OSDN Git Service

f2fs: convert from readpages to readahead
[tomoyo/tomoyo-test1.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56                          enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62         trace_block_touch_buffer(bh);
63         mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75         clear_bit_unlock(BH_Lock, &bh->b_state);
76         smp_mb__after_atomic();
77         wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87                                      bool *dirty, bool *writeback)
88 {
89         struct buffer_head *head, *bh;
90         *dirty = false;
91         *writeback = false;
92
93         BUG_ON(!PageLocked(page));
94
95         if (!page_has_buffers(page))
96                 return;
97
98         if (PageWriteback(page))
99                 *writeback = true;
100
101         head = page_buffers(page);
102         bh = head;
103         do {
104                 if (buffer_locked(bh))
105                         *writeback = true;
106
107                 if (buffer_dirty(bh))
108                         *dirty = true;
109
110                 bh = bh->b_this_page;
111         } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void
127 __clear_page_buffers(struct page *page)
128 {
129         ClearPagePrivate(page);
130         set_page_private(page, 0);
131         put_page(page);
132 }
133
134 static void buffer_io_error(struct buffer_head *bh, char *msg)
135 {
136         if (!test_bit(BH_Quiet, &bh->b_state))
137                 printk_ratelimited(KERN_ERR
138                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
139                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
140 }
141
142 /*
143  * End-of-IO handler helper function which does not touch the bh after
144  * unlocking it.
145  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146  * a race there is benign: unlock_buffer() only use the bh's address for
147  * hashing after unlocking the buffer, so it doesn't actually touch the bh
148  * itself.
149  */
150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
151 {
152         if (uptodate) {
153                 set_buffer_uptodate(bh);
154         } else {
155                 /* This happens, due to failed read-ahead attempts. */
156                 clear_buffer_uptodate(bh);
157         }
158         unlock_buffer(bh);
159 }
160
161 /*
162  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
163  * unlock the buffer. This is what ll_rw_block uses too.
164  */
165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
166 {
167         __end_buffer_read_notouch(bh, uptodate);
168         put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_read_sync);
171
172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
173 {
174         if (uptodate) {
175                 set_buffer_uptodate(bh);
176         } else {
177                 buffer_io_error(bh, ", lost sync page write");
178                 mark_buffer_write_io_error(bh);
179                 clear_buffer_uptodate(bh);
180         }
181         unlock_buffer(bh);
182         put_bh(bh);
183 }
184 EXPORT_SYMBOL(end_buffer_write_sync);
185
186 /*
187  * Various filesystems appear to want __find_get_block to be non-blocking.
188  * But it's the page lock which protects the buffers.  To get around this,
189  * we get exclusion from try_to_free_buffers with the blockdev mapping's
190  * private_lock.
191  *
192  * Hack idea: for the blockdev mapping, private_lock contention
193  * may be quite high.  This code could TryLock the page, and if that
194  * succeeds, there is no need to take private_lock.
195  */
196 static struct buffer_head *
197 __find_get_block_slow(struct block_device *bdev, sector_t block)
198 {
199         struct inode *bd_inode = bdev->bd_inode;
200         struct address_space *bd_mapping = bd_inode->i_mapping;
201         struct buffer_head *ret = NULL;
202         pgoff_t index;
203         struct buffer_head *bh;
204         struct buffer_head *head;
205         struct page *page;
206         int all_mapped = 1;
207         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
208
209         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
210         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
211         if (!page)
212                 goto out;
213
214         spin_lock(&bd_mapping->private_lock);
215         if (!page_has_buffers(page))
216                 goto out_unlock;
217         head = page_buffers(page);
218         bh = head;
219         do {
220                 if (!buffer_mapped(bh))
221                         all_mapped = 0;
222                 else if (bh->b_blocknr == block) {
223                         ret = bh;
224                         get_bh(bh);
225                         goto out_unlock;
226                 }
227                 bh = bh->b_this_page;
228         } while (bh != head);
229
230         /* we might be here because some of the buffers on this page are
231          * not mapped.  This is due to various races between
232          * file io on the block device and getblk.  It gets dealt with
233          * elsewhere, don't buffer_error if we had some unmapped buffers
234          */
235         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
236         if (all_mapped && __ratelimit(&last_warned)) {
237                 printk("__find_get_block_slow() failed. block=%llu, "
238                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
239                        "device %pg blocksize: %d\n",
240                        (unsigned long long)block,
241                        (unsigned long long)bh->b_blocknr,
242                        bh->b_state, bh->b_size, bdev,
243                        1 << bd_inode->i_blkbits);
244         }
245 out_unlock:
246         spin_unlock(&bd_mapping->private_lock);
247         put_page(page);
248 out:
249         return ret;
250 }
251
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253 {
254         unsigned long flags;
255         struct buffer_head *first;
256         struct buffer_head *tmp;
257         struct page *page;
258         int page_uptodate = 1;
259
260         BUG_ON(!buffer_async_read(bh));
261
262         page = bh->b_page;
263         if (uptodate) {
264                 set_buffer_uptodate(bh);
265         } else {
266                 clear_buffer_uptodate(bh);
267                 buffer_io_error(bh, ", async page read");
268                 SetPageError(page);
269         }
270
271         /*
272          * Be _very_ careful from here on. Bad things can happen if
273          * two buffer heads end IO at almost the same time and both
274          * decide that the page is now completely done.
275          */
276         first = page_buffers(page);
277         spin_lock_irqsave(&first->b_uptodate_lock, flags);
278         clear_buffer_async_read(bh);
279         unlock_buffer(bh);
280         tmp = bh;
281         do {
282                 if (!buffer_uptodate(tmp))
283                         page_uptodate = 0;
284                 if (buffer_async_read(tmp)) {
285                         BUG_ON(!buffer_locked(tmp));
286                         goto still_busy;
287                 }
288                 tmp = tmp->b_this_page;
289         } while (tmp != bh);
290         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
291
292         /*
293          * If none of the buffers had errors and they are all
294          * uptodate then we can set the page uptodate.
295          */
296         if (page_uptodate && !PageError(page))
297                 SetPageUptodate(page);
298         unlock_page(page);
299         return;
300
301 still_busy:
302         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
303         return;
304 }
305
306 struct decrypt_bh_ctx {
307         struct work_struct work;
308         struct buffer_head *bh;
309 };
310
311 static void decrypt_bh(struct work_struct *work)
312 {
313         struct decrypt_bh_ctx *ctx =
314                 container_of(work, struct decrypt_bh_ctx, work);
315         struct buffer_head *bh = ctx->bh;
316         int err;
317
318         err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
319                                                bh_offset(bh));
320         end_buffer_async_read(bh, err == 0);
321         kfree(ctx);
322 }
323
324 /*
325  * I/O completion handler for block_read_full_page() - pages
326  * which come unlocked at the end of I/O.
327  */
328 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
329 {
330         /* Decrypt if needed */
331         if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
332             IS_ENCRYPTED(bh->b_page->mapping->host) &&
333             S_ISREG(bh->b_page->mapping->host->i_mode)) {
334                 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
335
336                 if (ctx) {
337                         INIT_WORK(&ctx->work, decrypt_bh);
338                         ctx->bh = bh;
339                         fscrypt_enqueue_decrypt_work(&ctx->work);
340                         return;
341                 }
342                 uptodate = 0;
343         }
344         end_buffer_async_read(bh, uptodate);
345 }
346
347 /*
348  * Completion handler for block_write_full_page() - pages which are unlocked
349  * during I/O, and which have PageWriteback cleared upon I/O completion.
350  */
351 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
352 {
353         unsigned long flags;
354         struct buffer_head *first;
355         struct buffer_head *tmp;
356         struct page *page;
357
358         BUG_ON(!buffer_async_write(bh));
359
360         page = bh->b_page;
361         if (uptodate) {
362                 set_buffer_uptodate(bh);
363         } else {
364                 buffer_io_error(bh, ", lost async page write");
365                 mark_buffer_write_io_error(bh);
366                 clear_buffer_uptodate(bh);
367                 SetPageError(page);
368         }
369
370         first = page_buffers(page);
371         spin_lock_irqsave(&first->b_uptodate_lock, flags);
372
373         clear_buffer_async_write(bh);
374         unlock_buffer(bh);
375         tmp = bh->b_this_page;
376         while (tmp != bh) {
377                 if (buffer_async_write(tmp)) {
378                         BUG_ON(!buffer_locked(tmp));
379                         goto still_busy;
380                 }
381                 tmp = tmp->b_this_page;
382         }
383         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
384         end_page_writeback(page);
385         return;
386
387 still_busy:
388         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
389         return;
390 }
391 EXPORT_SYMBOL(end_buffer_async_write);
392
393 /*
394  * If a page's buffers are under async readin (end_buffer_async_read
395  * completion) then there is a possibility that another thread of
396  * control could lock one of the buffers after it has completed
397  * but while some of the other buffers have not completed.  This
398  * locked buffer would confuse end_buffer_async_read() into not unlocking
399  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
400  * that this buffer is not under async I/O.
401  *
402  * The page comes unlocked when it has no locked buffer_async buffers
403  * left.
404  *
405  * PageLocked prevents anyone starting new async I/O reads any of
406  * the buffers.
407  *
408  * PageWriteback is used to prevent simultaneous writeout of the same
409  * page.
410  *
411  * PageLocked prevents anyone from starting writeback of a page which is
412  * under read I/O (PageWriteback is only ever set against a locked page).
413  */
414 static void mark_buffer_async_read(struct buffer_head *bh)
415 {
416         bh->b_end_io = end_buffer_async_read_io;
417         set_buffer_async_read(bh);
418 }
419
420 static void mark_buffer_async_write_endio(struct buffer_head *bh,
421                                           bh_end_io_t *handler)
422 {
423         bh->b_end_io = handler;
424         set_buffer_async_write(bh);
425 }
426
427 void mark_buffer_async_write(struct buffer_head *bh)
428 {
429         mark_buffer_async_write_endio(bh, end_buffer_async_write);
430 }
431 EXPORT_SYMBOL(mark_buffer_async_write);
432
433
434 /*
435  * fs/buffer.c contains helper functions for buffer-backed address space's
436  * fsync functions.  A common requirement for buffer-based filesystems is
437  * that certain data from the backing blockdev needs to be written out for
438  * a successful fsync().  For example, ext2 indirect blocks need to be
439  * written back and waited upon before fsync() returns.
440  *
441  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
442  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
443  * management of a list of dependent buffers at ->i_mapping->private_list.
444  *
445  * Locking is a little subtle: try_to_free_buffers() will remove buffers
446  * from their controlling inode's queue when they are being freed.  But
447  * try_to_free_buffers() will be operating against the *blockdev* mapping
448  * at the time, not against the S_ISREG file which depends on those buffers.
449  * So the locking for private_list is via the private_lock in the address_space
450  * which backs the buffers.  Which is different from the address_space 
451  * against which the buffers are listed.  So for a particular address_space,
452  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
453  * mapping->private_list will always be protected by the backing blockdev's
454  * ->private_lock.
455  *
456  * Which introduces a requirement: all buffers on an address_space's
457  * ->private_list must be from the same address_space: the blockdev's.
458  *
459  * address_spaces which do not place buffers at ->private_list via these
460  * utility functions are free to use private_lock and private_list for
461  * whatever they want.  The only requirement is that list_empty(private_list)
462  * be true at clear_inode() time.
463  *
464  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
465  * filesystems should do that.  invalidate_inode_buffers() should just go
466  * BUG_ON(!list_empty).
467  *
468  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
469  * take an address_space, not an inode.  And it should be called
470  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
471  * queued up.
472  *
473  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
474  * list if it is already on a list.  Because if the buffer is on a list,
475  * it *must* already be on the right one.  If not, the filesystem is being
476  * silly.  This will save a ton of locking.  But first we have to ensure
477  * that buffers are taken *off* the old inode's list when they are freed
478  * (presumably in truncate).  That requires careful auditing of all
479  * filesystems (do it inside bforget()).  It could also be done by bringing
480  * b_inode back.
481  */
482
483 /*
484  * The buffer's backing address_space's private_lock must be held
485  */
486 static void __remove_assoc_queue(struct buffer_head *bh)
487 {
488         list_del_init(&bh->b_assoc_buffers);
489         WARN_ON(!bh->b_assoc_map);
490         bh->b_assoc_map = NULL;
491 }
492
493 int inode_has_buffers(struct inode *inode)
494 {
495         return !list_empty(&inode->i_data.private_list);
496 }
497
498 /*
499  * osync is designed to support O_SYNC io.  It waits synchronously for
500  * all already-submitted IO to complete, but does not queue any new
501  * writes to the disk.
502  *
503  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
504  * you dirty the buffers, and then use osync_inode_buffers to wait for
505  * completion.  Any other dirty buffers which are not yet queued for
506  * write will not be flushed to disk by the osync.
507  */
508 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
509 {
510         struct buffer_head *bh;
511         struct list_head *p;
512         int err = 0;
513
514         spin_lock(lock);
515 repeat:
516         list_for_each_prev(p, list) {
517                 bh = BH_ENTRY(p);
518                 if (buffer_locked(bh)) {
519                         get_bh(bh);
520                         spin_unlock(lock);
521                         wait_on_buffer(bh);
522                         if (!buffer_uptodate(bh))
523                                 err = -EIO;
524                         brelse(bh);
525                         spin_lock(lock);
526                         goto repeat;
527                 }
528         }
529         spin_unlock(lock);
530         return err;
531 }
532
533 void emergency_thaw_bdev(struct super_block *sb)
534 {
535         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
536                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
537 }
538
539 /**
540  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
541  * @mapping: the mapping which wants those buffers written
542  *
543  * Starts I/O against the buffers at mapping->private_list, and waits upon
544  * that I/O.
