OSDN Git Service

Merge tag 'write-page-prefaulting' of git://git.kernel.org/pub/scm/linux/kernel/git...
[uclinux-h8/linux.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56                          struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62         trace_block_touch_buffer(bh);
63         mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75         clear_bit_unlock(BH_Lock, &bh->b_state);
76         smp_mb__after_atomic();
77         wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87                                      bool *dirty, bool *writeback)
88 {
89         struct buffer_head *head, *bh;
90         *dirty = false;
91         *writeback = false;
92
93         BUG_ON(!PageLocked(page));
94
95         if (!page_has_buffers(page))
96                 return;
97
98         if (PageWriteback(page))
99                 *writeback = true;
100
101         head = page_buffers(page);
102         bh = head;
103         do {
104                 if (buffer_locked(bh))
105                         *writeback = true;
106
107                 if (buffer_dirty(bh))
108                         *dirty = true;
109
110                 bh = bh->b_this_page;
111         } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128         if (!test_bit(BH_Quiet, &bh->b_state))
129                 printk_ratelimited(KERN_ERR
130                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
131                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144         if (uptodate) {
145                 set_buffer_uptodate(bh);
146         } else {
147                 /* This happens, due to failed read-ahead attempts. */
148                 clear_buffer_uptodate(bh);
149         }
150         unlock_buffer(bh);
151 }
152
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer. This is what ll_rw_block uses too.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159         __end_buffer_read_notouch(bh, uptodate);
160         put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166         if (uptodate) {
167                 set_buffer_uptodate(bh);
168         } else {
169                 buffer_io_error(bh, ", lost sync page write");
170                 mark_buffer_write_io_error(bh);
171                 clear_buffer_uptodate(bh);
172         }
173         unlock_buffer(bh);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191         struct inode *bd_inode = bdev->bd_inode;
192         struct address_space *bd_mapping = bd_inode->i_mapping;
193         struct buffer_head *ret = NULL;
194         pgoff_t index;
195         struct buffer_head *bh;
196         struct buffer_head *head;
197         struct page *page;
198         int all_mapped = 1;
199         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203         if (!page)
204                 goto out;
205
206         spin_lock(&bd_mapping->private_lock);
207         if (!page_has_buffers(page))
208                 goto out_unlock;
209         head = page_buffers(page);
210         bh = head;
211         do {
212                 if (!buffer_mapped(bh))
213                         all_mapped = 0;
214                 else if (bh->b_blocknr == block) {
215                         ret = bh;
216                         get_bh(bh);
217                         goto out_unlock;
218                 }
219                 bh = bh->b_this_page;
220         } while (bh != head);
221
222         /* we might be here because some of the buffers on this page are
223          * not mapped.  This is due to various races between
224          * file io on the block device and getblk.  It gets dealt with
225          * elsewhere, don't buffer_error if we had some unmapped buffers
226          */
227         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228         if (all_mapped && __ratelimit(&last_warned)) {
229                 printk("__find_get_block_slow() failed. block=%llu, "
230                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231                        "device %pg blocksize: %d\n",
232                        (unsigned long long)block,
233                        (unsigned long long)bh->b_blocknr,
234                        bh->b_state, bh->b_size, bdev,
235                        1 << bd_inode->i_blkbits);
236         }
237 out_unlock:
238         spin_unlock(&bd_mapping->private_lock);
239         put_page(page);
240 out:
241         return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246         unsigned long flags;
247         struct buffer_head *first;
248         struct buffer_head *tmp;
249         struct page *page;
250         int page_uptodate = 1;
251
252         BUG_ON(!buffer_async_read(bh));
253
254         page = bh->b_page;
255         if (uptodate) {
256                 set_buffer_uptodate(bh);
257         } else {
258                 clear_buffer_uptodate(bh);
259                 buffer_io_error(bh, ", async page read");
260                 SetPageError(page);
261         }
262
263         /*
264          * Be _very_ careful from here on. Bad things can happen if
265          * two buffer heads end IO at almost the same time and both
266          * decide that the page is now completely done.
