transaction->delayed_refs.href_root.rb_root));
130                 WARN_ON(!RB_EMPTY_ROOT(
131                                 &transaction->delayed_refs.dirty_extent_root));
132                 if (transaction->delayed_refs.pending_csums)
133                         btrfs_err(transaction->fs_info,
134                                   "pending csums is %llu",
135                                   transaction->delayed_refs.pending_csums);
136                 /*
137                  * If any block groups are found in ->deleted_bgs then it's
138                  * because the transaction was aborted and a commit did not
139                  * happen (things failed before writing the new superblock
140                  * and calling btrfs_finish_extent_commit()), so we can not
141                  * discard the physical locations of the block groups.
142                  */
143                 while (!list_empty(&transaction->deleted_bgs)) {
144                         struct btrfs_block_group *cache;
145
146                         cache = list_first_entry(&transaction->deleted_bgs,
147                                                  struct btrfs_block_group,
148                                                  bg_list);
149                         list_del_init(&cache->bg_list);
150                         btrfs_unfreeze_block_group(cache);
151                         btrfs_put_block_group(cache);
152                 }
153                 WARN_ON(!list_empty(&transaction->dev_update_list));
154                 kfree(transaction);
155         }
156 }
157
158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160         struct btrfs_transaction *cur_trans = trans->transaction;
161         struct btrfs_fs_info *fs_info = trans->fs_info;
162         struct btrfs_root *root, *tmp;
163         struct btrfs_caching_control *caching_ctl, *next;
164
165         /*
166          * At this point no one can be using this transaction to modify any tree
167          * and no one can start another transaction to modify any tree either.
168          */
169         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
170
171         down_write(&fs_info->commit_root_sem);
172
173         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
174                 fs_info->last_reloc_trans = trans->transid;
175
176         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
177                                  dirty_list) {
178                 list_del_init(&root->dirty_list);
179                 free_extent_buffer(root->commit_root);
180                 root->commit_root = btrfs_root_node(root);
181                 extent_io_tree_release(&root->dirty_log_pages);
182                 btrfs_qgroup_clean_swapped_blocks(root);
183         }
184
185         /* We can free old roots now. */
186         spin_lock(&cur_trans->dropped_roots_lock);
187         while (!list_empty(&cur_trans->dropped_roots)) {
188                 root = list_first_entry(&cur_trans->dropped_roots,
189                                         struct btrfs_root, root_list);
190                 list_del_init(&root->root_list);
191                 spin_unlock(&cur_trans->dropped_roots_lock);
192                 btrfs_free_log(trans, root);
193                 btrfs_drop_and_free_fs_root(fs_info, root);
194                 spin_lock(&cur_trans->dropped_roots_lock);
195         }
196         spin_unlock(&cur_trans->dropped_roots_lock);
197
198         /*
199          * We have to update the last_byte_to_unpin under the commit_root_sem,
200          * at the same time we swap out the commit roots.
201          *
202          * This is because we must have a real view of the last spot the caching
203          * kthreads were while caching.  Consider the following views of the
204          * extent tree for a block group
205          *
206          * commit root
207          * +----+----+----+----+----+----+----+
208          * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
209          * +----+----+----+----+----+----+----+
210          * 0    1    2    3    4    5    6    7
211          *
212          * new commit root
213          * +----+----+----+----+----+----+----+
214          * |    |    |    |\\\\|    |    |\\\\|
215          * +----+----+----+----+----+----+----+
216          * 0    1    2    3    4    5    6    7
217          *
218          * If the cache_ctl->progress was at 3, then we are only allowed to
219          * unpin [0,1) and [2,3], because the caching thread has already
220          * processed those extents.  We are not allowed to unpin [5,6), because
221          * the caching thread will re-start it's search from 3, and thus find
222          * the hole from [4,6) to add to the free space cache.
223          */
224         spin_lock(&fs_info->block_group_cache_lock);
225         list_for_each_entry_safe(caching_ctl, next,
226                                  &fs_info->caching_block_groups, list) {
227                 struct btrfs_block_group *cache = caching_ctl->block_group;
228
229                 if (btrfs_block_group_done(cache)) {
230                         cache->last_byte_to_unpin = (u64)-1;
231                         list_del_init(&caching_ctl->list);
232                         btrfs_put_caching_control(caching_ctl);
233                 } else {
234                         cache->last_byte_to_unpin = caching_ctl->progress;
235                 }
236         }
237         spin_unlock(&fs_info->block_group_cache_lock);
238         up_write(&fs_info->commit_root_sem);
239 }
240
241 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
242                                          unsigned int type)
243 {
244         if (type & TRANS_EXTWRITERS)
245                 atomic_inc(&trans->num_extwriters);
246 }
247
248 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
249                                          unsigned int type)
250 {
251         if (type & TRANS_EXTWRITERS)
252                 atomic_dec(&trans->num_extwriters);
253 }
254
255 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
256                                           unsigned int type)
257 {
258         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
259 }
260
261 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
262 {
263         return atomic_read(&trans->num_extwriters);
264 }
265
266 /*
267  * To be called after doing the chunk btree updates right after allocating a new
268  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
269  * chunk after all chunk btree updates and after finishing the second phase of
270  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
271  * group had its chunk item insertion delayed to the second phase.
272  */
273 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
274 {
275         struct btrfs_fs_info *fs_info = trans->fs_info;
276
277         if (!trans->chunk_bytes_reserved)
278                 return;
279
280         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
281                                 trans->chunk_bytes_reserved, NULL);
282         trans->chunk_bytes_reserved = 0;
283 }
284
285 /*
286  * either allocate a new transaction or hop into the existing one
287  */
288 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
289                                      unsigned int type)
290 {
291         struct btrfs_transaction *cur_trans;
292
293         spin_lock(&fs_info->trans_lock);
294 loop:
295         /* The file system has been taken offline. No new transactions. */
296         if (BTRFS_FS_ERROR(fs_info)) {
297                 spin_unlock(&fs_info->trans_lock);
298                 return -EROFS;
299         }
300
301         cur_trans = fs_info->running_transaction;
302         if (cur_trans) {
303                 if (TRANS_ABORTED(cur_trans)) {
304                         spin_unlock(&fs_info->trans_lock);
305                         return cur_trans->aborted;
306                 }
307                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
308                         spin_unlock(&fs_info->trans_lock);
309                         return -EBUSY;
310                 }
311                 refcount_inc(&cur_trans->use_count);
312                 atomic_inc(&cur_trans->num_writers);
313                 extwriter_counter_inc(cur_trans, type);
314                 spin_unlock(&fs_info->trans_lock);
315                 return 0;
316         }
317         spin_unlock(&fs_info->trans_lock);
318
319         /*
320          * If we are ATTACH, we just want to catch the current transaction,
321          * and commit it. If there is no transaction, just return ENOENT.
322          */
323         if (type == TRANS_ATTACH)
324                 return -ENOENT;
325
326         /*
327          * JOIN_NOLOCK only happens during the transaction commit, so
328          * it is impossible that ->running_transaction is NULL
329          */
330         BUG_ON(type == TRANS_JOIN_NOLOCK);
331
332         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
333         if (!cur_trans)
334                 return -ENOMEM;
335
336         spin_lock(&fs_info->trans_lock);
337         if (fs_info->running_transaction) {
338                 /*
339                  * someone started a transaction after we unlocked.  Make sure
340                  * to redo the checks above
341                  */
342                 kfree(cur_trans);
343                 goto loop;
344         } else if (BTRFS_FS_ERROR(fs_info)) {
345                 spin_unlock(&fs_info->trans_lock);
346                 kfree(cur_trans);
347                 return -EROFS;
348         }
349
350         cur_trans->fs_info = fs_info;
351         atomic_set(&cur_trans->pending_ordered, 0);
352         init_waitqueue_head(&cur_trans->pending_wait);
353         atomic_set(&cur_trans->num_writers, 1);
354         extwriter_counter_init(cur_trans, type);
355         init_waitqueue_head(&cur_trans->writer_wait);
356         init_waitqueue_head(&cur_trans->commit_wait);
357         cur_trans->state = TRANS_STATE_RUNNING;
358         /*
359          * One for this trans handle, one so it will live on until we
360          * commit the transaction.
361          */
362         refcount_set(&cur_trans->use_count, 2);
363         cur_trans->flags = 0;
364         cur_trans->start_time = ktime_get_seconds();
365
366         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
367
368         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
369         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
370         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
371
372         /*
373          * although the tree mod log is per file system and not per transaction,
374          * the log must never go across transaction boundaries.
375          */
376         smp_mb();
377         if (!list_empty(&fs_info->tree_mod_seq_list))
378                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
379         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
380                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
381         atomic64_set(&fs_info->tree_mod_seq, 0);
382
383         spin_lock_init(&cur_trans->delayed_refs.lock);
384
385         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
386         INIT_LIST_HEAD(&cur_trans->dev_update_list);
387         INIT_LIST_HEAD(&cur_trans->switch_commits);
388         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
389         INIT_LIST_HEAD(&cur_trans->io_bgs);
390         INIT_LIST_HEAD(&cur_trans->dropped_roots);
391         mutex_init(&cur_trans->cache_write_mutex);
392         spin_lock_init(&cur_trans->dirty_bgs_lock);
393         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
394         spin_lock_init(&cur_trans->dropped_roots_lock);
395         INIT_LIST_HEAD(&cur_trans->releasing_ebs);
396         spin_lock_init(&cur_trans->releasing_ebs_lock);
397         list_add_tail(&cur_trans->list, &fs_info->trans_list);
398         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
399                         IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
400         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
401                         IO_TREE_FS_PINNED_EXTENTS, NULL);
402         fs_info->generation++;
403         cur_trans->transid = fs_info->generation;
404         fs_info->running_transaction = cur_trans;
405         cur_trans->aborted = 0;
406         spin_unlock(&fs_info->trans_lock);
407
408         return 0;
409 }
410
411 /*
412  * This does all the record keeping required to make sure that a shareable root
413  * is properly recorded in a given transaction.  This is required to make sure
414  * the old root from before we joined the transaction is deleted when the
415  * transaction commits.