545  *
546  * Basically, this is a convenience function for fsync().
547  * @mapping is a file or directory which needs those buffers to be written for
548  * a successful fsync().
549  */
550 int sync_mapping_buffers(struct address_space *mapping)
551 {
552         struct address_space *buffer_mapping = mapping->private_data;
553
554         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
555                 return 0;
556
557         return fsync_buffers_list(&buffer_mapping->private_lock,
558                                         &mapping->private_list);
559 }
560 EXPORT_SYMBOL(sync_mapping_buffers);
561
562 /*
563  * Called when we've recently written block `bblock', and it is known that
564  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
565  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
566  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
567  */
568 void write_boundary_block(struct block_device *bdev,
569                         sector_t bblock, unsigned blocksize)
570 {
571         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
572         if (bh) {
573                 if (buffer_dirty(bh))
574                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
575                 put_bh(bh);
576         }
577 }
578
579 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
580 {
581         struct address_space *mapping = inode->i_mapping;
582         struct address_space *buffer_mapping = bh->b_page->mapping;
583
584         mark_buffer_dirty(bh);
585         if (!mapping->private_data) {
586                 mapping->private_data = buffer_mapping;
587         } else {
588                 BUG_ON(mapping->private_data != buffer_mapping);
589         }
590         if (!bh->b_assoc_map) {
591                 spin_lock(&buffer_mapping->private_lock);
592                 list_move_tail(&bh->b_assoc_buffers,
593                                 &mapping->private_list);
594                 bh->b_assoc_map = mapping;
595                 spin_unlock(&buffer_mapping->private_lock);
596         }
597 }
598 EXPORT_SYMBOL(mark_buffer_dirty_inode);
599
600 /*
601  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
602  * dirty.
603  *
604  * If warn is true, then emit a warning if the page is not uptodate and has
605  * not been truncated.
606  *
607  * The caller must hold lock_page_memcg().
608  */
609 void __set_page_dirty(struct page *page, struct address_space *mapping,
610                              int warn)
611 {
612         unsigned long flags;
613
614         xa_lock_irqsave(&mapping->i_pages, flags);
615         if (page->mapping) {    /* Race with truncate? */
616                 WARN_ON_ONCE(warn && !PageUptodate(page));
617                 account_page_dirtied(page, mapping);
618                 __xa_set_mark(&mapping->i_pages, page_index(page),
619                                 PAGECACHE_TAG_DIRTY);
620         }
621         xa_unlock_irqrestore(&mapping->i_pages, flags);
622 }
623 EXPORT_SYMBOL_GPL(__set_page_dirty);
624
625 /*
626  * Add a page to the dirty page list.
627  *
628  * It is a sad fact of life that this function is called from several places
629  * deeply under spinlocking.  It may not sleep.
630  *
631  * If the page has buffers, the uptodate buffers are set dirty, to preserve
632  * dirty-state coherency between the page and the buffers.  It the page does
633  * not have buffers then when they are later attached they will all be set
634  * dirty.
635  *
636  * The buffers are dirtied before the page is dirtied.  There's a small race
637  * window in which a writepage caller may see the page cleanness but not the
638  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
639  * before the buffers, a concurrent writepage caller could clear the page dirty
640  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
641  * page on the dirty page list.
642  *
643  * We use private_lock to lock against try_to_free_buffers while using the
644  * page's buffer list.  Also use this to protect against clean buffers being
645  * added to the page after it was set dirty.
646  *
647  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
648  * address_space though.
649  */
650 int __set_page_dirty_buffers(struct page *page)
651 {
652         int newly_dirty;
653         struct address_space *mapping = page_mapping(page);
654
655         if (unlikely(!mapping))
656                 return !TestSetPageDirty(page);
657
658         spin_lock(&mapping->private_lock);
659         if (page_has_buffers(page)) {
660                 struct buffer_head *head = page_buffers(page);
661                 struct buffer_head *bh = head;
662
663                 do {
664                         set_buffer_dirty(bh);
665                         bh = bh->b_this_page;
666                 } while (bh != head);
667         }
668         /*
669          * Lock out page->mem_cgroup migration to keep PageDirty
670          * synchronized with per-memcg dirty page counters.
671          */
672         lock_page_memcg(page);
673         newly_dirty = !TestSetPageDirty(page);
674         spin_unlock(&mapping->private_lock);
675
676         if (newly_dirty)
677                 __set_page_dirty(page, mapping, 1);
678
679         unlock_page_memcg(page);
680
681         if (newly_dirty)
682                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
683
684         return newly_dirty;
685 }
686 EXPORT_SYMBOL(__set_page_dirty_buffers);
687
688 /*
689  * Write out and wait upon a list of buffers.
690  *
691  * We have conflicting pressures: we want to make sure that all
692  * initially dirty buffers get waited on, but that any subsequently
693  * dirtied buffers don't.  After all, we don't want fsync to last
694  * forever if somebody is actively writing to the file.
695  *
696  * Do this in two main stages: first we copy dirty buffers to a
697  * temporary inode list, queueing the writes as we go.  Then we clean
698  * up, waiting for those writes to complete.
699  * 
700  * During this second stage, any subsequent updates to the file may end
701  * up refiling the buffer on the original inode's dirty list again, so
702  * there is a chance we will end up with a buffer queued for write but
703  * not yet completed on that list.  So, as a final cleanup we go through
704  * the osync code to catch these locked, dirty buffers without requeuing
705  * any newly dirty buffers for write.
706  */
707 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
708 {
709         struct buffer_head *bh;
710         struct list_head tmp;
711         struct address_space *mapping;
712         int err = 0, err2;
713         struct blk_plug plug;
714
715         INIT_LIST_HEAD(&tmp);
716         blk_start_plug(&plug);
717
718         spin_lock(lock);
719         while (!list_empty(list)) {
720                 bh = BH_ENTRY(list->next);
721                 mapping = bh->b_assoc_map;
722                 __remove_assoc_queue(bh);
723                 /* Avoid race with mark_buffer_dirty_inode() which does
724                  * a lockless check and we rely on seeing the dirty bit */
725                 smp_mb();
726                 if (buffer_dirty(bh) || buffer_locked(bh)) {
727                         list_add(&bh->b_assoc_buffers, &tmp);
728                         bh->b_assoc_map = mapping;
729                         if (buffer_dirty(bh)) {
730                                 get_bh(bh);
731                                 spin_unlock(lock);
732                                 /*
733                                  * Ensure any pending I/O completes so that
734                                  * write_dirty_buffer() actually writes the
735                                  * current contents - it is a noop if I/O is
736                                  * still in flight on potentially older
737                                  * contents.
738                                  */
739                                 write_dirty_buffer(bh, REQ_SYNC);
740
741                                 /*
742                                  * Kick off IO for the previous mapping. Note
743                                  * that we will not run the very last mapping,
744                                  * wait_on_buffer() will do that for us
745                                  * through sync_buffer().
746                                  */
747                                 brelse(bh);
748                                 spin_lock(lock);
749                         }
750                 }
751         }
752
753         spin_unlock(lock);
754         blk_finish_plug(&plug);
755         spin_lock(lock);
756
757         while (!list_empty(&tmp)) {
758                 bh = BH_ENTRY(tmp.prev);
759                 get_bh(bh);
760                 mapping = bh->b_assoc_map;
761                 __remove_assoc_queue(bh);
762                 /* Avoid race with mark_buffer_dirty_inode() which does
763                  * a lockless check and we rely on seeing the dirty bit */
764                 smp_mb();
765                 if (buffer_dirty(bh)) {
766                         list_add(&bh->b_assoc_buffers,
767                                  &mapping->private_list);
768                         bh->b_assoc_map = mapping;
769                 }
770                 spin_unlock(lock);
771                 wait_on_buffer(bh);
772                 if (!buffer_uptodate(bh))
773                         err = -EIO;
774                 brelse(bh);
775                 spin_lock(lock);
776         }
777         
778         spin_unlock(lock);
779         err2 = osync_buffers_list(lock, list);
780         if (err)
781                 return err;
782         else
783                 return err2;
784 }
785
786 /*
787  * Invalidate any and all dirty buffers on a given inode.  We are
788  * probably unmounting the fs, but that doesn't mean we have already
789  * done a sync().  Just drop the buffers from the inode list.
790  *
791  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
792  * assumes that all the buffers are against the blockdev.  Not true
793  * for reiserfs.
794  */
795 void invalidate_inode_buffers(struct inode *inode)
796 {
797         if (inode_has_buffers(inode)) {
798                 struct address_space *mapping = &inode->i_data;
799                 struct list_head *list = &mapping->private_list;
800                 struct address_space *buffer_mapping = mapping->private_data;
801
802                 spin_lock(&buffer_mapping->private_lock);
803                 while (!list_empty(list))
804                         __remove_assoc_queue(BH_ENTRY(list->next));
805                 spin_unlock(&buffer_mapping->private_lock);
806         }
807 }
808 EXPORT_SYMBOL(invalidate_inode_buffers);
809
810 /*
811  * Remove any clean buffers from the inode's buffer list.  This is called
812  * when we're trying to free the inode itself.  Those buffers can pin it.
813  *
814  * Returns true if all buffers were removed.
815  */
816 int remove_inode_buffers(struct inode *inode)
817 {
818         int ret = 1;
819
820         if (inode_has_buffers(inode)) {
821                 struct address_space *mapping = &inode->i_data;
822                 struct list_head *list = &mapping->private_list;
823                 struct address_space *buffer_mapping = mapping->private_data;
824
825                 spin_lock(&buffer_mapping->private_lock);
826                 while (!list_empty(list)) {
827                         struct buffer_head *bh = BH_ENTRY(list->next);
828                         if (buffer_dirty(bh)) {
829                                 ret = 0;
830                                 break;
831                         }
832                         __remove_assoc_queue(bh);
833                 }
834                 spin_unlock(&buffer_mapping->private_lock);
835         }
836         return ret;
837 }
838
839 /*
840  * Create the appropriate buffers when given a page for data area and
841  * the size of each buffer.. Use the bh->b_this_page linked list to
842  * follow the buffers created.  Return NULL if unable to create more
843  * buffers.
844  *
845  * The retry flag is used to differentiate async IO (paging, swapping)
846  * which may not fail from ordinary buffer allocations.
847  */
848 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
849                 bool retry)
850 {
851         struct buffer_head *bh, *head;
852         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
853         long offset;
854         struct mem_cgroup *memcg;
855
856         if (retry)
857                 gfp |= __GFP_NOFAIL;
858
859         memcg = get_mem_cgroup_from_page(page);
860         memalloc_use_memcg(memcg);
861
862         head = NULL;
863         offset = PAGE_SIZE;
864         while ((offset -= size) >= 0) {
865                 bh = alloc_buffer_head(gfp);
866                 if (!bh)
867                         goto no_grow;
868
869                 bh->b_this_page = head;
870                 bh->b_blocknr = -1;
871                 head = bh;
872
873                 bh->b_size = size;
874
875                 /* Link the buffer to its page */
876                 set_bh_page(bh, page, offset);
877         }
878 out:
879         memalloc_unuse_memcg();
880         mem_cgroup_put(memcg);
881         return head;
882 /*
883  * In case anything failed, we just free everything we got.
884  */
885 no_grow:
886         if (head) {
887                 do {
888                         bh = head;
889                         head = head->b_this_page;
890                         free_buffer_head(bh);
891                 } while (head);
892         }
893
894         goto out;
895 }
896 EXPORT_SYMBOL_GPL(alloc_page_buffers);
897
898 static inline void
899 link_dev_buffers(struct page *page, struct buffer_head *head)
900 {
901         struct buffer_head *bh, *tail;
902
903         bh = head;
904         do {
905                 tail = bh;
906                 bh = bh->b_this_page;
907         } while (bh);
908         tail->b_this_page = head;
909         attach_page_buffers(page, head);
910 }
911
912 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
913 {
914         sector_t retval = ~((sector_t)0);
915         loff_t sz = i_size_read(bdev->bd_inode);
916
917         if (sz) {
918                 unsigned int sizebits = blksize_bits(size);
919                 retval = (sz >> sizebits);
920         }
921         return retval;
922 }
923
924 /*
925  * Initialise the state of a blockdev page's buffers.
926  */ 
927 static sector_t
928 init_page_buffers(struct page *page, struct block_device *bdev,
929                         sector_t block, int size)
930 {
931         struct buffer_head *head = page_buffers(page);
932         struct buffer_head *bh = head;
933         int uptodate = PageUptodate(page);
934         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
935
936         do {
937                 if (!buffer_mapped(bh)) {
938                         bh->b_end_io = NULL;
939                         bh->b_private = NULL;
940                         bh->b_bdev = bdev;
941                         bh->b_blocknr = block;
942                         if (uptodate)
943                                 set_buffer_uptodate(bh);
944                         if (block < end_block)
945                                 set_buffer_mapped(bh);
946                 }
947                 block++;
948                 bh = bh->b_this_page;
949         } while (bh != head);
950
951         /*
952          * Caller needs to validate requested block against end of device.