267          */
268         first = page_buffers(page);
269         spin_lock_irqsave(&first->b_uptodate_lock, flags);
270         clear_buffer_async_read(bh);
271         unlock_buffer(bh);
272         tmp = bh;
273         do {
274                 if (!buffer_uptodate(tmp))
275                         page_uptodate = 0;
276                 if (buffer_async_read(tmp)) {
277                         BUG_ON(!buffer_locked(tmp));
278                         goto still_busy;
279                 }
280                 tmp = tmp->b_this_page;
281         } while (tmp != bh);
282         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284         /*
285          * If none of the buffers had errors and they are all
286          * uptodate then we can set the page uptodate.
287          */
288         if (page_uptodate && !PageError(page))
289                 SetPageUptodate(page);
290         unlock_page(page);
291         return;
292
293 still_busy:
294         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295         return;
296 }
297
298 struct decrypt_bh_ctx {
299         struct work_struct work;
300         struct buffer_head *bh;
301 };
302
303 static void decrypt_bh(struct work_struct *work)
304 {
305         struct decrypt_bh_ctx *ctx =
306                 container_of(work, struct decrypt_bh_ctx, work);
307         struct buffer_head *bh = ctx->bh;
308         int err;
309
310         err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311                                                bh_offset(bh));
312         end_buffer_async_read(bh, err == 0);
313         kfree(ctx);
314 }
315
316 /*
317  * I/O completion handler for block_read_full_page() - pages
318  * which come unlocked at the end of I/O.
319  */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322         /* Decrypt if needed */
323         if (uptodate &&
324             fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325                 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327                 if (ctx) {
328                         INIT_WORK(&ctx->work, decrypt_bh);
329                         ctx->bh = bh;
330                         fscrypt_enqueue_decrypt_work(&ctx->work);
331                         return;
332                 }
333                 uptodate = 0;
334         }
335         end_buffer_async_read(bh, uptodate);
336 }
337
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344         unsigned long flags;
345         struct buffer_head *first;
346         struct buffer_head *tmp;
347         struct page *page;
348
349         BUG_ON(!buffer_async_write(bh));
350
351         page = bh->b_page;
352         if (uptodate) {
353                 set_buffer_uptodate(bh);
354         } else {
355                 buffer_io_error(bh, ", lost async page write");
356                 mark_buffer_write_io_error(bh);
357                 clear_buffer_uptodate(bh);
358                 SetPageError(page);
359         }
360
361         first = page_buffers(page);
362         spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364         clear_buffer_async_write(bh);
365         unlock_buffer(bh);
366         tmp = bh->b_this_page;
367         while (tmp != bh) {
368                 if (buffer_async_write(tmp)) {
369                         BUG_ON(!buffer_locked(tmp));
370                         goto still_busy;
371                 }
372                 tmp = tmp->b_this_page;
373         }
374         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375         end_page_writeback(page);
376         return;
377
378 still_busy:
379         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380         return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383
384 /*
385  * If a page's buffers are under async readin (end_buffer_async_read
386  * completion) then there is a possibility that another thread of
387  * control could lock one of the buffers after it has completed
388  * but while some of the other buffers have not completed.  This
389  * locked buffer would confuse end_buffer_async_read() into not unlocking
390  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
391  * that this buffer is not under async I/O.
392  *
393  * The page comes unlocked when it has no locked buffer_async buffers
394  * left.
395  *
396  * PageLocked prevents anyone starting new async I/O reads any of
397  * the buffers.
398  *
399  * PageWriteback is used to prevent simultaneous writeout of the same
400  * page.
401  *
402  * PageLocked prevents anyone from starting writeback of a page which is
403  * under read I/O (PageWriteback is only ever set against a locked page).
