OSDN Git Service

02b2c9ec6fcdaa1f50026f0ad49366b2d69f6710
[android-x86/kernel.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46         [BTRFS_RAID_RAID10] = {
47                 .sub_stripes    = 2,
48                 .dev_stripes    = 1,
49                 .devs_max       = 0,    /* 0 == as many as possible */
50                 .devs_min       = 4,
51                 .tolerated_failures = 1,
52                 .devs_increment = 2,
53                 .ncopies        = 2,
54         },
55         [BTRFS_RAID_RAID1] = {
56                 .sub_stripes    = 1,
57                 .dev_stripes    = 1,
58                 .devs_max       = 2,
59                 .devs_min       = 2,
60                 .tolerated_failures = 1,
61                 .devs_increment = 2,
62                 .ncopies        = 2,
63         },
64         [BTRFS_RAID_DUP] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 2,
67                 .devs_max       = 1,
68                 .devs_min       = 1,
69                 .tolerated_failures = 0,
70                 .devs_increment = 1,
71                 .ncopies        = 2,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81         },
82         [BTRFS_RAID_SINGLE] = {
83                 .sub_stripes    = 1,
84                 .dev_stripes    = 1,
85                 .devs_max       = 1,
86                 .devs_min       = 1,
87                 .tolerated_failures = 0,
88                 .devs_increment = 1,
89                 .ncopies        = 1,
90         },
91         [BTRFS_RAID_RAID5] = {
92                 .sub_stripes    = 1,
93                 .dev_stripes    = 1,
94                 .devs_max       = 0,
95                 .devs_min       = 2,
96                 .tolerated_failures = 1,
97                 .devs_increment = 1,
98                 .ncopies        = 2,
99         },
100         [BTRFS_RAID_RAID6] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 3,
105                 .tolerated_failures = 2,
106                 .devs_increment = 1,
107                 .ncopies        = 3,
108         },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116         [BTRFS_RAID_SINGLE] = 0,
117         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127         [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128         [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129         [BTRFS_RAID_DUP]    = 0,
130         [BTRFS_RAID_RAID0]  = 0,
131         [BTRFS_RAID_SINGLE] = 0,
132         [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133         [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137                                 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143                              enum btrfs_map_op op,
144                              u64 logical, u64 *length,
145                              struct btrfs_bio **bbio_ret,
146                              int mirror_num, int need_raid_map);
147
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152         return &fs_uuids;
153 }
154
155 /*
156  * alloc_fs_devices - allocate struct btrfs_fs_devices
157  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
158  *
159  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160  * The returned struct is not linked onto any lists and can be destroyed with
161  * kfree() right away.
162  */
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165         struct btrfs_fs_devices *fs_devs;
166
167         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
168         if (!fs_devs)
169                 return ERR_PTR(-ENOMEM);
170
171         mutex_init(&fs_devs->device_list_mutex);
172
173         INIT_LIST_HEAD(&fs_devs->devices);
174         INIT_LIST_HEAD(&fs_devs->resized_devices);
175         INIT_LIST_HEAD(&fs_devs->alloc_list);
176         INIT_LIST_HEAD(&fs_devs->list);
177         if (fsid)
178                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
179
180         return fs_devs;
181 }
182
183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184 {
185         struct btrfs_device *device;
186         WARN_ON(fs_devices->opened);
187         while (!list_empty(&fs_devices->devices)) {
188                 device = list_entry(fs_devices->devices.next,
189                                     struct btrfs_device, dev_list);
190                 list_del(&device->dev_list);
191                 rcu_string_free(device->name);
192                 bio_put(device->flush_bio);
193                 kfree(device);
194         }
195         kfree(fs_devices);
196 }
197
198 static void btrfs_kobject_uevent(struct block_device *bdev,
199                                  enum kobject_action action)
200 {
201         int ret;
202
203         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
204         if (ret)
205                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
206                         action,
207                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
208                         &disk_to_dev(bdev->bd_disk)->kobj);
209 }
210
211 void btrfs_cleanup_fs_uuids(void)
212 {
213         struct btrfs_fs_devices *fs_devices;
214
215         while (!list_empty(&fs_uuids)) {
216                 fs_devices = list_entry(fs_uuids.next,
217                                         struct btrfs_fs_devices, list);
218                 list_del(&fs_devices->list);
219                 free_fs_devices(fs_devices);
220         }
221 }
222
223 static struct btrfs_device *__alloc_device(void)
224 {
225         struct btrfs_device *dev;
226
227         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
228         if (!dev)
229                 return ERR_PTR(-ENOMEM);
230
231         /*
232          * Preallocate a bio that's always going to be used for flushing device
233          * barriers and matches the device lifespan
234          */
235         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
236         if (!dev->flush_bio) {
237                 kfree(dev);
238                 return ERR_PTR(-ENOMEM);
239         }
240
241         INIT_LIST_HEAD(&dev->dev_list);
242         INIT_LIST_HEAD(&dev->dev_alloc_list);
243         INIT_LIST_HEAD(&dev->resized_list);
244
245         spin_lock_init(&dev->io_lock);
246
247         spin_lock_init(&dev->reada_lock);
248         atomic_set(&dev->reada_in_flight, 0);
249         atomic_set(&dev->dev_stats_ccnt, 0);
250         btrfs_device_data_ordered_init(dev);
251         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254         return dev;
255 }
256
257 /*
258  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
259  * return NULL.
260  *
261  * If devid and uuid are both specified, the match must be exact, otherwise
262  * only devid is used.
263  */
264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265                 u64 devid, const u8 *uuid)
266 {
267         struct list_head *head = &fs_devices->devices;
268         struct btrfs_device *dev;
269
270         list_for_each_entry(dev, head, dev_list) {
271                 if (dev->devid == devid &&
272                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
273                         return dev;
274                 }
275         }
276         return NULL;
277 }
278
279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
280 {
281         struct btrfs_fs_devices *fs_devices;
282
283         list_for_each_entry(fs_devices, &fs_uuids, list) {
284                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
285                         return fs_devices;
286         }
287         return NULL;
288 }
289
290 static int
291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292                       int flush, struct block_device **bdev,
293                       struct buffer_head **bh)
294 {
295         int ret;
296
297         *bdev = blkdev_get_by_path(device_path, flags, holder);
298
299         if (IS_ERR(*bdev)) {
300                 ret = PTR_ERR(*bdev);
301                 goto error;
302         }
303
304         if (flush)
305                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
306         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
307         if (ret) {
308                 blkdev_put(*bdev, flags);
309                 goto error;
310         }
311         invalidate_bdev(*bdev);
312         *bh = btrfs_read_dev_super(*bdev);
313         if (IS_ERR(*bh)) {
314                 ret = PTR_ERR(*bh);
315                 blkdev_put(*bdev, flags);
316                 goto error;
317         }
318
319         return 0;
320
321 error:
322         *bdev = NULL;
323         *bh = NULL;
324         return ret;
325 }
326
327 static void requeue_list(struct btrfs_pending_bios *pending_bios,
328                         struct bio *head, struct bio *tail)
329 {
330
331         struct bio *old_head;
332
333         old_head = pending_bios->head;
334         pending_bios->head = head;
335         if (pending_bios->tail)
336                 tail->bi_next = old_head;
337         else
338                 pending_bios->tail = tail;
339 }
340
341 /*
342  * we try to collect pending bios for a device so we don't get a large
343  * number of procs sending bios down to the same device.  This greatly
344  * improves the schedulers ability to collect and merge the bios.
345  *
346  * But, it also turns into a long list of bios to process and that is sure
347  * to eventually make the worker thread block.  The solution here is to
348  * make some progress and then put this work struct back at the end of
349  * the list if the block device is congested.  This way, multiple devices
350  * can make progress from a single worker thread.
351  */
352 static noinline void run_scheduled_bios(struct btrfs_device *device)
353 {
354         struct btrfs_fs_info *fs_info = device->fs_info;
355         struct bio *pending;
356         struct backing_dev_info *bdi;
357         struct btrfs_pending_bios *pending_bios;
358         struct bio *tail;
359         struct bio *cur;
360         int again = 0;
361         unsigned long num_run;
362         unsigned long batch_run = 0;
363         unsigned long last_waited = 0;
364         int force_reg = 0;
365         int sync_pending = 0;
366         struct blk_plug plug;
367
368         /*
369          * this function runs all the bios we've collected for
370          * a particular device.  We don't want to wander off to
371          * another device without first sending all of these down.
372          * So, setup a plug here and finish it off before we return
373          */
374         blk_start_plug(&plug);
375
376         bdi = device->bdev->bd_bdi;
377
378 loop:
379         spin_lock(&device->io_lock);
380
381 loop_lock:
382         num_run = 0;
383
384         /* take all the bios off the list at once and process them
385          * later on (without the lock held).  But, remember the
386          * tail and other pointers so the bios can be properly reinserted
387          * into the list if we hit congestion
388          */
389         if (!force_reg && device->pending_sync_bios.head) {
390                 pending_bios = &device->pending_sync_bios;
391                 force_reg = 1;
392         } else {
393                 pending_bios = &device->pending_bios;
394                 force_reg = 0;
395         }
396
397         pending = pending_bios->head;
398         tail = pending_bios->tail;
399         WARN_ON(pending && !tail);
400
401         /*
402          * if pending was null this time around, no bios need processing
403          * at all and we can stop.  Otherwise it'll loop back up again
404          * and do an additional check so no bios are missed.
405          *
406          * device->running_pending is used to synchronize with the
407          * schedule_bio code.
408          */
409         if (device->pending_sync_bios.head == NULL &&
410             device->pending_bios.head == NULL) {
411                 again = 0;
412                 device->running_pending = 0;
413         } else {
414                 again = 1;
415                 device->running_pending = 1;
416         }
417
418         pending_bios->head = NULL;
419         pending_bios->tail = NULL;
420
421         spin_unlock(&device->io_lock);
422
423         while (pending) {
424
425                 rmb();
426                 /* we want to work on both lists, but do more bios on the
427                  * sync list than the regular list
428                  */
429                 if ((num_run > 32 &&
430                     pending_bios != &device->pending_sync_bios &&
431                     device->pending_sync_bios.head) ||
432                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
433                     device->pending_bios.head)) {
434                         spin_lock(&device->io_lock);
435                         requeue_list(pending_bios, pending, tail);
436                         goto loop_lock;
437                 }
438
439                 cur = pending;
440                 pending = pending->bi_next;
441                 cur->bi_next = NULL;
442
443                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
444
445                 /*
446                  * if we're doing the sync list, record that our
447                  * plug has some sync requests on it
448                  *
449                  * If we're doing the regular list and there are
450                  * sync requests sitting around, unplug before
451                  * we add more
452                  */
453                 if (pending_bios == &device->pending_sync_bios) {
454                         sync_pending = 1;
455                 } else if (sync_pending) {
456                         blk_finish_plug(&plug);
457                         blk_start_plug(&plug);
458                         sync_pending = 0;
459                 }
460
461                 btrfsic_submit_bio(cur);
462                 num_run++;
463                 batch_run++;
464
465                 cond_resched();
466
467                 /*
468                  * we made progress, there is more work to do and the bdi
469                  * is now congested.  Back off and let other work structs
470                  * run instead
471                  */
472                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
473                     fs_info->fs_devices->open_devices > 1) {
474                         struct io_context *ioc;
475
476                         ioc = current->io_context;
477
478                         /*
479                          * the main goal here is that we don't want to
480                          * block if we're going to be able to submit
481                          * more requests without blocking.
482                          *
483                          * This code does two great things, it pokes into
484                          * the elevator code from a filesystem _and_
485                          * it makes assumptions about how batching works.
486                          */
487                         if (ioc && ioc->nr_batch_requests > 0 &&
488                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
489                             (last_waited == 0 ||
490                              ioc->last_waited == last_waited)) {
491                                 /*
492                                  * we want to go through our batch of
493                                  * requests and stop.  So, we copy out
494                                  * the ioc->last_waited time and test
495                                  * against it before looping
496                                  */
497                                 last_waited = ioc->last_waited;
498                                 cond_resched();
499                                 continue;
500                         }
501                         spin_lock(&device->io_lock);
502                         requeue_list(pending_bios, pending, tail);
503                         device->running_pending = 1;
504
505                         spin_unlock(&device->io_lock);
506                         btrfs_queue_work(fs_info->submit_workers,
507                                          &device->work);
508                         goto done;
509                 }
510         }
511
512         cond_resched();
513         if (again)
514                 goto loop;
515
516         spin_lock(&device->io_lock);
517         if (device->pending_bios.head || device->pending_sync_bios.head)
518                 goto loop_lock;
519         spin_unlock(&device->io_lock);
520
521 done:
522         blk_finish_plug(&plug);
523 }
524
525 static void pending_bios_fn(struct btrfs_work *work)
526 {
527         struct btrfs_device *device;
528
529         device = container_of(work, struct btrfs_device, work);
530         run_scheduled_bios(device);
531 }
532
533
534 static void btrfs_free_stale_device(struct btrfs_device *cur_dev)
535 {
536         struct btrfs_fs_devices *fs_devs;
537         struct btrfs_device *dev;
538
539         if (!cur_dev->name)
540                 return;
541
542         list_for_each_entry(fs_devs, &fs_uuids, list) {
543                 int del = 1;
544
545                 if (fs_devs->opened)
546                         continue;
547                 if (fs_devs->seeding)
548                         continue;
549
550                 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
551
552                         if (dev == cur_dev)
553                                 continue;
554                         if (!dev->name)
555                                 continue;
556
557                         /*
558                          * Todo: This won't be enough. What if the same device
559                          * comes back (with new uuid and) with its mapper path?
560                          * But for now, this does help as mostly an admin will
561                          * either use mapper or non mapper path throughout.
562                          */
563                         rcu_read_lock();
564                         del = strcmp(rcu_str_deref(dev->name),
565                                                 rcu_str_deref(cur_dev->name));
566                         rcu_read_unlock();
567                         if (!del)
568                                 break;
569                 }
570
571                 if (!del) {
572                         /* delete the stale device */
573                         if (fs_devs->num_devices == 1) {
574                                 btrfs_sysfs_remove_fsid(fs_devs);
575                                 list_del(&fs_devs->list);
576                                 free_fs_devices(fs_devs);
577                         } else {
578                                 fs_devs->num_devices--;
579                                 list_del(&dev->dev_list);
580                                 rcu_string_free(dev->name);
581                                 bio_put(dev->flush_bio);
582                                 kfree(dev);
583                         }
584                         break;
585                 }
586         }
587 }
588
589 /*
590  * Add new device to list of registered devices
591  *
592  * Returns:
593  * 1   - first time device is seen
594  * 0   - device already known
595  * < 0 - error
596  */
597 static noinline int device_list_add(const char *path,
598                            struct btrfs_super_block *disk_super,
599                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
600 {
601         struct btrfs_device *device;
602         struct btrfs_fs_devices *fs_devices;
603         struct rcu_string *name;
604         int ret = 0;
605         u64 found_transid = btrfs_super_generation(disk_super);
606
607         fs_devices = find_fsid(disk_super->fsid);
608         if (!fs_devices) {
609                 fs_devices = alloc_fs_devices(disk_super->fsid);
610                 if (IS_ERR(fs_devices))
611                         return PTR_ERR(fs_devices);
612
613                 list_add(&fs_devices->list, &fs_uuids);
614
615                 device = NULL;
616         } else {
617                 device = find_device(fs_devices, devid,
618                                 disk_super->dev_item.uuid);
619         }
620
621         if (!device) {
622                 if (fs_devices->opened)
623                         return -EBUSY;
624
625                 device = btrfs_alloc_device(NULL, &devid,
626                                             disk_super->dev_item.uuid);
627                 if (IS_ERR(device)) {
628                         /* we can safely leave the fs_devices entry around */
629                         return PTR_ERR(device);
630                 }
631
632                 name = rcu_string_strdup(path, GFP_NOFS);
633                 if (!name) {
634                         bio_put(device->flush_bio);
635                         kfree(device);
636                         return -ENOMEM;
637                 }
638                 rcu_assign_pointer(device->name, name);
639
640                 mutex_lock(&fs_devices->device_list_mutex);
641                 list_add_rcu(&device->dev_list, &fs_devices->devices);
642                 fs_devices->num_devices++;
643                 mutex_unlock(&fs_devices->device_list_mutex);
644
645                 ret = 1;
646                 device->fs_devices = fs_devices;
647         } else if (!device->name || strcmp(device->name->str, path)) {
648                 /*
649                  * When FS is already mounted.
650                  * 1. If you are here and if the device->name is NULL that
651                  *    means this device was missing at time of FS mount.
652                  * 2. If you are here and if the device->name is different
653                  *    from 'path' that means either
654                  *      a. The same device disappeared and reappeared with
655                  *         different name. or
656                  *      b. The missing-disk-which-was-replaced, has
657                  *         reappeared now.
658                  *
659                  * We must allow 1 and 2a above. But 2b would be a spurious
660                  * and unintentional.
661                  *
662                  * Further in case of 1 and 2a above, the disk at 'path'
663                  * would have missed some transaction when it was away and
664                  * in case of 2a the stale bdev has to be updated as well.
665                  * 2b must not be allowed at all time.
666                  */
667
668                 /*
669                  * For now, we do allow update to btrfs_fs_device through the
670                  * btrfs dev scan cli after FS has been mounted.  We're still
671                  * tracking a problem where systems fail mount by subvolume id
672                  * when we reject replacement on a mounted FS.
673                  */
674                 if (!fs_devices->opened && found_transid < device->generation) {
675                         /*
676                          * That is if the FS is _not_ mounted and if you
677                          * are here, that means there is more than one
678                          * disk with same uuid and devid.We keep the one
679                          * with larger generation number or the last-in if
680                          * generation are equal.
681                          */
682                         return -EEXIST;
683                 }
684
685                 name = rcu_string_strdup(path, GFP_NOFS);
686                 if (!name)
687                         return -ENOMEM;
688                 rcu_string_free(device->name);
689                 rcu_assign_pointer(device->name, name);
690                 if (device->missing) {
691                         fs_devices->missing_devices--;
692                         device->missing = 0;
693                 }
694         }
695
696         /*
697          * Unmount does not free the btrfs_device struct but would zero
698          * generation along with most of the other members. So just update
699          * it back. We need it to pick the disk with largest generation
700          * (as above).
701          */
702         if (!fs_devices->opened)
703                 device->generation = found_transid;
704
705         /*
706          * if there is new btrfs on an already registered device,
707          * then remove the stale device entry.
708          */
709         if (ret > 0)
710                 btrfs_free_stale_device(device);
711
712         *fs_devices_ret = fs_devices;
713
714         return ret;
715 }
716
717 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
718 {
719         struct btrfs_fs_devices *fs_devices;
720         struct btrfs_device *device;
721         struct btrfs_device *orig_dev;
722
723         fs_devices = alloc_fs_devices(orig->fsid);
724         if (IS_ERR(fs_devices))
725                 return fs_devices;
726
727         mutex_lock(&orig->device_list_mutex);
728         fs_devices->total_devices = orig->total_devices;
729
730         /* We have held the volume lock, it is safe to get the devices. */
731         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
732                 struct rcu_string *name;
733
734                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
735                                             orig_dev->uuid);
736                 if (IS_ERR(device))
737                         goto error;
738
739                 /*
740                  * This is ok to do without rcu read locked because we hold the
741                  * uuid mutex so nothing we touch in here is going to disappear.
742                  */
743                 if (orig_dev->name) {
744                         name = rcu_string_strdup(orig_dev->name->str,
745                                         GFP_KERNEL);
746                         if (!name) {
747                                 bio_put(device->flush_bio);
748                                 kfree(device);
749                                 goto error;
750                         }
751                         rcu_assign_pointer(device->name, name);
752                 }
753
754                 list_add(&device->dev_list, &fs_devices->devices);
755                 device->fs_devices = fs_devices;
756                 fs_devices->num_devices++;
757         }
758         mutex_unlock(&orig->device_list_mutex);
759         return fs_devices;
760 error:
761         mutex_unlock(&orig->device_list_mutex);
762         free_fs_devices(fs_devices);
763         return ERR_PTR(-ENOMEM);
764 }
765
766 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
767 {
768         struct btrfs_device *device, *next;
769         struct btrfs_device *latest_dev = NULL;
770
771         mutex_lock(&uuid_mutex);
772 again:
773         /* This is the initialized path, it is safe to release the devices. */
774         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
775                 if (device->in_fs_metadata) {
776                         if (!device->is_tgtdev_for_dev_replace &&
777                             (!latest_dev ||
778                              device->generation > latest_dev->generation)) {
779                                 latest_dev = device;
780                         }
781                         continue;
782                 }
783
784                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
785                         /*
786                          * In the first step, keep the device which has
787                          * the correct fsid and the devid that is used
788                          * for the dev_replace procedure.
789                          * In the second step, the dev_replace state is
790                          * read from the device tree and it is known
791                          * whether the procedure is really active or
792                          * not, which means whether this device is
793                          * used or whether it should be removed.
794                          */
795                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
796                                 continue;
797                         }
798                 }
799                 if (device->bdev) {
800                         blkdev_put(device->bdev, device->mode);
801                         device->bdev = NULL;
802                         fs_devices->open_devices--;
803                 }
804                 if (device->writeable) {
805                         list_del_init(&device->dev_alloc_list);
806                         device->writeable = 0;
807                         if (!device->is_tgtdev_for_dev_replace)
808                                 fs_devices->rw_devices--;
809                 }
810                 list_del_init(&device->dev_list);
811                 fs_devices->num_devices--;
812                 rcu_string_free(device->name);
813                 bio_put(device->flush_bio);
814                 kfree(device);
815         }
816
817         if (fs_devices->seed) {
818                 fs_devices = fs_devices->seed;
819                 goto again;
820         }
821
822         fs_devices->latest_bdev = latest_dev->bdev;
823
824         mutex_unlock(&uuid_mutex);
825 }
826
827 static void free_device(struct rcu_head *head)
828 {
829         struct btrfs_device *device;
830
831         device = container_of(head, struct btrfs_device, rcu);
832         rcu_string_free(device->name);
833         bio_put(device->flush_bio);
834         kfree(device);
835 }
836
837 static void btrfs_close_bdev(struct btrfs_device *device)
838 {
839         if (device->bdev && device->writeable) {
840                 sync_blockdev(device->bdev);
841                 invalidate_bdev(device->bdev);
842         }
843
844         if (device->bdev)
845                 blkdev_put(device->bdev, device->mode);
846 }
847
848 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
849 {
850         struct btrfs_fs_devices *fs_devices = device->fs_devices;
851         struct btrfs_device *new_device;
852         struct rcu_string *name;
853
854         if (device->bdev)
855                 fs_devices->open_devices--;
856
857         if (device->writeable &&
858             device->devid != BTRFS_DEV_REPLACE_DEVID) {
859                 list_del_init(&device->dev_alloc_list);
860                 fs_devices->rw_devices--;
861         }
862
863         if (device->missing)
864                 fs_devices->missing_devices--;
865
866         new_device = btrfs_alloc_device(NULL, &device->devid,
867                                         device->uuid);
868         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
869
870         /* Safe because we are under uuid_mutex */
871         if (device->name) {
872                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
873                 BUG_ON(!name); /* -ENOMEM */
874                 rcu_assign_pointer(new_device->name, name);
875         }
876
877         list_replace_rcu(&device->dev_list, &new_device->dev_list);
878         new_device->fs_devices = device->fs_devices;
879 }
880
881 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
882 {
883         struct btrfs_device *device, *tmp;
884         struct list_head pending_put;
885
886         INIT_LIST_HEAD(&pending_put);
887
888         if (--fs_devices->opened > 0)
889                 return 0;
890
891         mutex_lock(&fs_devices->device_list_mutex);
892         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
893                 btrfs_prepare_close_one_device(device);
894                 list_add(&device->dev_list, &pending_put);
895         }
896         mutex_unlock(&fs_devices->device_list_mutex);
897
898         /*
899          * btrfs_show_devname() is using the device_list_mutex,
900          * sometimes call to blkdev_put() leads vfs calling
901          * into this func. So do put outside of device_list_mutex,
902          * as of now.
903          */
904         while (!list_empty(&pending_put)) {
905                 device = list_first_entry(&pending_put,
906                                 struct btrfs_device, dev_list);
907                 list_del(&device->dev_list);
908                 btrfs_close_bdev(device);
909                 call_rcu(&device->rcu, free_device);
910         }
911
912         WARN_ON(fs_devices->open_devices);
913         WARN_ON(fs_devices->rw_devices);
914         fs_devices->opened = 0;
915         fs_devices->seeding = 0;
916
917         return 0;
918 }
919
920 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
921 {
922         struct btrfs_fs_devices *seed_devices = NULL;
923         int ret;
924
925         mutex_lock(&uuid_mutex);
926         ret = __btrfs_close_devices(fs_devices);
927         if (!fs_devices->opened) {
928                 seed_devices = fs_devices->seed;
929                 fs_devices->seed = NULL;
930         }
931         mutex_unlock(&uuid_mutex);
932
933         while (seed_devices) {
934                 fs_devices = seed_devices;
935                 seed_devices = fs_devices->seed;
936                 __btrfs_close_devices(fs_devices);
937                 free_fs_devices(fs_devices);
938         }
939         return ret;
940 }
941
942 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
943                                 fmode_t flags, void *holder)
944 {
945         struct request_queue *q;
946         struct block_device *bdev;
947         struct list_head *head = &fs_devices->devices;
948         struct btrfs_device *device;
949         struct btrfs_device *latest_dev = NULL;
950         struct buffer_head *bh;
951         struct btrfs_super_block *disk_super;
952         u64 devid;
953         int seeding = 1;
954         int ret = 0;
955
956         flags |= FMODE_EXCL;
957
958         list_for_each_entry(device, head, dev_list) {
959                 if (device->bdev)
960                         continue;
961                 if (!device->name)
962                         continue;
963
964                 /* Just open everything we can; ignore failures here */
965                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
966                                             &bdev, &bh))
967                         continue;
968
969                 disk_super = (struct btrfs_super_block *)bh->b_data;
970                 devid = btrfs_stack_device_id(&disk_super->dev_item);
971                 if (devid != device->devid)
972                         goto error_brelse;
973
974                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
975                            BTRFS_UUID_SIZE))
976                         goto error_brelse;
977
978                 device->generation = btrfs_super_generation(disk_super);
979                 if (!latest_dev ||
980                     device->generation > latest_dev->generation)
981                         latest_dev = device;
982
983                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
984                         device->writeable = 0;
985                 } else {
986                         device->writeable = !bdev_read_only(bdev);
987                         seeding = 0;
988                 }
989
990                 q = bdev_get_queue(bdev);
991                 if (blk_queue_discard(q))
992                         device->can_discard = 1;
993                 if (!blk_queue_nonrot(q))
994                         fs_devices->rotating = 1;
995
996                 device->bdev = bdev;
997                 device->in_fs_metadata = 0;
998                 device->mode = flags;
999
1000                 fs_devices->open_devices++;
1001                 if (device->writeable &&
1002                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
1003                         fs_devices->rw_devices++;
1004                         list_add(&device->dev_alloc_list,
1005                                  &fs_devices->alloc_list);
1006                 }
1007                 brelse(bh);
1008                 continue;
1009
1010 error_brelse:
1011                 brelse(bh);
1012                 blkdev_put(bdev, flags);
1013                 continue;
1014         }
1015         if (fs_devices->open_devices == 0) {
1016                 ret = -EINVAL;
1017                 goto out;
1018         }
1019         fs_devices->seeding = seeding;
1020         fs_devices->opened = 1;
1021         fs_devices->latest_bdev = latest_dev->bdev;
1022         fs_devices->total_rw_bytes = 0;
1023 out:
1024         return ret;
1025 }
1026
1027 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1028                        fmode_t flags, void *holder)
1029 {
1030         int ret;
1031
1032         mutex_lock(&uuid_mutex);
1033         if (fs_devices->opened) {
1034                 fs_devices->opened++;
1035                 ret = 0;
1036         } else {
1037                 ret = __btrfs_open_devices(fs_devices, flags, holder);
1038         }
1039         mutex_unlock(&uuid_mutex);
1040         return ret;
1041 }
1042
1043 static void btrfs_release_disk_super(struct page *page)
1044 {
1045         kunmap(page);
1046         put_page(page);
1047 }
1048
1049 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1050                                  struct page **page,
1051                                  struct btrfs_super_block **disk_super)
1052 {
1053         void *p;
1054         pgoff_t index;
1055
1056         /* make sure our super fits in the device */
1057         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1058                 return 1;
1059
1060         /* make sure our super fits in the page */
1061         if (sizeof(**disk_super) > PAGE_SIZE)
1062                 return 1;
1063
1064         /* make sure our super doesn't straddle pages on disk */
1065         index = bytenr >> PAGE_SHIFT;
1066         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1067                 return 1;
1068
1069         /* pull in the page with our super */
1070         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1071                                    index, GFP_KERNEL);
1072
1073         if (IS_ERR_OR_NULL(*page))
1074                 return 1;
1075
1076         p = kmap(*page);
1077
1078         /* align our pointer to the offset of the super block */
1079         *disk_super = p + (bytenr & ~PAGE_MASK);
1080
1081         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1082             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1083                 btrfs_release_disk_super(*page);
1084                 return 1;
1085         }
1086
1087         if ((*disk_super)->label[0] &&
1088                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1089                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1090
1091         return 0;
1092 }
1093
1094 /*
1095  * Look for a btrfs signature on a device. This may be called out of the mount path
1096  * and we are not allowed to call set_blocksize during the scan. The superblock
1097  * is read via pagecache
1098  */
1099 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1100                           struct btrfs_fs_devices **fs_devices_ret)
1101 {
1102         struct btrfs_super_block *disk_super;
1103         struct block_device *bdev;
1104         struct page *page;
1105         int ret = -EINVAL;
1106         u64 devid;
1107         u64 transid;
1108         u64 total_devices;
1109         u64 bytenr;
1110
1111         /*
1112          * we would like to check all the supers, but that would make
1113          * a btrfs mount succeed after a mkfs from a different FS.