953          */
954         return end_block;
955 }
956
957 /*
958  * Create the page-cache page that contains the requested block.
959  *
960  * This is used purely for blockdev mappings.
961  */
962 static int
963 grow_dev_page(struct block_device *bdev, sector_t block,
964               pgoff_t index, int size, int sizebits, gfp_t gfp)
965 {
966         struct inode *inode = bdev->bd_inode;
967         struct page *page;
968         struct buffer_head *bh;
969         sector_t end_block;
970         int ret = 0;
971         gfp_t gfp_mask;
972
973         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
974
975         /*
976          * XXX: __getblk_slow() can not really deal with failure and
977          * will endlessly loop on improvised global reclaim.  Prefer
978          * looping in the allocator rather than here, at least that
979          * code knows what it's doing.
980          */
981         gfp_mask |= __GFP_NOFAIL;
982
983         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
984
985         BUG_ON(!PageLocked(page));
986
987         if (page_has_buffers(page)) {
988                 bh = page_buffers(page);
989                 if (bh->b_size == size) {
990                         end_block = init_page_buffers(page, bdev,
991                                                 (sector_t)index << sizebits,
992                                                 size);
993                         goto done;
994                 }
995                 if (!try_to_free_buffers(page))
996                         goto failed;
997         }
998
999         /*
1000          * Allocate some buffers for this page
1001          */
1002         bh = alloc_page_buffers(page, size, true);
1003
1004         /*
1005          * Link the page to the buffers and initialise them.  Take the
1006          * lock to be atomic wrt __find_get_block(), which does not
1007          * run under the page lock.
1008          */
1009         spin_lock(&inode->i_mapping->private_lock);
1010         link_dev_buffers(page, bh);
1011         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1012                         size);
1013         spin_unlock(&inode->i_mapping->private_lock);
1014 done:
1015         ret = (block < end_block) ? 1 : -ENXIO;
1016 failed:
1017         unlock_page(page);
1018         put_page(page);
1019         return ret;
1020 }
1021
1022 /*
1023  * Create buffers for the specified block device block's page.  If
1024  * that page was dirty, the buffers are set dirty also.
1025  */
1026 static int
1027 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1028 {
1029         pgoff_t index;
1030         int sizebits;
1031
1032         sizebits = -1;
1033         do {
1034                 sizebits++;
1035         } while ((size << sizebits) < PAGE_SIZE);
1036
1037         index = block >> sizebits;
1038
1039         /*
1040          * Check for a block which wants to lie outside our maximum possible
1041          * pagecache index.  (this comparison is done using sector_t types).
1042          */
1043         if (unlikely(index != block >> sizebits)) {
1044                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1045                         "device %pg\n",
1046                         __func__, (unsigned long long)block,
1047                         bdev);
1048                 return -EIO;
1049         }
1050
1051         /* Create a page with the proper size buffers.. */
1052         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1053 }
1054
1055 static struct buffer_head *
1056 __getblk_slow(struct block_device *bdev, sector_t block,
1057              unsigned size, gfp_t gfp)
1058 {
1059         /* Size must be multiple of hard sectorsize */
1060         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1061                         (size < 512 || size > PAGE_SIZE))) {
1062                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1063                                         size);
1064                 printk(KERN_ERR "logical block size: %d\n",
1065                                         bdev_logical_block_size(bdev));
1066
1067                 dump_stack();
1068                 return NULL;
1069         }
1070
1071         for (;;) {
1072                 struct buffer_head *bh;
1073                 int ret;
1074
1075                 bh = __find_get_block(bdev, block, size);
1076                 if (bh)
1077                         return bh;
1078
1079                 ret = grow_buffers(bdev, block, size, gfp);
1080                 if (ret < 0)
1081                         return NULL;
1082         }
1083 }
1084
1085 /*
1086  * The relationship between dirty buffers and dirty pages:
1087  *
1088  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1089  * the page is tagged dirty in the page cache.
1090  *
1091  * At all times, the dirtiness of the buffers represents the dirtiness of
1092  * subsections of the page.  If the page has buffers, the page dirty bit is
1093  * merely a hint about the true dirty state.
1094  *
1095  * When a page is set dirty in its entirety, all its buffers are marked dirty
1096  * (if the page has buffers).
1097  *
1098  * When a buffer is marked dirty, its page is dirtied, but the page's other
1099  * buffers are not.
1100  *
1101  * Also.  When blockdev buffers are explicitly read with bread(), they
1102  * individually become uptodate.  But their backing page remains not
1103  * uptodate - even if all of its buffers are uptodate.  A subsequent
1104  * block_read_full_page() against that page will discover all the uptodate
1105  * buffers, will set the page uptodate and will perform no I/O.
1106  */
1107
1108 /**
1109  * mark_buffer_dirty - mark a buffer_head as needing writeout
1110  * @bh: the buffer_head to mark dirty
1111  *
1112  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1113  * its backing page dirty, then tag the page as dirty in the page cache
1114  * and then attach the address_space's inode to its superblock's dirty
1115  * inode list.
1116  *
1117  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1118  * i_pages lock and mapping->host->i_lock.
1119  */
1120 void mark_buffer_dirty(struct buffer_head *bh)
1121 {
1122         WARN_ON_ONCE(!buffer_uptodate(bh));
1123
1124         trace_block_dirty_buffer(bh);
1125
1126         /*
1127          * Very *carefully* optimize the it-is-already-dirty case.
1128          *
1129          * Don't let the final "is it dirty" escape to before we
1130          * perhaps modified the buffer.
1131          */
1132         if (buffer_dirty(bh)) {
1133                 smp_mb();
1134                 if (buffer_dirty(bh))
1135                         return;
1136         }
1137
1138         if (!test_set_buffer_dirty(bh)) {
1139                 struct page *page = bh->b_page;
1140                 struct address_space *mapping = NULL;
1141
1142                 lock_page_memcg(page);
1143                 if (!TestSetPageDirty(page)) {
1144                         mapping = page_mapping(page);
1145                         if (mapping)
1146                                 __set_page_dirty(page, mapping, 0);
1147                 }
1148                 unlock_page_memcg(page);
1149                 if (mapping)
1150                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1151         }
1152 }
1153 EXPORT_SYMBOL(mark_buffer_dirty);
1154
1155 void mark_buffer_write_io_error(struct buffer_head *bh)
1156 {
1157         struct super_block *sb;
1158
1159         set_buffer_write_io_error(bh);
1160         /* FIXME: do we need to set this in both places? */
1161         if (bh->b_page && bh->b_page->mapping)
1162                 mapping_set_error(bh->b_page->mapping, -EIO);
1163         if (bh->b_assoc_map)
1164                 mapping_set_error(bh->b_assoc_map, -EIO);
1165         rcu_read_lock();
1166         sb = READ_ONCE(bh->b_bdev->bd_super);
1167         if (sb)
1168                 errseq_set(&sb->s_wb_err, -EIO);
1169         rcu_read_unlock();
1170 }
1171 EXPORT_SYMBOL(mark_buffer_write_io_error);
1172
1173 /*
1174  * Decrement a buffer_head's reference count.  If all buffers against a page
1175  * have zero reference count, are clean and unlocked, and if the page is clean
1176  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1177  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1178  * a page but it ends up not being freed, and buffers may later be reattached).
1179  */
1180 void __brelse(struct buffer_head * buf)
1181 {
1182         if (atomic_read(&buf->b_count)) {
1183                 put_bh(buf);
1184                 return;
1185         }
1186         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1187 }
1188 EXPORT_SYMBOL(__brelse);
1189
1190 /*
1191  * bforget() is like brelse(), except it discards any
1192  * potentially dirty data.
1193  */
1194 void __bforget(struct buffer_head *bh)
1195 {
1196         clear_buffer_dirty(bh);
1197         if (bh->b_assoc_map) {
1198                 struct address_space *buffer_mapping = bh->b_page->mapping;
1199
1200                 spin_lock(&buffer_mapping->private_lock);
1201                 list_del_init(&bh->b_assoc_buffers);
1202                 bh->b_assoc_map = NULL;
1203                 spin_unlock(&buffer_mapping->private_lock);
1204         }
1205         __brelse(bh);
1206 }
1207 EXPORT_SYMBOL(__bforget);
1208
1209 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1210 {
1211         lock_buffer(bh);
1212         if (buffer_uptodate(bh)) {
1213                 unlock_buffer(bh);
1214                 return bh;
1215         } else {
1216                 get_bh(bh);
1217                 bh->b_end_io = end_buffer_read_sync;
1218                 submit_bh(REQ_OP_READ, 0, bh);
1219                 wait_on_buffer(bh);
1220                 if (buffer_uptodate(bh))
1221                         return bh;
1222         }
1223         brelse(bh);
1224         return NULL;
1225 }
1226
1227 /*
1228  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1229  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1230  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1231  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1232  * CPU's LRUs at the same time.
1233  *
1234  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1235  * sb_find_get_block().
1236  *
1237  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1238  * a local interrupt disable for that.
1239  */
1240
1241 #define BH_LRU_SIZE     16
1242
1243 struct bh_lru {
1244         struct buffer_head *bhs[BH_LRU_SIZE];
1245 };
1246
1247 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1248
1249 #ifdef CONFIG_SMP
1250 #define bh_lru_lock()   local_irq_disable()
1251 #define bh_lru_unlock() local_irq_enable()
1252 #else
1253 #define bh_lru_lock()   preempt_disable()
1254 #define bh_lru_unlock() preempt_enable()
1255 #endif
1256
1257 static inline void check_irqs_on(void)
1258 {
1259 #ifdef irqs_disabled
1260         BUG_ON(irqs_disabled());
1261 #endif
1262 }
1263
1264 /*
1265  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1266  * inserted at the front, and the buffer_head at the back if any is evicted.
1267  * Or, if already in the LRU it is moved to the front.
1268  */
1269 static void bh_lru_install(struct buffer_head *bh)
1270 {
1271         struct buffer_head *evictee = bh;
1272         struct bh_lru *b;
1273         int i;
1274
1275         check_irqs_on();
1276         bh_lru_lock();
1277
1278         b = this_cpu_ptr(&bh_lrus);
1279         for (i = 0; i < BH_LRU_SIZE; i++) {
1280                 swap(evictee, b->bhs[i]);
1281                 if (evictee == bh) {
1282                         bh_lru_unlock();
1283                         return;
1284                 }
1285         }
1286
1287         get_bh(bh);
1288         bh_lru_unlock();
1289         brelse(evictee);
1290 }
1291
1292 /*
1293  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1294  */
1295 static struct buffer_head *
1296 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1297 {
1298         struct buffer_head *ret = NULL;
1299         unsigned int i;
1300
1301         check_irqs_on();
1302         bh_lru_lock();
1303         for (i = 0; i < BH_LRU_SIZE; i++) {
1304                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1305
1306                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1307                     bh->b_size == size) {
1308                         if (i) {
1309                                 while (i) {
1310                                         __this_cpu_write(bh_lrus.bhs[i],
1311                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1312                                         i--;
1313                                 }
1314                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1315                         }
1316                         get_bh(bh);
1317                         ret = bh;
1318                         break;
1319                 }
1320         }
1321         bh_lru_unlock();
1322         return ret;
1323 }
1324
1325 /*
1326  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1327  * it in the LRU and mark it as accessed.  If it is not present then return
1328  * NULL
1329  */
1330 struct buffer_head *
1331 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1332 {
1333         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1334
1335         if (bh == NULL) {
1336                 /* __find_get_block_slow will mark the page accessed */
1337                 bh = __find_get_block_slow(bdev, block);
1338                 if (bh)
1339                         bh_lru_install(bh);
1340         } else
1341                 touch_buffer(bh);
1342
1343         return bh;
1344 }
1345 EXPORT_SYMBOL(__find_get_block);
1346
1347 /*
1348  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1349  * which corresponds to the passed block_device, block and size. The
1350  * returned buffer has its reference count incremented.
1351  *
1352  * __getblk_gfp() will lock up the machine if grow_dev_page's
1353  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1354  */
1355 struct buffer_head *
1356 __getblk_gfp(struct block_device *bdev, sector_t block,
1357              unsigned size, gfp_t gfp)
1358 {
1359         struct buffer_head *bh = __find_get_block(bdev, block, size);
1360
1361         might_sleep();
1362         if (bh == NULL)
1363                 bh = __getblk_slow(bdev, block, size, gfp);
1364         return bh;
1365 }
1366 EXPORT_SYMBOL(__getblk_gfp);
1367
1368 /*
1369  * Do async read-ahead on a buffer..
1370  */
1371 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1372 {
1373         struct buffer_head *bh = __getblk(bdev, block, size);
1374         if (likely(bh)) {
1375                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1376                 brelse(bh);
1377         }
1378 }
1379 EXPORT_SYMBOL(__breadahead);
1380
1381 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1382                       gfp_t gfp)
1383 {
1384         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1385         if (likely(bh)) {
1386                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1387                 brelse(bh);
1388         }
1389 }
1390 EXPORT_SYMBOL(__breadahead_gfp);
1391
1392 /**
1393  *  __bread_gfp() - reads a specified block and returns the bh
1394  *  @bdev: the block_device to read from
1395  *  @block: number of block
1396  *  @size: size (in bytes) to read
1397  *  @gfp: page allocation flag
1398  *
1399  *  Reads a specified block, and returns buffer head that contains it.
1400  *  The page cache can be allocated from non-movable area
1401  *  not to prevent page migration if you set gfp to zero.