404  */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407         bh->b_end_io = end_buffer_async_read_io;
408         set_buffer_async_read(bh);
409 }
410
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412                                           bh_end_io_t *handler)
413 {
414         bh->b_end_io = handler;
415         set_buffer_async_write(bh);
416 }
417
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420         mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425 /*
426  * fs/buffer.c contains helper functions for buffer-backed address space's
427  * fsync functions.  A common requirement for buffer-based filesystems is
428  * that certain data from the backing blockdev needs to be written out for
429  * a successful fsync().  For example, ext2 indirect blocks need to be
430  * written back and waited upon before fsync() returns.
431  *
432  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434  * management of a list of dependent buffers at ->i_mapping->private_list.
435  *
436  * Locking is a little subtle: try_to_free_buffers() will remove buffers
437  * from their controlling inode's queue when they are being freed.  But
438  * try_to_free_buffers() will be operating against the *blockdev* mapping
439  * at the time, not against the S_ISREG file which depends on those buffers.
440  * So the locking for private_list is via the private_lock in the address_space
441  * which backs the buffers.  Which is different from the address_space 
442  * against which the buffers are listed.  So for a particular address_space,
443  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
444  * mapping->private_list will always be protected by the backing blockdev's
445  * ->private_lock.
446  *
447  * Which introduces a requirement: all buffers on an address_space's
448  * ->private_list must be from the same address_space: the blockdev's.
449  *
450  * address_spaces which do not place buffers at ->private_list via these
451  * utility functions are free to use private_lock and private_list for
452  * whatever they want.  The only requirement is that list_empty(private_list)
453  * be true at clear_inode() time.
454  *
455  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
456  * filesystems should do that.  invalidate_inode_buffers() should just go
457  * BUG_ON(!list_empty).
458  *
459  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
460  * take an address_space, not an inode.  And it should be called
461  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462  * queued up.
463  *
464  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465  * list if it is already on a list.  Because if the buffer is on a list,
466  * it *must* already be on the right one.  If not, the filesystem is being
467  * silly.  This will save a ton of locking.  But first we have to ensure
468  * that buffers are taken *off* the old inode's list when they are freed
469  * (presumably in truncate).  That requires careful auditing of all
470  * filesystems (do it inside bforget()).  It could also be done by bringing
471  * b_inode back.
472  */
473
474 /*
475  * The buffer's backing address_space's private_lock must be held
476  */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479         list_del_init(&bh->b_assoc_buffers);
480         WARN_ON(!bh->b_assoc_map);
481         bh->b_assoc_map = NULL;
482 }
483
484 int inode_has_buffers(struct inode *inode)
485 {
486         return !list_empty(&inode->i_data.private_list);
487 }
488
489 /*
490  * osync is designed to support O_SYNC io.  It waits synchronously for
491  * all already-submitted IO to complete, but does not queue any new
492  * writes to the disk.
493  *
494  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495  * you dirty the buffers, and then use osync_inode_buffers to wait for
496  * completion.  Any other dirty buffers which are not yet queued for
497  * write will not be flushed to disk by the osync.
498  */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501         struct buffer_head *bh;
502         struct list_head *p;
503         int err = 0;
504
505         spin_lock(lock);
506 repeat:
507         list_for_each_prev(p, list) {
508                 bh = BH_ENTRY(p);
509                 if (buffer_locked(bh)) {
510                         get_bh(bh);
511                         spin_unlock(lock);
512                         wait_on_buffer(bh);
513                         if (!buffer_uptodate(bh))
514                                 err = -EIO;
515                         brelse(bh);
516                         spin_lock(lock);
517                         goto repeat;
518                 }
519         }
520         spin_unlock(lock);
521         return err;
522 }
523
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526         while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529
530 /**
531  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532  * @mapping: the mapping which wants those buffers written
533  *
534  * Starts I/O against the buffers at mapping->private_list, and waits upon
535  * that I/O.
536  *
537  * Basically, this is a convenience function for fsync().
538  * @mapping is a file or directory which needs those buffers to be written for
539  * a successful fsync().