1114          * So, we need to add a special mount option to scan for
1115          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1116          */
1117         bytenr = btrfs_sb_offset(0);
1118         flags |= FMODE_EXCL;
1119         mutex_lock(&uuid_mutex);
1120
1121         bdev = blkdev_get_by_path(path, flags, holder);
1122         if (IS_ERR(bdev)) {
1123                 ret = PTR_ERR(bdev);
1124                 goto error;
1125         }
1126
1127         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1128                 goto error_bdev_put;
1129
1130         devid = btrfs_stack_device_id(&disk_super->dev_item);
1131         transid = btrfs_super_generation(disk_super);
1132         total_devices = btrfs_super_num_devices(disk_super);
1133
1134         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1135         if (ret > 0) {
1136                 if (disk_super->label[0]) {
1137                         pr_info("BTRFS: device label %s ", disk_super->label);
1138                 } else {
1139                         pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1140                 }
1141
1142                 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1143                 ret = 0;
1144         }
1145         if (!ret && fs_devices_ret)
1146                 (*fs_devices_ret)->total_devices = total_devices;
1147
1148         btrfs_release_disk_super(page);
1149
1150 error_bdev_put:
1151         blkdev_put(bdev, flags);
1152 error:
1153         mutex_unlock(&uuid_mutex);
1154         return ret;
1155 }
1156
1157 /* helper to account the used device space in the range */
1158 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1159                                    u64 end, u64 *length)
1160 {
1161         struct btrfs_key key;
1162         struct btrfs_root *root = device->fs_info->dev_root;
1163         struct btrfs_dev_extent *dev_extent;
1164         struct btrfs_path *path;
1165         u64 extent_end;
1166         int ret;
1167         int slot;
1168         struct extent_buffer *l;
1169
1170         *length = 0;
1171
1172         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1173                 return 0;
1174
1175         path = btrfs_alloc_path();
1176         if (!path)
1177                 return -ENOMEM;
1178         path->reada = READA_FORWARD;
1179
1180         key.objectid = device->devid;
1181         key.offset = start;
1182         key.type = BTRFS_DEV_EXTENT_KEY;
1183
1184         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1185         if (ret < 0)
1186                 goto out;
1187         if (ret > 0) {
1188                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1189                 if (ret < 0)
1190                         goto out;
1191         }
1192
1193         while (1) {
1194                 l = path->nodes[0];
1195                 slot = path->slots[0];
1196                 if (slot >= btrfs_header_nritems(l)) {
1197                         ret = btrfs_next_leaf(root, path);
1198                         if (ret == 0)
1199                                 continue;
1200                         if (ret < 0)
1201                                 goto out;
1202
1203                         break;
1204                 }
1205                 btrfs_item_key_to_cpu(l, &key, slot);
1206
1207                 if (key.objectid < device->devid)
1208                         goto next;
1209
1210                 if (key.objectid > device->devid)
1211                         break;
1212
1213                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1214                         goto next;
1215
1216                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1217                 extent_end = key.offset + btrfs_dev_extent_length(l,
1218                                                                   dev_extent);
1219                 if (key.offset <= start && extent_end > end) {
1220                         *length = end - start + 1;
1221                         break;
1222                 } else if (key.offset <= start && extent_end > start)
1223                         *length += extent_end - start;
1224                 else if (key.offset > start && extent_end <= end)
1225                         *length += extent_end - key.offset;
1226                 else if (key.offset > start && key.offset <= end) {
1227                         *length += end - key.offset + 1;
1228                         break;
1229                 } else if (key.offset > end)
1230                         break;
1231
1232 next:
1233                 path->slots[0]++;
1234         }
1235         ret = 0;
1236 out:
1237         btrfs_free_path(path);
1238         return ret;
1239 }
1240
1241 static int contains_pending_extent(struct btrfs_transaction *transaction,
1242                                    struct btrfs_device *device,
1243                                    u64 *start, u64 len)
1244 {
1245         struct btrfs_fs_info *fs_info = device->fs_info;
1246         struct extent_map *em;
1247         struct list_head *search_list = &fs_info->pinned_chunks;
1248         int ret = 0;
1249         u64 physical_start = *start;
1250
1251         if (transaction)
1252                 search_list = &transaction->pending_chunks;
1253 again:
1254         list_for_each_entry(em, search_list, list) {
1255                 struct map_lookup *map;
1256                 int i;
1257
1258                 map = em->map_lookup;
1259                 for (i = 0; i < map->num_stripes; i++) {
1260                         u64 end;
1261
1262                         if (map->stripes[i].dev != device)
1263                                 continue;
1264                         if (map->stripes[i].physical >= physical_start + len ||
1265                             map->stripes[i].physical + em->orig_block_len <=
1266                             physical_start)
1267                                 continue;
1268                         /*
1269                          * Make sure that while processing the pinned list we do
1270                          * not override our *start with a lower value, because
1271                          * we can have pinned chunks that fall within this
1272                          * device hole and that have lower physical addresses
1273                          * than the pending chunks we processed before. If we
1274                          * do not take this special care we can end up getting
1275                          * 2 pending chunks that start at the same physical
1276                          * device offsets because the end offset of a pinned
1277                          * chunk can be equal to the start offset of some
1278                          * pending chunk.
1279                          */
1280                         end = map->stripes[i].physical + em->orig_block_len;
1281                         if (end > *start) {
1282                                 *start = end;
1283                                 ret = 1;
1284                         }
1285                 }
1286         }
1287         if (search_list != &fs_info->pinned_chunks) {
1288                 search_list = &fs_info->pinned_chunks;
1289                 goto again;
1290         }
1291
1292         return ret;
1293 }
1294
1295
1296 /*
1297  * find_free_dev_extent_start - find free space in the specified device
1298  * @device:       the device which we search the free space in
1299  * @num_bytes:    the size of the free space that we need
1300  * @search_start: the position from which to begin the search
1301  * @start:        store the start of the free space.
1302  * @len:          the size of the free space. that we find, or the size
1303  *                of the max free space if we don't find suitable free space
1304  *
1305  * this uses a pretty simple search, the expectation is that it is
1306  * called very infrequently and that a given device has a small number
1307  * of extents
1308  *
1309  * @start is used to store the start of the free space if we find. But if we
1310  * don't find suitable free space, it will be used to store the start position
1311  * of the max free space.
1312  *
1313  * @len is used to store the size of the free space that we find.
1314  * But if we don't find suitable free space, it is used to store the size of
1315  * the max free space.
1316  */
1317 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1318                                struct btrfs_device *device, u64 num_bytes,
1319                                u64 search_start, u64 *start, u64 *len)
1320 {
1321         struct btrfs_fs_info *fs_info = device->fs_info;
1322         struct btrfs_root *root = fs_info->dev_root;
1323         struct btrfs_key key;
1324         struct btrfs_dev_extent *dev_extent;
1325         struct btrfs_path *path;
1326         u64 hole_size;
1327         u64 max_hole_start;
1328         u64 max_hole_size;
1329         u64 extent_end;
1330         u64 search_end = device->total_bytes;
1331         int ret;
1332         int slot;
1333         struct extent_buffer *l;
1334
1335         /*
1336          * We don't want to overwrite the superblock on the drive nor any area
1337          * used by the boot loader (grub for example), so we make sure to start
1338          * at an offset of at least 1MB.
1339          */
1340         search_start = max_t(u64, search_start, SZ_1M);
1341
1342         path = btrfs_alloc_path();
1343         if (!path)
1344                 return -ENOMEM;
1345
1346         max_hole_start = search_start;
1347         max_hole_size = 0;
1348
1349 again:
1350         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1351                 ret = -ENOSPC;
1352                 goto out;
1353         }
1354
1355         path->reada = READA_FORWARD;
1356         path->search_commit_root = 1;
1357         path->skip_locking = 1;
1358
1359         key.objectid = device->devid;
1360         key.offset = search_start;
1361         key.type = BTRFS_DEV_EXTENT_KEY;
1362
1363         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1364         if (ret < 0)
1365                 goto out;
1366         if (ret > 0) {
1367                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1368                 if (ret < 0)
1369                         goto out;
1370         }
1371
1372         while (1) {
1373                 l = path->nodes[0];
1374                 slot = path->slots[0];
1375                 if (slot >= btrfs_header_nritems(l)) {
1376                         ret = btrfs_next_leaf(root, path);
1377                         if (ret == 0)
1378                                 continue;
1379                         if (ret < 0)
1380                                 goto out;
1381
1382                         break;
1383                 }
1384                 btrfs_item_key_to_cpu(l, &key, slot);
1385
1386                 if (key.objectid < device->devid)
1387                         goto next;
1388
1389                 if (key.objectid > device->devid)
1390                         break;
1391
1392                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1393                         goto next;
1394
1395                 if (key.offset > search_start) {
1396                         hole_size = key.offset - search_start;
1397
1398                         /*
1399                          * Have to check before we set max_hole_start, otherwise
1400                          * we could end up sending back this offset anyway.
1401                          */
1402                         if (contains_pending_extent(transaction, device,
1403                                                     &search_start,
1404                                                     hole_size)) {
1405                                 if (key.offset >= search_start) {
1406                                         hole_size = key.offset - search_start;
1407                                 } else {
1408                                         WARN_ON_ONCE(1);
1409                                         hole_size = 0;
1410                                 }
1411                         }
1412
1413                         if (hole_size > max_hole_size) {
1414                                 max_hole_start = search_start;
1415                                 max_hole_size = hole_size;
1416                         }
1417
1418                         /*
1419                          * If this free space is greater than which we need,
1420                          * it must be the max free space that we have found
1421                          * until now, so max_hole_start must point to the start
1422                          * of this free space and the length of this free space
1423                          * is stored in max_hole_size. Thus, we return
1424                          * max_hole_start and max_hole_size and go back to the
1425                          * caller.
1426                          */
1427                         if (hole_size >= num_bytes) {
1428                                 ret = 0;
1429                                 goto out;
1430                         }
1431                 }
1432
1433                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1434                 extent_end = key.offset + btrfs_dev_extent_length(l,
1435                                                                   dev_extent);
1436                 if (extent_end > search_start)
1437                         search_start = extent_end;
1438 next:
1439                 path->slots[0]++;
1440                 cond_resched();
1441         }
1442
1443         /*
1444          * At this point, search_start should be the end of
1445          * allocated dev extents, and when shrinking the device,
1446          * search_end may be smaller than search_start.
1447          */
1448         if (search_end > search_start) {
1449                 hole_size = search_end - search_start;
1450
1451                 if (contains_pending_extent(transaction, device, &search_start,
1452                                             hole_size)) {
1453                         btrfs_release_path(path);
1454                         goto again;
1455                 }
1456
1457                 if (hole_size > max_hole_size) {
1458                         max_hole_start = search_start;
1459                         max_hole_size = hole_size;
1460                 }
1461         }
1462
1463         /* See above. */
1464         if (max_hole_size < num_bytes)
1465                 ret = -ENOSPC;
1466         else
1467                 ret = 0;
1468
1469 out:
1470         btrfs_free_path(path);
1471         *start = max_hole_start;
1472         if (len)
1473                 *len = max_hole_size;
1474         return ret;
1475 }
1476
1477 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1478                          struct btrfs_device *device, u64 num_bytes,
1479                          u64 *start, u64 *len)
1480 {
1481         /* FIXME use last free of some kind */
1482         return find_free_dev_extent_start(trans->transaction, device,
1483                                           num_bytes, 0, start, len);
1484 }
1485
1486 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1487                           struct btrfs_device *device,
1488                           u64 start, u64 *dev_extent_len)
1489 {
1490         struct btrfs_fs_info *fs_info = device->fs_info;
1491         struct btrfs_root *root = fs_info->dev_root;
1492         int ret;
1493         struct btrfs_path *path;
1494         struct btrfs_key key;
1495         struct btrfs_key found_key;
1496         struct extent_buffer *leaf = NULL;
1497         struct btrfs_dev_extent *extent = NULL;
1498
1499         path = btrfs_alloc_path();
1500         if (!path)
1501                 return -ENOMEM;
1502
1503         key.objectid = device->devid;
1504         key.offset = start;
1505         key.type = BTRFS_DEV_EXTENT_KEY;
1506 again:
1507         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1508         if (ret > 0) {
1509                 ret = btrfs_previous_item(root, path, key.objectid,
1510                                           BTRFS_DEV_EXTENT_KEY);
1511                 if (ret)
1512                         goto out;
1513                 leaf = path->nodes[0];
1514                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1515                 extent = btrfs_item_ptr(leaf, path->slots[0],
1516                                         struct btrfs_dev_extent);
1517                 BUG_ON(found_key.offset > start || found_key.offset +
1518                        btrfs_dev_extent_length(leaf, extent) < start);
1519                 key = found_key;
1520                 btrfs_release_path(path);
1521                 goto again;
1522         } else if (ret == 0) {
1523                 leaf = path->nodes[0];
1524                 extent = btrfs_item_ptr(leaf, path->slots[0],
1525                                         struct btrfs_dev_extent);
1526         } else {
1527                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1528                 goto out;
1529         }
1530
1531         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1532
1533         ret = btrfs_del_item(trans, root, path);
1534         if (ret) {
1535                 btrfs_handle_fs_error(fs_info, ret,
1536                                       "Failed to remove dev extent item");
1537         } else {
1538                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1539         }
1540 out:
1541         btrfs_free_path(path);
1542         return ret;
1543 }
1544
1545 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1546                                   struct btrfs_device *device,
1547                                   u64 chunk_offset, u64 start, u64 num_bytes)
1548 {
1549         int ret;
1550         struct btrfs_path *path;
1551         struct btrfs_fs_info *fs_info = device->fs_info;
1552         struct btrfs_root *root = fs_info->dev_root;
1553         struct btrfs_dev_extent *extent;
1554         struct extent_buffer *leaf;
1555         struct btrfs_key key;
1556
1557         WARN_ON(!device->in_fs_metadata);
1558         WARN_ON(device->is_tgtdev_for_dev_replace);
1559         path = btrfs_alloc_path();
1560         if (!path)
1561                 return -ENOMEM;
1562
1563         key.objectid = device->devid;
1564         key.offset = start;
1565         key.type = BTRFS_DEV_EXTENT_KEY;
1566         ret = btrfs_insert_empty_item(trans, root, path, &key,
1567                                       sizeof(*extent));
1568         if (ret)
1569                 goto out;
1570
1571         leaf = path->nodes[0];
1572         extent = btrfs_item_ptr(leaf, path->slots[0],
1573                                 struct btrfs_dev_extent);
1574         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1575                                         BTRFS_CHUNK_TREE_OBJECTID);
1576         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1577                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1578         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1579
1580         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1581         btrfs_mark_buffer_dirty(leaf);
1582 out:
1583         btrfs_free_path(path);
1584         return ret;
1585 }
1586
1587 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1588 {
1589         struct extent_map_tree *em_tree;
1590         struct extent_map *em;
1591         struct rb_node *n;
1592         u64 ret = 0;
1593
1594         em_tree = &fs_info->mapping_tree.map_tree;
1595         read_lock(&em_tree->lock);
1596         n = rb_last(&em_tree->map);
1597         if (n) {
1598                 em = rb_entry(n, struct extent_map, rb_node);
1599                 ret = em->start + em->len;
1600         }
1601         read_unlock(&em_tree->lock);
1602
1603         return ret;
1604 }
1605
1606 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1607                                     u64 *devid_ret)
1608 {
1609         int ret;
1610         struct btrfs_key key;
1611         struct btrfs_key found_key;
1612         struct btrfs_path *path;
1613
1614         path = btrfs_alloc_path();
1615         if (!path)
1616                 return -ENOMEM;
1617
1618         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1619         key.type = BTRFS_DEV_ITEM_KEY;
1620         key.offset = (u64)-1;
1621
1622         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1623         if (ret < 0)
1624                 goto error;
1625
1626         BUG_ON(ret == 0); /* Corruption */
1627
1628         ret = btrfs_previous_item(fs_info->chunk_root, path,
1629                                   BTRFS_DEV_ITEMS_OBJECTID,
1630                                   BTRFS_DEV_ITEM_KEY);
1631         if (ret) {
1632                 *devid_ret = 1;
1633         } else {
1634                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1635                                       path->slots[0]);
1636                 *devid_ret = found_key.offset + 1;
1637         }
1638         ret = 0;
1639 error:
1640         btrfs_free_path(path);
1641         return ret;
1642 }
1643
1644 /*
1645  * the device information is stored in the chunk root
1646  * the btrfs_device struct should be fully filled in
1647  */
1648 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1649                             struct btrfs_fs_info *fs_info,
1650                             struct btrfs_device *device)
1651 {
1652         struct btrfs_root *root = fs_info->chunk_root;
1653         int ret;
1654         struct btrfs_path *path;
1655         struct btrfs_dev_item *dev_item;
1656         struct extent_buffer *leaf;
1657         struct btrfs_key key;
1658         unsigned long ptr;
1659
1660         path = btrfs_alloc_path();
1661         if (!path)
1662                 return -ENOMEM;
1663
1664         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1665         key.type = BTRFS_DEV_ITEM_KEY;
1666         key.offset = device->devid;
1667
1668         ret = btrfs_insert_empty_item(trans, root, path, &key,
1669                                       sizeof(*dev_item));
1670         if (ret)
1671                 goto out;
1672
1673         leaf = path->nodes[0];
1674         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1675
1676         btrfs_set_device_id(leaf, dev_item, device->devid);
1677         btrfs_set_device_generation(leaf, dev_item, 0);
1678         btrfs_set_device_type(leaf, dev_item, device->type);
1679         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1680         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1681         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1682         btrfs_set_device_total_bytes(leaf, dev_item,
1683                                      btrfs_device_get_disk_total_bytes(device));
1684         btrfs_set_device_bytes_used(leaf, dev_item,
1685                                     btrfs_device_get_bytes_used(device));
1686         btrfs_set_device_group(leaf, dev_item, 0);
1687         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1688         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1689         btrfs_set_device_start_offset(leaf, dev_item, 0);
1690
1691         ptr = btrfs_device_uuid(dev_item);
1692         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1693         ptr = btrfs_device_fsid(dev_item);
1694         write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1695         btrfs_mark_buffer_dirty(leaf);
1696
1697         ret = 0;
1698 out:
1699         btrfs_free_path(path);
1700         return ret;
1701 }
1702
1703 /*
1704  * Function to update ctime/mtime for a given device path.
1705  * Mainly used for ctime/mtime based probe like libblkid.
1706  */
1707 static void update_dev_time(const char *path_name)
1708 {
1709         struct file *filp;
1710
1711         filp = filp_open(path_name, O_RDWR, 0);
1712         if (IS_ERR(filp))
1713                 return;
1714         file_update_time(filp);
1715         filp_close(filp, NULL);
1716 }
1717
1718 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1719                              struct btrfs_device *device)
1720 {
1721         struct btrfs_root *root = fs_info->chunk_root;
1722         int ret;
1723         struct btrfs_path *path;
1724         struct btrfs_key key;
1725         struct btrfs_trans_handle *trans;
1726
1727         path = btrfs_alloc_path();
1728         if (!path)
1729                 return -ENOMEM;
1730
1731         trans = btrfs_start_transaction(root, 0);
1732         if (IS_ERR(trans)) {
1733                 btrfs_free_path(path);
1734                 return PTR_ERR(trans);
1735         }
1736         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1737         key.type = BTRFS_DEV_ITEM_KEY;
1738         key.offset = device->devid;
1739
1740         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1741         if (ret) {
1742                 if (ret > 0)
1743                         ret = -ENOENT;
1744                 btrfs_abort_transaction(trans, ret);
1745                 btrfs_end_transaction(trans);
1746                 goto out;
1747         }
1748
1749         ret = btrfs_del_item(trans, root, path);
1750         if (ret) {
1751                 btrfs_abort_transaction(trans, ret);
1752                 btrfs_end_transaction(trans);
1753         }
1754
1755 out:
1756         btrfs_free_path(path);
1757         if (!ret)
1758                 ret = btrfs_commit_transaction(trans);
1759         return ret;
1760 }
1761
1762 /*
1763  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1764  * filesystem. It's up to the caller to adjust that number regarding eg. device
1765  * replace.
1766  */
1767 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1768                 u64 num_devices)
1769 {
1770         u64 all_avail;
1771         unsigned seq;
1772         int i;
1773
1774         do {
1775                 seq = read_seqbegin(&fs_info->profiles_lock);
1776
1777                 all_avail = fs_info->avail_data_alloc_bits |
1778                             fs_info->avail_system_alloc_bits |
1779                             fs_info->avail_metadata_alloc_bits;
1780         } while (read_seqretry(&fs_info->profiles_lock, seq));
1781
1782         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1783                 if (!(all_avail & btrfs_raid_group[i]))
1784                         continue;
1785
1786                 if (num_devices < btrfs_raid_array[i].devs_min) {
1787                         int ret = btrfs_raid_mindev_error[i];
1788
1789                         if (ret)
1790                                 return ret;
1791                 }
1792         }
1793
1794         return 0;
1795 }
1796
1797 static struct btrfs_device * btrfs_find_next_active_device(
1798                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1799 {
1800         struct btrfs_device *next_device;
1801
1802         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1803                 if (next_device != device &&
1804                         !next_device->missing && next_device->bdev)
1805                         return next_device;
1806         }
1807
1808         return NULL;
1809 }
1810
1811 /*
1812  * Helper function to check if the given device is part of s_bdev / latest_bdev
1813  * and replace it with the provided or the next active device, in the context
1814  * where this function called, there should be always be another device (or
1815  * this_dev) which is active.
1816  */
1817 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1818                 struct btrfs_device *device, struct btrfs_device *this_dev)
1819 {
1820         struct btrfs_device *next_device;
1821
1822         if (this_dev)
1823                 next_device = this_dev;
1824         else
1825                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1826                                                                 device);
1827         ASSERT(next_device);
1828
1829         if (fs_info->sb->s_bdev &&
1830                         (fs_info->sb->s_bdev == device->bdev))
1831                 fs_info->sb->s_bdev = next_device->bdev;
1832
1833         if (fs_info->fs_devices->latest_bdev == device->bdev)
1834                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1835 }
1836
1837 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1838                 u64 devid)
1839 {
1840         struct btrfs_device *device;
1841         struct btrfs_fs_devices *cur_devices;
1842         u64 num_devices;
1843         int ret = 0;
1844
1845         mutex_lock(&fs_info->volume_mutex);
1846         mutex_lock(&uuid_mutex);
1847
1848         num_devices = fs_info->fs_devices->num_devices;
1849         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1850         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1851                 WARN_ON(num_devices < 1);
1852                 num_devices--;
1853         }
1854         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1855
1856         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1857         if (ret)
1858                 goto out;
1859
1860         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1861                                            &device);
1862         if (ret)
1863                 goto out;
1864
1865         if (device->is_tgtdev_for_dev_replace) {
1866                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1867                 goto out;
1868         }
1869
1870         if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1871                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1872                 goto out;
1873         }
1874
1875         if (device->writeable) {
1876                 mutex_lock(&fs_info->chunk_mutex);
1877                 list_del_init(&device->dev_alloc_list);
1878                 device->fs_devices->rw_devices--;
1879                 mutex_unlock(&fs_info->chunk_mutex);
1880         }
1881
1882         mutex_unlock(&uuid_mutex);
1883         ret = btrfs_shrink_device(device, 0);
1884         mutex_lock(&uuid_mutex);
1885         if (ret)
1886                 goto error_undo;
1887
1888         /*
1889          * TODO: the superblock still includes this device in its num_devices
1890          * counter although write_all_supers() is not locked out. This
1891          * could give a filesystem state which requires a degraded mount.
1892          */
1893         ret = btrfs_rm_dev_item(fs_info, device);
1894         if (ret)
1895                 goto error_undo;
1896
1897         device->in_fs_metadata = 0;
1898         btrfs_scrub_cancel_dev(fs_info, device);
1899
1900         /*
1901          * the device list mutex makes sure that we don't change
1902          * the device list while someone else is writing out all
1903          * the device supers. Whoever is writing all supers, should
1904          * lock the device list mutex before getting the number of
1905          * devices in the super block (super_copy). Conversely,
1906          * whoever updates the number of devices in the super block
1907          * (super_copy) should hold the device list mutex.
