OSDN Git Service

btrfs: Remove chunk_objectid argument from btrfs_make_block_group
[android-x86/kernel.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46         [BTRFS_RAID_RAID10] = {
47                 .sub_stripes    = 2,
48                 .dev_stripes    = 1,
49                 .devs_max       = 0,    /* 0 == as many as possible */
50                 .devs_min       = 4,
51                 .tolerated_failures = 1,
52                 .devs_increment = 2,
53                 .ncopies        = 2,
54         },
55         [BTRFS_RAID_RAID1] = {
56                 .sub_stripes    = 1,
57                 .dev_stripes    = 1,
58                 .devs_max       = 2,
59                 .devs_min       = 2,
60                 .tolerated_failures = 1,
61                 .devs_increment = 2,
62                 .ncopies        = 2,
63         },
64         [BTRFS_RAID_DUP] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 2,
67                 .devs_max       = 1,
68                 .devs_min       = 1,
69                 .tolerated_failures = 0,
70                 .devs_increment = 1,
71                 .ncopies        = 2,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81         },
82         [BTRFS_RAID_SINGLE] = {
83                 .sub_stripes    = 1,
84                 .dev_stripes    = 1,
85                 .devs_max       = 1,
86                 .devs_min       = 1,
87                 .tolerated_failures = 0,
88                 .devs_increment = 1,
89                 .ncopies        = 1,
90         },
91         [BTRFS_RAID_RAID5] = {
92                 .sub_stripes    = 1,
93                 .dev_stripes    = 1,
94                 .devs_max       = 0,
95                 .devs_min       = 2,
96                 .tolerated_failures = 1,
97                 .devs_increment = 1,
98                 .ncopies        = 2,
99         },
100         [BTRFS_RAID_RAID6] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 3,
105                 .tolerated_failures = 2,
106                 .devs_increment = 1,
107                 .ncopies        = 3,
108         },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116         [BTRFS_RAID_SINGLE] = 0,
117         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127         [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128         [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129         [BTRFS_RAID_DUP]    = 0,
130         [BTRFS_RAID_RAID0]  = 0,
131         [BTRFS_RAID_SINGLE] = 0,
132         [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133         [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137                                 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143                              enum btrfs_map_op op,
144                              u64 logical, u64 *length,
145                              struct btrfs_bio **bbio_ret,
146                              int mirror_num, int need_raid_map);
147
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152         return &fs_uuids;
153 }
154
155 /*
156  * alloc_fs_devices - allocate struct btrfs_fs_devices
157  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
158  *
159  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160  * The returned struct is not linked onto any lists and can be destroyed with
161  * kfree() right away.
162  */
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165         struct btrfs_fs_devices *fs_devs;
166
167         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
168         if (!fs_devs)
169                 return ERR_PTR(-ENOMEM);
170
171         mutex_init(&fs_devs->device_list_mutex);
172
173         INIT_LIST_HEAD(&fs_devs->devices);
174         INIT_LIST_HEAD(&fs_devs->resized_devices);
175         INIT_LIST_HEAD(&fs_devs->alloc_list);
176         INIT_LIST_HEAD(&fs_devs->list);
177         if (fsid)
178                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
179
180         return fs_devs;
181 }
182
183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184 {
185         struct btrfs_device *device;
186         WARN_ON(fs_devices->opened);
187         while (!list_empty(&fs_devices->devices)) {
188                 device = list_entry(fs_devices->devices.next,
189                                     struct btrfs_device, dev_list);
190                 list_del(&device->dev_list);
191                 rcu_string_free(device->name);
192                 kfree(device);
193         }
194         kfree(fs_devices);
195 }
196
197 static void btrfs_kobject_uevent(struct block_device *bdev,
198                                  enum kobject_action action)
199 {
200         int ret;
201
202         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
203         if (ret)
204                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
205                         action,
206                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
207                         &disk_to_dev(bdev->bd_disk)->kobj);
208 }
209
210 void btrfs_cleanup_fs_uuids(void)
211 {
212         struct btrfs_fs_devices *fs_devices;
213
214         while (!list_empty(&fs_uuids)) {
215                 fs_devices = list_entry(fs_uuids.next,
216                                         struct btrfs_fs_devices, list);
217                 list_del(&fs_devices->list);
218                 free_fs_devices(fs_devices);
219         }
220 }
221
222 static struct btrfs_device *__alloc_device(void)
223 {
224         struct btrfs_device *dev;
225
226         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
227         if (!dev)
228                 return ERR_PTR(-ENOMEM);
229
230         /*
231          * Preallocate a bio that's always going to be used for flushing device
232          * barriers and matches the device lifespan
233          */
234         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
235         if (!dev->flush_bio) {
236                 kfree(dev);
237                 return ERR_PTR(-ENOMEM);
238         }
239         bio_get(dev->flush_bio);
240
241         INIT_LIST_HEAD(&dev->dev_list);
242         INIT_LIST_HEAD(&dev->dev_alloc_list);
243         INIT_LIST_HEAD(&dev->resized_list);
244
245         spin_lock_init(&dev->io_lock);
246
247         spin_lock_init(&dev->reada_lock);
248         atomic_set(&dev->reada_in_flight, 0);
249         atomic_set(&dev->dev_stats_ccnt, 0);
250         btrfs_device_data_ordered_init(dev);
251         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254         return dev;
255 }
256
257 /*
258  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
259  * return NULL.
260  *
261  * If devid and uuid are both specified, the match must be exact, otherwise
262  * only devid is used.
263  */
264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265                 u64 devid, const u8 *uuid)
266 {
267         struct list_head *head = &fs_devices->devices;
268         struct btrfs_device *dev;
269
270         list_for_each_entry(dev, head, dev_list) {
271                 if (dev->devid == devid &&
272                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
273                         return dev;
274                 }
275         }
276         return NULL;
277 }
278
279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
280 {
281         struct btrfs_fs_devices *fs_devices;
282
283         list_for_each_entry(fs_devices, &fs_uuids, list) {
284                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
285                         return fs_devices;
286         }
287         return NULL;
288 }
289
290 static int
291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292                       int flush, struct block_device **bdev,
293                       struct buffer_head **bh)
294 {
295         int ret;
296
297         *bdev = blkdev_get_by_path(device_path, flags, holder);
298
299         if (IS_ERR(*bdev)) {
300                 ret = PTR_ERR(*bdev);
301                 goto error;
302         }
303
304         if (flush)
305                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
306         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
307         if (ret) {
308                 blkdev_put(*bdev, flags);
309                 goto error;
310         }
311         invalidate_bdev(*bdev);
312         *bh = btrfs_read_dev_super(*bdev);
313         if (IS_ERR(*bh)) {
314                 ret = PTR_ERR(*bh);
315                 blkdev_put(*bdev, flags);
316                 goto error;
317         }
318
319         return 0;
320
321 error:
322         *bdev = NULL;
323         *bh = NULL;
324         return ret;
325 }
326
327 static void requeue_list(struct btrfs_pending_bios *pending_bios,
328                         struct bio *head, struct bio *tail)
329 {
330
331         struct bio *old_head;
332
333         old_head = pending_bios->head;
334         pending_bios->head = head;
335         if (pending_bios->tail)
336                 tail->bi_next = old_head;
337         else
338                 pending_bios->tail = tail;
339 }
340
341 /*
342  * we try to collect pending bios for a device so we don't get a large
343  * number of procs sending bios down to the same device.  This greatly
344  * improves the schedulers ability to collect and merge the bios.
345  *
346  * But, it also turns into a long list of bios to process and that is sure
347  * to eventually make the worker thread block.  The solution here is to
348  * make some progress and then put this work struct back at the end of
349  * the list if the block device is congested.  This way, multiple devices
350  * can make progress from a single worker thread.
351  */
352 static noinline void run_scheduled_bios(struct btrfs_device *device)
353 {
354         struct btrfs_fs_info *fs_info = device->fs_info;
355         struct bio *pending;
356         struct backing_dev_info *bdi;
357         struct btrfs_pending_bios *pending_bios;
358         struct bio *tail;
359         struct bio *cur;
360         int again = 0;
361         unsigned long num_run;
362         unsigned long batch_run = 0;
363         unsigned long limit;
364         unsigned long last_waited = 0;
365         int force_reg = 0;
366         int sync_pending = 0;
367         struct blk_plug plug;
368
369         /*
370          * this function runs all the bios we've collected for
371          * a particular device.  We don't want to wander off to
372          * another device without first sending all of these down.
373          * So, setup a plug here and finish it off before we return
374          */
375         blk_start_plug(&plug);
376
377         bdi = device->bdev->bd_bdi;
378         limit = btrfs_async_submit_limit(fs_info);
379         limit = limit * 2 / 3;
380
381 loop:
382         spin_lock(&device->io_lock);
383
384 loop_lock:
385         num_run = 0;
386
387         /* take all the bios off the list at once and process them
388          * later on (without the lock held).  But, remember the
389          * tail and other pointers so the bios can be properly reinserted
390          * into the list if we hit congestion
391          */
392         if (!force_reg && device->pending_sync_bios.head) {
393                 pending_bios = &device->pending_sync_bios;
394                 force_reg = 1;
395         } else {
396                 pending_bios = &device->pending_bios;
397                 force_reg = 0;
398         }
399
400         pending = pending_bios->head;
401         tail = pending_bios->tail;
402         WARN_ON(pending && !tail);
403
404         /*
405          * if pending was null this time around, no bios need processing
406          * at all and we can stop.  Otherwise it'll loop back up again
407          * and do an additional check so no bios are missed.
408          *
409          * device->running_pending is used to synchronize with the
410          * schedule_bio code.
411          */
412         if (device->pending_sync_bios.head == NULL &&
413             device->pending_bios.head == NULL) {
414                 again = 0;
415                 device->running_pending = 0;
416         } else {
417                 again = 1;
418                 device->running_pending = 1;
419         }
420
421         pending_bios->head = NULL;
422         pending_bios->tail = NULL;
423
424         spin_unlock(&device->io_lock);
425
426         while (pending) {
427
428                 rmb();
429                 /* we want to work on both lists, but do more bios on the
430                  * sync list than the regular list
431                  */
432                 if ((num_run > 32 &&
433                     pending_bios != &device->pending_sync_bios &&
434                     device->pending_sync_bios.head) ||
435                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
436                     device->pending_bios.head)) {
437                         spin_lock(&device->io_lock);
438                         requeue_list(pending_bios, pending, tail);
439                         goto loop_lock;
440                 }
441
442                 cur = pending;
443                 pending = pending->bi_next;
444                 cur->bi_next = NULL;
445
446                 /*
447                  * atomic_dec_return implies a barrier for waitqueue_active
448                  */
449                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
450                     waitqueue_active(&fs_info->async_submit_wait))
451                         wake_up(&fs_info->async_submit_wait);
452
453                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
454
455                 /*
456                  * if we're doing the sync list, record that our
457                  * plug has some sync requests on it
458                  *
459                  * If we're doing the regular list and there are
460                  * sync requests sitting around, unplug before
461                  * we add more
462                  */
463                 if (pending_bios == &device->pending_sync_bios) {
464                         sync_pending = 1;
465                 } else if (sync_pending) {
466                         blk_finish_plug(&plug);
467                         blk_start_plug(&plug);
468                         sync_pending = 0;
469                 }
470
471                 btrfsic_submit_bio(cur);
472                 num_run++;
473                 batch_run++;
474
475                 cond_resched();
476
477                 /*
478                  * we made progress, there is more work to do and the bdi
479                  * is now congested.  Back off and let other work structs
480                  * run instead
481                  */
482                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
483                     fs_info->fs_devices->open_devices > 1) {
484                         struct io_context *ioc;
485
486                         ioc = current->io_context;
487
488                         /*
489                          * the main goal here is that we don't want to
490                          * block if we're going to be able to submit
491                          * more requests without blocking.
492                          *
493                          * This code does two great things, it pokes into
494                          * the elevator code from a filesystem _and_
495                          * it makes assumptions about how batching works.
496                          */
497                         if (ioc && ioc->nr_batch_requests > 0 &&
498                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
499                             (last_waited == 0 ||
500                              ioc->last_waited == last_waited)) {
501                                 /*
502                                  * we want to go through our batch of
503                                  * requests and stop.  So, we copy out
504                                  * the ioc->last_waited time and test
505                                  * against it before looping
506                                  */
507                                 last_waited = ioc->last_waited;
508                                 cond_resched();
509                                 continue;
510                         }
511                         spin_lock(&device->io_lock);
512                         requeue_list(pending_bios, pending, tail);
513                         device->running_pending = 1;
514
515                         spin_unlock(&device->io_lock);
516                         btrfs_queue_work(fs_info->submit_workers,
517                                          &device->work);
518                         goto done;
519                 }
520                 /* unplug every 64 requests just for good measure */
521                 if (batch_run % 64 == 0) {
522                         blk_finish_plug(&plug);
523                         blk_start_plug(&plug);
524                         sync_pending = 0;
525                 }
526         }
527
528         cond_resched();
529         if (again)
530                 goto loop;
531
532         spin_lock(&device->io_lock);
533         if (device->pending_bios.head || device->pending_sync_bios.head)
534                 goto loop_lock;
535         spin_unlock(&device->io_lock);
536
537 done:
538         blk_finish_plug(&plug);
539 }
540
541 static void pending_bios_fn(struct btrfs_work *work)
542 {
543         struct btrfs_device *device;
544
545         device = container_of(work, struct btrfs_device, work);
546         run_scheduled_bios(device);
547 }
548
549
550 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
551 {
552         struct btrfs_fs_devices *fs_devs;
553         struct btrfs_device *dev;
554
555         if (!cur_dev->name)
556                 return;
557
558         list_for_each_entry(fs_devs, &fs_uuids, list) {
559                 int del = 1;
560
561                 if (fs_devs->opened)
562                         continue;
563                 if (fs_devs->seeding)
564                         continue;
565
566                 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
567
568                         if (dev == cur_dev)
569                                 continue;
570                         if (!dev->name)
571                                 continue;
572
573                         /*
574                          * Todo: This won't be enough. What if the same device
575                          * comes back (with new uuid and) with its mapper path?
576                          * But for now, this does help as mostly an admin will
577                          * either use mapper or non mapper path throughout.
578                          */
579                         rcu_read_lock();
580                         del = strcmp(rcu_str_deref(dev->name),
581                                                 rcu_str_deref(cur_dev->name));
582                         rcu_read_unlock();
583                         if (!del)
584                                 break;
585                 }
586
587                 if (!del) {
588                         /* delete the stale device */
589                         if (fs_devs->num_devices == 1) {
590                                 btrfs_sysfs_remove_fsid(fs_devs);
591                                 list_del(&fs_devs->list);
592                                 free_fs_devices(fs_devs);
593                         } else {
594                                 fs_devs->num_devices--;
595                                 list_del(&dev->dev_list);
596                                 rcu_string_free(dev->name);
597                                 kfree(dev);
598                         }
599                         break;
600                 }
601         }
602 }
603
604 /*
605  * Add new device to list of registered devices
606  *
607  * Returns:
608  * 1   - first time device is seen
609  * 0   - device already known
610  * < 0 - error
611  */
612 static noinline int device_list_add(const char *path,
613                            struct btrfs_super_block *disk_super,
614                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
615 {
616         struct btrfs_device *device;
617         struct btrfs_fs_devices *fs_devices;
618         struct rcu_string *name;
619         int ret = 0;
620         u64 found_transid = btrfs_super_generation(disk_super);
621
622         fs_devices = find_fsid(disk_super->fsid);
623         if (!fs_devices) {
624                 fs_devices = alloc_fs_devices(disk_super->fsid);
625                 if (IS_ERR(fs_devices))
626                         return PTR_ERR(fs_devices);
627
628                 list_add(&fs_devices->list, &fs_uuids);
629
630                 device = NULL;
631         } else {
632                 device = find_device(fs_devices, devid,
633                                 disk_super->dev_item.uuid);
634         }
635
636         if (!device) {
637                 if (fs_devices->opened)
638                         return -EBUSY;
639
640                 device = btrfs_alloc_device(NULL, &devid,
641                                             disk_super->dev_item.uuid);
642                 if (IS_ERR(device)) {
643                         /* we can safely leave the fs_devices entry around */
644                         return PTR_ERR(device);
645                 }
646
647                 name = rcu_string_strdup(path, GFP_NOFS);
648                 if (!name) {
649                         kfree(device);
650                         return -ENOMEM;
651                 }
652                 rcu_assign_pointer(device->name, name);
653
654                 mutex_lock(&fs_devices->device_list_mutex);
655                 list_add_rcu(&device->dev_list, &fs_devices->devices);
656                 fs_devices->num_devices++;
657                 mutex_unlock(&fs_devices->device_list_mutex);
658
659                 ret = 1;
660                 device->fs_devices = fs_devices;
661         } else if (!device->name || strcmp(device->name->str, path)) {
662                 /*
663                  * When FS is already mounted.
664                  * 1. If you are here and if the device->name is NULL that
665                  *    means this device was missing at time of FS mount.
666                  * 2. If you are here and if the device->name is different
667                  *    from 'path' that means either
668                  *      a. The same device disappeared and reappeared with
669                  *         different name. or
670                  *      b. The missing-disk-which-was-replaced, has
671                  *         reappeared now.
672                  *
673                  * We must allow 1 and 2a above. But 2b would be a spurious
674                  * and unintentional.
675                  *
676                  * Further in case of 1 and 2a above, the disk at 'path'
677                  * would have missed some transaction when it was away and
678                  * in case of 2a the stale bdev has to be updated as well.
679                  * 2b must not be allowed at all time.
680                  */
681
682                 /*
683                  * For now, we do allow update to btrfs_fs_device through the
684                  * btrfs dev scan cli after FS has been mounted.  We're still
685                  * tracking a problem where systems fail mount by subvolume id
686                  * when we reject replacement on a mounted FS.
687                  */
688                 if (!fs_devices->opened && found_transid < device->generation) {
689                         /*
690                          * That is if the FS is _not_ mounted and if you
691                          * are here, that means there is more than one
692                          * disk with same uuid and devid.We keep the one
693                          * with larger generation number or the last-in if
694                          * generation are equal.
695                          */
696                         return -EEXIST;
697                 }
698
699                 name = rcu_string_strdup(path, GFP_NOFS);
700                 if (!name)
701                         return -ENOMEM;
702                 rcu_string_free(device->name);
703                 rcu_assign_pointer(device->name, name);
704                 if (device->missing) {
705                         fs_devices->missing_devices--;
706                         device->missing = 0;
707                 }
708         }
709
710         /*
711          * Unmount does not free the btrfs_device struct but would zero
712          * generation along with most of the other members. So just update
713          * it back. We need it to pick the disk with largest generation
714          * (as above).
715          */
716         if (!fs_devices->opened)
717                 device->generation = found_transid;
718
719         /*
720          * if there is new btrfs on an already registered device,
721          * then remove the stale device entry.
722          */
723         if (ret > 0)
724                 btrfs_free_stale_device(device);
725
726         *fs_devices_ret = fs_devices;
727
728         return ret;
729 }
730
731 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
732 {
733         struct btrfs_fs_devices *fs_devices;
734         struct btrfs_device *device;
735         struct btrfs_device *orig_dev;
736
737         fs_devices = alloc_fs_devices(orig->fsid);
738         if (IS_ERR(fs_devices))
739                 return fs_devices;
740
741         mutex_lock(&orig->device_list_mutex);
742         fs_devices->total_devices = orig->total_devices;
743
744         /* We have held the volume lock, it is safe to get the devices. */
745         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
746                 struct rcu_string *name;
747
748                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
749                                             orig_dev->uuid);
750                 if (IS_ERR(device))
751                         goto error;
752
753                 /*
754                  * This is ok to do without rcu read locked because we hold the
755                  * uuid mutex so nothing we touch in here is going to disappear.
756                  */
757                 if (orig_dev->name) {
758                         name = rcu_string_strdup(orig_dev->name->str,
759                                         GFP_KERNEL);
760                         if (!name) {
761                                 kfree(device);
762                                 goto error;
763                         }
764                         rcu_assign_pointer(device->name, name);
765                 }
766
767                 list_add(&device->dev_list, &fs_devices->devices);
768                 device->fs_devices = fs_devices;
769                 fs_devices->num_devices++;
770         }
771         mutex_unlock(&orig->device_list_mutex);
772         return fs_devices;
773 error:
774         mutex_unlock(&orig->device_list_mutex);
775         free_fs_devices(fs_devices);
776         return ERR_PTR(-ENOMEM);
777 }
778
779 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
780 {
781         struct btrfs_device *device, *next;
782         struct btrfs_device *latest_dev = NULL;
783
784         mutex_lock(&uuid_mutex);
785 again:
786         /* This is the initialized path, it is safe to release the devices. */
787         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
788                 if (device->in_fs_metadata) {
789                         if (!device->is_tgtdev_for_dev_replace &&
790                             (!latest_dev ||
791                              device->generation > latest_dev->generation)) {
792                                 latest_dev = device;
793                         }
794                         continue;
795                 }
796
797                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
798                         /*
799                          * In the first step, keep the device which has
800                          * the correct fsid and the devid that is used
801                          * for the dev_replace procedure.
802                          * In the second step, the dev_replace state is
803                          * read from the device tree and it is known
804                          * whether the procedure is really active or
805                          * not, which means whether this device is
806                          * used or whether it should be removed.
807                          */
808                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
809                                 continue;
810                         }
811                 }
812                 if (device->bdev) {
813                         blkdev_put(device->bdev, device->mode);
814                         device->bdev = NULL;
815                         fs_devices->open_devices--;
816                 }
817                 if (device->writeable) {
818                         list_del_init(&device->dev_alloc_list);
819                         device->writeable = 0;
820                         if (!device->is_tgtdev_for_dev_replace)
821                                 fs_devices->rw_devices--;
822                 }
823                 list_del_init(&device->dev_list);
824                 fs_devices->num_devices--;
825                 rcu_string_free(device->name);
826                 kfree(device);
827         }
828
829         if (fs_devices->seed) {
830                 fs_devices = fs_devices->seed;
831                 goto again;
832         }
833
834         fs_devices->latest_bdev = latest_dev->bdev;
835
836         mutex_unlock(&uuid_mutex);
837 }
838
839 static void __free_device(struct work_struct *work)
840 {
841         struct btrfs_device *device;
842
843         device = container_of(work, struct btrfs_device, rcu_work);
844         rcu_string_free(device->name);
845         bio_put(device->flush_bio);
846         kfree(device);
847 }
848
849 static void free_device(struct rcu_head *head)
850 {
851         struct btrfs_device *device;
852
853         device = container_of(head, struct btrfs_device, rcu);
854
855         INIT_WORK(&device->rcu_work, __free_device);
856         schedule_work(&device->rcu_work);
857 }
858
859 static void btrfs_close_bdev(struct btrfs_device *device)
860 {
861         if (device->bdev && device->writeable) {
862                 sync_blockdev(device->bdev);
863                 invalidate_bdev(device->bdev);
864         }
865
866         if (device->bdev)
867                 blkdev_put(device->bdev, device->mode);
868 }
869
870 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
871 {
872         struct btrfs_fs_devices *fs_devices = device->fs_devices;
873         struct btrfs_device *new_device;
874         struct rcu_string *name;
875
876         if (device->bdev)
877                 fs_devices->open_devices--;
878
879         if (device->writeable &&
880             device->devid != BTRFS_DEV_REPLACE_DEVID) {
881                 list_del_init(&device->dev_alloc_list);
882                 fs_devices->rw_devices--;
883         }
884
885         if (device->missing)
886                 fs_devices->missing_devices--;
887
888         new_device = btrfs_alloc_device(NULL, &device->devid,
889                                         device->uuid);
890         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
891
892         /* Safe because we are under uuid_mutex */
893         if (device->name) {
894                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
895                 BUG_ON(!name); /* -ENOMEM */
896                 rcu_assign_pointer(new_device->name, name);
897         }
898
899         list_replace_rcu(&device->dev_list, &new_device->dev_list);
900         new_device->fs_devices = device->fs_devices;
901 }
902
903 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
904 {
905         struct btrfs_device *device, *tmp;
906         struct list_head pending_put;
907
908         INIT_LIST_HEAD(&pending_put);
909
910         if (--fs_devices->opened > 0)
911                 return 0;
912
913         mutex_lock(&fs_devices->device_list_mutex);
914         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
915                 btrfs_prepare_close_one_device(device);
916                 list_add(&device->dev_list, &pending_put);
917         }
918         mutex_unlock(&fs_devices->device_list_mutex);
919
920         /*
921          * btrfs_show_devname() is using the device_list_mutex,
922          * sometimes call to blkdev_put() leads vfs calling
923          * into this func. So do put outside of device_list_mutex,
924          * as of now.
925          */
926         while (!list_empty(&pending_put)) {
927                 device = list_first_entry(&pending_put,
928                                 struct btrfs_device, dev_list);
929                 list_del(&device->dev_list);
930                 btrfs_close_bdev(device);
931                 call_rcu(&device->rcu, free_device);
932         }
933
934         WARN_ON(fs_devices->open_devices);
935         WARN_ON(fs_devices->rw_devices);
936         fs_devices->opened = 0;
937         fs_devices->seeding = 0;
938
939         return 0;
940 }
941
942 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
943 {
944         struct btrfs_fs_devices *seed_devices = NULL;
945         int ret;
946
947         mutex_lock(&uuid_mutex);
948         ret = __btrfs_close_devices(fs_devices);
949         if (!fs_devices->opened) {
950                 seed_devices = fs_devices->seed;
951                 fs_devices->seed = NULL;
952         }
953         mutex_unlock(&uuid_mutex);
954
955         while (seed_devices) {
956                 fs_devices = seed_devices;
957                 seed_devices = fs_devices->seed;
958                 __btrfs_close_devices(fs_devices);
959                 free_fs_devices(fs_devices);
960         }
961         /*
962          * Wait for rcu kworkers under __btrfs_close_devices
963          * to finish all blkdev_puts so device is really
964          * free when umount is done.