540  */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543         struct address_space *buffer_mapping = mapping->private_data;
544
545         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546                 return 0;
547
548         return fsync_buffers_list(&buffer_mapping->private_lock,
549                                         &mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552
553 /*
554  * Called when we've recently written block `bblock', and it is known that
555  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
556  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
557  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
558  */
559 void write_boundary_block(struct block_device *bdev,
560                         sector_t bblock, unsigned blocksize)
561 {
562         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563         if (bh) {
564                 if (buffer_dirty(bh))
565                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566                 put_bh(bh);
567         }
568 }
569
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572         struct address_space *mapping = inode->i_mapping;
573         struct address_space *buffer_mapping = bh->b_page->mapping;
574
575         mark_buffer_dirty(bh);
576         if (!mapping->private_data) {
577                 mapping->private_data = buffer_mapping;
578         } else {
579                 BUG_ON(mapping->private_data != buffer_mapping);
580         }
581         if (!bh->b_assoc_map) {
582                 spin_lock(&buffer_mapping->private_lock);
583                 list_move_tail(&bh->b_assoc_buffers,
584                                 &mapping->private_list);
585                 bh->b_assoc_map = mapping;
586                 spin_unlock(&buffer_mapping->private_lock);
587         }
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591 /*
592  * Add a page to the dirty page list.
593  *
594  * It is a sad fact of life that this function is called from several places
595  * deeply under spinlocking.  It may not sleep.
596  *
597  * If the page has buffers, the uptodate buffers are set dirty, to preserve
598  * dirty-state coherency between the page and the buffers.  It the page does
599  * not have buffers then when they are later attached they will all be set
600  * dirty.
601  *
602  * The buffers are dirtied before the page is dirtied.  There's a small race
603  * window in which a writepage caller may see the page cleanness but not the
604  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
605  * before the buffers, a concurrent writepage caller could clear the page dirty
606  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607  * page on the dirty page list.
608  *
609  * We use private_lock to lock against try_to_free_buffers while using the
610  * page's buffer list.  Also use this to protect against clean buffers being
611  * added to the page after it was set dirty.
612  *
613  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
614  * address_space though.
615  */
616 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
617 {
618         struct buffer_head *head;
619         bool newly_dirty;
620
621         spin_lock(&mapping->private_lock);
622         head = folio_buffers(folio);
623         if (head) {
624                 struct buffer_head *bh = head;
625
626                 do {
627                         set_buffer_dirty(bh);
628                         bh = bh->b_this_page;
629                 } while (bh != head);
630         }
631         /*
632          * Lock out page's memcg migration to keep PageDirty
633          * synchronized with per-memcg dirty page counters.
634          */
635         folio_memcg_lock(folio);
636         newly_dirty = !folio_test_set_dirty(folio);
637         spin_unlock(&mapping->private_lock);
638
639         if (newly_dirty)
640                 __folio_mark_dirty(folio, mapping, 1);
641
642         folio_memcg_unlock(folio);
643
644         if (newly_dirty)
645                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
646
647         return newly_dirty;
648 }
649 EXPORT_SYMBOL(block_dirty_folio);
650
651 /*
652  * Write out and wait upon a list of buffers.
653  *
654  * We have conflicting pressures: we want to make sure that all
655  * initially dirty buffers get waited on, but that any subsequently
656  * dirtied buffers don't.  After all, we don't want fsync to last
657  * forever if somebody is actively writing to the file.
658  *
659  * Do this in two main stages: first we copy dirty buffers to a
660  * temporary inode list, queueing the writes as we go.  Then we clean
661  * up, waiting for those writes to complete.
662  * 
663  * During this second stage, any subsequent updates to the file may end
664  * up refiling the buffer on the original inode's dirty list again, so
665  * there is a chance we will end up with a buffer queued for write but
666  * not yet completed on that list.  So, as a final cleanup we go through
667  * the osync code to catch these locked, dirty buffers without requeuing
668  * any newly dirty buffers for write.