416  */
417 static int record_root_in_trans(struct btrfs_trans_handle *trans,
418                                struct btrfs_root *root,
419                                int force)
420 {
421         struct btrfs_fs_info *fs_info = root->fs_info;
422         int ret = 0;
423
424         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
425             root->last_trans < trans->transid) || force) {
426                 WARN_ON(!force && root->commit_root != root->node);
427
428                 /*
429                  * see below for IN_TRANS_SETUP usage rules
430                  * we have the reloc mutex held now, so there
431                  * is only one writer in this function
432                  */
433                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
434
435                 /* make sure readers find IN_TRANS_SETUP before
436                  * they find our root->last_trans update
437                  */
438                 smp_wmb();
439
440                 spin_lock(&fs_info->fs_roots_radix_lock);
441                 if (root->last_trans == trans->transid && !force) {
442                         spin_unlock(&fs_info->fs_roots_radix_lock);
443                         return 0;
444                 }
445                 radix_tree_tag_set(&fs_info->fs_roots_radix,
446                                    (unsigned long)root->root_key.objectid,
447                                    BTRFS_ROOT_TRANS_TAG);
448                 spin_unlock(&fs_info->fs_roots_radix_lock);
449                 root->last_trans = trans->transid;
450
451                 /* this is pretty tricky.  We don't want to
452                  * take the relocation lock in btrfs_record_root_in_trans
453                  * unless we're really doing the first setup for this root in
454                  * this transaction.
455                  *
456                  * Normally we'd use root->last_trans as a flag to decide
457                  * if we want to take the expensive mutex.
458                  *
459                  * But, we have to set root->last_trans before we
460                  * init the relocation root, otherwise, we trip over warnings
461                  * in ctree.c.  The solution used here is to flag ourselves
462                  * with root IN_TRANS_SETUP.  When this is 1, we're still
463                  * fixing up the reloc trees and everyone must wait.
464                  *
465                  * When this is zero, they can trust root->last_trans and fly
466                  * through btrfs_record_root_in_trans without having to take the
467                  * lock.  smp_wmb() makes sure that all the writes above are
468                  * done before we pop in the zero below
469                  */
470                 ret = btrfs_init_reloc_root(trans, root);
471                 smp_mb__before_atomic();
472                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
473         }
474         return ret;
475 }
476
477
478 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
479                             struct btrfs_root *root)
480 {
481         struct btrfs_fs_info *fs_info = root->fs_info;
482         struct btrfs_transaction *cur_trans = trans->transaction;
483
484         /* Add ourselves to the transaction dropped list */
485         spin_lock(&cur_trans->dropped_roots_lock);
486         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
487         spin_unlock(&cur_trans->dropped_roots_lock);
488
489         /* Make sure we don't try to update the root at commit time */
490         spin_lock(&fs_info->fs_roots_radix_lock);
491         radix_tree_tag_clear(&fs_info->fs_roots_radix,
492                              (unsigned long)root->root_key.objectid,
493                              BTRFS_ROOT_TRANS_TAG);
494         spin_unlock(&fs_info->fs_roots_radix_lock);
495 }
496
497 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
498                                struct btrfs_root *root)
499 {
500         struct btrfs_fs_info *fs_info = root->fs_info;
501         int ret;
502
503         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
504                 return 0;
505
506         /*
507          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
508          * and barriers
509          */
510         smp_rmb();
511         if (root->last_trans == trans->transid &&
512             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
513                 return 0;
514
515         mutex_lock(&fs_info->reloc_mutex);
516         ret = record_root_in_trans(trans, root, 0);
517         mutex_unlock(&fs_info->reloc_mutex);
518
519         return ret;
520 }
521
522 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
523 {
524         return (trans->state >= TRANS_STATE_COMMIT_START &&
525                 trans->state < TRANS_STATE_UNBLOCKED &&
526                 !TRANS_ABORTED(trans));
527 }
528
529 /* wait for commit against the current transaction to become unblocked
530  * when this is done, it is safe to start a new transaction, but the current
531  * transaction might not be fully on disk.
532  */
533 static void wait_current_trans(struct btrfs_fs_info *fs_info)
534 {
535         struct btrfs_transaction *cur_trans;
536
537         spin_lock(&fs_info->trans_lock);
538         cur_trans = fs_info->running_transaction;
539         if (cur_trans && is_transaction_blocked(cur_trans)) {
540                 refcount_inc(&cur_trans->use_count);
541                 spin_unlock(&fs_info->trans_lock);
542
543                 wait_event(fs_info->transaction_wait,
544                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
545                            TRANS_ABORTED(cur_trans));
546                 btrfs_put_transaction(cur_trans);
547         } else {
548                 spin_unlock(&fs_info->trans_lock);
549         }
550 }
551
552 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
553 {
554         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
555                 return 0;
556
557         if (type == TRANS_START)
558                 return 1;
559
560         return 0;
561 }
562
563 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
564 {
565         struct btrfs_fs_info *fs_info = root->fs_info;
566
567         if (!fs_info->reloc_ctl ||
568             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
569             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
570             root->reloc_root)
571                 return false;
572
573         return true;
574 }
575
576 static struct btrfs_trans_handle *
577 start_transaction(struct btrfs_root *root, unsigned int num_items,
578                   unsigned int type, enum btrfs_reserve_flush_enum flush,
579                   bool enforce_qgroups)
580 {
581         struct btrfs_fs_info *fs_info = root->fs_info;
582         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
583         struct btrfs_trans_handle *h;
584         struct btrfs_transaction *cur_trans;
585         u64 num_bytes = 0;
586         u64 qgroup_reserved = 0;
587         bool reloc_reserved = false;
588         bool do_chunk_alloc = false;
589         int ret;
590
591         if (BTRFS_FS_ERROR(fs_info))
592                 return ERR_PTR(-EROFS);
593
594         if (current->journal_info) {
595                 WARN_ON(type & TRANS_EXTWRITERS);
596                 h = current->journal_info;
597                 refcount_inc(&h->use_count);
598                 WARN_ON(refcount_read(&h->use_count) > 2);
599                 h->orig_rsv = h->block_rsv;
600                 h->block_rsv = NULL;
601                 goto got_it;
602         }
603
604         /*
605          * Do the reservation before we join the transaction so we can do all
606          * the appropriate flushing if need be.
607          */
608         if (num_items && root != fs_info->chunk_root) {
609                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
610                 u64 delayed_refs_bytes = 0;
611
612                 qgroup_reserved = num_items * fs_info->nodesize;
613                 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
614                                 enforce_qgroups);
615                 if (ret)
616                         return ERR_PTR(ret);
617
618                 /*
619                  * We want to reserve all the bytes we may need all at once, so
620                  * we only do 1 enospc flushing cycle per transaction start.  We
621                  * accomplish this by simply assuming we'll do 2 x num_items
622                  * worth of delayed refs updates in this trans handle, and
623                  * refill that amount for whatever is missing in the reserve.
624                  */
625                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
626                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
627                     delayed_refs_rsv->full == 0) {
628                         delayed_refs_bytes = num_bytes;
629                         num_bytes <<= 1;
630                 }
631
632                 /*
633                  * Do the reservation for the relocation root creation
634                  */
635                 if (need_reserve_reloc_root(root)) {
636                         num_bytes += fs_info->nodesize;
637                         reloc_reserved = true;
638                 }
639
640                 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
641                 if (ret)
642                         goto reserve_fail;
643                 if (delayed_refs_bytes) {
644                         btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
645                                                           delayed_refs_bytes);
646                         num_bytes -= delayed_refs_bytes;
647                 }
648
649                 if (rsv->space_info->force_alloc)
650                         do_chunk_alloc = true;
651         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
652                    !delayed_refs_rsv->full) {
653                 /*
654                  * Some people call with btrfs_start_transaction(root, 0)
655                  * because they can be throttled, but have some other mechanism
656                  * for reserving space.  We still want these guys to refill the
657                  * delayed block_rsv so just add 1 items worth of reservation
658                  * here.
659                  */
660                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
661                 if (ret)
662                         goto reserve_fail;
663         }
664 again:
665         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
666         if (!h) {
667                 ret = -ENOMEM;
668                 goto alloc_fail;
669         }
670
671         /*
672          * If we are JOIN_NOLOCK we're already committing a transaction and
673          * waiting on this guy, so we don't need to do the sb_start_intwrite
674          * because we're already holding a ref.  We need this because we could
675          * have raced in and did an fsync() on a file which can kick a commit
676          * and then we deadlock with somebody doing a freeze.
677          *
678          * If we are ATTACH, it means we just want to catch the current
679          * transaction and commit it, so we needn't do sb_start_intwrite(). 
680          */
681         if (type & __TRANS_FREEZABLE)
682                 sb_start_intwrite(fs_info->sb);
683
684         if (may_wait_transaction(fs_info, type))
685                 wait_current_trans(fs_info);
686
687         do {
688                 ret = join_transaction(fs_info, type);
689                 if (ret == -EBUSY) {
690                         wait_current_trans(fs_info);
691                         if (unlikely(type == TRANS_ATTACH ||
692                                      type == TRANS_JOIN_NOSTART))
693                                 ret = -ENOENT;
694                 }
695         } while (ret == -EBUSY);
696
697         if (ret < 0)
698                 goto join_fail;
699
700         cur_trans = fs_info->running_transaction;
701
702         h->transid = cur_trans->transid;
703         h->transaction = cur_trans;
704         refcount_set(&h->use_count, 1);
705         h->fs_info = root->fs_info;
706
707         h->type = type;
708         INIT_LIST_HEAD(&h->new_bgs);
709
710         smp_mb();
711         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
712             may_wait_transaction(fs_info, type)) {
713                 current->journal_info = h;
714                 btrfs_commit_transaction(h);
715                 goto again;
716         }
717
718         if (num_bytes) {
719                 trace_btrfs_space_reservation(fs_info, "transaction",
720                                               h->transid, num_bytes, 1);
721                 h->block_rsv = &fs_info->trans_block_rsv;
722                 h->bytes_reserved = num_bytes;
723                 h->reloc_reserved = reloc_reserved;
724         }
725
726 got_it:
727         if (!current->journal_info)
728                 current->journal_info = h;
729
730         /*
731          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
732          * ALLOC_FORCE the first run through, and then we won't allocate for
733          * anybody else who races in later.  We don't care about the return
734          * value here.