965          */
966         rcu_barrier();
967         return ret;
968 }
969
970 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
971                                 fmode_t flags, void *holder)
972 {
973         struct request_queue *q;
974         struct block_device *bdev;
975         struct list_head *head = &fs_devices->devices;
976         struct btrfs_device *device;
977         struct btrfs_device *latest_dev = NULL;
978         struct buffer_head *bh;
979         struct btrfs_super_block *disk_super;
980         u64 devid;
981         int seeding = 1;
982         int ret = 0;
983
984         flags |= FMODE_EXCL;
985
986         list_for_each_entry(device, head, dev_list) {
987                 if (device->bdev)
988                         continue;
989                 if (!device->name)
990                         continue;
991
992                 /* Just open everything we can; ignore failures here */
993                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
994                                             &bdev, &bh))
995                         continue;
996
997                 disk_super = (struct btrfs_super_block *)bh->b_data;
998                 devid = btrfs_stack_device_id(&disk_super->dev_item);
999                 if (devid != device->devid)
1000                         goto error_brelse;
1001
1002                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
1003                            BTRFS_UUID_SIZE))
1004                         goto error_brelse;
1005
1006                 device->generation = btrfs_super_generation(disk_super);
1007                 if (!latest_dev ||
1008                     device->generation > latest_dev->generation)
1009                         latest_dev = device;
1010
1011                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1012                         device->writeable = 0;
1013                 } else {
1014                         device->writeable = !bdev_read_only(bdev);
1015                         seeding = 0;
1016                 }
1017
1018                 q = bdev_get_queue(bdev);
1019                 if (blk_queue_discard(q))
1020                         device->can_discard = 1;
1021                 if (!blk_queue_nonrot(q))
1022                         fs_devices->rotating = 1;
1023
1024                 device->bdev = bdev;
1025                 device->in_fs_metadata = 0;
1026                 device->mode = flags;
1027
1028                 fs_devices->open_devices++;
1029                 if (device->writeable &&
1030                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
1031                         fs_devices->rw_devices++;
1032                         list_add(&device->dev_alloc_list,
1033                                  &fs_devices->alloc_list);
1034                 }
1035                 brelse(bh);
1036                 continue;
1037
1038 error_brelse:
1039                 brelse(bh);
1040                 blkdev_put(bdev, flags);
1041                 continue;
1042         }
1043         if (fs_devices->open_devices == 0) {
1044                 ret = -EINVAL;
1045                 goto out;
1046         }
1047         fs_devices->seeding = seeding;
1048         fs_devices->opened = 1;
1049         fs_devices->latest_bdev = latest_dev->bdev;
1050         fs_devices->total_rw_bytes = 0;
1051 out:
1052         return ret;
1053 }
1054
1055 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1056                        fmode_t flags, void *holder)
1057 {
1058         int ret;
1059
1060         mutex_lock(&uuid_mutex);
1061         if (fs_devices->opened) {
1062                 fs_devices->opened++;
1063                 ret = 0;
1064         } else {
1065                 ret = __btrfs_open_devices(fs_devices, flags, holder);
1066         }
1067         mutex_unlock(&uuid_mutex);
1068         return ret;
1069 }
1070
1071 void btrfs_release_disk_super(struct page *page)
1072 {
1073         kunmap(page);
1074         put_page(page);
1075 }
1076
1077 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1078                 struct page **page, struct btrfs_super_block **disk_super)
1079 {
1080         void *p;
1081         pgoff_t index;
1082
1083         /* make sure our super fits in the device */
1084         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1085                 return 1;
1086
1087         /* make sure our super fits in the page */
1088         if (sizeof(**disk_super) > PAGE_SIZE)
1089                 return 1;
1090
1091         /* make sure our super doesn't straddle pages on disk */
1092         index = bytenr >> PAGE_SHIFT;
1093         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1094                 return 1;
1095
1096         /* pull in the page with our super */
1097         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1098                                    index, GFP_KERNEL);
1099
1100         if (IS_ERR_OR_NULL(*page))
1101                 return 1;
1102
1103         p = kmap(*page);
1104
1105         /* align our pointer to the offset of the super block */
1106         *disk_super = p + (bytenr & ~PAGE_MASK);
1107
1108         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1109             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1110                 btrfs_release_disk_super(*page);
1111                 return 1;
1112         }
1113
1114         if ((*disk_super)->label[0] &&
1115                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1116                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1117
1118         return 0;
1119 }
1120
1121 /*
1122  * Look for a btrfs signature on a device. This may be called out of the mount path
1123  * and we are not allowed to call set_blocksize during the scan. The superblock
1124  * is read via pagecache
1125  */
1126 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1127                           struct btrfs_fs_devices **fs_devices_ret)
1128 {
1129         struct btrfs_super_block *disk_super;
1130         struct block_device *bdev;
1131         struct page *page;
1132         int ret = -EINVAL;
1133         u64 devid;
1134         u64 transid;
1135         u64 total_devices;
1136         u64 bytenr;
1137
1138         /*
1139          * we would like to check all the supers, but that would make
1140          * a btrfs mount succeed after a mkfs from a different FS.
1141          * So, we need to add a special mount option to scan for
1142          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1143          */
1144         bytenr = btrfs_sb_offset(0);
1145         flags |= FMODE_EXCL;
1146         mutex_lock(&uuid_mutex);
1147
1148         bdev = blkdev_get_by_path(path, flags, holder);
1149         if (IS_ERR(bdev)) {
1150                 ret = PTR_ERR(bdev);
1151                 goto error;
1152         }
1153
1154         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1155                 goto error_bdev_put;
1156
1157         devid = btrfs_stack_device_id(&disk_super->dev_item);
1158         transid = btrfs_super_generation(disk_super);
1159         total_devices = btrfs_super_num_devices(disk_super);
1160
1161         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1162         if (ret > 0) {
1163                 if (disk_super->label[0]) {
1164                         pr_info("BTRFS: device label %s ", disk_super->label);
1165                 } else {
1166                         pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1167                 }
1168
1169                 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1170                 ret = 0;
1171         }
1172         if (!ret && fs_devices_ret)
1173                 (*fs_devices_ret)->total_devices = total_devices;
1174
1175         btrfs_release_disk_super(page);
1176
1177 error_bdev_put:
1178         blkdev_put(bdev, flags);
1179 error:
1180         mutex_unlock(&uuid_mutex);
1181         return ret;
1182 }
1183
1184 /* helper to account the used device space in the range */
1185 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1186                                    u64 end, u64 *length)
1187 {
1188         struct btrfs_key key;
1189         struct btrfs_root *root = device->fs_info->dev_root;
1190         struct btrfs_dev_extent *dev_extent;
1191         struct btrfs_path *path;
1192         u64 extent_end;
1193         int ret;
1194         int slot;
1195         struct extent_buffer *l;
1196
1197         *length = 0;
1198
1199         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1200                 return 0;
1201
1202         path = btrfs_alloc_path();
1203         if (!path)
1204                 return -ENOMEM;
1205         path->reada = READA_FORWARD;
1206
1207         key.objectid = device->devid;
1208         key.offset = start;
1209         key.type = BTRFS_DEV_EXTENT_KEY;
1210
1211         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1212         if (ret < 0)
1213                 goto out;
1214         if (ret > 0) {
1215                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1216                 if (ret < 0)
1217                         goto out;
1218         }
1219
1220         while (1) {
1221                 l = path->nodes[0];
1222                 slot = path->slots[0];
1223                 if (slot >= btrfs_header_nritems(l)) {
1224                         ret = btrfs_next_leaf(root, path);
1225                         if (ret == 0)
1226                                 continue;
1227                         if (ret < 0)
1228                                 goto out;
1229
1230                         break;
1231                 }
1232                 btrfs_item_key_to_cpu(l, &key, slot);
1233
1234                 if (key.objectid < device->devid)
1235                         goto next;
1236
1237                 if (key.objectid > device->devid)
1238                         break;
1239
1240                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1241                         goto next;
1242
1243                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1244                 extent_end = key.offset + btrfs_dev_extent_length(l,
1245                                                                   dev_extent);
1246                 if (key.offset <= start && extent_end > end) {
1247                         *length = end - start + 1;
1248                         break;
1249                 } else if (key.offset <= start && extent_end > start)
1250                         *length += extent_end - start;
1251                 else if (key.offset > start && extent_end <= end)
1252                         *length += extent_end - key.offset;
1253                 else if (key.offset > start && key.offset <= end) {
1254                         *length += end - key.offset + 1;
1255                         break;
1256                 } else if (key.offset > end)
1257                         break;
1258
1259 next:
1260                 path->slots[0]++;
1261         }
1262         ret = 0;
1263 out:
1264         btrfs_free_path(path);
1265         return ret;
1266 }
1267
1268 static int contains_pending_extent(struct btrfs_transaction *transaction,
1269                                    struct btrfs_device *device,
1270                                    u64 *start, u64 len)
1271 {
1272         struct btrfs_fs_info *fs_info = device->fs_info;
1273         struct extent_map *em;
1274         struct list_head *search_list = &fs_info->pinned_chunks;
1275         int ret = 0;
1276         u64 physical_start = *start;
1277
1278         if (transaction)
1279                 search_list = &transaction->pending_chunks;
1280 again:
1281         list_for_each_entry(em, search_list, list) {
1282                 struct map_lookup *map;
1283                 int i;
1284
1285                 map = em->map_lookup;
1286                 for (i = 0; i < map->num_stripes; i++) {
1287                         u64 end;
1288
1289                         if (map->stripes[i].dev != device)
1290                                 continue;
1291                         if (map->stripes[i].physical >= physical_start + len ||
1292                             map->stripes[i].physical + em->orig_block_len <=
1293                             physical_start)
1294                                 continue;
1295                         /*
1296                          * Make sure that while processing the pinned list we do
1297                          * not override our *start with a lower value, because
1298                          * we can have pinned chunks that fall within this
1299                          * device hole and that have lower physical addresses
1300                          * than the pending chunks we processed before. If we
1301                          * do not take this special care we can end up getting
1302                          * 2 pending chunks that start at the same physical
1303                          * device offsets because the end offset of a pinned
1304                          * chunk can be equal to the start offset of some
1305                          * pending chunk.
1306                          */
1307                         end = map->stripes[i].physical + em->orig_block_len;
1308                         if (end > *start) {
1309                                 *start = end;
1310                                 ret = 1;
1311                         }
1312                 }
1313         }
1314         if (search_list != &fs_info->pinned_chunks) {
1315                 search_list = &fs_info->pinned_chunks;
1316                 goto again;
1317         }
1318
1319         return ret;
1320 }
1321
1322
1323 /*
1324  * find_free_dev_extent_start - find free space in the specified device
1325  * @device:       the device which we search the free space in
1326  * @num_bytes:    the size of the free space that we need
1327  * @search_start: the position from which to begin the search
1328  * @start:        store the start of the free space.
1329  * @len:          the size of the free space. that we find, or the size
1330  *                of the max free space if we don't find suitable free space
1331  *
1332  * this uses a pretty simple search, the expectation is that it is
1333  * called very infrequently and that a given device has a small number
1334  * of extents
1335  *
1336  * @start is used to store the start of the free space if we find. But if we
1337  * don't find suitable free space, it will be used to store the start position
1338  * of the max free space.
1339  *
1340  * @len is used to store the size of the free space that we find.
1341  * But if we don't find suitable free space, it is used to store the size of
1342  * the max free space.
1343  */
1344 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1345                                struct btrfs_device *device, u64 num_bytes,
1346                                u64 search_start, u64 *start, u64 *len)
1347 {
1348         struct btrfs_fs_info *fs_info = device->fs_info;
1349         struct btrfs_root *root = fs_info->dev_root;
1350         struct btrfs_key key;
1351         struct btrfs_dev_extent *dev_extent;
1352         struct btrfs_path *path;
1353         u64 hole_size;
1354         u64 max_hole_start;
1355         u64 max_hole_size;
1356         u64 extent_end;
1357         u64 search_end = device->total_bytes;
1358         int ret;
1359         int slot;
1360         struct extent_buffer *l;
1361
1362         /*
1363          * We don't want to overwrite the superblock on the drive nor any area
1364          * used by the boot loader (grub for example), so we make sure to start
1365          * at an offset of at least 1MB.
1366          */
1367         search_start = max_t(u64, search_start, SZ_1M);
1368
1369         path = btrfs_alloc_path();
1370         if (!path)
1371                 return -ENOMEM;
1372
1373         max_hole_start = search_start;
1374         max_hole_size = 0;
1375
1376 again:
1377         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1378                 ret = -ENOSPC;
1379                 goto out;
1380         }
1381
1382         path->reada = READA_FORWARD;
1383         path->search_commit_root = 1;
1384         path->skip_locking = 1;
1385
1386         key.objectid = device->devid;
1387         key.offset = search_start;
1388         key.type = BTRFS_DEV_EXTENT_KEY;
1389
1390         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1391         if (ret < 0)
1392                 goto out;
1393         if (ret > 0) {
1394                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1395                 if (ret < 0)
1396                         goto out;
1397         }
1398
1399         while (1) {
1400                 l = path->nodes[0];
1401                 slot = path->slots[0];
1402                 if (slot >= btrfs_header_nritems(l)) {
1403                         ret = btrfs_next_leaf(root, path);
1404                         if (ret == 0)
1405                                 continue;
1406                         if (ret < 0)
1407                                 goto out;
1408
1409                         break;
1410                 }
1411                 btrfs_item_key_to_cpu(l, &key, slot);
1412
1413                 if (key.objectid < device->devid)
1414                         goto next;
1415
1416                 if (key.objectid > device->devid)
1417                         break;
1418
1419                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1420                         goto next;
1421
1422                 if (key.offset > search_start) {
1423                         hole_size = key.offset - search_start;
1424
1425                         /*
1426                          * Have to check before we set max_hole_start, otherwise
1427                          * we could end up sending back this offset anyway.
1428                          */
1429                         if (contains_pending_extent(transaction, device,
1430                                                     &search_start,
1431                                                     hole_size)) {
1432                                 if (key.offset >= search_start) {
1433                                         hole_size = key.offset - search_start;
1434                                 } else {
1435                                         WARN_ON_ONCE(1);
1436                                         hole_size = 0;
1437                                 }
1438                         }
1439
1440                         if (hole_size > max_hole_size) {
1441                                 max_hole_start = search_start;
1442                                 max_hole_size = hole_size;
1443                         }
1444
1445                         /*
1446                          * If this free space is greater than which we need,
1447                          * it must be the max free space that we have found
1448                          * until now, so max_hole_start must point to the start
1449                          * of this free space and the length of this free space
1450                          * is stored in max_hole_size. Thus, we return
1451                          * max_hole_start and max_hole_size and go back to the
1452                          * caller.
1453                          */
1454                         if (hole_size >= num_bytes) {
1455                                 ret = 0;
1456                                 goto out;
1457                         }
1458                 }
1459
1460                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1461                 extent_end = key.offset + btrfs_dev_extent_length(l,
1462                                                                   dev_extent);
1463                 if (extent_end > search_start)
1464                         search_start = extent_end;
1465 next:
1466                 path->slots[0]++;
1467                 cond_resched();
1468         }
1469
1470         /*
1471          * At this point, search_start should be the end of
1472          * allocated dev extents, and when shrinking the device,
1473          * search_end may be smaller than search_start.
1474          */
1475         if (search_end > search_start) {
1476                 hole_size = search_end - search_start;
1477
1478                 if (contains_pending_extent(transaction, device, &search_start,
1479                                             hole_size)) {
1480                         btrfs_release_path(path);
1481                         goto again;
1482                 }
1483
1484                 if (hole_size > max_hole_size) {
1485                         max_hole_start = search_start;
1486                         max_hole_size = hole_size;
1487                 }
1488         }
1489
1490         /* See above. */
1491         if (max_hole_size < num_bytes)
1492                 ret = -ENOSPC;
1493         else
1494                 ret = 0;
1495
1496 out:
1497         btrfs_free_path(path);
1498         *start = max_hole_start;
1499         if (len)
1500                 *len = max_hole_size;
1501         return ret;
1502 }
1503
1504 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1505                          struct btrfs_device *device, u64 num_bytes,
1506                          u64 *start, u64 *len)
1507 {
1508         /* FIXME use last free of some kind */
1509         return find_free_dev_extent_start(trans->transaction, device,
1510                                           num_bytes, 0, start, len);
1511 }
1512
1513 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1514                           struct btrfs_device *device,
1515                           u64 start, u64 *dev_extent_len)
1516 {
1517         struct btrfs_fs_info *fs_info = device->fs_info;
1518         struct btrfs_root *root = fs_info->dev_root;
1519         int ret;
1520         struct btrfs_path *path;
1521         struct btrfs_key key;
1522         struct btrfs_key found_key;
1523         struct extent_buffer *leaf = NULL;
1524         struct btrfs_dev_extent *extent = NULL;
1525
1526         path = btrfs_alloc_path();
1527         if (!path)
1528                 return -ENOMEM;
1529
1530         key.objectid = device->devid;
1531         key.offset = start;
1532         key.type = BTRFS_DEV_EXTENT_KEY;
1533 again:
1534         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1535         if (ret > 0) {
1536                 ret = btrfs_previous_item(root, path, key.objectid,
1537                                           BTRFS_DEV_EXTENT_KEY);
1538                 if (ret)
1539                         goto out;
1540                 leaf = path->nodes[0];
1541                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1542                 extent = btrfs_item_ptr(leaf, path->slots[0],
1543                                         struct btrfs_dev_extent);
1544                 BUG_ON(found_key.offset > start || found_key.offset +
1545                        btrfs_dev_extent_length(leaf, extent) < start);
1546                 key = found_key;
1547                 btrfs_release_path(path);
1548                 goto again;
1549         } else if (ret == 0) {
1550                 leaf = path->nodes[0];
1551                 extent = btrfs_item_ptr(leaf, path->slots[0],
1552                                         struct btrfs_dev_extent);
1553         } else {
1554                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1555                 goto out;
1556         }
1557
1558         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1559
1560         ret = btrfs_del_item(trans, root, path);
1561         if (ret) {
1562                 btrfs_handle_fs_error(fs_info, ret,
1563                                       "Failed to remove dev extent item");
1564         } else {
1565                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1566         }
1567 out:
1568         btrfs_free_path(path);
1569         return ret;
1570 }
1571
1572 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1573                                   struct btrfs_device *device,
1574                                   u64 chunk_tree, u64 chunk_objectid,
1575                                   u64 chunk_offset, u64 start, u64 num_bytes)
1576 {
1577         int ret;
1578         struct btrfs_path *path;
1579         struct btrfs_fs_info *fs_info = device->fs_info;
1580         struct btrfs_root *root = fs_info->dev_root;
1581         struct btrfs_dev_extent *extent;
1582         struct extent_buffer *leaf;
1583         struct btrfs_key key;
1584
1585         WARN_ON(!device->in_fs_metadata);
1586         WARN_ON(device->is_tgtdev_for_dev_replace);
1587         path = btrfs_alloc_path();
1588         if (!path)
1589                 return -ENOMEM;
1590
1591         key.objectid = device->devid;
1592         key.offset = start;
1593         key.type = BTRFS_DEV_EXTENT_KEY;
1594         ret = btrfs_insert_empty_item(trans, root, path, &key,
1595                                       sizeof(*extent));
1596         if (ret)
1597                 goto out;
1598
1599         leaf = path->nodes[0];
1600         extent = btrfs_item_ptr(leaf, path->slots[0],
1601                                 struct btrfs_dev_extent);
1602         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1603         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1604         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1605
1606         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1607         btrfs_mark_buffer_dirty(leaf);
1608 out:
1609         btrfs_free_path(path);
1610         return ret;
1611 }
1612
1613 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1614 {
1615         struct extent_map_tree *em_tree;
1616         struct extent_map *em;
1617         struct rb_node *n;
1618         u64 ret = 0;
1619
1620         em_tree = &fs_info->mapping_tree.map_tree;
1621         read_lock(&em_tree->lock);
1622         n = rb_last(&em_tree->map);
1623         if (n) {
1624                 em = rb_entry(n, struct extent_map, rb_node);
1625                 ret = em->start + em->len;
1626         }
1627         read_unlock(&em_tree->lock);
1628
1629         return ret;
1630 }
1631
1632 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1633                                     u64 *devid_ret)
1634 {
1635         int ret;
1636         struct btrfs_key key;
1637         struct btrfs_key found_key;
1638         struct btrfs_path *path;
1639
1640         path = btrfs_alloc_path();
1641         if (!path)
1642                 return -ENOMEM;
1643
1644         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1645         key.type = BTRFS_DEV_ITEM_KEY;
1646         key.offset = (u64)-1;
1647
1648         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1649         if (ret < 0)
1650                 goto error;
1651
1652         BUG_ON(ret == 0); /* Corruption */
1653
1654         ret = btrfs_previous_item(fs_info->chunk_root, path,
1655                                   BTRFS_DEV_ITEMS_OBJECTID,
1656                                   BTRFS_DEV_ITEM_KEY);
1657         if (ret) {
1658                 *devid_ret = 1;
1659         } else {
1660                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1661                                       path->slots[0]);
1662                 *devid_ret = found_key.offset + 1;
1663         }
1664         ret = 0;
1665 error:
1666         btrfs_free_path(path);
1667         return ret;
1668 }
1669
1670 /*
1671  * the device information is stored in the chunk root
1672  * the btrfs_device struct should be fully filled in
1673  */
1674 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1675                             struct btrfs_fs_info *fs_info,
1676                             struct btrfs_device *device)
1677 {
1678         struct btrfs_root *root = fs_info->chunk_root;
1679         int ret;
1680         struct btrfs_path *path;
1681         struct btrfs_dev_item *dev_item;
1682         struct extent_buffer *leaf;
1683         struct btrfs_key key;
1684         unsigned long ptr;
1685
1686         path = btrfs_alloc_path();
1687         if (!path)
1688                 return -ENOMEM;
1689
1690         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1691         key.type = BTRFS_DEV_ITEM_KEY;
1692         key.offset = device->devid;
1693
1694         ret = btrfs_insert_empty_item(trans, root, path, &key,
1695                                       sizeof(*dev_item));
1696         if (ret)
1697                 goto out;
1698
1699         leaf = path->nodes[0];
1700         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1701
1702         btrfs_set_device_id(leaf, dev_item, device->devid);
1703         btrfs_set_device_generation(leaf, dev_item, 0);
1704         btrfs_set_device_type(leaf, dev_item, device->type);
1705         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1706         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1707         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1708         btrfs_set_device_total_bytes(leaf, dev_item,
1709                                      btrfs_device_get_disk_total_bytes(device));
1710         btrfs_set_device_bytes_used(leaf, dev_item,
1711                                     btrfs_device_get_bytes_used(device));
1712         btrfs_set_device_group(leaf, dev_item, 0);
1713         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1714         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1715         btrfs_set_device_start_offset(leaf, dev_item, 0);
1716
1717         ptr = btrfs_device_uuid(dev_item);
1718         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1719         ptr = btrfs_device_fsid(dev_item);
1720         write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1721         btrfs_mark_buffer_dirty(leaf);
1722
1723         ret = 0;
1724 out:
1725         btrfs_free_path(path);
1726         return ret;
1727 }
1728
1729 /*
1730  * Function to update ctime/mtime for a given device path.
1731  * Mainly used for ctime/mtime based probe like libblkid.
1732  */
1733 static void update_dev_time(const char *path_name)
1734 {
1735         struct file *filp;
1736
1737         filp = filp_open(path_name, O_RDWR, 0);
1738         if (IS_ERR(filp))
1739                 return;
1740         file_update_time(filp);
1741         filp_close(filp, NULL);
1742 }
1743
1744 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1745                              struct btrfs_device *device)
1746 {
1747         struct btrfs_root *root = fs_info->chunk_root;
1748         int ret;
1749         struct btrfs_path *path;
1750         struct btrfs_key key;
1751         struct btrfs_trans_handle *trans;
1752
1753         path = btrfs_alloc_path();
1754         if (!path)
1755                 return -ENOMEM;
1756
1757         trans = btrfs_start_transaction(root, 0);
1758         if (IS_ERR(trans)) {
1759                 btrfs_free_path(path);
1760                 return PTR_ERR(trans);
1761         }
1762         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1763         key.type = BTRFS_DEV_ITEM_KEY;
1764         key.offset = device->devid;
1765
1766         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1767         if (ret < 0)
1768                 goto out;
1769
1770         if (ret > 0) {
1771                 ret = -ENOENT;
1772                 goto out;
1773         }
1774
1775         ret = btrfs_del_item(trans, root, path);
1776         if (ret)
1777                 goto out;
1778 out:
1779         btrfs_free_path(path);
1780         btrfs_commit_transaction(trans);
1781         return ret;
1782 }
1783
1784 /*
1785  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1786  * filesystem. It's up to the caller to adjust that number regarding eg. device
1787  * replace.
1788  */
1789 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1790                 u64 num_devices)
1791 {
1792         u64 all_avail;
1793         unsigned seq;
1794         int i;
1795
1796         do {
1797                 seq = read_seqbegin(&fs_info->profiles_lock);
1798
1799                 all_avail = fs_info->avail_data_alloc_bits |
1800                             fs_info->avail_system_alloc_bits |
1801                             fs_info->avail_metadata_alloc_bits;
1802         } while (read_seqretry(&fs_info->profiles_lock, seq));
1803
1804         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1805                 if (!(all_avail & btrfs_raid_group[i]))
1806                         continue;
1807
1808                 if (num_devices < btrfs_raid_array[i].devs_min) {
1809                         int ret = btrfs_raid_mindev_error[i];
1810
1811                         if (ret)
1812                                 return ret;
1813                 }
1814         }
1815
1816         return 0;
1817 }
1818
1819 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1820                                         struct btrfs_device *device)
1821 {
1822         struct btrfs_device *next_device;
1823
1824         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1825                 if (next_device != device &&
1826                         !next_device->missing && next_device->bdev)
1827                         return next_device;
1828         }
1829
1830         return NULL;
1831 }
1832
1833 /*
1834  * Helper function to check if the given device is part of s_bdev / latest_bdev
1835  * and replace it with the provided or the next active device, in the context
1836  * where this function called, there should be always be another device (or
1837  * this_dev) which is active.
1838  */
1839 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1840                 struct btrfs_device *device, struct btrfs_device *this_dev)
1841 {
1842         struct btrfs_device *next_device;
1843
1844         if (this_dev)
1845                 next_device = this_dev;
1846         else
1847                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1848                                                                 device);
1849         ASSERT(next_device);
1850
1851         if (fs_info->sb->s_bdev &&
1852                         (fs_info->sb->s_bdev == device->bdev))
1853                 fs_info->sb->s_bdev = next_device->bdev;
1854
1855         if (fs_info->fs_devices->latest_bdev == device->bdev)
1856                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1857 }
1858
1859 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1860                 u64 devid)
1861 {
1862         struct btrfs_device *device;
1863         struct btrfs_fs_devices *cur_devices;
1864         u64 num_devices;
1865         int ret = 0;
1866
1867         mutex_lock(&uuid_mutex);
1868
1869         num_devices = fs_info->fs_devices->num_devices;
1870         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1871         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1872                 WARN_ON(num_devices < 1);
1873                 num_devices--;
1874         }
1875         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1876
1877         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1878         if (ret)
1879                 goto out;
1880
1881         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1882                                            &device);
1883         if (ret)
1884                 goto out;
1885
1886         if (device->is_tgtdev_for_dev_replace) {
1887                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1888                 goto out;
1889         }
1890
1891         if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1892                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1893                 goto out;
1894         }
1895
1896         if (device->writeable) {
1897                 mutex_lock(&fs_info->chunk_mutex);
1898                 list_del_init(&device->dev_alloc_list);
1899                 device->fs_devices->rw_devices--;
1900                 mutex_unlock(&fs_info->chunk_mutex);
1901         }
1902
1903         mutex_unlock(&uuid_mutex);
1904         ret = btrfs_shrink_device(device, 0);
1905         mutex_lock(&uuid_mutex);
1906         if (ret)
1907                 goto error_undo;
1908
1909         /*
1910          * TODO: the superblock still includes this device in its num_devices
1911          * counter although write_all_supers() is not locked out. This
1912          * could give a filesystem state which requires a degraded mount.