669  */
670 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
671 {
672         struct buffer_head *bh;
673         struct list_head tmp;
674         struct address_space *mapping;
675         int err = 0, err2;
676         struct blk_plug plug;
677
678         INIT_LIST_HEAD(&tmp);
679         blk_start_plug(&plug);
680
681         spin_lock(lock);
682         while (!list_empty(list)) {
683                 bh = BH_ENTRY(list->next);
684                 mapping = bh->b_assoc_map;
685                 __remove_assoc_queue(bh);
686                 /* Avoid race with mark_buffer_dirty_inode() which does
687                  * a lockless check and we rely on seeing the dirty bit */
688                 smp_mb();
689                 if (buffer_dirty(bh) || buffer_locked(bh)) {
690                         list_add(&bh->b_assoc_buffers, &tmp);
691                         bh->b_assoc_map = mapping;
692                         if (buffer_dirty(bh)) {
693                                 get_bh(bh);
694                                 spin_unlock(lock);
695                                 /*
696                                  * Ensure any pending I/O completes so that
697                                  * write_dirty_buffer() actually writes the
698                                  * current contents - it is a noop if I/O is
699                                  * still in flight on potentially older
700                                  * contents.
701                                  */
702                                 write_dirty_buffer(bh, REQ_SYNC);
703
704                                 /*
705                                  * Kick off IO for the previous mapping. Note
706                                  * that we will not run the very last mapping,
707                                  * wait_on_buffer() will do that for us
708                                  * through sync_buffer().
709                                  */
710                                 brelse(bh);
711                                 spin_lock(lock);
712                         }
713                 }
714         }
715
716         spin_unlock(lock);
717         blk_finish_plug(&plug);
718         spin_lock(lock);
719
720         while (!list_empty(&tmp)) {
721                 bh = BH_ENTRY(tmp.prev);
722                 get_bh(bh);
723                 mapping = bh->b_assoc_map;
724                 __remove_assoc_queue(bh);
725                 /* Avoid race with mark_buffer_dirty_inode() which does
726                  * a lockless check and we rely on seeing the dirty bit */
727                 smp_mb();
728                 if (buffer_dirty(bh)) {
729                         list_add(&bh->b_assoc_buffers,
730                                  &mapping->private_list);
731                         bh->b_assoc_map = mapping;
732                 }
733                 spin_unlock(lock);
734                 wait_on_buffer(bh);
735                 if (!buffer_uptodate(bh))
736                         err = -EIO;
737                 brelse(bh);
738                 spin_lock(lock);
739         }
740         
741         spin_unlock(lock);
742         err2 = osync_buffers_list(lock, list);
743         if (err)
744                 return err;
745         else
746                 return err2;
747 }
748
749 /*
750  * Invalidate any and all dirty buffers on a given inode.  We are
751  * probably unmounting the fs, but that doesn't mean we have already
752  * done a sync().  Just drop the buffers from the inode list.
753  *
754  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
755  * assumes that all the buffers are against the blockdev.  Not true
756  * for reiserfs.
757  */
758 void invalidate_inode_buffers(struct inode *inode)
759 {
760         if (inode_has_buffers(inode)) {
761                 struct address_space *mapping = &inode->i_data;
762                 struct list_head *list = &mapping->private_list;
763                 struct address_space *buffer_mapping = mapping->private_data;
764
765                 spin_lock(&buffer_mapping->private_lock);
766                 while (!list_empty(list))
767                         __remove_assoc_queue(BH_ENTRY(list->next));
768                 spin_unlock(&buffer_mapping->private_lock);
769         }
770 }
771 EXPORT_SYMBOL(invalidate_inode_buffers);
772
773 /*
774  * Remove any clean buffers from the inode's buffer list.  This is called
775  * when we're trying to free the inode itself.  Those buffers can pin it.
776  *
777  * Returns true if all buffers were removed.