735          */
736         if (do_chunk_alloc && num_bytes) {
737                 u64 flags = h->block_rsv->space_info->flags;
738
739                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
740                                   CHUNK_ALLOC_NO_FORCE);
741         }
742
743         /*
744          * btrfs_record_root_in_trans() needs to alloc new extents, and may
745          * call btrfs_join_transaction() while we're also starting a
746          * transaction.
747          *
748          * Thus it need to be called after current->journal_info initialized,
749          * or we can deadlock.
750          */
751         ret = btrfs_record_root_in_trans(h, root);
752         if (ret) {
753                 /*
754                  * The transaction handle is fully initialized and linked with
755                  * other structures so it needs to be ended in case of errors,
756                  * not just freed.
757                  */
758                 btrfs_end_transaction(h);
759                 return ERR_PTR(ret);
760         }
761
762         return h;
763
764 join_fail:
765         if (type & __TRANS_FREEZABLE)
766                 sb_end_intwrite(fs_info->sb);
767         kmem_cache_free(btrfs_trans_handle_cachep, h);
768 alloc_fail:
769         if (num_bytes)
770                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
771                                         num_bytes, NULL);
772 reserve_fail:
773         btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
774         return ERR_PTR(ret);
775 }
776
777 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
778                                                    unsigned int num_items)
779 {
780         return start_transaction(root, num_items, TRANS_START,
781                                  BTRFS_RESERVE_FLUSH_ALL, true);
782 }
783
784 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
785                                         struct btrfs_root *root,
786                                         unsigned int num_items)
787 {
788         return start_transaction(root, num_items, TRANS_START,
789                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
790 }
791
792 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
793 {
794         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
795                                  true);
796 }
797
798 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
799 {
800         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
801                                  BTRFS_RESERVE_NO_FLUSH, true);
802 }
803
804 /*
805  * Similar to regular join but it never starts a transaction when none is
806  * running or after waiting for the current one to finish.
807  */
808 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
809 {
810         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
811                                  BTRFS_RESERVE_NO_FLUSH, true);
812 }
813
814 /*
815  * btrfs_attach_transaction() - catch the running transaction
816  *
817  * It is used when we want to commit the current the transaction, but
818  * don't want to start a new one.
819  *
820  * Note: If this function return -ENOENT, it just means there is no
821  * running transaction. But it is possible that the inactive transaction
822  * is still in the memory, not fully on disk. If you hope there is no
823  * inactive transaction in the fs when -ENOENT is returned, you should
824  * invoke
825  *     btrfs_attach_transaction_barrier()
826  */
827 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
828 {
829         return start_transaction(root, 0, TRANS_ATTACH,
830                                  BTRFS_RESERVE_NO_FLUSH, true);
831 }
832
833 /*
834  * btrfs_attach_transaction_barrier() - catch the running transaction
835  *
836  * It is similar to the above function, the difference is this one
837  * will wait for all the inactive transactions until they fully
838  * complete.
839  */
840 struct btrfs_trans_handle *
841 btrfs_attach_transaction_barrier(struct btrfs_root *root)
842 {
843         struct btrfs_trans_handle *trans;
844
845         trans = start_transaction(root, 0, TRANS_ATTACH,
846                                   BTRFS_RESERVE_NO_FLUSH, true);
847         if (trans == ERR_PTR(-ENOENT))
848                 btrfs_wait_for_commit(root->fs_info, 0);
849
850         return trans;
851 }
852
853 /* Wait for a transaction commit to reach at least the given state. */
854 static noinline void wait_for_commit(struct btrfs_transaction *commit,
855                                      const enum btrfs_trans_state min_state)
856 {
857         struct btrfs_fs_info *fs_info = commit->fs_info;
858         u64 transid = commit->transid;
859         bool put = false;
860
861         while (1) {
862                 wait_event(commit->commit_wait, commit->state >= min_state);
863                 if (put)
864                         btrfs_put_transaction(commit);
865
866                 if (min_state < TRANS_STATE_COMPLETED)
867                         break;
868
869                 /*
870                  * A transaction isn't really completed until all of the
871                  * previous transactions are completed, but with fsync we can
872                  * end up with SUPER_COMMITTED transactions before a COMPLETED
873                  * transaction. Wait for those.
874                  */
875
876                 spin_lock(&fs_info->trans_lock);
877                 commit = list_first_entry_or_null(&fs_info->trans_list,
878                                                   struct btrfs_transaction,
879                                                   list);
880                 if (!commit || commit->transid > transid) {
881                         spin_unlock(&fs_info->trans_lock);
882                         break;
883                 }
884                 refcount_inc(&commit->use_count);
885                 put = true;
886                 spin_unlock(&fs_info->trans_lock);
887         }
888 }
889
890 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
891 {
892         struct btrfs_transaction *cur_trans = NULL, *t;
893         int ret = 0;
894
895         if (transid) {
896                 if (transid <= fs_info->last_trans_committed)
897                         goto out;
898
899                 /* find specified transaction */
900                 spin_lock(&fs_info->trans_lock);
901                 list_for_each_entry(t, &fs_info->trans_list, list) {
902                         if (t->transid == transid) {
903                                 cur_trans = t;
904                                 refcount_inc(&cur_trans->use_count);
905                                 ret = 0;
906                                 break;
907                         }
908                         if (t->transid > transid) {
909                                 ret = 0;
910                                 break;
911                         }
912                 }
913                 spin_unlock(&fs_info->trans_lock);
914
915                 /*
916                  * The specified transaction doesn't exist, or we
917                  * raced with btrfs_commit_transaction
918                  */
919                 if (!cur_trans) {
920                         if (transid > fs_info->last_trans_committed)
921                                 ret = -EINVAL;
922                         goto out;
923                 }
924         } else {
925                 /* find newest transaction that is committing | committed */
926                 spin_lock(&fs_info->trans_lock);
927                 list_for_each_entry_reverse(t, &fs_info->trans_list,
928                                             list) {
929                         if (t->state >= TRANS_STATE_COMMIT_START) {
930                                 if (t->state == TRANS_STATE_COMPLETED)
931                                         break;
932                                 cur_trans = t;
933                                 refcount_inc(&cur_trans->use_count);
934                                 break;
935                         }
936                 }
937                 spin_unlock(&fs_info->trans_lock);
938                 if (!cur_trans)
939                         goto out;  /* nothing committing|committed */
940         }
941
942         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
943         btrfs_put_transaction(cur_trans);
944 out:
945         return ret;
946 }
947
948 void btrfs_throttle(struct btrfs_fs_info *fs_info)
949 {
950         wait_current_trans(fs_info);
951 }
952
953 static bool should_end_transaction(struct btrfs_trans_handle *trans)
954 {
955         struct btrfs_fs_info *fs_info = trans->fs_info;
956
957         if (btrfs_check_space_for_delayed_refs(fs_info))
958                 return true;
959
960         return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
961 }
962
963 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
964 {
965         struct btrfs_transaction *cur_trans = trans->transaction;
966
967         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
968             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
969                 return true;
970
971         return should_end_transaction(trans);
972 }
973
974 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
975
976 {
977         struct btrfs_fs_info *fs_info = trans->fs_info;
978
979         if (!trans->block_rsv) {
980                 ASSERT(!trans->bytes_reserved);
981                 return;
982         }
983
984         if (!trans->bytes_reserved)
985                 return;
986
987         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
988         trace_btrfs_space_reservation(fs_info, "transaction",
989                                       trans->transid, trans->bytes_reserved, 0);
990         btrfs_block_rsv_release(fs_info, trans->block_rsv,
991                                 trans->bytes_reserved, NULL);
992         trans->bytes_reserved = 0;
993 }
994
995 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
996                                    int throttle)
997 {
998         struct btrfs_fs_info *info = trans->fs_info;
999         struct btrfs_transaction *cur_trans = trans->transaction;
1000         int err = 0;
1001
1002         if (refcount_read(&trans->use_count) > 1) {
1003                 refcount_dec(&trans->use_count);
1004                 trans->block_rsv = trans->orig_rsv;
1005                 return 0;
1006         }
1007
1008         btrfs_trans_release_metadata(trans);
1009         trans->block_rsv = NULL;
1010
1011         btrfs_create_pending_block_groups(trans);
1012
1013         btrfs_trans_release_chunk_metadata(trans);
1014
1015         if (trans->type & __TRANS_FREEZABLE)
1016                 sb_end_intwrite(info->sb);
1017
1018         WARN_ON(cur_trans != info->running_transaction);
1019         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1020         atomic_dec(&cur_trans->num_writers);
1021         extwriter_counter_dec(cur_trans, trans->type);
1022
1023         cond_wake_up(&cur_trans->writer_wait);
1024         btrfs_put_transaction(cur_trans);
1025
1026         if (current->journal_info == trans)
1027                 current->journal_info = NULL;
1028
1029         if (throttle)
1030                 btrfs_run_delayed_iputs(info);
1031
1032         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1033                 wake_up_process(info->transaction_kthread);
1034                 if (TRANS_ABORTED(trans))
1035                         err = trans->aborted;
1036                 else
1037                         err = -EROFS;
1038         }
1039
1040         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1041         return err;
1042 }
1043
1044 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1045 {
1046         return __btrfs_end_transaction(trans, 0);
1047 }
1048
1049 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1050 {
1051         return __btrfs_end_transaction(trans, 1);
1052 }
1053
1054 /*
1055  * when btree blocks are allocated, they have some corresponding bits set for
1056  * them in one of two extent_io trees.  This is used to make sure all of
1057  * those extents are sent to disk but does not wait on them
1058  */
1059 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1060                                struct extent_io_tree *dirty_pages, int mark)
1061 {
1062         int err = 0;
1063         int werr = 0;
1064         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1065         struct extent_state *cached_state = NULL;
1066         u64 start = 0;
1067         u64 end;
1068
1069         atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1070         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1071                                       mark, &cached_state)) {
1072                 bool wait_writeback = false;
1073
1074                 err = convert_extent_bit(dirty_pages, start, end,
1075                                          EXTENT_NEED_WAIT,
1076                                          mark, &cached_state);
1077                 /*
1078                  * convert_extent_bit can return -ENOMEM, which is most of the
1079                  * time a temporary error. So when it happens, ignore the error
1080                  * and wait for writeback of this range to finish - because we
1081                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1082                  * to __btrfs_wait_marked_extents() would not know that
1083                  * writeback for this range started and therefore wouldn't
1084                  * wait for it to finish - we don't want to commit a
1085                  * superblock that points to btree nodes/leafs for which
1086                  * writeback hasn't finished yet (and without errors).
