OSDN Git Service

LoongArch: mm: Add page table mapped mode support for virt_to_page()
[tomoyo/tomoyo-test1.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52
53 #include "internal.h"
54
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57                           struct writeback_control *wbc);
58
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63         trace_block_touch_buffer(bh);
64         folio_mark_accessed(bh->b_folio);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67
68 void __lock_buffer(struct buffer_head *bh)
69 {
70         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73
74 void unlock_buffer(struct buffer_head *bh)
75 {
76         clear_bit_unlock(BH_Lock, &bh->b_state);
77         smp_mb__after_atomic();
78         wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81
82 /*
83  * Returns if the folio has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the folio_test_dirty information is stale. If
85  * any of the buffers are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct folio *folio,
88                                      bool *dirty, bool *writeback)
89 {
90         struct buffer_head *head, *bh;
91         *dirty = false;
92         *writeback = false;
93
94         BUG_ON(!folio_test_locked(folio));
95
96         head = folio_buffers(folio);
97         if (!head)
98                 return;
99
100         if (folio_test_writeback(folio))
101                 *writeback = true;
102
103         bh = head;
104         do {
105                 if (buffer_locked(bh))
106                         *writeback = true;
107
108                 if (buffer_dirty(bh))
109                         *dirty = true;
110
111                 bh = bh->b_this_page;
112         } while (bh != head);
113 }
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128         if (!test_bit(BH_Quiet, &bh->b_state))
129                 printk_ratelimited(KERN_ERR
130                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
131                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144         if (uptodate) {
145                 set_buffer_uptodate(bh);
146         } else {
147                 /* This happens, due to failed read-ahead attempts. */
148                 clear_buffer_uptodate(bh);
149         }
150         unlock_buffer(bh);
151 }
152
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159         __end_buffer_read_notouch(bh, uptodate);
160         put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166         if (uptodate) {
167                 set_buffer_uptodate(bh);
168         } else {
169                 buffer_io_error(bh, ", lost sync page write");
170                 mark_buffer_write_io_error(bh);
171                 clear_buffer_uptodate(bh);
172         }
173         unlock_buffer(bh);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191         struct inode *bd_inode = bdev->bd_inode;
192         struct address_space *bd_mapping = bd_inode->i_mapping;
193         struct buffer_head *ret = NULL;
194         pgoff_t index;
195         struct buffer_head *bh;
196         struct buffer_head *head;
197         struct folio *folio;
198         int all_mapped = 1;
199         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202         folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
203         if (IS_ERR(folio))
204                 goto out;
205
206         spin_lock(&bd_mapping->private_lock);
207         head = folio_buffers(folio);
208         if (!head)
209                 goto out_unlock;
210         bh = head;
211         do {
212                 if (!buffer_mapped(bh))
213                         all_mapped = 0;
214                 else if (bh->b_blocknr == block) {
215                         ret = bh;
216                         get_bh(bh);
217                         goto out_unlock;
218                 }
219                 bh = bh->b_this_page;
220         } while (bh != head);
221
222         /* we might be here because some of the buffers on this page are
223          * not mapped.  This is due to various races between
224          * file io on the block device and getblk.  It gets dealt with
225          * elsewhere, don't buffer_error if we had some unmapped buffers
226          */
227         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228         if (all_mapped && __ratelimit(&last_warned)) {
229                 printk("__find_get_block_slow() failed. block=%llu, "
230                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231                        "device %pg blocksize: %d\n",
232                        (unsigned long long)block,
233                        (unsigned long long)bh->b_blocknr,
234                        bh->b_state, bh->b_size, bdev,
235                        1 << bd_inode->i_blkbits);
236         }
237 out_unlock:
238         spin_unlock(&bd_mapping->private_lock);
239         folio_put(folio);
240 out:
241         return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246         unsigned long flags;
247         struct buffer_head *first;
248         struct buffer_head *tmp;
249         struct folio *folio;
250         int folio_uptodate = 1;
251
252         BUG_ON(!buffer_async_read(bh));
253
254         folio = bh->b_folio;
255         if (uptodate) {
256                 set_buffer_uptodate(bh);
257         } else {
258                 clear_buffer_uptodate(bh);
259                 buffer_io_error(bh, ", async page read");
260                 folio_set_error(folio);
261         }
262
263         /*
264          * Be _very_ careful from here on. Bad things can happen if
265          * two buffer heads end IO at almost the same time and both
266          * decide that the page is now completely done.
267          */
268         first = folio_buffers(folio);
269         spin_lock_irqsave(&first->b_uptodate_lock, flags);
270         clear_buffer_async_read(bh);
271         unlock_buffer(bh);
272         tmp = bh;
273         do {
274                 if (!buffer_uptodate(tmp))
275                         folio_uptodate = 0;
276                 if (buffer_async_read(tmp)) {
277                         BUG_ON(!buffer_locked(tmp));
278                         goto still_busy;
279                 }
280                 tmp = tmp->b_this_page;
281         } while (tmp != bh);
282         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284         /*
285          * If all of the buffers are uptodate then we can set the page
286          * uptodate.
287          */
288         if (folio_uptodate)
289                 folio_mark_uptodate(folio);
290         folio_unlock(folio);
291         return;
292
293 still_busy:
294         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295         return;
296 }
297
298 struct postprocess_bh_ctx {
299         struct work_struct work;
300         struct buffer_head *bh;
301 };
302
303 static void verify_bh(struct work_struct *work)
304 {
305         struct postprocess_bh_ctx *ctx =
306                 container_of(work, struct postprocess_bh_ctx, work);
307         struct buffer_head *bh = ctx->bh;
308         bool valid;
309
310         valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
311         end_buffer_async_read(bh, valid);
312         kfree(ctx);
313 }
314
315 static bool need_fsverity(struct buffer_head *bh)
316 {
317         struct folio *folio = bh->b_folio;
318         struct inode *inode = folio->mapping->host;
319
320         return fsverity_active(inode) &&
321                 /* needed by ext4 */
322                 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
323 }
324
325 static void decrypt_bh(struct work_struct *work)
326 {
327         struct postprocess_bh_ctx *ctx =
328                 container_of(work, struct postprocess_bh_ctx, work);
329         struct buffer_head *bh = ctx->bh;
330         int err;
331
332         err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
333                                                bh_offset(bh));
334         if (err == 0 && need_fsverity(bh)) {
335                 /*
336                  * We use different work queues for decryption and for verity
337                  * because verity may require reading metadata pages that need
338                  * decryption, and we shouldn't recurse to the same workqueue.
339                  */
340                 INIT_WORK(&ctx->work, verify_bh);
341                 fsverity_enqueue_verify_work(&ctx->work);
342                 return;
343         }
344         end_buffer_async_read(bh, err == 0);
345         kfree(ctx);
346 }
347
348 /*
349  * I/O completion handler for block_read_full_folio() - pages
350  * which come unlocked at the end of I/O.
351  */
352 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
353 {
354         struct inode *inode = bh->b_folio->mapping->host;
355         bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
356         bool verify = need_fsverity(bh);
357
358         /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
359         if (uptodate && (decrypt || verify)) {
360                 struct postprocess_bh_ctx *ctx =
361                         kmalloc(sizeof(*ctx), GFP_ATOMIC);
362
363                 if (ctx) {
364                         ctx->bh = bh;
365                         if (decrypt) {
366                                 INIT_WORK(&ctx->work, decrypt_bh);
367                                 fscrypt_enqueue_decrypt_work(&ctx->work);
368                         } else {
369                                 INIT_WORK(&ctx->work, verify_bh);
370                                 fsverity_enqueue_verify_work(&ctx->work);
371                         }
372                         return;
373                 }
374                 uptodate = 0;
375         }
376         end_buffer_async_read(bh, uptodate);
377 }
378
379 /*
380  * Completion handler for block_write_full_page() - pages which are unlocked
381  * during I/O, and which have PageWriteback cleared upon I/O completion.
382  */
383 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
384 {
385         unsigned long flags;
386         struct buffer_head *first;
387         struct buffer_head *tmp;
388         struct folio *folio;
389
390         BUG_ON(!buffer_async_write(bh));
391
392         folio = bh->b_folio;
393         if (uptodate) {
394                 set_buffer_uptodate(bh);
395         } else {
396                 buffer_io_error(bh, ", lost async page write");
397                 mark_buffer_write_io_error(bh);
398                 clear_buffer_uptodate(bh);
399                 folio_set_error(folio);
400         }
401
402         first = folio_buffers(folio);
403         spin_lock_irqsave(&first->b_uptodate_lock, flags);
404
405         clear_buffer_async_write(bh);
406         unlock_buffer(bh);
407         tmp = bh->b_this_page;
408         while (tmp != bh) {
409                 if (buffer_async_write(tmp)) {
410                         BUG_ON(!buffer_locked(tmp));
411                         goto still_busy;
412                 }
413                 tmp = tmp->b_this_page;
414         }
415         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416         folio_end_writeback(folio);
417         return;
418
419 still_busy:
420         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
421         return;
422 }
423 EXPORT_SYMBOL(end_buffer_async_write);
424
425 /*
426  * If a page's buffers are under async readin (end_buffer_async_read
427  * completion) then there is a possibility that another thread of
428  * control could lock one of the buffers after it has completed
429  * but while some of the other buffers have not completed.  This
430  * locked buffer would confuse end_buffer_async_read() into not unlocking
431  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
432  * that this buffer is not under async I/O.
433  *
434  * The page comes unlocked when it has no locked buffer_async buffers
435  * left.
436  *
437  * PageLocked prevents anyone starting new async I/O reads any of
438  * the buffers.
439  *
440  * PageWriteback is used to prevent simultaneous writeout of the same
441  * page.
442  *
443  * PageLocked prevents anyone from starting writeback of a page which is
444  * under read I/O (PageWriteback is only ever set against a locked page).
445  */
446 static void mark_buffer_async_read(struct buffer_head *bh)
447 {
448         bh->b_end_io = end_buffer_async_read_io;
449         set_buffer_async_read(bh);
450 }
451
452 static void mark_buffer_async_write_endio(struct buffer_head *bh,
453                                           bh_end_io_t *handler)
454 {
455         bh->b_end_io = handler;
456         set_buffer_async_write(bh);
457 }
458
459 void mark_buffer_async_write(struct buffer_head *bh)
460 {
461         mark_buffer_async_write_endio(bh, end_buffer_async_write);
462 }
463 EXPORT_SYMBOL(mark_buffer_async_write);
464
465
466 /*
467  * fs/buffer.c contains helper functions for buffer-backed address space's
468  * fsync functions.  A common requirement for buffer-based filesystems is
469  * that certain data from the backing blockdev needs to be written out for
470  * a successful fsync().  For example, ext2 indirect blocks need to be
471  * written back and waited upon before fsync() returns.
472  *
473  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
474  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
475  * management of a list of dependent buffers at ->i_mapping->private_list.
476  *
477  * Locking is a little subtle: try_to_free_buffers() will remove buffers
478  * from their controlling inode's queue when they are being freed.  But
479  * try_to_free_buffers() will be operating against the *blockdev* mapping
480  * at the time, not against the S_ISREG file which depends on those buffers.
481  * So the locking for private_list is via the private_lock in the address_space
482  * which backs the buffers.  Which is different from the address_space 
483  * against which the buffers are listed.  So for a particular address_space,
484  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
485  * mapping->private_list will always be protected by the backing blockdev's
486  * ->private_lock.
487  *
488  * Which introduces a requirement: all buffers on an address_space's
489  * ->private_list must be from the same address_space: the blockdev's.
490  *
491  * address_spaces which do not place buffers at ->private_list via these
492  * utility functions are free to use private_lock and private_list for
493  * whatever they want.  The only requirement is that list_empty(private_list)
494  * be true at clear_inode() time.
495  *
496  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
497  * filesystems should do that.  invalidate_inode_buffers() should just go
498  * BUG_ON(!list_empty).
499  *
500  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
501  * take an address_space, not an inode.  And it should be called
502  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
503  * queued up.
504  *
505  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
506  * list if it is already on a list.  Because if the buffer is on a list,
507  * it *must* already be on the right one.  If not, the filesystem is being
508  * silly.  This will save a ton of locking.  But first we have to ensure
509  * that buffers are taken *off* the old inode's list when they are freed
510  * (presumably in truncate).  That requires careful auditing of all
511  * filesystems (do it inside bforget()).  It could also be done by bringing
512  * b_inode back.