1913          */
1914         ret = btrfs_rm_dev_item(fs_info, device);
1915         if (ret)
1916                 goto error_undo;
1917
1918         device->in_fs_metadata = 0;
1919         btrfs_scrub_cancel_dev(fs_info, device);
1920
1921         /*
1922          * the device list mutex makes sure that we don't change
1923          * the device list while someone else is writing out all
1924          * the device supers. Whoever is writing all supers, should
1925          * lock the device list mutex before getting the number of
1926          * devices in the super block (super_copy). Conversely,
1927          * whoever updates the number of devices in the super block
1928          * (super_copy) should hold the device list mutex.
1929          */
1930
1931         cur_devices = device->fs_devices;
1932         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1933         list_del_rcu(&device->dev_list);
1934
1935         device->fs_devices->num_devices--;
1936         device->fs_devices->total_devices--;
1937
1938         if (device->missing)
1939                 device->fs_devices->missing_devices--;
1940
1941         btrfs_assign_next_active_device(fs_info, device, NULL);
1942
1943         if (device->bdev) {
1944                 device->fs_devices->open_devices--;
1945                 /* remove sysfs entry */
1946                 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1947         }
1948
1949         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1950         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1951         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1952
1953         /*
1954          * at this point, the device is zero sized and detached from
1955          * the devices list.  All that's left is to zero out the old
1956          * supers and free the device.
1957          */
1958         if (device->writeable)
1959                 btrfs_scratch_superblocks(device->bdev, device->name->str);
1960
1961         btrfs_close_bdev(device);
1962         call_rcu(&device->rcu, free_device);
1963
1964         if (cur_devices->open_devices == 0) {
1965                 struct btrfs_fs_devices *fs_devices;
1966                 fs_devices = fs_info->fs_devices;
1967                 while (fs_devices) {
1968                         if (fs_devices->seed == cur_devices) {
1969                                 fs_devices->seed = cur_devices->seed;
1970                                 break;
1971                         }
1972                         fs_devices = fs_devices->seed;
1973                 }
1974                 cur_devices->seed = NULL;
1975                 __btrfs_close_devices(cur_devices);
1976                 free_fs_devices(cur_devices);
1977         }
1978
1979 out:
1980         mutex_unlock(&uuid_mutex);
1981         return ret;
1982
1983 error_undo:
1984         if (device->writeable) {
1985                 mutex_lock(&fs_info->chunk_mutex);
1986                 list_add(&device->dev_alloc_list,
1987                          &fs_info->fs_devices->alloc_list);
1988                 device->fs_devices->rw_devices++;
1989                 mutex_unlock(&fs_info->chunk_mutex);
1990         }
1991         goto out;
1992 }
1993
1994 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1995                                         struct btrfs_device *srcdev)
1996 {
1997         struct btrfs_fs_devices *fs_devices;
1998
1999         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2000
2001         /*
2002          * in case of fs with no seed, srcdev->fs_devices will point
2003          * to fs_devices of fs_info. However when the dev being replaced is
2004          * a seed dev it will point to the seed's local fs_devices. In short
2005          * srcdev will have its correct fs_devices in both the cases.
2006          */
2007         fs_devices = srcdev->fs_devices;
2008
2009         list_del_rcu(&srcdev->dev_list);
2010         list_del_rcu(&srcdev->dev_alloc_list);
2011         fs_devices->num_devices--;
2012         if (srcdev->missing)
2013                 fs_devices->missing_devices--;
2014
2015         if (srcdev->writeable)
2016                 fs_devices->rw_devices--;
2017
2018         if (srcdev->bdev)
2019                 fs_devices->open_devices--;
2020 }
2021
2022 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2023                                       struct btrfs_device *srcdev)
2024 {
2025         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2026
2027         if (srcdev->writeable) {
2028                 /* zero out the old super if it is writable */
2029                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2030         }
2031
2032         btrfs_close_bdev(srcdev);
2033
2034         call_rcu(&srcdev->rcu, free_device);
2035
2036         /*
2037          * unless fs_devices is seed fs, num_devices shouldn't go
2038          * zero
2039          */
2040         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2041
2042         /* if this is no devs we rather delete the fs_devices */
2043         if (!fs_devices->num_devices) {
2044                 struct btrfs_fs_devices *tmp_fs_devices;
2045
2046                 tmp_fs_devices = fs_info->fs_devices;
2047                 while (tmp_fs_devices) {
2048                         if (tmp_fs_devices->seed == fs_devices) {
2049                                 tmp_fs_devices->seed = fs_devices->seed;
2050                                 break;
2051                         }
2052                         tmp_fs_devices = tmp_fs_devices->seed;
2053                 }
2054                 fs_devices->seed = NULL;
2055                 __btrfs_close_devices(fs_devices);
2056                 free_fs_devices(fs_devices);
2057         }
2058 }
2059
2060 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2061                                       struct btrfs_device *tgtdev)
2062 {
2063         mutex_lock(&uuid_mutex);
2064         WARN_ON(!tgtdev);
2065         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2066
2067         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2068
2069         if (tgtdev->bdev)
2070                 fs_info->fs_devices->open_devices--;
2071
2072         fs_info->fs_devices->num_devices--;
2073
2074         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2075
2076         list_del_rcu(&tgtdev->dev_list);
2077
2078         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2079         mutex_unlock(&uuid_mutex);
2080
2081         /*
2082          * The update_dev_time() with in btrfs_scratch_superblocks()
2083          * may lead to a call to btrfs_show_devname() which will try
2084          * to hold device_list_mutex. And here this device
2085          * is already out of device list, so we don't have to hold
2086          * the device_list_mutex lock.
2087          */
2088         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2089
2090         btrfs_close_bdev(tgtdev);
2091         call_rcu(&tgtdev->rcu, free_device);
2092 }
2093
2094 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2095                                      const char *device_path,
2096                                      struct btrfs_device **device)
2097 {
2098         int ret = 0;
2099         struct btrfs_super_block *disk_super;
2100         u64 devid;
2101         u8 *dev_uuid;
2102         struct block_device *bdev;
2103         struct buffer_head *bh;
2104
2105         *device = NULL;
2106         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2107                                     fs_info->bdev_holder, 0, &bdev, &bh);
2108         if (ret)
2109                 return ret;
2110         disk_super = (struct btrfs_super_block *)bh->b_data;
2111         devid = btrfs_stack_device_id(&disk_super->dev_item);
2112         dev_uuid = disk_super->dev_item.uuid;
2113         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2114         brelse(bh);
2115         if (!*device)
2116                 ret = -ENOENT;
2117         blkdev_put(bdev, FMODE_READ);
2118         return ret;
2119 }
2120
2121 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2122                                          const char *device_path,
2123                                          struct btrfs_device **device)
2124 {
2125         *device = NULL;
2126         if (strcmp(device_path, "missing") == 0) {
2127                 struct list_head *devices;
2128                 struct btrfs_device *tmp;
2129
2130                 devices = &fs_info->fs_devices->devices;
2131                 /*
2132                  * It is safe to read the devices since the volume_mutex
2133                  * is held by the caller.
2134                  */
2135                 list_for_each_entry(tmp, devices, dev_list) {
2136                         if (tmp->in_fs_metadata && !tmp->bdev) {
2137                                 *device = tmp;
2138                                 break;
2139                         }
2140                 }
2141
2142                 if (!*device)
2143                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2144
2145                 return 0;
2146         } else {
2147                 return btrfs_find_device_by_path(fs_info, device_path, device);
2148         }
2149 }
2150
2151 /*
2152  * Lookup a device given by device id, or the path if the id is 0.
2153  */
2154 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2155                                  const char *devpath,
2156                                  struct btrfs_device **device)
2157 {
2158         int ret;
2159
2160         if (devid) {
2161                 ret = 0;
2162                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2163                 if (!*device)
2164                         ret = -ENOENT;
2165         } else {
2166                 if (!devpath || !devpath[0])
2167                         return -EINVAL;
2168
2169                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2170                                                            device);
2171         }
2172         return ret;
2173 }
2174
2175 /*
2176  * does all the dirty work required for changing file system's UUID.
2177  */
2178 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2179 {
2180         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2181         struct btrfs_fs_devices *old_devices;
2182         struct btrfs_fs_devices *seed_devices;
2183         struct btrfs_super_block *disk_super = fs_info->super_copy;
2184         struct btrfs_device *device;
2185         u64 super_flags;
2186
2187         BUG_ON(!mutex_is_locked(&uuid_mutex));
2188         if (!fs_devices->seeding)
2189                 return -EINVAL;
2190
2191         seed_devices = alloc_fs_devices(NULL);
2192         if (IS_ERR(seed_devices))
2193                 return PTR_ERR(seed_devices);
2194
2195         old_devices = clone_fs_devices(fs_devices);
2196         if (IS_ERR(old_devices)) {
2197                 kfree(seed_devices);
2198                 return PTR_ERR(old_devices);
2199         }
2200
2201         list_add(&old_devices->list, &fs_uuids);
2202
2203         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2204         seed_devices->opened = 1;
2205         INIT_LIST_HEAD(&seed_devices->devices);
2206         INIT_LIST_HEAD(&seed_devices->alloc_list);
2207         mutex_init(&seed_devices->device_list_mutex);
2208
2209         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2210         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2211                               synchronize_rcu);
2212         list_for_each_entry(device, &seed_devices->devices, dev_list)
2213                 device->fs_devices = seed_devices;
2214
2215         mutex_lock(&fs_info->chunk_mutex);
2216         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2217         mutex_unlock(&fs_info->chunk_mutex);
2218
2219         fs_devices->seeding = 0;
2220         fs_devices->num_devices = 0;
2221         fs_devices->open_devices = 0;
2222         fs_devices->missing_devices = 0;
2223         fs_devices->rotating = 0;
2224         fs_devices->seed = seed_devices;
2225
2226         generate_random_uuid(fs_devices->fsid);
2227         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2228         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2229         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2230
2231         super_flags = btrfs_super_flags(disk_super) &
2232                       ~BTRFS_SUPER_FLAG_SEEDING;
2233         btrfs_set_super_flags(disk_super, super_flags);
2234
2235         return 0;
2236 }
2237
2238 /*
2239  * Store the expected generation for seed devices in device items.
2240  */
2241 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2242                                struct btrfs_fs_info *fs_info)
2243 {
2244         struct btrfs_root *root = fs_info->chunk_root;
2245         struct btrfs_path *path;
2246         struct extent_buffer *leaf;
2247         struct btrfs_dev_item *dev_item;
2248         struct btrfs_device *device;
2249         struct btrfs_key key;
2250         u8 fs_uuid[BTRFS_FSID_SIZE];
2251         u8 dev_uuid[BTRFS_UUID_SIZE];
2252         u64 devid;
2253         int ret;
2254
2255         path = btrfs_alloc_path();
2256         if (!path)
2257                 return -ENOMEM;
2258
2259         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2260         key.offset = 0;
2261         key.type = BTRFS_DEV_ITEM_KEY;
2262
2263         while (1) {
2264                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2265                 if (ret < 0)
2266                         goto error;
2267
2268                 leaf = path->nodes[0];
2269 next_slot:
2270                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2271                         ret = btrfs_next_leaf(root, path);
2272                         if (ret > 0)
2273                                 break;
2274                         if (ret < 0)
2275                                 goto error;
2276                         leaf = path->nodes[0];
2277                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2278                         btrfs_release_path(path);
2279                         continue;
2280                 }
2281
2282                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2283                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2284                     key.type != BTRFS_DEV_ITEM_KEY)
2285                         break;
2286
2287                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2288                                           struct btrfs_dev_item);
2289                 devid = btrfs_device_id(leaf, dev_item);
2290                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2291                                    BTRFS_UUID_SIZE);
2292                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2293                                    BTRFS_FSID_SIZE);
2294                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2295                 BUG_ON(!device); /* Logic error */
2296
2297                 if (device->fs_devices->seeding) {
2298                         btrfs_set_device_generation(leaf, dev_item,
2299                                                     device->generation);
2300                         btrfs_mark_buffer_dirty(leaf);
2301                 }
2302
2303                 path->slots[0]++;
2304                 goto next_slot;
2305         }
2306         ret = 0;
2307 error:
2308         btrfs_free_path(path);
2309         return ret;
2310 }
2311
2312 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2313 {
2314         struct btrfs_root *root = fs_info->dev_root;
2315         struct request_queue *q;
2316         struct btrfs_trans_handle *trans;
2317         struct btrfs_device *device;
2318         struct block_device *bdev;
2319         struct list_head *devices;
2320         struct super_block *sb = fs_info->sb;
2321         struct rcu_string *name;
2322         u64 tmp;
2323         int seeding_dev = 0;
2324         int ret = 0;
2325
2326         if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
2327                 return -EROFS;
2328
2329         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2330                                   fs_info->bdev_holder);
2331         if (IS_ERR(bdev))
2332                 return PTR_ERR(bdev);
2333
2334         if (fs_info->fs_devices->seeding) {
2335                 seeding_dev = 1;
2336                 down_write(&sb->s_umount);
2337                 mutex_lock(&uuid_mutex);
2338         }
2339
2340         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2341
2342         devices = &fs_info->fs_devices->devices;
2343
2344         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2345         list_for_each_entry(device, devices, dev_list) {
2346                 if (device->bdev == bdev) {
2347                         ret = -EEXIST;
2348                         mutex_unlock(
2349                                 &fs_info->fs_devices->device_list_mutex);
2350                         goto error;
2351                 }
2352         }
2353         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2354
2355         device = btrfs_alloc_device(fs_info, NULL, NULL);
2356         if (IS_ERR(device)) {
2357                 /* we can safely leave the fs_devices entry around */
2358                 ret = PTR_ERR(device);
2359                 goto error;
2360         }
2361
2362         name = rcu_string_strdup(device_path, GFP_KERNEL);
2363         if (!name) {
2364                 kfree(device);
2365                 ret = -ENOMEM;
2366                 goto error;
2367         }
2368         rcu_assign_pointer(device->name, name);
2369
2370         trans = btrfs_start_transaction(root, 0);
2371         if (IS_ERR(trans)) {
2372                 rcu_string_free(device->name);
2373                 kfree(device);
2374                 ret = PTR_ERR(trans);
2375                 goto error;
2376         }
2377
2378         q = bdev_get_queue(bdev);
2379         if (blk_queue_discard(q))
2380                 device->can_discard = 1;
2381         device->writeable = 1;
2382         device->generation = trans->transid;
2383         device->io_width = fs_info->sectorsize;
2384         device->io_align = fs_info->sectorsize;
2385         device->sector_size = fs_info->sectorsize;
2386         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2387                                          fs_info->sectorsize);
2388         device->disk_total_bytes = device->total_bytes;
2389         device->commit_total_bytes = device->total_bytes;
2390         device->fs_info = fs_info;
2391         device->bdev = bdev;
2392         device->in_fs_metadata = 1;
2393         device->is_tgtdev_for_dev_replace = 0;
2394         device->mode = FMODE_EXCL;
2395         device->dev_stats_valid = 1;
2396         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2397
2398         if (seeding_dev) {
2399                 sb->s_flags &= ~MS_RDONLY;
2400                 ret = btrfs_prepare_sprout(fs_info);
2401                 BUG_ON(ret); /* -ENOMEM */
2402         }
2403
2404         device->fs_devices = fs_info->fs_devices;
2405
2406         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2407         mutex_lock(&fs_info->chunk_mutex);
2408         list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2409         list_add(&device->dev_alloc_list,
2410                  &fs_info->fs_devices->alloc_list);
2411         fs_info->fs_devices->num_devices++;
2412         fs_info->fs_devices->open_devices++;
2413         fs_info->fs_devices->rw_devices++;
2414         fs_info->fs_devices->total_devices++;
2415         fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2416
2417         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2418
2419         if (!blk_queue_nonrot(q))
2420                 fs_info->fs_devices->rotating = 1;
2421
2422         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2423         btrfs_set_super_total_bytes(fs_info->super_copy,
2424                 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2425
2426         tmp = btrfs_super_num_devices(fs_info->super_copy);
2427         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2428
2429         /* add sysfs device entry */
2430         btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2431
2432         /*
2433          * we've got more storage, clear any full flags on the space
2434          * infos
2435          */
2436         btrfs_clear_space_info_full(fs_info);
2437
2438         mutex_unlock(&fs_info->chunk_mutex);
2439         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2440
2441         if (seeding_dev) {
2442                 mutex_lock(&fs_info->chunk_mutex);
2443                 ret = init_first_rw_device(trans, fs_info);
2444                 mutex_unlock(&fs_info->chunk_mutex);
2445                 if (ret) {
2446                         btrfs_abort_transaction(trans, ret);
2447                         goto error_trans;
2448                 }
2449         }
2450
2451         ret = btrfs_add_device(trans, fs_info, device);
2452         if (ret) {
2453                 btrfs_abort_transaction(trans, ret);
2454                 goto error_trans;
2455         }
2456
2457         if (seeding_dev) {
2458                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2459
2460                 ret = btrfs_finish_sprout(trans, fs_info);
2461                 if (ret) {
2462                         btrfs_abort_transaction(trans, ret);
2463                         goto error_trans;
2464                 }
2465
2466                 /* Sprouting would change fsid of the mounted root,
2467                  * so rename the fsid on the sysfs
2468                  */
2469                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2470                                                 fs_info->fsid);
2471                 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2472                         btrfs_warn(fs_info,
2473                                    "sysfs: failed to create fsid for sprout");
2474         }
2475
2476         ret = btrfs_commit_transaction(trans);
2477
2478         if (seeding_dev) {
2479                 mutex_unlock(&uuid_mutex);
2480                 up_write(&sb->s_umount);
2481
2482                 if (ret) /* transaction commit */
2483                         return ret;
2484
2485                 ret = btrfs_relocate_sys_chunks(fs_info);
2486                 if (ret < 0)
2487                         btrfs_handle_fs_error(fs_info, ret,
2488                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2489                 trans = btrfs_attach_transaction(root);
2490                 if (IS_ERR(trans)) {
2491                         if (PTR_ERR(trans) == -ENOENT)
2492                                 return 0;
2493                         return PTR_ERR(trans);
2494                 }
2495                 ret = btrfs_commit_transaction(trans);
2496         }
2497
2498         /* Update ctime/mtime for libblkid */
2499         update_dev_time(device_path);
2500         return ret;
2501
2502 error_trans:
2503         btrfs_end_transaction(trans);
2504         rcu_string_free(device->name);
2505         btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2506         kfree(device);
2507 error:
2508         blkdev_put(bdev, FMODE_EXCL);
2509         if (seeding_dev) {
2510                 mutex_unlock(&uuid_mutex);
2511                 up_write(&sb->s_umount);
2512         }
2513         return ret;
2514 }
2515
2516 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2517                                   const char *device_path,
2518                                   struct btrfs_device *srcdev,
2519                                   struct btrfs_device **device_out)
2520 {
2521         struct request_queue *q;
2522         struct btrfs_device *device;
2523         struct block_device *bdev;
2524         struct list_head *devices;
2525         struct rcu_string *name;
2526         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2527         int ret = 0;
2528
2529         *device_out = NULL;
2530         if (fs_info->fs_devices->seeding) {
2531                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2532                 return -EINVAL;
2533         }
2534
2535         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2536                                   fs_info->bdev_holder);
2537         if (IS_ERR(bdev)) {
2538                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2539                 return PTR_ERR(bdev);
2540         }
2541
2542         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2543
2544         devices = &fs_info->fs_devices->devices;
2545         list_for_each_entry(device, devices, dev_list) {
2546                 if (device->bdev == bdev) {
2547                         btrfs_err(fs_info,
2548                                   "target device is in the filesystem!");
2549                         ret = -EEXIST;
2550                         goto error;
2551                 }
2552         }
2553
2554
2555         if (i_size_read(bdev->bd_inode) <
2556             btrfs_device_get_total_bytes(srcdev)) {
2557                 btrfs_err(fs_info,
2558                           "target device is smaller than source device!");
2559                 ret = -EINVAL;
2560                 goto error;
2561         }
2562
2563
2564         device = btrfs_alloc_device(NULL, &devid, NULL);
2565         if (IS_ERR(device)) {
2566                 ret = PTR_ERR(device);
2567                 goto error;
2568         }
2569
2570         name = rcu_string_strdup(device_path, GFP_KERNEL);
2571         if (!name) {
2572                 kfree(device);
2573                 ret = -ENOMEM;
2574                 goto error;
2575         }
2576         rcu_assign_pointer(device->name, name);
2577
2578         q = bdev_get_queue(bdev);
2579         if (blk_queue_discard(q))
2580                 device->can_discard = 1;
2581         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2582         device->writeable = 1;
2583         device->generation = 0;
2584         device->io_width = fs_info->sectorsize;
2585         device->io_align = fs_info->sectorsize;
2586         device->sector_size = fs_info->sectorsize;
2587         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2588         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2589         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2590         ASSERT(list_empty(&srcdev->resized_list));
2591         device->commit_total_bytes = srcdev->commit_total_bytes;
2592         device->commit_bytes_used = device->bytes_used;
2593         device->fs_info = fs_info;
2594         device->bdev = bdev;
2595         device->in_fs_metadata = 1;
2596         device->is_tgtdev_for_dev_replace = 1;
2597         device->mode = FMODE_EXCL;
2598         device->dev_stats_valid = 1;
2599         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2600         device->fs_devices = fs_info->fs_devices;
2601         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2602         fs_info->fs_devices->num_devices++;
2603         fs_info->fs_devices->open_devices++;
2604         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2605
2606         *device_out = device;
2607         return ret;
2608
2609 error:
2610         blkdev_put(bdev, FMODE_EXCL);
2611         return ret;
2612 }
2613
2614 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2615                                               struct btrfs_device *tgtdev)
2616 {
2617         u32 sectorsize = fs_info->sectorsize;
2618
2619         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2620         tgtdev->io_width = sectorsize;
2621         tgtdev->io_align = sectorsize;
2622         tgtdev->sector_size = sectorsize;
2623         tgtdev->fs_info = fs_info;
2624         tgtdev->in_fs_metadata = 1;
2625 }
2626
2627 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2628                                         struct btrfs_device *device)
2629 {
2630         int ret;
2631         struct btrfs_path *path;
2632         struct btrfs_root *root = device->fs_info->chunk_root;
2633         struct btrfs_dev_item *dev_item;
2634         struct extent_buffer *leaf;
2635         struct btrfs_key key;
2636
2637         path = btrfs_alloc_path();
2638         if (!path)
2639                 return -ENOMEM;
2640
2641         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2642         key.type = BTRFS_DEV_ITEM_KEY;
2643         key.offset = device->devid;
2644
2645         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2646         if (ret < 0)
2647                 goto out;
2648
2649         if (ret > 0) {
2650                 ret = -ENOENT;
2651                 goto out;
2652         }
2653
2654         leaf = path->nodes[0];
2655         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2656
2657         btrfs_set_device_id(leaf, dev_item, device->devid);
2658         btrfs_set_device_type(leaf, dev_item, device->type);
2659         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2660         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2661         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2662         btrfs_set_device_total_bytes(leaf, dev_item,
2663                                      btrfs_device_get_disk_total_bytes(device));
2664         btrfs_set_device_bytes_used(leaf, dev_item,
2665                                     btrfs_device_get_bytes_used(device));
2666         btrfs_mark_buffer_dirty(leaf);
2667
2668 out:
2669         btrfs_free_path(path);
2670         return ret;
2671 }
2672
2673 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2674                       struct btrfs_device *device, u64 new_size)
2675 {
2676         struct btrfs_fs_info *fs_info = device->fs_info;
2677         struct btrfs_super_block *super_copy = fs_info->super_copy;
2678         struct btrfs_fs_devices *fs_devices;
2679         u64 old_total;
2680         u64 diff;
2681
2682         if (!device->writeable)
2683                 return -EACCES;
2684
2685         new_size = round_down(new_size, fs_info->sectorsize);
2686
2687         mutex_lock(&fs_info->chunk_mutex);
2688         old_total = btrfs_super_total_bytes(super_copy);
2689         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2690
2691         if (new_size <= device->total_bytes ||
2692             device->is_tgtdev_for_dev_replace) {
2693                 mutex_unlock(&fs_info->chunk_mutex);
2694                 return -EINVAL;
2695         }
2696
2697         fs_devices = fs_info->fs_devices;
2698
2699         btrfs_set_super_total_bytes(super_copy,
2700                         round_down(old_total + diff, fs_info->sectorsize));
2701         device->fs_devices->total_rw_bytes += diff;
2702
2703         btrfs_device_set_total_bytes(device, new_size);
2704         btrfs_device_set_disk_total_bytes(device, new_size);
2705         btrfs_clear_space_info_full(device->fs_info);
2706         if (list_empty(&device->resized_list))
2707                 list_add_tail(&device->resized_list,
2708                               &fs_devices->resized_devices);
2709         mutex_unlock(&fs_info->chunk_mutex);
2710
2711         return btrfs_update_device(trans, device);
2712 }
2713
2714 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2715                             struct btrfs_fs_info *fs_info, u64 chunk_objectid,
2716                             u64 chunk_offset)
2717 {
2718         struct btrfs_root *root = fs_info->chunk_root;
2719         int ret;
2720         struct btrfs_path *path;
2721         struct btrfs_key key;
2722
2723         path = btrfs_alloc_path();
2724         if (!path)
2725                 return -ENOMEM;
2726
2727         key.objectid = chunk_objectid;
2728         key.offset = chunk_offset;
2729         key.type = BTRFS_CHUNK_ITEM_KEY;
2730
2731         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2732         if (ret < 0)
2733                 goto out;
2734         else if (ret > 0) { /* Logic error or corruption */
2735                 btrfs_handle_fs_error(fs_info, -ENOENT,
2736                                       "Failed lookup while freeing chunk.");
2737                 ret = -ENOENT;
2738                 goto out;
2739         }
2740
2741         ret = btrfs_del_item(trans, root, path);
2742         if (ret < 0)
2743                 btrfs_handle_fs_error(fs_info, ret,
2744                                       "Failed to delete chunk item.");
2745 out:
2746         btrfs_free_path(path);
2747         return ret;
2748 }
2749
2750 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2751                                u64 chunk_objectid, u64 chunk_offset)
2752 {
2753         struct btrfs_super_block *super_copy = fs_info->super_copy;
2754         struct btrfs_disk_key *disk_key;
2755         struct btrfs_chunk *chunk;
2756         u8 *ptr;
2757         int ret = 0;
2758         u32 num_stripes;
2759         u32 array_size;
2760         u32 len = 0;
2761         u32 cur;
2762         struct btrfs_key key;
2763
2764         mutex_lock(&fs_info->chunk_mutex);
2765         array_size = btrfs_super_sys_array_size(super_copy);
2766
2767         ptr = super_copy->sys_chunk_array;
2768         cur = 0;
2769
2770         while (cur < array_size) {
2771                 disk_key = (struct btrfs_disk_key *)ptr;
2772                 btrfs_disk_key_to_cpu(&key, disk_key);
2773
2774                 len = sizeof(*disk_key);
2775
2776                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2777                         chunk = (struct btrfs_chunk *)(ptr + len);
2778                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2779                         len += btrfs_chunk_item_size(num_stripes);
2780                 } else {
2781                         ret = -EIO;
2782                         break;
2783                 }
2784                 if (key.objectid == chunk_objectid &&
2785                     key.offset == chunk_offset) {
2786                         memmove(ptr, ptr + len, array_size - (cur + len));
2787                         array_size -= len;
2788                         btrfs_set_super_sys_array_size(super_copy, array_size);
2789                 } else {
2790                         ptr += len;
2791                         cur += len;
2792                 }
2793         }
2794         mutex_unlock(&fs_info->chunk_mutex);
2795         return ret;
2796 }
2797
2798 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2799                                         u64 logical, u64 length)
2800 {
2801         struct extent_map_tree *em_tree;
2802         struct extent_map *em;
2803
2804         em_tree = &fs_info->mapping_tree.map_tree;
2805         read_lock(&em_tree->lock);
2806         em = lookup_extent_mapping(em_tree, logical, length);
2807         read_unlock(&em_tree->lock);
2808
2809         if (!em) {
2810                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2811                            logical, length);
2812                 return ERR_PTR(-EINVAL);
2813         }
2814
2815         if (em->start > logical || em->start + em->len < logical) {
2816                 btrfs_crit(fs_info,
2817                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2818                            logical, length, em->start, em->start + em->len);
2819                 free_extent_map(em);
2820                 return ERR_PTR(-EINVAL);
2821         }
2822
2823         /* callers are responsible for dropping em's ref. */
2824         return em;
2825 }
2826
2827 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2828                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2829 {
2830         struct extent_map *em;
2831         struct map_lookup *map;
2832         u64 dev_extent_len = 0;
2833         u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2834         int i, ret = 0;
2835         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2836
2837         em = get_chunk_map(fs_info, chunk_offset, 1);
2838         if (IS_ERR(em)) {
2839                 /*
2840                  * This is a logic error, but we don't want to just rely on the
2841                  * user having built with ASSERT enabled, so if ASSERT doesn't
2842                  * do anything we still error out.