1087                  * We cleanup any entries left in the io tree when committing
1088                  * the transaction (through extent_io_tree_release()).
1089                  */
1090                 if (err == -ENOMEM) {
1091                         err = 0;
1092                         wait_writeback = true;
1093                 }
1094                 if (!err)
1095                         err = filemap_fdatawrite_range(mapping, start, end);
1096                 if (err)
1097                         werr = err;
1098                 else if (wait_writeback)
1099                         werr = filemap_fdatawait_range(mapping, start, end);
1100                 free_extent_state(cached_state);
1101                 cached_state = NULL;
1102                 cond_resched();
1103                 start = end + 1;
1104         }
1105         atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1106         return werr;
1107 }
1108
1109 /*
1110  * when btree blocks are allocated, they have some corresponding bits set for
1111  * them in one of two extent_io trees.  This is used to make sure all of
1112  * those extents are on disk for transaction or log commit.  We wait
1113  * on all the pages and clear them from the dirty pages state tree
1114  */
1115 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1116                                        struct extent_io_tree *dirty_pages)
1117 {
1118         int err = 0;
1119         int werr = 0;
1120         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1121         struct extent_state *cached_state = NULL;
1122         u64 start = 0;
1123         u64 end;
1124
1125         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1126                                       EXTENT_NEED_WAIT, &cached_state)) {
1127                 /*
1128                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1129                  * When committing the transaction, we'll remove any entries
1130                  * left in the io tree. For a log commit, we don't remove them
1131                  * after committing the log because the tree can be accessed
1132                  * concurrently - we do it only at transaction commit time when
1133                  * it's safe to do it (through extent_io_tree_release()).
1134                  */
1135                 err = clear_extent_bit(dirty_pages, start, end,
1136                                        EXTENT_NEED_WAIT, 0, 0, &cached_state);
1137                 if (err == -ENOMEM)
1138                         err = 0;
1139                 if (!err)
1140                         err = filemap_fdatawait_range(mapping, start, end);
1141                 if (err)
1142                         werr = err;
1143                 free_extent_state(cached_state);
1144                 cached_state = NULL;
1145                 cond_resched();
1146                 start = end + 1;
1147         }
1148         if (err)
1149                 werr = err;
1150         return werr;
1151 }
1152
1153 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1154                        struct extent_io_tree *dirty_pages)
1155 {
1156         bool errors = false;
1157         int err;
1158
1159         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1160         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1161                 errors = true;
1162
1163         if (errors && !err)
1164                 err = -EIO;
1165         return err;
1166 }
1167
1168 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1169 {
1170         struct btrfs_fs_info *fs_info = log_root->fs_info;
1171         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1172         bool errors = false;
1173         int err;
1174
1175         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1176
1177         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1178         if ((mark & EXTENT_DIRTY) &&
1179             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1180                 errors = true;
1181
1182         if ((mark & EXTENT_NEW) &&
1183             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1184                 errors = true;
1185
1186         if (errors && !err)
1187                 err = -EIO;
1188         return err;
1189 }
1190
1191 /*
1192  * When btree blocks are allocated the corresponding extents are marked dirty.
1193  * This function ensures such extents are persisted on disk for transaction or
1194  * log commit.
1195  *
1196  * @trans: transaction whose dirty pages we'd like to write
1197  */
1198 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1199 {
1200         int ret;
1201         int ret2;
1202         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1203         struct btrfs_fs_info *fs_info = trans->fs_info;
1204         struct blk_plug plug;
1205
1206         blk_start_plug(&plug);
1207         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1208         blk_finish_plug(&plug);
1209         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1210
1211         extent_io_tree_release(&trans->transaction->dirty_pages);
1212
1213         if (ret)
1214                 return ret;
1215         else if (ret2)
1216                 return ret2;
1217         else
1218                 return 0;
1219 }
1220
1221 /*
1222  * this is used to update the root pointer in the tree of tree roots.
1223  *
1224  * But, in the case of the extent allocation tree, updating the root
1225  * pointer may allocate blocks which may change the root of the extent
1226  * allocation tree.
1227  *
1228  * So, this loops and repeats and makes sure the cowonly root didn't
1229  * change while the root pointer was being updated in the metadata.
1230  */
1231 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1232                                struct btrfs_root *root)
1233 {
1234         int ret;
1235         u64 old_root_bytenr;
1236         u64 old_root_used;
1237         struct btrfs_fs_info *fs_info = root->fs_info;
1238         struct btrfs_root *tree_root = fs_info->tree_root;
1239
1240         old_root_used = btrfs_root_used(&root->root_item);
1241
1242         while (1) {
1243                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1244                 if (old_root_bytenr == root->node->start &&
1245                     old_root_used == btrfs_root_used(&root->root_item))
1246                         break;
1247
1248                 btrfs_set_root_node(&root->root_item, root->node);
1249                 ret = btrfs_update_root(trans, tree_root,
1250                                         &root->root_key,
1251                                         &root->root_item);
1252                 if (ret)
1253                         return ret;
1254
1255                 old_root_used = btrfs_root_used(&root->root_item);
1256         }
1257
1258         return 0;
1259 }
1260
1261 /*
1262  * update all the cowonly tree roots on disk
1263  *
1264  * The error handling in this function may not be obvious. Any of the
1265  * failures will cause the file system to go offline. We still need
1266  * to clean up the delayed refs.
1267  */
1268 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1269 {
1270         struct btrfs_fs_info *fs_info = trans->fs_info;
1271         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1272         struct list_head *io_bgs = &trans->transaction->io_bgs;
1273         struct list_head *next;
1274         struct extent_buffer *eb;
1275         int ret;
1276
1277         /*
1278          * At this point no one can be using this transaction to modify any tree
1279          * and no one can start another transaction to modify any tree either.
1280          */
1281         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1282
1283         eb = btrfs_lock_root_node(fs_info->tree_root);
1284         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1285                               0, &eb, BTRFS_NESTING_COW);
1286         btrfs_tree_unlock(eb);
1287         free_extent_buffer(eb);
1288
1289         if (ret)
1290                 return ret;
1291
1292         ret = btrfs_run_dev_stats(trans);
1293         if (ret)
1294                 return ret;
1295         ret = btrfs_run_dev_replace(trans);
1296         if (ret)
1297                 return ret;
1298         ret = btrfs_run_qgroups(trans);
1299         if (ret)
1300                 return ret;
1301
1302         ret = btrfs_setup_space_cache(trans);
1303         if (ret)
1304                 return ret;
1305
1306 again:
1307         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1308                 struct btrfs_root *root;
1309                 next = fs_info->dirty_cowonly_roots.next;
1310                 list_del_init(next);
1311                 root = list_entry(next, struct btrfs_root, dirty_list);
1312                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1313
1314                 list_add_tail(&root->dirty_list,
1315                               &trans->transaction->switch_commits);
1316                 ret = update_cowonly_root(trans, root);
1317                 if (ret)
1318                         return ret;
1319         }
1320
1321         /* Now flush any delayed refs generated by updating all of the roots */
1322         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1323         if (ret)
1324                 return ret;
1325
1326         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1327                 ret = btrfs_write_dirty_block_groups(trans);
1328                 if (ret)
1329                         return ret;
1330
1331                 /*
1332                  * We're writing the dirty block groups, which could generate
1333                  * delayed refs, which could generate more dirty block groups,
1334                  * so we want to keep this flushing in this loop to make sure
1335                  * everything gets run.
1336                  */
1337                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1338                 if (ret)
1339                         return ret;
1340         }
1341
1342         if (!list_empty(&fs_info->dirty_cowonly_roots))
1343                 goto again;
1344
1345         /* Update dev-replace pointer once everything is committed */
1346         fs_info->dev_replace.committed_cursor_left =
1347                 fs_info->dev_replace.cursor_left_last_write_of_item;
1348
1349         return 0;
1350 }
1351
1352 /*
1353  * If we had a pending drop we need to see if there are any others left in our
1354  * dead roots list, and if not clear our bit and wake any waiters.
1355  */
1356 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1357 {
1358         /*
1359          * We put the drop in progress roots at the front of the list, so if the
1360          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1361          * up.