513  */
514
515 /*
516  * The buffer's backing address_space's private_lock must be held
517  */
518 static void __remove_assoc_queue(struct buffer_head *bh)
519 {
520         list_del_init(&bh->b_assoc_buffers);
521         WARN_ON(!bh->b_assoc_map);
522         bh->b_assoc_map = NULL;
523 }
524
525 int inode_has_buffers(struct inode *inode)
526 {
527         return !list_empty(&inode->i_data.private_list);
528 }
529
530 /*
531  * osync is designed to support O_SYNC io.  It waits synchronously for
532  * all already-submitted IO to complete, but does not queue any new
533  * writes to the disk.
534  *
535  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
536  * as you dirty the buffers, and then use osync_inode_buffers to wait for
537  * completion.  Any other dirty buffers which are not yet queued for
538  * write will not be flushed to disk by the osync.
539  */
540 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
541 {
542         struct buffer_head *bh;
543         struct list_head *p;
544         int err = 0;
545
546         spin_lock(lock);
547 repeat:
548         list_for_each_prev(p, list) {
549                 bh = BH_ENTRY(p);
550                 if (buffer_locked(bh)) {
551                         get_bh(bh);
552                         spin_unlock(lock);
553                         wait_on_buffer(bh);
554                         if (!buffer_uptodate(bh))
555                                 err = -EIO;
556                         brelse(bh);
557                         spin_lock(lock);
558                         goto repeat;
559                 }
560         }
561         spin_unlock(lock);
562         return err;
563 }
564
565 /**
566  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
567  * @mapping: the mapping which wants those buffers written
568  *
569  * Starts I/O against the buffers at mapping->private_list, and waits upon
570  * that I/O.
571  *
572  * Basically, this is a convenience function for fsync().
573  * @mapping is a file or directory which needs those buffers to be written for
574  * a successful fsync().
575  */
576 int sync_mapping_buffers(struct address_space *mapping)
577 {
578         struct address_space *buffer_mapping = mapping->private_data;
579
580         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
581                 return 0;
582
583         return fsync_buffers_list(&buffer_mapping->private_lock,
584                                         &mapping->private_list);
585 }
586 EXPORT_SYMBOL(sync_mapping_buffers);
587
588 /**
589  * generic_buffers_fsync_noflush - generic buffer fsync implementation
590  * for simple filesystems with no inode lock
591  *
592  * @file:       file to synchronize
593  * @start:      start offset in bytes
594  * @end:        end offset in bytes (inclusive)
595  * @datasync:   only synchronize essential metadata if true
596  *
597  * This is a generic implementation of the fsync method for simple
598  * filesystems which track all non-inode metadata in the buffers list
599  * hanging off the address_space structure.
600  */
601 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
602                                   bool datasync)
603 {
604         struct inode *inode = file->f_mapping->host;
605         int err;
606         int ret;
607
608         err = file_write_and_wait_range(file, start, end);
609         if (err)
610                 return err;
611
612         ret = sync_mapping_buffers(inode->i_mapping);
613         if (!(inode->i_state & I_DIRTY_ALL))
614                 goto out;
615         if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
616                 goto out;
617
618         err = sync_inode_metadata(inode, 1);
619         if (ret == 0)
620                 ret = err;
621
622 out:
623         /* check and advance again to catch errors after syncing out buffers */
624         err = file_check_and_advance_wb_err(file);
625         if (ret == 0)
626                 ret = err;
627         return ret;
628 }
629 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
630
631 /**
632  * generic_buffers_fsync - generic buffer fsync implementation
633  * for simple filesystems with no inode lock
634  *
635  * @file:       file to synchronize
636  * @start:      start offset in bytes
637  * @end:        end offset in bytes (inclusive)
638  * @datasync:   only synchronize essential metadata if true
639  *
640  * This is a generic implementation of the fsync method for simple
641  * filesystems which track all non-inode metadata in the buffers list
642  * hanging off the address_space structure. This also makes sure that
643  * a device cache flush operation is called at the end.
644  */
645 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
646                           bool datasync)
647 {
648         struct inode *inode = file->f_mapping->host;
649         int ret;
650
651         ret = generic_buffers_fsync_noflush(file, start, end, datasync);
652         if (!ret)
653                 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
654         return ret;
655 }
656 EXPORT_SYMBOL(generic_buffers_fsync);
657
658 /*
659  * Called when we've recently written block `bblock', and it is known that
660  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
661  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
662  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
663  */
664 void write_boundary_block(struct block_device *bdev,
665                         sector_t bblock, unsigned blocksize)
666 {
667         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
668         if (bh) {
669                 if (buffer_dirty(bh))
670                         write_dirty_buffer(bh, 0);
671                 put_bh(bh);
672         }
673 }
674
675 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
676 {
677         struct address_space *mapping = inode->i_mapping;
678         struct address_space *buffer_mapping = bh->b_folio->mapping;
679
680         mark_buffer_dirty(bh);
681         if (!mapping->private_data) {
682                 mapping->private_data = buffer_mapping;
683         } else {
684                 BUG_ON(mapping->private_data != buffer_mapping);
685         }
686         if (!bh->b_assoc_map) {
687                 spin_lock(&buffer_mapping->private_lock);
688                 list_move_tail(&bh->b_assoc_buffers,
689                                 &mapping->private_list);
690                 bh->b_assoc_map = mapping;
691                 spin_unlock(&buffer_mapping->private_lock);
692         }
693 }
694 EXPORT_SYMBOL(mark_buffer_dirty_inode);
695
696 /*
697  * Add a page to the dirty page list.
698  *
699  * It is a sad fact of life that this function is called from several places
700  * deeply under spinlocking.  It may not sleep.
701  *
702  * If the page has buffers, the uptodate buffers are set dirty, to preserve
703  * dirty-state coherency between the page and the buffers.  It the page does
704  * not have buffers then when they are later attached they will all be set
705  * dirty.
706  *
707  * The buffers are dirtied before the page is dirtied.  There's a small race
708  * window in which a writepage caller may see the page cleanness but not the
709  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
710  * before the buffers, a concurrent writepage caller could clear the page dirty
711  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
712  * page on the dirty page list.
713  *
714  * We use private_lock to lock against try_to_free_buffers while using the
715  * page's buffer list.  Also use this to protect against clean buffers being
716  * added to the page after it was set dirty.
717  *
718  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
719  * address_space though.
720  */
721 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
722 {
723         struct buffer_head *head;
724         bool newly_dirty;
725
726         spin_lock(&mapping->private_lock);
727         head = folio_buffers(folio);
728         if (head) {
729                 struct buffer_head *bh = head;
730
731                 do {
732                         set_buffer_dirty(bh);
733                         bh = bh->b_this_page;
734                 } while (bh != head);
735         }
736         /*
737          * Lock out page's memcg migration to keep PageDirty
738          * synchronized with per-memcg dirty page counters.
739          */
740         folio_memcg_lock(folio);
741         newly_dirty = !folio_test_set_dirty(folio);
742         spin_unlock(&mapping->private_lock);
743
744         if (newly_dirty)
745                 __folio_mark_dirty(folio, mapping, 1);
746
747         folio_memcg_unlock(folio);
748
749         if (newly_dirty)
750                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
751
752         return newly_dirty;
753 }
754 EXPORT_SYMBOL(block_dirty_folio);
755
756 /*
757  * Write out and wait upon a list of buffers.
758  *
759  * We have conflicting pressures: we want to make sure that all
760  * initially dirty buffers get waited on, but that any subsequently
761  * dirtied buffers don't.  After all, we don't want fsync to last
762  * forever if somebody is actively writing to the file.
763  *
764  * Do this in two main stages: first we copy dirty buffers to a
765  * temporary inode list, queueing the writes as we go.  Then we clean
766  * up, waiting for those writes to complete.
767  * 
768  * During this second stage, any subsequent updates to the file may end
769  * up refiling the buffer on the original inode's dirty list again, so
770  * there is a chance we will end up with a buffer queued for write but
771  * not yet completed on that list.  So, as a final cleanup we go through
772  * the osync code to catch these locked, dirty buffers without requeuing
773  * any newly dirty buffers for write.
774  */
775 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
776 {
777         struct buffer_head *bh;
778         struct list_head tmp;
779         struct address_space *mapping;
780         int err = 0, err2;
781         struct blk_plug plug;
782
783         INIT_LIST_HEAD(&tmp);
784         blk_start_plug(&plug);
785
786         spin_lock(lock);
787         while (!list_empty(list)) {
788                 bh = BH_ENTRY(list->next);
789                 mapping = bh->b_assoc_map;
790                 __remove_assoc_queue(bh);
791                 /* Avoid race with mark_buffer_dirty_inode() which does
792                  * a lockless check and we rely on seeing the dirty bit */
793                 smp_mb();
794                 if (buffer_dirty(bh) || buffer_locked(bh)) {
795                         list_add(&bh->b_assoc_buffers, &tmp);
796                         bh->b_assoc_map = mapping;
797                         if (buffer_dirty(bh)) {
798                                 get_bh(bh);
799                                 spin_unlock(lock);
800                                 /*
801                                  * Ensure any pending I/O completes so that
802                                  * write_dirty_buffer() actually writes the
803                                  * current contents - it is a noop if I/O is
804                                  * still in flight on potentially older
805                                  * contents.
806                                  */
807                                 write_dirty_buffer(bh, REQ_SYNC);
808
809                                 /*
810                                  * Kick off IO for the previous mapping. Note
811                                  * that we will not run the very last mapping,
812                                  * wait_on_buffer() will do that for us
813                                  * through sync_buffer().
814                                  */
815                                 brelse(bh);
816                                 spin_lock(lock);
817                         }
818                 }
819         }
820
821         spin_unlock(lock);
822         blk_finish_plug(&plug);
823         spin_lock(lock);
824
825         while (!list_empty(&tmp)) {
826                 bh = BH_ENTRY(tmp.prev);
827                 get_bh(bh);
828                 mapping = bh->b_assoc_map;
829                 __remove_assoc_queue(bh);
830                 /* Avoid race with mark_buffer_dirty_inode() which does
831                  * a lockless check and we rely on seeing the dirty bit */
832                 smp_mb();
833                 if (buffer_dirty(bh)) {
834                         list_add(&bh->b_assoc_buffers,
835                                  &mapping->private_list);
836                         bh->b_assoc_map = mapping;
837                 }
838                 spin_unlock(lock);
839                 wait_on_buffer(bh);
840                 if (!buffer_uptodate(bh))
841                         err = -EIO;
842                 brelse(bh);
843                 spin_lock(lock);
844         }
845         
846         spin_unlock(lock);
847         err2 = osync_buffers_list(lock, list);
848         if (err)
849                 return err;
850         else
851                 return err2;
852 }
853
854 /*
855  * Invalidate any and all dirty buffers on a given inode.  We are
856  * probably unmounting the fs, but that doesn't mean we have already
857  * done a sync().  Just drop the buffers from the inode list.
858  *
859  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
860  * assumes that all the buffers are against the blockdev.  Not true
861  * for reiserfs.
862  */
863 void invalidate_inode_buffers(struct inode *inode)
864 {
865         if (inode_has_buffers(inode)) {
866                 struct address_space *mapping = &inode->i_data;
867                 struct list_head *list = &mapping->private_list;
868                 struct address_space *buffer_mapping = mapping->private_data;
869
870                 spin_lock(&buffer_mapping->private_lock);
871                 while (!list_empty(list))
872                         __remove_assoc_queue(BH_ENTRY(list->next));
873                 spin_unlock(&buffer_mapping->private_lock);
874         }
875 }
876 EXPORT_SYMBOL(invalidate_inode_buffers);
877
878 /*
879  * Remove any clean buffers from the inode's buffer list.  This is called
880  * when we're trying to free the inode itself.  Those buffers can pin it.
881  *
882  * Returns true if all buffers were removed.