1908          */
1909
1910         cur_devices = device->fs_devices;
1911         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1912         list_del_rcu(&device->dev_list);
1913
1914         device->fs_devices->num_devices--;
1915         device->fs_devices->total_devices--;
1916
1917         if (device->missing)
1918                 device->fs_devices->missing_devices--;
1919
1920         btrfs_assign_next_active_device(fs_info, device, NULL);
1921
1922         if (device->bdev) {
1923                 device->fs_devices->open_devices--;
1924                 /* remove sysfs entry */
1925                 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1926         }
1927
1928         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1929         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1930         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1931
1932         /*
1933          * at this point, the device is zero sized and detached from
1934          * the devices list.  All that's left is to zero out the old
1935          * supers and free the device.
1936          */
1937         if (device->writeable)
1938                 btrfs_scratch_superblocks(device->bdev, device->name->str);
1939
1940         btrfs_close_bdev(device);
1941         call_rcu(&device->rcu, free_device);
1942
1943         if (cur_devices->open_devices == 0) {
1944                 struct btrfs_fs_devices *fs_devices;
1945                 fs_devices = fs_info->fs_devices;
1946                 while (fs_devices) {
1947                         if (fs_devices->seed == cur_devices) {
1948                                 fs_devices->seed = cur_devices->seed;
1949                                 break;
1950                         }
1951                         fs_devices = fs_devices->seed;
1952                 }
1953                 cur_devices->seed = NULL;
1954                 __btrfs_close_devices(cur_devices);
1955                 free_fs_devices(cur_devices);
1956         }
1957
1958 out:
1959         mutex_unlock(&uuid_mutex);
1960         mutex_unlock(&fs_info->volume_mutex);
1961         return ret;
1962
1963 error_undo:
1964         if (device->writeable) {
1965                 mutex_lock(&fs_info->chunk_mutex);
1966                 list_add(&device->dev_alloc_list,
1967                          &fs_info->fs_devices->alloc_list);
1968                 device->fs_devices->rw_devices++;
1969                 mutex_unlock(&fs_info->chunk_mutex);
1970         }
1971         goto out;
1972 }
1973
1974 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1975                                         struct btrfs_device *srcdev)
1976 {
1977         struct btrfs_fs_devices *fs_devices;
1978
1979         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1980
1981         /*
1982          * in case of fs with no seed, srcdev->fs_devices will point
1983          * to fs_devices of fs_info. However when the dev being replaced is
1984          * a seed dev it will point to the seed's local fs_devices. In short
1985          * srcdev will have its correct fs_devices in both the cases.
1986          */
1987         fs_devices = srcdev->fs_devices;
1988
1989         list_del_rcu(&srcdev->dev_list);
1990         list_del(&srcdev->dev_alloc_list);
1991         fs_devices->num_devices--;
1992         if (srcdev->missing)
1993                 fs_devices->missing_devices--;
1994
1995         if (srcdev->writeable)
1996                 fs_devices->rw_devices--;
1997
1998         if (srcdev->bdev)
1999                 fs_devices->open_devices--;
2000 }
2001
2002 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2003                                       struct btrfs_device *srcdev)
2004 {
2005         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2006
2007         if (srcdev->writeable) {
2008                 /* zero out the old super if it is writable */
2009                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2010         }
2011
2012         btrfs_close_bdev(srcdev);
2013         call_rcu(&srcdev->rcu, free_device);
2014
2015         /* if this is no devs we rather delete the fs_devices */
2016         if (!fs_devices->num_devices) {
2017                 struct btrfs_fs_devices *tmp_fs_devices;
2018
2019                 /*
2020                  * On a mounted FS, num_devices can't be zero unless it's a
2021                  * seed. In case of a seed device being replaced, the replace
2022                  * target added to the sprout FS, so there will be no more
2023                  * device left under the seed FS.
2024                  */
2025                 ASSERT(fs_devices->seeding);
2026
2027                 tmp_fs_devices = fs_info->fs_devices;
2028                 while (tmp_fs_devices) {
2029                         if (tmp_fs_devices->seed == fs_devices) {
2030                                 tmp_fs_devices->seed = fs_devices->seed;
2031                                 break;
2032                         }
2033                         tmp_fs_devices = tmp_fs_devices->seed;
2034                 }
2035                 fs_devices->seed = NULL;
2036                 __btrfs_close_devices(fs_devices);
2037                 free_fs_devices(fs_devices);
2038         }
2039 }
2040
2041 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2042                                       struct btrfs_device *tgtdev)
2043 {
2044         mutex_lock(&uuid_mutex);
2045         WARN_ON(!tgtdev);
2046         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2047
2048         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2049
2050         if (tgtdev->bdev)
2051                 fs_info->fs_devices->open_devices--;
2052
2053         fs_info->fs_devices->num_devices--;
2054
2055         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2056
2057         list_del_rcu(&tgtdev->dev_list);
2058
2059         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2060         mutex_unlock(&uuid_mutex);
2061
2062         /*
2063          * The update_dev_time() with in btrfs_scratch_superblocks()
2064          * may lead to a call to btrfs_show_devname() which will try
2065          * to hold device_list_mutex. And here this device
2066          * is already out of device list, so we don't have to hold
2067          * the device_list_mutex lock.
2068          */
2069         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2070
2071         btrfs_close_bdev(tgtdev);
2072         call_rcu(&tgtdev->rcu, free_device);
2073 }
2074
2075 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2076                                      const char *device_path,
2077                                      struct btrfs_device **device)
2078 {
2079         int ret = 0;
2080         struct btrfs_super_block *disk_super;
2081         u64 devid;
2082         u8 *dev_uuid;
2083         struct block_device *bdev;
2084         struct buffer_head *bh;
2085
2086         *device = NULL;
2087         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2088                                     fs_info->bdev_holder, 0, &bdev, &bh);
2089         if (ret)
2090                 return ret;
2091         disk_super = (struct btrfs_super_block *)bh->b_data;
2092         devid = btrfs_stack_device_id(&disk_super->dev_item);
2093         dev_uuid = disk_super->dev_item.uuid;
2094         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2095         brelse(bh);
2096         if (!*device)
2097                 ret = -ENOENT;
2098         blkdev_put(bdev, FMODE_READ);
2099         return ret;
2100 }
2101
2102 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2103                                          const char *device_path,
2104                                          struct btrfs_device **device)
2105 {
2106         *device = NULL;
2107         if (strcmp(device_path, "missing") == 0) {
2108                 struct list_head *devices;
2109                 struct btrfs_device *tmp;
2110
2111                 devices = &fs_info->fs_devices->devices;
2112                 /*
2113                  * It is safe to read the devices since the volume_mutex
2114                  * is held by the caller.
2115                  */
2116                 list_for_each_entry(tmp, devices, dev_list) {
2117                         if (tmp->in_fs_metadata && !tmp->bdev) {
2118                                 *device = tmp;
2119                                 break;
2120                         }
2121                 }
2122
2123                 if (!*device)
2124                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2125
2126                 return 0;
2127         } else {
2128                 return btrfs_find_device_by_path(fs_info, device_path, device);
2129         }
2130 }
2131
2132 /*
2133  * Lookup a device given by device id, or the path if the id is 0.
2134  */
2135 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2136                                  const char *devpath,
2137                                  struct btrfs_device **device)
2138 {
2139         int ret;
2140
2141         if (devid) {
2142                 ret = 0;
2143                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2144                 if (!*device)
2145                         ret = -ENOENT;
2146         } else {
2147                 if (!devpath || !devpath[0])
2148                         return -EINVAL;
2149
2150                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2151                                                            device);
2152         }
2153         return ret;
2154 }
2155
2156 /*
2157  * does all the dirty work required for changing file system's UUID.
2158  */
2159 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2160 {
2161         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2162         struct btrfs_fs_devices *old_devices;
2163         struct btrfs_fs_devices *seed_devices;
2164         struct btrfs_super_block *disk_super = fs_info->super_copy;
2165         struct btrfs_device *device;
2166         u64 super_flags;
2167
2168         BUG_ON(!mutex_is_locked(&uuid_mutex));
2169         if (!fs_devices->seeding)
2170                 return -EINVAL;
2171
2172         seed_devices = alloc_fs_devices(NULL);
2173         if (IS_ERR(seed_devices))
2174                 return PTR_ERR(seed_devices);
2175
2176         old_devices = clone_fs_devices(fs_devices);
2177         if (IS_ERR(old_devices)) {
2178                 kfree(seed_devices);
2179                 return PTR_ERR(old_devices);
2180         }
2181
2182         list_add(&old_devices->list, &fs_uuids);
2183
2184         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2185         seed_devices->opened = 1;
2186         INIT_LIST_HEAD(&seed_devices->devices);
2187         INIT_LIST_HEAD(&seed_devices->alloc_list);
2188         mutex_init(&seed_devices->device_list_mutex);
2189
2190         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2191         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2192                               synchronize_rcu);
2193         list_for_each_entry(device, &seed_devices->devices, dev_list)
2194                 device->fs_devices = seed_devices;
2195
2196         mutex_lock(&fs_info->chunk_mutex);
2197         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2198         mutex_unlock(&fs_info->chunk_mutex);
2199
2200         fs_devices->seeding = 0;
2201         fs_devices->num_devices = 0;
2202         fs_devices->open_devices = 0;
2203         fs_devices->missing_devices = 0;
2204         fs_devices->rotating = 0;
2205         fs_devices->seed = seed_devices;
2206
2207         generate_random_uuid(fs_devices->fsid);
2208         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2209         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2210         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2211
2212         super_flags = btrfs_super_flags(disk_super) &
2213                       ~BTRFS_SUPER_FLAG_SEEDING;
2214         btrfs_set_super_flags(disk_super, super_flags);
2215
2216         return 0;
2217 }
2218
2219 /*
2220  * Store the expected generation for seed devices in device items.
2221  */
2222 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2223                                struct btrfs_fs_info *fs_info)
2224 {
2225         struct btrfs_root *root = fs_info->chunk_root;
2226         struct btrfs_path *path;
2227         struct extent_buffer *leaf;
2228         struct btrfs_dev_item *dev_item;
2229         struct btrfs_device *device;
2230         struct btrfs_key key;
2231         u8 fs_uuid[BTRFS_FSID_SIZE];
2232         u8 dev_uuid[BTRFS_UUID_SIZE];
2233         u64 devid;
2234         int ret;
2235
2236         path = btrfs_alloc_path();
2237         if (!path)
2238                 return -ENOMEM;
2239
2240         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2241         key.offset = 0;
2242         key.type = BTRFS_DEV_ITEM_KEY;
2243
2244         while (1) {
2245                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2246                 if (ret < 0)
2247                         goto error;
2248
2249                 leaf = path->nodes[0];
2250 next_slot:
2251                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2252                         ret = btrfs_next_leaf(root, path);
2253                         if (ret > 0)
2254                                 break;
2255                         if (ret < 0)
2256                                 goto error;
2257                         leaf = path->nodes[0];
2258                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2259                         btrfs_release_path(path);
2260                         continue;
2261                 }
2262
2263                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2264                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2265                     key.type != BTRFS_DEV_ITEM_KEY)
2266                         break;
2267
2268                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2269                                           struct btrfs_dev_item);
2270                 devid = btrfs_device_id(leaf, dev_item);
2271                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2272                                    BTRFS_UUID_SIZE);
2273                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2274                                    BTRFS_FSID_SIZE);
2275                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2276                 BUG_ON(!device); /* Logic error */
2277
2278                 if (device->fs_devices->seeding) {
2279                         btrfs_set_device_generation(leaf, dev_item,
2280                                                     device->generation);
2281                         btrfs_mark_buffer_dirty(leaf);
2282                 }
2283
2284                 path->slots[0]++;
2285                 goto next_slot;
2286         }
2287         ret = 0;
2288 error:
2289         btrfs_free_path(path);
2290         return ret;
2291 }
2292
2293 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2294 {
2295         struct btrfs_root *root = fs_info->dev_root;
2296         struct request_queue *q;
2297         struct btrfs_trans_handle *trans;
2298         struct btrfs_device *device;
2299         struct block_device *bdev;
2300         struct list_head *devices;
2301         struct super_block *sb = fs_info->sb;
2302         struct rcu_string *name;
2303         u64 tmp;
2304         int seeding_dev = 0;
2305         int ret = 0;
2306         bool unlocked = false;
2307
2308         if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2309                 return -EROFS;
2310
2311         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2312                                   fs_info->bdev_holder);
2313         if (IS_ERR(bdev))
2314                 return PTR_ERR(bdev);
2315
2316         if (fs_info->fs_devices->seeding) {
2317                 seeding_dev = 1;
2318                 down_write(&sb->s_umount);
2319                 mutex_lock(&uuid_mutex);
2320         }
2321
2322         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2323
2324         devices = &fs_info->fs_devices->devices;
2325
2326         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2327         list_for_each_entry(device, devices, dev_list) {
2328                 if (device->bdev == bdev) {
2329                         ret = -EEXIST;
2330                         mutex_unlock(
2331                                 &fs_info->fs_devices->device_list_mutex);
2332                         goto error;
2333                 }
2334         }
2335         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2336
2337         device = btrfs_alloc_device(fs_info, NULL, NULL);
2338         if (IS_ERR(device)) {
2339                 /* we can safely leave the fs_devices entry around */
2340                 ret = PTR_ERR(device);
2341                 goto error;
2342         }
2343
2344         name = rcu_string_strdup(device_path, GFP_KERNEL);
2345         if (!name) {
2346                 bio_put(device->flush_bio);
2347                 kfree(device);
2348                 ret = -ENOMEM;
2349                 goto error;
2350         }
2351         rcu_assign_pointer(device->name, name);
2352
2353         trans = btrfs_start_transaction(root, 0);
2354         if (IS_ERR(trans)) {
2355                 rcu_string_free(device->name);
2356                 bio_put(device->flush_bio);
2357                 kfree(device);
2358                 ret = PTR_ERR(trans);
2359                 goto error;
2360         }
2361
2362         q = bdev_get_queue(bdev);
2363         if (blk_queue_discard(q))
2364                 device->can_discard = 1;
2365         device->writeable = 1;
2366         device->generation = trans->transid;
2367         device->io_width = fs_info->sectorsize;
2368         device->io_align = fs_info->sectorsize;
2369         device->sector_size = fs_info->sectorsize;
2370         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2371                                          fs_info->sectorsize);
2372         device->disk_total_bytes = device->total_bytes;
2373         device->commit_total_bytes = device->total_bytes;
2374         device->fs_info = fs_info;
2375         device->bdev = bdev;
2376         device->in_fs_metadata = 1;
2377         device->is_tgtdev_for_dev_replace = 0;
2378         device->mode = FMODE_EXCL;
2379         device->dev_stats_valid = 1;
2380         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2381
2382         if (seeding_dev) {
2383                 sb->s_flags &= ~SB_RDONLY;
2384                 ret = btrfs_prepare_sprout(fs_info);
2385                 if (ret) {
2386                         btrfs_abort_transaction(trans, ret);
2387                         goto error_trans;
2388                 }
2389         }
2390
2391         device->fs_devices = fs_info->fs_devices;
2392
2393         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2394         mutex_lock(&fs_info->chunk_mutex);
2395         list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2396         list_add(&device->dev_alloc_list,
2397                  &fs_info->fs_devices->alloc_list);
2398         fs_info->fs_devices->num_devices++;
2399         fs_info->fs_devices->open_devices++;
2400         fs_info->fs_devices->rw_devices++;
2401         fs_info->fs_devices->total_devices++;
2402         fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2403
2404         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2405
2406         if (!blk_queue_nonrot(q))
2407                 fs_info->fs_devices->rotating = 1;
2408
2409         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2410         btrfs_set_super_total_bytes(fs_info->super_copy,
2411                 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2412
2413         tmp = btrfs_super_num_devices(fs_info->super_copy);
2414         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2415
2416         /* add sysfs device entry */
2417         btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2418
2419         /*
2420          * we've got more storage, clear any full flags on the space
2421          * infos
2422          */
2423         btrfs_clear_space_info_full(fs_info);
2424
2425         mutex_unlock(&fs_info->chunk_mutex);
2426         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2427
2428         if (seeding_dev) {
2429                 mutex_lock(&fs_info->chunk_mutex);
2430                 ret = init_first_rw_device(trans, fs_info);
2431                 mutex_unlock(&fs_info->chunk_mutex);
2432                 if (ret) {
2433                         btrfs_abort_transaction(trans, ret);
2434                         goto error_sysfs;
2435                 }
2436         }
2437
2438         ret = btrfs_add_device(trans, fs_info, device);
2439         if (ret) {
2440                 btrfs_abort_transaction(trans, ret);
2441                 goto error_sysfs;
2442         }
2443
2444         if (seeding_dev) {
2445                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2446
2447                 ret = btrfs_finish_sprout(trans, fs_info);
2448                 if (ret) {
2449                         btrfs_abort_transaction(trans, ret);
2450                         goto error_sysfs;
2451                 }
2452
2453                 /* Sprouting would change fsid of the mounted root,
2454                  * so rename the fsid on the sysfs
2455                  */
2456                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2457                                                 fs_info->fsid);
2458                 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2459                         btrfs_warn(fs_info,
2460                                    "sysfs: failed to create fsid for sprout");
2461         }
2462
2463         ret = btrfs_commit_transaction(trans);
2464
2465         if (seeding_dev) {
2466                 mutex_unlock(&uuid_mutex);
2467                 up_write(&sb->s_umount);
2468                 unlocked = true;
2469
2470                 if (ret) /* transaction commit */
2471                         return ret;
2472
2473                 ret = btrfs_relocate_sys_chunks(fs_info);
2474                 if (ret < 0)
2475                         btrfs_handle_fs_error(fs_info, ret,
2476                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2477                 trans = btrfs_attach_transaction(root);
2478                 if (IS_ERR(trans)) {
2479                         if (PTR_ERR(trans) == -ENOENT)
2480                                 return 0;
2481                         ret = PTR_ERR(trans);
2482                         trans = NULL;
2483                         goto error_sysfs;
2484                 }
2485                 ret = btrfs_commit_transaction(trans);
2486         }
2487
2488         /* Update ctime/mtime for libblkid */
2489         update_dev_time(device_path);
2490         return ret;
2491
2492 error_sysfs:
2493         btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2494 error_trans:
2495         if (seeding_dev)
2496                 sb->s_flags |= SB_RDONLY;
2497         if (trans)
2498                 btrfs_end_transaction(trans);
2499         rcu_string_free(device->name);
2500         bio_put(device->flush_bio);
2501         kfree(device);
2502 error:
2503         blkdev_put(bdev, FMODE_EXCL);
2504         if (seeding_dev && !unlocked) {
2505                 mutex_unlock(&uuid_mutex);
2506                 up_write(&sb->s_umount);
2507         }
2508         return ret;
2509 }
2510
2511 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2512                                   const char *device_path,
2513                                   struct btrfs_device *srcdev,
2514                                   struct btrfs_device **device_out)
2515 {
2516         struct request_queue *q;
2517         struct btrfs_device *device;
2518         struct block_device *bdev;
2519         struct list_head *devices;
2520         struct rcu_string *name;
2521         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2522         int ret = 0;
2523
2524         *device_out = NULL;
2525         if (fs_info->fs_devices->seeding) {
2526                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2527                 return -EINVAL;
2528         }
2529
2530         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2531                                   fs_info->bdev_holder);
2532         if (IS_ERR(bdev)) {
2533                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2534                 return PTR_ERR(bdev);
2535         }
2536
2537         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2538
2539         devices = &fs_info->fs_devices->devices;
2540         list_for_each_entry(device, devices, dev_list) {
2541                 if (device->bdev == bdev) {
2542                         btrfs_err(fs_info,
2543                                   "target device is in the filesystem!");
2544                         ret = -EEXIST;
2545                         goto error;
2546                 }
2547         }
2548
2549
2550         if (i_size_read(bdev->bd_inode) <
2551             btrfs_device_get_total_bytes(srcdev)) {
2552                 btrfs_err(fs_info,
2553                           "target device is smaller than source device!");
2554                 ret = -EINVAL;
2555                 goto error;
2556         }
2557
2558
2559         device = btrfs_alloc_device(NULL, &devid, NULL);
2560         if (IS_ERR(device)) {
2561                 ret = PTR_ERR(device);
2562                 goto error;
2563         }
2564
2565         name = rcu_string_strdup(device_path, GFP_KERNEL);
2566         if (!name) {
2567                 bio_put(device->flush_bio);
2568                 kfree(device);
2569                 ret = -ENOMEM;
2570                 goto error;
2571         }
2572         rcu_assign_pointer(device->name, name);
2573
2574         q = bdev_get_queue(bdev);
2575         if (blk_queue_discard(q))
2576                 device->can_discard = 1;
2577         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2578         device->writeable = 1;
2579         device->generation = 0;
2580         device->io_width = fs_info->sectorsize;
2581         device->io_align = fs_info->sectorsize;
2582         device->sector_size = fs_info->sectorsize;
2583         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2584         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2585         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2586         ASSERT(list_empty(&srcdev->resized_list));
2587         device->commit_total_bytes = srcdev->commit_total_bytes;
2588         device->commit_bytes_used = device->bytes_used;
2589         device->fs_info = fs_info;
2590         device->bdev = bdev;
2591         device->in_fs_metadata = 1;
2592         device->is_tgtdev_for_dev_replace = 1;
2593         device->mode = FMODE_EXCL;
2594         device->dev_stats_valid = 1;
2595         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2596         device->fs_devices = fs_info->fs_devices;
2597         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2598         fs_info->fs_devices->num_devices++;
2599         fs_info->fs_devices->open_devices++;
2600         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2601
2602         *device_out = device;
2603         return ret;
2604
2605 error:
2606         blkdev_put(bdev, FMODE_EXCL);
2607         return ret;
2608 }
2609
2610 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2611                                               struct btrfs_device *tgtdev)
2612 {
2613         u32 sectorsize = fs_info->sectorsize;
2614
2615         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2616         tgtdev->io_width = sectorsize;
2617         tgtdev->io_align = sectorsize;
2618         tgtdev->sector_size = sectorsize;
2619         tgtdev->fs_info = fs_info;
2620         tgtdev->in_fs_metadata = 1;
2621 }
2622
2623 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2624                                         struct btrfs_device *device)
2625 {
2626         int ret;
2627         struct btrfs_path *path;
2628         struct btrfs_root *root = device->fs_info->chunk_root;
2629         struct btrfs_dev_item *dev_item;
2630         struct extent_buffer *leaf;
2631         struct btrfs_key key;
2632
2633         path = btrfs_alloc_path();
2634         if (!path)
2635                 return -ENOMEM;
2636
2637         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2638         key.type = BTRFS_DEV_ITEM_KEY;
2639         key.offset = device->devid;
2640
2641         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2642         if (ret < 0)
2643                 goto out;
2644
2645         if (ret > 0) {
2646                 ret = -ENOENT;
2647                 goto out;
2648         }
2649
2650         leaf = path->nodes[0];
2651         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2652
2653         btrfs_set_device_id(leaf, dev_item, device->devid);
2654         btrfs_set_device_type(leaf, dev_item, device->type);
2655         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2656         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2657         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2658         btrfs_set_device_total_bytes(leaf, dev_item,
2659                                      btrfs_device_get_disk_total_bytes(device));
2660         btrfs_set_device_bytes_used(leaf, dev_item,
2661                                     btrfs_device_get_bytes_used(device));
2662         btrfs_mark_buffer_dirty(leaf);
2663
2664 out:
2665         btrfs_free_path(path);
2666         return ret;
2667 }
2668
2669 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2670                       struct btrfs_device *device, u64 new_size)
2671 {
2672         struct btrfs_fs_info *fs_info = device->fs_info;
2673         struct btrfs_super_block *super_copy = fs_info->super_copy;
2674         struct btrfs_fs_devices *fs_devices;
2675         u64 old_total;
2676         u64 diff;
2677
2678         if (!device->writeable)
2679                 return -EACCES;
2680
2681         new_size = round_down(new_size, fs_info->sectorsize);
2682
2683         mutex_lock(&fs_info->chunk_mutex);
2684         old_total = btrfs_super_total_bytes(super_copy);
2685         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2686
2687         if (new_size <= device->total_bytes ||
2688             device->is_tgtdev_for_dev_replace) {
2689                 mutex_unlock(&fs_info->chunk_mutex);
2690                 return -EINVAL;
2691         }
2692
2693         fs_devices = fs_info->fs_devices;
2694
2695         btrfs_set_super_total_bytes(super_copy,
2696                         round_down(old_total + diff, fs_info->sectorsize));
2697         device->fs_devices->total_rw_bytes += diff;
2698
2699         btrfs_device_set_total_bytes(device, new_size);
2700         btrfs_device_set_disk_total_bytes(device, new_size);
2701         btrfs_clear_space_info_full(device->fs_info);
2702         if (list_empty(&device->resized_list))
2703                 list_add_tail(&device->resized_list,
2704                               &fs_devices->resized_devices);
2705         mutex_unlock(&fs_info->chunk_mutex);
2706
2707         return btrfs_update_device(trans, device);
2708 }
2709
2710 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2711                             struct btrfs_fs_info *fs_info, u64 chunk_offset)
2712 {
2713         struct btrfs_root *root = fs_info->chunk_root;
2714         int ret;
2715         struct btrfs_path *path;
2716         struct btrfs_key key;
2717
2718         path = btrfs_alloc_path();
2719         if (!path)
2720                 return -ENOMEM;
2721
2722         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2723         key.offset = chunk_offset;
2724         key.type = BTRFS_CHUNK_ITEM_KEY;
2725
2726         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2727         if (ret < 0)
2728                 goto out;
2729         else if (ret > 0) { /* Logic error or corruption */
2730                 btrfs_handle_fs_error(fs_info, -ENOENT,
2731                                       "Failed lookup while freeing chunk.");
2732                 ret = -ENOENT;
2733                 goto out;
2734         }
2735
2736         ret = btrfs_del_item(trans, root, path);
2737         if (ret < 0)
2738                 btrfs_handle_fs_error(fs_info, ret,
2739                                       "Failed to delete chunk item.");
2740 out:
2741         btrfs_free_path(path);
2742         return ret;
2743 }
2744
2745 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2746 {
2747         struct btrfs_super_block *super_copy = fs_info->super_copy;
2748         struct btrfs_disk_key *disk_key;
2749         struct btrfs_chunk *chunk;
2750         u8 *ptr;
2751         int ret = 0;
2752         u32 num_stripes;
2753         u32 array_size;
2754         u32 len = 0;
2755         u32 cur;
2756         struct btrfs_key key;
2757
2758         mutex_lock(&fs_info->chunk_mutex);
2759         array_size = btrfs_super_sys_array_size(super_copy);
2760
2761         ptr = super_copy->sys_chunk_array;
2762         cur = 0;
2763
2764         while (cur < array_size) {
2765                 disk_key = (struct btrfs_disk_key *)ptr;
2766                 btrfs_disk_key_to_cpu(&key, disk_key);
2767
2768                 len = sizeof(*disk_key);
2769
2770                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2771                         chunk = (struct btrfs_chunk *)(ptr + len);
2772                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2773                         len += btrfs_chunk_item_size(num_stripes);
2774                 } else {
2775                         ret = -EIO;
2776                         break;
2777                 }
2778                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2779                     key.offset == chunk_offset) {
2780                         memmove(ptr, ptr + len, array_size - (cur + len));
2781                         array_size -= len;
2782                         btrfs_set_super_sys_array_size(super_copy, array_size);
2783                 } else {
2784                         ptr += len;
2785                         cur += len;
2786                 }
2787         }
2788         mutex_unlock(&fs_info->chunk_mutex);
2789         return ret;
2790 }
2791
2792 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2793                                         u64 logical, u64 length)
2794 {
2795         struct extent_map_tree *em_tree;
2796         struct extent_map *em;
2797
2798         em_tree = &fs_info->mapping_tree.map_tree;
2799         read_lock(&em_tree->lock);
2800         em = lookup_extent_mapping(em_tree, logical, length);
2801         read_unlock(&em_tree->lock);
2802
2803         if (!em) {
2804                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2805                            logical, length);
2806                 return ERR_PTR(-EINVAL);
2807         }
2808
2809         if (em->start > logical || em->start + em->len < logical) {
2810                 btrfs_crit(fs_info,
2811                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2812                            logical, length, em->start, em->start + em->len);
2813                 free_extent_map(em);
2814                 return ERR_PTR(-EINVAL);
2815         }
2816
2817         /* callers are responsible for dropping em's ref. */
2818         return em;
2819 }
2820
2821 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2822                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2823 {
2824         struct extent_map *em;
2825         struct map_lookup *map;
2826         u64 dev_extent_len = 0;
2827         int i, ret = 0;
2828         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2829
2830         em = get_chunk_map(fs_info, chunk_offset, 1);
2831         if (IS_ERR(em)) {
2832                 /*
2833                  * This is a logic error, but we don't want to just rely on the
2834                  * user having built with ASSERT enabled, so if ASSERT doesn't
2835                  * do anything we still error out.