1362          */
1363         spin_lock(&fs_info->trans_lock);
1364         if (!list_empty(&fs_info->dead_roots)) {
1365                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1366                                                            struct btrfs_root,
1367                                                            root_list);
1368                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1369                         spin_unlock(&fs_info->trans_lock);
1370                         return;
1371                 }
1372         }
1373         spin_unlock(&fs_info->trans_lock);
1374
1375         btrfs_wake_unfinished_drop(fs_info);
1376 }
1377
1378 /*
1379  * dead roots are old snapshots that need to be deleted.  This allocates
1380  * a dirty root struct and adds it into the list of dead roots that need to
1381  * be deleted
1382  */
1383 void btrfs_add_dead_root(struct btrfs_root *root)
1384 {
1385         struct btrfs_fs_info *fs_info = root->fs_info;
1386
1387         spin_lock(&fs_info->trans_lock);
1388         if (list_empty(&root->root_list)) {
1389                 btrfs_grab_root(root);
1390
1391                 /* We want to process the partially complete drops first. */
1392                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1393                         list_add(&root->root_list, &fs_info->dead_roots);
1394                 else
1395                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1396         }
1397         spin_unlock(&fs_info->trans_lock);
1398 }
1399
1400 /*
1401  * Update each subvolume root and its relocation root, if it exists, in the tree
1402  * of tree roots. Also free log roots if they exist.
1403  */
1404 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1405 {
1406         struct btrfs_fs_info *fs_info = trans->fs_info;
1407         struct btrfs_root *gang[8];
1408         int i;
1409         int ret;
1410
1411         /*
1412          * At this point no one can be using this transaction to modify any tree
1413          * and no one can start another transaction to modify any tree either.
1414          */
1415         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1416
1417         spin_lock(&fs_info->fs_roots_radix_lock);
1418         while (1) {
1419                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1420                                                  (void **)gang, 0,
1421                                                  ARRAY_SIZE(gang),
1422                                                  BTRFS_ROOT_TRANS_TAG);
1423                 if (ret == 0)
1424                         break;
1425                 for (i = 0; i < ret; i++) {
1426                         struct btrfs_root *root = gang[i];
1427                         int ret2;
1428
1429                         /*
1430                          * At this point we can neither have tasks logging inodes
1431                          * from a root nor trying to commit a log tree.
1432                          */
1433                         ASSERT(atomic_read(&root->log_writers) == 0);
1434                         ASSERT(atomic_read(&root->log_commit[0]) == 0);
1435                         ASSERT(atomic_read(&root->log_commit[1]) == 0);
1436
1437                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1438                                         (unsigned long)root->root_key.objectid,
1439                                         BTRFS_ROOT_TRANS_TAG);
1440                         spin_unlock(&fs_info->fs_roots_radix_lock);
1441
1442                         btrfs_free_log(trans, root);
1443                         ret2 = btrfs_update_reloc_root(trans, root);
1444                         if (ret2)
1445                                 return ret2;
1446
1447                         /* see comments in should_cow_block() */
1448                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1449                         smp_mb__after_atomic();
1450
1451                         if (root->commit_root != root->node) {
1452                                 list_add_tail(&root->dirty_list,
1453                                         &trans->transaction->switch_commits);
1454                                 btrfs_set_root_node(&root->root_item,
1455                                                     root->node);
1456                         }
1457
1458                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1459                                                 &root->root_key,
1460                                                 &root->root_item);
1461                         if (ret2)
1462                                 return ret2;
1463                         spin_lock(&fs_info->fs_roots_radix_lock);
1464                         btrfs_qgroup_free_meta_all_pertrans(root);
1465                 }
1466         }
1467         spin_unlock(&fs_info->fs_roots_radix_lock);
1468         return 0;
1469 }
1470
1471 /*
1472  * defrag a given btree.
1473  * Every leaf in the btree is read and defragged.
1474  */
1475 int btrfs_defrag_root(struct btrfs_root *root)
1476 {
1477         struct btrfs_fs_info *info = root->fs_info;
1478         struct btrfs_trans_handle *trans;
1479         int ret;
1480
1481         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1482                 return 0;
1483
1484         while (1) {
1485                 trans = btrfs_start_transaction(root, 0);
1486                 if (IS_ERR(trans)) {
1487                         ret = PTR_ERR(trans);
1488                         break;
1489                 }
1490
1491                 ret = btrfs_defrag_leaves(trans, root);
1492
1493                 btrfs_end_transaction(trans);
1494                 btrfs_btree_balance_dirty(info);
1495                 cond_resched();
1496
1497                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1498                         break;
1499
1500                 if (btrfs_defrag_cancelled(info)) {
1501                         btrfs_debug(info, "defrag_root cancelled");
1502                         ret = -EAGAIN;
1503                         break;
1504                 }
1505         }
1506         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1507         return ret;
1508 }
1509
1510 /*
1511  * Do all special snapshot related qgroup dirty hack.
1512  *
1513  * Will do all needed qgroup inherit and dirty hack like switch commit
1514  * roots inside one transaction and write all btree into disk, to make
1515  * qgroup works.
1516  */
1517 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1518                                    struct btrfs_root *src,
1519                                    struct btrfs_root *parent,
1520                                    struct btrfs_qgroup_inherit *inherit,
1521                                    u64 dst_objectid)
1522 {
1523         struct btrfs_fs_info *fs_info = src->fs_info;
1524         int ret;
1525
1526         /*
1527          * Save some performance in the case that qgroups are not
1528          * enabled. If this check races with the ioctl, rescan will
1529          * kick in anyway.
1530          */
1531         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1532                 return 0;
1533
1534         /*
1535          * Ensure dirty @src will be committed.  Or, after coming
1536          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1537          * recorded root will never be updated again, causing an outdated root
1538          * item.
1539          */
1540         ret = record_root_in_trans(trans, src, 1);
1541         if (ret)
1542                 return ret;
1543
1544         /*
1545          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1546          * src root, so we must run the delayed refs here.
1547          *
1548          * However this isn't particularly fool proof, because there's no
1549          * synchronization keeping us from changing the tree after this point
1550          * before we do the qgroup_inherit, or even from making changes while
1551          * we're doing the qgroup_inherit.  But that's a problem for the future,
1552          * for now flush the delayed refs to narrow the race window where the
1553          * qgroup counters could end up wrong.
1554          */
1555         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1556         if (ret) {
1557                 btrfs_abort_transaction(trans, ret);
1558                 return ret;
1559         }
1560
1561         ret = commit_fs_roots(trans);
1562         if (ret)
1563                 goto out;
1564         ret = btrfs_qgroup_account_extents(trans);
1565         if (ret < 0)
1566                 goto out;
1567
1568         /* Now qgroup are all updated, we can inherit it to new qgroups */
1569         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1570                                    inherit);
1571         if (ret < 0)
1572                 goto out;
1573
1574         /*
1575          * Now we do a simplified commit transaction, which will:
1576          * 1) commit all subvolume and extent tree
1577          *    To ensure all subvolume and extent tree have a valid
1578          *    commit_root to accounting later insert_dir_item()
1579          * 2) write all btree blocks onto disk
1580          *    This is to make sure later btree modification will be cowed
1581          *    Or commit_root can be populated and cause wrong qgroup numbers
1582          * In this simplified commit, we don't really care about other trees
1583          * like chunk and root tree, as they won't affect qgroup.
1584          * And we don't write super to avoid half committed status.
1585          */
1586         ret = commit_cowonly_roots(trans);
1587         if (ret)
1588                 goto out;
1589         switch_commit_roots(trans);
1590         ret = btrfs_write_and_wait_transaction(trans);
1591         if (ret)
1592                 btrfs_handle_fs_error(fs_info, ret,
1593                         "Error while writing out transaction for qgroup");
1594
1595 out:
1596         /*
1597          * Force parent root to be updated, as we recorded it before so its
1598          * last_trans == cur_transid.
1599          * Or it won't be committed again onto disk after later
1600          * insert_dir_item()
1601          */
1602         if (!ret)
1603                 ret = record_root_in_trans(trans, parent, 1);
1604         return ret;
1605 }
1606
1607 /*
1608  * new snapshots need to be created at a very specific time in the
1609  * transaction commit.  This does the actual creation.
1610  *
1611  * Note:
1612  * If the error which may affect the commitment of the current transaction
1613  * happens, we should return the error number. If the error which just affect
1614  * the creation of the pending snapshots, just return 0.
1615  */
1616 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1617                                    struct btrfs_pending_snapshot *pending)
1618 {
1619
1620         struct btrfs_fs_info *fs_info = trans->fs_info;
1621         struct btrfs_key key;
1622         struct btrfs_root_item *new_root_item;
1623         struct btrfs_root *tree_root = fs_info->tree_root;
1624         struct btrfs_root *root = pending->root;
1625         struct btrfs_root *parent_root;
1626         struct btrfs_block_rsv *rsv;
1627         struct inode *parent_inode;
1628         struct btrfs_path *path;
1629         struct btrfs_dir_item *dir_item;
1630         struct dentry *dentry;
1631         struct extent_buffer *tmp;
1632         struct extent_buffer *old;
1633         struct timespec64 cur_time;
1634         int ret = 0;
1635         u64 to_reserve = 0;
1636         u64 index = 0;
1637         u64 objectid;
1638         u64 root_flags;
1639
1640         ASSERT(pending->path);
1641         path = pending->path;
1642
1643         ASSERT(pending->root_item);
1644         new_root_item = pending->root_item;
1645
1646         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1647         if (pending->error)
1648                 goto no_free_objectid;
1649
1650         /*
1651          * Make qgroup to skip current new snapshot's qgroupid, as it is
1652          * accounted by later btrfs_qgroup_inherit().