883  */
884 int remove_inode_buffers(struct inode *inode)
885 {
886         int ret = 1;
887
888         if (inode_has_buffers(inode)) {
889                 struct address_space *mapping = &inode->i_data;
890                 struct list_head *list = &mapping->private_list;
891                 struct address_space *buffer_mapping = mapping->private_data;
892
893                 spin_lock(&buffer_mapping->private_lock);
894                 while (!list_empty(list)) {
895                         struct buffer_head *bh = BH_ENTRY(list->next);
896                         if (buffer_dirty(bh)) {
897                                 ret = 0;
898                                 break;
899                         }
900                         __remove_assoc_queue(bh);
901                 }
902                 spin_unlock(&buffer_mapping->private_lock);
903         }
904         return ret;
905 }
906
907 /*
908  * Create the appropriate buffers when given a folio for data area and
909  * the size of each buffer.. Use the bh->b_this_page linked list to
910  * follow the buffers created.  Return NULL if unable to create more
911  * buffers.
912  *
913  * The retry flag is used to differentiate async IO (paging, swapping)
914  * which may not fail from ordinary buffer allocations.
915  */
916 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
917                                         bool retry)
918 {
919         struct buffer_head *bh, *head;
920         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
921         long offset;
922         struct mem_cgroup *memcg, *old_memcg;
923
924         if (retry)
925                 gfp |= __GFP_NOFAIL;
926
927         /* The folio lock pins the memcg */
928         memcg = folio_memcg(folio);
929         old_memcg = set_active_memcg(memcg);
930
931         head = NULL;
932         offset = folio_size(folio);
933         while ((offset -= size) >= 0) {
934                 bh = alloc_buffer_head(gfp);
935                 if (!bh)
936                         goto no_grow;
937
938                 bh->b_this_page = head;
939                 bh->b_blocknr = -1;
940                 head = bh;
941
942                 bh->b_size = size;
943
944                 /* Link the buffer to its folio */
945                 folio_set_bh(bh, folio, offset);
946         }
947 out:
948         set_active_memcg(old_memcg);
949         return head;
950 /*
951  * In case anything failed, we just free everything we got.
952  */
953 no_grow:
954         if (head) {
955                 do {
956                         bh = head;
957                         head = head->b_this_page;
958                         free_buffer_head(bh);
959                 } while (head);
960         }
961
962         goto out;
963 }
964 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
965
966 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
967                                        bool retry)
968 {
969         return folio_alloc_buffers(page_folio(page), size, retry);
970 }
971 EXPORT_SYMBOL_GPL(alloc_page_buffers);
972
973 static inline void link_dev_buffers(struct folio *folio,
974                 struct buffer_head *head)
975 {
976         struct buffer_head *bh, *tail;
977
978         bh = head;
979         do {
980                 tail = bh;
981                 bh = bh->b_this_page;
982         } while (bh);
983         tail->b_this_page = head;
984         folio_attach_private(folio, head);
985 }
986
987 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
988 {
989         sector_t retval = ~((sector_t)0);
990         loff_t sz = bdev_nr_bytes(bdev);
991
992         if (sz) {
993                 unsigned int sizebits = blksize_bits(size);
994                 retval = (sz >> sizebits);
995         }
996         return retval;
997 }
998
999 /*
1000  * Initialise the state of a blockdev folio's buffers.
1001  */ 
1002 static sector_t folio_init_buffers(struct folio *folio,
1003                 struct block_device *bdev, sector_t block, int size)
1004 {
1005         struct buffer_head *head = folio_buffers(folio);
1006         struct buffer_head *bh = head;
1007         bool uptodate = folio_test_uptodate(folio);
1008         sector_t end_block = blkdev_max_block(bdev, size);
1009
1010         do {
1011                 if (!buffer_mapped(bh)) {
1012                         bh->b_end_io = NULL;
1013                         bh->b_private = NULL;
1014                         bh->b_bdev = bdev;
1015                         bh->b_blocknr = block;
1016                         if (uptodate)
1017                                 set_buffer_uptodate(bh);
1018                         if (block < end_block)
1019                                 set_buffer_mapped(bh);
1020                 }
1021                 block++;
1022                 bh = bh->b_this_page;
1023         } while (bh != head);
1024
1025         /*
1026          * Caller needs to validate requested block against end of device.
1027          */
1028         return end_block;
1029 }
1030
1031 /*
1032  * Create the page-cache page that contains the requested block.
1033  *
1034  * This is used purely for blockdev mappings.
1035  */
1036 static int
1037 grow_dev_page(struct block_device *bdev, sector_t block,
1038               pgoff_t index, int size, int sizebits, gfp_t gfp)
1039 {
1040         struct inode *inode = bdev->bd_inode;
1041         struct folio *folio;
1042         struct buffer_head *bh;
1043         sector_t end_block;
1044         int ret = 0;
1045         gfp_t gfp_mask;
1046
1047         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
1048
1049         /*
1050          * XXX: __getblk_slow() can not really deal with failure and
1051          * will endlessly loop on improvised global reclaim.  Prefer
1052          * looping in the allocator rather than here, at least that
1053          * code knows what it's doing.
1054          */
1055         gfp_mask |= __GFP_NOFAIL;
1056
1057         folio = __filemap_get_folio(inode->i_mapping, index,
1058                         FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask);
1059
1060         bh = folio_buffers(folio);
1061         if (bh) {
1062                 if (bh->b_size == size) {
1063                         end_block = folio_init_buffers(folio, bdev,
1064                                         (sector_t)index << sizebits, size);
1065                         goto done;
1066                 }
1067                 if (!try_to_free_buffers(folio))
1068                         goto failed;
1069         }
1070
1071         bh = folio_alloc_buffers(folio, size, true);
1072
1073         /*
1074          * Link the folio to the buffers and initialise them.  Take the
1075          * lock to be atomic wrt __find_get_block(), which does not
1076          * run under the folio lock.
1077          */
1078         spin_lock(&inode->i_mapping->private_lock);
1079         link_dev_buffers(folio, bh);
1080         end_block = folio_init_buffers(folio, bdev,
1081                         (sector_t)index << sizebits, size);
1082         spin_unlock(&inode->i_mapping->private_lock);
1083 done:
1084         ret = (block < end_block) ? 1 : -ENXIO;
1085 failed:
1086         folio_unlock(folio);
1087         folio_put(folio);
1088         return ret;
1089 }
1090
1091 /*
1092  * Create buffers for the specified block device block's page.  If
1093  * that page was dirty, the buffers are set dirty also.
1094  */
1095 static int
1096 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1097 {
1098         pgoff_t index;
1099         int sizebits;
1100
1101         sizebits = PAGE_SHIFT - __ffs(size);
1102         index = block >> sizebits;
1103
1104         /*
1105          * Check for a block which wants to lie outside our maximum possible
1106          * pagecache index.  (this comparison is done using sector_t types).
1107          */
1108         if (unlikely(index != block >> sizebits)) {
1109                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1110                         "device %pg\n",
1111                         __func__, (unsigned long long)block,
1112                         bdev);
1113                 return -EIO;
1114         }
1115
1116         /* Create a page with the proper size buffers.. */
1117         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1118 }
1119
1120 static struct buffer_head *
1121 __getblk_slow(struct block_device *bdev, sector_t block,
1122              unsigned size, gfp_t gfp)
1123 {
1124         /* Size must be multiple of hard sectorsize */
1125         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1126                         (size < 512 || size > PAGE_SIZE))) {
1127                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1128                                         size);
1129                 printk(KERN_ERR "logical block size: %d\n",
1130                                         bdev_logical_block_size(bdev));
1131
1132                 dump_stack();
1133                 return NULL;
1134         }
1135
1136         for (;;) {
1137                 struct buffer_head *bh;
1138                 int ret;
1139
1140                 bh = __find_get_block(bdev, block, size);
1141                 if (bh)
1142                         return bh;
1143
1144                 ret = grow_buffers(bdev, block, size, gfp);
1145                 if (ret < 0)
1146                         return NULL;
1147         }
1148 }
1149
1150 /*
1151  * The relationship between dirty buffers and dirty pages:
1152  *
1153  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1154  * the page is tagged dirty in the page cache.
1155  *
1156  * At all times, the dirtiness of the buffers represents the dirtiness of
1157  * subsections of the page.  If the page has buffers, the page dirty bit is
1158  * merely a hint about the true dirty state.
1159  *
1160  * When a page is set dirty in its entirety, all its buffers are marked dirty
1161  * (if the page has buffers).
1162  *
1163  * When a buffer is marked dirty, its page is dirtied, but the page's other
1164  * buffers are not.
1165  *
1166  * Also.  When blockdev buffers are explicitly read with bread(), they
1167  * individually become uptodate.  But their backing page remains not
1168  * uptodate - even if all of its buffers are uptodate.  A subsequent
1169  * block_read_full_folio() against that folio will discover all the uptodate
1170  * buffers, will set the folio uptodate and will perform no I/O.
1171  */
1172
1173 /**
1174  * mark_buffer_dirty - mark a buffer_head as needing writeout
1175  * @bh: the buffer_head to mark dirty
1176  *
1177  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1178  * its backing page dirty, then tag the page as dirty in the page cache
1179  * and then attach the address_space's inode to its superblock's dirty
1180  * inode list.
1181  *
1182  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1183  * i_pages lock and mapping->host->i_lock.
1184  */
1185 void mark_buffer_dirty(struct buffer_head *bh)
1186 {
1187         WARN_ON_ONCE(!buffer_uptodate(bh));
1188
1189         trace_block_dirty_buffer(bh);
1190
1191         /*
1192          * Very *carefully* optimize the it-is-already-dirty case.
1193          *
1194          * Don't let the final "is it dirty" escape to before we
1195          * perhaps modified the buffer.
1196          */
1197         if (buffer_dirty(bh)) {
1198                 smp_mb();
1199                 if (buffer_dirty(bh))
1200                         return;
1201         }
1202
1203         if (!test_set_buffer_dirty(bh)) {
1204                 struct folio *folio = bh->b_folio;
1205                 struct address_space *mapping = NULL;
1206
1207                 folio_memcg_lock(folio);
1208                 if (!folio_test_set_dirty(folio)) {
1209                         mapping = folio->mapping;
1210                         if (mapping)
1211                                 __folio_mark_dirty(folio, mapping, 0);
1212                 }
1213                 folio_memcg_unlock(folio);
1214                 if (mapping)
1215                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1216         }
1217 }
1218 EXPORT_SYMBOL(mark_buffer_dirty);
1219
1220 void mark_buffer_write_io_error(struct buffer_head *bh)
1221 {
1222         struct super_block *sb;
1223
1224         set_buffer_write_io_error(bh);
1225         /* FIXME: do we need to set this in both places? */
1226         if (bh->b_folio && bh->b_folio->mapping)
1227                 mapping_set_error(bh->b_folio->mapping, -EIO);
1228         if (bh->b_assoc_map)
1229                 mapping_set_error(bh->b_assoc_map, -EIO);
1230         rcu_read_lock();
1231         sb = READ_ONCE(bh->b_bdev->bd_super);
1232         if (sb)
1233                 errseq_set(&sb->s_wb_err, -EIO);
1234         rcu_read_unlock();
1235 }
1236 EXPORT_SYMBOL(mark_buffer_write_io_error);
1237
1238 /*
1239  * Decrement a buffer_head's reference count.  If all buffers against a page
1240  * have zero reference count, are clean and unlocked, and if the page is clean
1241  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1242  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1243  * a page but it ends up not being freed, and buffers may later be reattached).
1244  */
1245 void __brelse(struct buffer_head * buf)
1246 {
1247         if (atomic_read(&buf->b_count)) {
1248                 put_bh(buf);
1249                 return;
1250         }
1251         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1252 }
1253 EXPORT_SYMBOL(__brelse);
1254
1255 /*
1256  * bforget() is like brelse(), except it discards any
1257  * potentially dirty data.
1258  */
1259 void __bforget(struct buffer_head *bh)
1260 {
1261         clear_buffer_dirty(bh);
1262         if (bh->b_assoc_map) {
1263                 struct address_space *buffer_mapping = bh->b_folio->mapping;
1264
1265                 spin_lock(&buffer_mapping->private_lock);
1266                 list_del_init(&bh->b_assoc_buffers);
1267                 bh->b_assoc_map = NULL;
1268                 spin_unlock(&buffer_mapping->private_lock);
1269         }
1270         __brelse(bh);
1271 }
1272 EXPORT_SYMBOL(__bforget);
1273
1274 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1275 {
1276         lock_buffer(bh);
1277         if (buffer_uptodate(bh)) {
1278                 unlock_buffer(bh);
1279                 return bh;
1280         } else {
1281                 get_bh(bh);
1282                 bh->b_end_io = end_buffer_read_sync;
1283                 submit_bh(REQ_OP_READ, bh);
1284                 wait_on_buffer(bh);
1285                 if (buffer_uptodate(bh))
1286                         return bh;
1287         }
1288         brelse(bh);
1289         return NULL;
1290 }
1291
1292 /*
1293  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1294  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1295  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1296  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1297  * CPU's LRUs at the same time.