1402  *  It returns NULL if the block was unreadable.
1403  */
1404 struct buffer_head *
1405 __bread_gfp(struct block_device *bdev, sector_t block,
1406                    unsigned size, gfp_t gfp)
1407 {
1408         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1409
1410         if (likely(bh) && !buffer_uptodate(bh))
1411                 bh = __bread_slow(bh);
1412         return bh;
1413 }
1414 EXPORT_SYMBOL(__bread_gfp);
1415
1416 /*
1417  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1418  * This doesn't race because it runs in each cpu either in irq
1419  * or with preempt disabled.
1420  */
1421 static void invalidate_bh_lru(void *arg)
1422 {
1423         struct bh_lru *b = &get_cpu_var(bh_lrus);
1424         int i;
1425
1426         for (i = 0; i < BH_LRU_SIZE; i++) {
1427                 brelse(b->bhs[i]);
1428                 b->bhs[i] = NULL;
1429         }
1430         put_cpu_var(bh_lrus);
1431 }
1432
1433 static bool has_bh_in_lru(int cpu, void *dummy)
1434 {
1435         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1436         int i;
1437         
1438         for (i = 0; i < BH_LRU_SIZE; i++) {
1439                 if (b->bhs[i])
1440                         return true;
1441         }
1442
1443         return false;
1444 }
1445
1446 void invalidate_bh_lrus(void)
1447 {
1448         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1449 }
1450 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1451
1452 void set_bh_page(struct buffer_head *bh,
1453                 struct page *page, unsigned long offset)
1454 {
1455         bh->b_page = page;
1456         BUG_ON(offset >= PAGE_SIZE);
1457         if (PageHighMem(page))
1458                 /*
1459                  * This catches illegal uses and preserves the offset:
1460                  */
1461                 bh->b_data = (char *)(0 + offset);
1462         else
1463                 bh->b_data = page_address(page) + offset;
1464 }
1465 EXPORT_SYMBOL(set_bh_page);
1466
1467 /*
1468  * Called when truncating a buffer on a page completely.
1469  */
1470
1471 /* Bits that are cleared during an invalidate */
1472 #define BUFFER_FLAGS_DISCARD \
1473         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1474          1 << BH_Delay | 1 << BH_Unwritten)
1475
1476 static void discard_buffer(struct buffer_head * bh)
1477 {
1478         unsigned long b_state, b_state_old;
1479
1480         lock_buffer(bh);
1481         clear_buffer_dirty(bh);
1482         bh->b_bdev = NULL;
1483         b_state = bh->b_state;
1484         for (;;) {
1485                 b_state_old = cmpxchg(&bh->b_state, b_state,
1486                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1487                 if (b_state_old == b_state)
1488                         break;
1489                 b_state = b_state_old;
1490         }
1491         unlock_buffer(bh);
1492 }
1493
1494 /**
1495  * block_invalidatepage - invalidate part or all of a buffer-backed page
1496  *
1497  * @page: the page which is affected
1498  * @offset: start of the range to invalidate
1499  * @length: length of the range to invalidate
1500  *
1501  * block_invalidatepage() is called when all or part of the page has become
1502  * invalidated by a truncate operation.
1503  *
1504  * block_invalidatepage() does not have to release all buffers, but it must
1505  * ensure that no dirty buffer is left outside @offset and that no I/O
1506  * is underway against any of the blocks which are outside the truncation
1507  * point.  Because the caller is about to free (and possibly reuse) those
1508  * blocks on-disk.
1509  */
1510 void block_invalidatepage(struct page *page, unsigned int offset,
1511                           unsigned int length)
1512 {
1513         struct buffer_head *head, *bh, *next;
1514         unsigned int curr_off = 0;
1515         unsigned int stop = length + offset;
1516
1517         BUG_ON(!PageLocked(page));
1518         if (!page_has_buffers(page))
1519                 goto out;
1520
1521         /*
1522          * Check for overflow
1523          */
1524         BUG_ON(stop > PAGE_SIZE || stop < length);
1525
1526         head = page_buffers(page);
1527         bh = head;
1528         do {
1529                 unsigned int next_off = curr_off + bh->b_size;
1530                 next = bh->b_this_page;
1531
1532                 /*
1533                  * Are we still fully in range ?
1534                  */
1535                 if (next_off > stop)
1536                         goto out;
1537
1538                 /*
1539                  * is this block fully invalidated?
1540                  */
1541                 if (offset <= curr_off)
1542                         discard_buffer(bh);
1543                 curr_off = next_off;
1544                 bh = next;
1545         } while (bh != head);
1546
1547         /*
1548          * We release buffers only if the entire page is being invalidated.
1549          * The get_block cached value has been unconditionally invalidated,
1550          * so real IO is not possible anymore.
1551          */
1552         if (length == PAGE_SIZE)
1553                 try_to_release_page(page, 0);
1554 out:
1555         return;
1556 }
1557 EXPORT_SYMBOL(block_invalidatepage);
1558
1559
1560 /*
1561  * We attach and possibly dirty the buffers atomically wrt
1562  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1563  * is already excluded via the page lock.
1564  */
1565 void create_empty_buffers(struct page *page,
1566                         unsigned long blocksize, unsigned long b_state)
1567 {
1568         struct buffer_head *bh, *head, *tail;
1569
1570         head = alloc_page_buffers(page, blocksize, true);
1571         bh = head;
1572         do {
1573                 bh->b_state |= b_state;
1574                 tail = bh;
1575                 bh = bh->b_this_page;
1576         } while (bh);
1577         tail->b_this_page = head;
1578
1579         spin_lock(&page->mapping->private_lock);
1580         if (PageUptodate(page) || PageDirty(page)) {
1581                 bh = head;
1582                 do {
1583                         if (PageDirty(page))
1584                                 set_buffer_dirty(bh);
1585                         if (PageUptodate(page))
1586                                 set_buffer_uptodate(bh);
1587                         bh = bh->b_this_page;
1588                 } while (bh != head);
1589         }
1590         attach_page_buffers(page, head);
1591         spin_unlock(&page->mapping->private_lock);
1592 }
1593 EXPORT_SYMBOL(create_empty_buffers);
1594
1595 /**
1596  * clean_bdev_aliases: clean a range of buffers in block device
1597  * @bdev: Block device to clean buffers in
1598  * @block: Start of a range of blocks to clean
1599  * @len: Number of blocks to clean
1600  *
1601  * We are taking a range of blocks for data and we don't want writeback of any
1602  * buffer-cache aliases starting from return from this function and until the
1603  * moment when something will explicitly mark the buffer dirty (hopefully that
1604  * will not happen until we will free that block ;-) We don't even need to mark
1605  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1606  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1607  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1608  * would confuse anyone who might pick it with bread() afterwards...
1609  *
1610  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1611  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1612  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1613  * need to.  That happens here.
1614  */
1615 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1616 {
1617         struct inode *bd_inode = bdev->bd_inode;
1618         struct address_space *bd_mapping = bd_inode->i_mapping;
1619         struct pagevec pvec;
1620         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1621         pgoff_t end;
1622         int i, count;
1623         struct buffer_head *bh;
1624         struct buffer_head *head;
1625
1626         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1627         pagevec_init(&pvec);
1628         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1629                 count = pagevec_count(&pvec);
1630                 for (i = 0; i < count; i++) {
1631                         struct page *page = pvec.pages[i];
1632
1633                         if (!page_has_buffers(page))
1634                                 continue;
1635                         /*
1636                          * We use page lock instead of bd_mapping->private_lock
1637                          * to pin buffers here since we can afford to sleep and
1638                          * it scales better than a global spinlock lock.
1639                          */
1640                         lock_page(page);
1641                         /* Recheck when the page is locked which pins bhs */
1642                         if (!page_has_buffers(page))
1643                                 goto unlock_page;
1644                         head = page_buffers(page);
1645                         bh = head;
1646                         do {
1647                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1648                                         goto next;
1649                                 if (bh->b_blocknr >= block + len)
1650                                         break;
1651                                 clear_buffer_dirty(bh);
1652                                 wait_on_buffer(bh);
1653                                 clear_buffer_req(bh);
1654 next:
1655                                 bh = bh->b_this_page;
1656                         } while (bh != head);
1657 unlock_page:
1658                         unlock_page(page);
1659                 }
1660                 pagevec_release(&pvec);
1661                 cond_resched();
1662                 /* End of range already reached? */
1663                 if (index > end || !index)
1664                         break;
1665         }
1666 }
1667 EXPORT_SYMBOL(clean_bdev_aliases);
1668
1669 /*
1670  * Size is a power-of-two in the range 512..PAGE_SIZE,
1671  * and the case we care about most is PAGE_SIZE.
1672  *
1673  * So this *could* possibly be written with those
1674  * constraints in mind (relevant mostly if some
1675  * architecture has a slow bit-scan instruction)
1676  */
1677 static inline int block_size_bits(unsigned int blocksize)
1678 {
1679         return ilog2(blocksize);
1680 }
1681
1682 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1683 {
1684         BUG_ON(!PageLocked(page));
1685
1686         if (!page_has_buffers(page))
1687                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1688                                      b_state);
1689         return page_buffers(page);
1690 }
1691
1692 /*
1693  * NOTE! All mapped/uptodate combinations are valid:
1694  *
1695  *      Mapped  Uptodate        Meaning
1696  *
1697  *      No      No              "unknown" - must do get_block()
1698  *      No      Yes             "hole" - zero-filled
1699  *      Yes     No              "allocated" - allocated on disk, not read in
1700  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1701  *
1702  * "Dirty" is valid only with the last case (mapped+uptodate).
1703  */
1704
1705 /*
1706  * While block_write_full_page is writing back the dirty buffers under
1707  * the page lock, whoever dirtied the buffers may decide to clean them
1708  * again at any time.  We handle that by only looking at the buffer
1709  * state inside lock_buffer().
1710  *
1711  * If block_write_full_page() is called for regular writeback
1712  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1713  * locked buffer.   This only can happen if someone has written the buffer
1714  * directly, with submit_bh().  At the address_space level PageWriteback
1715  * prevents this contention from occurring.
1716  *
1717  * If block_write_full_page() is called with wbc->sync_mode ==
1718  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1719  * causes the writes to be flagged as synchronous writes.
1720  */
1721 int __block_write_full_page(struct inode *inode, struct page *page,
1722                         get_block_t *get_block, struct writeback_control *wbc,
1723                         bh_end_io_t *handler)
1724 {
1725         int err;
1726         sector_t block;
1727         sector_t last_block;
1728         struct buffer_head *bh, *head;
1729         unsigned int blocksize, bbits;
1730         int nr_underway = 0;
1731         int write_flags = wbc_to_write_flags(wbc);
1732
1733         head = create_page_buffers(page, inode,
1734                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1735
1736         /*
1737          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1738          * here, and the (potentially unmapped) buffers may become dirty at
1739          * any time.  If a buffer becomes dirty here after we've inspected it
1740          * then we just miss that fact, and the page stays dirty.
1741          *
1742          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1743          * handle that here by just cleaning them.
1744          */
1745
1746         bh = head;
1747         blocksize = bh->b_size;
1748         bbits = block_size_bits(blocksize);
1749
1750         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1751         last_block = (i_size_read(inode) - 1) >> bbits;
1752
1753         /*
1754          * Get all the dirty buffers mapped to disk addresses and
1755          * handle any aliases from the underlying blockdev's mapping.
1756          */
1757         do {
1758                 if (block > last_block) {
1759                         /*
1760                          * mapped buffers outside i_size will occur, because
1761                          * this page can be outside i_size when there is a
1762                          * truncate in progress.
1763                          */
1764                         /*
1765                          * The buffer was zeroed by block_write_full_page()
1766                          */
1767                         clear_buffer_dirty(bh);
1768                         set_buffer_uptodate(bh);
1769                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1770                            buffer_dirty(bh)) {
1771                         WARN_ON(bh->b_size != blocksize);
1772                         err = get_block(inode, block, bh, 1);
1773                         if (err)
1774                                 goto recover;
1775                         clear_buffer_delay(bh);
1776                         if (buffer_new(bh)) {
1777                                 /* blockdev mappings never come here */
1778                                 clear_buffer_new(bh);
1779                                 clean_bdev_bh_alias(bh);
1780                         }
1781                 }
1782                 bh = bh->b_this_page;
1783                 block++;
1784         } while (bh != head);
1785
1786         do {
1787                 if (!buffer_mapped(bh))
1788                         continue;
1789                 /*
1790                  * If it's a fully non-blocking write attempt and we cannot
1791                  * lock the buffer then redirty the page.  Note that this can
1792                  * potentially cause a busy-wait loop from writeback threads
1793                  * and kswapd activity, but those code paths have their own
1794                  * higher-level throttling.
1795                  */
1796                 if (wbc->sync_mode != WB_SYNC_NONE) {
1797                         lock_buffer(bh);
1798                 } else if (!trylock_buffer(bh)) {
1799                         redirty_page_for_writepage(wbc, page);
1800                         continue;
1801                 }
1802                 if (test_clear_buffer_dirty(bh)) {
1803                         mark_buffer_async_write_endio(bh, handler);
1804                 } else {
1805                         unlock_buffer(bh);
1806                 }
1807         } while ((bh = bh->b_this_page) != head);
1808
1809         /*
1810          * The page and its buffers are protected by PageWriteback(), so we can
1811          * drop the bh refcounts early.