778  */
779 int remove_inode_buffers(struct inode *inode)
780 {
781         int ret = 1;
782
783         if (inode_has_buffers(inode)) {
784                 struct address_space *mapping = &inode->i_data;
785                 struct list_head *list = &mapping->private_list;
786                 struct address_space *buffer_mapping = mapping->private_data;
787
788                 spin_lock(&buffer_mapping->private_lock);
789                 while (!list_empty(list)) {
790                         struct buffer_head *bh = BH_ENTRY(list->next);
791                         if (buffer_dirty(bh)) {
792                                 ret = 0;
793                                 break;
794                         }
795                         __remove_assoc_queue(bh);
796                 }
797                 spin_unlock(&buffer_mapping->private_lock);
798         }
799         return ret;
800 }
801
802 /*
803  * Create the appropriate buffers when given a page for data area and
804  * the size of each buffer.. Use the bh->b_this_page linked list to
805  * follow the buffers created.  Return NULL if unable to create more
806  * buffers.
807  *
808  * The retry flag is used to differentiate async IO (paging, swapping)
809  * which may not fail from ordinary buffer allocations.
810  */
811 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
812                 bool retry)
813 {
814         struct buffer_head *bh, *head;
815         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
816         long offset;
817         struct mem_cgroup *memcg, *old_memcg;
818
819         if (retry)
820                 gfp |= __GFP_NOFAIL;
821
822         /* The page lock pins the memcg */
823         memcg = page_memcg(page);
824         old_memcg = set_active_memcg(memcg);
825
826         head = NULL;
827         offset = PAGE_SIZE;
828         while ((offset -= size) >= 0) {
829                 bh = alloc_buffer_head(gfp);
830                 if (!bh)
831                         goto no_grow;
832
833                 bh->b_this_page = head;
834                 bh->b_blocknr = -1;
835                 head = bh;
836
837                 bh->b_size = size;
838
839                 /* Link the buffer to its page */
840                 set_bh_page(bh, page, offset);
841         }
842 out:
843         set_active_memcg(old_memcg);
844         return head;
845 /*
846  * In case anything failed, we just free everything we got.
847  */
848 no_grow:
849         if (head) {
850                 do {
851                         bh = head;
852                         head = head->b_this_page;
853                         free_buffer_head(bh);
854                 } while (head);
855         }
856
857         goto out;
858 }
859 EXPORT_SYMBOL_GPL(alloc_page_buffers);
860
861 static inline void
862 link_dev_buffers(struct page *page, struct buffer_head *head)
863 {
864         struct buffer_head *bh, *tail;
865
866         bh = head;
867         do {
868                 tail = bh;
869                 bh = bh->b_this_page;
870         } while (bh);
871         tail->b_this_page = head;
872         attach_page_private(page, head);
873 }
874
875 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
876 {
877         sector_t retval = ~((sector_t)0);
878         loff_t sz = bdev_nr_bytes(bdev);
879
880         if (sz) {
881                 unsigned int sizebits = blksize_bits(size);
882                 retval = (sz >> sizebits);
883         }
884         return retval;
885 }
886
887 /*
888  * Initialise the state of a blockdev page's buffers.
889  */ 
890 static sector_t
891 init_page_buffers(struct page *page, struct block_device *bdev,
892                         sector_t block, int size)
893 {
894         struct buffer_head *head = page_buffers(page);
895         struct buffer_head *bh = head;
896         int uptodate = PageUptodate(page);
897         sector_t end_block = blkdev_max_block(bdev, size);
898
899         do {
900                 if (!buffer_mapped(bh)) {
901                         bh->b_end_io = NULL;
902                         bh->b_private = NULL;
903                         bh->b_bdev = bdev;
904                         bh->b_blocknr = block;
905                         if (uptodate)
906                                 set_buffer_uptodate(bh);
907                         if (block < end_block)
908                                 set_buffer_mapped(bh);
909                 }
910                 block++;
911                 bh = bh->b_this_page;
912         } while (bh != head);
913
914         /*
915          * Caller needs to validate requested block against end of device.