1298  *
1299  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1300  * sb_find_get_block().
1301  *
1302  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1303  * a local interrupt disable for that.
1304  */
1305
1306 #define BH_LRU_SIZE     16
1307
1308 struct bh_lru {
1309         struct buffer_head *bhs[BH_LRU_SIZE];
1310 };
1311
1312 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1313
1314 #ifdef CONFIG_SMP
1315 #define bh_lru_lock()   local_irq_disable()
1316 #define bh_lru_unlock() local_irq_enable()
1317 #else
1318 #define bh_lru_lock()   preempt_disable()
1319 #define bh_lru_unlock() preempt_enable()
1320 #endif
1321
1322 static inline void check_irqs_on(void)
1323 {
1324 #ifdef irqs_disabled
1325         BUG_ON(irqs_disabled());
1326 #endif
1327 }
1328
1329 /*
1330  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1331  * inserted at the front, and the buffer_head at the back if any is evicted.
1332  * Or, if already in the LRU it is moved to the front.
1333  */
1334 static void bh_lru_install(struct buffer_head *bh)
1335 {
1336         struct buffer_head *evictee = bh;
1337         struct bh_lru *b;
1338         int i;
1339
1340         check_irqs_on();
1341         bh_lru_lock();
1342
1343         /*
1344          * the refcount of buffer_head in bh_lru prevents dropping the
1345          * attached page(i.e., try_to_free_buffers) so it could cause
1346          * failing page migration.
1347          * Skip putting upcoming bh into bh_lru until migration is done.
1348          */
1349         if (lru_cache_disabled()) {
1350                 bh_lru_unlock();
1351                 return;
1352         }
1353
1354         b = this_cpu_ptr(&bh_lrus);
1355         for (i = 0; i < BH_LRU_SIZE; i++) {
1356                 swap(evictee, b->bhs[i]);
1357                 if (evictee == bh) {
1358                         bh_lru_unlock();
1359                         return;
1360                 }
1361         }
1362
1363         get_bh(bh);
1364         bh_lru_unlock();
1365         brelse(evictee);
1366 }
1367
1368 /*
1369  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1370  */
1371 static struct buffer_head *
1372 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1373 {
1374         struct buffer_head *ret = NULL;
1375         unsigned int i;
1376
1377         check_irqs_on();
1378         bh_lru_lock();
1379         for (i = 0; i < BH_LRU_SIZE; i++) {
1380                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1381
1382                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1383                     bh->b_size == size) {
1384                         if (i) {
1385                                 while (i) {
1386                                         __this_cpu_write(bh_lrus.bhs[i],
1387                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1388                                         i--;
1389                                 }
1390                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1391                         }
1392                         get_bh(bh);
1393                         ret = bh;
1394                         break;
1395                 }
1396         }
1397         bh_lru_unlock();
1398         return ret;
1399 }
1400
1401 /*
1402  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1403  * it in the LRU and mark it as accessed.  If it is not present then return
1404  * NULL
1405  */
1406 struct buffer_head *
1407 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1408 {
1409         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1410
1411         if (bh == NULL) {
1412                 /* __find_get_block_slow will mark the page accessed */
1413                 bh = __find_get_block_slow(bdev, block);
1414                 if (bh)
1415                         bh_lru_install(bh);
1416         } else
1417                 touch_buffer(bh);
1418
1419         return bh;
1420 }
1421 EXPORT_SYMBOL(__find_get_block);
1422
1423 /*
1424  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1425  * which corresponds to the passed block_device, block and size. The
1426  * returned buffer has its reference count incremented.
1427  *
1428  * __getblk_gfp() will lock up the machine if grow_dev_page's
1429  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1430  */
1431 struct buffer_head *
1432 __getblk_gfp(struct block_device *bdev, sector_t block,
1433              unsigned size, gfp_t gfp)
1434 {
1435         struct buffer_head *bh = __find_get_block(bdev, block, size);
1436
1437         might_sleep();
1438         if (bh == NULL)
1439                 bh = __getblk_slow(bdev, block, size, gfp);
1440         return bh;
1441 }
1442 EXPORT_SYMBOL(__getblk_gfp);
1443
1444 /*
1445  * Do async read-ahead on a buffer..
1446  */
1447 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1448 {
1449         struct buffer_head *bh = __getblk(bdev, block, size);
1450         if (likely(bh)) {
1451                 bh_readahead(bh, REQ_RAHEAD);
1452                 brelse(bh);
1453         }
1454 }
1455 EXPORT_SYMBOL(__breadahead);
1456
1457 /**
1458  *  __bread_gfp() - reads a specified block and returns the bh
1459  *  @bdev: the block_device to read from
1460  *  @block: number of block
1461  *  @size: size (in bytes) to read
1462  *  @gfp: page allocation flag
1463  *
1464  *  Reads a specified block, and returns buffer head that contains it.
1465  *  The page cache can be allocated from non-movable area
1466  *  not to prevent page migration if you set gfp to zero.
1467  *  It returns NULL if the block was unreadable.
1468  */
1469 struct buffer_head *
1470 __bread_gfp(struct block_device *bdev, sector_t block,
1471                    unsigned size, gfp_t gfp)
1472 {
1473         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1474
1475         if (likely(bh) && !buffer_uptodate(bh))
1476                 bh = __bread_slow(bh);
1477         return bh;
1478 }
1479 EXPORT_SYMBOL(__bread_gfp);
1480
1481 static void __invalidate_bh_lrus(struct bh_lru *b)
1482 {
1483         int i;
1484
1485         for (i = 0; i < BH_LRU_SIZE; i++) {
1486                 brelse(b->bhs[i]);
1487                 b->bhs[i] = NULL;
1488         }
1489 }
1490 /*
1491  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1492  * This doesn't race because it runs in each cpu either in irq
1493  * or with preempt disabled.
1494  */
1495 static void invalidate_bh_lru(void *arg)
1496 {
1497         struct bh_lru *b = &get_cpu_var(bh_lrus);
1498
1499         __invalidate_bh_lrus(b);
1500         put_cpu_var(bh_lrus);
1501 }
1502
1503 bool has_bh_in_lru(int cpu, void *dummy)
1504 {
1505         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1506         int i;
1507         
1508         for (i = 0; i < BH_LRU_SIZE; i++) {
1509                 if (b->bhs[i])
1510                         return true;
1511         }
1512
1513         return false;
1514 }
1515
1516 void invalidate_bh_lrus(void)
1517 {
1518         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1519 }
1520 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1521
1522 /*
1523  * It's called from workqueue context so we need a bh_lru_lock to close
1524  * the race with preemption/irq.
1525  */
1526 void invalidate_bh_lrus_cpu(void)
1527 {
1528         struct bh_lru *b;
1529
1530         bh_lru_lock();
1531         b = this_cpu_ptr(&bh_lrus);
1532         __invalidate_bh_lrus(b);
1533         bh_lru_unlock();
1534 }
1535
1536 void set_bh_page(struct buffer_head *bh,
1537                 struct page *page, unsigned long offset)
1538 {
1539         bh->b_page = page;
1540         BUG_ON(offset >= PAGE_SIZE);
1541         if (PageHighMem(page))
1542                 /*
1543                  * This catches illegal uses and preserves the offset:
1544                  */
1545                 bh->b_data = (char *)(0 + offset);
1546         else
1547                 bh->b_data = page_address(page) + offset;
1548 }
1549 EXPORT_SYMBOL(set_bh_page);
1550
1551 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1552                   unsigned long offset)
1553 {
1554         bh->b_folio = folio;
1555         BUG_ON(offset >= folio_size(folio));
1556         if (folio_test_highmem(folio))
1557                 /*
1558                  * This catches illegal uses and preserves the offset:
1559                  */
1560                 bh->b_data = (char *)(0 + offset);
1561         else
1562                 bh->b_data = folio_address(folio) + offset;
1563 }
1564 EXPORT_SYMBOL(folio_set_bh);
1565
1566 /*
1567  * Called when truncating a buffer on a page completely.
1568  */
1569
1570 /* Bits that are cleared during an invalidate */
1571 #define BUFFER_FLAGS_DISCARD \
1572         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1573          1 << BH_Delay | 1 << BH_Unwritten)
1574
1575 static void discard_buffer(struct buffer_head * bh)
1576 {
1577         unsigned long b_state;
1578
1579         lock_buffer(bh);
1580         clear_buffer_dirty(bh);
1581         bh->b_bdev = NULL;
1582         b_state = READ_ONCE(bh->b_state);
1583         do {
1584         } while (!try_cmpxchg(&bh->b_state, &b_state,
1585                               b_state & ~BUFFER_FLAGS_DISCARD));
1586         unlock_buffer(bh);
1587 }
1588
1589 /**
1590  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1591  * @folio: The folio which is affected.
1592  * @offset: start of the range to invalidate
1593  * @length: length of the range to invalidate
1594  *
1595  * block_invalidate_folio() is called when all or part of the folio has been
1596  * invalidated by a truncate operation.
1597  *
1598  * block_invalidate_folio() does not have to release all buffers, but it must
1599  * ensure that no dirty buffer is left outside @offset and that no I/O
1600  * is underway against any of the blocks which are outside the truncation
1601  * point.  Because the caller is about to free (and possibly reuse) those
1602  * blocks on-disk.
1603  */
1604 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1605 {
1606         struct buffer_head *head, *bh, *next;
1607         size_t curr_off = 0;
1608         size_t stop = length + offset;
1609
1610         BUG_ON(!folio_test_locked(folio));
1611
1612         /*
1613          * Check for overflow
1614          */
1615         BUG_ON(stop > folio_size(folio) || stop < length);
1616
1617         head = folio_buffers(folio);
1618         if (!head)
1619                 return;
1620
1621         bh = head;
1622         do {
1623                 size_t next_off = curr_off + bh->b_size;
1624                 next = bh->b_this_page;
1625
1626                 /*
1627                  * Are we still fully in range ?
1628                  */
1629                 if (next_off > stop)
1630                         goto out;
1631
1632                 /*
1633                  * is this block fully invalidated?
1634                  */
1635                 if (offset <= curr_off)
1636                         discard_buffer(bh);
1637                 curr_off = next_off;
1638                 bh = next;
1639         } while (bh != head);
1640
1641         /*
1642          * We release buffers only if the entire folio is being invalidated.
1643          * The get_block cached value has been unconditionally invalidated,
1644          * so real IO is not possible anymore.
1645          */
1646         if (length == folio_size(folio))
1647                 filemap_release_folio(folio, 0);
1648 out:
1649         return;
1650 }
1651 EXPORT_SYMBOL(block_invalidate_folio);
1652
1653 /*
1654  * We attach and possibly dirty the buffers atomically wrt
1655  * block_dirty_folio() via private_lock.  try_to_free_buffers
1656  * is already excluded via the folio lock.
1657  */
1658 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1659                                 unsigned long b_state)
1660 {
1661         struct buffer_head *bh, *head, *tail;
1662
1663         head = folio_alloc_buffers(folio, blocksize, true);
1664         bh = head;
1665         do {
1666                 bh->b_state |= b_state;
1667                 tail = bh;
1668                 bh = bh->b_this_page;
1669         } while (bh);
1670         tail->b_this_page = head;
1671
1672         spin_lock(&folio->mapping->private_lock);
1673         if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1674                 bh = head;
1675                 do {
1676                         if (folio_test_dirty(folio))
1677                                 set_buffer_dirty(bh);
1678                         if (folio_test_uptodate(folio))
1679                                 set_buffer_uptodate(bh);
1680                         bh = bh->b_this_page;
1681                 } while (bh != head);
1682         }
1683         folio_attach_private(folio, head);
1684         spin_unlock(&folio->mapping->private_lock);
1685 }
1686 EXPORT_SYMBOL(folio_create_empty_buffers);
1687
1688 void create_empty_buffers(struct page *page,
1689                         unsigned long blocksize, unsigned long b_state)
1690 {
1691         folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1692 }
1693 EXPORT_SYMBOL(create_empty_buffers);
1694
1695 /**
1696  * clean_bdev_aliases: clean a range of buffers in block device
1697  * @bdev: Block device to clean buffers in
1698  * @block: Start of a range of blocks to clean
1699  * @len: Number of blocks to clean
1700  *
1701  * We are taking a range of blocks for data and we don't want writeback of any
1702  * buffer-cache aliases starting from return from this function and until the
1703  * moment when something will explicitly mark the buffer dirty (hopefully that
1704  * will not happen until we will free that block ;-) We don't even need to mark
1705  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1706  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1707  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1708  * would confuse anyone who might pick it with bread() afterwards...