1812          */
1813         BUG_ON(PageWriteback(page));
1814         set_page_writeback(page);
1815
1816         do {
1817                 struct buffer_head *next = bh->b_this_page;
1818                 if (buffer_async_write(bh)) {
1819                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1820                                         inode->i_write_hint, wbc);
1821                         nr_underway++;
1822                 }
1823                 bh = next;
1824         } while (bh != head);
1825         unlock_page(page);
1826
1827         err = 0;
1828 done:
1829         if (nr_underway == 0) {
1830                 /*
1831                  * The page was marked dirty, but the buffers were
1832                  * clean.  Someone wrote them back by hand with
1833                  * ll_rw_block/submit_bh.  A rare case.
1834                  */
1835                 end_page_writeback(page);
1836
1837                 /*
1838                  * The page and buffer_heads can be released at any time from
1839                  * here on.
1840                  */
1841         }
1842         return err;
1843
1844 recover:
1845         /*
1846          * ENOSPC, or some other error.  We may already have added some
1847          * blocks to the file, so we need to write these out to avoid
1848          * exposing stale data.
1849          * The page is currently locked and not marked for writeback
1850          */
1851         bh = head;
1852         /* Recovery: lock and submit the mapped buffers */
1853         do {
1854                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1855                     !buffer_delay(bh)) {
1856                         lock_buffer(bh);
1857                         mark_buffer_async_write_endio(bh, handler);
1858                 } else {
1859                         /*
1860                          * The buffer may have been set dirty during
1861                          * attachment to a dirty page.
1862                          */
1863                         clear_buffer_dirty(bh);
1864                 }
1865         } while ((bh = bh->b_this_page) != head);
1866         SetPageError(page);
1867         BUG_ON(PageWriteback(page));
1868         mapping_set_error(page->mapping, err);
1869         set_page_writeback(page);
1870         do {
1871                 struct buffer_head *next = bh->b_this_page;
1872                 if (buffer_async_write(bh)) {
1873                         clear_buffer_dirty(bh);
1874                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1875                                         inode->i_write_hint, wbc);
1876                         nr_underway++;
1877                 }
1878                 bh = next;
1879         } while (bh != head);
1880         unlock_page(page);
1881         goto done;
1882 }
1883 EXPORT_SYMBOL(__block_write_full_page);
1884
1885 /*
1886  * If a page has any new buffers, zero them out here, and mark them uptodate
1887  * and dirty so they'll be written out (in order to prevent uninitialised
1888  * block data from leaking). And clear the new bit.
1889  */
1890 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1891 {
1892         unsigned int block_start, block_end;
1893         struct buffer_head *head, *bh;
1894
1895         BUG_ON(!PageLocked(page));
1896         if (!page_has_buffers(page))
1897                 return;
1898
1899         bh = head = page_buffers(page);
1900         block_start = 0;
1901         do {
1902                 block_end = block_start + bh->b_size;
1903
1904                 if (buffer_new(bh)) {
1905                         if (block_end > from && block_start < to) {
1906                                 if (!PageUptodate(page)) {
1907                                         unsigned start, size;
1908
1909                                         start = max(from, block_start);
1910                                         size = min(to, block_end) - start;
1911
1912                                         zero_user(page, start, size);
1913                                         set_buffer_uptodate(bh);
1914                                 }
1915
1916                                 clear_buffer_new(bh);
1917                                 mark_buffer_dirty(bh);
1918                         }
1919                 }
1920
1921                 block_start = block_end;
1922                 bh = bh->b_this_page;
1923         } while (bh != head);
1924 }
1925 EXPORT_SYMBOL(page_zero_new_buffers);
1926
1927 static void
1928 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1929                 struct iomap *iomap)
1930 {
1931         loff_t offset = block << inode->i_blkbits;
1932
1933         bh->b_bdev = iomap->bdev;
1934
1935         /*
1936          * Block points to offset in file we need to map, iomap contains
1937          * the offset at which the map starts. If the map ends before the
1938          * current block, then do not map the buffer and let the caller
1939          * handle it.
1940          */
1941         BUG_ON(offset >= iomap->offset + iomap->length);
1942
1943         switch (iomap->type) {
1944         case IOMAP_HOLE:
1945                 /*
1946                  * If the buffer is not up to date or beyond the current EOF,
1947                  * we need to mark it as new to ensure sub-block zeroing is
1948                  * executed if necessary.
1949                  */
1950                 if (!buffer_uptodate(bh) ||
1951                     (offset >= i_size_read(inode)))
1952                         set_buffer_new(bh);
1953                 break;
1954         case IOMAP_DELALLOC:
1955                 if (!buffer_uptodate(bh) ||
1956                     (offset >= i_size_read(inode)))
1957                         set_buffer_new(bh);
1958                 set_buffer_uptodate(bh);
1959                 set_buffer_mapped(bh);
1960                 set_buffer_delay(bh);
1961                 break;
1962         case IOMAP_UNWRITTEN:
1963                 /*
1964                  * For unwritten regions, we always need to ensure that regions
1965                  * in the block we are not writing to are zeroed. Mark the
1966                  * buffer as new to ensure this.
1967                  */
1968                 set_buffer_new(bh);
1969                 set_buffer_unwritten(bh);
1970                 /* FALLTHRU */
1971         case IOMAP_MAPPED:
1972                 if ((iomap->flags & IOMAP_F_NEW) ||
1973                     offset >= i_size_read(inode))
1974                         set_buffer_new(bh);
1975                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1976                                 inode->i_blkbits;
1977                 set_buffer_mapped(bh);
1978                 break;
1979         }
1980 }
1981
1982 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1983                 get_block_t *get_block, struct iomap *iomap)
1984 {
1985         unsigned from = pos & (PAGE_SIZE - 1);
1986         unsigned to = from + len;
1987         struct inode *inode = page->mapping->host;
1988         unsigned block_start, block_end;
1989         sector_t block;
1990         int err = 0;
1991         unsigned blocksize, bbits;
1992         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1993
1994         BUG_ON(!PageLocked(page));
1995         BUG_ON(from > PAGE_SIZE);
1996         BUG_ON(to > PAGE_SIZE);
1997         BUG_ON(from > to);
1998
1999         head = create_page_buffers(page, inode, 0);
2000         blocksize = head->b_size;
2001         bbits = block_size_bits(blocksize);
2002
2003         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2004
2005         for(bh = head, block_start = 0; bh != head || !block_start;
2006             block++, block_start=block_end, bh = bh->b_this_page) {
2007                 block_end = block_start + blocksize;
2008                 if (block_end <= from || block_start >= to) {
2009                         if (PageUptodate(page)) {
2010                                 if (!buffer_uptodate(bh))
2011                                         set_buffer_uptodate(bh);
2012                         }
2013                         continue;
2014                 }
2015                 if (buffer_new(bh))
2016                         clear_buffer_new(bh);
2017                 if (!buffer_mapped(bh)) {
2018                         WARN_ON(bh->b_size != blocksize);
2019                         if (get_block) {
2020                                 err = get_block(inode, block, bh, 1);
2021                                 if (err)
2022                                         break;
2023                         } else {
2024                                 iomap_to_bh(inode, block, bh, iomap);
2025                         }
2026
2027                         if (buffer_new(bh)) {
2028                                 clean_bdev_bh_alias(bh);
2029                                 if (PageUptodate(page)) {
2030                                         clear_buffer_new(bh);
2031                                         set_buffer_uptodate(bh);
2032                                         mark_buffer_dirty(bh);
2033                                         continue;
2034                                 }
2035                                 if (block_end > to || block_start < from)
2036                                         zero_user_segments(page,
2037                                                 to, block_end,
2038                                                 block_start, from);
2039                                 continue;
2040                         }
2041                 }
2042                 if (PageUptodate(page)) {
2043                         if (!buffer_uptodate(bh))
2044                                 set_buffer_uptodate(bh);
2045                         continue; 
2046                 }
2047                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2048                     !buffer_unwritten(bh) &&
2049                      (block_start < from || block_end > to)) {
2050                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2051                         *wait_bh++=bh;
2052                 }
2053         }
2054         /*
2055          * If we issued read requests - let them complete.
2056          */
2057         while(wait_bh > wait) {
2058                 wait_on_buffer(*--wait_bh);
2059                 if (!buffer_uptodate(*wait_bh))
2060                         err = -EIO;
2061         }
2062         if (unlikely(err))
2063                 page_zero_new_buffers(page, from, to);
2064         return err;
2065 }
2066
2067 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2068                 get_block_t *get_block)
2069 {
2070         return __block_write_begin_int(page, pos, len, get_block, NULL);
2071 }
2072 EXPORT_SYMBOL(__block_write_begin);
2073
2074 static int __block_commit_write(struct inode *inode, struct page *page,
2075                 unsigned from, unsigned to)
2076 {
2077         unsigned block_start, block_end;
2078         int partial = 0;
2079         unsigned blocksize;
2080         struct buffer_head *bh, *head;
2081
2082         bh = head = page_buffers(page);
2083         blocksize = bh->b_size;
2084
2085         block_start = 0;
2086         do {
2087                 block_end = block_start + blocksize;
2088                 if (block_end <= from || block_start >= to) {
2089                         if (!buffer_uptodate(bh))
2090                                 partial = 1;
2091                 } else {
2092                         set_buffer_uptodate(bh);
2093                         mark_buffer_dirty(bh);
2094                 }
2095                 clear_buffer_new(bh);
2096
2097                 block_start = block_end;
2098                 bh = bh->b_this_page;
2099         } while (bh != head);
2100
2101         /*
2102          * If this is a partial write which happened to make all buffers
2103          * uptodate then we can optimize away a bogus readpage() for
2104          * the next read(). Here we 'discover' whether the page went
2105          * uptodate as a result of this (potentially partial) write.
2106          */
2107         if (!partial)
2108                 SetPageUptodate(page);
2109         return 0;
2110 }
2111
2112 /*
2113  * block_write_begin takes care of the basic task of block allocation and
2114  * bringing partial write blocks uptodate first.
2115  *
2116  * The filesystem needs to handle block truncation upon failure.
2117  */
2118 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2119                 unsigned flags, struct page **pagep, get_block_t *get_block)
2120 {
2121         pgoff_t index = pos >> PAGE_SHIFT;
2122         struct page *page;
2123         int status;
2124
2125         page = grab_cache_page_write_begin(mapping, index, flags);
2126         if (!page)
2127                 return -ENOMEM;
2128
2129         status = __block_write_begin(page, pos, len, get_block);
2130         if (unlikely(status)) {
2131                 unlock_page(page);
2132                 put_page(page);
2133                 page = NULL;
2134         }
2135
2136         *pagep = page;
2137         return status;
2138 }
2139 EXPORT_SYMBOL(block_write_begin);
2140
2141 int block_write_end(struct file *file, struct address_space *mapping,
2142                         loff_t pos, unsigned len, unsigned copied,
2143                         struct page *page, void *fsdata)
2144 {
2145         struct inode *inode = mapping->host;
2146         unsigned start;
2147
2148         start = pos & (PAGE_SIZE - 1);
2149
2150         if (unlikely(copied < len)) {
2151                 /*
2152                  * The buffers that were written will now be uptodate, so we
2153                  * don't have to worry about a readpage reading them and
2154                  * overwriting a partial write. However if we have encountered
2155                  * a short write and only partially written into a buffer, it
2156                  * will not be marked uptodate, so a readpage might come in and
2157                  * destroy our partial write.
2158                  *
2159                  * Do the simplest thing, and just treat any short write to a
2160                  * non uptodate page as a zero-length write, and force the
2161                  * caller to redo the whole thing.
2162                  */
2163                 if (!PageUptodate(page))
2164                         copied = 0;
2165
2166                 page_zero_new_buffers(page, start+copied, start+len);
2167         }
2168         flush_dcache_page(page);
2169
2170         /* This could be a short (even 0-length) commit */
2171         __block_commit_write(inode, page, start, start+copied);
2172
2173         return copied;
2174 }
2175 EXPORT_SYMBOL(block_write_end);
2176
2177 int generic_write_end(struct file *file, struct address_space *mapping,
2178                         loff_t pos, unsigned len, unsigned copied,
2179                         struct page *page, void *fsdata)
2180 {
2181         struct inode *inode = mapping->host;
2182         loff_t old_size = inode->i_size;
2183         bool i_size_changed = false;
2184
2185         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2186
2187         /*
2188          * No need to use i_size_read() here, the i_size cannot change under us
2189          * because we hold i_rwsem.
2190          *
2191          * But it's important to update i_size while still holding page lock:
2192          * page writeout could otherwise come in and zero beyond i_size.
2193          */
2194         if (pos + copied > inode->i_size) {
2195                 i_size_write(inode, pos + copied);
2196                 i_size_changed = true;
2197         }
2198
2199         unlock_page(page);
2200         put_page(page);
2201
2202         if (old_size < pos)
2203                 pagecache_isize_extended(inode, old_size, pos);
2204         /*
2205          * Don't mark the inode dirty under page lock. First, it unnecessarily
2206          * makes the holding time of page lock longer. Second, it forces lock
2207          * ordering of page lock and transaction start for journaling
2208          * filesystems.
2209          */
2210         if (i_size_changed)
2211                 mark_inode_dirty(inode);
2212         return copied;
2213 }
2214 EXPORT_SYMBOL(generic_write_end);
2215
2216 /*
2217  * block_is_partially_uptodate checks whether buffers within a page are
2218  * uptodate or not.