2836                  */
2837                 ASSERT(0);
2838                 return PTR_ERR(em);
2839         }
2840         map = em->map_lookup;
2841         mutex_lock(&fs_info->chunk_mutex);
2842         check_system_chunk(trans, fs_info, map->type);
2843         mutex_unlock(&fs_info->chunk_mutex);
2844
2845         /*
2846          * Take the device list mutex to prevent races with the final phase of
2847          * a device replace operation that replaces the device object associated
2848          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2849          */
2850         mutex_lock(&fs_devices->device_list_mutex);
2851         for (i = 0; i < map->num_stripes; i++) {
2852                 struct btrfs_device *device = map->stripes[i].dev;
2853                 ret = btrfs_free_dev_extent(trans, device,
2854                                             map->stripes[i].physical,
2855                                             &dev_extent_len);
2856                 if (ret) {
2857                         mutex_unlock(&fs_devices->device_list_mutex);
2858                         btrfs_abort_transaction(trans, ret);
2859                         goto out;
2860                 }
2861
2862                 if (device->bytes_used > 0) {
2863                         mutex_lock(&fs_info->chunk_mutex);
2864                         btrfs_device_set_bytes_used(device,
2865                                         device->bytes_used - dev_extent_len);
2866                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2867                         btrfs_clear_space_info_full(fs_info);
2868                         mutex_unlock(&fs_info->chunk_mutex);
2869                 }
2870
2871                 if (map->stripes[i].dev) {
2872                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2873                         if (ret) {
2874                                 mutex_unlock(&fs_devices->device_list_mutex);
2875                                 btrfs_abort_transaction(trans, ret);
2876                                 goto out;
2877                         }
2878                 }
2879         }
2880         mutex_unlock(&fs_devices->device_list_mutex);
2881
2882         ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2883         if (ret) {
2884                 btrfs_abort_transaction(trans, ret);
2885                 goto out;
2886         }
2887
2888         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2889
2890         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2891                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2892                 if (ret) {
2893                         btrfs_abort_transaction(trans, ret);
2894                         goto out;
2895                 }
2896         }
2897
2898         ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2899         if (ret) {
2900                 btrfs_abort_transaction(trans, ret);
2901                 goto out;
2902         }
2903
2904 out:
2905         /* once for us */
2906         free_extent_map(em);
2907         return ret;
2908 }
2909
2910 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2911 {
2912         struct btrfs_root *root = fs_info->chunk_root;
2913         struct btrfs_trans_handle *trans;
2914         int ret;
2915
2916         /*
2917          * Prevent races with automatic removal of unused block groups.
2918          * After we relocate and before we remove the chunk with offset
2919          * chunk_offset, automatic removal of the block group can kick in,
2920          * resulting in a failure when calling btrfs_remove_chunk() below.
2921          *
2922          * Make sure to acquire this mutex before doing a tree search (dev
2923          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2924          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2925          * we release the path used to search the chunk/dev tree and before
2926          * the current task acquires this mutex and calls us.
2927          */
2928         ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2929
2930         ret = btrfs_can_relocate(fs_info, chunk_offset);
2931         if (ret)
2932                 return -ENOSPC;
2933
2934         /* step one, relocate all the extents inside this chunk */
2935         btrfs_scrub_pause(fs_info);
2936         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2937         btrfs_scrub_continue(fs_info);
2938         if (ret)
2939                 return ret;
2940
2941         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2942                                                      chunk_offset);
2943         if (IS_ERR(trans)) {
2944                 ret = PTR_ERR(trans);
2945                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2946                 return ret;
2947         }
2948
2949         /*
2950          * step two, delete the device extents and the
2951          * chunk tree entries
2952          */
2953         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2954         btrfs_end_transaction(trans);
2955         return ret;
2956 }
2957
2958 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2959 {
2960         struct btrfs_root *chunk_root = fs_info->chunk_root;
2961         struct btrfs_path *path;
2962         struct extent_buffer *leaf;
2963         struct btrfs_chunk *chunk;
2964         struct btrfs_key key;
2965         struct btrfs_key found_key;
2966         u64 chunk_type;
2967         bool retried = false;
2968         int failed = 0;
2969         int ret;
2970
2971         path = btrfs_alloc_path();
2972         if (!path)
2973                 return -ENOMEM;
2974
2975 again:
2976         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2977         key.offset = (u64)-1;
2978         key.type = BTRFS_CHUNK_ITEM_KEY;
2979
2980         while (1) {
2981                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2982                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2983                 if (ret < 0) {
2984                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2985                         goto error;
2986                 }
2987                 BUG_ON(ret == 0); /* Corruption */
2988
2989                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2990                                           key.type);
2991                 if (ret)
2992                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2993                 if (ret < 0)
2994                         goto error;
2995                 if (ret > 0)
2996                         break;
2997
2998                 leaf = path->nodes[0];
2999                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3000
3001                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3002                                        struct btrfs_chunk);
3003                 chunk_type = btrfs_chunk_type(leaf, chunk);
3004                 btrfs_release_path(path);
3005
3006                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3007                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3008                         if (ret == -ENOSPC)
3009                                 failed++;
3010                         else
3011                                 BUG_ON(ret);
3012                 }
3013                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3014
3015                 if (found_key.offset == 0)
3016                         break;
3017                 key.offset = found_key.offset - 1;
3018         }
3019         ret = 0;
3020         if (failed && !retried) {
3021                 failed = 0;
3022                 retried = true;
3023                 goto again;
3024         } else if (WARN_ON(failed && retried)) {
3025                 ret = -ENOSPC;
3026         }
3027 error:
3028         btrfs_free_path(path);
3029         return ret;
3030 }
3031
3032 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3033                                struct btrfs_balance_control *bctl)
3034 {
3035         struct btrfs_root *root = fs_info->tree_root;
3036         struct btrfs_trans_handle *trans;
3037         struct btrfs_balance_item *item;
3038         struct btrfs_disk_balance_args disk_bargs;
3039         struct btrfs_path *path;
3040         struct extent_buffer *leaf;
3041         struct btrfs_key key;
3042         int ret, err;
3043
3044         path = btrfs_alloc_path();
3045         if (!path)
3046                 return -ENOMEM;
3047
3048         trans = btrfs_start_transaction(root, 0);
3049         if (IS_ERR(trans)) {
3050                 btrfs_free_path(path);
3051                 return PTR_ERR(trans);
3052         }
3053
3054         key.objectid = BTRFS_BALANCE_OBJECTID;
3055         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3056         key.offset = 0;
3057
3058         ret = btrfs_insert_empty_item(trans, root, path, &key,
3059                                       sizeof(*item));
3060         if (ret)
3061                 goto out;
3062
3063         leaf = path->nodes[0];
3064         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3065
3066         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3067
3068         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3069         btrfs_set_balance_data(leaf, item, &disk_bargs);
3070         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3071         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3072         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3073         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3074
3075         btrfs_set_balance_flags(leaf, item, bctl->flags);
3076
3077         btrfs_mark_buffer_dirty(leaf);
3078 out:
3079         btrfs_free_path(path);
3080         err = btrfs_commit_transaction(trans);
3081         if (err && !ret)
3082                 ret = err;
3083         return ret;
3084 }
3085
3086 static int del_balance_item(struct btrfs_fs_info *fs_info)
3087 {
3088         struct btrfs_root *root = fs_info->tree_root;
3089         struct btrfs_trans_handle *trans;
3090         struct btrfs_path *path;
3091         struct btrfs_key key;
3092         int ret, err;
3093
3094         path = btrfs_alloc_path();
3095         if (!path)
3096                 return -ENOMEM;
3097
3098         trans = btrfs_start_transaction(root, 0);
3099         if (IS_ERR(trans)) {
3100                 btrfs_free_path(path);
3101                 return PTR_ERR(trans);
3102         }
3103
3104         key.objectid = BTRFS_BALANCE_OBJECTID;
3105         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3106         key.offset = 0;
3107
3108         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3109         if (ret < 0)
3110                 goto out;
3111         if (ret > 0) {
3112                 ret = -ENOENT;
3113                 goto out;
3114         }
3115
3116         ret = btrfs_del_item(trans, root, path);
3117 out:
3118         btrfs_free_path(path);
3119         err = btrfs_commit_transaction(trans);
3120         if (err && !ret)
3121                 ret = err;
3122         return ret;
3123 }
3124
3125 /*
3126  * This is a heuristic used to reduce the number of chunks balanced on
3127  * resume after balance was interrupted.
3128  */
3129 static void update_balance_args(struct btrfs_balance_control *bctl)
3130 {
3131         /*
3132          * Turn on soft mode for chunk types that were being converted.
3133          */
3134         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3135                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3136         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3139                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3140
3141         /*
3142          * Turn on usage filter if is not already used.  The idea is
3143          * that chunks that we have already balanced should be
3144          * reasonably full.  Don't do it for chunks that are being
3145          * converted - that will keep us from relocating unconverted
3146          * (albeit full) chunks.
3147          */
3148         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3149             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3150             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3151                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3152                 bctl->data.usage = 90;
3153         }
3154         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3155             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3156             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3157                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3158                 bctl->sys.usage = 90;
3159         }
3160         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3161             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3162             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3163                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3164                 bctl->meta.usage = 90;
3165         }
3166 }
3167
3168 /*
3169  * Should be called with both balance and volume mutexes held to
3170  * serialize other volume operations (add_dev/rm_dev/resize) with
3171  * restriper.  Same goes for unset_balance_control.
3172  */
3173 static void set_balance_control(struct btrfs_balance_control *bctl)
3174 {
3175         struct btrfs_fs_info *fs_info = bctl->fs_info;
3176
3177         BUG_ON(fs_info->balance_ctl);
3178
3179         spin_lock(&fs_info->balance_lock);
3180         fs_info->balance_ctl = bctl;
3181         spin_unlock(&fs_info->balance_lock);
3182 }
3183
3184 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3185 {
3186         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3187
3188         BUG_ON(!fs_info->balance_ctl);
3189
3190         spin_lock(&fs_info->balance_lock);
3191         fs_info->balance_ctl = NULL;
3192         spin_unlock(&fs_info->balance_lock);
3193
3194         kfree(bctl);
3195 }
3196
3197 /*
3198  * Balance filters.  Return 1 if chunk should be filtered out
3199  * (should not be balanced).
3200  */
3201 static int chunk_profiles_filter(u64 chunk_type,
3202                                  struct btrfs_balance_args *bargs)
3203 {
3204         chunk_type = chunk_to_extended(chunk_type) &
3205                                 BTRFS_EXTENDED_PROFILE_MASK;
3206
3207         if (bargs->profiles & chunk_type)
3208                 return 0;
3209
3210         return 1;
3211 }
3212
3213 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3214                               struct btrfs_balance_args *bargs)
3215 {
3216         struct btrfs_block_group_cache *cache;
3217         u64 chunk_used;
3218         u64 user_thresh_min;
3219         u64 user_thresh_max;
3220         int ret = 1;
3221
3222         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3223         chunk_used = btrfs_block_group_used(&cache->item);
3224
3225         if (bargs->usage_min == 0)
3226                 user_thresh_min = 0;
3227         else
3228                 user_thresh_min = div_factor_fine(cache->key.offset,
3229                                         bargs->usage_min);
3230
3231         if (bargs->usage_max == 0)
3232                 user_thresh_max = 1;
3233         else if (bargs->usage_max > 100)
3234                 user_thresh_max = cache->key.offset;
3235         else
3236                 user_thresh_max = div_factor_fine(cache->key.offset,
3237                                         bargs->usage_max);
3238
3239         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3240                 ret = 0;
3241
3242         btrfs_put_block_group(cache);
3243         return ret;
3244 }
3245
3246 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3247                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3248 {
3249         struct btrfs_block_group_cache *cache;
3250         u64 chunk_used, user_thresh;
3251         int ret = 1;
3252
3253         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3254         chunk_used = btrfs_block_group_used(&cache->item);
3255
3256         if (bargs->usage_min == 0)
3257                 user_thresh = 1;
3258         else if (bargs->usage > 100)
3259                 user_thresh = cache->key.offset;
3260         else
3261                 user_thresh = div_factor_fine(cache->key.offset,
3262                                               bargs->usage);
3263
3264         if (chunk_used < user_thresh)
3265                 ret = 0;
3266
3267         btrfs_put_block_group(cache);
3268         return ret;
3269 }
3270
3271 static int chunk_devid_filter(struct extent_buffer *leaf,
3272                               struct btrfs_chunk *chunk,
3273                               struct btrfs_balance_args *bargs)
3274 {
3275         struct btrfs_stripe *stripe;
3276         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3277         int i;
3278
3279         for (i = 0; i < num_stripes; i++) {
3280                 stripe = btrfs_stripe_nr(chunk, i);
3281                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3282                         return 0;
3283         }
3284
3285         return 1;
3286 }
3287
3288 /* [pstart, pend) */
3289 static int chunk_drange_filter(struct extent_buffer *leaf,
3290                                struct btrfs_chunk *chunk,
3291                                struct btrfs_balance_args *bargs)
3292 {
3293         struct btrfs_stripe *stripe;
3294         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3295         u64 stripe_offset;
3296         u64 stripe_length;
3297         int factor;
3298         int i;
3299
3300         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3301                 return 0;
3302
3303         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3304              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3305                 factor = num_stripes / 2;
3306         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3307                 factor = num_stripes - 1;
3308         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3309                 factor = num_stripes - 2;
3310         } else {
3311                 factor = num_stripes;
3312         }
3313
3314         for (i = 0; i < num_stripes; i++) {
3315                 stripe = btrfs_stripe_nr(chunk, i);
3316                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3317                         continue;
3318
3319                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3320                 stripe_length = btrfs_chunk_length(leaf, chunk);
3321                 stripe_length = div_u64(stripe_length, factor);
3322
3323                 if (stripe_offset < bargs->pend &&
3324                     stripe_offset + stripe_length > bargs->pstart)
3325                         return 0;
3326         }
3327
3328         return 1;
3329 }
3330
3331 /* [vstart, vend) */
3332 static int chunk_vrange_filter(struct extent_buffer *leaf,
3333                                struct btrfs_chunk *chunk,
3334                                u64 chunk_offset,
3335                                struct btrfs_balance_args *bargs)
3336 {
3337         if (chunk_offset < bargs->vend &&
3338             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3339                 /* at least part of the chunk is inside this vrange */
3340                 return 0;
3341
3342         return 1;
3343 }
3344
3345 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3346                                struct btrfs_chunk *chunk,
3347                                struct btrfs_balance_args *bargs)
3348 {
3349         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3350
3351         if (bargs->stripes_min <= num_stripes
3352                         && num_stripes <= bargs->stripes_max)
3353                 return 0;
3354
3355         return 1;
3356 }
3357
3358 static int chunk_soft_convert_filter(u64 chunk_type,
3359                                      struct btrfs_balance_args *bargs)
3360 {
3361         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3362                 return 0;
3363
3364         chunk_type = chunk_to_extended(chunk_type) &
3365                                 BTRFS_EXTENDED_PROFILE_MASK;
3366
3367         if (bargs->target == chunk_type)
3368                 return 1;
3369
3370         return 0;
3371 }
3372
3373 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3374                                 struct extent_buffer *leaf,
3375                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3376 {
3377         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3378         struct btrfs_balance_args *bargs = NULL;
3379         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3380
3381         /* type filter */
3382         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3383               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3384                 return 0;
3385         }
3386
3387         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3388                 bargs = &bctl->data;
3389         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3390                 bargs = &bctl->sys;
3391         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3392                 bargs = &bctl->meta;
3393
3394         /* profiles filter */
3395         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3396             chunk_profiles_filter(chunk_type, bargs)) {
3397                 return 0;
3398         }
3399
3400         /* usage filter */
3401         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3402             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3403                 return 0;
3404         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3405             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3406                 return 0;
3407         }
3408
3409         /* devid filter */
3410         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3411             chunk_devid_filter(leaf, chunk, bargs)) {
3412                 return 0;
3413         }
3414
3415         /* drange filter, makes sense only with devid filter */
3416         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3417             chunk_drange_filter(leaf, chunk, bargs)) {
3418                 return 0;
3419         }
3420
3421         /* vrange filter */
3422         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3423             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3424                 return 0;
3425         }
3426
3427         /* stripes filter */
3428         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3429             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3430                 return 0;
3431         }
3432
3433         /* soft profile changing mode */
3434         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3435             chunk_soft_convert_filter(chunk_type, bargs)) {
3436                 return 0;
3437         }
3438
3439         /*
3440          * limited by count, must be the last filter
3441          */
3442         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3443                 if (bargs->limit == 0)
3444                         return 0;
3445                 else
3446                         bargs->limit--;
3447         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3448                 /*
3449                  * Same logic as the 'limit' filter; the minimum cannot be
3450                  * determined here because we do not have the global information
3451                  * about the count of all chunks that satisfy the filters.
3452                  */
3453                 if (bargs->limit_max == 0)
3454                         return 0;
3455                 else
3456                         bargs->limit_max--;
3457         }
3458
3459         return 1;
3460 }
3461
3462 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3463 {
3464         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3465         struct btrfs_root *chunk_root = fs_info->chunk_root;
3466         struct btrfs_root *dev_root = fs_info->dev_root;
3467         struct list_head *devices;
3468         struct btrfs_device *device;
3469         u64 old_size;
3470         u64 size_to_free;
3471         u64 chunk_type;
3472         struct btrfs_chunk *chunk;
3473         struct btrfs_path *path = NULL;
3474         struct btrfs_key key;
3475         struct btrfs_key found_key;
3476         struct btrfs_trans_handle *trans;
3477         struct extent_buffer *leaf;
3478         int slot;
3479         int ret;
3480         int enospc_errors = 0;
3481         bool counting = true;
3482         /* The single value limit and min/max limits use the same bytes in the */
3483         u64 limit_data = bctl->data.limit;
3484         u64 limit_meta = bctl->meta.limit;
3485         u64 limit_sys = bctl->sys.limit;
3486         u32 count_data = 0;
3487         u32 count_meta = 0;
3488         u32 count_sys = 0;
3489         int chunk_reserved = 0;
3490         u64 bytes_used = 0;
3491
3492         /* step one make some room on all the devices */
3493         devices = &fs_info->fs_devices->devices;
3494         list_for_each_entry(device, devices, dev_list) {
3495                 old_size = btrfs_device_get_total_bytes(device);
3496                 size_to_free = div_factor(old_size, 1);
3497                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3498                 if (!device->writeable ||
3499                     btrfs_device_get_total_bytes(device) -
3500                     btrfs_device_get_bytes_used(device) > size_to_free ||
3501                     device->is_tgtdev_for_dev_replace)
3502                         continue;
3503
3504                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3505                 if (ret == -ENOSPC)
3506                         break;
3507                 if (ret) {
3508                         /* btrfs_shrink_device never returns ret > 0 */
3509                         WARN_ON(ret > 0);
3510                         goto error;
3511                 }
3512
3513                 trans = btrfs_start_transaction(dev_root, 0);
3514                 if (IS_ERR(trans)) {
3515                         ret = PTR_ERR(trans);
3516                         btrfs_info_in_rcu(fs_info,
3517                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3518                                           rcu_str_deref(device->name), ret,
3519                                           old_size, old_size - size_to_free);
3520                         goto error;
3521                 }
3522
3523                 ret = btrfs_grow_device(trans, device, old_size);
3524                 if (ret) {
3525                         btrfs_end_transaction(trans);
3526                         /* btrfs_grow_device never returns ret > 0 */
3527                         WARN_ON(ret > 0);
3528                         btrfs_info_in_rcu(fs_info,
3529                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3530                                           rcu_str_deref(device->name), ret,
3531                                           old_size, old_size - size_to_free);
3532                         goto error;
3533                 }
3534
3535                 btrfs_end_transaction(trans);
3536         }
3537
3538         /* step two, relocate all the chunks */
3539         path = btrfs_alloc_path();
3540         if (!path) {
3541                 ret = -ENOMEM;
3542                 goto error;
3543         }
3544
3545         /* zero out stat counters */
3546         spin_lock(&fs_info->balance_lock);
3547         memset(&bctl->stat, 0, sizeof(bctl->stat));
3548         spin_unlock(&fs_info->balance_lock);
3549 again:
3550         if (!counting) {
3551                 /*
3552                  * The single value limit and min/max limits use the same bytes
3553                  * in the
3554                  */
3555                 bctl->data.limit = limit_data;
3556                 bctl->meta.limit = limit_meta;
3557                 bctl->sys.limit = limit_sys;
3558         }
3559         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3560         key.offset = (u64)-1;
3561         key.type = BTRFS_CHUNK_ITEM_KEY;
3562
3563         while (1) {
3564                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3565                     atomic_read(&fs_info->balance_cancel_req)) {
3566                         ret = -ECANCELED;
3567                         goto error;
3568                 }
3569
3570                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3571                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3572                 if (ret < 0) {
3573                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3574                         goto error;
3575                 }
3576
3577                 /*
3578                  * this shouldn't happen, it means the last relocate
3579                  * failed
3580                  */
3581                 if (ret == 0)
3582                         BUG(); /* FIXME break ? */
3583
3584                 ret = btrfs_previous_item(chunk_root, path, 0,
3585                                           BTRFS_CHUNK_ITEM_KEY);
3586                 if (ret) {
3587                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3588                         ret = 0;
3589                         break;
3590                 }
3591
3592                 leaf = path->nodes[0];
3593                 slot = path->slots[0];
3594                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3595
3596                 if (found_key.objectid != key.objectid) {
3597                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3598                         break;
3599                 }
3600
3601                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3602                 chunk_type = btrfs_chunk_type(leaf, chunk);
3603
3604                 if (!counting) {
3605                         spin_lock(&fs_info->balance_lock);
3606                         bctl->stat.considered++;
3607                         spin_unlock(&fs_info->balance_lock);
3608                 }
3609
3610                 ret = should_balance_chunk(fs_info, leaf, chunk,
3611                                            found_key.offset);
3612
3613                 btrfs_release_path(path);
3614                 if (!ret) {
3615                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3616                         goto loop;
3617                 }
3618
3619                 if (counting) {
3620                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3621                         spin_lock(&fs_info->balance_lock);
3622                         bctl->stat.expected++;
3623                         spin_unlock(&fs_info->balance_lock);
3624
3625                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3626                                 count_data++;
3627                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3628                                 count_sys++;
3629                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3630                                 count_meta++;
3631
3632                         goto loop;
3633                 }
3634
3635                 /*
3636                  * Apply limit_min filter, no need to check if the LIMITS
3637                  * filter is used, limit_min is 0 by default
3638                  */
3639                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3640                                         count_data < bctl->data.limit_min)
3641                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3642                                         count_meta < bctl->meta.limit_min)
3643                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3644                                         count_sys < bctl->sys.limit_min)) {
3645                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3646                         goto loop;
3647                 }
3648
3649                 ASSERT(fs_info->data_sinfo);
3650                 spin_lock(&fs_info->data_sinfo->lock);
3651                 bytes_used = fs_info->data_sinfo->bytes_used;
3652                 spin_unlock(&fs_info->data_sinfo->lock);
3653
3654                 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3655                     !chunk_reserved && !bytes_used) {
3656                         trans = btrfs_start_transaction(chunk_root, 0);
3657                         if (IS_ERR(trans)) {
3658                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3659                                 ret = PTR_ERR(trans);
3660                                 goto error;
3661                         }
3662
3663                         ret = btrfs_force_chunk_alloc(trans, fs_info,
3664                                                       BTRFS_BLOCK_GROUP_DATA);
3665                         btrfs_end_transaction(trans);
3666                         if (ret < 0) {
3667                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3668                                 goto error;
3669                         }
3670                         chunk_reserved = 1;
3671                 }
3672
3673                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3674                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3675                 if (ret && ret != -ENOSPC)
3676                         goto error;
3677                 if (ret == -ENOSPC) {
3678                         enospc_errors++;
3679                 } else {
3680                         spin_lock(&fs_info->balance_lock);
3681                         bctl->stat.completed++;
3682                         spin_unlock(&fs_info->balance_lock);
3683                 }
3684 loop:
3685                 if (found_key.offset == 0)
3686                         break;
3687                 key.offset = found_key.offset - 1;
3688         }
3689
3690         if (counting) {
3691                 btrfs_release_path(path);
3692                 counting = false;
3693                 goto again;
3694         }
3695 error:
3696         btrfs_free_path(path);
3697         if (enospc_errors) {
3698                 btrfs_info(fs_info, "%d enospc errors during balance",
3699                            enospc_errors);
3700                 if (!ret)
3701                         ret = -ENOSPC;
3702         }
3703
3704         return ret;
3705 }
3706
3707 /**
3708  * alloc_profile_is_valid - see if a given profile is valid and reduced
3709  * @flags: profile to validate
3710  * @extended: if true @flags is treated as an extended profile
3711  */
3712 static int alloc_profile_is_valid(u64 flags, int extended)
3713 {
3714         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3715                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3716
3717         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3718
3719         /* 1) check that all other bits are zeroed */
3720         if (flags & ~mask)
3721                 return 0;
3722
3723         /* 2) see if profile is reduced */
3724         if (flags == 0)
3725                 return !extended; /* "0" is valid for usual profiles */
3726
3727         /* true if exactly one bit set */
3728         return (flags & (flags - 1)) == 0;
3729 }
3730
3731 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3732 {
3733         /* cancel requested || normal exit path */
3734         return atomic_read(&fs_info->balance_cancel_req) ||
3735                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3736                  atomic_read(&fs_info->balance_cancel_req) == 0);
3737 }
3738
3739 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3740 {
3741         int ret;
3742
3743         unset_balance_control(fs_info);
3744         ret = del_balance_item(fs_info);
3745         if (ret)
3746                 btrfs_handle_fs_error(fs_info, ret, NULL);
3747
3748         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3749 }
3750
3751 /* Non-zero return value signifies invalidity */
3752 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3753                 u64 allowed)
3754 {
3755         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3756                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3757                  (bctl_arg->target & ~allowed)));
3758 }
3759
3760 /*
3761  * Should be called with both balance and volume mutexes held
3762  */
3763 int btrfs_balance(struct btrfs_balance_control *bctl,
3764                   struct btrfs_ioctl_balance_args *bargs)
3765 {
3766         struct btrfs_fs_info *fs_info = bctl->fs_info;
3767         u64 meta_target, data_target;
3768         u64 allowed;
3769         int mixed = 0;
3770         int ret;
3771         u64 num_devices;
3772         unsigned seq;
3773
3774         if (btrfs_fs_closing(fs_info) ||
3775             atomic_read(&fs_info->balance_pause_req) ||
3776             atomic_read(&fs_info->balance_cancel_req)) {
3777                 ret = -EINVAL;
3778                 goto out;
3779         }
3780
3781         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3782         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3783                 mixed = 1;
3784
3785         /*
3786          * In case of mixed groups both data and meta should be picked,
3787          * and identical options should be given for both of them.