1709  *
1710  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1711  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1712  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1713  * need to.  That happens here.
1714  */
1715 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1716 {
1717         struct inode *bd_inode = bdev->bd_inode;
1718         struct address_space *bd_mapping = bd_inode->i_mapping;
1719         struct folio_batch fbatch;
1720         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1721         pgoff_t end;
1722         int i, count;
1723         struct buffer_head *bh;
1724         struct buffer_head *head;
1725
1726         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1727         folio_batch_init(&fbatch);
1728         while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1729                 count = folio_batch_count(&fbatch);
1730                 for (i = 0; i < count; i++) {
1731                         struct folio *folio = fbatch.folios[i];
1732
1733                         if (!folio_buffers(folio))
1734                                 continue;
1735                         /*
1736                          * We use folio lock instead of bd_mapping->private_lock
1737                          * to pin buffers here since we can afford to sleep and
1738                          * it scales better than a global spinlock lock.
1739                          */
1740                         folio_lock(folio);
1741                         /* Recheck when the folio is locked which pins bhs */
1742                         head = folio_buffers(folio);
1743                         if (!head)
1744                                 goto unlock_page;
1745                         bh = head;
1746                         do {
1747                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1748                                         goto next;
1749                                 if (bh->b_blocknr >= block + len)
1750                                         break;
1751                                 clear_buffer_dirty(bh);
1752                                 wait_on_buffer(bh);
1753                                 clear_buffer_req(bh);
1754 next:
1755                                 bh = bh->b_this_page;
1756                         } while (bh != head);
1757 unlock_page:
1758                         folio_unlock(folio);
1759                 }
1760                 folio_batch_release(&fbatch);
1761                 cond_resched();
1762                 /* End of range already reached? */
1763                 if (index > end || !index)
1764                         break;
1765         }
1766 }
1767 EXPORT_SYMBOL(clean_bdev_aliases);
1768
1769 /*
1770  * Size is a power-of-two in the range 512..PAGE_SIZE,
1771  * and the case we care about most is PAGE_SIZE.
1772  *
1773  * So this *could* possibly be written with those
1774  * constraints in mind (relevant mostly if some
1775  * architecture has a slow bit-scan instruction)
1776  */
1777 static inline int block_size_bits(unsigned int blocksize)
1778 {
1779         return ilog2(blocksize);
1780 }
1781
1782 static struct buffer_head *folio_create_buffers(struct folio *folio,
1783                                                 struct inode *inode,
1784                                                 unsigned int b_state)
1785 {
1786         BUG_ON(!folio_test_locked(folio));
1787
1788         if (!folio_buffers(folio))
1789                 folio_create_empty_buffers(folio,
1790                                            1 << READ_ONCE(inode->i_blkbits),
1791                                            b_state);
1792         return folio_buffers(folio);
1793 }
1794
1795 /*
1796  * NOTE! All mapped/uptodate combinations are valid:
1797  *
1798  *      Mapped  Uptodate        Meaning
1799  *
1800  *      No      No              "unknown" - must do get_block()
1801  *      No      Yes             "hole" - zero-filled
1802  *      Yes     No              "allocated" - allocated on disk, not read in
1803  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1804  *
1805  * "Dirty" is valid only with the last case (mapped+uptodate).
1806  */
1807
1808 /*
1809  * While block_write_full_page is writing back the dirty buffers under
1810  * the page lock, whoever dirtied the buffers may decide to clean them
1811  * again at any time.  We handle that by only looking at the buffer
1812  * state inside lock_buffer().
1813  *
1814  * If block_write_full_page() is called for regular writeback
1815  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1816  * locked buffer.   This only can happen if someone has written the buffer
1817  * directly, with submit_bh().  At the address_space level PageWriteback
1818  * prevents this contention from occurring.
1819  *
1820  * If block_write_full_page() is called with wbc->sync_mode ==
1821  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1822  * causes the writes to be flagged as synchronous writes.
1823  */
1824 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1825                         get_block_t *get_block, struct writeback_control *wbc,
1826                         bh_end_io_t *handler)
1827 {
1828         int err;
1829         sector_t block;
1830         sector_t last_block;
1831         struct buffer_head *bh, *head;
1832         unsigned int blocksize, bbits;
1833         int nr_underway = 0;
1834         blk_opf_t write_flags = wbc_to_write_flags(wbc);
1835
1836         head = folio_create_buffers(folio, inode,
1837                                     (1 << BH_Dirty) | (1 << BH_Uptodate));
1838
1839         /*
1840          * Be very careful.  We have no exclusion from block_dirty_folio
1841          * here, and the (potentially unmapped) buffers may become dirty at
1842          * any time.  If a buffer becomes dirty here after we've inspected it
1843          * then we just miss that fact, and the folio stays dirty.
1844          *
1845          * Buffers outside i_size may be dirtied by block_dirty_folio;
1846          * handle that here by just cleaning them.
1847          */
1848
1849         bh = head;
1850         blocksize = bh->b_size;
1851         bbits = block_size_bits(blocksize);
1852
1853         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1854         last_block = (i_size_read(inode) - 1) >> bbits;
1855
1856         /*
1857          * Get all the dirty buffers mapped to disk addresses and
1858          * handle any aliases from the underlying blockdev's mapping.
1859          */
1860         do {
1861                 if (block > last_block) {
1862                         /*
1863                          * mapped buffers outside i_size will occur, because
1864                          * this folio can be outside i_size when there is a
1865                          * truncate in progress.
1866                          */
1867                         /*
1868                          * The buffer was zeroed by block_write_full_page()
1869                          */
1870                         clear_buffer_dirty(bh);
1871                         set_buffer_uptodate(bh);
1872                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1873                            buffer_dirty(bh)) {
1874                         WARN_ON(bh->b_size != blocksize);
1875                         err = get_block(inode, block, bh, 1);
1876                         if (err)
1877                                 goto recover;
1878                         clear_buffer_delay(bh);
1879                         if (buffer_new(bh)) {
1880                                 /* blockdev mappings never come here */
1881                                 clear_buffer_new(bh);
1882                                 clean_bdev_bh_alias(bh);
1883                         }
1884                 }
1885                 bh = bh->b_this_page;
1886                 block++;
1887         } while (bh != head);
1888
1889         do {
1890                 if (!buffer_mapped(bh))
1891                         continue;
1892                 /*
1893                  * If it's a fully non-blocking write attempt and we cannot
1894                  * lock the buffer then redirty the folio.  Note that this can
1895                  * potentially cause a busy-wait loop from writeback threads
1896                  * and kswapd activity, but those code paths have their own
1897                  * higher-level throttling.
1898                  */
1899                 if (wbc->sync_mode != WB_SYNC_NONE) {
1900                         lock_buffer(bh);
1901                 } else if (!trylock_buffer(bh)) {
1902                         folio_redirty_for_writepage(wbc, folio);
1903                         continue;
1904                 }
1905                 if (test_clear_buffer_dirty(bh)) {
1906                         mark_buffer_async_write_endio(bh, handler);
1907                 } else {
1908                         unlock_buffer(bh);
1909                 }
1910         } while ((bh = bh->b_this_page) != head);
1911
1912         /*
1913          * The folio and its buffers are protected by the writeback flag,
1914          * so we can drop the bh refcounts early.
1915          */
1916         BUG_ON(folio_test_writeback(folio));
1917         folio_start_writeback(folio);
1918
1919         do {
1920                 struct buffer_head *next = bh->b_this_page;
1921                 if (buffer_async_write(bh)) {
1922                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1923                         nr_underway++;
1924                 }
1925                 bh = next;
1926         } while (bh != head);
1927         folio_unlock(folio);
1928
1929         err = 0;
1930 done:
1931         if (nr_underway == 0) {
1932                 /*
1933                  * The folio was marked dirty, but the buffers were
1934                  * clean.  Someone wrote them back by hand with
1935                  * write_dirty_buffer/submit_bh.  A rare case.
1936                  */
1937                 folio_end_writeback(folio);
1938
1939                 /*
1940                  * The folio and buffer_heads can be released at any time from
1941                  * here on.
1942                  */
1943         }
1944         return err;
1945
1946 recover:
1947         /*
1948          * ENOSPC, or some other error.  We may already have added some
1949          * blocks to the file, so we need to write these out to avoid
1950          * exposing stale data.
1951          * The folio is currently locked and not marked for writeback
1952          */
1953         bh = head;
1954         /* Recovery: lock and submit the mapped buffers */
1955         do {
1956                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1957                     !buffer_delay(bh)) {
1958                         lock_buffer(bh);
1959                         mark_buffer_async_write_endio(bh, handler);
1960                 } else {
1961                         /*
1962                          * The buffer may have been set dirty during
1963                          * attachment to a dirty folio.
1964                          */
1965                         clear_buffer_dirty(bh);
1966                 }
1967         } while ((bh = bh->b_this_page) != head);
1968         folio_set_error(folio);
1969         BUG_ON(folio_test_writeback(folio));
1970         mapping_set_error(folio->mapping, err);
1971         folio_start_writeback(folio);
1972         do {
1973                 struct buffer_head *next = bh->b_this_page;
1974                 if (buffer_async_write(bh)) {
1975                         clear_buffer_dirty(bh);
1976                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1977                         nr_underway++;
1978                 }
1979                 bh = next;
1980         } while (bh != head);
1981         folio_unlock(folio);
1982         goto done;
1983 }
1984 EXPORT_SYMBOL(__block_write_full_folio);
1985
1986 /*
1987  * If a folio has any new buffers, zero them out here, and mark them uptodate
1988  * and dirty so they'll be written out (in order to prevent uninitialised
1989  * block data from leaking). And clear the new bit.
1990  */
1991 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1992 {
1993         size_t block_start, block_end;
1994         struct buffer_head *head, *bh;
1995
1996         BUG_ON(!folio_test_locked(folio));
1997         head = folio_buffers(folio);
1998         if (!head)
1999                 return;
2000
2001         bh = head;
2002         block_start = 0;
2003         do {
2004                 block_end = block_start + bh->b_size;
2005
2006                 if (buffer_new(bh)) {
2007                         if (block_end > from && block_start < to) {
2008                                 if (!folio_test_uptodate(folio)) {
2009                                         size_t start, xend;
2010
2011                                         start = max(from, block_start);
2012                                         xend = min(to, block_end);
2013
2014                                         folio_zero_segment(folio, start, xend);
2015                                         set_buffer_uptodate(bh);
2016                                 }
2017
2018                                 clear_buffer_new(bh);
2019                                 mark_buffer_dirty(bh);
2020                         }
2021                 }
2022
2023                 block_start = block_end;
2024                 bh = bh->b_this_page;
2025         } while (bh != head);
2026 }
2027 EXPORT_SYMBOL(folio_zero_new_buffers);
2028
2029 static void
2030 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2031                 const struct iomap *iomap)
2032 {
2033         loff_t offset = block << inode->i_blkbits;
2034
2035         bh->b_bdev = iomap->bdev;
2036
2037         /*
2038          * Block points to offset in file we need to map, iomap contains
2039          * the offset at which the map starts. If the map ends before the
2040          * current block, then do not map the buffer and let the caller
2041          * handle it.
2042          */
2043         BUG_ON(offset >= iomap->offset + iomap->length);
2044
2045         switch (iomap->type) {
2046         case IOMAP_HOLE:
2047                 /*
2048                  * If the buffer is not up to date or beyond the current EOF,
2049                  * we need to mark it as new to ensure sub-block zeroing is
2050                  * executed if necessary.