2219  *
2220  * Returns true if all buffers which correspond to a file portion
2221  * we want to read are uptodate.
2222  */
2223 int block_is_partially_uptodate(struct page *page, unsigned long from,
2224                                         unsigned long count)
2225 {
2226         unsigned block_start, block_end, blocksize;
2227         unsigned to;
2228         struct buffer_head *bh, *head;
2229         int ret = 1;
2230
2231         if (!page_has_buffers(page))
2232                 return 0;
2233
2234         head = page_buffers(page);
2235         blocksize = head->b_size;
2236         to = min_t(unsigned, PAGE_SIZE - from, count);
2237         to = from + to;
2238         if (from < blocksize && to > PAGE_SIZE - blocksize)
2239                 return 0;
2240
2241         bh = head;
2242         block_start = 0;
2243         do {
2244                 block_end = block_start + blocksize;
2245                 if (block_end > from && block_start < to) {
2246                         if (!buffer_uptodate(bh)) {
2247                                 ret = 0;
2248                                 break;
2249                         }
2250                         if (block_end >= to)
2251                                 break;
2252                 }
2253                 block_start = block_end;
2254                 bh = bh->b_this_page;
2255         } while (bh != head);
2256
2257         return ret;
2258 }
2259 EXPORT_SYMBOL(block_is_partially_uptodate);
2260
2261 /*
2262  * Generic "read page" function for block devices that have the normal
2263  * get_block functionality. This is most of the block device filesystems.
2264  * Reads the page asynchronously --- the unlock_buffer() and
2265  * set/clear_buffer_uptodate() functions propagate buffer state into the
2266  * page struct once IO has completed.
2267  */
2268 int block_read_full_page(struct page *page, get_block_t *get_block)
2269 {
2270         struct inode *inode = page->mapping->host;
2271         sector_t iblock, lblock;
2272         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2273         unsigned int blocksize, bbits;
2274         int nr, i;
2275         int fully_mapped = 1;
2276
2277         head = create_page_buffers(page, inode, 0);
2278         blocksize = head->b_size;
2279         bbits = block_size_bits(blocksize);
2280
2281         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2282         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2283         bh = head;
2284         nr = 0;
2285         i = 0;
2286
2287         do {
2288                 if (buffer_uptodate(bh))
2289                         continue;
2290
2291                 if (!buffer_mapped(bh)) {
2292                         int err = 0;
2293
2294                         fully_mapped = 0;
2295                         if (iblock < lblock) {
2296                                 WARN_ON(bh->b_size != blocksize);
2297                                 err = get_block(inode, iblock, bh, 0);
2298                                 if (err)
2299                                         SetPageError(page);
2300                         }
2301                         if (!buffer_mapped(bh)) {
2302                                 zero_user(page, i * blocksize, blocksize);
2303                                 if (!err)
2304                                         set_buffer_uptodate(bh);
2305                                 continue;
2306                         }
2307                         /*
2308                          * get_block() might have updated the buffer
2309                          * synchronously
2310                          */
2311                         if (buffer_uptodate(bh))
2312                                 continue;
2313                 }
2314                 arr[nr++] = bh;
2315         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2316
2317         if (fully_mapped)
2318                 SetPageMappedToDisk(page);
2319
2320         if (!nr) {
2321                 /*
2322                  * All buffers are uptodate - we can set the page uptodate
2323                  * as well. But not if get_block() returned an error.
2324                  */
2325                 if (!PageError(page))
2326                         SetPageUptodate(page);
2327                 unlock_page(page);
2328                 return 0;
2329         }
2330
2331         /* Stage two: lock the buffers */
2332         for (i = 0; i < nr; i++) {
2333                 bh = arr[i];
2334                 lock_buffer(bh);
2335                 mark_buffer_async_read(bh);
2336         }
2337
2338         /*
2339          * Stage 3: start the IO.  Check for uptodateness
2340          * inside the buffer lock in case another process reading
2341          * the underlying blockdev brought it uptodate (the sct fix).
2342          */
2343         for (i = 0; i < nr; i++) {
2344                 bh = arr[i];
2345                 if (buffer_uptodate(bh))
2346                         end_buffer_async_read(bh, 1);
2347                 else
2348                         submit_bh(REQ_OP_READ, 0, bh);
2349         }
2350         return 0;
2351 }
2352 EXPORT_SYMBOL(block_read_full_page);
2353
2354 /* utility function for filesystems that need to do work on expanding
2355  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2356  * deal with the hole.  
2357  */
2358 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2359 {
2360         struct address_space *mapping = inode->i_mapping;
2361         struct page *page;
2362         void *fsdata;
2363         int err;
2364
2365         err = inode_newsize_ok(inode, size);
2366         if (err)
2367                 goto out;
2368
2369         err = pagecache_write_begin(NULL, mapping, size, 0,
2370                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2371         if (err)
2372                 goto out;
2373
2374         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2375         BUG_ON(err > 0);
2376
2377 out:
2378         return err;
2379 }
2380 EXPORT_SYMBOL(generic_cont_expand_simple);
2381
2382 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2383                             loff_t pos, loff_t *bytes)
2384 {
2385         struct inode *inode = mapping->host;
2386         unsigned int blocksize = i_blocksize(inode);
2387         struct page *page;
2388         void *fsdata;
2389         pgoff_t index, curidx;
2390         loff_t curpos;
2391         unsigned zerofrom, offset, len;
2392         int err = 0;
2393
2394         index = pos >> PAGE_SHIFT;
2395         offset = pos & ~PAGE_MASK;
2396
2397         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2398                 zerofrom = curpos & ~PAGE_MASK;
2399                 if (zerofrom & (blocksize-1)) {
2400                         *bytes |= (blocksize-1);
2401                         (*bytes)++;
2402                 }
2403                 len = PAGE_SIZE - zerofrom;
2404
2405                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2406                                             &page, &fsdata);
2407                 if (err)
2408                         goto out;
2409                 zero_user(page, zerofrom, len);
2410                 err = pagecache_write_end(file, mapping, curpos, len, len,
2411                                                 page, fsdata);
2412                 if (err < 0)
2413                         goto out;
2414                 BUG_ON(err != len);
2415                 err = 0;
2416
2417                 balance_dirty_pages_ratelimited(mapping);
2418
2419                 if (fatal_signal_pending(current)) {
2420                         err = -EINTR;
2421                         goto out;
2422                 }
2423         }
2424
2425         /* page covers the boundary, find the boundary offset */
2426         if (index == curidx) {
2427                 zerofrom = curpos & ~PAGE_MASK;
2428                 /* if we will expand the thing last block will be filled */
2429                 if (offset <= zerofrom) {
2430                         goto out;
2431                 }
2432                 if (zerofrom & (blocksize-1)) {
2433                         *bytes |= (blocksize-1);
2434                         (*bytes)++;
2435                 }
2436                 len = offset - zerofrom;
2437
2438                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2439                                             &page, &fsdata);
2440                 if (err)
2441                         goto out;
2442                 zero_user(page, zerofrom, len);
2443                 err = pagecache_write_end(file, mapping, curpos, len, len,
2444                                                 page, fsdata);
2445                 if (err < 0)
2446                         goto out;
2447                 BUG_ON(err != len);
2448                 err = 0;
2449         }
2450 out:
2451         return err;
2452 }
2453
2454 /*
2455  * For moronic filesystems that do not allow holes in file.
2456  * We may have to extend the file.
2457  */
2458 int cont_write_begin(struct file *file, struct address_space *mapping,
2459                         loff_t pos, unsigned len, unsigned flags,
2460                         struct page **pagep, void **fsdata,
2461                         get_block_t *get_block, loff_t *bytes)
2462 {
2463         struct inode *inode = mapping->host;
2464         unsigned int blocksize = i_blocksize(inode);
2465         unsigned int zerofrom;
2466         int err;
2467
2468         err = cont_expand_zero(file, mapping, pos, bytes);
2469         if (err)
2470                 return err;
2471
2472         zerofrom = *bytes & ~PAGE_MASK;
2473         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2474                 *bytes |= (blocksize-1);
2475                 (*bytes)++;
2476         }
2477
2478         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2479 }
2480 EXPORT_SYMBOL(cont_write_begin);
2481
2482 int block_commit_write(struct page *page, unsigned from, unsigned to)
2483 {
2484         struct inode *inode = page->mapping->host;
2485         __block_commit_write(inode,page,from,to);
2486         return 0;
2487 }
2488 EXPORT_SYMBOL(block_commit_write);
2489
2490 /*
2491  * block_page_mkwrite() is not allowed to change the file size as it gets
2492  * called from a page fault handler when a page is first dirtied. Hence we must
2493  * be careful to check for EOF conditions here. We set the page up correctly
2494  * for a written page which means we get ENOSPC checking when writing into
2495  * holes and correct delalloc and unwritten extent mapping on filesystems that
2496  * support these features.
2497  *
2498  * We are not allowed to take the i_mutex here so we have to play games to
2499  * protect against truncate races as the page could now be beyond EOF.  Because
2500  * truncate writes the inode size before removing pages, once we have the
2501  * page lock we can determine safely if the page is beyond EOF. If it is not
2502  * beyond EOF, then the page is guaranteed safe against truncation until we
2503  * unlock the page.
2504  *
2505  * Direct callers of this function should protect against filesystem freezing
2506  * using sb_start_pagefault() - sb_end_pagefault() functions.
2507  */
2508 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2509                          get_block_t get_block)
2510 {
2511         struct page *page = vmf->page;
2512         struct inode *inode = file_inode(vma->vm_file);
2513         unsigned long end;
2514         loff_t size;
2515         int ret;
2516
2517         lock_page(page);
2518         size = i_size_read(inode);
2519         if ((page->mapping != inode->i_mapping) ||
2520             (page_offset(page) > size)) {
2521                 /* We overload EFAULT to mean page got truncated */
2522                 ret = -EFAULT;
2523                 goto out_unlock;
2524         }
2525
2526         /* page is wholly or partially inside EOF */
2527         if (((page->index + 1) << PAGE_SHIFT) > size)
2528                 end = size & ~PAGE_MASK;
2529         else
2530                 end = PAGE_SIZE;
2531
2532         ret = __block_write_begin(page, 0, end, get_block);
2533         if (!ret)
2534                 ret = block_commit_write(page, 0, end);
2535
2536         if (unlikely(ret < 0))
2537                 goto out_unlock;
2538         set_page_dirty(page);
2539         wait_for_stable_page(page);
2540         return 0;
2541 out_unlock:
2542         unlock_page(page);
2543         return ret;
2544 }
2545 EXPORT_SYMBOL(block_page_mkwrite);
2546
2547 /*
2548  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2549  * immediately, while under the page lock.  So it needs a special end_io
2550  * handler which does not touch the bh after unlocking it.
2551  */
2552 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2553 {
2554         __end_buffer_read_notouch(bh, uptodate);
2555 }
2556
2557 /*
2558  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2559  * the page (converting it to circular linked list and taking care of page
2560  * dirty races).
2561  */
2562 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2563 {
2564         struct buffer_head *bh;
2565
2566         BUG_ON(!PageLocked(page));
2567
2568         spin_lock(&page->mapping->private_lock);
2569         bh = head;
2570         do {
2571                 if (PageDirty(page))
2572                         set_buffer_dirty(bh);
2573                 if (!bh->b_this_page)
2574                         bh->b_this_page = head;
2575                 bh = bh->b_this_page;
2576         } while (bh != head);
2577         attach_page_buffers(page, head);
2578         spin_unlock(&page->mapping->private_lock);
2579 }
2580
2581 /*
2582  * On entry, the page is fully not uptodate.
2583  * On exit the page is fully uptodate in the areas outside (from,to)
2584  * The filesystem needs to handle block truncation upon failure.
2585  */
2586 int nobh_write_begin(struct address_space *mapping,
2587                         loff_t pos, unsigned len, unsigned flags,
2588                         struct page **pagep, void **fsdata,
2589                         get_block_t *get_block)
2590 {
2591         struct inode *inode = mapping->host;
2592         const unsigned blkbits = inode->i_blkbits;
2593         const unsigned blocksize = 1 << blkbits;
2594         struct buffer_head *head, *bh;
2595         struct page *page;
2596         pgoff_t index;
2597         unsigned from, to;
2598         unsigned block_in_page;
2599         unsigned block_start, block_end;
2600         sector_t block_in_file;
2601         int nr_reads = 0;
2602         int ret = 0;
2603         int is_mapped_to_disk = 1;
2604
2605         index = pos >> PAGE_SHIFT;
2606         from = pos & (PAGE_SIZE - 1);
2607         to = from + len;
2608
2609         page = grab_cache_page_write_begin(mapping, index, flags);
2610         if (!page)
2611                 return -ENOMEM;
2612         *pagep = page;
2613         *fsdata = NULL;
2614
2615         if (page_has_buffers(page)) {
2616                 ret = __block_write_begin(page, pos, len, get_block);
2617                 if (unlikely(ret))
2618                         goto out_release;
2619                 return ret;
2620         }
2621
2622         if (PageMappedToDisk(page))
2623                 return 0;
2624
2625         /*
2626          * Allocate buffers so that we can keep track of state, and potentially
2627          * attach them to the page if an error occurs. In the common case of
2628          * no error, they will just be freed again without ever being attached
2629          * to the page (which is all OK, because we're under the page lock).