3788          */
3789         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3790         if (mixed && (bctl->flags & allowed)) {
3791                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3792                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3793                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3794                         btrfs_err(fs_info,
3795                                   "with mixed groups data and metadata balance options must be the same");
3796                         ret = -EINVAL;
3797                         goto out;
3798                 }
3799         }
3800
3801         num_devices = fs_info->fs_devices->num_devices;
3802         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3803         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3804                 BUG_ON(num_devices < 1);
3805                 num_devices--;
3806         }
3807         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3808         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3809         if (num_devices > 1)
3810                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3811         if (num_devices > 2)
3812                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3813         if (num_devices > 3)
3814                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3815                             BTRFS_BLOCK_GROUP_RAID6);
3816         if (validate_convert_profile(&bctl->data, allowed)) {
3817                 btrfs_err(fs_info,
3818                           "unable to start balance with target data profile %llu",
3819                           bctl->data.target);
3820                 ret = -EINVAL;
3821                 goto out;
3822         }
3823         if (validate_convert_profile(&bctl->meta, allowed)) {
3824                 btrfs_err(fs_info,
3825                           "unable to start balance with target metadata profile %llu",
3826                           bctl->meta.target);
3827                 ret = -EINVAL;
3828                 goto out;
3829         }
3830         if (validate_convert_profile(&bctl->sys, allowed)) {
3831                 btrfs_err(fs_info,
3832                           "unable to start balance with target system profile %llu",
3833                           bctl->sys.target);
3834                 ret = -EINVAL;
3835                 goto out;
3836         }
3837
3838         /* allow to reduce meta or sys integrity only if force set */
3839         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3840                         BTRFS_BLOCK_GROUP_RAID10 |
3841                         BTRFS_BLOCK_GROUP_RAID5 |
3842                         BTRFS_BLOCK_GROUP_RAID6;
3843         do {
3844                 seq = read_seqbegin(&fs_info->profiles_lock);
3845
3846                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3847                      (fs_info->avail_system_alloc_bits & allowed) &&
3848                      !(bctl->sys.target & allowed)) ||
3849                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3850                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3851                      !(bctl->meta.target & allowed))) {
3852                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3853                                 btrfs_info(fs_info,
3854                                            "force reducing metadata integrity");
3855                         } else {
3856                                 btrfs_err(fs_info,
3857                                           "balance will reduce metadata integrity, use force if you want this");
3858                                 ret = -EINVAL;
3859                                 goto out;
3860                         }
3861                 }
3862         } while (read_seqretry(&fs_info->profiles_lock, seq));
3863
3864         /* if we're not converting, the target field is uninitialized */
3865         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3866                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3867         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3868                 bctl->data.target : fs_info->avail_data_alloc_bits;
3869         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3870                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3871                 btrfs_warn(fs_info,
3872                            "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3873                            meta_target, data_target);
3874         }
3875
3876         ret = insert_balance_item(fs_info, bctl);
3877         if (ret && ret != -EEXIST)
3878                 goto out;
3879
3880         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3881                 BUG_ON(ret == -EEXIST);
3882                 set_balance_control(bctl);
3883         } else {
3884                 BUG_ON(ret != -EEXIST);
3885                 spin_lock(&fs_info->balance_lock);
3886                 update_balance_args(bctl);
3887                 spin_unlock(&fs_info->balance_lock);
3888         }
3889
3890         atomic_inc(&fs_info->balance_running);
3891         mutex_unlock(&fs_info->balance_mutex);
3892
3893         ret = __btrfs_balance(fs_info);
3894
3895         mutex_lock(&fs_info->balance_mutex);
3896         atomic_dec(&fs_info->balance_running);
3897
3898         if (bargs) {
3899                 memset(bargs, 0, sizeof(*bargs));
3900                 update_ioctl_balance_args(fs_info, 0, bargs);
3901         }
3902
3903         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3904             balance_need_close(fs_info)) {
3905                 __cancel_balance(fs_info);
3906         }
3907
3908         wake_up(&fs_info->balance_wait_q);
3909
3910         return ret;
3911 out:
3912         if (bctl->flags & BTRFS_BALANCE_RESUME)
3913                 __cancel_balance(fs_info);
3914         else {
3915                 kfree(bctl);
3916                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3917         }
3918         return ret;
3919 }
3920
3921 static int balance_kthread(void *data)
3922 {
3923         struct btrfs_fs_info *fs_info = data;
3924         int ret = 0;
3925
3926         mutex_lock(&fs_info->volume_mutex);
3927         mutex_lock(&fs_info->balance_mutex);
3928
3929         if (fs_info->balance_ctl) {
3930                 btrfs_info(fs_info, "continuing balance");
3931                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3932         }
3933
3934         mutex_unlock(&fs_info->balance_mutex);
3935         mutex_unlock(&fs_info->volume_mutex);
3936
3937         return ret;
3938 }
3939
3940 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3941 {
3942         struct task_struct *tsk;
3943
3944         spin_lock(&fs_info->balance_lock);
3945         if (!fs_info->balance_ctl) {
3946                 spin_unlock(&fs_info->balance_lock);
3947                 return 0;
3948         }
3949         spin_unlock(&fs_info->balance_lock);
3950
3951         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3952                 btrfs_info(fs_info, "force skipping balance");
3953                 return 0;
3954         }
3955
3956         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3957         return PTR_ERR_OR_ZERO(tsk);
3958 }
3959
3960 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3961 {
3962         struct btrfs_balance_control *bctl;
3963         struct btrfs_balance_item *item;
3964         struct btrfs_disk_balance_args disk_bargs;
3965         struct btrfs_path *path;
3966         struct extent_buffer *leaf;
3967         struct btrfs_key key;
3968         int ret;
3969
3970         path = btrfs_alloc_path();
3971         if (!path)
3972                 return -ENOMEM;
3973
3974         key.objectid = BTRFS_BALANCE_OBJECTID;
3975         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3976         key.offset = 0;
3977
3978         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3979         if (ret < 0)
3980                 goto out;
3981         if (ret > 0) { /* ret = -ENOENT; */
3982                 ret = 0;
3983                 goto out;
3984         }
3985
3986         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3987         if (!bctl) {
3988                 ret = -ENOMEM;
3989                 goto out;
3990         }
3991
3992         leaf = path->nodes[0];
3993         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3994
3995         bctl->fs_info = fs_info;
3996         bctl->flags = btrfs_balance_flags(leaf, item);
3997         bctl->flags |= BTRFS_BALANCE_RESUME;
3998
3999         btrfs_balance_data(leaf, item, &disk_bargs);
4000         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4001         btrfs_balance_meta(leaf, item, &disk_bargs);
4002         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4003         btrfs_balance_sys(leaf, item, &disk_bargs);
4004         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4005
4006         WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4007
4008         mutex_lock(&fs_info->volume_mutex);
4009         mutex_lock(&fs_info->balance_mutex);
4010
4011         set_balance_control(bctl);
4012
4013         mutex_unlock(&fs_info->balance_mutex);
4014         mutex_unlock(&fs_info->volume_mutex);
4015 out:
4016         btrfs_free_path(path);
4017         return ret;
4018 }
4019
4020 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4021 {
4022         int ret = 0;
4023
4024         mutex_lock(&fs_info->balance_mutex);
4025         if (!fs_info->balance_ctl) {
4026                 mutex_unlock(&fs_info->balance_mutex);
4027                 return -ENOTCONN;
4028         }
4029
4030         if (atomic_read(&fs_info->balance_running)) {
4031                 atomic_inc(&fs_info->balance_pause_req);
4032                 mutex_unlock(&fs_info->balance_mutex);
4033
4034                 wait_event(fs_info->balance_wait_q,
4035                            atomic_read(&fs_info->balance_running) == 0);
4036
4037                 mutex_lock(&fs_info->balance_mutex);
4038                 /* we are good with balance_ctl ripped off from under us */
4039                 BUG_ON(atomic_read(&fs_info->balance_running));
4040                 atomic_dec(&fs_info->balance_pause_req);
4041         } else {
4042                 ret = -ENOTCONN;
4043         }
4044
4045         mutex_unlock(&fs_info->balance_mutex);
4046         return ret;
4047 }
4048
4049 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4050 {
4051         if (sb_rdonly(fs_info->sb))
4052                 return -EROFS;
4053
4054         mutex_lock(&fs_info->balance_mutex);
4055         if (!fs_info->balance_ctl) {
4056                 mutex_unlock(&fs_info->balance_mutex);
4057                 return -ENOTCONN;
4058         }
4059
4060         atomic_inc(&fs_info->balance_cancel_req);
4061         /*
4062          * if we are running just wait and return, balance item is
4063          * deleted in btrfs_balance in this case
4064          */
4065         if (atomic_read(&fs_info->balance_running)) {
4066                 mutex_unlock(&fs_info->balance_mutex);
4067                 wait_event(fs_info->balance_wait_q,
4068                            atomic_read(&fs_info->balance_running) == 0);
4069                 mutex_lock(&fs_info->balance_mutex);
4070         } else {
4071                 /* __cancel_balance needs volume_mutex */
4072                 mutex_unlock(&fs_info->balance_mutex);
4073                 mutex_lock(&fs_info->volume_mutex);
4074                 mutex_lock(&fs_info->balance_mutex);
4075
4076                 if (fs_info->balance_ctl)
4077                         __cancel_balance(fs_info);
4078
4079                 mutex_unlock(&fs_info->volume_mutex);
4080         }
4081
4082         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4083         atomic_dec(&fs_info->balance_cancel_req);
4084         mutex_unlock(&fs_info->balance_mutex);
4085         return 0;
4086 }
4087
4088 static int btrfs_uuid_scan_kthread(void *data)
4089 {
4090         struct btrfs_fs_info *fs_info = data;
4091         struct btrfs_root *root = fs_info->tree_root;
4092         struct btrfs_key key;
4093         struct btrfs_path *path = NULL;
4094         int ret = 0;
4095         struct extent_buffer *eb;
4096         int slot;
4097         struct btrfs_root_item root_item;
4098         u32 item_size;
4099         struct btrfs_trans_handle *trans = NULL;
4100
4101         path = btrfs_alloc_path();
4102         if (!path) {
4103                 ret = -ENOMEM;
4104                 goto out;
4105         }
4106
4107         key.objectid = 0;
4108         key.type = BTRFS_ROOT_ITEM_KEY;
4109         key.offset = 0;
4110
4111         while (1) {
4112                 ret = btrfs_search_forward(root, &key, path, 0);
4113                 if (ret) {
4114                         if (ret > 0)
4115                                 ret = 0;
4116                         break;
4117                 }
4118
4119                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4120                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4121                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4122                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4123                         goto skip;
4124
4125                 eb = path->nodes[0];
4126                 slot = path->slots[0];
4127                 item_size = btrfs_item_size_nr(eb, slot);
4128                 if (item_size < sizeof(root_item))
4129                         goto skip;
4130
4131                 read_extent_buffer(eb, &root_item,
4132                                    btrfs_item_ptr_offset(eb, slot),
4133                                    (int)sizeof(root_item));
4134                 if (btrfs_root_refs(&root_item) == 0)
4135                         goto skip;
4136
4137                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4138                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4139                         if (trans)
4140                                 goto update_tree;
4141
4142                         btrfs_release_path(path);
4143                         /*
4144                          * 1 - subvol uuid item
4145                          * 1 - received_subvol uuid item
4146                          */
4147                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4148                         if (IS_ERR(trans)) {
4149                                 ret = PTR_ERR(trans);
4150                                 break;
4151                         }
4152                         continue;
4153                 } else {
4154                         goto skip;
4155                 }
4156 update_tree:
4157                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4158                         ret = btrfs_uuid_tree_add(trans, fs_info,
4159                                                   root_item.uuid,
4160                                                   BTRFS_UUID_KEY_SUBVOL,
4161                                                   key.objectid);
4162                         if (ret < 0) {
4163                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4164                                         ret);
4165                                 break;
4166                         }
4167                 }
4168
4169                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4170                         ret = btrfs_uuid_tree_add(trans, fs_info,
4171                                                   root_item.received_uuid,
4172                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4173                                                   key.objectid);
4174                         if (ret < 0) {
4175                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4176                                         ret);
4177                                 break;
4178                         }
4179                 }
4180
4181 skip:
4182                 if (trans) {
4183                         ret = btrfs_end_transaction(trans);
4184                         trans = NULL;
4185                         if (ret)
4186                                 break;
4187                 }
4188
4189                 btrfs_release_path(path);
4190                 if (key.offset < (u64)-1) {
4191                         key.offset++;
4192                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4193                         key.offset = 0;
4194                         key.type = BTRFS_ROOT_ITEM_KEY;
4195                 } else if (key.objectid < (u64)-1) {
4196                         key.offset = 0;
4197                         key.type = BTRFS_ROOT_ITEM_KEY;
4198                         key.objectid++;
4199                 } else {
4200                         break;
4201                 }
4202                 cond_resched();
4203         }
4204
4205 out:
4206         btrfs_free_path(path);
4207         if (trans && !IS_ERR(trans))
4208                 btrfs_end_transaction(trans);
4209         if (ret)
4210                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4211         else
4212                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4213         up(&fs_info->uuid_tree_rescan_sem);
4214         return 0;
4215 }
4216
4217 /*
4218  * Callback for btrfs_uuid_tree_iterate().
4219  * returns:
4220  * 0    check succeeded, the entry is not outdated.
4221  * < 0  if an error occurred.
4222  * > 0  if the check failed, which means the caller shall remove the entry.
4223  */
4224 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4225                                        u8 *uuid, u8 type, u64 subid)
4226 {
4227         struct btrfs_key key;
4228         int ret = 0;
4229         struct btrfs_root *subvol_root;
4230
4231         if (type != BTRFS_UUID_KEY_SUBVOL &&
4232             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4233                 goto out;
4234
4235         key.objectid = subid;
4236         key.type = BTRFS_ROOT_ITEM_KEY;
4237         key.offset = (u64)-1;
4238         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4239         if (IS_ERR(subvol_root)) {
4240                 ret = PTR_ERR(subvol_root);
4241                 if (ret == -ENOENT)
4242                         ret = 1;
4243                 goto out;
4244         }
4245
4246         switch (type) {
4247         case BTRFS_UUID_KEY_SUBVOL:
4248                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4249                         ret = 1;
4250                 break;
4251         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4252                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4253                            BTRFS_UUID_SIZE))
4254                         ret = 1;
4255                 break;
4256         }
4257
4258 out:
4259         return ret;
4260 }
4261
4262 static int btrfs_uuid_rescan_kthread(void *data)
4263 {
4264         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4265         int ret;
4266
4267         /*
4268          * 1st step is to iterate through the existing UUID tree and
4269          * to delete all entries that contain outdated data.
4270          * 2nd step is to add all missing entries to the UUID tree.
4271          */
4272         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4273         if (ret < 0) {
4274                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4275                 up(&fs_info->uuid_tree_rescan_sem);
4276                 return ret;
4277         }
4278         return btrfs_uuid_scan_kthread(data);
4279 }
4280
4281 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4282 {
4283         struct btrfs_trans_handle *trans;
4284         struct btrfs_root *tree_root = fs_info->tree_root;
4285         struct btrfs_root *uuid_root;
4286         struct task_struct *task;
4287         int ret;
4288
4289         /*
4290          * 1 - root node
4291          * 1 - root item
4292          */
4293         trans = btrfs_start_transaction(tree_root, 2);
4294         if (IS_ERR(trans))
4295                 return PTR_ERR(trans);
4296
4297         uuid_root = btrfs_create_tree(trans, fs_info,
4298                                       BTRFS_UUID_TREE_OBJECTID);
4299         if (IS_ERR(uuid_root)) {
4300                 ret = PTR_ERR(uuid_root);
4301                 btrfs_abort_transaction(trans, ret);
4302                 btrfs_end_transaction(trans);
4303                 return ret;
4304         }
4305
4306         fs_info->uuid_root = uuid_root;
4307
4308         ret = btrfs_commit_transaction(trans);
4309         if (ret)
4310                 return ret;
4311
4312         down(&fs_info->uuid_tree_rescan_sem);
4313         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4314         if (IS_ERR(task)) {
4315                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4316                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4317                 up(&fs_info->uuid_tree_rescan_sem);
4318                 return PTR_ERR(task);
4319         }
4320
4321         return 0;
4322 }
4323
4324 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4325 {
4326         struct task_struct *task;
4327
4328         down(&fs_info->uuid_tree_rescan_sem);
4329         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4330         if (IS_ERR(task)) {
4331                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4332                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4333                 up(&fs_info->uuid_tree_rescan_sem);
4334                 return PTR_ERR(task);
4335         }
4336
4337         return 0;
4338 }
4339
4340 /*
4341  * shrinking a device means finding all of the device extents past
4342  * the new size, and then following the back refs to the chunks.
4343  * The chunk relocation code actually frees the device extent
4344  */
4345 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4346 {
4347         struct btrfs_fs_info *fs_info = device->fs_info;
4348         struct btrfs_root *root = fs_info->dev_root;
4349         struct btrfs_trans_handle *trans;
4350         struct btrfs_dev_extent *dev_extent = NULL;
4351         struct btrfs_path *path;
4352         u64 length;
4353         u64 chunk_offset;
4354         int ret;
4355         int slot;
4356         int failed = 0;
4357         bool retried = false;
4358         bool checked_pending_chunks = false;
4359         struct extent_buffer *l;
4360         struct btrfs_key key;
4361         struct btrfs_super_block *super_copy = fs_info->super_copy;
4362         u64 old_total = btrfs_super_total_bytes(super_copy);
4363         u64 old_size = btrfs_device_get_total_bytes(device);
4364         u64 diff;
4365
4366         new_size = round_down(new_size, fs_info->sectorsize);
4367         diff = round_down(old_size - new_size, fs_info->sectorsize);
4368
4369         if (device->is_tgtdev_for_dev_replace)
4370                 return -EINVAL;
4371
4372         path = btrfs_alloc_path();
4373         if (!path)
4374                 return -ENOMEM;
4375
4376         path->reada = READA_FORWARD;
4377
4378         mutex_lock(&fs_info->chunk_mutex);
4379
4380         btrfs_device_set_total_bytes(device, new_size);
4381         if (device->writeable) {
4382                 device->fs_devices->total_rw_bytes -= diff;
4383                 atomic64_sub(diff, &fs_info->free_chunk_space);
4384         }
4385         mutex_unlock(&fs_info->chunk_mutex);
4386
4387 again:
4388         key.objectid = device->devid;
4389         key.offset = (u64)-1;
4390         key.type = BTRFS_DEV_EXTENT_KEY;
4391
4392         do {
4393                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4394                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4395                 if (ret < 0) {
4396                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4397                         goto done;
4398                 }
4399
4400                 ret = btrfs_previous_item(root, path, 0, key.type);
4401                 if (ret)
4402                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4403                 if (ret < 0)
4404                         goto done;
4405                 if (ret) {
4406                         ret = 0;
4407                         btrfs_release_path(path);
4408                         break;
4409                 }
4410
4411                 l = path->nodes[0];
4412                 slot = path->slots[0];
4413                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4414
4415                 if (key.objectid != device->devid) {
4416                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4417                         btrfs_release_path(path);
4418                         break;
4419                 }
4420
4421                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4422                 length = btrfs_dev_extent_length(l, dev_extent);
4423
4424                 if (key.offset + length <= new_size) {
4425                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4426                         btrfs_release_path(path);
4427                         break;
4428                 }
4429
4430                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4431                 btrfs_release_path(path);
4432
4433                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4434                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4435                 if (ret && ret != -ENOSPC)
4436                         goto done;
4437                 if (ret == -ENOSPC)
4438                         failed++;
4439         } while (key.offset-- > 0);
4440
4441         if (failed && !retried) {
4442                 failed = 0;
4443                 retried = true;
4444                 goto again;
4445         } else if (failed && retried) {
4446                 ret = -ENOSPC;
4447                 goto done;
4448         }
4449
4450         /* Shrinking succeeded, else we would be at "done". */
4451         trans = btrfs_start_transaction(root, 0);
4452         if (IS_ERR(trans)) {
4453                 ret = PTR_ERR(trans);
4454                 goto done;
4455         }
4456
4457         mutex_lock(&fs_info->chunk_mutex);
4458
4459         /*
4460          * We checked in the above loop all device extents that were already in
4461          * the device tree. However before we have updated the device's
4462          * total_bytes to the new size, we might have had chunk allocations that
4463          * have not complete yet (new block groups attached to transaction
4464          * handles), and therefore their device extents were not yet in the
4465          * device tree and we missed them in the loop above. So if we have any
4466          * pending chunk using a device extent that overlaps the device range
4467          * that we can not use anymore, commit the current transaction and
4468          * repeat the search on the device tree - this way we guarantee we will
4469          * not have chunks using device extents that end beyond 'new_size'.
4470          */
4471         if (!checked_pending_chunks) {
4472                 u64 start = new_size;
4473                 u64 len = old_size - new_size;
4474
4475                 if (contains_pending_extent(trans->transaction, device,
4476                                             &start, len)) {
4477                         mutex_unlock(&fs_info->chunk_mutex);
4478                         checked_pending_chunks = true;
4479                         failed = 0;
4480                         retried = false;
4481                         ret = btrfs_commit_transaction(trans);
4482                         if (ret)
4483                                 goto done;
4484                         goto again;
4485                 }
4486         }
4487
4488         btrfs_device_set_disk_total_bytes(device, new_size);
4489         if (list_empty(&device->resized_list))
4490                 list_add_tail(&device->resized_list,
4491                               &fs_info->fs_devices->resized_devices);
4492
4493         WARN_ON(diff > old_total);
4494         btrfs_set_super_total_bytes(super_copy,
4495                         round_down(old_total - diff, fs_info->sectorsize));
4496         mutex_unlock(&fs_info->chunk_mutex);
4497
4498         /* Now btrfs_update_device() will change the on-disk size. */
4499         ret = btrfs_update_device(trans, device);
4500         btrfs_end_transaction(trans);
4501 done:
4502         btrfs_free_path(path);
4503         if (ret) {
4504                 mutex_lock(&fs_info->chunk_mutex);
4505                 btrfs_device_set_total_bytes(device, old_size);
4506                 if (device->writeable)
4507                         device->fs_devices->total_rw_bytes += diff;
4508                 atomic64_add(diff, &fs_info->free_chunk_space);
4509                 mutex_unlock(&fs_info->chunk_mutex);
4510         }
4511         return ret;
4512 }
4513
4514 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4515                            struct btrfs_key *key,
4516                            struct btrfs_chunk *chunk, int item_size)
4517 {
4518         struct btrfs_super_block *super_copy = fs_info->super_copy;
4519         struct btrfs_disk_key disk_key;
4520         u32 array_size;
4521         u8 *ptr;
4522
4523         mutex_lock(&fs_info->chunk_mutex);
4524         array_size = btrfs_super_sys_array_size(super_copy);
4525         if (array_size + item_size + sizeof(disk_key)
4526                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4527                 mutex_unlock(&fs_info->chunk_mutex);
4528                 return -EFBIG;
4529         }
4530
4531         ptr = super_copy->sys_chunk_array + array_size;
4532         btrfs_cpu_key_to_disk(&disk_key, key);
4533         memcpy(ptr, &disk_key, sizeof(disk_key));
4534         ptr += sizeof(disk_key);
4535         memcpy(ptr, chunk, item_size);
4536         item_size += sizeof(disk_key);
4537         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4538         mutex_unlock(&fs_info->chunk_mutex);
4539
4540         return 0;
4541 }
4542
4543 /*
4544  * sort the devices in descending order by max_avail, total_avail
4545  */
4546 static int btrfs_cmp_device_info(const void *a, const void *b)
4547 {
4548         const struct btrfs_device_info *di_a = a;
4549         const struct btrfs_device_info *di_b = b;
4550
4551         if (di_a->max_avail > di_b->max_avail)
4552                 return -1;
4553         if (di_a->max_avail < di_b->max_avail)
4554                 return 1;
4555         if (di_a->total_avail > di_b->total_avail)
4556                 return -1;
4557         if (di_a->total_avail < di_b->total_avail)
4558                 return 1;
4559         return 0;
4560 }
4561
4562 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4563 {
4564         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4565                 return;
4566
4567         btrfs_set_fs_incompat(info, RAID56);
4568 }
4569
4570 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)             \
4571                         - sizeof(struct btrfs_chunk))           \
4572                         / sizeof(struct btrfs_stripe) + 1)
4573
4574 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4575                                 - 2 * sizeof(struct btrfs_disk_key)     \
4576                                 - 2 * sizeof(struct btrfs_chunk))       \
4577                                 / sizeof(struct btrfs_stripe) + 1)
4578
4579 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4580                                u64 start, u64 type)
4581 {
4582         struct btrfs_fs_info *info = trans->fs_info;
4583         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4584         struct btrfs_device *device;
4585         struct map_lookup *map = NULL;
4586         struct extent_map_tree *em_tree;
4587         struct extent_map *em;
4588         struct btrfs_device_info *devices_info = NULL;
4589         u64 total_avail;
4590         int num_stripes;        /* total number of stripes to allocate */
4591         int data_stripes;       /* number of stripes that count for
4592                                    block group size */
4593         int sub_stripes;        /* sub_stripes info for map */
4594         int dev_stripes;        /* stripes per dev */
4595         int devs_max;           /* max devs to use */
4596         int devs_min;           /* min devs needed */
4597         int devs_increment;     /* ndevs has to be a multiple of this */
4598         int ncopies;            /* how many copies to data has */
4599         int ret;
4600         u64 max_stripe_size;
4601         u64 max_chunk_size;
4602         u64 stripe_size;
4603         u64 num_bytes;
4604         int ndevs;
4605         int i;
4606         int j;
4607         int index;
4608
4609         BUG_ON(!alloc_profile_is_valid(type, 0));
4610
4611         if (list_empty(&fs_devices->alloc_list))
4612                 return -ENOSPC;
4613
4614         index = __get_raid_index(type);
4615
4616         sub_stripes = btrfs_raid_array[index].sub_stripes;
4617         dev_stripes = btrfs_raid_array[index].dev_stripes;
4618         devs_max = btrfs_raid_array[index].devs_max;
4619         devs_min = btrfs_raid_array[index].devs_min;
4620         devs_increment = btrfs_raid_array[index].devs_increment;
4621         ncopies = btrfs_raid_array[index].ncopies;
4622
4623         if (type & BTRFS_BLOCK_GROUP_DATA) {
4624                 max_stripe_size = SZ_1G;
4625                 max_chunk_size = 10 * max_stripe_size;
4626                 if (!devs_max)
4627                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4628         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4629                 /* for larger filesystems, use larger metadata chunks */
4630                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4631                         max_stripe_size = SZ_1G;
4632                 else
4633                         max_stripe_size = SZ_256M;
4634                 max_chunk_size = max_stripe_size;
4635                 if (!devs_max)
4636                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4637         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4638                 max_stripe_size = SZ_32M;
4639                 max_chunk_size = 2 * max_stripe_size;
4640                 if (!devs_max)
4641                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4642         } else {
4643                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4644                        type);
4645                 BUG_ON(1);
4646         }
4647
4648         /* we don't want a chunk larger than 10% of writeable space */
4649         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4650                              max_chunk_size);
4651
4652         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4653                                GFP_NOFS);
4654         if (!devices_info)
4655                 return -ENOMEM;
4656
4657         /*
4658          * in the first pass through the devices list, we gather information
4659          * about the available holes on each device.