2051                  */
2052                 if (!buffer_uptodate(bh) ||
2053                     (offset >= i_size_read(inode)))
2054                         set_buffer_new(bh);
2055                 break;
2056         case IOMAP_DELALLOC:
2057                 if (!buffer_uptodate(bh) ||
2058                     (offset >= i_size_read(inode)))
2059                         set_buffer_new(bh);
2060                 set_buffer_uptodate(bh);
2061                 set_buffer_mapped(bh);
2062                 set_buffer_delay(bh);
2063                 break;
2064         case IOMAP_UNWRITTEN:
2065                 /*
2066                  * For unwritten regions, we always need to ensure that regions
2067                  * in the block we are not writing to are zeroed. Mark the
2068                  * buffer as new to ensure this.
2069                  */
2070                 set_buffer_new(bh);
2071                 set_buffer_unwritten(bh);
2072                 fallthrough;
2073         case IOMAP_MAPPED:
2074                 if ((iomap->flags & IOMAP_F_NEW) ||
2075                     offset >= i_size_read(inode))
2076                         set_buffer_new(bh);
2077                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2078                                 inode->i_blkbits;
2079                 set_buffer_mapped(bh);
2080                 break;
2081         }
2082 }
2083
2084 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2085                 get_block_t *get_block, const struct iomap *iomap)
2086 {
2087         unsigned from = pos & (PAGE_SIZE - 1);
2088         unsigned to = from + len;
2089         struct inode *inode = folio->mapping->host;
2090         unsigned block_start, block_end;
2091         sector_t block;
2092         int err = 0;
2093         unsigned blocksize, bbits;
2094         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2095
2096         BUG_ON(!folio_test_locked(folio));
2097         BUG_ON(from > PAGE_SIZE);
2098         BUG_ON(to > PAGE_SIZE);
2099         BUG_ON(from > to);
2100
2101         head = folio_create_buffers(folio, inode, 0);
2102         blocksize = head->b_size;
2103         bbits = block_size_bits(blocksize);
2104
2105         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2106
2107         for(bh = head, block_start = 0; bh != head || !block_start;
2108             block++, block_start=block_end, bh = bh->b_this_page) {
2109                 block_end = block_start + blocksize;
2110                 if (block_end <= from || block_start >= to) {
2111                         if (folio_test_uptodate(folio)) {
2112                                 if (!buffer_uptodate(bh))
2113                                         set_buffer_uptodate(bh);
2114                         }
2115                         continue;
2116                 }
2117                 if (buffer_new(bh))
2118                         clear_buffer_new(bh);
2119                 if (!buffer_mapped(bh)) {
2120                         WARN_ON(bh->b_size != blocksize);
2121                         if (get_block) {
2122                                 err = get_block(inode, block, bh, 1);
2123                                 if (err)
2124                                         break;
2125                         } else {
2126                                 iomap_to_bh(inode, block, bh, iomap);
2127                         }
2128
2129                         if (buffer_new(bh)) {
2130                                 clean_bdev_bh_alias(bh);
2131                                 if (folio_test_uptodate(folio)) {
2132                                         clear_buffer_new(bh);
2133                                         set_buffer_uptodate(bh);
2134                                         mark_buffer_dirty(bh);
2135                                         continue;
2136                                 }
2137                                 if (block_end > to || block_start < from)
2138                                         folio_zero_segments(folio,
2139                                                 to, block_end,
2140                                                 block_start, from);
2141                                 continue;
2142                         }
2143                 }
2144                 if (folio_test_uptodate(folio)) {
2145                         if (!buffer_uptodate(bh))
2146                                 set_buffer_uptodate(bh);
2147                         continue; 
2148                 }
2149                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2150                     !buffer_unwritten(bh) &&
2151                      (block_start < from || block_end > to)) {
2152                         bh_read_nowait(bh, 0);
2153                         *wait_bh++=bh;
2154                 }
2155         }
2156         /*
2157          * If we issued read requests - let them complete.
2158          */
2159         while(wait_bh > wait) {
2160                 wait_on_buffer(*--wait_bh);
2161                 if (!buffer_uptodate(*wait_bh))
2162                         err = -EIO;
2163         }
2164         if (unlikely(err))
2165                 folio_zero_new_buffers(folio, from, to);
2166         return err;
2167 }
2168
2169 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2170                 get_block_t *get_block)
2171 {
2172         return __block_write_begin_int(page_folio(page), pos, len, get_block,
2173                                        NULL);
2174 }
2175 EXPORT_SYMBOL(__block_write_begin);
2176
2177 static int __block_commit_write(struct inode *inode, struct folio *folio,
2178                 size_t from, size_t to)
2179 {
2180         size_t block_start, block_end;
2181         bool partial = false;
2182         unsigned blocksize;
2183         struct buffer_head *bh, *head;
2184
2185         bh = head = folio_buffers(folio);
2186         blocksize = bh->b_size;
2187
2188         block_start = 0;
2189         do {
2190                 block_end = block_start + blocksize;
2191                 if (block_end <= from || block_start >= to) {
2192                         if (!buffer_uptodate(bh))
2193                                 partial = true;
2194                 } else {
2195                         set_buffer_uptodate(bh);
2196                         mark_buffer_dirty(bh);
2197                 }
2198                 if (buffer_new(bh))
2199                         clear_buffer_new(bh);
2200
2201                 block_start = block_end;
2202                 bh = bh->b_this_page;
2203         } while (bh != head);
2204
2205         /*
2206          * If this is a partial write which happened to make all buffers
2207          * uptodate then we can optimize away a bogus read_folio() for
2208          * the next read(). Here we 'discover' whether the folio went
2209          * uptodate as a result of this (potentially partial) write.
2210          */
2211         if (!partial)
2212                 folio_mark_uptodate(folio);
2213         return 0;
2214 }
2215
2216 /*
2217  * block_write_begin takes care of the basic task of block allocation and
2218  * bringing partial write blocks uptodate first.
2219  *
2220  * The filesystem needs to handle block truncation upon failure.
2221  */
2222 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2223                 struct page **pagep, get_block_t *get_block)
2224 {
2225         pgoff_t index = pos >> PAGE_SHIFT;
2226         struct page *page;
2227         int status;
2228
2229         page = grab_cache_page_write_begin(mapping, index);
2230         if (!page)
2231                 return -ENOMEM;
2232
2233         status = __block_write_begin(page, pos, len, get_block);
2234         if (unlikely(status)) {
2235                 unlock_page(page);
2236                 put_page(page);
2237                 page = NULL;
2238         }
2239
2240         *pagep = page;
2241         return status;
2242 }
2243 EXPORT_SYMBOL(block_write_begin);
2244
2245 int block_write_end(struct file *file, struct address_space *mapping,
2246                         loff_t pos, unsigned len, unsigned copied,
2247                         struct page *page, void *fsdata)
2248 {
2249         struct folio *folio = page_folio(page);
2250         struct inode *inode = mapping->host;
2251         size_t start = pos - folio_pos(folio);
2252
2253         if (unlikely(copied < len)) {
2254                 /*
2255                  * The buffers that were written will now be uptodate, so
2256                  * we don't have to worry about a read_folio reading them
2257                  * and overwriting a partial write. However if we have
2258                  * encountered a short write and only partially written
2259                  * into a buffer, it will not be marked uptodate, so a
2260                  * read_folio might come in and destroy our partial write.
2261                  *
2262                  * Do the simplest thing, and just treat any short write to a
2263                  * non uptodate folio as a zero-length write, and force the
2264                  * caller to redo the whole thing.
2265                  */
2266                 if (!folio_test_uptodate(folio))
2267                         copied = 0;
2268
2269                 folio_zero_new_buffers(folio, start+copied, start+len);
2270         }
2271         flush_dcache_folio(folio);
2272
2273         /* This could be a short (even 0-length) commit */
2274         __block_commit_write(inode, folio, start, start + copied);
2275
2276         return copied;
2277 }
2278 EXPORT_SYMBOL(block_write_end);
2279
2280 int generic_write_end(struct file *file, struct address_space *mapping,
2281                         loff_t pos, unsigned len, unsigned copied,
2282                         struct page *page, void *fsdata)
2283 {
2284         struct inode *inode = mapping->host;
2285         loff_t old_size = inode->i_size;
2286         bool i_size_changed = false;
2287
2288         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2289
2290         /*
2291          * No need to use i_size_read() here, the i_size cannot change under us
2292          * because we hold i_rwsem.
2293          *
2294          * But it's important to update i_size while still holding page lock:
2295          * page writeout could otherwise come in and zero beyond i_size.
2296          */
2297         if (pos + copied > inode->i_size) {
2298                 i_size_write(inode, pos + copied);
2299                 i_size_changed = true;
2300         }
2301
2302         unlock_page(page);
2303         put_page(page);
2304
2305         if (old_size < pos)
2306                 pagecache_isize_extended(inode, old_size, pos);
2307         /*
2308          * Don't mark the inode dirty under page lock. First, it unnecessarily
2309          * makes the holding time of page lock longer. Second, it forces lock
2310          * ordering of page lock and transaction start for journaling
2311          * filesystems.
2312          */
2313         if (i_size_changed)
2314                 mark_inode_dirty(inode);
2315         return copied;
2316 }
2317 EXPORT_SYMBOL(generic_write_end);
2318
2319 /*
2320  * block_is_partially_uptodate checks whether buffers within a folio are
2321  * uptodate or not.
2322  *
2323  * Returns true if all buffers which correspond to the specified part
2324  * of the folio are uptodate.
2325  */
2326 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2327 {
2328         unsigned block_start, block_end, blocksize;
2329         unsigned to;
2330         struct buffer_head *bh, *head;
2331         bool ret = true;
2332
2333         head = folio_buffers(folio);
2334         if (!head)
2335                 return false;
2336         blocksize = head->b_size;
2337         to = min_t(unsigned, folio_size(folio) - from, count);
2338         to = from + to;
2339         if (from < blocksize && to > folio_size(folio) - blocksize)
2340                 return false;
2341
2342         bh = head;
2343         block_start = 0;
2344         do {
2345                 block_end = block_start + blocksize;
2346                 if (block_end > from && block_start < to) {
2347                         if (!buffer_uptodate(bh)) {
2348                                 ret = false;
2349                                 break;
2350                         }
2351                         if (block_end >= to)
2352                                 break;
2353                 }
2354                 block_start = block_end;
2355                 bh = bh->b_this_page;
2356         } while (bh != head);
2357
2358         return ret;
2359 }
2360 EXPORT_SYMBOL(block_is_partially_uptodate);
2361
2362 /*
2363  * Generic "read_folio" function for block devices that have the normal
2364  * get_block functionality. This is most of the block device filesystems.
2365  * Reads the folio asynchronously --- the unlock_buffer() and
2366  * set/clear_buffer_uptodate() functions propagate buffer state into the
2367  * folio once IO has completed.
2368  */
2369 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2370 {
2371         struct inode *inode = folio->mapping->host;
2372         sector_t iblock, lblock;
2373         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2374         unsigned int blocksize, bbits;
2375         int nr, i;
2376         int fully_mapped = 1;
2377         bool page_error = false;
2378         loff_t limit = i_size_read(inode);
2379
2380         /* This is needed for ext4. */
2381         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2382                 limit = inode->i_sb->s_maxbytes;
2383
2384         VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2385
2386         head = folio_create_buffers(folio, inode, 0);
2387         blocksize = head->b_size;
2388         bbits = block_size_bits(blocksize);
2389
2390         iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2391         lblock = (limit+blocksize-1) >> bbits;
2392         bh = head;
2393         nr = 0;
2394         i = 0;
2395
2396         do {
2397                 if (buffer_uptodate(bh))
2398                         continue;
2399
2400                 if (!buffer_mapped(bh)) {
2401                         int err = 0;
2402
2403                         fully_mapped = 0;
2404                         if (iblock < lblock) {
2405                                 WARN_ON(bh->b_size != blocksize);
2406                                 err = get_block(inode, iblock, bh, 0);
2407                                 if (err) {
2408                                         folio_set_error(folio);
2409                                         page_error = true;
2410                                 }
2411                         }
2412                         if (!buffer_mapped(bh)) {
2413                                 folio_zero_range(folio, i * blocksize,
2414                                                 blocksize);
2415                                 if (!err)
2416                                         set_buffer_uptodate(bh);
2417                                 continue;
2418                         }
2419                         /*
2420                          * get_block() might have updated the buffer
2421                          * synchronously
2422                          */
2423                         if (buffer_uptodate(bh))
2424                                 continue;
2425                 }
2426                 arr[nr++] = bh;
2427         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2428
2429         if (fully_mapped)
2430                 folio_set_mappedtodisk(folio);
2431
2432         if (!nr) {
2433                 /*
2434                  * All buffers are uptodate - we can set the folio uptodate
2435                  * as well. But not if get_block() returned an error.