916          */
917         return end_block;
918 }
919
920 /*
921  * Create the page-cache page that contains the requested block.
922  *
923  * This is used purely for blockdev mappings.
924  */
925 static int
926 grow_dev_page(struct block_device *bdev, sector_t block,
927               pgoff_t index, int size, int sizebits, gfp_t gfp)
928 {
929         struct inode *inode = bdev->bd_inode;
930         struct page *page;
931         struct buffer_head *bh;
932         sector_t end_block;
933         int ret = 0;
934         gfp_t gfp_mask;
935
936         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
937
938         /*
939          * XXX: __getblk_slow() can not really deal with failure and
940          * will endlessly loop on improvised global reclaim.  Prefer
941          * looping in the allocator rather than here, at least that
942          * code knows what it's doing.
943          */
944         gfp_mask |= __GFP_NOFAIL;
945
946         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
947
948         BUG_ON(!PageLocked(page));
949
950         if (page_has_buffers(page)) {
951                 bh = page_buffers(page);
952                 if (bh->b_size == size) {
953                         end_block = init_page_buffers(page, bdev,
954                                                 (sector_t)index << sizebits,
955                                                 size);
956                         goto done;
957                 }
958                 if (!try_to_free_buffers(page))
959                         goto failed;
960         }
961
962         /*
963          * Allocate some buffers for this page
964          */
965         bh = alloc_page_buffers(page, size, true);
966
967         /*
968          * Link the page to the buffers and initialise them.  Take the
969          * lock to be atomic wrt __find_get_block(), which does not
970          * run under the page lock.
971          */
972         spin_lock(&inode->i_mapping->private_lock);
973         link_dev_buffers(page, bh);
974         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
975                         size);
976         spin_unlock(&inode->i_mapping->private_lock);
977 done:
978         ret = (block < end_block) ? 1 : -ENXIO;
979 failed:
980         unlock_page(page);
981         put_page(page);
982         return ret;
983 }
984
985 /*
986  * Create buffers for the specified block device block's page.  If
987  * that page was dirty, the buffers are set dirty also.
988  */
989 static int
990 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
991 {
992         pgoff_t index;
993         int sizebits;
994
995         sizebits = PAGE_SHIFT - __ffs(size);
996         index = block >> sizebits;
997
998         /*
999          * Check for a block which wants to lie outside our maximum possible
1000          * pagecache index.  (this comparison is done using sector_t types).
1001          */
1002         if (unlikely(index != block >> sizebits)) {
1003                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1004                         "device %pg\n",
1005                         __func__, (unsigned long long)block,
1006                         bdev);
1007                 return -EIO;
1008         }
1009
1010         /* Create a page with the proper size buffers.. */
1011         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1012 }
1013
1014 static struct buffer_head *
1015 __getblk_slow(struct block_device *bdev, sector_t block,
1016              unsigned size, gfp_t gfp)
1017 {
1018         /* Size must be multiple of hard sectorsize */
1019         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1020                         (size < 512 || size > PAGE_SIZE))) {
1021                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1022                                         size);
1023                 printk(KERN_ERR "logical block size: %d\n",
1024                                         bdev_logical_block_size(bdev));
1025
1026                 dump_stack();
1027                 return NULL;
1028         }
1029
1030         for (;;) {
1031                 struct buffer_head *bh;
1032                 int ret;
1033
1034                 bh = __find_get_block(bdev, block, size);
1035                 if (bh)
1036                         return bh;
1037
1038                 ret = grow_buffers(bdev, block, size, gfp);
1039                 if (ret < 0)
1040                         return NULL;
1041         }
1042 }
1043
1044 /*
1045  * The relationship between dirty buffers and dirty pages:
1046  *
1047  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1048  * the page is tagged dirty in the page cache.
1049  *
1050  * At all times, the dirtiness of the buffers represents the dirtiness of
1051  * subsections of the page.  If the page has buffers, the page dirty bit is
1052  * merely a hint about the true dirty state.