4660          */
4661         ndevs = 0;
4662         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4663                 u64 max_avail;
4664                 u64 dev_offset;
4665
4666                 if (!device->writeable) {
4667                         WARN(1, KERN_ERR
4668                                "BTRFS: read-only device in alloc_list\n");
4669                         continue;
4670                 }
4671
4672                 if (!device->in_fs_metadata ||
4673                     device->is_tgtdev_for_dev_replace)
4674                         continue;
4675
4676                 if (device->total_bytes > device->bytes_used)
4677                         total_avail = device->total_bytes - device->bytes_used;
4678                 else
4679                         total_avail = 0;
4680
4681                 /* If there is no space on this device, skip it. */
4682                 if (total_avail == 0)
4683                         continue;
4684
4685                 ret = find_free_dev_extent(trans, device,
4686                                            max_stripe_size * dev_stripes,
4687                                            &dev_offset, &max_avail);
4688                 if (ret && ret != -ENOSPC)
4689                         goto error;
4690
4691                 if (ret == 0)
4692                         max_avail = max_stripe_size * dev_stripes;
4693
4694                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4695                         continue;
4696
4697                 if (ndevs == fs_devices->rw_devices) {
4698                         WARN(1, "%s: found more than %llu devices\n",
4699                              __func__, fs_devices->rw_devices);
4700                         break;
4701                 }
4702                 devices_info[ndevs].dev_offset = dev_offset;
4703                 devices_info[ndevs].max_avail = max_avail;
4704                 devices_info[ndevs].total_avail = total_avail;
4705                 devices_info[ndevs].dev = device;
4706                 ++ndevs;
4707         }
4708
4709         /*
4710          * now sort the devices by hole size / available space
4711          */
4712         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4713              btrfs_cmp_device_info, NULL);
4714
4715         /* round down to number of usable stripes */
4716         ndevs = round_down(ndevs, devs_increment);
4717
4718         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4719                 ret = -ENOSPC;
4720                 goto error;
4721         }
4722
4723         ndevs = min(ndevs, devs_max);
4724
4725         /*
4726          * the primary goal is to maximize the number of stripes, so use as many
4727          * devices as possible, even if the stripes are not maximum sized.
4728          */
4729         stripe_size = devices_info[ndevs-1].max_avail;
4730         num_stripes = ndevs * dev_stripes;
4731
4732         /*
4733          * this will have to be fixed for RAID1 and RAID10 over
4734          * more drives
4735          */
4736         data_stripes = num_stripes / ncopies;
4737
4738         if (type & BTRFS_BLOCK_GROUP_RAID5)
4739                 data_stripes = num_stripes - 1;
4740
4741         if (type & BTRFS_BLOCK_GROUP_RAID6)
4742                 data_stripes = num_stripes - 2;
4743
4744         /*
4745          * Use the number of data stripes to figure out how big this chunk
4746          * is really going to be in terms of logical address space,
4747          * and compare that answer with the max chunk size
4748          */
4749         if (stripe_size * data_stripes > max_chunk_size) {
4750                 u64 mask = (1ULL << 24) - 1;
4751
4752                 stripe_size = div_u64(max_chunk_size, data_stripes);
4753
4754                 /* bump the answer up to a 16MB boundary */
4755                 stripe_size = (stripe_size + mask) & ~mask;
4756
4757                 /* but don't go higher than the limits we found
4758                  * while searching for free extents
4759                  */
4760                 if (stripe_size > devices_info[ndevs-1].max_avail)
4761                         stripe_size = devices_info[ndevs-1].max_avail;
4762         }
4763
4764         stripe_size = div_u64(stripe_size, dev_stripes);
4765
4766         /* align to BTRFS_STRIPE_LEN */
4767         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4768
4769         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4770         if (!map) {
4771                 ret = -ENOMEM;
4772                 goto error;
4773         }
4774         map->num_stripes = num_stripes;
4775
4776         for (i = 0; i < ndevs; ++i) {
4777                 for (j = 0; j < dev_stripes; ++j) {
4778                         int s = i * dev_stripes + j;
4779                         map->stripes[s].dev = devices_info[i].dev;
4780                         map->stripes[s].physical = devices_info[i].dev_offset +
4781                                                    j * stripe_size;
4782                 }
4783         }
4784         map->stripe_len = BTRFS_STRIPE_LEN;
4785         map->io_align = BTRFS_STRIPE_LEN;
4786         map->io_width = BTRFS_STRIPE_LEN;
4787         map->type = type;
4788         map->sub_stripes = sub_stripes;
4789
4790         num_bytes = stripe_size * data_stripes;
4791
4792         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4793
4794         em = alloc_extent_map();
4795         if (!em) {
4796                 kfree(map);
4797                 ret = -ENOMEM;
4798                 goto error;
4799         }
4800         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4801         em->map_lookup = map;
4802         em->start = start;
4803         em->len = num_bytes;
4804         em->block_start = 0;
4805         em->block_len = em->len;
4806         em->orig_block_len = stripe_size;
4807
4808         em_tree = &info->mapping_tree.map_tree;
4809         write_lock(&em_tree->lock);
4810         ret = add_extent_mapping(em_tree, em, 0);
4811         if (ret) {
4812                 write_unlock(&em_tree->lock);
4813                 free_extent_map(em);
4814                 goto error;
4815         }
4816
4817         list_add_tail(&em->list, &trans->transaction->pending_chunks);
4818         refcount_inc(&em->refs);
4819         write_unlock(&em_tree->lock);
4820
4821         ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4822         if (ret)
4823                 goto error_del_extent;
4824
4825         for (i = 0; i < map->num_stripes; i++) {
4826                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4827                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4828         }
4829
4830         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4831
4832         free_extent_map(em);
4833         check_raid56_incompat_flag(info, type);
4834
4835         kfree(devices_info);
4836         return 0;
4837
4838 error_del_extent:
4839         write_lock(&em_tree->lock);
4840         remove_extent_mapping(em_tree, em);
4841         write_unlock(&em_tree->lock);
4842
4843         /* One for our allocation */
4844         free_extent_map(em);
4845         /* One for the tree reference */
4846         free_extent_map(em);
4847         /* One for the pending_chunks list reference */
4848         free_extent_map(em);
4849 error:
4850         kfree(devices_info);
4851         return ret;
4852 }
4853
4854 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4855                                 struct btrfs_fs_info *fs_info,
4856                                 u64 chunk_offset, u64 chunk_size)
4857 {
4858         struct btrfs_root *extent_root = fs_info->extent_root;
4859         struct btrfs_root *chunk_root = fs_info->chunk_root;
4860         struct btrfs_key key;
4861         struct btrfs_device *device;
4862         struct btrfs_chunk *chunk;
4863         struct btrfs_stripe *stripe;
4864         struct extent_map *em;
4865         struct map_lookup *map;
4866         size_t item_size;
4867         u64 dev_offset;
4868         u64 stripe_size;
4869         int i = 0;
4870         int ret = 0;
4871
4872         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4873         if (IS_ERR(em))
4874                 return PTR_ERR(em);
4875
4876         map = em->map_lookup;
4877         item_size = btrfs_chunk_item_size(map->num_stripes);
4878         stripe_size = em->orig_block_len;
4879
4880         chunk = kzalloc(item_size, GFP_NOFS);
4881         if (!chunk) {
4882                 ret = -ENOMEM;
4883                 goto out;
4884         }
4885
4886         /*
4887          * Take the device list mutex to prevent races with the final phase of
4888          * a device replace operation that replaces the device object associated
4889          * with the map's stripes, because the device object's id can change
4890          * at any time during that final phase of the device replace operation
4891          * (dev-replace.c:btrfs_dev_replace_finishing()).
4892          */
4893         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4894         for (i = 0; i < map->num_stripes; i++) {
4895                 device = map->stripes[i].dev;
4896                 dev_offset = map->stripes[i].physical;
4897
4898                 ret = btrfs_update_device(trans, device);
4899                 if (ret)
4900                         break;
4901                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4902                                              dev_offset, stripe_size);
4903                 if (ret)
4904                         break;
4905         }
4906         if (ret) {
4907                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4908                 goto out;
4909         }
4910
4911         stripe = &chunk->stripe;
4912         for (i = 0; i < map->num_stripes; i++) {
4913                 device = map->stripes[i].dev;
4914                 dev_offset = map->stripes[i].physical;
4915
4916                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4917                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4918                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4919                 stripe++;
4920         }
4921         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4922
4923         btrfs_set_stack_chunk_length(chunk, chunk_size);
4924         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4925         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4926         btrfs_set_stack_chunk_type(chunk, map->type);
4927         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4928         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4929         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4930         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4931         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4932
4933         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4934         key.type = BTRFS_CHUNK_ITEM_KEY;
4935         key.offset = chunk_offset;
4936
4937         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4938         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4939                 /*
4940                  * TODO: Cleanup of inserted chunk root in case of
4941                  * failure.
4942                  */
4943                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4944         }
4945
4946 out:
4947         kfree(chunk);
4948         free_extent_map(em);
4949         return ret;
4950 }
4951
4952 /*
4953  * Chunk allocation falls into two parts. The first part does works
4954  * that make the new allocated chunk useable, but not do any operation
4955  * that modifies the chunk tree. The second part does the works that
4956  * require modifying the chunk tree. This division is important for the
4957  * bootstrap process of adding storage to a seed btrfs.
4958  */
4959 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4960                       struct btrfs_fs_info *fs_info, u64 type)
4961 {
4962         u64 chunk_offset;
4963
4964         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4965         chunk_offset = find_next_chunk(fs_info);
4966         return __btrfs_alloc_chunk(trans, chunk_offset, type);
4967 }
4968
4969 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4970                                          struct btrfs_fs_info *fs_info)
4971 {
4972         u64 chunk_offset;
4973         u64 sys_chunk_offset;
4974         u64 alloc_profile;
4975         int ret;
4976
4977         chunk_offset = find_next_chunk(fs_info);
4978         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4979         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4980         if (ret)
4981                 return ret;
4982
4983         sys_chunk_offset = find_next_chunk(fs_info);
4984         alloc_profile = btrfs_system_alloc_profile(fs_info);
4985         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4986         return ret;
4987 }
4988
4989 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4990 {
4991         int max_errors;
4992
4993         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4994                          BTRFS_BLOCK_GROUP_RAID10 |
4995                          BTRFS_BLOCK_GROUP_RAID5 |
4996                          BTRFS_BLOCK_GROUP_DUP)) {
4997                 max_errors = 1;
4998         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4999                 max_errors = 2;
5000         } else {
5001                 max_errors = 0;
5002         }
5003
5004         return max_errors;
5005 }
5006
5007 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5008 {
5009         struct extent_map *em;
5010         struct map_lookup *map;
5011         int readonly = 0;
5012         int miss_ndevs = 0;
5013         int i;
5014
5015         em = get_chunk_map(fs_info, chunk_offset, 1);
5016         if (IS_ERR(em))
5017                 return 1;
5018
5019         map = em->map_lookup;
5020         for (i = 0; i < map->num_stripes; i++) {
5021                 if (map->stripes[i].dev->missing) {
5022                         miss_ndevs++;
5023                         continue;
5024                 }
5025
5026                 if (!map->stripes[i].dev->writeable) {
5027                         readonly = 1;
5028                         goto end;
5029                 }
5030         }
5031
5032         /*
5033          * If the number of missing devices is larger than max errors,
5034          * we can not write the data into that chunk successfully, so
5035          * set it readonly.
5036          */
5037         if (miss_ndevs > btrfs_chunk_max_errors(map))
5038                 readonly = 1;
5039 end:
5040         free_extent_map(em);
5041         return readonly;
5042 }
5043
5044 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5045 {
5046         extent_map_tree_init(&tree->map_tree);
5047 }
5048
5049 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5050 {
5051         struct extent_map *em;
5052
5053         while (1) {
5054                 write_lock(&tree->map_tree.lock);
5055                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5056                 if (em)
5057                         remove_extent_mapping(&tree->map_tree, em);
5058                 write_unlock(&tree->map_tree.lock);
5059                 if (!em)
5060                         break;
5061                 /* once for us */
5062                 free_extent_map(em);
5063                 /* once for the tree */
5064                 free_extent_map(em);
5065         }
5066 }
5067
5068 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5069 {
5070         struct extent_map *em;
5071         struct map_lookup *map;
5072         int ret;
5073
5074         em = get_chunk_map(fs_info, logical, len);
5075         if (IS_ERR(em))
5076                 /*
5077                  * We could return errors for these cases, but that could get
5078                  * ugly and we'd probably do the same thing which is just not do
5079                  * anything else and exit, so return 1 so the callers don't try
5080                  * to use other copies.
5081                  */
5082                 return 1;
5083
5084         map = em->map_lookup;
5085         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5086                 ret = map->num_stripes;
5087         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5088                 ret = map->sub_stripes;
5089         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5090                 ret = 2;
5091         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5092                 ret = 3;
5093         else
5094                 ret = 1;
5095         free_extent_map(em);
5096
5097         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5098         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5099             fs_info->dev_replace.tgtdev)
5100                 ret++;
5101         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5102
5103         return ret;
5104 }
5105
5106 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5107                                     u64 logical)
5108 {
5109         struct extent_map *em;
5110         struct map_lookup *map;
5111         unsigned long len = fs_info->sectorsize;
5112
5113         em = get_chunk_map(fs_info, logical, len);
5114
5115         if (!WARN_ON(IS_ERR(em))) {
5116                 map = em->map_lookup;
5117                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5118                         len = map->stripe_len * nr_data_stripes(map);
5119                 free_extent_map(em);
5120         }
5121         return len;
5122 }
5123
5124 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5125 {
5126         struct extent_map *em;
5127         struct map_lookup *map;
5128         int ret = 0;
5129
5130         em = get_chunk_map(fs_info, logical, len);
5131
5132         if(!WARN_ON(IS_ERR(em))) {
5133                 map = em->map_lookup;
5134                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5135                         ret = 1;
5136                 free_extent_map(em);
5137         }
5138         return ret;
5139 }
5140
5141 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5142                             struct map_lookup *map, int first, int num,
5143                             int optimal, int dev_replace_is_ongoing)
5144 {
5145         int i;
5146         int tolerance;
5147         struct btrfs_device *srcdev;
5148
5149         if (dev_replace_is_ongoing &&
5150             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5151              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5152                 srcdev = fs_info->dev_replace.srcdev;
5153         else
5154                 srcdev = NULL;
5155
5156         /*
5157          * try to avoid the drive that is the source drive for a
5158          * dev-replace procedure, only choose it if no other non-missing
5159          * mirror is available
5160          */
5161         for (tolerance = 0; tolerance < 2; tolerance++) {
5162                 if (map->stripes[optimal].dev->bdev &&
5163                     (tolerance || map->stripes[optimal].dev != srcdev))
5164                         return optimal;
5165                 for (i = first; i < first + num; i++) {
5166                         if (map->stripes[i].dev->bdev &&
5167                             (tolerance || map->stripes[i].dev != srcdev))
5168                                 return i;
5169                 }
5170         }
5171
5172         /* we couldn't find one that doesn't fail.  Just return something
5173          * and the io error handling code will clean up eventually
5174          */
5175         return optimal;
5176 }
5177
5178 static inline int parity_smaller(u64 a, u64 b)
5179 {
5180         return a > b;
5181 }
5182
5183 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5184 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5185 {
5186         struct btrfs_bio_stripe s;
5187         int i;
5188         u64 l;
5189         int again = 1;
5190
5191         while (again) {
5192                 again = 0;
5193                 for (i = 0; i < num_stripes - 1; i++) {
5194                         if (parity_smaller(bbio->raid_map[i],
5195                                            bbio->raid_map[i+1])) {
5196                                 s = bbio->stripes[i];
5197                                 l = bbio->raid_map[i];
5198                                 bbio->stripes[i] = bbio->stripes[i+1];
5199                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5200                                 bbio->stripes[i+1] = s;
5201                                 bbio->raid_map[i+1] = l;
5202
5203                                 again = 1;
5204                         }
5205                 }
5206         }
5207 }
5208
5209 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5210 {
5211         struct btrfs_bio *bbio = kzalloc(
5212                  /* the size of the btrfs_bio */
5213                 sizeof(struct btrfs_bio) +
5214                 /* plus the variable array for the stripes */
5215                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5216                 /* plus the variable array for the tgt dev */
5217                 sizeof(int) * (real_stripes) +
5218                 /*
5219                  * plus the raid_map, which includes both the tgt dev
5220                  * and the stripes
5221                  */
5222                 sizeof(u64) * (total_stripes),
5223                 GFP_NOFS|__GFP_NOFAIL);
5224
5225         atomic_set(&bbio->error, 0);
5226         refcount_set(&bbio->refs, 1);
5227
5228         return bbio;
5229 }
5230
5231 void btrfs_get_bbio(struct btrfs_bio *bbio)
5232 {
5233         WARN_ON(!refcount_read(&bbio->refs));
5234         refcount_inc(&bbio->refs);
5235 }
5236
5237 void btrfs_put_bbio(struct btrfs_bio *bbio)
5238 {
5239         if (!bbio)
5240                 return;
5241         if (refcount_dec_and_test(&bbio->refs))
5242                 kfree(bbio);
5243 }
5244
5245 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5246 /*
5247  * Please note that, discard won't be sent to target device of device
5248  * replace.
5249  */
5250 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5251                                          u64 logical, u64 length,
5252                                          struct btrfs_bio **bbio_ret)
5253 {
5254         struct extent_map *em;
5255         struct map_lookup *map;
5256         struct btrfs_bio *bbio;
5257         u64 offset;
5258         u64 stripe_nr;
5259         u64 stripe_nr_end;
5260         u64 stripe_end_offset;
5261         u64 stripe_cnt;
5262         u64 stripe_len;
5263         u64 stripe_offset;
5264         u64 num_stripes;
5265         u32 stripe_index;
5266         u32 factor = 0;
5267         u32 sub_stripes = 0;
5268         u64 stripes_per_dev = 0;
5269         u32 remaining_stripes = 0;
5270         u32 last_stripe = 0;
5271         int ret = 0;
5272         int i;
5273
5274         /* discard always return a bbio */
5275         ASSERT(bbio_ret);
5276
5277         em = get_chunk_map(fs_info, logical, length);
5278         if (IS_ERR(em))
5279                 return PTR_ERR(em);
5280
5281         map = em->map_lookup;
5282         /* we don't discard raid56 yet */
5283         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5284                 ret = -EOPNOTSUPP;
5285                 goto out;
5286         }
5287
5288         offset = logical - em->start;
5289         length = min_t(u64, em->len - offset, length);
5290
5291         stripe_len = map->stripe_len;
5292         /*
5293          * stripe_nr counts the total number of stripes we have to stride
5294          * to get to this block
5295          */
5296         stripe_nr = div64_u64(offset, stripe_len);
5297
5298         /* stripe_offset is the offset of this block in its stripe */
5299         stripe_offset = offset - stripe_nr * stripe_len;
5300
5301         stripe_nr_end = round_up(offset + length, map->stripe_len);
5302         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5303         stripe_cnt = stripe_nr_end - stripe_nr;
5304         stripe_end_offset = stripe_nr_end * map->stripe_len -
5305                             (offset + length);
5306         /*
5307          * after this, stripe_nr is the number of stripes on this
5308          * device we have to walk to find the data, and stripe_index is
5309          * the number of our device in the stripe array
5310          */
5311         num_stripes = 1;
5312         stripe_index = 0;
5313         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5314                          BTRFS_BLOCK_GROUP_RAID10)) {
5315                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5316                         sub_stripes = 1;
5317                 else
5318                         sub_stripes = map->sub_stripes;
5319
5320                 factor = map->num_stripes / sub_stripes;
5321                 num_stripes = min_t(u64, map->num_stripes,
5322                                     sub_stripes * stripe_cnt);
5323                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5324                 stripe_index *= sub_stripes;
5325                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5326                                               &remaining_stripes);
5327                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5328                 last_stripe *= sub_stripes;
5329         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5330                                 BTRFS_BLOCK_GROUP_DUP)) {
5331                 num_stripes = map->num_stripes;
5332         } else {
5333                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5334                                         &stripe_index);
5335         }
5336
5337         bbio = alloc_btrfs_bio(num_stripes, 0);
5338         if (!bbio) {
5339                 ret = -ENOMEM;
5340                 goto out;
5341         }
5342
5343         for (i = 0; i < num_stripes; i++) {
5344                 bbio->stripes[i].physical =
5345                         map->stripes[stripe_index].physical +
5346                         stripe_offset + stripe_nr * map->stripe_len;
5347                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5348
5349                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5350                                  BTRFS_BLOCK_GROUP_RAID10)) {
5351                         bbio->stripes[i].length = stripes_per_dev *
5352                                 map->stripe_len;
5353
5354                         if (i / sub_stripes < remaining_stripes)
5355                                 bbio->stripes[i].length +=
5356                                         map->stripe_len;
5357
5358                         /*
5359                          * Special for the first stripe and
5360                          * the last stripe:
5361                          *
5362                          * |-------|...|-------|
5363                          *     |----------|
5364                          *    off     end_off
5365                          */
5366                         if (i < sub_stripes)
5367                                 bbio->stripes[i].length -=
5368                                         stripe_offset;
5369
5370                         if (stripe_index >= last_stripe &&
5371                             stripe_index <= (last_stripe +
5372                                              sub_stripes - 1))
5373                                 bbio->stripes[i].length -=
5374                                         stripe_end_offset;
5375
5376                         if (i == sub_stripes - 1)
5377                                 stripe_offset = 0;
5378                 } else {
5379                         bbio->stripes[i].length = length;
5380                 }
5381
5382                 stripe_index++;
5383                 if (stripe_index == map->num_stripes) {
5384                         stripe_index = 0;
5385                         stripe_nr++;
5386                 }
5387         }
5388
5389         *bbio_ret = bbio;
5390         bbio->map_type = map->type;
5391         bbio->num_stripes = num_stripes;
5392 out:
5393         free_extent_map(em);
5394         return ret;
5395 }
5396
5397 /*
5398  * In dev-replace case, for repair case (that's the only case where the mirror
5399  * is selected explicitly when calling btrfs_map_block), blocks left of the
5400  * left cursor can also be read from the target drive.
5401  *
5402  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5403  * array of stripes.
5404  * For READ, it also needs to be supported using the same mirror number.
5405  *
5406  * If the requested block is not left of the left cursor, EIO is returned. This
5407  * can happen because btrfs_num_copies() returns one more in the dev-replace
5408  * case.
5409  */
5410 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5411                                          u64 logical, u64 length,
5412                                          u64 srcdev_devid, int *mirror_num,
5413                                          u64 *physical)
5414 {
5415         struct btrfs_bio *bbio = NULL;
5416         int num_stripes;
5417         int index_srcdev = 0;
5418         int found = 0;
5419         u64 physical_of_found = 0;
5420         int i;
5421         int ret = 0;
5422
5423         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5424                                 logical, &length, &bbio, 0, 0);
5425         if (ret) {
5426                 ASSERT(bbio == NULL);
5427                 return ret;
5428         }
5429
5430         num_stripes = bbio->num_stripes;
5431         if (*mirror_num > num_stripes) {
5432                 /*
5433                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5434                  * that means that the requested area is not left of the left
5435                  * cursor
5436                  */
5437                 btrfs_put_bbio(bbio);
5438                 return -EIO;
5439         }
5440
5441         /*
5442          * process the rest of the function using the mirror_num of the source
5443          * drive. Therefore look it up first.  At the end, patch the device
5444          * pointer to the one of the target drive.
5445          */
5446         for (i = 0; i < num_stripes; i++) {
5447                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5448                         continue;
5449
5450                 /*
5451                  * In case of DUP, in order to keep it simple, only add the
5452                  * mirror with the lowest physical address
5453                  */
5454                 if (found &&
5455                     physical_of_found <= bbio->stripes[i].physical)
5456                         continue;
5457
5458                 index_srcdev = i;
5459                 found = 1;
5460                 physical_of_found = bbio->stripes[i].physical;
5461         }
5462
5463         btrfs_put_bbio(bbio);
5464
5465         ASSERT(found);
5466         if (!found)
5467                 return -EIO;
5468
5469         *mirror_num = index_srcdev + 1;
5470         *physical = physical_of_found;
5471         return ret;
5472 }
5473
5474 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5475                                       struct btrfs_bio **bbio_ret,
5476                                       struct btrfs_dev_replace *dev_replace,
5477                                       int *num_stripes_ret, int *max_errors_ret)
5478 {
5479         struct btrfs_bio *bbio = *bbio_ret;
5480         u64 srcdev_devid = dev_replace->srcdev->devid;
5481         int tgtdev_indexes = 0;
5482         int num_stripes = *num_stripes_ret;
5483         int max_errors = *max_errors_ret;
5484         int i;
5485
5486         if (op == BTRFS_MAP_WRITE) {
5487                 int index_where_to_add;
5488
5489                 /*
5490                  * duplicate the write operations while the dev replace
5491                  * procedure is running. Since the copying of the old disk to
5492                  * the new disk takes place at run time while the filesystem is
5493                  * mounted writable, the regular write operations to the old
5494                  * disk have to be duplicated to go to the new disk as well.
5495                  *
5496                  * Note that device->missing is handled by the caller, and that
5497                  * the write to the old disk is already set up in the stripes
5498                  * array.