2436                  */
2437                 if (!page_error)
2438                         folio_mark_uptodate(folio);
2439                 folio_unlock(folio);
2440                 return 0;
2441         }
2442
2443         /* Stage two: lock the buffers */
2444         for (i = 0; i < nr; i++) {
2445                 bh = arr[i];
2446                 lock_buffer(bh);
2447                 mark_buffer_async_read(bh);
2448         }
2449
2450         /*
2451          * Stage 3: start the IO.  Check for uptodateness
2452          * inside the buffer lock in case another process reading
2453          * the underlying blockdev brought it uptodate (the sct fix).
2454          */
2455         for (i = 0; i < nr; i++) {
2456                 bh = arr[i];
2457                 if (buffer_uptodate(bh))
2458                         end_buffer_async_read(bh, 1);
2459                 else
2460                         submit_bh(REQ_OP_READ, bh);
2461         }
2462         return 0;
2463 }
2464 EXPORT_SYMBOL(block_read_full_folio);
2465
2466 /* utility function for filesystems that need to do work on expanding
2467  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2468  * deal with the hole.  
2469  */
2470 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2471 {
2472         struct address_space *mapping = inode->i_mapping;
2473         const struct address_space_operations *aops = mapping->a_ops;
2474         struct page *page;
2475         void *fsdata = NULL;
2476         int err;
2477
2478         err = inode_newsize_ok(inode, size);
2479         if (err)
2480                 goto out;
2481
2482         err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2483         if (err)
2484                 goto out;
2485
2486         err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2487         BUG_ON(err > 0);
2488
2489 out:
2490         return err;
2491 }
2492 EXPORT_SYMBOL(generic_cont_expand_simple);
2493
2494 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2495                             loff_t pos, loff_t *bytes)
2496 {
2497         struct inode *inode = mapping->host;
2498         const struct address_space_operations *aops = mapping->a_ops;
2499         unsigned int blocksize = i_blocksize(inode);
2500         struct page *page;
2501         void *fsdata = NULL;
2502         pgoff_t index, curidx;
2503         loff_t curpos;
2504         unsigned zerofrom, offset, len;
2505         int err = 0;
2506
2507         index = pos >> PAGE_SHIFT;
2508         offset = pos & ~PAGE_MASK;
2509
2510         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2511                 zerofrom = curpos & ~PAGE_MASK;
2512                 if (zerofrom & (blocksize-1)) {
2513                         *bytes |= (blocksize-1);
2514                         (*bytes)++;
2515                 }
2516                 len = PAGE_SIZE - zerofrom;
2517
2518                 err = aops->write_begin(file, mapping, curpos, len,
2519                                             &page, &fsdata);
2520                 if (err)
2521                         goto out;
2522                 zero_user(page, zerofrom, len);
2523                 err = aops->write_end(file, mapping, curpos, len, len,
2524                                                 page, fsdata);
2525                 if (err < 0)
2526                         goto out;
2527                 BUG_ON(err != len);
2528                 err = 0;
2529
2530                 balance_dirty_pages_ratelimited(mapping);
2531
2532                 if (fatal_signal_pending(current)) {
2533                         err = -EINTR;
2534                         goto out;
2535                 }
2536         }
2537
2538         /* page covers the boundary, find the boundary offset */
2539         if (index == curidx) {
2540                 zerofrom = curpos & ~PAGE_MASK;
2541                 /* if we will expand the thing last block will be filled */
2542                 if (offset <= zerofrom) {
2543                         goto out;
2544                 }
2545                 if (zerofrom & (blocksize-1)) {
2546                         *bytes |= (blocksize-1);
2547                         (*bytes)++;
2548                 }
2549                 len = offset - zerofrom;
2550
2551                 err = aops->write_begin(file, mapping, curpos, len,
2552                                             &page, &fsdata);
2553                 if (err)
2554                         goto out;
2555                 zero_user(page, zerofrom, len);
2556                 err = aops->write_end(file, mapping, curpos, len, len,
2557                                                 page, fsdata);
2558                 if (err < 0)
2559                         goto out;
2560                 BUG_ON(err != len);
2561                 err = 0;
2562         }
2563 out:
2564         return err;
2565 }
2566
2567 /*
2568  * For moronic filesystems that do not allow holes in file.
2569  * We may have to extend the file.
2570  */
2571 int cont_write_begin(struct file *file, struct address_space *mapping,
2572                         loff_t pos, unsigned len,
2573                         struct page **pagep, void **fsdata,
2574                         get_block_t *get_block, loff_t *bytes)
2575 {
2576         struct inode *inode = mapping->host;
2577         unsigned int blocksize = i_blocksize(inode);
2578         unsigned int zerofrom;
2579         int err;
2580
2581         err = cont_expand_zero(file, mapping, pos, bytes);
2582         if (err)
2583                 return err;
2584
2585         zerofrom = *bytes & ~PAGE_MASK;
2586         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2587                 *bytes |= (blocksize-1);
2588                 (*bytes)++;
2589         }
2590
2591         return block_write_begin(mapping, pos, len, pagep, get_block);
2592 }
2593 EXPORT_SYMBOL(cont_write_begin);
2594
2595 int block_commit_write(struct page *page, unsigned from, unsigned to)
2596 {
2597         struct folio *folio = page_folio(page);
2598         struct inode *inode = folio->mapping->host;
2599         __block_commit_write(inode, folio, from, to);
2600         return 0;
2601 }
2602 EXPORT_SYMBOL(block_commit_write);
2603
2604 /*
2605  * block_page_mkwrite() is not allowed to change the file size as it gets
2606  * called from a page fault handler when a page is first dirtied. Hence we must
2607  * be careful to check for EOF conditions here. We set the page up correctly
2608  * for a written page which means we get ENOSPC checking when writing into
2609  * holes and correct delalloc and unwritten extent mapping on filesystems that
2610  * support these features.
2611  *
2612  * We are not allowed to take the i_mutex here so we have to play games to
2613  * protect against truncate races as the page could now be beyond EOF.  Because
2614  * truncate writes the inode size before removing pages, once we have the
2615  * page lock we can determine safely if the page is beyond EOF. If it is not
2616  * beyond EOF, then the page is guaranteed safe against truncation until we
2617  * unlock the page.
2618  *
2619  * Direct callers of this function should protect against filesystem freezing
2620  * using sb_start_pagefault() - sb_end_pagefault() functions.
2621  */
2622 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2623                          get_block_t get_block)
2624 {
2625         struct folio *folio = page_folio(vmf->page);
2626         struct inode *inode = file_inode(vma->vm_file);
2627         unsigned long end;
2628         loff_t size;
2629         int ret;
2630
2631         folio_lock(folio);
2632         size = i_size_read(inode);
2633         if ((folio->mapping != inode->i_mapping) ||
2634             (folio_pos(folio) >= size)) {
2635                 /* We overload EFAULT to mean page got truncated */
2636                 ret = -EFAULT;
2637                 goto out_unlock;
2638         }
2639
2640         end = folio_size(folio);
2641         /* folio is wholly or partially inside EOF */
2642         if (folio_pos(folio) + end > size)
2643                 end = size - folio_pos(folio);
2644
2645         ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2646         if (!ret)
2647                 ret = __block_commit_write(inode, folio, 0, end);
2648
2649         if (unlikely(ret < 0))
2650                 goto out_unlock;
2651         folio_mark_dirty(folio);
2652         folio_wait_stable(folio);
2653         return 0;
2654 out_unlock:
2655         folio_unlock(folio);
2656         return ret;
2657 }
2658 EXPORT_SYMBOL(block_page_mkwrite);
2659
2660 int block_truncate_page(struct address_space *mapping,
2661                         loff_t from, get_block_t *get_block)
2662 {
2663         pgoff_t index = from >> PAGE_SHIFT;
2664         unsigned blocksize;
2665         sector_t iblock;
2666         size_t offset, length, pos;
2667         struct inode *inode = mapping->host;
2668         struct folio *folio;
2669         struct buffer_head *bh;
2670         int err = 0;
2671
2672         blocksize = i_blocksize(inode);
2673         length = from & (blocksize - 1);
2674
2675         /* Block boundary? Nothing to do */
2676         if (!length)
2677                 return 0;
2678
2679         length = blocksize - length;
2680         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2681         
2682         folio = filemap_grab_folio(mapping, index);
2683         if (IS_ERR(folio))
2684                 return PTR_ERR(folio);
2685
2686         bh = folio_buffers(folio);
2687         if (!bh) {
2688                 folio_create_empty_buffers(folio, blocksize, 0);
2689                 bh = folio_buffers(folio);
2690         }
2691
2692         /* Find the buffer that contains "offset" */
2693         offset = offset_in_folio(folio, from);
2694         pos = blocksize;
2695         while (offset >= pos) {
2696                 bh = bh->b_this_page;
2697                 iblock++;
2698                 pos += blocksize;
2699         }
2700
2701         if (!buffer_mapped(bh)) {
2702                 WARN_ON(bh->b_size != blocksize);
2703                 err = get_block(inode, iblock, bh, 0);
2704                 if (err)
2705                         goto unlock;
2706                 /* unmapped? It's a hole - nothing to do */
2707                 if (!buffer_mapped(bh))
2708                         goto unlock;
2709         }
2710
2711         /* Ok, it's mapped. Make sure it's up-to-date */
2712         if (folio_test_uptodate(folio))
2713                 set_buffer_uptodate(bh);
2714
2715         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2716                 err = bh_read(bh, 0);
2717                 /* Uhhuh. Read error. Complain and punt. */
2718                 if (err < 0)
2719                         goto unlock;
2720         }
2721
2722         folio_zero_range(folio, offset, length);
2723         mark_buffer_dirty(bh);
2724
2725 unlock:
2726         folio_unlock(folio);
2727         folio_put(folio);
2728
2729         return err;
2730 }
2731 EXPORT_SYMBOL(block_truncate_page);
2732
2733 /*
2734  * The generic ->writepage function for buffer-backed address_spaces
2735  */
2736 int block_write_full_page(struct page *page, get_block_t *get_block,
2737                         struct writeback_control *wbc)
2738 {
2739         struct folio *folio = page_folio(page);
2740         struct inode * const inode = folio->mapping->host;
2741         loff_t i_size = i_size_read(inode);
2742
2743         /* Is the folio fully inside i_size? */
2744         if (folio_pos(folio) + folio_size(folio) <= i_size)
2745                 return __block_write_full_folio(inode, folio, get_block, wbc,
2746                                                end_buffer_async_write);
2747
2748         /* Is the folio fully outside i_size? (truncate in progress) */
2749         if (folio_pos(folio) >= i_size) {
2750                 folio_unlock(folio);
2751                 return 0; /* don't care */
2752         }
2753
2754         /*
2755          * The folio straddles i_size.  It must be zeroed out on each and every
2756          * writepage invocation because it may be mmapped.  "A file is mapped
2757          * in multiples of the page size.  For a file that is not a multiple of
2758          * the page size, the remaining memory is zeroed when mapped, and
2759          * writes to that region are not written out to the file."