2843                  */
2844                 ASSERT(0);
2845                 return PTR_ERR(em);
2846         }
2847         map = em->map_lookup;
2848         mutex_lock(&fs_info->chunk_mutex);
2849         check_system_chunk(trans, fs_info, map->type);
2850         mutex_unlock(&fs_info->chunk_mutex);
2851
2852         /*
2853          * Take the device list mutex to prevent races with the final phase of
2854          * a device replace operation that replaces the device object associated
2855          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2856          */
2857         mutex_lock(&fs_devices->device_list_mutex);
2858         for (i = 0; i < map->num_stripes; i++) {
2859                 struct btrfs_device *device = map->stripes[i].dev;
2860                 ret = btrfs_free_dev_extent(trans, device,
2861                                             map->stripes[i].physical,
2862                                             &dev_extent_len);
2863                 if (ret) {
2864                         mutex_unlock(&fs_devices->device_list_mutex);
2865                         btrfs_abort_transaction(trans, ret);
2866                         goto out;
2867                 }
2868
2869                 if (device->bytes_used > 0) {
2870                         mutex_lock(&fs_info->chunk_mutex);
2871                         btrfs_device_set_bytes_used(device,
2872                                         device->bytes_used - dev_extent_len);
2873                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2874                         btrfs_clear_space_info_full(fs_info);
2875                         mutex_unlock(&fs_info->chunk_mutex);
2876                 }
2877
2878                 if (map->stripes[i].dev) {
2879                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2880                         if (ret) {
2881                                 mutex_unlock(&fs_devices->device_list_mutex);
2882                                 btrfs_abort_transaction(trans, ret);
2883                                 goto out;
2884                         }
2885                 }
2886         }
2887         mutex_unlock(&fs_devices->device_list_mutex);
2888
2889         ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
2890         if (ret) {
2891                 btrfs_abort_transaction(trans, ret);
2892                 goto out;
2893         }
2894
2895         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2896
2897         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2898                 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2899                                           chunk_offset);
2900                 if (ret) {
2901                         btrfs_abort_transaction(trans, ret);
2902                         goto out;
2903                 }
2904         }
2905
2906         ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2907         if (ret) {
2908                 btrfs_abort_transaction(trans, ret);
2909                 goto out;
2910         }
2911
2912 out:
2913         /* once for us */
2914         free_extent_map(em);
2915         return ret;
2916 }
2917
2918 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2919 {
2920         struct btrfs_root *root = fs_info->chunk_root;
2921         struct btrfs_trans_handle *trans;
2922         int ret;
2923
2924         /*
2925          * Prevent races with automatic removal of unused block groups.
2926          * After we relocate and before we remove the chunk with offset
2927          * chunk_offset, automatic removal of the block group can kick in,
2928          * resulting in a failure when calling btrfs_remove_chunk() below.
2929          *
2930          * Make sure to acquire this mutex before doing a tree search (dev
2931          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2932          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2933          * we release the path used to search the chunk/dev tree and before
2934          * the current task acquires this mutex and calls us.
2935          */
2936         ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2937
2938         ret = btrfs_can_relocate(fs_info, chunk_offset);
2939         if (ret)
2940                 return -ENOSPC;
2941
2942         /* step one, relocate all the extents inside this chunk */
2943         btrfs_scrub_pause(fs_info);
2944         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2945         btrfs_scrub_continue(fs_info);
2946         if (ret)
2947                 return ret;
2948
2949         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2950                                                      chunk_offset);
2951         if (IS_ERR(trans)) {
2952                 ret = PTR_ERR(trans);
2953                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2954                 return ret;
2955         }
2956
2957         /*
2958          * step two, delete the device extents and the
2959          * chunk tree entries
2960          */
2961         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2962         btrfs_end_transaction(trans);
2963         return ret;
2964 }
2965
2966 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2967 {
2968         struct btrfs_root *chunk_root = fs_info->chunk_root;
2969         struct btrfs_path *path;
2970         struct extent_buffer *leaf;
2971         struct btrfs_chunk *chunk;
2972         struct btrfs_key key;
2973         struct btrfs_key found_key;
2974         u64 chunk_type;
2975         bool retried = false;
2976         int failed = 0;
2977         int ret;
2978
2979         path = btrfs_alloc_path();
2980         if (!path)
2981                 return -ENOMEM;
2982
2983 again:
2984         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2985         key.offset = (u64)-1;
2986         key.type = BTRFS_CHUNK_ITEM_KEY;
2987
2988         while (1) {
2989                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2990                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2991                 if (ret < 0) {
2992                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2993                         goto error;
2994                 }
2995                 BUG_ON(ret == 0); /* Corruption */
2996
2997                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2998                                           key.type);
2999                 if (ret)
3000                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3001                 if (ret < 0)
3002                         goto error;
3003                 if (ret > 0)
3004                         break;
3005
3006                 leaf = path->nodes[0];
3007                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3008
3009                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3010                                        struct btrfs_chunk);
3011                 chunk_type = btrfs_chunk_type(leaf, chunk);
3012                 btrfs_release_path(path);
3013
3014                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3015                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3016                         if (ret == -ENOSPC)
3017                                 failed++;
3018                         else
3019                                 BUG_ON(ret);
3020                 }
3021                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3022
3023                 if (found_key.offset == 0)
3024                         break;
3025                 key.offset = found_key.offset - 1;
3026         }
3027         ret = 0;
3028         if (failed && !retried) {
3029                 failed = 0;
3030                 retried = true;
3031                 goto again;
3032         } else if (WARN_ON(failed && retried)) {
3033                 ret = -ENOSPC;
3034         }
3035 error:
3036         btrfs_free_path(path);
3037         return ret;
3038 }
3039
3040 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3041                                struct btrfs_balance_control *bctl)
3042 {
3043         struct btrfs_root *root = fs_info->tree_root;
3044         struct btrfs_trans_handle *trans;
3045         struct btrfs_balance_item *item;
3046         struct btrfs_disk_balance_args disk_bargs;
3047         struct btrfs_path *path;
3048         struct extent_buffer *leaf;
3049         struct btrfs_key key;
3050         int ret, err;
3051
3052         path = btrfs_alloc_path();
3053         if (!path)
3054                 return -ENOMEM;
3055
3056         trans = btrfs_start_transaction(root, 0);
3057         if (IS_ERR(trans)) {
3058                 btrfs_free_path(path);
3059                 return PTR_ERR(trans);
3060         }
3061
3062         key.objectid = BTRFS_BALANCE_OBJECTID;
3063         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3064         key.offset = 0;
3065
3066         ret = btrfs_insert_empty_item(trans, root, path, &key,
3067                                       sizeof(*item));
3068         if (ret)
3069                 goto out;
3070
3071         leaf = path->nodes[0];
3072         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3073
3074         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3075
3076         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3077         btrfs_set_balance_data(leaf, item, &disk_bargs);
3078         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3079         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3080         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3081         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3082
3083         btrfs_set_balance_flags(leaf, item, bctl->flags);
3084
3085         btrfs_mark_buffer_dirty(leaf);
3086 out:
3087         btrfs_free_path(path);
3088         err = btrfs_commit_transaction(trans);
3089         if (err && !ret)
3090                 ret = err;
3091         return ret;
3092 }
3093
3094 static int del_balance_item(struct btrfs_fs_info *fs_info)
3095 {
3096         struct btrfs_root *root = fs_info->tree_root;
3097         struct btrfs_trans_handle *trans;
3098         struct btrfs_path *path;
3099         struct btrfs_key key;
3100         int ret, err;
3101
3102         path = btrfs_alloc_path();
3103         if (!path)
3104                 return -ENOMEM;
3105
3106         trans = btrfs_start_transaction(root, 0);
3107         if (IS_ERR(trans)) {
3108                 btrfs_free_path(path);
3109                 return PTR_ERR(trans);
3110         }
3111
3112         key.objectid = BTRFS_BALANCE_OBJECTID;
3113         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3114         key.offset = 0;
3115
3116         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3117         if (ret < 0)
3118                 goto out;
3119         if (ret > 0) {
3120                 ret = -ENOENT;
3121                 goto out;
3122         }
3123
3124         ret = btrfs_del_item(trans, root, path);
3125 out:
3126         btrfs_free_path(path);
3127         err = btrfs_commit_transaction(trans);
3128         if (err && !ret)
3129                 ret = err;
3130         return ret;
3131 }
3132
3133 /*
3134  * This is a heuristic used to reduce the number of chunks balanced on
3135  * resume after balance was interrupted.
3136  */
3137 static void update_balance_args(struct btrfs_balance_control *bctl)
3138 {
3139         /*
3140          * Turn on soft mode for chunk types that were being converted.
3141          */
3142         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3143                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3144         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3145                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3146         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3147                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3148
3149         /*
3150          * Turn on usage filter if is not already used.  The idea is
3151          * that chunks that we have already balanced should be
3152          * reasonably full.  Don't do it for chunks that are being
3153          * converted - that will keep us from relocating unconverted
3154          * (albeit full) chunks.
3155          */
3156         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3157             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3158             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3159                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3160                 bctl->data.usage = 90;
3161         }
3162         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3163             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3164             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3165                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3166                 bctl->sys.usage = 90;
3167         }
3168         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3169             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3170             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3171                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3172                 bctl->meta.usage = 90;
3173         }
3174 }
3175
3176 /*
3177  * Should be called with both balance and volume mutexes held to
3178  * serialize other volume operations (add_dev/rm_dev/resize) with
3179  * restriper.  Same goes for unset_balance_control.
3180  */
3181 static void set_balance_control(struct btrfs_balance_control *bctl)
3182 {
3183         struct btrfs_fs_info *fs_info = bctl->fs_info;
3184
3185         BUG_ON(fs_info->balance_ctl);
3186
3187         spin_lock(&fs_info->balance_lock);
3188         fs_info->balance_ctl = bctl;
3189         spin_unlock(&fs_info->balance_lock);
3190 }
3191
3192 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3193 {
3194         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3195
3196         BUG_ON(!fs_info->balance_ctl);
3197
3198         spin_lock(&fs_info->balance_lock);
3199         fs_info->balance_ctl = NULL;
3200         spin_unlock(&fs_info->balance_lock);
3201
3202         kfree(bctl);
3203 }
3204
3205 /*
3206  * Balance filters.  Return 1 if chunk should be filtered out
3207  * (should not be balanced).
3208  */
3209 static int chunk_profiles_filter(u64 chunk_type,
3210                                  struct btrfs_balance_args *bargs)
3211 {
3212         chunk_type = chunk_to_extended(chunk_type) &
3213                                 BTRFS_EXTENDED_PROFILE_MASK;
3214
3215         if (bargs->profiles & chunk_type)
3216                 return 0;
3217
3218         return 1;
3219 }
3220
3221 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3222                               struct btrfs_balance_args *bargs)
3223 {
3224         struct btrfs_block_group_cache *cache;
3225         u64 chunk_used;
3226         u64 user_thresh_min;
3227         u64 user_thresh_max;
3228         int ret = 1;
3229
3230         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3231         chunk_used = btrfs_block_group_used(&cache->item);
3232
3233         if (bargs->usage_min == 0)
3234                 user_thresh_min = 0;
3235         else
3236                 user_thresh_min = div_factor_fine(cache->key.offset,
3237                                         bargs->usage_min);
3238
3239         if (bargs->usage_max == 0)
3240                 user_thresh_max = 1;
3241         else if (bargs->usage_max > 100)
3242                 user_thresh_max = cache->key.offset;
3243         else
3244                 user_thresh_max = div_factor_fine(cache->key.offset,
3245                                         bargs->usage_max);
3246
3247         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3248                 ret = 0;
3249
3250         btrfs_put_block_group(cache);
3251         return ret;
3252 }
3253
3254 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3255                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3256 {
3257         struct btrfs_block_group_cache *cache;
3258         u64 chunk_used, user_thresh;
3259         int ret = 1;
3260
3261         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3262         chunk_used = btrfs_block_group_used(&cache->item);
3263
3264         if (bargs->usage_min == 0)
3265                 user_thresh = 1;
3266         else if (bargs->usage > 100)
3267                 user_thresh = cache->key.offset;
3268         else
3269                 user_thresh = div_factor_fine(cache->key.offset,
3270                                               bargs->usage);
3271
3272         if (chunk_used < user_thresh)
3273                 ret = 0;
3274
3275         btrfs_put_block_group(cache);
3276         return ret;
3277 }
3278
3279 static int chunk_devid_filter(struct extent_buffer *leaf,
3280                               struct btrfs_chunk *chunk,
3281                               struct btrfs_balance_args *bargs)
3282 {
3283         struct btrfs_stripe *stripe;
3284         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3285         int i;
3286
3287         for (i = 0; i < num_stripes; i++) {
3288                 stripe = btrfs_stripe_nr(chunk, i);
3289                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3290                         return 0;
3291         }
3292
3293         return 1;
3294 }
3295
3296 /* [pstart, pend) */
3297 static int chunk_drange_filter(struct extent_buffer *leaf,
3298                                struct btrfs_chunk *chunk,
3299                                struct btrfs_balance_args *bargs)
3300 {
3301         struct btrfs_stripe *stripe;
3302         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3303         u64 stripe_offset;
3304         u64 stripe_length;
3305         int factor;
3306         int i;
3307
3308         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3309                 return 0;
3310
3311         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3312              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3313                 factor = num_stripes / 2;
3314         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3315                 factor = num_stripes - 1;
3316         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3317                 factor = num_stripes - 2;
3318         } else {
3319                 factor = num_stripes;
3320         }
3321
3322         for (i = 0; i < num_stripes; i++) {
3323                 stripe = btrfs_stripe_nr(chunk, i);
3324                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3325                         continue;
3326
3327                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3328                 stripe_length = btrfs_chunk_length(leaf, chunk);
3329                 stripe_length = div_u64(stripe_length, factor);
3330
3331                 if (stripe_offset < bargs->pend &&
3332                     stripe_offset + stripe_length > bargs->pstart)
3333                         return 0;
3334         }
3335
3336         return 1;
3337 }
3338
3339 /* [vstart, vend) */
3340 static int chunk_vrange_filter(struct extent_buffer *leaf,
3341                                struct btrfs_chunk *chunk,
3342                                u64 chunk_offset,
3343                                struct btrfs_balance_args *bargs)
3344 {
3345         if (chunk_offset < bargs->vend &&
3346             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3347                 /* at least part of the chunk is inside this vrange */
3348                 return 0;
3349
3350         return 1;
3351 }
3352
3353 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3354                                struct btrfs_chunk *chunk,
3355                                struct btrfs_balance_args *bargs)
3356 {
3357         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3358
3359         if (bargs->stripes_min <= num_stripes
3360                         && num_stripes <= bargs->stripes_max)
3361                 return 0;
3362
3363         return 1;
3364 }
3365
3366 static int chunk_soft_convert_filter(u64 chunk_type,
3367                                      struct btrfs_balance_args *bargs)
3368 {
3369         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3370                 return 0;
3371
3372         chunk_type = chunk_to_extended(chunk_type) &
3373                                 BTRFS_EXTENDED_PROFILE_MASK;
3374
3375         if (bargs->target == chunk_type)
3376                 return 1;
3377
3378         return 0;
3379 }
3380
3381 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3382                                 struct extent_buffer *leaf,
3383                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3384 {
3385         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3386         struct btrfs_balance_args *bargs = NULL;
3387         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3388
3389         /* type filter */
3390         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3391               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3392                 return 0;
3393         }
3394
3395         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3396                 bargs = &bctl->data;
3397         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3398                 bargs = &bctl->sys;
3399         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3400                 bargs = &bctl->meta;
3401
3402         /* profiles filter */
3403         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3404             chunk_profiles_filter(chunk_type, bargs)) {
3405                 return 0;
3406         }
3407
3408         /* usage filter */
3409         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3410             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3411                 return 0;
3412         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3413             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3414                 return 0;
3415         }
3416
3417         /* devid filter */
3418         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3419             chunk_devid_filter(leaf, chunk, bargs)) {
3420                 return 0;
3421         }
3422
3423         /* drange filter, makes sense only with devid filter */
3424         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3425             chunk_drange_filter(leaf, chunk, bargs)) {
3426                 return 0;
3427         }
3428
3429         /* vrange filter */
3430         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3431             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3432                 return 0;
3433         }
3434
3435         /* stripes filter */
3436         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3437             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3438                 return 0;
3439         }
3440
3441         /* soft profile changing mode */
3442         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3443             chunk_soft_convert_filter(chunk_type, bargs)) {
3444                 return 0;
3445         }
3446
3447         /*
3448          * limited by count, must be the last filter
3449          */
3450         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3451                 if (bargs->limit == 0)
3452                         return 0;
3453                 else
3454                         bargs->limit--;
3455         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3456                 /*
3457                  * Same logic as the 'limit' filter; the minimum cannot be
3458                  * determined here because we do not have the global information
3459                  * about the count of all chunks that satisfy the filters.
3460                  */
3461                 if (bargs->limit_max == 0)
3462                         return 0;
3463                 else
3464                         bargs->limit_max--;
3465         }
3466
3467         return 1;
3468 }
3469
3470 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3471 {
3472         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3473         struct btrfs_root *chunk_root = fs_info->chunk_root;
3474         struct btrfs_root *dev_root = fs_info->dev_root;
3475         struct list_head *devices;
3476         struct btrfs_device *device;
3477         u64 old_size;
3478         u64 size_to_free;
3479         u64 chunk_type;
3480         struct btrfs_chunk *chunk;
3481         struct btrfs_path *path = NULL;
3482         struct btrfs_key key;
3483         struct btrfs_key found_key;
3484         struct btrfs_trans_handle *trans;
3485         struct extent_buffer *leaf;
3486         int slot;
3487         int ret;
3488         int enospc_errors = 0;
3489         bool counting = true;
3490         /* The single value limit and min/max limits use the same bytes in the */
3491         u64 limit_data = bctl->data.limit;
3492         u64 limit_meta = bctl->meta.limit;
3493         u64 limit_sys = bctl->sys.limit;
3494         u32 count_data = 0;
3495         u32 count_meta = 0;
3496         u32 count_sys = 0;
3497         int chunk_reserved = 0;
3498         u64 bytes_used = 0;
3499
3500         /* step one make some room on all the devices */
3501         devices = &fs_info->fs_devices->devices;
3502         list_for_each_entry(device, devices, dev_list) {
3503                 old_size = btrfs_device_get_total_bytes(device);
3504                 size_to_free = div_factor(old_size, 1);
3505                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3506                 if (!device->writeable ||
3507                     btrfs_device_get_total_bytes(device) -
3508                     btrfs_device_get_bytes_used(device) > size_to_free ||
3509                     device->is_tgtdev_for_dev_replace)
3510                         continue;
3511
3512                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3513                 if (ret == -ENOSPC)
3514                         break;
3515                 if (ret) {
3516                         /* btrfs_shrink_device never returns ret > 0 */
3517                         WARN_ON(ret > 0);
3518                         goto error;
3519                 }
3520
3521                 trans = btrfs_start_transaction(dev_root, 0);
3522                 if (IS_ERR(trans)) {
3523                         ret = PTR_ERR(trans);
3524                         btrfs_info_in_rcu(fs_info,
3525                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3526                                           rcu_str_deref(device->name), ret,
3527                                           old_size, old_size - size_to_free);
3528                         goto error;
3529                 }
3530
3531                 ret = btrfs_grow_device(trans, device, old_size);
3532                 if (ret) {
3533                         btrfs_end_transaction(trans);
3534                         /* btrfs_grow_device never returns ret > 0 */
3535                         WARN_ON(ret > 0);
3536                         btrfs_info_in_rcu(fs_info,
3537                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3538                                           rcu_str_deref(device->name), ret,
3539                                           old_size, old_size - size_to_free);
3540                         goto error;
3541                 }
3542
3543                 btrfs_end_transaction(trans);
3544         }
3545
3546         /* step two, relocate all the chunks */
3547         path = btrfs_alloc_path();
3548         if (!path) {
3549                 ret = -ENOMEM;
3550                 goto error;
3551         }
3552
3553         /* zero out stat counters */
3554         spin_lock(&fs_info->balance_lock);
3555         memset(&bctl->stat, 0, sizeof(bctl->stat));
3556         spin_unlock(&fs_info->balance_lock);
3557 again:
3558         if (!counting) {
3559                 /*
3560                  * The single value limit and min/max limits use the same bytes
3561                  * in the
3562                  */
3563                 bctl->data.limit = limit_data;
3564                 bctl->meta.limit = limit_meta;
3565                 bctl->sys.limit = limit_sys;
3566         }
3567         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3568         key.offset = (u64)-1;
3569         key.type = BTRFS_CHUNK_ITEM_KEY;
3570
3571         while (1) {
3572                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3573                     atomic_read(&fs_info->balance_cancel_req)) {
3574                         ret = -ECANCELED;
3575                         goto error;
3576                 }
3577
3578                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3579                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3580                 if (ret < 0) {
3581                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3582                         goto error;
3583                 }
3584
3585                 /*
3586                  * this shouldn't happen, it means the last relocate
3587                  * failed
3588                  */
3589                 if (ret == 0)
3590                         BUG(); /* FIXME break ? */
3591
3592                 ret = btrfs_previous_item(chunk_root, path, 0,
3593                                           BTRFS_CHUNK_ITEM_KEY);
3594                 if (ret) {
3595                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3596                         ret = 0;
3597                         break;
3598                 }
3599
3600                 leaf = path->nodes[0];
3601                 slot = path->slots[0];
3602                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3603
3604                 if (found_key.objectid != key.objectid) {
3605                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3606                         break;
3607                 }
3608
3609                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3610                 chunk_type = btrfs_chunk_type(leaf, chunk);
3611
3612                 if (!counting) {
3613                         spin_lock(&fs_info->balance_lock);
3614                         bctl->stat.considered++;
3615                         spin_unlock(&fs_info->balance_lock);
3616                 }
3617
3618                 ret = should_balance_chunk(fs_info, leaf, chunk,
3619                                            found_key.offset);
3620
3621                 btrfs_release_path(path);
3622                 if (!ret) {
3623                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3624                         goto loop;
3625                 }
3626
3627                 if (counting) {
3628                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3629                         spin_lock(&fs_info->balance_lock);
3630                         bctl->stat.expected++;
3631                         spin_unlock(&fs_info->balance_lock);
3632
3633                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3634                                 count_data++;
3635                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3636                                 count_sys++;
3637                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3638                                 count_meta++;
3639
3640                         goto loop;
3641                 }
3642
3643                 /*
3644                  * Apply limit_min filter, no need to check if the LIMITS
3645                  * filter is used, limit_min is 0 by default
3646                  */
3647                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3648                                         count_data < bctl->data.limit_min)
3649                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3650                                         count_meta < bctl->meta.limit_min)
3651                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3652                                         count_sys < bctl->sys.limit_min)) {
3653                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3654                         goto loop;
3655                 }
3656
3657                 ASSERT(fs_info->data_sinfo);
3658                 spin_lock(&fs_info->data_sinfo->lock);
3659                 bytes_used = fs_info->data_sinfo->bytes_used;
3660                 spin_unlock(&fs_info->data_sinfo->lock);
3661
3662                 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3663                     !chunk_reserved && !bytes_used) {
3664                         trans = btrfs_start_transaction(chunk_root, 0);
3665                         if (IS_ERR(trans)) {
3666                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3667                                 ret = PTR_ERR(trans);
3668                                 goto error;
3669                         }
3670
3671                         ret = btrfs_force_chunk_alloc(trans, fs_info,
3672                                                       BTRFS_BLOCK_GROUP_DATA);
3673                         btrfs_end_transaction(trans);
3674                         if (ret < 0) {
3675                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3676                                 goto error;
3677                         }
3678                         chunk_reserved = 1;
3679                 }
3680
3681                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3682                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3683                 if (ret && ret != -ENOSPC)
3684                         goto error;
3685                 if (ret == -ENOSPC) {
3686                         enospc_errors++;
3687                 } else {
3688                         spin_lock(&fs_info->balance_lock);
3689                         bctl->stat.completed++;
3690                         spin_unlock(&fs_info->balance_lock);
3691                 }
3692 loop:
3693                 if (found_key.offset == 0)
3694                         break;
3695                 key.offset = found_key.offset - 1;
3696         }
3697
3698         if (counting) {
3699                 btrfs_release_path(path);
3700                 counting = false;
3701                 goto again;
3702         }
3703 error:
3704         btrfs_free_path(path);
3705         if (enospc_errors) {
3706                 btrfs_info(fs_info, "%d enospc errors during balance",
3707                            enospc_errors);
3708                 if (!ret)
3709                         ret = -ENOSPC;
3710         }
3711
3712         return ret;
3713 }
3714
3715 /**
3716  * alloc_profile_is_valid - see if a given profile is valid and reduced
3717  * @flags: profile to validate
3718  * @extended: if true @flags is treated as an extended profile
3719  */
3720 static int alloc_profile_is_valid(u64 flags, int extended)
3721 {
3722         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3723                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3724
3725         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3726
3727         /* 1) check that all other bits are zeroed */
3728         if (flags & ~mask)
3729                 return 0;
3730
3731         /* 2) see if profile is reduced */
3732         if (flags == 0)
3733                 return !extended; /* "0" is valid for usual profiles */
3734
3735         /* true if exactly one bit set */
3736         return (flags & (flags - 1)) == 0;
3737 }
3738
3739 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3740 {
3741         /* cancel requested || normal exit path */
3742         return atomic_read(&fs_info->balance_cancel_req) ||
3743                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3744                  atomic_read(&fs_info->balance_cancel_req) == 0);
3745 }
3746
3747 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3748 {
3749         int ret;
3750
3751         unset_balance_control(fs_info);
3752         ret = del_balance_item(fs_info);
3753         if (ret)
3754                 btrfs_handle_fs_error(fs_info, ret, NULL);
3755
3756         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3757 }
3758
3759 /* Non-zero return value signifies invalidity */
3760 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3761                 u64 allowed)
3762 {
3763         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3764                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3765                  (bctl_arg->target & ~allowed)));
3766 }
3767
3768 /*
3769  * Should be called with both balance and volume mutexes held
3770  */
3771 int btrfs_balance(struct btrfs_balance_control *bctl,
3772                   struct btrfs_ioctl_balance_args *bargs)
3773 {
3774         struct btrfs_fs_info *fs_info = bctl->fs_info;
3775         u64 meta_target, data_target;
3776         u64 allowed;
3777         int mixed = 0;
3778         int ret;
3779         u64 num_devices;
3780         unsigned seq;
3781
3782         if (btrfs_fs_closing(fs_info) ||
3783             atomic_read(&fs_info->balance_pause_req) ||
3784             atomic_read(&fs_info->balance_cancel_req)) {
3785                 ret = -EINVAL;
3786                 goto out;
3787         }
3788
3789         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3790         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3791                 mixed = 1;
3792
3793         /*
3794          * In case of mixed groups both data and meta should be picked,
3795          * and identical options should be given for both of them.