5499                  */
5500                 index_where_to_add = num_stripes;
5501                 for (i = 0; i < num_stripes; i++) {
5502                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5503                                 /* write to new disk, too */
5504                                 struct btrfs_bio_stripe *new =
5505                                         bbio->stripes + index_where_to_add;
5506                                 struct btrfs_bio_stripe *old =
5507                                         bbio->stripes + i;
5508
5509                                 new->physical = old->physical;
5510                                 new->length = old->length;
5511                                 new->dev = dev_replace->tgtdev;
5512                                 bbio->tgtdev_map[i] = index_where_to_add;
5513                                 index_where_to_add++;
5514                                 max_errors++;
5515                                 tgtdev_indexes++;
5516                         }
5517                 }
5518                 num_stripes = index_where_to_add;
5519         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5520                 int index_srcdev = 0;
5521                 int found = 0;
5522                 u64 physical_of_found = 0;
5523
5524                 /*
5525                  * During the dev-replace procedure, the target drive can also
5526                  * be used to read data in case it is needed to repair a corrupt
5527                  * block elsewhere. This is possible if the requested area is
5528                  * left of the left cursor. In this area, the target drive is a
5529                  * full copy of the source drive.
5530                  */
5531                 for (i = 0; i < num_stripes; i++) {
5532                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5533                                 /*
5534                                  * In case of DUP, in order to keep it simple,
5535                                  * only add the mirror with the lowest physical
5536                                  * address
5537                                  */
5538                                 if (found &&
5539                                     physical_of_found <=
5540                                      bbio->stripes[i].physical)
5541                                         continue;
5542                                 index_srcdev = i;
5543                                 found = 1;
5544                                 physical_of_found = bbio->stripes[i].physical;
5545                         }
5546                 }
5547                 if (found) {
5548                         struct btrfs_bio_stripe *tgtdev_stripe =
5549                                 bbio->stripes + num_stripes;
5550
5551                         tgtdev_stripe->physical = physical_of_found;
5552                         tgtdev_stripe->length =
5553                                 bbio->stripes[index_srcdev].length;
5554                         tgtdev_stripe->dev = dev_replace->tgtdev;
5555                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5556
5557                         tgtdev_indexes++;
5558                         num_stripes++;
5559                 }
5560         }
5561
5562         *num_stripes_ret = num_stripes;
5563         *max_errors_ret = max_errors;
5564         bbio->num_tgtdevs = tgtdev_indexes;
5565         *bbio_ret = bbio;
5566 }
5567
5568 static bool need_full_stripe(enum btrfs_map_op op)
5569 {
5570         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5571 }
5572
5573 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5574                              enum btrfs_map_op op,
5575                              u64 logical, u64 *length,
5576                              struct btrfs_bio **bbio_ret,
5577                              int mirror_num, int need_raid_map)
5578 {
5579         struct extent_map *em;
5580         struct map_lookup *map;
5581         u64 offset;
5582         u64 stripe_offset;
5583         u64 stripe_nr;
5584         u64 stripe_len;
5585         u32 stripe_index;
5586         int i;
5587         int ret = 0;
5588         int num_stripes;
5589         int max_errors = 0;
5590         int tgtdev_indexes = 0;
5591         struct btrfs_bio *bbio = NULL;
5592         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5593         int dev_replace_is_ongoing = 0;
5594         int num_alloc_stripes;
5595         int patch_the_first_stripe_for_dev_replace = 0;
5596         u64 physical_to_patch_in_first_stripe = 0;
5597         u64 raid56_full_stripe_start = (u64)-1;
5598
5599         if (op == BTRFS_MAP_DISCARD)
5600                 return __btrfs_map_block_for_discard(fs_info, logical,
5601                                                      *length, bbio_ret);
5602
5603         em = get_chunk_map(fs_info, logical, *length);
5604         if (IS_ERR(em))
5605                 return PTR_ERR(em);
5606
5607         map = em->map_lookup;
5608         offset = logical - em->start;
5609
5610         stripe_len = map->stripe_len;
5611         stripe_nr = offset;
5612         /*
5613          * stripe_nr counts the total number of stripes we have to stride
5614          * to get to this block
5615          */
5616         stripe_nr = div64_u64(stripe_nr, stripe_len);
5617
5618         stripe_offset = stripe_nr * stripe_len;
5619         if (offset < stripe_offset) {
5620                 btrfs_crit(fs_info,
5621                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5622                            stripe_offset, offset, em->start, logical,
5623                            stripe_len);
5624                 free_extent_map(em);
5625                 return -EINVAL;
5626         }
5627
5628         /* stripe_offset is the offset of this block in its stripe*/
5629         stripe_offset = offset - stripe_offset;
5630
5631         /* if we're here for raid56, we need to know the stripe aligned start */
5632         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5633                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5634                 raid56_full_stripe_start = offset;
5635
5636                 /* allow a write of a full stripe, but make sure we don't
5637                  * allow straddling of stripes
5638                  */
5639                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5640                                 full_stripe_len);
5641                 raid56_full_stripe_start *= full_stripe_len;
5642         }
5643
5644         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5645                 u64 max_len;
5646                 /* For writes to RAID[56], allow a full stripeset across all disks.
5647                    For other RAID types and for RAID[56] reads, just allow a single
5648                    stripe (on a single disk). */
5649                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5650                     (op == BTRFS_MAP_WRITE)) {
5651                         max_len = stripe_len * nr_data_stripes(map) -
5652                                 (offset - raid56_full_stripe_start);
5653                 } else {
5654                         /* we limit the length of each bio to what fits in a stripe */
5655                         max_len = stripe_len - stripe_offset;
5656                 }
5657                 *length = min_t(u64, em->len - offset, max_len);
5658         } else {
5659                 *length = em->len - offset;
5660         }
5661
5662         /* This is for when we're called from btrfs_merge_bio_hook() and all
5663            it cares about is the length */
5664         if (!bbio_ret)
5665                 goto out;
5666
5667         btrfs_dev_replace_lock(dev_replace, 0);
5668         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5669         if (!dev_replace_is_ongoing)
5670                 btrfs_dev_replace_unlock(dev_replace, 0);
5671         else
5672                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5673
5674         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5675             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5676                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5677                                                     dev_replace->srcdev->devid,
5678                                                     &mirror_num,
5679                                             &physical_to_patch_in_first_stripe);
5680                 if (ret)
5681                         goto out;
5682                 else
5683                         patch_the_first_stripe_for_dev_replace = 1;
5684         } else if (mirror_num > map->num_stripes) {
5685                 mirror_num = 0;
5686         }
5687
5688         num_stripes = 1;
5689         stripe_index = 0;
5690         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5691                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5692                                 &stripe_index);
5693                 if (!need_full_stripe(op))
5694                         mirror_num = 1;
5695         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5696                 if (need_full_stripe(op))
5697                         num_stripes = map->num_stripes;
5698                 else if (mirror_num)
5699                         stripe_index = mirror_num - 1;
5700                 else {
5701                         stripe_index = find_live_mirror(fs_info, map, 0,
5702                                             map->num_stripes,
5703                                             current->pid % map->num_stripes,
5704                                             dev_replace_is_ongoing);
5705                         mirror_num = stripe_index + 1;
5706                 }
5707
5708         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5709                 if (need_full_stripe(op)) {
5710                         num_stripes = map->num_stripes;
5711                 } else if (mirror_num) {
5712                         stripe_index = mirror_num - 1;
5713                 } else {
5714                         mirror_num = 1;
5715                 }
5716
5717         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5718                 u32 factor = map->num_stripes / map->sub_stripes;
5719
5720                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5721                 stripe_index *= map->sub_stripes;
5722
5723                 if (need_full_stripe(op))
5724                         num_stripes = map->sub_stripes;
5725                 else if (mirror_num)
5726                         stripe_index += mirror_num - 1;
5727                 else {
5728                         int old_stripe_index = stripe_index;
5729                         stripe_index = find_live_mirror(fs_info, map,
5730                                               stripe_index,
5731                                               map->sub_stripes, stripe_index +
5732                                               current->pid % map->sub_stripes,
5733                                               dev_replace_is_ongoing);
5734                         mirror_num = stripe_index - old_stripe_index + 1;
5735                 }
5736
5737         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5738                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5739                         /* push stripe_nr back to the start of the full stripe */
5740                         stripe_nr = div64_u64(raid56_full_stripe_start,
5741                                         stripe_len * nr_data_stripes(map));
5742
5743                         /* RAID[56] write or recovery. Return all stripes */
5744                         num_stripes = map->num_stripes;
5745                         max_errors = nr_parity_stripes(map);
5746
5747                         *length = map->stripe_len;
5748                         stripe_index = 0;
5749                         stripe_offset = 0;
5750                 } else {
5751                         /*
5752                          * Mirror #0 or #1 means the original data block.
5753                          * Mirror #2 is RAID5 parity block.
5754                          * Mirror #3 is RAID6 Q block.
5755                          */
5756                         stripe_nr = div_u64_rem(stripe_nr,
5757                                         nr_data_stripes(map), &stripe_index);
5758                         if (mirror_num > 1)
5759                                 stripe_index = nr_data_stripes(map) +
5760                                                 mirror_num - 2;
5761
5762                         /* We distribute the parity blocks across stripes */
5763                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5764                                         &stripe_index);
5765                         if (!need_full_stripe(op) && mirror_num <= 1)
5766                                 mirror_num = 1;
5767                 }
5768         } else {
5769                 /*
5770                  * after this, stripe_nr is the number of stripes on this
5771                  * device we have to walk to find the data, and stripe_index is
5772                  * the number of our device in the stripe array
5773                  */
5774                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5775                                 &stripe_index);
5776                 mirror_num = stripe_index + 1;
5777         }
5778         if (stripe_index >= map->num_stripes) {
5779                 btrfs_crit(fs_info,
5780                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5781                            stripe_index, map->num_stripes);
5782                 ret = -EINVAL;
5783                 goto out;
5784         }
5785
5786         num_alloc_stripes = num_stripes;
5787         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5788                 if (op == BTRFS_MAP_WRITE)
5789                         num_alloc_stripes <<= 1;
5790                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5791                         num_alloc_stripes++;
5792                 tgtdev_indexes = num_stripes;
5793         }
5794
5795         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5796         if (!bbio) {
5797                 ret = -ENOMEM;
5798                 goto out;
5799         }
5800         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5801                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5802
5803         /* build raid_map */
5804         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5805             (need_full_stripe(op) || mirror_num > 1)) {
5806                 u64 tmp;
5807                 unsigned rot;
5808
5809                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5810                                  sizeof(struct btrfs_bio_stripe) *
5811                                  num_alloc_stripes +
5812                                  sizeof(int) * tgtdev_indexes);
5813
5814                 /* Work out the disk rotation on this stripe-set */
5815                 div_u64_rem(stripe_nr, num_stripes, &rot);
5816
5817                 /* Fill in the logical address of each stripe */
5818                 tmp = stripe_nr * nr_data_stripes(map);
5819                 for (i = 0; i < nr_data_stripes(map); i++)
5820                         bbio->raid_map[(i+rot) % num_stripes] =
5821                                 em->start + (tmp + i) * map->stripe_len;
5822
5823                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5824                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5825                         bbio->raid_map[(i+rot+1) % num_stripes] =
5826                                 RAID6_Q_STRIPE;
5827         }
5828
5829
5830         for (i = 0; i < num_stripes; i++) {
5831                 bbio->stripes[i].physical =
5832                         map->stripes[stripe_index].physical +
5833                         stripe_offset +
5834                         stripe_nr * map->stripe_len;
5835                 bbio->stripes[i].dev =
5836                         map->stripes[stripe_index].dev;
5837                 stripe_index++;
5838         }
5839
5840         if (need_full_stripe(op))
5841                 max_errors = btrfs_chunk_max_errors(map);
5842
5843         if (bbio->raid_map)
5844                 sort_parity_stripes(bbio, num_stripes);
5845
5846         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5847             need_full_stripe(op)) {
5848                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5849                                           &max_errors);
5850         }
5851
5852         *bbio_ret = bbio;
5853         bbio->map_type = map->type;
5854         bbio->num_stripes = num_stripes;
5855         bbio->max_errors = max_errors;
5856         bbio->mirror_num = mirror_num;
5857
5858         /*
5859          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5860          * mirror_num == num_stripes + 1 && dev_replace target drive is
5861          * available as a mirror
5862          */
5863         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5864                 WARN_ON(num_stripes > 1);
5865                 bbio->stripes[0].dev = dev_replace->tgtdev;
5866                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5867                 bbio->mirror_num = map->num_stripes + 1;
5868         }
5869 out:
5870         if (dev_replace_is_ongoing) {
5871                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5872                 btrfs_dev_replace_unlock(dev_replace, 0);
5873         }
5874         free_extent_map(em);
5875         return ret;
5876 }
5877
5878 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5879                       u64 logical, u64 *length,
5880                       struct btrfs_bio **bbio_ret, int mirror_num)
5881 {
5882         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5883                                  mirror_num, 0);
5884 }
5885
5886 /* For Scrub/replace */
5887 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5888                      u64 logical, u64 *length,
5889                      struct btrfs_bio **bbio_ret)
5890 {
5891         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5892 }
5893
5894 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5895                      u64 chunk_start, u64 physical, u64 devid,
5896                      u64 **logical, int *naddrs, int *stripe_len)
5897 {
5898         struct extent_map *em;
5899         struct map_lookup *map;
5900         u64 *buf;
5901         u64 bytenr;
5902         u64 length;
5903         u64 stripe_nr;
5904         u64 rmap_len;
5905         int i, j, nr = 0;
5906
5907         em = get_chunk_map(fs_info, chunk_start, 1);
5908         if (IS_ERR(em))
5909                 return -EIO;
5910
5911         map = em->map_lookup;
5912         length = em->len;
5913         rmap_len = map->stripe_len;
5914
5915         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5916                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5917         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5918                 length = div_u64(length, map->num_stripes);
5919         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5920                 length = div_u64(length, nr_data_stripes(map));
5921                 rmap_len = map->stripe_len * nr_data_stripes(map);
5922         }
5923
5924         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5925         BUG_ON(!buf); /* -ENOMEM */
5926
5927         for (i = 0; i < map->num_stripes; i++) {
5928                 if (devid && map->stripes[i].dev->devid != devid)
5929                         continue;
5930                 if (map->stripes[i].physical > physical ||
5931                     map->stripes[i].physical + length <= physical)
5932                         continue;
5933
5934                 stripe_nr = physical - map->stripes[i].physical;
5935                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5936
5937                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5938                         stripe_nr = stripe_nr * map->num_stripes + i;
5939                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5940                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5941                         stripe_nr = stripe_nr * map->num_stripes + i;
5942                 } /* else if RAID[56], multiply by nr_data_stripes().
5943                    * Alternatively, just use rmap_len below instead of
5944                    * map->stripe_len */
5945
5946                 bytenr = chunk_start + stripe_nr * rmap_len;
5947                 WARN_ON(nr >= map->num_stripes);
5948                 for (j = 0; j < nr; j++) {
5949                         if (buf[j] == bytenr)
5950                                 break;
5951                 }
5952                 if (j == nr) {
5953                         WARN_ON(nr >= map->num_stripes);
5954                         buf[nr++] = bytenr;
5955                 }
5956         }
5957
5958         *logical = buf;
5959         *naddrs = nr;
5960         *stripe_len = rmap_len;
5961
5962         free_extent_map(em);
5963         return 0;
5964 }
5965
5966 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5967 {
5968         bio->bi_private = bbio->private;
5969         bio->bi_end_io = bbio->end_io;
5970         bio_endio(bio);
5971
5972         btrfs_put_bbio(bbio);
5973 }
5974
5975 static void btrfs_end_bio(struct bio *bio)
5976 {
5977         struct btrfs_bio *bbio = bio->bi_private;
5978         int is_orig_bio = 0;
5979
5980         if (bio->bi_status) {
5981                 atomic_inc(&bbio->error);
5982                 if (bio->bi_status == BLK_STS_IOERR ||
5983                     bio->bi_status == BLK_STS_TARGET) {
5984                         unsigned int stripe_index =
5985                                 btrfs_io_bio(bio)->stripe_index;
5986                         struct btrfs_device *dev;
5987
5988                         BUG_ON(stripe_index >= bbio->num_stripes);
5989                         dev = bbio->stripes[stripe_index].dev;
5990                         if (dev->bdev) {
5991                                 if (bio_op(bio) == REQ_OP_WRITE)
5992                                         btrfs_dev_stat_inc_and_print(dev,
5993                                                 BTRFS_DEV_STAT_WRITE_ERRS);
5994                                 else
5995                                         btrfs_dev_stat_inc_and_print(dev,
5996                                                 BTRFS_DEV_STAT_READ_ERRS);
5997                                 if (bio->bi_opf & REQ_PREFLUSH)
5998                                         btrfs_dev_stat_inc_and_print(dev,
5999                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6000                         }
6001                 }
6002         }
6003
6004         if (bio == bbio->orig_bio)
6005                 is_orig_bio = 1;
6006
6007         btrfs_bio_counter_dec(bbio->fs_info);
6008
6009         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6010                 if (!is_orig_bio) {
6011                         bio_put(bio);
6012                         bio = bbio->orig_bio;
6013                 }
6014
6015                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6016                 /* only send an error to the higher layers if it is
6017                  * beyond the tolerance of the btrfs bio
6018                  */
6019                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6020                         bio->bi_status = BLK_STS_IOERR;
6021                 } else {
6022                         /*
6023                          * this bio is actually up to date, we didn't
6024                          * go over the max number of errors
6025                          */
6026                         bio->bi_status = BLK_STS_OK;
6027                 }
6028
6029                 btrfs_end_bbio(bbio, bio);
6030         } else if (!is_orig_bio) {
6031                 bio_put(bio);
6032         }
6033 }
6034
6035 /*
6036  * see run_scheduled_bios for a description of why bios are collected for
6037  * async submit.
6038  *
6039  * This will add one bio to the pending list for a device and make sure
6040  * the work struct is scheduled.
6041  */
6042 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6043                                         struct bio *bio)
6044 {
6045         struct btrfs_fs_info *fs_info = device->fs_info;
6046         int should_queue = 1;
6047         struct btrfs_pending_bios *pending_bios;
6048
6049         if (device->missing || !device->bdev) {
6050                 bio_io_error(bio);
6051                 return;
6052         }
6053
6054         /* don't bother with additional async steps for reads, right now */
6055         if (bio_op(bio) == REQ_OP_READ) {
6056                 bio_get(bio);
6057                 btrfsic_submit_bio(bio);
6058                 bio_put(bio);
6059                 return;
6060         }
6061
6062         WARN_ON(bio->bi_next);
6063         bio->bi_next = NULL;
6064
6065         spin_lock(&device->io_lock);
6066         if (op_is_sync(bio->bi_opf))
6067                 pending_bios = &device->pending_sync_bios;
6068         else
6069                 pending_bios = &device->pending_bios;
6070
6071         if (pending_bios->tail)
6072                 pending_bios->tail->bi_next = bio;
6073
6074         pending_bios->tail = bio;
6075         if (!pending_bios->head)
6076                 pending_bios->head = bio;
6077         if (device->running_pending)
6078                 should_queue = 0;
6079
6080         spin_unlock(&device->io_lock);
6081
6082         if (should_queue)
6083                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6084 }
6085
6086 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6087                               u64 physical, int dev_nr, int async)
6088 {
6089         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6090         struct btrfs_fs_info *fs_info = bbio->fs_info;
6091
6092         bio->bi_private = bbio;
6093         btrfs_io_bio(bio)->stripe_index = dev_nr;
6094         bio->bi_end_io = btrfs_end_bio;
6095         bio->bi_iter.bi_sector = physical >> 9;
6096 #ifdef DEBUG
6097         {
6098                 struct rcu_string *name;
6099
6100                 rcu_read_lock();
6101                 name = rcu_dereference(dev->name);
6102                 btrfs_debug(fs_info,
6103                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6104                         bio_op(bio), bio->bi_opf,
6105                         (u64)bio->bi_iter.bi_sector,
6106                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6107                         bio->bi_iter.bi_size);
6108                 rcu_read_unlock();
6109         }
6110 #endif
6111         bio_set_dev(bio, dev->bdev);
6112
6113         btrfs_bio_counter_inc_noblocked(fs_info);
6114
6115         if (async)
6116                 btrfs_schedule_bio(dev, bio);
6117         else
6118                 btrfsic_submit_bio(bio);
6119 }
6120
6121 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6122 {
6123         atomic_inc(&bbio->error);
6124         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6125                 /* Should be the original bio. */
6126                 WARN_ON(bio != bbio->orig_bio);
6127
6128                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6129                 bio->bi_iter.bi_sector = logical >> 9;
6130                 if (atomic_read(&bbio->error) > bbio->max_errors)
6131                         bio->bi_status = BLK_STS_IOERR;
6132                 else
6133                         bio->bi_status = BLK_STS_OK;
6134                 btrfs_end_bbio(bbio, bio);
6135         }
6136 }
6137
6138 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6139                            int mirror_num, int async_submit)
6140 {
6141         struct btrfs_device *dev;
6142         struct bio *first_bio = bio;
6143         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6144         u64 length = 0;
6145         u64 map_length;
6146         int ret;
6147         int dev_nr;
6148         int total_devs;
6149         struct btrfs_bio *bbio = NULL;
6150
6151         length = bio->bi_iter.bi_size;
6152         map_length = length;
6153
6154         btrfs_bio_counter_inc_blocked(fs_info);
6155         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6156                                 &map_length, &bbio, mirror_num, 1);
6157         if (ret) {
6158                 btrfs_bio_counter_dec(fs_info);
6159                 return errno_to_blk_status(ret);
6160         }
6161
6162         total_devs = bbio->num_stripes;
6163         bbio->orig_bio = first_bio;
6164         bbio->private = first_bio->bi_private;
6165         bbio->end_io = first_bio->bi_end_io;
6166         bbio->fs_info = fs_info;
6167         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6168
6169         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6170             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6171                 /* In this case, map_length has been set to the length of
6172                    a single stripe; not the whole write */
6173                 if (bio_op(bio) == REQ_OP_WRITE) {
6174                         ret = raid56_parity_write(fs_info, bio, bbio,
6175                                                   map_length);
6176                 } else {
6177                         ret = raid56_parity_recover(fs_info, bio, bbio,
6178                                                     map_length, mirror_num, 1);
6179                 }
6180
6181                 btrfs_bio_counter_dec(fs_info);
6182                 return errno_to_blk_status(ret);
6183         }
6184
6185         if (map_length < length) {
6186                 btrfs_crit(fs_info,
6187                            "mapping failed logical %llu bio len %llu len %llu",
6188                            logical, length, map_length);
6189                 BUG();
6190         }
6191
6192         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6193                 dev = bbio->stripes[dev_nr].dev;
6194                 if (!dev || !dev->bdev ||
6195                     (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6196                         bbio_error(bbio, first_bio, logical);
6197                         continue;
6198                 }
6199
6200                 if (dev_nr < total_devs - 1)
6201                         bio = btrfs_bio_clone(first_bio);
6202                 else
6203                         bio = first_bio;
6204
6205                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6206                                   dev_nr, async_submit);
6207         }
6208         btrfs_bio_counter_dec(fs_info);
6209         return BLK_STS_OK;
6210 }
6211
6212 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6213                                        u8 *uuid, u8 *fsid)
6214 {
6215         struct btrfs_device *device;
6216         struct btrfs_fs_devices *cur_devices;
6217
6218         cur_devices = fs_info->fs_devices;
6219         while (cur_devices) {
6220                 if (!fsid ||
6221                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6222                         device = find_device(cur_devices, devid, uuid);
6223                         if (device)
6224                                 return device;
6225                 }
6226                 cur_devices = cur_devices->seed;
6227         }
6228         return NULL;
6229 }
6230
6231 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6232                                             u64 devid, u8 *dev_uuid)
6233 {
6234         struct btrfs_device *device;
6235
6236         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6237         if (IS_ERR(device))
6238                 return device;
6239
6240         list_add(&device->dev_list, &fs_devices->devices);
6241         device->fs_devices = fs_devices;
6242         fs_devices->num_devices++;
6243
6244         device->missing = 1;
6245         fs_devices->missing_devices++;
6246
6247         return device;
6248 }
6249
6250 /**
6251  * btrfs_alloc_device - allocate struct btrfs_device
6252  * @fs_info:    used only for generating a new devid, can be NULL if
6253  *              devid is provided (i.e. @devid != NULL).
6254  * @devid:      a pointer to devid for this device.  If NULL a new devid
6255  *              is generated.
6256  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6257  *              is generated.
6258  *
6259  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6260  * on error.  Returned struct is not linked onto any lists and can be
6261  * destroyed with kfree() right away.