2760          */
2761         folio_zero_segment(folio, offset_in_folio(folio, i_size),
2762                         folio_size(folio));
2763         return __block_write_full_folio(inode, folio, get_block, wbc,
2764                         end_buffer_async_write);
2765 }
2766 EXPORT_SYMBOL(block_write_full_page);
2767
2768 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2769                             get_block_t *get_block)
2770 {
2771         struct inode *inode = mapping->host;
2772         struct buffer_head tmp = {
2773                 .b_size = i_blocksize(inode),
2774         };
2775
2776         get_block(inode, block, &tmp, 0);
2777         return tmp.b_blocknr;
2778 }
2779 EXPORT_SYMBOL(generic_block_bmap);
2780
2781 static void end_bio_bh_io_sync(struct bio *bio)
2782 {
2783         struct buffer_head *bh = bio->bi_private;
2784
2785         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2786                 set_bit(BH_Quiet, &bh->b_state);
2787
2788         bh->b_end_io(bh, !bio->bi_status);
2789         bio_put(bio);
2790 }
2791
2792 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2793                           struct writeback_control *wbc)
2794 {
2795         const enum req_op op = opf & REQ_OP_MASK;
2796         struct bio *bio;
2797
2798         BUG_ON(!buffer_locked(bh));
2799         BUG_ON(!buffer_mapped(bh));
2800         BUG_ON(!bh->b_end_io);
2801         BUG_ON(buffer_delay(bh));
2802         BUG_ON(buffer_unwritten(bh));
2803
2804         /*
2805          * Only clear out a write error when rewriting
2806          */
2807         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2808                 clear_buffer_write_io_error(bh);
2809
2810         if (buffer_meta(bh))
2811                 opf |= REQ_META;
2812         if (buffer_prio(bh))
2813                 opf |= REQ_PRIO;
2814
2815         bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2816
2817         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2818
2819         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2820
2821         __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2822
2823         bio->bi_end_io = end_bio_bh_io_sync;
2824         bio->bi_private = bh;
2825
2826         /* Take care of bh's that straddle the end of the device */
2827         guard_bio_eod(bio);
2828
2829         if (wbc) {
2830                 wbc_init_bio(wbc, bio);
2831                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2832         }
2833
2834         submit_bio(bio);
2835 }
2836
2837 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2838 {
2839         submit_bh_wbc(opf, bh, NULL);
2840 }
2841 EXPORT_SYMBOL(submit_bh);
2842
2843 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2844 {
2845         lock_buffer(bh);
2846         if (!test_clear_buffer_dirty(bh)) {
2847                 unlock_buffer(bh);
2848                 return;
2849         }
2850         bh->b_end_io = end_buffer_write_sync;
2851         get_bh(bh);
2852         submit_bh(REQ_OP_WRITE | op_flags, bh);
2853 }
2854 EXPORT_SYMBOL(write_dirty_buffer);
2855
2856 /*
2857  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2858  * and then start new I/O and then wait upon it.  The caller must have a ref on
2859  * the buffer_head.
2860  */
2861 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2862 {
2863         WARN_ON(atomic_read(&bh->b_count) < 1);
2864         lock_buffer(bh);
2865         if (test_clear_buffer_dirty(bh)) {
2866                 /*
2867                  * The bh should be mapped, but it might not be if the
2868                  * device was hot-removed. Not much we can do but fail the I/O.
2869                  */
2870                 if (!buffer_mapped(bh)) {
2871                         unlock_buffer(bh);
2872                         return -EIO;
2873                 }
2874
2875                 get_bh(bh);
2876                 bh->b_end_io = end_buffer_write_sync;
2877                 submit_bh(REQ_OP_WRITE | op_flags, bh);
2878                 wait_on_buffer(bh);
2879                 if (!buffer_uptodate(bh))
2880                         return -EIO;
2881         } else {
2882                 unlock_buffer(bh);
2883         }
2884         return 0;
2885 }
2886 EXPORT_SYMBOL(__sync_dirty_buffer);
2887
2888 int sync_dirty_buffer(struct buffer_head *bh)
2889 {
2890         return __sync_dirty_buffer(bh, REQ_SYNC);
2891 }
2892 EXPORT_SYMBOL(sync_dirty_buffer);
2893
2894 /*
2895  * try_to_free_buffers() checks if all the buffers on this particular folio
2896  * are unused, and releases them if so.
2897  *
2898  * Exclusion against try_to_free_buffers may be obtained by either
2899  * locking the folio or by holding its mapping's private_lock.
2900  *
2901  * If the folio is dirty but all the buffers are clean then we need to
2902  * be sure to mark the folio clean as well.  This is because the folio
2903  * may be against a block device, and a later reattachment of buffers
2904  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2905  * filesystem data on the same device.
2906  *
2907  * The same applies to regular filesystem folios: if all the buffers are
2908  * clean then we set the folio clean and proceed.  To do that, we require
2909  * total exclusion from block_dirty_folio().  That is obtained with
2910  * private_lock.
2911  *
2912  * try_to_free_buffers() is non-blocking.
2913  */
2914 static inline int buffer_busy(struct buffer_head *bh)
2915 {
2916         return atomic_read(&bh->b_count) |
2917                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2918 }
2919
2920 static bool
2921 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2922 {
2923         struct buffer_head *head = folio_buffers(folio);
2924         struct buffer_head *bh;
2925
2926         bh = head;
2927         do {
2928                 if (buffer_busy(bh))
2929                         goto failed;
2930                 bh = bh->b_this_page;
2931         } while (bh != head);
2932
2933         do {
2934                 struct buffer_head *next = bh->b_this_page;
2935
2936                 if (bh->b_assoc_map)
2937                         __remove_assoc_queue(bh);
2938                 bh = next;
2939         } while (bh != head);
2940         *buffers_to_free = head;
2941         folio_detach_private(folio);
2942         return true;
2943 failed:
2944         return false;
2945 }
2946
2947 bool try_to_free_buffers(struct folio *folio)
2948 {
2949         struct address_space * const mapping = folio->mapping;
2950         struct buffer_head *buffers_to_free = NULL;
2951         bool ret = 0;
2952
2953         BUG_ON(!folio_test_locked(folio));
2954         if (folio_test_writeback(folio))
2955                 return false;
2956
2957         if (mapping == NULL) {          /* can this still happen? */
2958                 ret = drop_buffers(folio, &buffers_to_free);
2959                 goto out;
2960         }
2961
2962         spin_lock(&mapping->private_lock);
2963         ret = drop_buffers(folio, &buffers_to_free);
2964
2965         /*
2966          * If the filesystem writes its buffers by hand (eg ext3)
2967          * then we can have clean buffers against a dirty folio.  We
2968          * clean the folio here; otherwise the VM will never notice
2969          * that the filesystem did any IO at all.
2970          *
2971          * Also, during truncate, discard_buffer will have marked all
2972          * the folio's buffers clean.  We discover that here and clean
2973          * the folio also.
2974          *
2975          * private_lock must be held over this entire operation in order
2976          * to synchronise against block_dirty_folio and prevent the
2977          * dirty bit from being lost.
2978          */
2979         if (ret)
2980                 folio_cancel_dirty(folio);
2981         spin_unlock(&mapping->private_lock);
2982 out:
2983         if (buffers_to_free) {
2984                 struct buffer_head *bh = buffers_to_free;
2985
2986                 do {
2987                         struct buffer_head *next = bh->b_this_page;
2988                         free_buffer_head(bh);
2989                         bh = next;
2990                 } while (bh != buffers_to_free);
2991         }
2992         return ret;
2993 }
2994 EXPORT_SYMBOL(try_to_free_buffers);
2995
2996 /*
2997  * Buffer-head allocation
2998  */
2999 static struct kmem_cache *bh_cachep __read_mostly;
3000
3001 /*
3002  * Once the number of bh's in the machine exceeds this level, we start
3003  * stripping them in writeback.
3004  */
3005 static unsigned long max_buffer_heads;
3006
3007 int buffer_heads_over_limit;
3008
3009 struct bh_accounting {
3010         int nr;                 /* Number of live bh's */
3011         int ratelimit;          /* Limit cacheline bouncing */
3012 };
3013
3014 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3015
3016 static void recalc_bh_state(void)
3017 {
3018         int i;
3019         int tot = 0;
3020
3021         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3022                 return;
3023         __this_cpu_write(bh_accounting.ratelimit, 0);
3024         for_each_online_cpu(i)
3025                 tot += per_cpu(bh_accounting, i).nr;
3026         buffer_heads_over_limit = (tot > max_buffer_heads);
3027 }
3028
3029 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3030 {
3031         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3032         if (ret) {
3033                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3034                 spin_lock_init(&ret->b_uptodate_lock);
3035                 preempt_disable();
3036                 __this_cpu_inc(bh_accounting.nr);
3037                 recalc_bh_state();
3038                 preempt_enable();
3039         }
3040         return ret;
3041 }
3042 EXPORT_SYMBOL(alloc_buffer_head);
3043
3044 void free_buffer_head(struct buffer_head *bh)
3045 {
3046         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3047         kmem_cache_free(bh_cachep, bh);
3048         preempt_disable();
3049         __this_cpu_dec(bh_accounting.nr);
3050         recalc_bh_state();
3051         preempt_enable();
3052 }
3053 EXPORT_SYMBOL(free_buffer_head);
3054
3055 static int buffer_exit_cpu_dead(unsigned int cpu)
3056 {
3057         int i;
3058         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3059
3060         for (i = 0; i < BH_LRU_SIZE; i++) {
3061                 brelse(b->bhs[i]);
3062                 b->bhs[i] = NULL;
3063         }
3064         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3065         per_cpu(bh_accounting, cpu).nr = 0;
3066         return 0;
3067 }
3068
3069 /**
3070  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3071  * @bh: struct buffer_head
3072  *
3073  * Return true if the buffer is up-to-date and false,
3074  * with the buffer locked, if not.
3075  */
3076 int bh_uptodate_or_lock(struct buffer_head *bh)
3077 {
3078         if (!buffer_uptodate(bh)) {
3079                 lock_buffer(bh);
3080                 if (!buffer_uptodate(bh))
3081                         return 0;
3082                 unlock_buffer(bh);
3083         }
3084         return 1;
3085 }
3086 EXPORT_SYMBOL(bh_uptodate_or_lock);
3087
3088 /**
3089  * __bh_read - Submit read for a locked buffer
3090  * @bh: struct buffer_head
3091  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3092  * @wait: wait until reading finish
3093  *
3094  * Returns zero on success or don't wait, and -EIO on error.
3095  */
3096 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3097 {
3098         int ret = 0;
3099
3100         BUG_ON(!buffer_locked(bh));
3101
3102         get_bh(bh);
3103         bh->b_end_io = end_buffer_read_sync;
3104         submit_bh(REQ_OP_READ | op_flags, bh);
3105         if (wait) {
3106                 wait_on_buffer(bh);
3107                 if (!buffer_uptodate(bh))
3108                         ret = -EIO;
3109         }
3110         return ret;
3111 }
3112 EXPORT_SYMBOL(__bh_read);
3113
3114 /**
3115  * __bh_read_batch - Submit read for a batch of unlocked buffers
3116  * @nr: entry number of the buffer batch
3117  * @bhs: a batch of struct buffer_head
3118  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3119  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3120  *              buffer that cannot lock.
3121  *
3122  * Returns zero on success or don't wait, and -EIO on error.
3123  */
3124 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3125                      blk_opf_t op_flags, bool force_lock)
3126 {
3127         int i;
3128
3129         for (i = 0; i < nr; i++) {
3130                 struct buffer_head *bh = bhs[i];
3131
3132                 if (buffer_uptodate(bh))
3133                         continue;
3134
3135                 if (force_lock)
3136                         lock_buffer(bh);
3137                 else
3138                         if (!trylock_buffer(bh))
3139                                 continue;
3140
3141                 if (buffer_uptodate(bh)) {
3142                         unlock_buffer(bh);
3143                         continue;
3144                 }
3145
3146                 bh->b_end_io = end_buffer_read_sync;
3147                 get_bh(bh);
3148                 submit_bh(REQ_OP_READ | op_flags, bh);
3149         }
3150 }
3151 EXPORT_SYMBOL(__bh_read_batch);
3152
3153 void __init buffer_init(void)
3154 {
3155         unsigned long nrpages;
3156         int ret;
3157
3158         bh_cachep = kmem_cache_create("buffer_head",
3159                         sizeof(struct buffer_head), 0,
3160                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3161                                 SLAB_MEM_SPREAD),
3162                                 NULL);
3163
3164         /*
3165          * Limit the bh occupancy to 10% of ZONE_NORMAL
3166          */
3167         nrpages = (nr_free_buffer_pages() * 10) / 100;
3168         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3169         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3170                                         NULL, buffer_exit_cpu_dead);
3171         WARN_ON(ret < 0);
3172 }