2630          *
2631          * Be careful: the buffer linked list is a NULL terminated one, rather
2632          * than the circular one we're used to.
2633          */
2634         head = alloc_page_buffers(page, blocksize, false);
2635         if (!head) {
2636                 ret = -ENOMEM;
2637                 goto out_release;
2638         }
2639
2640         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2641
2642         /*
2643          * We loop across all blocks in the page, whether or not they are
2644          * part of the affected region.  This is so we can discover if the
2645          * page is fully mapped-to-disk.
2646          */
2647         for (block_start = 0, block_in_page = 0, bh = head;
2648                   block_start < PAGE_SIZE;
2649                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2650                 int create;
2651
2652                 block_end = block_start + blocksize;
2653                 bh->b_state = 0;
2654                 create = 1;
2655                 if (block_start >= to)
2656                         create = 0;
2657                 ret = get_block(inode, block_in_file + block_in_page,
2658                                         bh, create);
2659                 if (ret)
2660                         goto failed;
2661                 if (!buffer_mapped(bh))
2662                         is_mapped_to_disk = 0;
2663                 if (buffer_new(bh))
2664                         clean_bdev_bh_alias(bh);
2665                 if (PageUptodate(page)) {
2666                         set_buffer_uptodate(bh);
2667                         continue;
2668                 }
2669                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2670                         zero_user_segments(page, block_start, from,
2671                                                         to, block_end);
2672                         continue;
2673                 }
2674                 if (buffer_uptodate(bh))
2675                         continue;       /* reiserfs does this */
2676                 if (block_start < from || block_end > to) {
2677                         lock_buffer(bh);
2678                         bh->b_end_io = end_buffer_read_nobh;
2679                         submit_bh(REQ_OP_READ, 0, bh);
2680                         nr_reads++;
2681                 }
2682         }
2683
2684         if (nr_reads) {
2685                 /*
2686                  * The page is locked, so these buffers are protected from
2687                  * any VM or truncate activity.  Hence we don't need to care
2688                  * for the buffer_head refcounts.
2689                  */
2690                 for (bh = head; bh; bh = bh->b_this_page) {
2691                         wait_on_buffer(bh);
2692                         if (!buffer_uptodate(bh))
2693                                 ret = -EIO;
2694                 }
2695                 if (ret)
2696                         goto failed;
2697         }
2698
2699         if (is_mapped_to_disk)
2700                 SetPageMappedToDisk(page);
2701
2702         *fsdata = head; /* to be released by nobh_write_end */
2703
2704         return 0;
2705
2706 failed:
2707         BUG_ON(!ret);
2708         /*
2709          * Error recovery is a bit difficult. We need to zero out blocks that
2710          * were newly allocated, and dirty them to ensure they get written out.
2711          * Buffers need to be attached to the page at this point, otherwise
2712          * the handling of potential IO errors during writeout would be hard
2713          * (could try doing synchronous writeout, but what if that fails too?)
2714          */
2715         attach_nobh_buffers(page, head);
2716         page_zero_new_buffers(page, from, to);
2717
2718 out_release:
2719         unlock_page(page);
2720         put_page(page);
2721         *pagep = NULL;
2722
2723         return ret;
2724 }
2725 EXPORT_SYMBOL(nobh_write_begin);
2726
2727 int nobh_write_end(struct file *file, struct address_space *mapping,
2728                         loff_t pos, unsigned len, unsigned copied,
2729                         struct page *page, void *fsdata)
2730 {
2731         struct inode *inode = page->mapping->host;
2732         struct buffer_head *head = fsdata;
2733         struct buffer_head *bh;
2734         BUG_ON(fsdata != NULL && page_has_buffers(page));
2735
2736         if (unlikely(copied < len) && head)
2737                 attach_nobh_buffers(page, head);
2738         if (page_has_buffers(page))
2739                 return generic_write_end(file, mapping, pos, len,
2740                                         copied, page, fsdata);
2741
2742         SetPageUptodate(page);
2743         set_page_dirty(page);
2744         if (pos+copied > inode->i_size) {
2745                 i_size_write(inode, pos+copied);
2746                 mark_inode_dirty(inode);
2747         }
2748
2749         unlock_page(page);
2750         put_page(page);
2751
2752         while (head) {
2753                 bh = head;
2754                 head = head->b_this_page;
2755                 free_buffer_head(bh);
2756         }
2757
2758         return copied;
2759 }
2760 EXPORT_SYMBOL(nobh_write_end);
2761
2762 /*
2763  * nobh_writepage() - based on block_full_write_page() except
2764  * that it tries to operate without attaching bufferheads to
2765  * the page.
2766  */
2767 int nobh_writepage(struct page *page, get_block_t *get_block,
2768                         struct writeback_control *wbc)
2769 {
2770         struct inode * const inode = page->mapping->host;
2771         loff_t i_size = i_size_read(inode);
2772         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2773         unsigned offset;
2774         int ret;
2775
2776         /* Is the page fully inside i_size? */
2777         if (page->index < end_index)
2778                 goto out;
2779
2780         /* Is the page fully outside i_size? (truncate in progress) */
2781         offset = i_size & (PAGE_SIZE-1);
2782         if (page->index >= end_index+1 || !offset) {
2783                 /*
2784                  * The page may have dirty, unmapped buffers.  For example,
2785                  * they may have been added in ext3_writepage().  Make them
2786                  * freeable here, so the page does not leak.
2787                  */
2788 #if 0
2789                 /* Not really sure about this  - do we need this ? */
2790                 if (page->mapping->a_ops->invalidatepage)
2791                         page->mapping->a_ops->invalidatepage(page, offset);
2792 #endif
2793                 unlock_page(page);
2794                 return 0; /* don't care */
2795         }
2796
2797         /*
2798          * The page straddles i_size.  It must be zeroed out on each and every
2799          * writepage invocation because it may be mmapped.  "A file is mapped
2800          * in multiples of the page size.  For a file that is not a multiple of
2801          * the  page size, the remaining memory is zeroed when mapped, and
2802          * writes to that region are not written out to the file."
2803          */
2804         zero_user_segment(page, offset, PAGE_SIZE);
2805 out:
2806         ret = mpage_writepage(page, get_block, wbc);
2807         if (ret == -EAGAIN)
2808                 ret = __block_write_full_page(inode, page, get_block, wbc,
2809                                               end_buffer_async_write);
2810         return ret;
2811 }
2812 EXPORT_SYMBOL(nobh_writepage);
2813
2814 int nobh_truncate_page(struct address_space *mapping,
2815                         loff_t from, get_block_t *get_block)
2816 {
2817         pgoff_t index = from >> PAGE_SHIFT;
2818         unsigned offset = from & (PAGE_SIZE-1);
2819         unsigned blocksize;
2820         sector_t iblock;
2821         unsigned length, pos;
2822         struct inode *inode = mapping->host;
2823         struct page *page;
2824         struct buffer_head map_bh;
2825         int err;
2826
2827         blocksize = i_blocksize(inode);
2828         length = offset & (blocksize - 1);
2829
2830         /* Block boundary? Nothing to do */
2831         if (!length)
2832                 return 0;
2833
2834         length = blocksize - length;
2835         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2836
2837         page = grab_cache_page(mapping, index);
2838         err = -ENOMEM;
2839         if (!page)
2840                 goto out;
2841
2842         if (page_has_buffers(page)) {
2843 has_buffers:
2844                 unlock_page(page);
2845                 put_page(page);
2846                 return block_truncate_page(mapping, from, get_block);
2847         }
2848
2849         /* Find the buffer that contains "offset" */
2850         pos = blocksize;
2851         while (offset >= pos) {
2852                 iblock++;
2853                 pos += blocksize;
2854         }
2855
2856         map_bh.b_size = blocksize;
2857         map_bh.b_state = 0;
2858         err = get_block(inode, iblock, &map_bh, 0);
2859         if (err)
2860                 goto unlock;
2861         /* unmapped? It's a hole - nothing to do */
2862         if (!buffer_mapped(&map_bh))
2863                 goto unlock;
2864
2865         /* Ok, it's mapped. Make sure it's up-to-date */
2866         if (!PageUptodate(page)) {
2867                 err = mapping->a_ops->readpage(NULL, page);
2868                 if (err) {
2869                         put_page(page);
2870                         goto out;
2871                 }
2872                 lock_page(page);
2873                 if (!PageUptodate(page)) {
2874                         err = -EIO;
2875                         goto unlock;
2876                 }
2877                 if (page_has_buffers(page))
2878                         goto has_buffers;
2879         }
2880         zero_user(page, offset, length);
2881         set_page_dirty(page);
2882         err = 0;
2883
2884 unlock:
2885         unlock_page(page);
2886         put_page(page);
2887 out:
2888         return err;
2889 }
2890 EXPORT_SYMBOL(nobh_truncate_page);
2891
2892 int block_truncate_page(struct address_space *mapping,
2893                         loff_t from, get_block_t *get_block)
2894 {
2895         pgoff_t index = from >> PAGE_SHIFT;
2896         unsigned offset = from & (PAGE_SIZE-1);
2897         unsigned blocksize;
2898         sector_t iblock;
2899         unsigned length, pos;
2900         struct inode *inode = mapping->host;
2901         struct page *page;
2902         struct buffer_head *bh;
2903         int err;
2904
2905         blocksize = i_blocksize(inode);
2906         length = offset & (blocksize - 1);
2907
2908         /* Block boundary? Nothing to do */
2909         if (!length)
2910                 return 0;
2911
2912         length = blocksize - length;
2913         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2914         
2915         page = grab_cache_page(mapping, index);
2916         err = -ENOMEM;
2917         if (!page)
2918                 goto out;
2919
2920         if (!page_has_buffers(page))
2921                 create_empty_buffers(page, blocksize, 0);
2922
2923         /* Find the buffer that contains "offset" */
2924         bh = page_buffers(page);
2925         pos = blocksize;
2926         while (offset >= pos) {
2927                 bh = bh->b_this_page;
2928                 iblock++;
2929                 pos += blocksize;
2930         }
2931
2932         err = 0;
2933         if (!buffer_mapped(bh)) {
2934                 WARN_ON(bh->b_size != blocksize);
2935                 err = get_block(inode, iblock, bh, 0);
2936                 if (err)
2937                         goto unlock;
2938                 /* unmapped? It's a hole - nothing to do */
2939                 if (!buffer_mapped(bh))
2940                         goto unlock;
2941         }
2942
2943         /* Ok, it's mapped. Make sure it's up-to-date */
2944         if (PageUptodate(page))
2945                 set_buffer_uptodate(bh);
2946
2947         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2948                 err = -EIO;
2949                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2950                 wait_on_buffer(bh);
2951                 /* Uhhuh. Read error. Complain and punt. */
2952                 if (!buffer_uptodate(bh))
2953                         goto unlock;
2954         }
2955
2956         zero_user(page, offset, length);
2957         mark_buffer_dirty(bh);
2958         err = 0;
2959
2960 unlock:
2961         unlock_page(page);
2962         put_page(page);
2963 out:
2964         return err;
2965 }
2966 EXPORT_SYMBOL(block_truncate_page);
2967
2968 /*
2969  * The generic ->writepage function for buffer-backed address_spaces
2970  */
2971 int block_write_full_page(struct page *page, get_block_t *get_block,
2972                         struct writeback_control *wbc)
2973 {
2974         struct inode * const inode = page->mapping->host;
2975         loff_t i_size = i_size_read(inode);
2976         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2977         unsigned offset;
2978
2979         /* Is the page fully inside i_size? */
2980         if (page->index < end_index)
2981                 return __block_write_full_page(inode, page, get_block, wbc,
2982                                                end_buffer_async_write);
2983
2984         /* Is the page fully outside i_size? (truncate in progress) */
2985         offset = i_size & (PAGE_SIZE-1);
2986         if (page->index >= end_index+1 || !offset) {
2987                 /*
2988                  * The page may have dirty, unmapped buffers.  For example,
2989                  * they may have been added in ext3_writepage().  Make them
2990                  * freeable here, so the page does not leak.
2991                  */
2992                 do_invalidatepage(page, 0, PAGE_SIZE);
2993                 unlock_page(page);
2994                 return 0; /* don't care */
2995         }
2996
2997         /*
2998          * The page straddles i_size.  It must be zeroed out on each and every
2999          * writepage invocation because it may be mmapped.  "A file is mapped
3000          * in multiples of the page size.  For a file that is not a multiple of
3001          * the  page size, the remaining memory is zeroed when mapped, and
3002          * writes to that region are not written out to the file."