3796          */
3797         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3798         if (mixed && (bctl->flags & allowed)) {
3799                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3800                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3801                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3802                         btrfs_err(fs_info,
3803                                   "with mixed groups data and metadata balance options must be the same");
3804                         ret = -EINVAL;
3805                         goto out;
3806                 }
3807         }
3808
3809         num_devices = fs_info->fs_devices->num_devices;
3810         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3811         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3812                 BUG_ON(num_devices < 1);
3813                 num_devices--;
3814         }
3815         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3816         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3817         if (num_devices > 1)
3818                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3819         if (num_devices > 2)
3820                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3821         if (num_devices > 3)
3822                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3823                             BTRFS_BLOCK_GROUP_RAID6);
3824         if (validate_convert_profile(&bctl->data, allowed)) {
3825                 btrfs_err(fs_info,
3826                           "unable to start balance with target data profile %llu",
3827                           bctl->data.target);
3828                 ret = -EINVAL;
3829                 goto out;
3830         }
3831         if (validate_convert_profile(&bctl->meta, allowed)) {
3832                 btrfs_err(fs_info,
3833                           "unable to start balance with target metadata profile %llu",
3834                           bctl->meta.target);
3835                 ret = -EINVAL;
3836                 goto out;
3837         }
3838         if (validate_convert_profile(&bctl->sys, allowed)) {
3839                 btrfs_err(fs_info,
3840                           "unable to start balance with target system profile %llu",
3841                           bctl->sys.target);
3842                 ret = -EINVAL;
3843                 goto out;
3844         }
3845
3846         /* allow to reduce meta or sys integrity only if force set */
3847         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3848                         BTRFS_BLOCK_GROUP_RAID10 |
3849                         BTRFS_BLOCK_GROUP_RAID5 |
3850                         BTRFS_BLOCK_GROUP_RAID6;
3851         do {
3852                 seq = read_seqbegin(&fs_info->profiles_lock);
3853
3854                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3855                      (fs_info->avail_system_alloc_bits & allowed) &&
3856                      !(bctl->sys.target & allowed)) ||
3857                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3858                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3859                      !(bctl->meta.target & allowed))) {
3860                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3861                                 btrfs_info(fs_info,
3862                                            "force reducing metadata integrity");
3863                         } else {
3864                                 btrfs_err(fs_info,
3865                                           "balance will reduce metadata integrity, use force if you want this");
3866                                 ret = -EINVAL;
3867                                 goto out;
3868                         }
3869                 }
3870         } while (read_seqretry(&fs_info->profiles_lock, seq));
3871
3872         /* if we're not converting, the target field is uninitialized */
3873         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3874                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3875         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3876                 bctl->data.target : fs_info->avail_data_alloc_bits;
3877         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3878                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3879                 btrfs_warn(fs_info,
3880                            "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3881                            meta_target, data_target);
3882         }
3883
3884         ret = insert_balance_item(fs_info, bctl);
3885         if (ret && ret != -EEXIST)
3886                 goto out;
3887
3888         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3889                 BUG_ON(ret == -EEXIST);
3890                 set_balance_control(bctl);
3891         } else {
3892                 BUG_ON(ret != -EEXIST);
3893                 spin_lock(&fs_info->balance_lock);
3894                 update_balance_args(bctl);
3895                 spin_unlock(&fs_info->balance_lock);
3896         }
3897
3898         atomic_inc(&fs_info->balance_running);
3899         mutex_unlock(&fs_info->balance_mutex);
3900
3901         ret = __btrfs_balance(fs_info);
3902
3903         mutex_lock(&fs_info->balance_mutex);
3904         atomic_dec(&fs_info->balance_running);
3905
3906         if (bargs) {
3907                 memset(bargs, 0, sizeof(*bargs));
3908                 update_ioctl_balance_args(fs_info, 0, bargs);
3909         }
3910
3911         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3912             balance_need_close(fs_info)) {
3913                 __cancel_balance(fs_info);
3914         }
3915
3916         wake_up(&fs_info->balance_wait_q);
3917
3918         return ret;
3919 out:
3920         if (bctl->flags & BTRFS_BALANCE_RESUME)
3921                 __cancel_balance(fs_info);
3922         else {
3923                 kfree(bctl);
3924                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3925         }
3926         return ret;
3927 }
3928
3929 static int balance_kthread(void *data)
3930 {
3931         struct btrfs_fs_info *fs_info = data;
3932         int ret = 0;
3933
3934         mutex_lock(&fs_info->volume_mutex);
3935         mutex_lock(&fs_info->balance_mutex);
3936
3937         if (fs_info->balance_ctl) {
3938                 btrfs_info(fs_info, "continuing balance");
3939                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3940         }
3941
3942         mutex_unlock(&fs_info->balance_mutex);
3943         mutex_unlock(&fs_info->volume_mutex);
3944
3945         return ret;
3946 }
3947
3948 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3949 {
3950         struct task_struct *tsk;
3951
3952         spin_lock(&fs_info->balance_lock);
3953         if (!fs_info->balance_ctl) {
3954                 spin_unlock(&fs_info->balance_lock);
3955                 return 0;
3956         }
3957         spin_unlock(&fs_info->balance_lock);
3958
3959         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3960                 btrfs_info(fs_info, "force skipping balance");
3961                 return 0;
3962         }
3963
3964         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3965         return PTR_ERR_OR_ZERO(tsk);
3966 }
3967
3968 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3969 {
3970         struct btrfs_balance_control *bctl;
3971         struct btrfs_balance_item *item;
3972         struct btrfs_disk_balance_args disk_bargs;
3973         struct btrfs_path *path;
3974         struct extent_buffer *leaf;
3975         struct btrfs_key key;
3976         int ret;
3977
3978         path = btrfs_alloc_path();
3979         if (!path)
3980                 return -ENOMEM;
3981
3982         key.objectid = BTRFS_BALANCE_OBJECTID;
3983         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3984         key.offset = 0;
3985
3986         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3987         if (ret < 0)
3988                 goto out;
3989         if (ret > 0) { /* ret = -ENOENT; */
3990                 ret = 0;
3991                 goto out;
3992         }
3993
3994         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3995         if (!bctl) {
3996                 ret = -ENOMEM;
3997                 goto out;
3998         }
3999
4000         leaf = path->nodes[0];
4001         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4002
4003         bctl->fs_info = fs_info;
4004         bctl->flags = btrfs_balance_flags(leaf, item);
4005         bctl->flags |= BTRFS_BALANCE_RESUME;
4006
4007         btrfs_balance_data(leaf, item, &disk_bargs);
4008         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4009         btrfs_balance_meta(leaf, item, &disk_bargs);
4010         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4011         btrfs_balance_sys(leaf, item, &disk_bargs);
4012         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4013
4014         WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4015
4016         mutex_lock(&fs_info->volume_mutex);
4017         mutex_lock(&fs_info->balance_mutex);
4018
4019         set_balance_control(bctl);
4020
4021         mutex_unlock(&fs_info->balance_mutex);
4022         mutex_unlock(&fs_info->volume_mutex);
4023 out:
4024         btrfs_free_path(path);
4025         return ret;
4026 }
4027
4028 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4029 {
4030         int ret = 0;
4031
4032         mutex_lock(&fs_info->balance_mutex);
4033         if (!fs_info->balance_ctl) {
4034                 mutex_unlock(&fs_info->balance_mutex);
4035                 return -ENOTCONN;
4036         }
4037
4038         if (atomic_read(&fs_info->balance_running)) {
4039                 atomic_inc(&fs_info->balance_pause_req);
4040                 mutex_unlock(&fs_info->balance_mutex);
4041
4042                 wait_event(fs_info->balance_wait_q,
4043                            atomic_read(&fs_info->balance_running) == 0);
4044
4045                 mutex_lock(&fs_info->balance_mutex);
4046                 /* we are good with balance_ctl ripped off from under us */
4047                 BUG_ON(atomic_read(&fs_info->balance_running));
4048                 atomic_dec(&fs_info->balance_pause_req);
4049         } else {
4050                 ret = -ENOTCONN;
4051         }
4052
4053         mutex_unlock(&fs_info->balance_mutex);
4054         return ret;
4055 }
4056
4057 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4058 {
4059         if (fs_info->sb->s_flags & MS_RDONLY)
4060                 return -EROFS;
4061
4062         mutex_lock(&fs_info->balance_mutex);
4063         if (!fs_info->balance_ctl) {
4064                 mutex_unlock(&fs_info->balance_mutex);
4065                 return -ENOTCONN;
4066         }
4067
4068         atomic_inc(&fs_info->balance_cancel_req);
4069         /*
4070          * if we are running just wait and return, balance item is
4071          * deleted in btrfs_balance in this case
4072          */
4073         if (atomic_read(&fs_info->balance_running)) {
4074                 mutex_unlock(&fs_info->balance_mutex);
4075                 wait_event(fs_info->balance_wait_q,
4076                            atomic_read(&fs_info->balance_running) == 0);
4077                 mutex_lock(&fs_info->balance_mutex);
4078         } else {
4079                 /* __cancel_balance needs volume_mutex */
4080                 mutex_unlock(&fs_info->balance_mutex);
4081                 mutex_lock(&fs_info->volume_mutex);
4082                 mutex_lock(&fs_info->balance_mutex);
4083
4084                 if (fs_info->balance_ctl)
4085                         __cancel_balance(fs_info);
4086
4087                 mutex_unlock(&fs_info->volume_mutex);
4088         }
4089
4090         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4091         atomic_dec(&fs_info->balance_cancel_req);
4092         mutex_unlock(&fs_info->balance_mutex);
4093         return 0;
4094 }
4095
4096 static int btrfs_uuid_scan_kthread(void *data)
4097 {
4098         struct btrfs_fs_info *fs_info = data;
4099         struct btrfs_root *root = fs_info->tree_root;
4100         struct btrfs_key key;
4101         struct btrfs_path *path = NULL;
4102         int ret = 0;
4103         struct extent_buffer *eb;
4104         int slot;
4105         struct btrfs_root_item root_item;
4106         u32 item_size;
4107         struct btrfs_trans_handle *trans = NULL;
4108
4109         path = btrfs_alloc_path();
4110         if (!path) {
4111                 ret = -ENOMEM;
4112                 goto out;
4113         }
4114
4115         key.objectid = 0;
4116         key.type = BTRFS_ROOT_ITEM_KEY;
4117         key.offset = 0;
4118
4119         while (1) {
4120                 ret = btrfs_search_forward(root, &key, path, 0);
4121                 if (ret) {
4122                         if (ret > 0)
4123                                 ret = 0;
4124                         break;
4125                 }
4126
4127                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4128                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4129                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4130                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4131                         goto skip;
4132
4133                 eb = path->nodes[0];
4134                 slot = path->slots[0];
4135                 item_size = btrfs_item_size_nr(eb, slot);
4136                 if (item_size < sizeof(root_item))
4137                         goto skip;
4138
4139                 read_extent_buffer(eb, &root_item,
4140                                    btrfs_item_ptr_offset(eb, slot),
4141                                    (int)sizeof(root_item));
4142                 if (btrfs_root_refs(&root_item) == 0)
4143                         goto skip;
4144
4145                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4146                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4147                         if (trans)
4148                                 goto update_tree;
4149
4150                         btrfs_release_path(path);
4151                         /*
4152                          * 1 - subvol uuid item
4153                          * 1 - received_subvol uuid item
4154                          */
4155                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4156                         if (IS_ERR(trans)) {
4157                                 ret = PTR_ERR(trans);
4158                                 break;
4159                         }
4160                         continue;
4161                 } else {
4162                         goto skip;
4163                 }
4164 update_tree:
4165                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4166                         ret = btrfs_uuid_tree_add(trans, fs_info,
4167                                                   root_item.uuid,
4168                                                   BTRFS_UUID_KEY_SUBVOL,
4169                                                   key.objectid);
4170                         if (ret < 0) {
4171                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4172                                         ret);
4173                                 break;
4174                         }
4175                 }
4176
4177                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4178                         ret = btrfs_uuid_tree_add(trans, fs_info,
4179                                                   root_item.received_uuid,
4180                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4181                                                   key.objectid);
4182                         if (ret < 0) {
4183                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4184                                         ret);
4185                                 break;
4186                         }
4187                 }
4188
4189 skip:
4190                 if (trans) {
4191                         ret = btrfs_end_transaction(trans);
4192                         trans = NULL;
4193                         if (ret)
4194                                 break;
4195                 }
4196
4197                 btrfs_release_path(path);
4198                 if (key.offset < (u64)-1) {
4199                         key.offset++;
4200                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4201                         key.offset = 0;
4202                         key.type = BTRFS_ROOT_ITEM_KEY;
4203                 } else if (key.objectid < (u64)-1) {
4204                         key.offset = 0;
4205                         key.type = BTRFS_ROOT_ITEM_KEY;
4206                         key.objectid++;
4207                 } else {
4208                         break;
4209                 }
4210                 cond_resched();
4211         }
4212
4213 out:
4214         btrfs_free_path(path);
4215         if (trans && !IS_ERR(trans))
4216                 btrfs_end_transaction(trans);
4217         if (ret)
4218                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4219         else
4220                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4221         up(&fs_info->uuid_tree_rescan_sem);
4222         return 0;
4223 }
4224
4225 /*
4226  * Callback for btrfs_uuid_tree_iterate().
4227  * returns:
4228  * 0    check succeeded, the entry is not outdated.
4229  * < 0  if an error occurred.
4230  * > 0  if the check failed, which means the caller shall remove the entry.
4231  */
4232 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4233                                        u8 *uuid, u8 type, u64 subid)
4234 {
4235         struct btrfs_key key;
4236         int ret = 0;
4237         struct btrfs_root *subvol_root;
4238
4239         if (type != BTRFS_UUID_KEY_SUBVOL &&
4240             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4241                 goto out;
4242
4243         key.objectid = subid;
4244         key.type = BTRFS_ROOT_ITEM_KEY;
4245         key.offset = (u64)-1;
4246         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4247         if (IS_ERR(subvol_root)) {
4248                 ret = PTR_ERR(subvol_root);
4249                 if (ret == -ENOENT)
4250                         ret = 1;
4251                 goto out;
4252         }
4253
4254         switch (type) {
4255         case BTRFS_UUID_KEY_SUBVOL:
4256                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4257                         ret = 1;
4258                 break;
4259         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4260                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4261                            BTRFS_UUID_SIZE))
4262                         ret = 1;
4263                 break;
4264         }
4265
4266 out:
4267         return ret;
4268 }
4269
4270 static int btrfs_uuid_rescan_kthread(void *data)
4271 {
4272         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4273         int ret;
4274
4275         /*
4276          * 1st step is to iterate through the existing UUID tree and
4277          * to delete all entries that contain outdated data.
4278          * 2nd step is to add all missing entries to the UUID tree.
4279          */
4280         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4281         if (ret < 0) {
4282                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4283                 up(&fs_info->uuid_tree_rescan_sem);
4284                 return ret;
4285         }
4286         return btrfs_uuid_scan_kthread(data);
4287 }
4288
4289 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4290 {
4291         struct btrfs_trans_handle *trans;
4292         struct btrfs_root *tree_root = fs_info->tree_root;
4293         struct btrfs_root *uuid_root;
4294         struct task_struct *task;
4295         int ret;
4296
4297         /*
4298          * 1 - root node
4299          * 1 - root item
4300          */
4301         trans = btrfs_start_transaction(tree_root, 2);
4302         if (IS_ERR(trans))
4303                 return PTR_ERR(trans);
4304
4305         uuid_root = btrfs_create_tree(trans, fs_info,
4306                                       BTRFS_UUID_TREE_OBJECTID);
4307         if (IS_ERR(uuid_root)) {
4308                 ret = PTR_ERR(uuid_root);
4309                 btrfs_abort_transaction(trans, ret);
4310                 btrfs_end_transaction(trans);
4311                 return ret;
4312         }
4313
4314         fs_info->uuid_root = uuid_root;
4315
4316         ret = btrfs_commit_transaction(trans);
4317         if (ret)
4318                 return ret;
4319
4320         down(&fs_info->uuid_tree_rescan_sem);
4321         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4322         if (IS_ERR(task)) {
4323                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4324                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4325                 up(&fs_info->uuid_tree_rescan_sem);
4326                 return PTR_ERR(task);
4327         }
4328
4329         return 0;
4330 }
4331
4332 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4333 {
4334         struct task_struct *task;
4335
4336         down(&fs_info->uuid_tree_rescan_sem);
4337         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4338         if (IS_ERR(task)) {
4339                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4340                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4341                 up(&fs_info->uuid_tree_rescan_sem);
4342                 return PTR_ERR(task);
4343         }
4344
4345         return 0;
4346 }
4347
4348 /*
4349  * shrinking a device means finding all of the device extents past
4350  * the new size, and then following the back refs to the chunks.
4351  * The chunk relocation code actually frees the device extent
4352  */
4353 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4354 {
4355         struct btrfs_fs_info *fs_info = device->fs_info;
4356         struct btrfs_root *root = fs_info->dev_root;
4357         struct btrfs_trans_handle *trans;
4358         struct btrfs_dev_extent *dev_extent = NULL;
4359         struct btrfs_path *path;
4360         u64 length;
4361         u64 chunk_offset;
4362         int ret;
4363         int slot;
4364         int failed = 0;
4365         bool retried = false;
4366         bool checked_pending_chunks = false;
4367         struct extent_buffer *l;
4368         struct btrfs_key key;
4369         struct btrfs_super_block *super_copy = fs_info->super_copy;
4370         u64 old_total = btrfs_super_total_bytes(super_copy);
4371         u64 old_size = btrfs_device_get_total_bytes(device);
4372         u64 diff;
4373
4374         new_size = round_down(new_size, fs_info->sectorsize);
4375         diff = round_down(old_size - new_size, fs_info->sectorsize);
4376
4377         if (device->is_tgtdev_for_dev_replace)
4378                 return -EINVAL;
4379
4380         path = btrfs_alloc_path();
4381         if (!path)
4382                 return -ENOMEM;
4383
4384         path->reada = READA_FORWARD;
4385
4386         mutex_lock(&fs_info->chunk_mutex);
4387
4388         btrfs_device_set_total_bytes(device, new_size);
4389         if (device->writeable) {
4390                 device->fs_devices->total_rw_bytes -= diff;
4391                 atomic64_sub(diff, &fs_info->free_chunk_space);
4392         }
4393         mutex_unlock(&fs_info->chunk_mutex);
4394
4395 again:
4396         key.objectid = device->devid;
4397         key.offset = (u64)-1;
4398         key.type = BTRFS_DEV_EXTENT_KEY;
4399
4400         do {
4401                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4402                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4403                 if (ret < 0) {
4404                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4405                         goto done;
4406                 }
4407
4408                 ret = btrfs_previous_item(root, path, 0, key.type);
4409                 if (ret)
4410                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4411                 if (ret < 0)
4412                         goto done;
4413                 if (ret) {
4414                         ret = 0;
4415                         btrfs_release_path(path);
4416                         break;
4417                 }
4418
4419                 l = path->nodes[0];
4420                 slot = path->slots[0];
4421                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4422
4423                 if (key.objectid != device->devid) {
4424                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4425                         btrfs_release_path(path);
4426                         break;
4427                 }
4428
4429                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4430                 length = btrfs_dev_extent_length(l, dev_extent);
4431
4432                 if (key.offset + length <= new_size) {
4433                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4434                         btrfs_release_path(path);
4435                         break;
4436                 }
4437
4438                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4439                 btrfs_release_path(path);
4440
4441                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4442                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4443                 if (ret && ret != -ENOSPC)
4444                         goto done;
4445                 if (ret == -ENOSPC)
4446                         failed++;
4447         } while (key.offset-- > 0);
4448
4449         if (failed && !retried) {
4450                 failed = 0;
4451                 retried = true;
4452                 goto again;
4453         } else if (failed && retried) {
4454                 ret = -ENOSPC;
4455                 goto done;
4456         }
4457
4458         /* Shrinking succeeded, else we would be at "done". */
4459         trans = btrfs_start_transaction(root, 0);
4460         if (IS_ERR(trans)) {
4461                 ret = PTR_ERR(trans);
4462                 goto done;
4463         }
4464
4465         mutex_lock(&fs_info->chunk_mutex);
4466
4467         /*
4468          * We checked in the above loop all device extents that were already in
4469          * the device tree. However before we have updated the device's
4470          * total_bytes to the new size, we might have had chunk allocations that
4471          * have not complete yet (new block groups attached to transaction
4472          * handles), and therefore their device extents were not yet in the
4473          * device tree and we missed them in the loop above. So if we have any
4474          * pending chunk using a device extent that overlaps the device range
4475          * that we can not use anymore, commit the current transaction and
4476          * repeat the search on the device tree - this way we guarantee we will
4477          * not have chunks using device extents that end beyond 'new_size'.
4478          */
4479         if (!checked_pending_chunks) {
4480                 u64 start = new_size;
4481                 u64 len = old_size - new_size;
4482
4483                 if (contains_pending_extent(trans->transaction, device,
4484                                             &start, len)) {
4485                         mutex_unlock(&fs_info->chunk_mutex);
4486                         checked_pending_chunks = true;
4487                         failed = 0;
4488                         retried = false;
4489                         ret = btrfs_commit_transaction(trans);
4490                         if (ret)
4491                                 goto done;
4492                         goto again;
4493                 }
4494         }
4495
4496         btrfs_device_set_disk_total_bytes(device, new_size);
4497         if (list_empty(&device->resized_list))
4498                 list_add_tail(&device->resized_list,
4499                               &fs_info->fs_devices->resized_devices);
4500
4501         WARN_ON(diff > old_total);
4502         btrfs_set_super_total_bytes(super_copy,
4503                         round_down(old_total - diff, fs_info->sectorsize));
4504         mutex_unlock(&fs_info->chunk_mutex);
4505
4506         /* Now btrfs_update_device() will change the on-disk size. */
4507         ret = btrfs_update_device(trans, device);
4508         btrfs_end_transaction(trans);
4509 done:
4510         btrfs_free_path(path);
4511         if (ret) {
4512                 mutex_lock(&fs_info->chunk_mutex);
4513                 btrfs_device_set_total_bytes(device, old_size);
4514                 if (device->writeable)
4515                         device->fs_devices->total_rw_bytes += diff;
4516                 atomic64_add(diff, &fs_info->free_chunk_space);
4517                 mutex_unlock(&fs_info->chunk_mutex);
4518         }
4519         return ret;
4520 }
4521
4522 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4523                            struct btrfs_key *key,
4524                            struct btrfs_chunk *chunk, int item_size)
4525 {
4526         struct btrfs_super_block *super_copy = fs_info->super_copy;
4527         struct btrfs_disk_key disk_key;
4528         u32 array_size;
4529         u8 *ptr;
4530
4531         mutex_lock(&fs_info->chunk_mutex);
4532         array_size = btrfs_super_sys_array_size(super_copy);
4533         if (array_size + item_size + sizeof(disk_key)
4534                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4535                 mutex_unlock(&fs_info->chunk_mutex);
4536                 return -EFBIG;
4537         }
4538
4539         ptr = super_copy->sys_chunk_array + array_size;
4540         btrfs_cpu_key_to_disk(&disk_key, key);
4541         memcpy(ptr, &disk_key, sizeof(disk_key));
4542         ptr += sizeof(disk_key);
4543         memcpy(ptr, chunk, item_size);
4544         item_size += sizeof(disk_key);
4545         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4546         mutex_unlock(&fs_info->chunk_mutex);
4547
4548         return 0;
4549 }
4550
4551 /*
4552  * sort the devices in descending order by max_avail, total_avail
4553  */
4554 static int btrfs_cmp_device_info(const void *a, const void *b)
4555 {
4556         const struct btrfs_device_info *di_a = a;
4557         const struct btrfs_device_info *di_b = b;
4558
4559         if (di_a->max_avail > di_b->max_avail)
4560                 return -1;
4561         if (di_a->max_avail < di_b->max_avail)
4562                 return 1;
4563         if (di_a->total_avail > di_b->total_avail)
4564                 return -1;
4565         if (di_a->total_avail < di_b->total_avail)
4566                 return 1;
4567         return 0;
4568 }
4569
4570 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4571 {
4572         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4573                 return;
4574
4575         btrfs_set_fs_incompat(info, RAID56);
4576 }
4577
4578 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)             \
4579                         - sizeof(struct btrfs_chunk))           \
4580                         / sizeof(struct btrfs_stripe) + 1)
4581
4582 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4583                                 - 2 * sizeof(struct btrfs_disk_key)     \
4584                                 - 2 * sizeof(struct btrfs_chunk))       \
4585                                 / sizeof(struct btrfs_stripe) + 1)
4586
4587 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4588                                u64 start, u64 type)
4589 {
4590         struct btrfs_fs_info *info = trans->fs_info;
4591         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4592         struct btrfs_device *device;
4593         struct map_lookup *map = NULL;
4594         struct extent_map_tree *em_tree;
4595         struct extent_map *em;
4596         struct btrfs_device_info *devices_info = NULL;
4597         u64 total_avail;
4598         int num_stripes;        /* total number of stripes to allocate */
4599         int data_stripes;       /* number of stripes that count for
4600                                    block group size */
4601         int sub_stripes;        /* sub_stripes info for map */
4602         int dev_stripes;        /* stripes per dev */
4603         int devs_max;           /* max devs to use */
4604         int devs_min;           /* min devs needed */
4605         int devs_increment;     /* ndevs has to be a multiple of this */
4606         int ncopies;            /* how many copies to data has */
4607         int ret;
4608         u64 max_stripe_size;
4609         u64 max_chunk_size;
4610         u64 stripe_size;
4611         u64 num_bytes;
4612         int ndevs;
4613         int i;
4614         int j;
4615         int index;
4616
4617         BUG_ON(!alloc_profile_is_valid(type, 0));
4618
4619         if (list_empty(&fs_devices->alloc_list))
4620                 return -ENOSPC;
4621
4622         index = __get_raid_index(type);
4623
4624         sub_stripes = btrfs_raid_array[index].sub_stripes;
4625         dev_stripes = btrfs_raid_array[index].dev_stripes;
4626         devs_max = btrfs_raid_array[index].devs_max;
4627         devs_min = btrfs_raid_array[index].devs_min;
4628         devs_increment = btrfs_raid_array[index].devs_increment;
4629         ncopies = btrfs_raid_array[index].ncopies;
4630
4631         if (type & BTRFS_BLOCK_GROUP_DATA) {
4632                 max_stripe_size = SZ_1G;
4633                 max_chunk_size = 10 * max_stripe_size;
4634                 if (!devs_max)
4635                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4636         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4637                 /* for larger filesystems, use larger metadata chunks */
4638                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4639                         max_stripe_size = SZ_1G;
4640                 else
4641                         max_stripe_size = SZ_256M;
4642                 max_chunk_size = max_stripe_size;
4643                 if (!devs_max)
4644                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4645         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4646                 max_stripe_size = SZ_32M;
4647                 max_chunk_size = 2 * max_stripe_size;
4648                 if (!devs_max)
4649                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4650         } else {
4651                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4652                        type);
4653                 BUG_ON(1);
4654         }
4655
4656         /* we don't want a chunk larger than 10% of writeable space */
4657         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4658                              max_chunk_size);
4659
4660         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4661                                GFP_NOFS);
4662         if (!devices_info)
4663                 return -ENOMEM;
4664
4665         /*
4666          * in the first pass through the devices list, we gather information
4667          * about the available holes on each device.