1653          */
1654         btrfs_set_skip_qgroup(trans, objectid);
1655
1656         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1657
1658         if (to_reserve > 0) {
1659                 pending->error = btrfs_block_rsv_add(fs_info,
1660                                                      &pending->block_rsv,
1661                                                      to_reserve,
1662                                                      BTRFS_RESERVE_NO_FLUSH);
1663                 if (pending->error)
1664                         goto clear_skip_qgroup;
1665         }
1666
1667         key.objectid = objectid;
1668         key.offset = (u64)-1;
1669         key.type = BTRFS_ROOT_ITEM_KEY;
1670
1671         rsv = trans->block_rsv;
1672         trans->block_rsv = &pending->block_rsv;
1673         trans->bytes_reserved = trans->block_rsv->reserved;
1674         trace_btrfs_space_reservation(fs_info, "transaction",
1675                                       trans->transid,
1676                                       trans->bytes_reserved, 1);
1677         dentry = pending->dentry;
1678         parent_inode = pending->dir;
1679         parent_root = BTRFS_I(parent_inode)->root;
1680         ret = record_root_in_trans(trans, parent_root, 0);
1681         if (ret)
1682                 goto fail;
1683         cur_time = current_time(parent_inode);
1684
1685         /*
1686          * insert the directory item
1687          */
1688         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1689         BUG_ON(ret); /* -ENOMEM */
1690
1691         /* check if there is a file/dir which has the same name. */
1692         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1693                                          btrfs_ino(BTRFS_I(parent_inode)),
1694                                          dentry->d_name.name,
1695                                          dentry->d_name.len, 0);
1696         if (dir_item != NULL && !IS_ERR(dir_item)) {
1697                 pending->error = -EEXIST;
1698                 goto dir_item_existed;
1699         } else if (IS_ERR(dir_item)) {
1700                 ret = PTR_ERR(dir_item);
1701                 btrfs_abort_transaction(trans, ret);
1702                 goto fail;
1703         }
1704         btrfs_release_path(path);
1705
1706         /*
1707          * pull in the delayed directory update
1708          * and the delayed inode item
1709          * otherwise we corrupt the FS during
1710          * snapshot
1711          */
1712         ret = btrfs_run_delayed_items(trans);
1713         if (ret) {      /* Transaction aborted */
1714                 btrfs_abort_transaction(trans, ret);
1715                 goto fail;
1716         }
1717
1718         ret = record_root_in_trans(trans, root, 0);
1719         if (ret) {
1720                 btrfs_abort_transaction(trans, ret);
1721                 goto fail;
1722         }
1723         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1724         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1725         btrfs_check_and_init_root_item(new_root_item);
1726
1727         root_flags = btrfs_root_flags(new_root_item);
1728         if (pending->readonly)
1729                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1730         else
1731                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1732         btrfs_set_root_flags(new_root_item, root_flags);
1733
1734         btrfs_set_root_generation_v2(new_root_item,
1735                         trans->transid);
1736         generate_random_guid(new_root_item->uuid);
1737         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1738                         BTRFS_UUID_SIZE);
1739         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1740                 memset(new_root_item->received_uuid, 0,
1741                        sizeof(new_root_item->received_uuid));
1742                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1743                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1744                 btrfs_set_root_stransid(new_root_item, 0);
1745                 btrfs_set_root_rtransid(new_root_item, 0);
1746         }
1747         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1748         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1749         btrfs_set_root_otransid(new_root_item, trans->transid);
1750
1751         old = btrfs_lock_root_node(root);
1752         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1753                               BTRFS_NESTING_COW);
1754         if (ret) {
1755                 btrfs_tree_unlock(old);
1756                 free_extent_buffer(old);
1757                 btrfs_abort_transaction(trans, ret);
1758                 goto fail;
1759         }
1760
1761         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1762         /* clean up in any case */
1763         btrfs_tree_unlock(old);
1764         free_extent_buffer(old);
1765         if (ret) {
1766                 btrfs_abort_transaction(trans, ret);
1767                 goto fail;
1768         }
1769         /* see comments in should_cow_block() */
1770         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1771         smp_wmb();
1772
1773         btrfs_set_root_node(new_root_item, tmp);
1774         /* record when the snapshot was created in key.offset */
1775         key.offset = trans->transid;
1776         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1777         btrfs_tree_unlock(tmp);
1778         free_extent_buffer(tmp);
1779         if (ret) {
1780                 btrfs_abort_transaction(trans, ret);
1781                 goto fail;
1782         }
1783
1784         /*
1785          * insert root back/forward references
1786          */
1787         ret = btrfs_add_root_ref(trans, objectid,
1788                                  parent_root->root_key.objectid,
1789                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1790                                  dentry->d_name.name, dentry->d_name.len);
1791         if (ret) {
1792                 btrfs_abort_transaction(trans, ret);
1793                 goto fail;
1794         }
1795
1796         key.offset = (u64)-1;
1797         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1798         if (IS_ERR(pending->snap)) {
1799                 ret = PTR_ERR(pending->snap);
1800                 pending->snap = NULL;
1801                 btrfs_abort_transaction(trans, ret);
1802                 goto fail;
1803         }
1804
1805         ret = btrfs_reloc_post_snapshot(trans, pending);
1806         if (ret) {
1807                 btrfs_abort_transaction(trans, ret);
1808                 goto fail;
1809         }
1810
1811         /*
1812          * Do special qgroup accounting for snapshot, as we do some qgroup
1813          * snapshot hack to do fast snapshot.
1814          * To co-operate with that hack, we do hack again.
1815          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1816          */
1817         ret = qgroup_account_snapshot(trans, root, parent_root,
1818                                       pending->inherit, objectid);
1819         if (ret < 0)
1820                 goto fail;
1821
1822         ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1823                                     dentry->d_name.len, BTRFS_I(parent_inode),
1824                                     &key, BTRFS_FT_DIR, index);
1825         /* We have check then name at the beginning, so it is impossible. */
1826         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1827         if (ret) {
1828                 btrfs_abort_transaction(trans, ret);
1829                 goto fail;
1830         }
1831
1832         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1833                                          dentry->d_name.len * 2);
1834         parent_inode->i_mtime = parent_inode->i_ctime =
1835                 current_time(parent_inode);
1836         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1837         if (ret) {
1838                 btrfs_abort_transaction(trans, ret);
1839                 goto fail;
1840         }
1841         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1842                                   BTRFS_UUID_KEY_SUBVOL,
1843                                   objectid);
1844         if (ret) {
1845                 btrfs_abort_transaction(trans, ret);
1846                 goto fail;
1847         }
1848         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1849                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1850                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1851                                           objectid);
1852                 if (ret && ret != -EEXIST) {
1853                         btrfs_abort_transaction(trans, ret);
1854                         goto fail;
1855                 }
1856         }
1857
1858 fail:
1859         pending->error = ret;
1860 dir_item_existed:
1861         trans->block_rsv = rsv;
1862         trans->bytes_reserved = 0;
1863 clear_skip_qgroup:
1864         btrfs_clear_skip_qgroup(trans);
1865 no_free_objectid:
1866         kfree(new_root_item);
1867         pending->root_item = NULL;
1868         btrfs_free_path(path);
1869         pending->path = NULL;
1870
1871         return ret;
1872 }
1873
1874 /*
1875  * create all the snapshots we've scheduled for creation
1876  */
1877 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1878 {
1879         struct btrfs_pending_snapshot *pending, *next;
1880         struct list_head *head = &trans->transaction->pending_snapshots;
1881         int ret = 0;
1882
1883         list_for_each_entry_safe(pending, next, head, list) {
1884                 list_del(&pending->list);
1885                 ret = create_pending_snapshot(trans, pending);
1886                 if (ret)
1887                         break;
1888         }
1889         return ret;
1890 }
1891
1892 static void update_super_roots(struct btrfs_fs_info *fs_info)
1893 {
1894         struct btrfs_root_item *root_item;
1895         struct btrfs_super_block *super;
1896
1897         super = fs_info->super_copy;
1898
1899         root_item = &fs_info->chunk_root->root_item;
1900         super->chunk_root = root_item->bytenr;
1901         super->chunk_root_generation = root_item->generation;
1902         super->chunk_root_level = root_item->level;
1903
1904         root_item = &fs_info->tree_root->root_item;
1905         super->root = root_item->bytenr;
1906         super->generation = root_item->generation;
1907         super->root_level = root_item->level;
1908         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1909                 super->cache_generation = root_item->generation;
1910         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1911                 super->cache_generation = 0;
1912         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1913                 super->uuid_tree_generation = root_item->generation;
1914
1915         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
1916                 root_item = &fs_info->block_group_root->root_item;
1917
1918                 super->block_group_root = root_item->bytenr;
1919                 super->block_group_root_generation = root_item->generation;
1920                 super->block_group_root_level = root_item->level;
1921         }
1922 }
1923
1924 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1925 {
1926         struct btrfs_transaction *trans;
1927         int ret = 0;
1928
1929         spin_lock(&info->trans_lock);
1930         trans = info->running_transaction;
1931         if (trans)
1932                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1933         spin_unlock(&info->trans_lock);
1934         return ret;
1935 }
1936
1937 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1938 {
1939         struct btrfs_transaction *trans;
1940         int ret = 0;
1941
1942         spin_lock(&info->trans_lock);
1943         trans = info->running_transaction;
1944         if (trans)
1945                 ret = is_transaction_blocked(trans);
1946         spin_unlock(&info->trans_lock);
1947         return ret;
1948 }
1949
1950 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1951 {
1952         struct btrfs_fs_info *fs_info = trans->fs_info;
1953         struct btrfs_transaction *cur_trans;
1954
1955         /* Kick the transaction kthread. */
1956         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1957         wake_up_process(fs_info->transaction_kthread);
1958
1959         /* take transaction reference */
1960         cur_trans = trans->transaction;
1961         refcount_inc(&cur_trans->use_count);
1962
1963         btrfs_end_transaction(trans);
1964
1965         /*
1966          * Wait for the current transaction commit to start and block
1967          * subsequent transaction joins
1968          */
1969         wait_event(fs_info->transaction_blocked_wait,
1970                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1971                    TRANS_ABORTED(cur_trans));
1972         btrfs_put_transaction(cur_trans);
1973 }
1974
1975 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1976 {
1977         struct btrfs_fs_info *fs_info = trans->fs_info;
1978         struct btrfs_transaction *cur_trans = trans->transaction;
1979
1980         WARN_ON(refcount_read(&trans->use_count) > 1);
1981
1982         btrfs_abort_transaction(trans, err);
1983
1984         spin_lock(&fs_info->trans_lock);
1985
1986         /*
1987          * If the transaction is removed from the list, it means this
1988          * transaction has been committed successfully, so it is impossible
1989          * to call the cleanup function.