3003          */
3004         zero_user_segment(page, offset, PAGE_SIZE);
3005         return __block_write_full_page(inode, page, get_block, wbc,
3006                                                         end_buffer_async_write);
3007 }
3008 EXPORT_SYMBOL(block_write_full_page);
3009
3010 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3011                             get_block_t *get_block)
3012 {
3013         struct inode *inode = mapping->host;
3014         struct buffer_head tmp = {
3015                 .b_size = i_blocksize(inode),
3016         };
3017
3018         get_block(inode, block, &tmp, 0);
3019         return tmp.b_blocknr;
3020 }
3021 EXPORT_SYMBOL(generic_block_bmap);
3022
3023 static void end_bio_bh_io_sync(struct bio *bio)
3024 {
3025         struct buffer_head *bh = bio->bi_private;
3026
3027         if (unlikely(bio_flagged(bio, BIO_QUIET)))
3028                 set_bit(BH_Quiet, &bh->b_state);
3029
3030         bh->b_end_io(bh, !bio->bi_status);
3031         bio_put(bio);
3032 }
3033
3034 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3035                          enum rw_hint write_hint, struct writeback_control *wbc)
3036 {
3037         struct bio *bio;
3038
3039         BUG_ON(!buffer_locked(bh));
3040         BUG_ON(!buffer_mapped(bh));
3041         BUG_ON(!bh->b_end_io);
3042         BUG_ON(buffer_delay(bh));
3043         BUG_ON(buffer_unwritten(bh));
3044
3045         /*
3046          * Only clear out a write error when rewriting
3047          */
3048         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3049                 clear_buffer_write_io_error(bh);
3050
3051         /*
3052          * from here on down, it's all bio -- do the initial mapping,
3053          * submit_bio -> generic_make_request may further map this bio around
3054          */
3055         bio = bio_alloc(GFP_NOIO, 1);
3056
3057         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3058         bio_set_dev(bio, bh->b_bdev);
3059         bio->bi_write_hint = write_hint;
3060
3061         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3062         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3063
3064         bio->bi_end_io = end_bio_bh_io_sync;
3065         bio->bi_private = bh;
3066
3067         if (buffer_meta(bh))
3068                 op_flags |= REQ_META;
3069         if (buffer_prio(bh))
3070                 op_flags |= REQ_PRIO;
3071         bio_set_op_attrs(bio, op, op_flags);
3072
3073         /* Take care of bh's that straddle the end of the device */
3074         guard_bio_eod(bio);
3075
3076         if (wbc) {
3077                 wbc_init_bio(wbc, bio);
3078                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3079         }
3080
3081         submit_bio(bio);
3082         return 0;
3083 }
3084
3085 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3086 {
3087         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3088 }
3089 EXPORT_SYMBOL(submit_bh);
3090
3091 /**
3092  * ll_rw_block: low-level access to block devices (DEPRECATED)
3093  * @op: whether to %READ or %WRITE
3094  * @op_flags: req_flag_bits
3095  * @nr: number of &struct buffer_heads in the array
3096  * @bhs: array of pointers to &struct buffer_head
3097  *
3098  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3099  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3100  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3101  * %REQ_RAHEAD.
3102  *
3103  * This function drops any buffer that it cannot get a lock on (with the
3104  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3105  * request, and any buffer that appears to be up-to-date when doing read
3106  * request.  Further it marks as clean buffers that are processed for
3107  * writing (the buffer cache won't assume that they are actually clean
3108  * until the buffer gets unlocked).
3109  *
3110  * ll_rw_block sets b_end_io to simple completion handler that marks
3111  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3112  * any waiters. 
3113  *
3114  * All of the buffers must be for the same device, and must also be a
3115  * multiple of the current approved size for the device.
3116  */
3117 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3118 {
3119         int i;
3120
3121         for (i = 0; i < nr; i++) {
3122                 struct buffer_head *bh = bhs[i];
3123
3124                 if (!trylock_buffer(bh))
3125                         continue;
3126                 if (op == WRITE) {
3127                         if (test_clear_buffer_dirty(bh)) {
3128                                 bh->b_end_io = end_buffer_write_sync;
3129                                 get_bh(bh);
3130                                 submit_bh(op, op_flags, bh);
3131                                 continue;
3132                         }
3133                 } else {
3134                         if (!buffer_uptodate(bh)) {
3135                                 bh->b_end_io = end_buffer_read_sync;
3136                                 get_bh(bh);
3137                                 submit_bh(op, op_flags, bh);
3138                                 continue;
3139                         }
3140                 }
3141                 unlock_buffer(bh);
3142         }
3143 }
3144 EXPORT_SYMBOL(ll_rw_block);
3145
3146 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3147 {
3148         lock_buffer(bh);
3149         if (!test_clear_buffer_dirty(bh)) {
3150                 unlock_buffer(bh);
3151                 return;
3152         }
3153         bh->b_end_io = end_buffer_write_sync;
3154         get_bh(bh);
3155         submit_bh(REQ_OP_WRITE, op_flags, bh);
3156 }
3157 EXPORT_SYMBOL(write_dirty_buffer);
3158
3159 /*
3160  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3161  * and then start new I/O and then wait upon it.  The caller must have a ref on
3162  * the buffer_head.
3163  */
3164 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3165 {
3166         int ret = 0;
3167
3168         WARN_ON(atomic_read(&bh->b_count) < 1);
3169         lock_buffer(bh);
3170         if (test_clear_buffer_dirty(bh)) {
3171                 get_bh(bh);
3172                 bh->b_end_io = end_buffer_write_sync;
3173                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3174                 wait_on_buffer(bh);
3175                 if (!ret && !buffer_uptodate(bh))
3176                         ret = -EIO;
3177         } else {
3178                 unlock_buffer(bh);
3179         }
3180         return ret;
3181 }
3182 EXPORT_SYMBOL(__sync_dirty_buffer);
3183
3184 int sync_dirty_buffer(struct buffer_head *bh)
3185 {
3186         return __sync_dirty_buffer(bh, REQ_SYNC);
3187 }
3188 EXPORT_SYMBOL(sync_dirty_buffer);
3189
3190 /*
3191  * try_to_free_buffers() checks if all the buffers on this particular page
3192  * are unused, and releases them if so.
3193  *
3194  * Exclusion against try_to_free_buffers may be obtained by either
3195  * locking the page or by holding its mapping's private_lock.
3196  *
3197  * If the page is dirty but all the buffers are clean then we need to
3198  * be sure to mark the page clean as well.  This is because the page
3199  * may be against a block device, and a later reattachment of buffers
3200  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3201  * filesystem data on the same device.
3202  *
3203  * The same applies to regular filesystem pages: if all the buffers are
3204  * clean then we set the page clean and proceed.  To do that, we require
3205  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3206  * private_lock.
3207  *
3208  * try_to_free_buffers() is non-blocking.
3209  */
3210 static inline int buffer_busy(struct buffer_head *bh)
3211 {
3212         return atomic_read(&bh->b_count) |
3213                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3214 }
3215
3216 static int
3217 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3218 {
3219         struct buffer_head *head = page_buffers(page);
3220         struct buffer_head *bh;
3221
3222         bh = head;
3223         do {
3224                 if (buffer_busy(bh))
3225                         goto failed;
3226                 bh = bh->b_this_page;
3227         } while (bh != head);
3228
3229         do {
3230                 struct buffer_head *next = bh->b_this_page;
3231
3232                 if (bh->b_assoc_map)
3233                         __remove_assoc_queue(bh);
3234                 bh = next;
3235         } while (bh != head);
3236         *buffers_to_free = head;
3237         __clear_page_buffers(page);
3238         return 1;
3239 failed:
3240         return 0;
3241 }
3242
3243 int try_to_free_buffers(struct page *page)
3244 {
3245         struct address_space * const mapping = page->mapping;
3246         struct buffer_head *buffers_to_free = NULL;
3247         int ret = 0;
3248
3249         BUG_ON(!PageLocked(page));
3250         if (PageWriteback(page))
3251                 return 0;
3252
3253         if (mapping == NULL) {          /* can this still happen? */
3254                 ret = drop_buffers(page, &buffers_to_free);
3255                 goto out;
3256         }
3257
3258         spin_lock(&mapping->private_lock);
3259         ret = drop_buffers(page, &buffers_to_free);
3260
3261         /*
3262          * If the filesystem writes its buffers by hand (eg ext3)
3263          * then we can have clean buffers against a dirty page.  We
3264          * clean the page here; otherwise the VM will never notice
3265          * that the filesystem did any IO at all.
3266          *
3267          * Also, during truncate, discard_buffer will have marked all
3268          * the page's buffers clean.  We discover that here and clean
3269          * the page also.
3270          *
3271          * private_lock must be held over this entire operation in order
3272          * to synchronise against __set_page_dirty_buffers and prevent the
3273          * dirty bit from being lost.
3274          */
3275         if (ret)
3276                 cancel_dirty_page(page);
3277         spin_unlock(&mapping->private_lock);
3278 out:
3279         if (buffers_to_free) {
3280                 struct buffer_head *bh = buffers_to_free;
3281
3282                 do {
3283                         struct buffer_head *next = bh->b_this_page;
3284                         free_buffer_head(bh);
3285                         bh = next;
3286                 } while (bh != buffers_to_free);
3287         }
3288         return ret;
3289 }
3290 EXPORT_SYMBOL(try_to_free_buffers);
3291
3292 /*
3293  * There are no bdflush tunables left.  But distributions are
3294  * still running obsolete flush daemons, so we terminate them here.
3295  *
3296  * Use of bdflush() is deprecated and will be removed in a future kernel.
3297  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3298  */
3299 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3300 {
3301         static int msg_count;
3302
3303         if (!capable(CAP_SYS_ADMIN))
3304                 return -EPERM;
3305
3306         if (msg_count < 5) {
3307                 msg_count++;
3308                 printk(KERN_INFO
3309                         "warning: process `%s' used the obsolete bdflush"
3310                         " system call\n", current->comm);
3311                 printk(KERN_INFO "Fix your initscripts?\n");
3312         }
3313
3314         if (func == 1)
3315                 do_exit(0);
3316         return 0;
3317 }
3318
3319 /*
3320  * Buffer-head allocation
3321  */
3322 static struct kmem_cache *bh_cachep __read_mostly;
3323
3324 /*
3325  * Once the number of bh's in the machine exceeds this level, we start
3326  * stripping them in writeback.
3327  */
3328 static unsigned long max_buffer_heads;
3329
3330 int buffer_heads_over_limit;
3331
3332 struct bh_accounting {
3333         int nr;                 /* Number of live bh's */
3334         int ratelimit;          /* Limit cacheline bouncing */
3335 };
3336
3337 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3338
3339 static void recalc_bh_state(void)
3340 {
3341         int i;
3342         int tot = 0;
3343
3344         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3345                 return;
3346         __this_cpu_write(bh_accounting.ratelimit, 0);
3347         for_each_online_cpu(i)
3348                 tot += per_cpu(bh_accounting, i).nr;
3349         buffer_heads_over_limit = (tot > max_buffer_heads);
3350 }
3351
3352 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3353 {
3354         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3355         if (ret) {
3356                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3357                 spin_lock_init(&ret->b_uptodate_lock);
3358                 preempt_disable();
3359                 __this_cpu_inc(bh_accounting.nr);
3360                 recalc_bh_state();
3361                 preempt_enable();
3362         }
3363         return ret;
3364 }
3365 EXPORT_SYMBOL(alloc_buffer_head);
3366
3367 void free_buffer_head(struct buffer_head *bh)
3368 {
3369         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3370         kmem_cache_free(bh_cachep, bh);
3371         preempt_disable();
3372         __this_cpu_dec(bh_accounting.nr);
3373         recalc_bh_state();
3374         preempt_enable();
3375 }
3376 EXPORT_SYMBOL(free_buffer_head);
3377
3378 static int buffer_exit_cpu_dead(unsigned int cpu)
3379 {
3380         int i;
3381         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3382
3383         for (i = 0; i < BH_LRU_SIZE; i++) {
3384                 brelse(b->bhs[i]);
3385                 b->bhs[i] = NULL;
3386         }
3387         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3388         per_cpu(bh_accounting, cpu).nr = 0;
3389         return 0;
3390 }
3391
3392 /**
3393  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3394  * @bh: struct buffer_head
3395  *
3396  * Return true if the buffer is up-to-date and false,
3397  * with the buffer locked, if not.
3398  */
3399 int bh_uptodate_or_lock(struct buffer_head *bh)
3400 {
3401         if (!buffer_uptodate(bh)) {
3402                 lock_buffer(bh);
3403                 if (!buffer_uptodate(bh))
3404                         return 0;
3405                 unlock_buffer(bh);
3406         }
3407         return 1;
3408 }
3409 EXPORT_SYMBOL(bh_uptodate_or_lock);
3410
3411 /**
3412  * bh_submit_read - Submit a locked buffer for reading
3413  * @bh: struct buffer_head
3414  *
3415  * Returns zero on success and -EIO on error.
3416  */
3417 int bh_submit_read(struct buffer_head *bh)
3418 {
3419         BUG_ON(!buffer_locked(bh));
3420
3421         if (buffer_uptodate(bh)) {
3422                 unlock_buffer(bh);
3423                 return 0;
3424         }
3425
3426         get_bh(bh);
3427         bh->b_end_io = end_buffer_read_sync;
3428         submit_bh(REQ_OP_READ, 0, bh);
3429         wait_on_buffer(bh);
3430         if (buffer_uptodate(bh))
3431                 return 0;
3432         return -EIO;
3433 }
3434 EXPORT_SYMBOL(bh_submit_read);
3435
3436 void __init buffer_init(void)
3437 {
3438         unsigned long nrpages;
3439         int ret;
3440
3441         bh_cachep = kmem_cache_create("buffer_head",
3442                         sizeof(struct buffer_head), 0,
3443                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3444                                 SLAB_MEM_SPREAD),
3445                                 NULL);
3446
3447         /*
3448          * Limit the bh occupancy to 10% of ZONE_NORMAL
3449          */
3450         nrpages = (nr_free_buffer_pages() * 10) / 100;
3451         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3452         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3453                                         NULL, buffer_exit_cpu_dead);
3454         WARN_ON(ret < 0);
3455 }