4668          */
4669         ndevs = 0;
4670         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4671                 u64 max_avail;
4672                 u64 dev_offset;
4673
4674                 if (!device->writeable) {
4675                         WARN(1, KERN_ERR
4676                                "BTRFS: read-only device in alloc_list\n");
4677                         continue;
4678                 }
4679
4680                 if (!device->in_fs_metadata ||
4681                     device->is_tgtdev_for_dev_replace)
4682                         continue;
4683
4684                 if (device->total_bytes > device->bytes_used)
4685                         total_avail = device->total_bytes - device->bytes_used;
4686                 else
4687                         total_avail = 0;
4688
4689                 /* If there is no space on this device, skip it. */
4690                 if (total_avail == 0)
4691                         continue;
4692
4693                 ret = find_free_dev_extent(trans, device,
4694                                            max_stripe_size * dev_stripes,
4695                                            &dev_offset, &max_avail);
4696                 if (ret && ret != -ENOSPC)
4697                         goto error;
4698
4699                 if (ret == 0)
4700                         max_avail = max_stripe_size * dev_stripes;
4701
4702                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4703                         continue;
4704
4705                 if (ndevs == fs_devices->rw_devices) {
4706                         WARN(1, "%s: found more than %llu devices\n",
4707                              __func__, fs_devices->rw_devices);
4708                         break;
4709                 }
4710                 devices_info[ndevs].dev_offset = dev_offset;
4711                 devices_info[ndevs].max_avail = max_avail;
4712                 devices_info[ndevs].total_avail = total_avail;
4713                 devices_info[ndevs].dev = device;
4714                 ++ndevs;
4715         }
4716
4717         /*
4718          * now sort the devices by hole size / available space
4719          */
4720         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4721              btrfs_cmp_device_info, NULL);
4722
4723         /* round down to number of usable stripes */
4724         ndevs = round_down(ndevs, devs_increment);
4725
4726         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4727                 ret = -ENOSPC;
4728                 goto error;
4729         }
4730
4731         ndevs = min(ndevs, devs_max);
4732
4733         /*
4734          * the primary goal is to maximize the number of stripes, so use as many
4735          * devices as possible, even if the stripes are not maximum sized.
4736          */
4737         stripe_size = devices_info[ndevs-1].max_avail;
4738         num_stripes = ndevs * dev_stripes;
4739
4740         /*
4741          * this will have to be fixed for RAID1 and RAID10 over
4742          * more drives
4743          */
4744         data_stripes = num_stripes / ncopies;
4745
4746         if (type & BTRFS_BLOCK_GROUP_RAID5)
4747                 data_stripes = num_stripes - 1;
4748
4749         if (type & BTRFS_BLOCK_GROUP_RAID6)
4750                 data_stripes = num_stripes - 2;
4751
4752         /*
4753          * Use the number of data stripes to figure out how big this chunk
4754          * is really going to be in terms of logical address space,
4755          * and compare that answer with the max chunk size
4756          */
4757         if (stripe_size * data_stripes > max_chunk_size) {
4758                 u64 mask = (1ULL << 24) - 1;
4759
4760                 stripe_size = div_u64(max_chunk_size, data_stripes);
4761
4762                 /* bump the answer up to a 16MB boundary */
4763                 stripe_size = (stripe_size + mask) & ~mask;
4764
4765                 /* but don't go higher than the limits we found
4766                  * while searching for free extents
4767                  */
4768                 if (stripe_size > devices_info[ndevs-1].max_avail)
4769                         stripe_size = devices_info[ndevs-1].max_avail;
4770         }
4771
4772         stripe_size = div_u64(stripe_size, dev_stripes);
4773
4774         /* align to BTRFS_STRIPE_LEN */
4775         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4776
4777         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4778         if (!map) {
4779                 ret = -ENOMEM;
4780                 goto error;
4781         }
4782         map->num_stripes = num_stripes;
4783
4784         for (i = 0; i < ndevs; ++i) {
4785                 for (j = 0; j < dev_stripes; ++j) {
4786                         int s = i * dev_stripes + j;
4787                         map->stripes[s].dev = devices_info[i].dev;
4788                         map->stripes[s].physical = devices_info[i].dev_offset +
4789                                                    j * stripe_size;
4790                 }
4791         }
4792         map->stripe_len = BTRFS_STRIPE_LEN;
4793         map->io_align = BTRFS_STRIPE_LEN;
4794         map->io_width = BTRFS_STRIPE_LEN;
4795         map->type = type;
4796         map->sub_stripes = sub_stripes;
4797
4798         num_bytes = stripe_size * data_stripes;
4799
4800         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4801
4802         em = alloc_extent_map();
4803         if (!em) {
4804                 kfree(map);
4805                 ret = -ENOMEM;
4806                 goto error;
4807         }
4808         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4809         em->map_lookup = map;
4810         em->start = start;
4811         em->len = num_bytes;
4812         em->block_start = 0;
4813         em->block_len = em->len;
4814         em->orig_block_len = stripe_size;
4815
4816         em_tree = &info->mapping_tree.map_tree;
4817         write_lock(&em_tree->lock);
4818         ret = add_extent_mapping(em_tree, em, 0);
4819         if (!ret) {
4820                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4821                 refcount_inc(&em->refs);
4822         }
4823         write_unlock(&em_tree->lock);
4824         if (ret) {
4825                 free_extent_map(em);
4826                 goto error;
4827         }
4828
4829         ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4830         if (ret)
4831                 goto error_del_extent;
4832
4833         for (i = 0; i < map->num_stripes; i++) {
4834                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4835                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4836         }
4837
4838         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4839
4840         free_extent_map(em);
4841         check_raid56_incompat_flag(info, type);
4842
4843         kfree(devices_info);
4844         return 0;
4845
4846 error_del_extent:
4847         write_lock(&em_tree->lock);
4848         remove_extent_mapping(em_tree, em);
4849         write_unlock(&em_tree->lock);
4850
4851         /* One for our allocation */
4852         free_extent_map(em);
4853         /* One for the tree reference */
4854         free_extent_map(em);
4855         /* One for the pending_chunks list reference */
4856         free_extent_map(em);
4857 error:
4858         kfree(devices_info);
4859         return ret;
4860 }
4861
4862 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4863                                 struct btrfs_fs_info *fs_info,
4864                                 u64 chunk_offset, u64 chunk_size)
4865 {
4866         struct btrfs_root *extent_root = fs_info->extent_root;
4867         struct btrfs_root *chunk_root = fs_info->chunk_root;
4868         struct btrfs_key key;
4869         struct btrfs_device *device;
4870         struct btrfs_chunk *chunk;
4871         struct btrfs_stripe *stripe;
4872         struct extent_map *em;
4873         struct map_lookup *map;
4874         size_t item_size;
4875         u64 dev_offset;
4876         u64 stripe_size;
4877         int i = 0;
4878         int ret = 0;
4879
4880         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4881         if (IS_ERR(em))
4882                 return PTR_ERR(em);
4883
4884         map = em->map_lookup;
4885         item_size = btrfs_chunk_item_size(map->num_stripes);
4886         stripe_size = em->orig_block_len;
4887
4888         chunk = kzalloc(item_size, GFP_NOFS);
4889         if (!chunk) {
4890                 ret = -ENOMEM;
4891                 goto out;
4892         }
4893
4894         /*
4895          * Take the device list mutex to prevent races with the final phase of
4896          * a device replace operation that replaces the device object associated
4897          * with the map's stripes, because the device object's id can change
4898          * at any time during that final phase of the device replace operation
4899          * (dev-replace.c:btrfs_dev_replace_finishing()).
4900          */
4901         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4902         for (i = 0; i < map->num_stripes; i++) {
4903                 device = map->stripes[i].dev;
4904                 dev_offset = map->stripes[i].physical;
4905
4906                 ret = btrfs_update_device(trans, device);
4907                 if (ret)
4908                         break;
4909                 ret = btrfs_alloc_dev_extent(trans, device,
4910                                              chunk_root->root_key.objectid,
4911                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4912                                              chunk_offset, dev_offset,
4913                                              stripe_size);
4914                 if (ret)
4915                         break;
4916         }
4917         if (ret) {
4918                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4919                 goto out;
4920         }
4921
4922         stripe = &chunk->stripe;
4923         for (i = 0; i < map->num_stripes; i++) {
4924                 device = map->stripes[i].dev;
4925                 dev_offset = map->stripes[i].physical;
4926
4927                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4928                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4929                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4930                 stripe++;
4931         }
4932         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4933
4934         btrfs_set_stack_chunk_length(chunk, chunk_size);
4935         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4936         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4937         btrfs_set_stack_chunk_type(chunk, map->type);
4938         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4939         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4940         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4941         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4942         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4943
4944         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4945         key.type = BTRFS_CHUNK_ITEM_KEY;
4946         key.offset = chunk_offset;
4947
4948         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4949         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4950                 /*
4951                  * TODO: Cleanup of inserted chunk root in case of
4952                  * failure.
4953                  */
4954                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4955         }
4956
4957 out:
4958         kfree(chunk);
4959         free_extent_map(em);
4960         return ret;
4961 }
4962
4963 /*
4964  * Chunk allocation falls into two parts. The first part does works
4965  * that make the new allocated chunk useable, but not do any operation
4966  * that modifies the chunk tree. The second part does the works that
4967  * require modifying the chunk tree. This division is important for the
4968  * bootstrap process of adding storage to a seed btrfs.
4969  */
4970 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4971                       struct btrfs_fs_info *fs_info, u64 type)
4972 {
4973         u64 chunk_offset;
4974
4975         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4976         chunk_offset = find_next_chunk(fs_info);
4977         return __btrfs_alloc_chunk(trans, chunk_offset, type);
4978 }
4979
4980 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4981                                          struct btrfs_fs_info *fs_info)
4982 {
4983         u64 chunk_offset;
4984         u64 sys_chunk_offset;
4985         u64 alloc_profile;
4986         int ret;
4987
4988         chunk_offset = find_next_chunk(fs_info);
4989         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4990         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4991         if (ret)
4992                 return ret;
4993
4994         sys_chunk_offset = find_next_chunk(fs_info);
4995         alloc_profile = btrfs_system_alloc_profile(fs_info);
4996         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4997         return ret;
4998 }
4999
5000 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5001 {
5002         int max_errors;
5003
5004         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5005                          BTRFS_BLOCK_GROUP_RAID10 |
5006                          BTRFS_BLOCK_GROUP_RAID5 |
5007                          BTRFS_BLOCK_GROUP_DUP)) {
5008                 max_errors = 1;
5009         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5010                 max_errors = 2;
5011         } else {
5012                 max_errors = 0;
5013         }
5014
5015         return max_errors;
5016 }
5017
5018 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5019 {
5020         struct extent_map *em;
5021         struct map_lookup *map;
5022         int readonly = 0;
5023         int miss_ndevs = 0;
5024         int i;
5025
5026         em = get_chunk_map(fs_info, chunk_offset, 1);
5027         if (IS_ERR(em))
5028                 return 1;
5029
5030         map = em->map_lookup;
5031         for (i = 0; i < map->num_stripes; i++) {
5032                 if (map->stripes[i].dev->missing) {
5033                         miss_ndevs++;
5034                         continue;
5035                 }
5036
5037                 if (!map->stripes[i].dev->writeable) {
5038                         readonly = 1;
5039                         goto end;
5040                 }
5041         }
5042
5043         /*
5044          * If the number of missing devices is larger than max errors,
5045          * we can not write the data into that chunk successfully, so
5046          * set it readonly.
5047          */
5048         if (miss_ndevs > btrfs_chunk_max_errors(map))
5049                 readonly = 1;
5050 end:
5051         free_extent_map(em);
5052         return readonly;
5053 }
5054
5055 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5056 {
5057         extent_map_tree_init(&tree->map_tree);
5058 }
5059
5060 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5061 {
5062         struct extent_map *em;
5063
5064         while (1) {
5065                 write_lock(&tree->map_tree.lock);
5066                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5067                 if (em)
5068                         remove_extent_mapping(&tree->map_tree, em);
5069                 write_unlock(&tree->map_tree.lock);
5070                 if (!em)
5071                         break;
5072                 /* once for us */
5073                 free_extent_map(em);
5074                 /* once for the tree */
5075                 free_extent_map(em);
5076         }
5077 }
5078
5079 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5080 {
5081         struct extent_map *em;
5082         struct map_lookup *map;
5083         int ret;
5084
5085         em = get_chunk_map(fs_info, logical, len);
5086         if (IS_ERR(em))
5087                 /*
5088                  * We could return errors for these cases, but that could get
5089                  * ugly and we'd probably do the same thing which is just not do
5090                  * anything else and exit, so return 1 so the callers don't try
5091                  * to use other copies.
5092                  */
5093                 return 1;
5094
5095         map = em->map_lookup;
5096         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5097                 ret = map->num_stripes;
5098         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5099                 ret = map->sub_stripes;
5100         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5101                 ret = 2;
5102         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5103                 ret = 3;
5104         else
5105                 ret = 1;
5106         free_extent_map(em);
5107
5108         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5109         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5110             fs_info->dev_replace.tgtdev)
5111                 ret++;
5112         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5113
5114         return ret;
5115 }
5116
5117 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5118                                     u64 logical)
5119 {
5120         struct extent_map *em;
5121         struct map_lookup *map;
5122         unsigned long len = fs_info->sectorsize;
5123
5124         em = get_chunk_map(fs_info, logical, len);
5125
5126         if (!WARN_ON(IS_ERR(em))) {
5127                 map = em->map_lookup;
5128                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5129                         len = map->stripe_len * nr_data_stripes(map);
5130                 free_extent_map(em);
5131         }
5132         return len;
5133 }
5134
5135 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5136 {
5137         struct extent_map *em;
5138         struct map_lookup *map;
5139         int ret = 0;
5140
5141         em = get_chunk_map(fs_info, logical, len);
5142
5143         if(!WARN_ON(IS_ERR(em))) {
5144                 map = em->map_lookup;
5145                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5146                         ret = 1;
5147                 free_extent_map(em);
5148         }
5149         return ret;
5150 }
5151
5152 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5153                             struct map_lookup *map, int first, int num,
5154                             int optimal, int dev_replace_is_ongoing)
5155 {
5156         int i;
5157         int tolerance;
5158         struct btrfs_device *srcdev;
5159
5160         if (dev_replace_is_ongoing &&
5161             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5162              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5163                 srcdev = fs_info->dev_replace.srcdev;
5164         else
5165                 srcdev = NULL;
5166
5167         /*
5168          * try to avoid the drive that is the source drive for a
5169          * dev-replace procedure, only choose it if no other non-missing
5170          * mirror is available
5171          */
5172         for (tolerance = 0; tolerance < 2; tolerance++) {
5173                 if (map->stripes[optimal].dev->bdev &&
5174                     (tolerance || map->stripes[optimal].dev != srcdev))
5175                         return optimal;
5176                 for (i = first; i < first + num; i++) {
5177                         if (map->stripes[i].dev->bdev &&
5178                             (tolerance || map->stripes[i].dev != srcdev))
5179                                 return i;
5180                 }
5181         }
5182
5183         /* we couldn't find one that doesn't fail.  Just return something
5184          * and the io error handling code will clean up eventually
5185          */
5186         return optimal;
5187 }
5188
5189 static inline int parity_smaller(u64 a, u64 b)
5190 {
5191         return a > b;
5192 }
5193
5194 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5195 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5196 {
5197         struct btrfs_bio_stripe s;
5198         int i;
5199         u64 l;
5200         int again = 1;
5201
5202         while (again) {
5203                 again = 0;
5204                 for (i = 0; i < num_stripes - 1; i++) {
5205                         if (parity_smaller(bbio->raid_map[i],
5206                                            bbio->raid_map[i+1])) {
5207                                 s = bbio->stripes[i];
5208                                 l = bbio->raid_map[i];
5209                                 bbio->stripes[i] = bbio->stripes[i+1];
5210                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5211                                 bbio->stripes[i+1] = s;
5212                                 bbio->raid_map[i+1] = l;
5213
5214                                 again = 1;
5215                         }
5216                 }
5217         }
5218 }
5219
5220 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5221 {
5222         struct btrfs_bio *bbio = kzalloc(
5223                  /* the size of the btrfs_bio */
5224                 sizeof(struct btrfs_bio) +
5225                 /* plus the variable array for the stripes */
5226                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5227                 /* plus the variable array for the tgt dev */
5228                 sizeof(int) * (real_stripes) +
5229                 /*
5230                  * plus the raid_map, which includes both the tgt dev
5231                  * and the stripes
5232                  */
5233                 sizeof(u64) * (total_stripes),
5234                 GFP_NOFS|__GFP_NOFAIL);
5235
5236         atomic_set(&bbio->error, 0);
5237         refcount_set(&bbio->refs, 1);
5238
5239         return bbio;
5240 }
5241
5242 void btrfs_get_bbio(struct btrfs_bio *bbio)
5243 {
5244         WARN_ON(!refcount_read(&bbio->refs));
5245         refcount_inc(&bbio->refs);
5246 }
5247
5248 void btrfs_put_bbio(struct btrfs_bio *bbio)
5249 {
5250         if (!bbio)
5251                 return;
5252         if (refcount_dec_and_test(&bbio->refs))
5253                 kfree(bbio);
5254 }
5255
5256 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5257 /*
5258  * Please note that, discard won't be sent to target device of device
5259  * replace.
5260  */
5261 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5262                                          u64 logical, u64 length,
5263                                          struct btrfs_bio **bbio_ret)
5264 {
5265         struct extent_map *em;
5266         struct map_lookup *map;
5267         struct btrfs_bio *bbio;
5268         u64 offset;
5269         u64 stripe_nr;
5270         u64 stripe_nr_end;
5271         u64 stripe_end_offset;
5272         u64 stripe_cnt;
5273         u64 stripe_len;
5274         u64 stripe_offset;
5275         u64 num_stripes;
5276         u32 stripe_index;
5277         u32 factor = 0;
5278         u32 sub_stripes = 0;
5279         u64 stripes_per_dev = 0;
5280         u32 remaining_stripes = 0;
5281         u32 last_stripe = 0;
5282         int ret = 0;
5283         int i;
5284
5285         /* discard always return a bbio */
5286         ASSERT(bbio_ret);
5287
5288         em = get_chunk_map(fs_info, logical, length);
5289         if (IS_ERR(em))
5290                 return PTR_ERR(em);
5291
5292         map = em->map_lookup;
5293         /* we don't discard raid56 yet */
5294         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5295                 ret = -EOPNOTSUPP;
5296                 goto out;
5297         }
5298
5299         offset = logical - em->start;
5300         length = min_t(u64, em->len - offset, length);
5301
5302         stripe_len = map->stripe_len;
5303         /*
5304          * stripe_nr counts the total number of stripes we have to stride
5305          * to get to this block
5306          */
5307         stripe_nr = div64_u64(offset, stripe_len);
5308
5309         /* stripe_offset is the offset of this block in its stripe */
5310         stripe_offset = offset - stripe_nr * stripe_len;
5311
5312         stripe_nr_end = round_up(offset + length, map->stripe_len);
5313         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5314         stripe_cnt = stripe_nr_end - stripe_nr;
5315         stripe_end_offset = stripe_nr_end * map->stripe_len -
5316                             (offset + length);
5317         /*
5318          * after this, stripe_nr is the number of stripes on this
5319          * device we have to walk to find the data, and stripe_index is
5320          * the number of our device in the stripe array
5321          */
5322         num_stripes = 1;
5323         stripe_index = 0;
5324         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5325                          BTRFS_BLOCK_GROUP_RAID10)) {
5326                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5327                         sub_stripes = 1;
5328                 else
5329                         sub_stripes = map->sub_stripes;
5330
5331                 factor = map->num_stripes / sub_stripes;
5332                 num_stripes = min_t(u64, map->num_stripes,
5333                                     sub_stripes * stripe_cnt);
5334                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5335                 stripe_index *= sub_stripes;
5336                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5337                                               &remaining_stripes);
5338                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5339                 last_stripe *= sub_stripes;
5340         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5341                                 BTRFS_BLOCK_GROUP_DUP)) {
5342                 num_stripes = map->num_stripes;
5343         } else {
5344                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5345                                         &stripe_index);
5346         }
5347
5348         bbio = alloc_btrfs_bio(num_stripes, 0);
5349         if (!bbio) {
5350                 ret = -ENOMEM;
5351                 goto out;
5352         }
5353
5354         for (i = 0; i < num_stripes; i++) {
5355                 bbio->stripes[i].physical =
5356                         map->stripes[stripe_index].physical +
5357                         stripe_offset + stripe_nr * map->stripe_len;
5358                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5359
5360                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5361                                  BTRFS_BLOCK_GROUP_RAID10)) {
5362                         bbio->stripes[i].length = stripes_per_dev *
5363                                 map->stripe_len;
5364
5365                         if (i / sub_stripes < remaining_stripes)
5366                                 bbio->stripes[i].length +=
5367                                         map->stripe_len;
5368
5369                         /*
5370                          * Special for the first stripe and
5371                          * the last stripe:
5372                          *
5373                          * |-------|...|-------|
5374                          *     |----------|
5375                          *    off     end_off
5376                          */
5377                         if (i < sub_stripes)
5378                                 bbio->stripes[i].length -=
5379                                         stripe_offset;
5380
5381                         if (stripe_index >= last_stripe &&
5382                             stripe_index <= (last_stripe +
5383                                              sub_stripes - 1))
5384                                 bbio->stripes[i].length -=
5385                                         stripe_end_offset;
5386
5387                         if (i == sub_stripes - 1)
5388                                 stripe_offset = 0;
5389                 } else {
5390                         bbio->stripes[i].length = length;
5391                 }
5392
5393                 stripe_index++;
5394                 if (stripe_index == map->num_stripes) {
5395                         stripe_index = 0;
5396                         stripe_nr++;
5397                 }
5398         }
5399
5400         *bbio_ret = bbio;
5401         bbio->map_type = map->type;
5402         bbio->num_stripes = num_stripes;
5403 out:
5404         free_extent_map(em);
5405         return ret;
5406 }
5407
5408 /*
5409  * In dev-replace case, for repair case (that's the only case where the mirror
5410  * is selected explicitly when calling btrfs_map_block), blocks left of the
5411  * left cursor can also be read from the target drive.
5412  *
5413  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5414  * array of stripes.
5415  * For READ, it also needs to be supported using the same mirror number.
5416  *
5417  * If the requested block is not left of the left cursor, EIO is returned. This
5418  * can happen because btrfs_num_copies() returns one more in the dev-replace
5419  * case.
5420  */
5421 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5422                                          u64 logical, u64 length,
5423                                          u64 srcdev_devid, int *mirror_num,
5424                                          u64 *physical)
5425 {
5426         struct btrfs_bio *bbio = NULL;
5427         int num_stripes;
5428         int index_srcdev = 0;
5429         int found = 0;
5430         u64 physical_of_found = 0;
5431         int i;
5432         int ret = 0;
5433
5434         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5435                                 logical, &length, &bbio, 0, 0);
5436         if (ret) {
5437                 ASSERT(bbio == NULL);
5438                 return ret;
5439         }
5440
5441         num_stripes = bbio->num_stripes;
5442         if (*mirror_num > num_stripes) {
5443                 /*
5444                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5445                  * that means that the requested area is not left of the left
5446                  * cursor
5447                  */
5448                 btrfs_put_bbio(bbio);
5449                 return -EIO;
5450         }
5451
5452         /*
5453          * process the rest of the function using the mirror_num of the source
5454          * drive. Therefore look it up first.  At the end, patch the device
5455          * pointer to the one of the target drive.
5456          */
5457         for (i = 0; i < num_stripes; i++) {
5458                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5459                         continue;
5460
5461                 /*
5462                  * In case of DUP, in order to keep it simple, only add the
5463                  * mirror with the lowest physical address
5464                  */
5465                 if (found &&
5466                     physical_of_found <= bbio->stripes[i].physical)
5467                         continue;
5468
5469                 index_srcdev = i;
5470                 found = 1;
5471                 physical_of_found = bbio->stripes[i].physical;
5472         }
5473
5474         btrfs_put_bbio(bbio);
5475
5476         ASSERT(found);
5477         if (!found)
5478                 return -EIO;
5479
5480         *mirror_num = index_srcdev + 1;
5481         *physical = physical_of_found;
5482         return ret;
5483 }
5484
5485 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5486                                       struct btrfs_bio **bbio_ret,
5487                                       struct btrfs_dev_replace *dev_replace,
5488                                       int *num_stripes_ret, int *max_errors_ret)
5489 {
5490         struct btrfs_bio *bbio = *bbio_ret;
5491         u64 srcdev_devid = dev_replace->srcdev->devid;
5492         int tgtdev_indexes = 0;
5493         int num_stripes = *num_stripes_ret;
5494         int max_errors = *max_errors_ret;
5495         int i;
5496
5497         if (op == BTRFS_MAP_WRITE) {
5498                 int index_where_to_add;
5499
5500                 /*
5501                  * duplicate the write operations while the dev replace
5502                  * procedure is running. Since the copying of the old disk to
5503                  * the new disk takes place at run time while the filesystem is
5504                  * mounted writable, the regular write operations to the old
5505                  * disk have to be duplicated to go to the new disk as well.