1990          */
1991         BUG_ON(list_empty(&cur_trans->list));
1992
1993         if (cur_trans == fs_info->running_transaction) {
1994                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1995                 spin_unlock(&fs_info->trans_lock);
1996                 wait_event(cur_trans->writer_wait,
1997                            atomic_read(&cur_trans->num_writers) == 1);
1998
1999                 spin_lock(&fs_info->trans_lock);
2000         }
2001
2002         /*
2003          * Now that we know no one else is still using the transaction we can
2004          * remove the transaction from the list of transactions. This avoids
2005          * the transaction kthread from cleaning up the transaction while some
2006          * other task is still using it, which could result in a use-after-free
2007          * on things like log trees, as it forces the transaction kthread to
2008          * wait for this transaction to be cleaned up by us.
2009          */
2010         list_del_init(&cur_trans->list);
2011
2012         spin_unlock(&fs_info->trans_lock);
2013
2014         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2015
2016         spin_lock(&fs_info->trans_lock);
2017         if (cur_trans == fs_info->running_transaction)
2018                 fs_info->running_transaction = NULL;
2019         spin_unlock(&fs_info->trans_lock);
2020
2021         if (trans->type & __TRANS_FREEZABLE)
2022                 sb_end_intwrite(fs_info->sb);
2023         btrfs_put_transaction(cur_trans);
2024         btrfs_put_transaction(cur_trans);
2025
2026         trace_btrfs_transaction_commit(fs_info);
2027
2028         if (current->journal_info == trans)
2029                 current->journal_info = NULL;
2030         btrfs_scrub_cancel(fs_info);
2031
2032         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2033 }
2034
2035 /*
2036  * Release reserved delayed ref space of all pending block groups of the
2037  * transaction and remove them from the list
2038  */
2039 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2040 {
2041        struct btrfs_fs_info *fs_info = trans->fs_info;
2042        struct btrfs_block_group *block_group, *tmp;
2043
2044        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2045                btrfs_delayed_refs_rsv_release(fs_info, 1);
2046                list_del_init(&block_group->bg_list);
2047        }
2048 }
2049
2050 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2051 {
2052         /*
2053          * We use try_to_writeback_inodes_sb() here because if we used
2054          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2055          * Currently are holding the fs freeze lock, if we do an async flush
2056          * we'll do btrfs_join_transaction() and deadlock because we need to
2057          * wait for the fs freeze lock.  Using the direct flushing we benefit
2058          * from already being in a transaction and our join_transaction doesn't
2059          * have to re-take the fs freeze lock.
2060          *
2061          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2062          * if it can read lock sb->s_umount. It will always be able to lock it,
2063          * except when the filesystem is being unmounted or being frozen, but in
2064          * those cases sync_filesystem() is called, which results in calling
2065          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2066          * Note that we don't call writeback_inodes_sb() directly, because it
2067          * will emit a warning if sb->s_umount is not locked.
2068          */
2069         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2070                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2071         return 0;
2072 }
2073
2074 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2075 {
2076         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2077                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2078 }
2079
2080 /*
2081  * Add a pending snapshot associated with the given transaction handle to the
2082  * respective handle. This must be called after the transaction commit started
2083  * and while holding fs_info->trans_lock.
2084  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2085  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2086  * returns an error.
2087  */
2088 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2089 {
2090         struct btrfs_transaction *cur_trans = trans->transaction;
2091
2092         if (!trans->pending_snapshot)
2093                 return;
2094
2095         lockdep_assert_held(&trans->fs_info->trans_lock);
2096         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2097
2098         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2099 }
2100
2101 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2102 {
2103         struct btrfs_fs_info *fs_info = trans->fs_info;
2104         struct btrfs_transaction *cur_trans = trans->transaction;
2105         struct btrfs_transaction *prev_trans = NULL;
2106         int ret;
2107
2108         ASSERT(refcount_read(&trans->use_count) == 1);
2109
2110         /* Stop the commit early if ->aborted is set */
2111         if (TRANS_ABORTED(cur_trans)) {
2112                 ret = cur_trans->aborted;
2113                 btrfs_end_transaction(trans);
2114                 return ret;
2115         }
2116
2117         btrfs_trans_release_metadata(trans);
2118         trans->block_rsv = NULL;
2119
2120         /*
2121          * We only want one transaction commit doing the flushing so we do not
2122          * waste a bunch of time on lock contention on the extent root node.
2123          */
2124         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2125                               &cur_trans->delayed_refs.flags)) {
2126                 /*
2127                  * Make a pass through all the delayed refs we have so far.
2128                  * Any running threads may add more while we are here.
2129                  */
2130                 ret = btrfs_run_delayed_refs(trans, 0);
2131                 if (ret) {
2132                         btrfs_end_transaction(trans);
2133                         return ret;
2134                 }
2135         }
2136
2137         btrfs_create_pending_block_groups(trans);
2138
2139         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2140                 int run_it = 0;
2141
2142                 /* this mutex is also taken before trying to set
2143                  * block groups readonly.  We need to make sure
2144                  * that nobody has set a block group readonly
2145                  * after a extents from that block group have been
2146                  * allocated for cache files.  btrfs_set_block_group_ro
2147                  * will wait for the transaction to commit if it
2148                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2149                  *
2150                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2151                  * only one process starts all the block group IO.  It wouldn't
2152                  * hurt to have more than one go through, but there's no
2153                  * real advantage to it either.
2154                  */
2155                 mutex_lock(&fs_info->ro_block_group_mutex);
2156                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2157                                       &cur_trans->flags))
2158                         run_it = 1;
2159                 mutex_unlock(&fs_info->ro_block_group_mutex);
2160
2161                 if (run_it) {
2162                         ret = btrfs_start_dirty_block_groups(trans);
2163                         if (ret) {
2164                                 btrfs_end_transaction(trans);
2165                                 return ret;
2166                         }
2167                 }
2168         }
2169
2170         spin_lock(&fs_info->trans_lock);
2171         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2172                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2173
2174                 add_pending_snapshot(trans);
2175
2176                 spin_unlock(&fs_info->trans_lock);
2177                 refcount_inc(&cur_trans->use_count);
2178
2179                 if (trans->in_fsync)
2180                         want_state = TRANS_STATE_SUPER_COMMITTED;
2181                 ret = btrfs_end_transaction(trans);
2182                 wait_for_commit(cur_trans, want_state);
2183
2184                 if (TRANS_ABORTED(cur_trans))
2185                         ret = cur_trans->aborted;
2186
2187                 btrfs_put_transaction(cur_trans);
2188
2189                 return ret;
2190         }
2191
2192         cur_trans->state = TRANS_STATE_COMMIT_START;
2193         wake_up(&fs_info->transaction_blocked_wait);
2194
2195         if (cur_trans->list.prev != &fs_info->trans_list) {
2196                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2197
2198                 if (trans->in_fsync)
2199                         want_state = TRANS_STATE_SUPER_COMMITTED;
2200
2201                 prev_trans = list_entry(cur_trans->list.prev,
2202                                         struct btrfs_transaction, list);
2203                 if (prev_trans->state < want_state) {
2204                         refcount_inc(&prev_trans->use_count);
2205                         spin_unlock(&fs_info->trans_lock);
2206
2207                         wait_for_commit(prev_trans, want_state);
2208
2209                         ret = READ_ONCE(prev_trans->aborted);
2210
2211                         btrfs_put_transaction(prev_trans);
2212                         if (ret)
2213                                 goto cleanup_transaction;
2214                 } else {
2215                         spin_unlock(&fs_info->trans_lock);
2216                 }
2217         } else {
2218                 spin_unlock(&fs_info->trans_lock);
2219                 /*
2220                  * The previous transaction was aborted and was already removed
2221                  * from the list of transactions at fs_info->trans_list. So we
2222                  * abort to prevent writing a new superblock that reflects a
2223                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2224                  */
2225                 if (BTRFS_FS_ERROR(fs_info)) {
2226                         ret = -EROFS;
2227                         goto cleanup_transaction;
2228                 }
2229         }
2230
2231         extwriter_counter_dec(cur_trans, trans->type);
2232
2233         ret = btrfs_start_delalloc_flush(fs_info);
2234         if (ret)
2235                 goto cleanup_transaction;
2236
2237         ret = btrfs_run_delayed_items(trans);
2238         if (ret)
2239                 goto cleanup_transaction;
2240
2241         wait_event(cur_trans->writer_wait,
2242                    extwriter_counter_read(cur_trans) == 0);
2243
2244         /* some pending stuffs might be added after the previous flush. */
2245         ret = btrfs_run_delayed_items(trans);
2246         if (ret)
2247                 goto cleanup_transaction;
2248
2249         btrfs_wait_delalloc_flush(fs_info);
2250
2251         /*
2252          * Wait for all ordered extents started by a fast fsync that joined this
2253          * transaction. Otherwise if this transaction commits before the ordered
2254          * extents complete we lose logged data after a power failure.