6262  */
6263 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6264                                         const u64 *devid,
6265                                         const u8 *uuid)
6266 {
6267         struct btrfs_device *dev;
6268         u64 tmp;
6269
6270         if (WARN_ON(!devid && !fs_info))
6271                 return ERR_PTR(-EINVAL);
6272
6273         dev = __alloc_device();
6274         if (IS_ERR(dev))
6275                 return dev;
6276
6277         if (devid)
6278                 tmp = *devid;
6279         else {
6280                 int ret;
6281
6282                 ret = find_next_devid(fs_info, &tmp);
6283                 if (ret) {
6284                         bio_put(dev->flush_bio);
6285                         kfree(dev);
6286                         return ERR_PTR(ret);
6287                 }
6288         }
6289         dev->devid = tmp;
6290
6291         if (uuid)
6292                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6293         else
6294                 generate_random_uuid(dev->uuid);
6295
6296         btrfs_init_work(&dev->work, btrfs_submit_helper,
6297                         pending_bios_fn, NULL, NULL);
6298
6299         return dev;
6300 }
6301
6302 /* Return -EIO if any error, otherwise return 0. */
6303 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6304                                    struct extent_buffer *leaf,
6305                                    struct btrfs_chunk *chunk, u64 logical)
6306 {
6307         u64 length;
6308         u64 stripe_len;
6309         u16 num_stripes;
6310         u16 sub_stripes;
6311         u64 type;
6312
6313         length = btrfs_chunk_length(leaf, chunk);
6314         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6315         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6316         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6317         type = btrfs_chunk_type(leaf, chunk);
6318
6319         if (!num_stripes) {
6320                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6321                           num_stripes);
6322                 return -EIO;
6323         }
6324         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6325                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6326                 return -EIO;
6327         }
6328         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6329                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6330                           btrfs_chunk_sector_size(leaf, chunk));
6331                 return -EIO;
6332         }
6333         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6334                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6335                 return -EIO;
6336         }
6337         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6338                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6339                           stripe_len);
6340                 return -EIO;
6341         }
6342         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6343             type) {
6344                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6345                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6346                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6347                           btrfs_chunk_type(leaf, chunk));
6348                 return -EIO;
6349         }
6350         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6351             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6352             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6353             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6354             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6355             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6356              num_stripes != 1)) {
6357                 btrfs_err(fs_info,
6358                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6359                         num_stripes, sub_stripes,
6360                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6361                 return -EIO;
6362         }
6363
6364         return 0;
6365 }
6366
6367 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6368                                         u64 devid, u8 *uuid, bool error)
6369 {
6370         if (error)
6371                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6372                               devid, uuid);
6373         else
6374                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6375                               devid, uuid);
6376 }
6377
6378 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6379                           struct extent_buffer *leaf,
6380                           struct btrfs_chunk *chunk)
6381 {
6382         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6383         struct map_lookup *map;
6384         struct extent_map *em;
6385         u64 logical;
6386         u64 length;
6387         u64 devid;
6388         u8 uuid[BTRFS_UUID_SIZE];
6389         int num_stripes;
6390         int ret;
6391         int i;
6392
6393         logical = key->offset;
6394         length = btrfs_chunk_length(leaf, chunk);
6395         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6396
6397         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6398         if (ret)
6399                 return ret;
6400
6401         read_lock(&map_tree->map_tree.lock);
6402         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6403         read_unlock(&map_tree->map_tree.lock);
6404
6405         /* already mapped? */
6406         if (em && em->start <= logical && em->start + em->len > logical) {
6407                 free_extent_map(em);
6408                 return 0;
6409         } else if (em) {
6410                 free_extent_map(em);
6411         }
6412
6413         em = alloc_extent_map();
6414         if (!em)
6415                 return -ENOMEM;
6416         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6417         if (!map) {
6418                 free_extent_map(em);
6419                 return -ENOMEM;
6420         }
6421
6422         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6423         em->map_lookup = map;
6424         em->start = logical;
6425         em->len = length;
6426         em->orig_start = 0;
6427         em->block_start = 0;
6428         em->block_len = em->len;
6429
6430         map->num_stripes = num_stripes;
6431         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6432         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6433         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6434         map->type = btrfs_chunk_type(leaf, chunk);
6435         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6436         for (i = 0; i < num_stripes; i++) {
6437                 map->stripes[i].physical =
6438                         btrfs_stripe_offset_nr(leaf, chunk, i);
6439                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6440                 read_extent_buffer(leaf, uuid, (unsigned long)
6441                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6442                                    BTRFS_UUID_SIZE);
6443                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6444                                                         uuid, NULL);
6445                 if (!map->stripes[i].dev &&
6446                     !btrfs_test_opt(fs_info, DEGRADED)) {
6447                         free_extent_map(em);
6448                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6449                         return -ENOENT;
6450                 }
6451                 if (!map->stripes[i].dev) {
6452                         map->stripes[i].dev =
6453                                 add_missing_dev(fs_info->fs_devices, devid,
6454                                                 uuid);
6455                         if (IS_ERR(map->stripes[i].dev)) {
6456                                 free_extent_map(em);
6457                                 btrfs_err(fs_info,
6458                                         "failed to init missing dev %llu: %ld",
6459                                         devid, PTR_ERR(map->stripes[i].dev));
6460                                 return PTR_ERR(map->stripes[i].dev);
6461                         }
6462                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6463                 }
6464                 map->stripes[i].dev->in_fs_metadata = 1;
6465         }
6466
6467         write_lock(&map_tree->map_tree.lock);
6468         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6469         write_unlock(&map_tree->map_tree.lock);
6470         BUG_ON(ret); /* Tree corruption */
6471         free_extent_map(em);
6472
6473         return 0;
6474 }
6475
6476 static void fill_device_from_item(struct extent_buffer *leaf,
6477                                  struct btrfs_dev_item *dev_item,
6478                                  struct btrfs_device *device)
6479 {
6480         unsigned long ptr;
6481
6482         device->devid = btrfs_device_id(leaf, dev_item);
6483         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6484         device->total_bytes = device->disk_total_bytes;
6485         device->commit_total_bytes = device->disk_total_bytes;
6486         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6487         device->commit_bytes_used = device->bytes_used;
6488         device->type = btrfs_device_type(leaf, dev_item);
6489         device->io_align = btrfs_device_io_align(leaf, dev_item);
6490         device->io_width = btrfs_device_io_width(leaf, dev_item);
6491         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6492         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6493         device->is_tgtdev_for_dev_replace = 0;
6494
6495         ptr = btrfs_device_uuid(dev_item);
6496         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6497 }
6498
6499 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6500                                                   u8 *fsid)
6501 {
6502         struct btrfs_fs_devices *fs_devices;
6503         int ret;
6504
6505         BUG_ON(!mutex_is_locked(&uuid_mutex));
6506         ASSERT(fsid);
6507
6508         fs_devices = fs_info->fs_devices->seed;
6509         while (fs_devices) {
6510                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6511                         return fs_devices;
6512
6513                 fs_devices = fs_devices->seed;
6514         }
6515
6516         fs_devices = find_fsid(fsid);
6517         if (!fs_devices) {
6518                 if (!btrfs_test_opt(fs_info, DEGRADED))
6519                         return ERR_PTR(-ENOENT);
6520
6521                 fs_devices = alloc_fs_devices(fsid);
6522                 if (IS_ERR(fs_devices))
6523                         return fs_devices;
6524
6525                 fs_devices->seeding = 1;
6526                 fs_devices->opened = 1;
6527                 return fs_devices;
6528         }
6529
6530         fs_devices = clone_fs_devices(fs_devices);
6531         if (IS_ERR(fs_devices))
6532                 return fs_devices;
6533
6534         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6535                                    fs_info->bdev_holder);
6536         if (ret) {
6537                 free_fs_devices(fs_devices);
6538                 fs_devices = ERR_PTR(ret);
6539                 goto out;
6540         }
6541
6542         if (!fs_devices->seeding) {
6543                 __btrfs_close_devices(fs_devices);
6544                 free_fs_devices(fs_devices);
6545                 fs_devices = ERR_PTR(-EINVAL);
6546                 goto out;
6547         }
6548
6549         fs_devices->seed = fs_info->fs_devices->seed;
6550         fs_info->fs_devices->seed = fs_devices;
6551 out:
6552         return fs_devices;
6553 }
6554
6555 static int read_one_dev(struct btrfs_fs_info *fs_info,
6556                         struct extent_buffer *leaf,
6557                         struct btrfs_dev_item *dev_item)
6558 {
6559         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6560         struct btrfs_device *device;
6561         u64 devid;
6562         int ret;
6563         u8 fs_uuid[BTRFS_FSID_SIZE];
6564         u8 dev_uuid[BTRFS_UUID_SIZE];
6565
6566         devid = btrfs_device_id(leaf, dev_item);
6567         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6568                            BTRFS_UUID_SIZE);
6569         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6570                            BTRFS_FSID_SIZE);
6571
6572         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6573                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6574                 if (IS_ERR(fs_devices))
6575                         return PTR_ERR(fs_devices);
6576         }
6577
6578         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6579         if (!device) {
6580                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6581                         btrfs_report_missing_device(fs_info, devid,
6582                                                         dev_uuid, true);
6583                         return -ENOENT;
6584                 }
6585
6586                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6587                 if (IS_ERR(device)) {
6588                         btrfs_err(fs_info,
6589                                 "failed to add missing dev %llu: %ld",
6590                                 devid, PTR_ERR(device));
6591                         return PTR_ERR(device);
6592                 }
6593                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6594         } else {
6595                 if (!device->bdev) {
6596                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6597                                 btrfs_report_missing_device(fs_info,
6598                                                 devid, dev_uuid, true);
6599                                 return -ENOENT;
6600                         }
6601                         btrfs_report_missing_device(fs_info, devid,
6602                                                         dev_uuid, false);
6603                 }
6604
6605                 if(!device->bdev && !device->missing) {
6606                         /*
6607                          * this happens when a device that was properly setup
6608                          * in the device info lists suddenly goes bad.
6609                          * device->bdev is NULL, and so we have to set
6610                          * device->missing to one here
6611                          */
6612                         device->fs_devices->missing_devices++;
6613                         device->missing = 1;
6614                 }
6615
6616                 /* Move the device to its own fs_devices */
6617                 if (device->fs_devices != fs_devices) {
6618                         ASSERT(device->missing);
6619
6620                         list_move(&device->dev_list, &fs_devices->devices);
6621                         device->fs_devices->num_devices--;
6622                         fs_devices->num_devices++;
6623
6624                         device->fs_devices->missing_devices--;
6625                         fs_devices->missing_devices++;
6626
6627                         device->fs_devices = fs_devices;
6628                 }
6629         }
6630
6631         if (device->fs_devices != fs_info->fs_devices) {
6632                 BUG_ON(device->writeable);
6633                 if (device->generation !=
6634                     btrfs_device_generation(leaf, dev_item))
6635                         return -EINVAL;
6636         }
6637
6638         fill_device_from_item(leaf, dev_item, device);
6639         device->in_fs_metadata = 1;
6640         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6641                 device->fs_devices->total_rw_bytes += device->total_bytes;
6642                 atomic64_add(device->total_bytes - device->bytes_used,
6643                                 &fs_info->free_chunk_space);
6644         }
6645         ret = 0;
6646         return ret;
6647 }
6648
6649 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6650 {
6651         struct btrfs_root *root = fs_info->tree_root;
6652         struct btrfs_super_block *super_copy = fs_info->super_copy;
6653         struct extent_buffer *sb;
6654         struct btrfs_disk_key *disk_key;
6655         struct btrfs_chunk *chunk;
6656         u8 *array_ptr;
6657         unsigned long sb_array_offset;
6658         int ret = 0;
6659         u32 num_stripes;
6660         u32 array_size;
6661         u32 len = 0;
6662         u32 cur_offset;
6663         u64 type;
6664         struct btrfs_key key;
6665
6666         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6667         /*
6668          * This will create extent buffer of nodesize, superblock size is
6669          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6670          * overallocate but we can keep it as-is, only the first page is used.
6671          */
6672         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6673         if (IS_ERR(sb))
6674                 return PTR_ERR(sb);
6675         set_extent_buffer_uptodate(sb);
6676         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6677         /*
6678          * The sb extent buffer is artificial and just used to read the system array.
6679          * set_extent_buffer_uptodate() call does not properly mark all it's
6680          * pages up-to-date when the page is larger: extent does not cover the
6681          * whole page and consequently check_page_uptodate does not find all
6682          * the page's extents up-to-date (the hole beyond sb),
6683          * write_extent_buffer then triggers a WARN_ON.
6684          *
6685          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6686          * but sb spans only this function. Add an explicit SetPageUptodate call
6687          * to silence the warning eg. on PowerPC 64.
6688          */
6689         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6690                 SetPageUptodate(sb->pages[0]);
6691
6692         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6693         array_size = btrfs_super_sys_array_size(super_copy);
6694
6695         array_ptr = super_copy->sys_chunk_array;
6696         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6697         cur_offset = 0;
6698
6699         while (cur_offset < array_size) {
6700                 disk_key = (struct btrfs_disk_key *)array_ptr;
6701                 len = sizeof(*disk_key);
6702                 if (cur_offset + len > array_size)
6703                         goto out_short_read;
6704
6705                 btrfs_disk_key_to_cpu(&key, disk_key);
6706
6707                 array_ptr += len;
6708                 sb_array_offset += len;
6709                 cur_offset += len;
6710
6711                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6712                         chunk = (struct btrfs_chunk *)sb_array_offset;
6713                         /*
6714                          * At least one btrfs_chunk with one stripe must be
6715                          * present, exact stripe count check comes afterwards
6716                          */
6717                         len = btrfs_chunk_item_size(1);
6718                         if (cur_offset + len > array_size)
6719                                 goto out_short_read;
6720
6721                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6722                         if (!num_stripes) {
6723                                 btrfs_err(fs_info,
6724                                         "invalid number of stripes %u in sys_array at offset %u",
6725                                         num_stripes, cur_offset);
6726                                 ret = -EIO;
6727                                 break;
6728                         }
6729
6730                         type = btrfs_chunk_type(sb, chunk);
6731                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6732                                 btrfs_err(fs_info,
6733                             "invalid chunk type %llu in sys_array at offset %u",
6734                                         type, cur_offset);
6735                                 ret = -EIO;
6736                                 break;
6737                         }
6738
6739                         len = btrfs_chunk_item_size(num_stripes);
6740                         if (cur_offset + len > array_size)
6741                                 goto out_short_read;
6742
6743                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6744                         if (ret)
6745                                 break;
6746                 } else {
6747                         btrfs_err(fs_info,
6748                             "unexpected item type %u in sys_array at offset %u",
6749                                   (u32)key.type, cur_offset);
6750                         ret = -EIO;
6751                         break;
6752                 }
6753                 array_ptr += len;
6754                 sb_array_offset += len;
6755                 cur_offset += len;
6756         }
6757         clear_extent_buffer_uptodate(sb);
6758         free_extent_buffer_stale(sb);
6759         return ret;
6760
6761 out_short_read:
6762         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6763                         len, cur_offset);
6764         clear_extent_buffer_uptodate(sb);
6765         free_extent_buffer_stale(sb);
6766         return -EIO;
6767 }
6768
6769 /*
6770  * Check if all chunks in the fs are OK for read-write degraded mount
6771  *
6772  * Return true if all chunks meet the minimal RW mount requirements.
6773  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6774  */
6775 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6776 {
6777         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6778         struct extent_map *em;
6779         u64 next_start = 0;
6780         bool ret = true;
6781
6782         read_lock(&map_tree->map_tree.lock);
6783         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6784         read_unlock(&map_tree->map_tree.lock);
6785         /* No chunk at all? Return false anyway */
6786         if (!em) {
6787                 ret = false;
6788                 goto out;
6789         }
6790         while (em) {
6791                 struct map_lookup *map;
6792                 int missing = 0;
6793                 int max_tolerated;
6794                 int i;
6795
6796                 map = em->map_lookup;
6797                 max_tolerated =
6798                         btrfs_get_num_tolerated_disk_barrier_failures(
6799                                         map->type);
6800                 for (i = 0; i < map->num_stripes; i++) {
6801                         struct btrfs_device *dev = map->stripes[i].dev;
6802
6803                         if (!dev || !dev->bdev || dev->missing ||
6804                             dev->last_flush_error)
6805                                 missing++;
6806                 }
6807                 if (missing > max_tolerated) {
6808                         btrfs_warn(fs_info,
6809         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6810                                    em->start, missing, max_tolerated);
6811                         free_extent_map(em);
6812                         ret = false;
6813                         goto out;
6814                 }
6815                 next_start = extent_map_end(em);
6816                 free_extent_map(em);
6817
6818                 read_lock(&map_tree->map_tree.lock);
6819                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6820                                            (u64)(-1) - next_start);
6821                 read_unlock(&map_tree->map_tree.lock);
6822         }
6823 out:
6824         return ret;
6825 }
6826
6827 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6828 {
6829         struct btrfs_root *root = fs_info->chunk_root;
6830         struct btrfs_path *path;
6831         struct extent_buffer *leaf;
6832         struct btrfs_key key;
6833         struct btrfs_key found_key;
6834         int ret;
6835         int slot;
6836         u64 total_dev = 0;
6837
6838         path = btrfs_alloc_path();
6839         if (!path)
6840                 return -ENOMEM;
6841
6842         mutex_lock(&uuid_mutex);
6843         mutex_lock(&fs_info->chunk_mutex);
6844
6845         /*
6846          * Read all device items, and then all the chunk items. All
6847          * device items are found before any chunk item (their object id
6848          * is smaller than the lowest possible object id for a chunk
6849          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6850          */
6851         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6852         key.offset = 0;
6853         key.type = 0;
6854         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6855         if (ret < 0)
6856                 goto error;
6857         while (1) {
6858                 leaf = path->nodes[0];
6859                 slot = path->slots[0];
6860                 if (slot >= btrfs_header_nritems(leaf)) {
6861                         ret = btrfs_next_leaf(root, path);
6862                         if (ret == 0)
6863                                 continue;
6864                         if (ret < 0)
6865                                 goto error;
6866                         break;
6867                 }
6868                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6869                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6870                         struct btrfs_dev_item *dev_item;
6871                         dev_item = btrfs_item_ptr(leaf, slot,
6872                                                   struct btrfs_dev_item);
6873                         ret = read_one_dev(fs_info, leaf, dev_item);
6874                         if (ret)
6875                                 goto error;
6876                         total_dev++;
6877                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6878                         struct btrfs_chunk *chunk;
6879                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6880                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6881                         if (ret)
6882                                 goto error;
6883                 }
6884                 path->slots[0]++;
6885         }
6886
6887         /*
6888          * After loading chunk tree, we've got all device information,
6889          * do another round of validation checks.
6890          */
6891         if (total_dev != fs_info->fs_devices->total_devices) {
6892                 btrfs_err(fs_info,
6893            "super_num_devices %llu mismatch with num_devices %llu found here",
6894                           btrfs_super_num_devices(fs_info->super_copy),
6895                           total_dev);
6896                 ret = -EINVAL;
6897                 goto error;
6898         }
6899         if (btrfs_super_total_bytes(fs_info->super_copy) <
6900             fs_info->fs_devices->total_rw_bytes) {
6901                 btrfs_err(fs_info,
6902         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6903                           btrfs_super_total_bytes(fs_info->super_copy),
6904                           fs_info->fs_devices->total_rw_bytes);
6905                 ret = -EINVAL;
6906                 goto error;
6907         }
6908         ret = 0;
6909 error:
6910         mutex_unlock(&fs_info->chunk_mutex);
6911         mutex_unlock(&uuid_mutex);
6912
6913         btrfs_free_path(path);
6914         return ret;
6915 }
6916
6917 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6918 {
6919         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6920         struct btrfs_device *device;
6921
6922         while (fs_devices) {
6923                 mutex_lock(&fs_devices->device_list_mutex);
6924                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6925                         device->fs_info = fs_info;
6926                 mutex_unlock(&fs_devices->device_list_mutex);
6927
6928                 fs_devices = fs_devices->seed;
6929         }
6930 }
6931
6932 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6933 {
6934         int i;
6935
6936         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6937                 btrfs_dev_stat_reset(dev, i);
6938 }
6939
6940 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6941 {
6942         struct btrfs_key key;
6943         struct btrfs_key found_key;
6944         struct btrfs_root *dev_root = fs_info->dev_root;
6945         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6946         struct extent_buffer *eb;
6947         int slot;
6948         int ret = 0;
6949         struct btrfs_device *device;
6950         struct btrfs_path *path = NULL;
6951         int i;
6952
6953         path = btrfs_alloc_path();
6954         if (!path) {
6955                 ret = -ENOMEM;
6956                 goto out;
6957         }
6958
6959         mutex_lock(&fs_devices->device_list_mutex);
6960         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6961                 int item_size;
6962                 struct btrfs_dev_stats_item *ptr;
6963
6964                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6965                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6966                 key.offset = device->devid;
6967                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6968                 if (ret) {
6969                         __btrfs_reset_dev_stats(device);
6970                         device->dev_stats_valid = 1;
6971                         btrfs_release_path(path);
6972                         continue;
6973                 }
6974                 slot = path->slots[0];
6975                 eb = path->nodes[0];
6976                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6977                 item_size = btrfs_item_size_nr(eb, slot);
6978
6979                 ptr = btrfs_item_ptr(eb, slot,
6980                                      struct btrfs_dev_stats_item);
6981
6982                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6983                         if (item_size >= (1 + i) * sizeof(__le64))
6984                                 btrfs_dev_stat_set(device, i,
6985                                         btrfs_dev_stats_value(eb, ptr, i));
6986                         else
6987                                 btrfs_dev_stat_reset(device, i);
6988                 }
6989
6990                 device->dev_stats_valid = 1;
6991                 btrfs_dev_stat_print_on_load(device);
6992                 btrfs_release_path(path);
6993         }
6994         mutex_unlock(&fs_devices->device_list_mutex);
6995
6996 out:
6997         btrfs_free_path(path);
6998         return ret < 0 ? ret : 0;
6999 }
7000
7001 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7002                                 struct btrfs_fs_info *fs_info,
7003                                 struct btrfs_device *device)
7004 {
7005         struct btrfs_root *dev_root = fs_info->dev_root;
7006         struct btrfs_path *path;
7007         struct btrfs_key key;
7008         struct extent_buffer *eb;
7009         struct btrfs_dev_stats_item *ptr;
7010         int ret;
7011         int i;
7012
7013         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7014         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7015         key.offset = device->devid;
7016
7017         path = btrfs_alloc_path();
7018         if (!path)
7019                 return -ENOMEM;
7020         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7021         if (ret < 0) {
7022                 btrfs_warn_in_rcu(fs_info,
7023                         "error %d while searching for dev_stats item for device %s",
7024                               ret, rcu_str_deref(device->name));
7025                 goto out;
7026         }
7027
7028         if (ret == 0 &&
7029             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7030                 /* need to delete old one and insert a new one */
7031                 ret = btrfs_del_item(trans, dev_root, path);
7032                 if (ret != 0) {
7033                         btrfs_warn_in_rcu(fs_info,
7034                                 "delete too small dev_stats item for device %s failed %d",
7035                                       rcu_str_deref(device->name), ret);
7036                         goto out;
7037                 }
7038                 ret = 1;
7039         }
7040
7041         if (ret == 1) {
7042                 /* need to insert a new item */
7043                 btrfs_release_path(path);
7044                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7045                                               &key, sizeof(*ptr));
7046                 if (ret < 0) {
7047                         btrfs_warn_in_rcu(fs_info,
7048                                 "insert dev_stats item for device %s failed %d",
7049                                 rcu_str_deref(device->name), ret);
7050                         goto out;
7051                 }
7052         }
7053
7054         eb = path->nodes[0];
7055         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7056         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7057                 btrfs_set_dev_stats_value(eb, ptr, i,
7058                                           btrfs_dev_stat_read(device, i));
7059         btrfs_mark_buffer_dirty(eb);
7060
7061 out:
7062         btrfs_free_path(path);
7063         return ret;
7064 }
7065
7066 /*
7067  * called from commit_transaction. Writes all changed device stats to disk.
7068  */
7069 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7070                         struct btrfs_fs_info *fs_info)
7071 {
7072         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7073         struct btrfs_device *device;
7074         int stats_cnt;
7075         int ret = 0;
7076
7077         mutex_lock(&fs_devices->device_list_mutex);
7078         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7079                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7080                 if (!device->dev_stats_valid || stats_cnt == 0)
7081                         continue;
7082
7083
7084                 /*
7085                  * There is a LOAD-LOAD control dependency between the value of
7086                  * dev_stats_ccnt and updating the on-disk values which requires
7087                  * reading the in-memory counters. Such control dependencies
7088                  * require explicit read memory barriers.
7089                  *
7090                  * This memory barriers pairs with smp_mb__before_atomic in
7091                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7092                  * barrier implied by atomic_xchg in
7093                  * btrfs_dev_stats_read_and_reset
7094                  */
7095                 smp_rmb();
7096
7097                 ret = update_dev_stat_item(trans, fs_info, device);
7098                 if (!ret)
7099                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7100         }
7101         mutex_unlock(&fs_devices->device_list_mutex);
7102
7103         return ret;
7104 }
7105
7106 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7107 {
7108         btrfs_dev_stat_inc(dev, index);
7109         btrfs_dev_stat_print_on_error(dev);
7110 }
7111
7112 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7113 {
7114         if (!dev->dev_stats_valid)
7115                 return;
7116         btrfs_err_rl_in_rcu(dev->fs_info,
7117                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7118                            rcu_str_deref(dev->name),
7119                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7120                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7121                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7122                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7123                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7124 }
7125
7126 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7127 {
7128         int i;
7129
7130         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7131                 if (btrfs_dev_stat_read(dev, i) != 0)
7132                         break;
7133         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7134                 return; /* all values == 0, suppress message */
7135
7136         btrfs_info_in_rcu(dev->fs_info,
7137                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7138                rcu_str_deref(dev->name),
7139                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7140                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7141                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7142                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7143                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7144 }
7145
7146 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7147                         struct btrfs_ioctl_get_dev_stats *stats)
7148 {
7149         struct btrfs_device *dev;
7150         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7151         int i;
7152
7153         mutex_lock(&fs_devices->device_list_mutex);
7154         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7155         mutex_unlock(&fs_devices->device_list_mutex);
7156
7157         if (!dev) {
7158                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7159                 return -ENODEV;
7160         } else if (!dev->dev_stats_valid) {
7161                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7162                 return -ENODEV;
7163         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7164                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7165                         if (stats->nr_items > i)
7166                                 stats->values[i] =
7167                                         btrfs_dev_stat_read_and_reset(dev, i);
7168                         else
7169                                 btrfs_dev_stat_reset(dev, i);
7170                 }
7171         } else {
7172                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7173                         if (stats->nr_items > i)
7174                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7175         }
7176         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7177                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7178         return 0;
7179 }
7180
7181 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7182 {
7183         struct buffer_head *bh;
7184         struct btrfs_super_block *disk_super;
7185         int copy_num;
7186
7187         if (!bdev)
7188                 return;
7189
7190         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7191                 copy_num++) {
7192
7193                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7194                         continue;
7195
7196                 disk_super = (struct btrfs_super_block *)bh->b_data;
7197
7198                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7199                 set_buffer_dirty(bh);
7200                 sync_dirty_buffer(bh);
7201                 brelse(bh);
7202         }
7203
7204         /* Notify udev that device has changed */
7205         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7206
7207         /* Update ctime/mtime for device path for libblkid */
7208         update_dev_time(device_path);
7209 }
7210
7211 /*
7212  * Update the size of all devices, which is used for writing out the
7213  * super blocks.
7214  */
7215 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7216 {
7217         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7218         struct btrfs_device *curr, *next;
7219
7220         if (list_empty(&fs_devices->resized_devices))
7221                 return;
7222
7223         mutex_lock(&fs_devices->device_list_mutex);
7224         mutex_lock(&fs_info->chunk_mutex);
7225         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7226                                  resized_list) {
7227                 list_del_init(&curr->resized_list);
7228                 curr->commit_total_bytes = curr->disk_total_bytes;
7229         }
7230         mutex_unlock(&fs_info->chunk_mutex);
7231         mutex_unlock(&fs_devices->device_list_mutex);
7232 }
7233
7234 /* Must be invoked during the transaction commit */
7235 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7236                                         struct btrfs_transaction *transaction)
7237 {
7238         struct extent_map *em;
7239         struct map_lookup *map;
7240         struct btrfs_device *dev;
7241         int i;
7242
7243         if (list_empty(&transaction->pending_chunks))
7244                 return;
7245
7246         /* In order to kick the device replace finish process */
7247         mutex_lock(&fs_info->chunk_mutex);
7248         list_for_each_entry(em, &transaction->pending_chunks, list) {
7249                 map = em->map_lookup;
7250
7251                 for (i = 0; i < map->num_stripes; i++) {
7252                         dev = map->stripes[i].dev;
7253                         dev->commit_bytes_used = dev->bytes_used;
7254                 }
7255         }
7256         mutex_unlock(&fs_info->chunk_mutex);
7257 }
7258
7259 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7260 {
7261         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7262         while (fs_devices) {
7263                 fs_devices->fs_info = fs_info;
7264                 fs_devices = fs_devices->seed;
7265         }
7266 }
7267
7268 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7269 {
7270         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7271         while (fs_devices) {
7272                 fs_devices->fs_info = NULL;
7273                 fs_devices = fs_devices->seed;
7274         }
7275 }