5506                  *
5507                  * Note that device->missing is handled by the caller, and that
5508                  * the write to the old disk is already set up in the stripes
5509                  * array.
5510                  */
5511                 index_where_to_add = num_stripes;
5512                 for (i = 0; i < num_stripes; i++) {
5513                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5514                                 /* write to new disk, too */
5515                                 struct btrfs_bio_stripe *new =
5516                                         bbio->stripes + index_where_to_add;
5517                                 struct btrfs_bio_stripe *old =
5518                                         bbio->stripes + i;
5519
5520                                 new->physical = old->physical;
5521                                 new->length = old->length;
5522                                 new->dev = dev_replace->tgtdev;
5523                                 bbio->tgtdev_map[i] = index_where_to_add;
5524                                 index_where_to_add++;
5525                                 max_errors++;
5526                                 tgtdev_indexes++;
5527                         }
5528                 }
5529                 num_stripes = index_where_to_add;
5530         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5531                 int index_srcdev = 0;
5532                 int found = 0;
5533                 u64 physical_of_found = 0;
5534
5535                 /*
5536                  * During the dev-replace procedure, the target drive can also
5537                  * be used to read data in case it is needed to repair a corrupt
5538                  * block elsewhere. This is possible if the requested area is
5539                  * left of the left cursor. In this area, the target drive is a
5540                  * full copy of the source drive.
5541                  */
5542                 for (i = 0; i < num_stripes; i++) {
5543                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5544                                 /*
5545                                  * In case of DUP, in order to keep it simple,
5546                                  * only add the mirror with the lowest physical
5547                                  * address
5548                                  */
5549                                 if (found &&
5550                                     physical_of_found <=
5551                                      bbio->stripes[i].physical)
5552                                         continue;
5553                                 index_srcdev = i;
5554                                 found = 1;
5555                                 physical_of_found = bbio->stripes[i].physical;
5556                         }
5557                 }
5558                 if (found) {
5559                         struct btrfs_bio_stripe *tgtdev_stripe =
5560                                 bbio->stripes + num_stripes;
5561
5562                         tgtdev_stripe->physical = physical_of_found;
5563                         tgtdev_stripe->length =
5564                                 bbio->stripes[index_srcdev].length;
5565                         tgtdev_stripe->dev = dev_replace->tgtdev;
5566                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5567
5568                         tgtdev_indexes++;
5569                         num_stripes++;
5570                 }
5571         }
5572
5573         *num_stripes_ret = num_stripes;
5574         *max_errors_ret = max_errors;
5575         bbio->num_tgtdevs = tgtdev_indexes;
5576         *bbio_ret = bbio;
5577 }
5578
5579 static bool need_full_stripe(enum btrfs_map_op op)
5580 {
5581         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5582 }
5583
5584 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5585                              enum btrfs_map_op op,
5586                              u64 logical, u64 *length,
5587                              struct btrfs_bio **bbio_ret,
5588                              int mirror_num, int need_raid_map)
5589 {
5590         struct extent_map *em;
5591         struct map_lookup *map;
5592         u64 offset;
5593         u64 stripe_offset;
5594         u64 stripe_nr;
5595         u64 stripe_len;
5596         u32 stripe_index;
5597         int i;
5598         int ret = 0;
5599         int num_stripes;
5600         int max_errors = 0;
5601         int tgtdev_indexes = 0;
5602         struct btrfs_bio *bbio = NULL;
5603         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5604         int dev_replace_is_ongoing = 0;
5605         int num_alloc_stripes;
5606         int patch_the_first_stripe_for_dev_replace = 0;
5607         u64 physical_to_patch_in_first_stripe = 0;
5608         u64 raid56_full_stripe_start = (u64)-1;
5609
5610         if (op == BTRFS_MAP_DISCARD)
5611                 return __btrfs_map_block_for_discard(fs_info, logical,
5612                                                      *length, bbio_ret);
5613
5614         em = get_chunk_map(fs_info, logical, *length);
5615         if (IS_ERR(em))
5616                 return PTR_ERR(em);
5617
5618         map = em->map_lookup;
5619         offset = logical - em->start;
5620
5621         stripe_len = map->stripe_len;
5622         stripe_nr = offset;
5623         /*
5624          * stripe_nr counts the total number of stripes we have to stride
5625          * to get to this block
5626          */
5627         stripe_nr = div64_u64(stripe_nr, stripe_len);
5628
5629         stripe_offset = stripe_nr * stripe_len;
5630         if (offset < stripe_offset) {
5631                 btrfs_crit(fs_info,
5632                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5633                            stripe_offset, offset, em->start, logical,
5634                            stripe_len);
5635                 free_extent_map(em);
5636                 return -EINVAL;
5637         }
5638
5639         /* stripe_offset is the offset of this block in its stripe*/
5640         stripe_offset = offset - stripe_offset;
5641
5642         /* if we're here for raid56, we need to know the stripe aligned start */
5643         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5644                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5645                 raid56_full_stripe_start = offset;
5646
5647                 /* allow a write of a full stripe, but make sure we don't
5648                  * allow straddling of stripes
5649                  */
5650                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5651                                 full_stripe_len);
5652                 raid56_full_stripe_start *= full_stripe_len;
5653         }
5654
5655         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5656                 u64 max_len;
5657                 /* For writes to RAID[56], allow a full stripeset across all disks.
5658                    For other RAID types and for RAID[56] reads, just allow a single
5659                    stripe (on a single disk). */
5660                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5661                     (op == BTRFS_MAP_WRITE)) {
5662                         max_len = stripe_len * nr_data_stripes(map) -
5663                                 (offset - raid56_full_stripe_start);
5664                 } else {
5665                         /* we limit the length of each bio to what fits in a stripe */
5666                         max_len = stripe_len - stripe_offset;
5667                 }
5668                 *length = min_t(u64, em->len - offset, max_len);
5669         } else {
5670                 *length = em->len - offset;
5671         }
5672
5673         /* This is for when we're called from btrfs_merge_bio_hook() and all
5674            it cares about is the length */
5675         if (!bbio_ret)
5676                 goto out;
5677
5678         btrfs_dev_replace_lock(dev_replace, 0);
5679         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5680         if (!dev_replace_is_ongoing)
5681                 btrfs_dev_replace_unlock(dev_replace, 0);
5682         else
5683                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5684
5685         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5686             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5687                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5688                                                     dev_replace->srcdev->devid,
5689                                                     &mirror_num,
5690                                             &physical_to_patch_in_first_stripe);
5691                 if (ret)
5692                         goto out;
5693                 else
5694                         patch_the_first_stripe_for_dev_replace = 1;
5695         } else if (mirror_num > map->num_stripes) {
5696                 mirror_num = 0;
5697         }
5698
5699         num_stripes = 1;
5700         stripe_index = 0;
5701         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5702                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5703                                 &stripe_index);
5704                 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
5705                         mirror_num = 1;
5706         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5707                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5708                         num_stripes = map->num_stripes;
5709                 else if (mirror_num)
5710                         stripe_index = mirror_num - 1;
5711                 else {
5712                         stripe_index = find_live_mirror(fs_info, map, 0,
5713                                             map->num_stripes,
5714                                             current->pid % map->num_stripes,
5715                                             dev_replace_is_ongoing);
5716                         mirror_num = stripe_index + 1;
5717                 }
5718
5719         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5720                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
5721                         num_stripes = map->num_stripes;
5722                 } else if (mirror_num) {
5723                         stripe_index = mirror_num - 1;
5724                 } else {
5725                         mirror_num = 1;
5726                 }
5727
5728         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5729                 u32 factor = map->num_stripes / map->sub_stripes;
5730
5731                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5732                 stripe_index *= map->sub_stripes;
5733
5734                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5735                         num_stripes = map->sub_stripes;
5736                 else if (mirror_num)
5737                         stripe_index += mirror_num - 1;
5738                 else {
5739                         int old_stripe_index = stripe_index;
5740                         stripe_index = find_live_mirror(fs_info, map,
5741                                               stripe_index,
5742                                               map->sub_stripes, stripe_index +
5743                                               current->pid % map->sub_stripes,
5744                                               dev_replace_is_ongoing);
5745                         mirror_num = stripe_index - old_stripe_index + 1;
5746                 }
5747
5748         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5749                 if (need_raid_map &&
5750                     (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5751                      mirror_num > 1)) {
5752                         /* push stripe_nr back to the start of the full stripe */
5753                         stripe_nr = div64_u64(raid56_full_stripe_start,
5754                                         stripe_len * nr_data_stripes(map));
5755
5756                         /* RAID[56] write or recovery. Return all stripes */
5757                         num_stripes = map->num_stripes;
5758                         max_errors = nr_parity_stripes(map);
5759
5760                         *length = map->stripe_len;
5761                         stripe_index = 0;
5762                         stripe_offset = 0;
5763                 } else {
5764                         /*
5765                          * Mirror #0 or #1 means the original data block.
5766                          * Mirror #2 is RAID5 parity block.
5767                          * Mirror #3 is RAID6 Q block.
5768                          */
5769                         stripe_nr = div_u64_rem(stripe_nr,
5770                                         nr_data_stripes(map), &stripe_index);
5771                         if (mirror_num > 1)
5772                                 stripe_index = nr_data_stripes(map) +
5773                                                 mirror_num - 2;
5774
5775                         /* We distribute the parity blocks across stripes */
5776                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5777                                         &stripe_index);
5778                         if ((op != BTRFS_MAP_WRITE &&
5779                              op != BTRFS_MAP_GET_READ_MIRRORS) &&
5780                             mirror_num <= 1)
5781                                 mirror_num = 1;
5782                 }
5783         } else {
5784                 /*
5785                  * after this, stripe_nr is the number of stripes on this
5786                  * device we have to walk to find the data, and stripe_index is
5787                  * the number of our device in the stripe array
5788                  */
5789                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5790                                 &stripe_index);
5791                 mirror_num = stripe_index + 1;
5792         }
5793         if (stripe_index >= map->num_stripes) {
5794                 btrfs_crit(fs_info,
5795                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5796                            stripe_index, map->num_stripes);
5797                 ret = -EINVAL;
5798                 goto out;
5799         }
5800
5801         num_alloc_stripes = num_stripes;
5802         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5803                 if (op == BTRFS_MAP_WRITE)
5804                         num_alloc_stripes <<= 1;
5805                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5806                         num_alloc_stripes++;
5807                 tgtdev_indexes = num_stripes;
5808         }
5809
5810         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5811         if (!bbio) {
5812                 ret = -ENOMEM;
5813                 goto out;
5814         }
5815         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5816                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5817
5818         /* build raid_map */
5819         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5820             (need_full_stripe(op) || mirror_num > 1)) {
5821                 u64 tmp;
5822                 unsigned rot;
5823
5824                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5825                                  sizeof(struct btrfs_bio_stripe) *
5826                                  num_alloc_stripes +
5827                                  sizeof(int) * tgtdev_indexes);
5828
5829                 /* Work out the disk rotation on this stripe-set */
5830                 div_u64_rem(stripe_nr, num_stripes, &rot);
5831
5832                 /* Fill in the logical address of each stripe */
5833                 tmp = stripe_nr * nr_data_stripes(map);
5834                 for (i = 0; i < nr_data_stripes(map); i++)
5835                         bbio->raid_map[(i+rot) % num_stripes] =
5836                                 em->start + (tmp + i) * map->stripe_len;
5837
5838                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5839                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5840                         bbio->raid_map[(i+rot+1) % num_stripes] =
5841                                 RAID6_Q_STRIPE;
5842         }
5843
5844
5845         for (i = 0; i < num_stripes; i++) {
5846                 bbio->stripes[i].physical =
5847                         map->stripes[stripe_index].physical +
5848                         stripe_offset +
5849                         stripe_nr * map->stripe_len;
5850                 bbio->stripes[i].dev =
5851                         map->stripes[stripe_index].dev;
5852                 stripe_index++;
5853         }
5854
5855         if (need_full_stripe(op))
5856                 max_errors = btrfs_chunk_max_errors(map);
5857
5858         if (bbio->raid_map)
5859                 sort_parity_stripes(bbio, num_stripes);
5860
5861         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5862             need_full_stripe(op)) {
5863                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5864                                           &max_errors);
5865         }
5866
5867         *bbio_ret = bbio;
5868         bbio->map_type = map->type;
5869         bbio->num_stripes = num_stripes;
5870         bbio->max_errors = max_errors;
5871         bbio->mirror_num = mirror_num;
5872
5873         /*
5874          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5875          * mirror_num == num_stripes + 1 && dev_replace target drive is
5876          * available as a mirror
5877          */
5878         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5879                 WARN_ON(num_stripes > 1);
5880                 bbio->stripes[0].dev = dev_replace->tgtdev;
5881                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5882                 bbio->mirror_num = map->num_stripes + 1;
5883         }
5884 out:
5885         if (dev_replace_is_ongoing) {
5886                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5887                 btrfs_dev_replace_unlock(dev_replace, 0);
5888         }
5889         free_extent_map(em);
5890         return ret;
5891 }
5892
5893 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5894                       u64 logical, u64 *length,
5895                       struct btrfs_bio **bbio_ret, int mirror_num)
5896 {
5897         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5898                                  mirror_num, 0);
5899 }
5900
5901 /* For Scrub/replace */
5902 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5903                      u64 logical, u64 *length,
5904                      struct btrfs_bio **bbio_ret)
5905 {
5906         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5907 }
5908
5909 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5910                      u64 chunk_start, u64 physical, u64 devid,
5911                      u64 **logical, int *naddrs, int *stripe_len)
5912 {
5913         struct extent_map *em;
5914         struct map_lookup *map;
5915         u64 *buf;
5916         u64 bytenr;
5917         u64 length;
5918         u64 stripe_nr;
5919         u64 rmap_len;
5920         int i, j, nr = 0;
5921
5922         em = get_chunk_map(fs_info, chunk_start, 1);
5923         if (IS_ERR(em))
5924                 return -EIO;
5925
5926         map = em->map_lookup;
5927         length = em->len;
5928         rmap_len = map->stripe_len;
5929
5930         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5931                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5932         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5933                 length = div_u64(length, map->num_stripes);
5934         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5935                 length = div_u64(length, nr_data_stripes(map));
5936                 rmap_len = map->stripe_len * nr_data_stripes(map);
5937         }
5938
5939         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5940         BUG_ON(!buf); /* -ENOMEM */
5941
5942         for (i = 0; i < map->num_stripes; i++) {
5943                 if (devid && map->stripes[i].dev->devid != devid)
5944                         continue;
5945                 if (map->stripes[i].physical > physical ||
5946                     map->stripes[i].physical + length <= physical)
5947                         continue;
5948
5949                 stripe_nr = physical - map->stripes[i].physical;
5950                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5951
5952                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5953                         stripe_nr = stripe_nr * map->num_stripes + i;
5954                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5955                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5956                         stripe_nr = stripe_nr * map->num_stripes + i;
5957                 } /* else if RAID[56], multiply by nr_data_stripes().
5958                    * Alternatively, just use rmap_len below instead of
5959                    * map->stripe_len */
5960
5961                 bytenr = chunk_start + stripe_nr * rmap_len;
5962                 WARN_ON(nr >= map->num_stripes);
5963                 for (j = 0; j < nr; j++) {
5964                         if (buf[j] == bytenr)
5965                                 break;
5966                 }
5967                 if (j == nr) {
5968                         WARN_ON(nr >= map->num_stripes);
5969                         buf[nr++] = bytenr;
5970                 }
5971         }
5972
5973         *logical = buf;
5974         *naddrs = nr;
5975         *stripe_len = rmap_len;
5976
5977         free_extent_map(em);
5978         return 0;
5979 }
5980
5981 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5982 {
5983         bio->bi_private = bbio->private;
5984         bio->bi_end_io = bbio->end_io;
5985         bio_endio(bio);
5986
5987         btrfs_put_bbio(bbio);
5988 }
5989
5990 static void btrfs_end_bio(struct bio *bio)
5991 {
5992         struct btrfs_bio *bbio = bio->bi_private;
5993         int is_orig_bio = 0;
5994
5995         if (bio->bi_status) {
5996                 atomic_inc(&bbio->error);
5997                 if (bio->bi_status == BLK_STS_IOERR ||
5998                     bio->bi_status == BLK_STS_TARGET) {
5999                         unsigned int stripe_index =
6000                                 btrfs_io_bio(bio)->stripe_index;
6001                         struct btrfs_device *dev;
6002
6003                         BUG_ON(stripe_index >= bbio->num_stripes);
6004                         dev = bbio->stripes[stripe_index].dev;
6005                         if (dev->bdev) {
6006                                 if (bio_op(bio) == REQ_OP_WRITE)
6007                                         btrfs_dev_stat_inc(dev,
6008                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6009                                 else
6010                                         btrfs_dev_stat_inc(dev,
6011                                                 BTRFS_DEV_STAT_READ_ERRS);
6012                                 if (bio->bi_opf & REQ_PREFLUSH)
6013                                         btrfs_dev_stat_inc(dev,
6014                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6015                                 btrfs_dev_stat_print_on_error(dev);
6016                         }
6017                 }
6018         }
6019
6020         if (bio == bbio->orig_bio)
6021                 is_orig_bio = 1;
6022
6023         btrfs_bio_counter_dec(bbio->fs_info);
6024
6025         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6026                 if (!is_orig_bio) {
6027                         bio_put(bio);
6028                         bio = bbio->orig_bio;
6029                 }
6030
6031                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6032                 /* only send an error to the higher layers if it is
6033                  * beyond the tolerance of the btrfs bio
6034                  */
6035                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6036                         bio->bi_status = BLK_STS_IOERR;
6037                 } else {
6038                         /*
6039                          * this bio is actually up to date, we didn't
6040                          * go over the max number of errors
6041                          */
6042                         bio->bi_status = 0;
6043                 }
6044
6045                 btrfs_end_bbio(bbio, bio);
6046         } else if (!is_orig_bio) {
6047                 bio_put(bio);
6048         }
6049 }
6050
6051 /*
6052  * see run_scheduled_bios for a description of why bios are collected for
6053  * async submit.
6054  *
6055  * This will add one bio to the pending list for a device and make sure
6056  * the work struct is scheduled.
6057  */
6058 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6059                                         struct bio *bio)
6060 {
6061         struct btrfs_fs_info *fs_info = device->fs_info;
6062         int should_queue = 1;
6063         struct btrfs_pending_bios *pending_bios;
6064
6065         if (device->missing || !device->bdev) {
6066                 bio_io_error(bio);
6067                 return;
6068         }
6069
6070         /* don't bother with additional async steps for reads, right now */
6071         if (bio_op(bio) == REQ_OP_READ) {
6072                 bio_get(bio);
6073                 btrfsic_submit_bio(bio);
6074                 bio_put(bio);
6075                 return;
6076         }
6077
6078         /*
6079          * nr_async_bios allows us to reliably return congestion to the
6080          * higher layers.  Otherwise, the async bio makes it appear we have
6081          * made progress against dirty pages when we've really just put it
6082          * on a queue for later
6083          */
6084         atomic_inc(&fs_info->nr_async_bios);
6085         WARN_ON(bio->bi_next);
6086         bio->bi_next = NULL;
6087
6088         spin_lock(&device->io_lock);
6089         if (op_is_sync(bio->bi_opf))
6090                 pending_bios = &device->pending_sync_bios;
6091         else
6092                 pending_bios = &device->pending_bios;
6093
6094         if (pending_bios->tail)
6095                 pending_bios->tail->bi_next = bio;
6096
6097         pending_bios->tail = bio;
6098         if (!pending_bios->head)
6099                 pending_bios->head = bio;
6100         if (device->running_pending)
6101                 should_queue = 0;
6102
6103         spin_unlock(&device->io_lock);
6104
6105         if (should_queue)
6106                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6107 }
6108
6109 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6110                               u64 physical, int dev_nr, int async)
6111 {
6112         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6113         struct btrfs_fs_info *fs_info = bbio->fs_info;
6114
6115         bio->bi_private = bbio;
6116         btrfs_io_bio(bio)->stripe_index = dev_nr;
6117         bio->bi_end_io = btrfs_end_bio;
6118         bio->bi_iter.bi_sector = physical >> 9;
6119 #ifdef DEBUG
6120         {
6121                 struct rcu_string *name;
6122
6123                 rcu_read_lock();
6124                 name = rcu_dereference(dev->name);
6125                 btrfs_debug(fs_info,
6126                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6127                         bio_op(bio), bio->bi_opf,
6128                         (u64)bio->bi_iter.bi_sector,
6129                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6130                         bio->bi_iter.bi_size);
6131                 rcu_read_unlock();
6132         }
6133 #endif
6134         bio->bi_bdev = dev->bdev;
6135
6136         btrfs_bio_counter_inc_noblocked(fs_info);
6137
6138         if (async)
6139                 btrfs_schedule_bio(dev, bio);
6140         else
6141                 btrfsic_submit_bio(bio);
6142 }
6143
6144 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6145 {
6146         atomic_inc(&bbio->error);
6147         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6148                 /* Should be the original bio. */
6149                 WARN_ON(bio != bbio->orig_bio);
6150
6151                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6152                 bio->bi_iter.bi_sector = logical >> 9;
6153                 bio->bi_status = BLK_STS_IOERR;
6154                 btrfs_end_bbio(bbio, bio);
6155         }
6156 }
6157
6158 int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6159                   int mirror_num, int async_submit)
6160 {
6161         struct btrfs_device *dev;
6162         struct bio *first_bio = bio;
6163         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6164         u64 length = 0;
6165         u64 map_length;
6166         int ret;
6167         int dev_nr;
6168         int total_devs;
6169         struct btrfs_bio *bbio = NULL;
6170
6171         length = bio->bi_iter.bi_size;
6172         map_length = length;
6173
6174         btrfs_bio_counter_inc_blocked(fs_info);
6175         ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
6176                                 &map_length, &bbio, mirror_num, 1);
6177         if (ret) {
6178                 btrfs_bio_counter_dec(fs_info);
6179                 return ret;
6180         }
6181
6182         total_devs = bbio->num_stripes;
6183         bbio->orig_bio = first_bio;
6184         bbio->private = first_bio->bi_private;
6185         bbio->end_io = first_bio->bi_end_io;
6186         bbio->fs_info = fs_info;
6187         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6188
6189         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6190             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6191                 /* In this case, map_length has been set to the length of
6192                    a single stripe; not the whole write */
6193                 if (bio_op(bio) == REQ_OP_WRITE) {
6194                         ret = raid56_parity_write(fs_info, bio, bbio,
6195                                                   map_length);
6196                 } else {
6197                         ret = raid56_parity_recover(fs_info, bio, bbio,
6198                                                     map_length, mirror_num, 1);
6199                 }
6200
6201                 btrfs_bio_counter_dec(fs_info);
6202                 return ret;
6203         }
6204
6205         if (map_length < length) {
6206                 btrfs_crit(fs_info,
6207                            "mapping failed logical %llu bio len %llu len %llu",
6208                            logical, length, map_length);
6209                 BUG();
6210         }
6211
6212         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6213                 dev = bbio->stripes[dev_nr].dev;
6214                 if (!dev || !dev->bdev ||
6215                     (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6216                         bbio_error(bbio, first_bio, logical);
6217                         continue;
6218                 }
6219
6220                 if (dev_nr < total_devs - 1)
6221                         bio = btrfs_bio_clone(first_bio);
6222                 else
6223                         bio = first_bio;
6224
6225                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6226                                   dev_nr, async_submit);
6227         }
6228         btrfs_bio_counter_dec(fs_info);
6229         return 0;
6230 }
6231
6232 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6233                                        u8 *uuid, u8 *fsid)
6234 {
6235         struct btrfs_device *device;
6236         struct btrfs_fs_devices *cur_devices;
6237
6238         cur_devices = fs_info->fs_devices;
6239         while (cur_devices) {
6240                 if (!fsid ||
6241                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6242                         device = find_device(cur_devices, devid, uuid);
6243                         if (device)
6244                                 return device;
6245                 }
6246                 cur_devices = cur_devices->seed;
6247         }
6248         return NULL;
6249 }
6250
6251 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6252                                             u64 devid, u8 *dev_uuid)
6253 {
6254         struct btrfs_device *device;
6255
6256         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6257         if (IS_ERR(device))
6258                 return NULL;
6259
6260         list_add(&device->dev_list, &fs_devices->devices);
6261         device->fs_devices = fs_devices;
6262         fs_devices->num_devices++;
6263
6264         device->missing = 1;
6265         fs_devices->missing_devices++;
6266
6267         return device;
6268 }
6269
6270 /**
6271  * btrfs_alloc_device - allocate struct btrfs_device
6272  * @fs_info:    used only for generating a new devid, can be NULL if
6273  *              devid is provided (i.e. @devid != NULL).
6274  * @devid:      a pointer to devid for this device.  If NULL a new devid
6275  *              is generated.
6276  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6277  *              is generated.
6278  *
6279  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6280  * on error.  Returned struct is not linked onto any lists and can be
6281  * destroyed with kfree() right away.