2255          */
2256         wait_event(cur_trans->pending_wait,
2257                    atomic_read(&cur_trans->pending_ordered) == 0);
2258
2259         btrfs_scrub_pause(fs_info);
2260         /*
2261          * Ok now we need to make sure to block out any other joins while we
2262          * commit the transaction.  We could have started a join before setting
2263          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2264          */
2265         spin_lock(&fs_info->trans_lock);
2266         add_pending_snapshot(trans);
2267         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2268         spin_unlock(&fs_info->trans_lock);
2269         wait_event(cur_trans->writer_wait,
2270                    atomic_read(&cur_trans->num_writers) == 1);
2271
2272         /*
2273          * We've started the commit, clear the flag in case we were triggered to
2274          * do an async commit but somebody else started before the transaction
2275          * kthread could do the work.
2276          */
2277         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2278
2279         if (TRANS_ABORTED(cur_trans)) {
2280                 ret = cur_trans->aborted;
2281                 goto scrub_continue;
2282         }
2283         /*
2284          * the reloc mutex makes sure that we stop
2285          * the balancing code from coming in and moving
2286          * extents around in the middle of the commit
2287          */
2288         mutex_lock(&fs_info->reloc_mutex);
2289
2290         /*
2291          * We needn't worry about the delayed items because we will
2292          * deal with them in create_pending_snapshot(), which is the
2293          * core function of the snapshot creation.
2294          */
2295         ret = create_pending_snapshots(trans);
2296         if (ret)
2297                 goto unlock_reloc;
2298
2299         /*
2300          * We insert the dir indexes of the snapshots and update the inode
2301          * of the snapshots' parents after the snapshot creation, so there
2302          * are some delayed items which are not dealt with. Now deal with
2303          * them.
2304          *
2305          * We needn't worry that this operation will corrupt the snapshots,
2306          * because all the tree which are snapshoted will be forced to COW
2307          * the nodes and leaves.
2308          */
2309         ret = btrfs_run_delayed_items(trans);
2310         if (ret)
2311                 goto unlock_reloc;
2312
2313         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2314         if (ret)
2315                 goto unlock_reloc;
2316
2317         /*
2318          * make sure none of the code above managed to slip in a
2319          * delayed item
2320          */
2321         btrfs_assert_delayed_root_empty(fs_info);
2322
2323         WARN_ON(cur_trans != trans->transaction);
2324
2325         ret = commit_fs_roots(trans);
2326         if (ret)
2327                 goto unlock_reloc;
2328
2329         /*
2330          * Since the transaction is done, we can apply the pending changes
2331          * before the next transaction.
2332          */
2333         btrfs_apply_pending_changes(fs_info);
2334
2335         /* commit_fs_roots gets rid of all the tree log roots, it is now
2336          * safe to free the root of tree log roots
2337          */
2338         btrfs_free_log_root_tree(trans, fs_info);
2339
2340         /*
2341          * Since fs roots are all committed, we can get a quite accurate
2342          * new_roots. So let's do quota accounting.
2343          */
2344         ret = btrfs_qgroup_account_extents(trans);
2345         if (ret < 0)
2346                 goto unlock_reloc;
2347
2348         ret = commit_cowonly_roots(trans);
2349         if (ret)
2350                 goto unlock_reloc;
2351
2352         /*
2353          * The tasks which save the space cache and inode cache may also
2354          * update ->aborted, check it.
2355          */
2356         if (TRANS_ABORTED(cur_trans)) {
2357                 ret = cur_trans->aborted;
2358                 goto unlock_reloc;
2359         }
2360
2361         cur_trans = fs_info->running_transaction;
2362
2363         btrfs_set_root_node(&fs_info->tree_root->root_item,
2364                             fs_info->tree_root->node);
2365         list_add_tail(&fs_info->tree_root->dirty_list,
2366                       &cur_trans->switch_commits);
2367
2368         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2369                             fs_info->chunk_root->node);
2370         list_add_tail(&fs_info->chunk_root->dirty_list,
2371                       &cur_trans->switch_commits);
2372
2373         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2374                 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2375                                     fs_info->block_group_root->node);
2376                 list_add_tail(&fs_info->block_group_root->dirty_list,
2377                               &cur_trans->switch_commits);
2378         }
2379
2380         switch_commit_roots(trans);
2381
2382         ASSERT(list_empty(&cur_trans->dirty_bgs));
2383         ASSERT(list_empty(&cur_trans->io_bgs));
2384         update_super_roots(fs_info);
2385
2386         btrfs_set_super_log_root(fs_info->super_copy, 0);
2387         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2388         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2389                sizeof(*fs_info->super_copy));
2390
2391         btrfs_commit_device_sizes(cur_trans);
2392
2393         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2394         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2395
2396         btrfs_trans_release_chunk_metadata(trans);
2397
2398         /*
2399          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2400          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2401          * make sure that before we commit our superblock, no other task can
2402          * start a new transaction and commit a log tree before we commit our
2403          * superblock. Anyone trying to commit a log tree locks this mutex before
2404          * writing its superblock.
2405          */
2406         mutex_lock(&fs_info->tree_log_mutex);
2407
2408         spin_lock(&fs_info->trans_lock);
2409         cur_trans->state = TRANS_STATE_UNBLOCKED;
2410         fs_info->running_transaction = NULL;
2411         spin_unlock(&fs_info->trans_lock);
2412         mutex_unlock(&fs_info->reloc_mutex);
2413
2414         wake_up(&fs_info->transaction_wait);
2415
2416         ret = btrfs_write_and_wait_transaction(trans);
2417         if (ret) {
2418                 btrfs_handle_fs_error(fs_info, ret,
2419                                       "Error while writing out transaction");
2420                 mutex_unlock(&fs_info->tree_log_mutex);
2421                 goto scrub_continue;
2422         }
2423
2424         /*
2425          * At this point, we should have written all the tree blocks allocated
2426          * in this transaction. So it's now safe to free the redirtyied extent
2427          * buffers.
2428          */
2429         btrfs_free_redirty_list(cur_trans);
2430
2431         ret = write_all_supers(fs_info, 0);
2432         /*
2433          * the super is written, we can safely allow the tree-loggers
2434          * to go about their business
2435          */
2436         mutex_unlock(&fs_info->tree_log_mutex);
2437         if (ret)
2438                 goto scrub_continue;
2439
2440         /*
2441          * We needn't acquire the lock here because there is no other task
2442          * which can change it.
2443          */
2444         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2445         wake_up(&cur_trans->commit_wait);
2446
2447         btrfs_finish_extent_commit(trans);
2448
2449         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2450                 btrfs_clear_space_info_full(fs_info);
2451
2452         fs_info->last_trans_committed = cur_trans->transid;
2453         /*
2454          * We needn't acquire the lock here because there is no other task
2455          * which can change it.
2456          */
2457         cur_trans->state = TRANS_STATE_COMPLETED;
2458         wake_up(&cur_trans->commit_wait);
2459
2460         spin_lock(&fs_info->trans_lock);
2461         list_del_init(&cur_trans->list);
2462         spin_unlock(&fs_info->trans_lock);
2463
2464         btrfs_put_transaction(cur_trans);
2465         btrfs_put_transaction(cur_trans);
2466
2467         if (trans->type & __TRANS_FREEZABLE)
2468                 sb_end_intwrite(fs_info->sb);
2469
2470         trace_btrfs_transaction_commit(fs_info);
2471
2472         btrfs_scrub_continue(fs_info);
2473
2474         if (current->journal_info == trans)
2475                 current->journal_info = NULL;
2476
2477         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2478
2479         return ret;
2480
2481 unlock_reloc:
2482         mutex_unlock(&fs_info->reloc_mutex);
2483 scrub_continue:
2484         btrfs_scrub_continue(fs_info);
2485 cleanup_transaction:
2486         btrfs_trans_release_metadata(trans);
2487         btrfs_cleanup_pending_block_groups(trans);
2488         btrfs_trans_release_chunk_metadata(trans);
2489         trans->block_rsv = NULL;
2490         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2491         if (current->journal_info == trans)
2492                 current->journal_info = NULL;
2493         cleanup_transaction(trans, ret);
2494
2495         return ret;
2496 }
2497
2498 /*
2499  * return < 0 if error
2500  * 0 if there are no more dead_roots at the time of call
2501  * 1 there are more to be processed, call me again
2502  *
2503  * The return value indicates there are certainly more snapshots to delete, but
2504  * if there comes a new one during processing, it may return 0. We don't mind,
2505  * because btrfs_commit_super will poke cleaner thread and it will process it a
2506  * few seconds later.
2507  */
2508 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2509 {
2510         struct btrfs_root *root;
2511         int ret;
2512
2513         spin_lock(&fs_info->trans_lock);
2514         if (list_empty(&fs_info->dead_roots)) {
2515                 spin_unlock(&fs_info->trans_lock);
2516                 return 0;
2517         }
2518         root = list_first_entry(&fs_info->dead_roots,
2519                         struct btrfs_root, root_list);
2520         list_del_init(&root->root_list);
2521         spin_unlock(&fs_info->trans_lock);
2522
2523         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2524
2525         btrfs_kill_all_delayed_nodes(root);
2526
2527         if (btrfs_header_backref_rev(root->node) <
2528                         BTRFS_MIXED_BACKREF_REV)
2529                 ret = btrfs_drop_snapshot(root, 0, 0);
2530         else
2531                 ret = btrfs_drop_snapshot(root, 1, 0);
2532
2533         btrfs_put_root(root);
2534         return (ret < 0) ? 0 : 1;
2535 }
2536
2537 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2538 {
2539         unsigned long prev;
2540         unsigned long bit;
2541
2542         prev = xchg(&fs_info->pending_changes, 0);
2543         if (!prev)
2544                 return;
2545
2546         bit = 1 << BTRFS_PENDING_COMMIT;
2547         if (prev & bit)
2548                 btrfs_debug(fs_info, "pending commit done");
2549         prev &= ~bit;
2550
2551         if (prev)
2552                 btrfs_warn(fs_info,
2553                         "unknown pending changes left 0x%lx, ignoring", prev);
2554 }