6282  */
6283 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6284                                         const u64 *devid,
6285                                         const u8 *uuid)
6286 {
6287         struct btrfs_device *dev;
6288         u64 tmp;
6289
6290         if (WARN_ON(!devid && !fs_info))
6291                 return ERR_PTR(-EINVAL);
6292
6293         dev = __alloc_device();
6294         if (IS_ERR(dev))
6295                 return dev;
6296
6297         if (devid)
6298                 tmp = *devid;
6299         else {
6300                 int ret;
6301
6302                 ret = find_next_devid(fs_info, &tmp);
6303                 if (ret) {
6304                         kfree(dev);
6305                         return ERR_PTR(ret);
6306                 }
6307         }
6308         dev->devid = tmp;
6309
6310         if (uuid)
6311                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6312         else
6313                 generate_random_uuid(dev->uuid);
6314
6315         btrfs_init_work(&dev->work, btrfs_submit_helper,
6316                         pending_bios_fn, NULL, NULL);
6317
6318         return dev;
6319 }
6320
6321 /* Return -EIO if any error, otherwise return 0. */
6322 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6323                                    struct extent_buffer *leaf,
6324                                    struct btrfs_chunk *chunk, u64 logical)
6325 {
6326         u64 length;
6327         u64 stripe_len;
6328         u16 num_stripes;
6329         u16 sub_stripes;
6330         u64 type;
6331
6332         length = btrfs_chunk_length(leaf, chunk);
6333         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6334         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6335         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6336         type = btrfs_chunk_type(leaf, chunk);
6337
6338         if (!num_stripes) {
6339                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6340                           num_stripes);
6341                 return -EIO;
6342         }
6343         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6344                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6345                 return -EIO;
6346         }
6347         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6348                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6349                           btrfs_chunk_sector_size(leaf, chunk));
6350                 return -EIO;
6351         }
6352         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6353                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6354                 return -EIO;
6355         }
6356         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6357                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6358                           stripe_len);
6359                 return -EIO;
6360         }
6361         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6362             type) {
6363                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6364                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6365                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6366                           btrfs_chunk_type(leaf, chunk));
6367                 return -EIO;
6368         }
6369         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6370             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6371             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6372             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6373             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6374             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6375              num_stripes != 1)) {
6376                 btrfs_err(fs_info,
6377                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6378                         num_stripes, sub_stripes,
6379                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6380                 return -EIO;
6381         }
6382
6383         return 0;
6384 }
6385
6386 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6387                           struct extent_buffer *leaf,
6388                           struct btrfs_chunk *chunk)
6389 {
6390         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6391         struct map_lookup *map;
6392         struct extent_map *em;
6393         u64 logical;
6394         u64 length;
6395         u64 devid;
6396         u8 uuid[BTRFS_UUID_SIZE];
6397         int num_stripes;
6398         int ret;
6399         int i;
6400
6401         logical = key->offset;
6402         length = btrfs_chunk_length(leaf, chunk);
6403         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6404
6405         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6406         if (ret)
6407                 return ret;
6408
6409         read_lock(&map_tree->map_tree.lock);
6410         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6411         read_unlock(&map_tree->map_tree.lock);
6412
6413         /* already mapped? */
6414         if (em && em->start <= logical && em->start + em->len > logical) {
6415                 free_extent_map(em);
6416                 return 0;
6417         } else if (em) {
6418                 free_extent_map(em);
6419         }
6420
6421         em = alloc_extent_map();
6422         if (!em)
6423                 return -ENOMEM;
6424         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6425         if (!map) {
6426                 free_extent_map(em);
6427                 return -ENOMEM;
6428         }
6429
6430         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6431         em->map_lookup = map;
6432         em->start = logical;
6433         em->len = length;
6434         em->orig_start = 0;
6435         em->block_start = 0;
6436         em->block_len = em->len;
6437
6438         map->num_stripes = num_stripes;
6439         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6440         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6441         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6442         map->type = btrfs_chunk_type(leaf, chunk);
6443         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6444         for (i = 0; i < num_stripes; i++) {
6445                 map->stripes[i].physical =
6446                         btrfs_stripe_offset_nr(leaf, chunk, i);
6447                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6448                 read_extent_buffer(leaf, uuid, (unsigned long)
6449                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6450                                    BTRFS_UUID_SIZE);
6451                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6452                                                         uuid, NULL);
6453                 if (!map->stripes[i].dev &&
6454                     !btrfs_test_opt(fs_info, DEGRADED)) {
6455                         free_extent_map(em);
6456                         btrfs_report_missing_device(fs_info, devid, uuid);
6457                         return -EIO;
6458                 }
6459                 if (!map->stripes[i].dev) {
6460                         map->stripes[i].dev =
6461                                 add_missing_dev(fs_info->fs_devices, devid,
6462                                                 uuid);
6463                         if (!map->stripes[i].dev) {
6464                                 free_extent_map(em);
6465                                 return -EIO;
6466                         }
6467                         btrfs_report_missing_device(fs_info, devid, uuid);
6468                 }
6469                 map->stripes[i].dev->in_fs_metadata = 1;
6470         }
6471
6472         write_lock(&map_tree->map_tree.lock);
6473         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6474         write_unlock(&map_tree->map_tree.lock);
6475         BUG_ON(ret); /* Tree corruption */
6476         free_extent_map(em);
6477
6478         return 0;
6479 }
6480
6481 static void fill_device_from_item(struct extent_buffer *leaf,
6482                                  struct btrfs_dev_item *dev_item,
6483                                  struct btrfs_device *device)
6484 {
6485         unsigned long ptr;
6486
6487         device->devid = btrfs_device_id(leaf, dev_item);
6488         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6489         device->total_bytes = device->disk_total_bytes;
6490         device->commit_total_bytes = device->disk_total_bytes;
6491         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6492         device->commit_bytes_used = device->bytes_used;
6493         device->type = btrfs_device_type(leaf, dev_item);
6494         device->io_align = btrfs_device_io_align(leaf, dev_item);
6495         device->io_width = btrfs_device_io_width(leaf, dev_item);
6496         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6497         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6498         device->is_tgtdev_for_dev_replace = 0;
6499
6500         ptr = btrfs_device_uuid(dev_item);
6501         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6502 }
6503
6504 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6505                                                   u8 *fsid)
6506 {
6507         struct btrfs_fs_devices *fs_devices;
6508         int ret;
6509
6510         BUG_ON(!mutex_is_locked(&uuid_mutex));
6511         ASSERT(fsid);
6512
6513         fs_devices = fs_info->fs_devices->seed;
6514         while (fs_devices) {
6515                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6516                         return fs_devices;
6517
6518                 fs_devices = fs_devices->seed;
6519         }
6520
6521         fs_devices = find_fsid(fsid);
6522         if (!fs_devices) {
6523                 if (!btrfs_test_opt(fs_info, DEGRADED))
6524                         return ERR_PTR(-ENOENT);
6525
6526                 fs_devices = alloc_fs_devices(fsid);
6527                 if (IS_ERR(fs_devices))
6528                         return fs_devices;
6529
6530                 fs_devices->seeding = 1;
6531                 fs_devices->opened = 1;
6532                 return fs_devices;
6533         }
6534
6535         fs_devices = clone_fs_devices(fs_devices);
6536         if (IS_ERR(fs_devices))
6537                 return fs_devices;
6538
6539         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6540                                    fs_info->bdev_holder);
6541         if (ret) {
6542                 free_fs_devices(fs_devices);
6543                 fs_devices = ERR_PTR(ret);
6544                 goto out;
6545         }
6546
6547         if (!fs_devices->seeding) {
6548                 __btrfs_close_devices(fs_devices);
6549                 free_fs_devices(fs_devices);
6550                 fs_devices = ERR_PTR(-EINVAL);
6551                 goto out;
6552         }
6553
6554         fs_devices->seed = fs_info->fs_devices->seed;
6555         fs_info->fs_devices->seed = fs_devices;
6556 out:
6557         return fs_devices;
6558 }
6559
6560 static int read_one_dev(struct btrfs_fs_info *fs_info,
6561                         struct extent_buffer *leaf,
6562                         struct btrfs_dev_item *dev_item)
6563 {
6564         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6565         struct btrfs_device *device;
6566         u64 devid;
6567         int ret;
6568         u8 fs_uuid[BTRFS_FSID_SIZE];
6569         u8 dev_uuid[BTRFS_UUID_SIZE];
6570
6571         devid = btrfs_device_id(leaf, dev_item);
6572         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6573                            BTRFS_UUID_SIZE);
6574         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6575                            BTRFS_FSID_SIZE);
6576
6577         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6578                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6579                 if (IS_ERR(fs_devices))
6580                         return PTR_ERR(fs_devices);
6581         }
6582
6583         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6584         if (!device) {
6585                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6586                         btrfs_report_missing_device(fs_info, devid, dev_uuid);
6587                         return -EIO;
6588                 }
6589
6590                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6591                 if (!device)
6592                         return -ENOMEM;
6593                 btrfs_report_missing_device(fs_info, devid, dev_uuid);
6594         } else {
6595                 if (!device->bdev) {
6596                         btrfs_report_missing_device(fs_info, devid, dev_uuid);
6597                         if (!btrfs_test_opt(fs_info, DEGRADED))
6598                                 return -EIO;
6599                 }
6600
6601                 if(!device->bdev && !device->missing) {
6602                         /*
6603                          * this happens when a device that was properly setup
6604                          * in the device info lists suddenly goes bad.
6605                          * device->bdev is NULL, and so we have to set
6606                          * device->missing to one here
6607                          */
6608                         device->fs_devices->missing_devices++;
6609                         device->missing = 1;
6610                 }
6611
6612                 /* Move the device to its own fs_devices */
6613                 if (device->fs_devices != fs_devices) {
6614                         ASSERT(device->missing);
6615
6616                         list_move(&device->dev_list, &fs_devices->devices);
6617                         device->fs_devices->num_devices--;
6618                         fs_devices->num_devices++;
6619
6620                         device->fs_devices->missing_devices--;
6621                         fs_devices->missing_devices++;
6622
6623                         device->fs_devices = fs_devices;
6624                 }
6625         }
6626
6627         if (device->fs_devices != fs_info->fs_devices) {
6628                 BUG_ON(device->writeable);
6629                 if (device->generation !=
6630                     btrfs_device_generation(leaf, dev_item))
6631                         return -EINVAL;
6632         }
6633
6634         fill_device_from_item(leaf, dev_item, device);
6635         device->in_fs_metadata = 1;
6636         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6637                 device->fs_devices->total_rw_bytes += device->total_bytes;
6638                 atomic64_add(device->total_bytes - device->bytes_used,
6639                                 &fs_info->free_chunk_space);
6640         }
6641         ret = 0;
6642         return ret;
6643 }
6644
6645 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6646 {
6647         struct btrfs_root *root = fs_info->tree_root;
6648         struct btrfs_super_block *super_copy = fs_info->super_copy;
6649         struct extent_buffer *sb;
6650         struct btrfs_disk_key *disk_key;
6651         struct btrfs_chunk *chunk;
6652         u8 *array_ptr;
6653         unsigned long sb_array_offset;
6654         int ret = 0;
6655         u32 num_stripes;
6656         u32 array_size;
6657         u32 len = 0;
6658         u32 cur_offset;
6659         u64 type;
6660         struct btrfs_key key;
6661
6662         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6663         /*
6664          * This will create extent buffer of nodesize, superblock size is
6665          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6666          * overallocate but we can keep it as-is, only the first page is used.
6667          */
6668         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6669         if (IS_ERR(sb))
6670                 return PTR_ERR(sb);
6671         set_extent_buffer_uptodate(sb);
6672         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6673         /*
6674          * The sb extent buffer is artificial and just used to read the system array.
6675          * set_extent_buffer_uptodate() call does not properly mark all it's
6676          * pages up-to-date when the page is larger: extent does not cover the
6677          * whole page and consequently check_page_uptodate does not find all
6678          * the page's extents up-to-date (the hole beyond sb),
6679          * write_extent_buffer then triggers a WARN_ON.
6680          *
6681          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6682          * but sb spans only this function. Add an explicit SetPageUptodate call
6683          * to silence the warning eg. on PowerPC 64.
6684          */
6685         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6686                 SetPageUptodate(sb->pages[0]);
6687
6688         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6689         array_size = btrfs_super_sys_array_size(super_copy);
6690
6691         array_ptr = super_copy->sys_chunk_array;
6692         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6693         cur_offset = 0;
6694
6695         while (cur_offset < array_size) {
6696                 disk_key = (struct btrfs_disk_key *)array_ptr;
6697                 len = sizeof(*disk_key);
6698                 if (cur_offset + len > array_size)
6699                         goto out_short_read;
6700
6701                 btrfs_disk_key_to_cpu(&key, disk_key);
6702
6703                 array_ptr += len;
6704                 sb_array_offset += len;
6705                 cur_offset += len;
6706
6707                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6708                         chunk = (struct btrfs_chunk *)sb_array_offset;
6709                         /*
6710                          * At least one btrfs_chunk with one stripe must be
6711                          * present, exact stripe count check comes afterwards
6712                          */
6713                         len = btrfs_chunk_item_size(1);
6714                         if (cur_offset + len > array_size)
6715                                 goto out_short_read;
6716
6717                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6718                         if (!num_stripes) {
6719                                 btrfs_err(fs_info,
6720                                         "invalid number of stripes %u in sys_array at offset %u",
6721                                         num_stripes, cur_offset);
6722                                 ret = -EIO;
6723                                 break;
6724                         }
6725
6726                         type = btrfs_chunk_type(sb, chunk);
6727                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6728                                 btrfs_err(fs_info,
6729                             "invalid chunk type %llu in sys_array at offset %u",
6730                                         type, cur_offset);
6731                                 ret = -EIO;
6732                                 break;
6733                         }
6734
6735                         len = btrfs_chunk_item_size(num_stripes);
6736                         if (cur_offset + len > array_size)
6737                                 goto out_short_read;
6738
6739                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6740                         if (ret)
6741                                 break;
6742                 } else {
6743                         btrfs_err(fs_info,
6744                             "unexpected item type %u in sys_array at offset %u",
6745                                   (u32)key.type, cur_offset);
6746                         ret = -EIO;
6747                         break;
6748                 }
6749                 array_ptr += len;
6750                 sb_array_offset += len;
6751                 cur_offset += len;
6752         }
6753         clear_extent_buffer_uptodate(sb);
6754         free_extent_buffer_stale(sb);
6755         return ret;
6756
6757 out_short_read:
6758         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6759                         len, cur_offset);
6760         clear_extent_buffer_uptodate(sb);
6761         free_extent_buffer_stale(sb);
6762         return -EIO;
6763 }
6764
6765 void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, u64 devid,
6766                                  u8 *uuid)
6767 {
6768         btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", devid, uuid);
6769 }
6770
6771 /*
6772  * Check if all chunks in the fs are OK for read-write degraded mount
6773  *
6774  * Return true if all chunks meet the minimal RW mount requirements.
6775  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6776  */
6777 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6778 {
6779         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6780         struct extent_map *em;
6781         u64 next_start = 0;
6782         bool ret = true;
6783
6784         read_lock(&map_tree->map_tree.lock);
6785         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6786         read_unlock(&map_tree->map_tree.lock);
6787         /* No chunk at all? Return false anyway */
6788         if (!em) {
6789                 ret = false;
6790                 goto out;
6791         }
6792         while (em) {
6793                 struct map_lookup *map;
6794                 int missing = 0;
6795                 int max_tolerated;
6796                 int i;
6797
6798                 map = em->map_lookup;
6799                 max_tolerated =
6800                         btrfs_get_num_tolerated_disk_barrier_failures(
6801                                         map->type);
6802                 for (i = 0; i < map->num_stripes; i++) {
6803                         struct btrfs_device *dev = map->stripes[i].dev;
6804
6805                         if (!dev || !dev->bdev || dev->missing ||
6806                             dev->last_flush_error)
6807                                 missing++;
6808                 }
6809                 if (missing > max_tolerated) {
6810                         btrfs_warn(fs_info,
6811         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6812                                    em->start, missing, max_tolerated);
6813                         free_extent_map(em);
6814                         ret = false;
6815                         goto out;
6816                 }
6817                 next_start = extent_map_end(em);
6818                 free_extent_map(em);
6819
6820                 read_lock(&map_tree->map_tree.lock);
6821                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6822                                            (u64)(-1) - next_start);
6823                 read_unlock(&map_tree->map_tree.lock);
6824         }
6825 out:
6826         return ret;
6827 }
6828
6829 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6830 {
6831         struct btrfs_root *root = fs_info->chunk_root;
6832         struct btrfs_path *path;
6833         struct extent_buffer *leaf;
6834         struct btrfs_key key;
6835         struct btrfs_key found_key;
6836         int ret;
6837         int slot;
6838         u64 total_dev = 0;
6839
6840         path = btrfs_alloc_path();
6841         if (!path)
6842                 return -ENOMEM;
6843
6844         mutex_lock(&uuid_mutex);
6845         mutex_lock(&fs_info->chunk_mutex);
6846
6847         /*
6848          * Read all device items, and then all the chunk items. All
6849          * device items are found before any chunk item (their object id
6850          * is smaller than the lowest possible object id for a chunk
6851          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6852          */
6853         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6854         key.offset = 0;
6855         key.type = 0;
6856         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6857         if (ret < 0)
6858                 goto error;
6859         while (1) {
6860                 leaf = path->nodes[0];
6861                 slot = path->slots[0];
6862                 if (slot >= btrfs_header_nritems(leaf)) {
6863                         ret = btrfs_next_leaf(root, path);
6864                         if (ret == 0)
6865                                 continue;
6866                         if (ret < 0)
6867                                 goto error;
6868                         break;
6869                 }
6870                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6871                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6872                         struct btrfs_dev_item *dev_item;
6873                         dev_item = btrfs_item_ptr(leaf, slot,
6874                                                   struct btrfs_dev_item);
6875                         ret = read_one_dev(fs_info, leaf, dev_item);
6876                         if (ret)
6877                                 goto error;
6878                         total_dev++;
6879                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6880                         struct btrfs_chunk *chunk;
6881                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6882                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6883                         if (ret)
6884                                 goto error;
6885                 }
6886                 path->slots[0]++;
6887         }
6888
6889         /*
6890          * After loading chunk tree, we've got all device information,
6891          * do another round of validation checks.
6892          */
6893         if (total_dev != fs_info->fs_devices->total_devices) {
6894                 btrfs_err(fs_info,
6895            "super_num_devices %llu mismatch with num_devices %llu found here",
6896                           btrfs_super_num_devices(fs_info->super_copy),
6897                           total_dev);
6898                 ret = -EINVAL;
6899                 goto error;
6900         }
6901         if (btrfs_super_total_bytes(fs_info->super_copy) <
6902             fs_info->fs_devices->total_rw_bytes) {
6903                 btrfs_err(fs_info,
6904         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6905                           btrfs_super_total_bytes(fs_info->super_copy),
6906                           fs_info->fs_devices->total_rw_bytes);
6907                 ret = -EINVAL;
6908                 goto error;
6909         }
6910         ret = 0;
6911 error:
6912         mutex_unlock(&fs_info->chunk_mutex);
6913         mutex_unlock(&uuid_mutex);
6914
6915         btrfs_free_path(path);
6916         return ret;
6917 }
6918
6919 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6920 {
6921         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6922         struct btrfs_device *device;
6923
6924         while (fs_devices) {
6925                 mutex_lock(&fs_devices->device_list_mutex);
6926                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6927                         device->fs_info = fs_info;
6928                 mutex_unlock(&fs_devices->device_list_mutex);
6929
6930                 fs_devices = fs_devices->seed;
6931         }
6932 }
6933
6934 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6935 {
6936         int i;
6937
6938         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6939                 btrfs_dev_stat_reset(dev, i);
6940 }
6941
6942 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6943 {
6944         struct btrfs_key key;
6945         struct btrfs_key found_key;
6946         struct btrfs_root *dev_root = fs_info->dev_root;
6947         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6948         struct extent_buffer *eb;
6949         int slot;
6950         int ret = 0;
6951         struct btrfs_device *device;
6952         struct btrfs_path *path = NULL;
6953         int i;
6954
6955         path = btrfs_alloc_path();
6956         if (!path) {
6957                 ret = -ENOMEM;
6958                 goto out;
6959         }
6960
6961         mutex_lock(&fs_devices->device_list_mutex);
6962         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6963                 int item_size;
6964                 struct btrfs_dev_stats_item *ptr;
6965
6966                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6967                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6968                 key.offset = device->devid;
6969                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6970                 if (ret) {
6971                         __btrfs_reset_dev_stats(device);
6972                         device->dev_stats_valid = 1;
6973                         btrfs_release_path(path);
6974                         continue;
6975                 }
6976                 slot = path->slots[0];
6977                 eb = path->nodes[0];
6978                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6979                 item_size = btrfs_item_size_nr(eb, slot);
6980
6981                 ptr = btrfs_item_ptr(eb, slot,
6982                                      struct btrfs_dev_stats_item);
6983
6984                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6985                         if (item_size >= (1 + i) * sizeof(__le64))
6986                                 btrfs_dev_stat_set(device, i,
6987                                         btrfs_dev_stats_value(eb, ptr, i));
6988                         else
6989                                 btrfs_dev_stat_reset(device, i);
6990                 }
6991
6992                 device->dev_stats_valid = 1;
6993                 btrfs_dev_stat_print_on_load(device);
6994                 btrfs_release_path(path);
6995         }
6996         mutex_unlock(&fs_devices->device_list_mutex);
6997
6998 out:
6999         btrfs_free_path(path);
7000         return ret < 0 ? ret : 0;
7001 }
7002
7003 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7004                                 struct btrfs_fs_info *fs_info,
7005                                 struct btrfs_device *device)
7006 {
7007         struct btrfs_root *dev_root = fs_info->dev_root;
7008         struct btrfs_path *path;
7009         struct btrfs_key key;
7010         struct extent_buffer *eb;
7011         struct btrfs_dev_stats_item *ptr;
7012         int ret;
7013         int i;
7014
7015         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7016         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7017         key.offset = device->devid;
7018
7019         path = btrfs_alloc_path();
7020         if (!path)
7021                 return -ENOMEM;
7022         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7023         if (ret < 0) {
7024                 btrfs_warn_in_rcu(fs_info,
7025                         "error %d while searching for dev_stats item for device %s",
7026                               ret, rcu_str_deref(device->name));
7027                 goto out;
7028         }
7029
7030         if (ret == 0 &&
7031             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7032                 /* need to delete old one and insert a new one */
7033                 ret = btrfs_del_item(trans, dev_root, path);
7034                 if (ret != 0) {
7035                         btrfs_warn_in_rcu(fs_info,
7036                                 "delete too small dev_stats item for device %s failed %d",
7037                                       rcu_str_deref(device->name), ret);
7038                         goto out;
7039                 }
7040                 ret = 1;
7041         }
7042
7043         if (ret == 1) {
7044                 /* need to insert a new item */
7045                 btrfs_release_path(path);
7046                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7047                                               &key, sizeof(*ptr));
7048                 if (ret < 0) {
7049                         btrfs_warn_in_rcu(fs_info,
7050                                 "insert dev_stats item for device %s failed %d",
7051                                 rcu_str_deref(device->name), ret);
7052                         goto out;
7053                 }
7054         }
7055
7056         eb = path->nodes[0];
7057         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7058         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7059                 btrfs_set_dev_stats_value(eb, ptr, i,
7060                                           btrfs_dev_stat_read(device, i));
7061         btrfs_mark_buffer_dirty(eb);
7062
7063 out:
7064         btrfs_free_path(path);
7065         return ret;
7066 }
7067
7068 /*
7069  * called from commit_transaction. Writes all changed device stats to disk.
7070  */
7071 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7072                         struct btrfs_fs_info *fs_info)
7073 {
7074         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7075         struct btrfs_device *device;
7076         int stats_cnt;
7077         int ret = 0;
7078
7079         mutex_lock(&fs_devices->device_list_mutex);
7080         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7081                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7082                         continue;
7083
7084                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7085                 ret = update_dev_stat_item(trans, fs_info, device);
7086                 if (!ret)
7087                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7088         }
7089         mutex_unlock(&fs_devices->device_list_mutex);
7090
7091         return ret;
7092 }
7093
7094 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7095 {
7096         btrfs_dev_stat_inc(dev, index);
7097         btrfs_dev_stat_print_on_error(dev);
7098 }
7099
7100 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7101 {
7102         if (!dev->dev_stats_valid)
7103                 return;
7104         btrfs_err_rl_in_rcu(dev->fs_info,
7105                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7106                            rcu_str_deref(dev->name),
7107                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7108                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7109                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7110                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7111                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7112 }
7113
7114 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7115 {
7116         int i;
7117
7118         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7119                 if (btrfs_dev_stat_read(dev, i) != 0)
7120                         break;
7121         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7122                 return; /* all values == 0, suppress message */
7123
7124         btrfs_info_in_rcu(dev->fs_info,
7125                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7126                rcu_str_deref(dev->name),
7127                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7128                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7129                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7130                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7131                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7132 }
7133
7134 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7135                         struct btrfs_ioctl_get_dev_stats *stats)
7136 {
7137         struct btrfs_device *dev;
7138         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7139         int i;
7140
7141         mutex_lock(&fs_devices->device_list_mutex);
7142         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7143         mutex_unlock(&fs_devices->device_list_mutex);
7144
7145         if (!dev) {
7146                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7147                 return -ENODEV;
7148         } else if (!dev->dev_stats_valid) {
7149                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7150                 return -ENODEV;
7151         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7152                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7153                         if (stats->nr_items > i)
7154                                 stats->values[i] =
7155                                         btrfs_dev_stat_read_and_reset(dev, i);
7156                         else
7157                                 btrfs_dev_stat_reset(dev, i);
7158                 }
7159         } else {
7160                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7161                         if (stats->nr_items > i)
7162                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7163         }
7164         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7165                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7166         return 0;
7167 }
7168
7169 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7170 {
7171         struct buffer_head *bh;
7172         struct btrfs_super_block *disk_super;
7173         int copy_num;
7174
7175         if (!bdev)
7176                 return;
7177
7178         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7179                 copy_num++) {
7180
7181                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7182                         continue;
7183
7184                 disk_super = (struct btrfs_super_block *)bh->b_data;
7185
7186                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7187                 set_buffer_dirty(bh);
7188                 sync_dirty_buffer(bh);
7189                 brelse(bh);
7190         }
7191
7192         /* Notify udev that device has changed */
7193         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7194
7195         /* Update ctime/mtime for device path for libblkid */
7196         update_dev_time(device_path);
7197 }
7198
7199 /*
7200  * Update the size of all devices, which is used for writing out the
7201  * super blocks.
7202  */
7203 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7204 {
7205         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7206         struct btrfs_device *curr, *next;
7207
7208         if (list_empty(&fs_devices->resized_devices))
7209                 return;
7210
7211         mutex_lock(&fs_devices->device_list_mutex);
7212         mutex_lock(&fs_info->chunk_mutex);
7213         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7214                                  resized_list) {
7215                 list_del_init(&curr->resized_list);
7216                 curr->commit_total_bytes = curr->disk_total_bytes;
7217         }
7218         mutex_unlock(&fs_info->chunk_mutex);
7219         mutex_unlock(&fs_devices->device_list_mutex);
7220 }
7221
7222 /* Must be invoked during the transaction commit */
7223 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7224                                         struct btrfs_transaction *transaction)
7225 {
7226         struct extent_map *em;
7227         struct map_lookup *map;
7228         struct btrfs_device *dev;
7229         int i;
7230
7231         if (list_empty(&transaction->pending_chunks))
7232                 return;
7233
7234         /* In order to kick the device replace finish process */
7235         mutex_lock(&fs_info->chunk_mutex);
7236         list_for_each_entry(em, &transaction->pending_chunks, list) {
7237                 map = em->map_lookup;
7238
7239                 for (i = 0; i < map->num_stripes; i++) {
7240                         dev = map->stripes[i].dev;
7241                         dev->commit_bytes_used = dev->bytes_used;
7242                 }
7243         }
7244         mutex_unlock(&fs_info->chunk_mutex);
7245 }
7246
7247 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7248 {
7249         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7250         while (fs_devices) {
7251                 fs_devices->fs_info = fs_info;
7252                 fs_devices = fs_devices->seed;
7253         }
7254 }
7255
7256 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7257 {
7258         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7259         while (fs_devices) {
7260                 fs_devices->fs_info = NULL;
7261                 fs_devices = fs_devices->seed;
7262         }
7263 }