1053  *
1054  * When a page is set dirty in its entirety, all its buffers are marked dirty
1055  * (if the page has buffers).
1056  *
1057  * When a buffer is marked dirty, its page is dirtied, but the page's other
1058  * buffers are not.
1059  *
1060  * Also.  When blockdev buffers are explicitly read with bread(), they
1061  * individually become uptodate.  But their backing page remains not
1062  * uptodate - even if all of its buffers are uptodate.  A subsequent
1063  * block_read_full_page() against that page will discover all the uptodate
1064  * buffers, will set the page uptodate and will perform no I/O.
1065  */
1066
1067 /**
1068  * mark_buffer_dirty - mark a buffer_head as needing writeout
1069  * @bh: the buffer_head to mark dirty
1070  *
1071  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1072  * its backing page dirty, then tag the page as dirty in the page cache
1073  * and then attach the address_space's inode to its superblock's dirty
1074  * inode list.
1075  *
1076  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1077  * i_pages lock and mapping->host->i_lock.
1078  */
1079 void mark_buffer_dirty(struct buffer_head *bh)
1080 {
1081         WARN_ON_ONCE(!buffer_uptodate(bh));
1082
1083         trace_block_dirty_buffer(bh);
1084
1085         /*
1086          * Very *carefully* optimize the it-is-already-dirty case.
1087          *
1088          * Don't let the final "is it dirty" escape to before we
1089          * perhaps modified the buffer.
1090          */
1091         if (buffer_dirty(bh)) {
1092                 smp_mb();
1093                 if (buffer_dirty(bh))
1094                         return;
1095         }
1096
1097         if (!test_set_buffer_dirty(bh)) {
1098                 struct page *page = bh->b_page;
1099                 struct address_space *mapping = NULL;
1100
1101                 lock_page_memcg(page);
1102                 if (!TestSetPageDirty(page)) {
1103                         mapping = page_mapping(page);
1104                         if (mapping)
1105                                 __set_page_dirty(page, mapping, 0);
1106                 }
1107                 unlock_page_memcg(page);
1108                 if (mapping)
1109                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1110         }
1111 }
1112 EXPORT_SYMBOL(mark_buffer_dirty);
1113
1114 void mark_buffer_write_io_error(struct buffer_head *bh)
1115 {
1116         struct super_block *sb;
1117
1118         set_buffer_write_io_error(bh);
1119         /* FIXME: do we need to set this in both places? */
1120         if (bh->b_page && bh->b_page->mapping)
1121                 mapping_set_error(bh->b_page->mapping, -EIO);
1122         if (bh->b_assoc_map)
1123                 mapping_set_error(bh->b_assoc_map, -EIO);
1124         rcu_read_lock();
1125         sb = READ_ONCE(bh->b_bdev->bd_super);
1126         if (sb)
1127                 errseq_set(&sb->s_wb_err, -EIO);
1128         rcu_read_unlock();
1129 }
1130 EXPORT_SYMBOL(mark_buffer_write_io_error);
1131
1132 /*
1133  * Decrement a buffer_head's reference count.  If all buffers against a page
1134  * have zero reference count, are clean and unlocked, and if the page is clean
1135  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1136  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1137  * a page but it ends up not being freed, and buffers may later be reattached).
1138  */
1139 void __brelse(struct buffer_head * buf)
1140 {
1141         if (atomic_read(&buf->b_count)) {
1142                 put_bh(buf);
1143                 return;
1144         }
1145         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1146 }
1147 EXPORT_SYMBOL(__brelse);
1148
1149 /*
1150  * bforget() is like brelse(), except it discards any
1151  * potentially dirty data.
1152  */
1153 void __bforget(struct buffer_head *bh)
1154 {
1155         clear_buffer_dirty(bh);
1156         if (bh->b_assoc_map) {
1157                 struct address_space *buffer_mapping = bh->b_page->mapping;
1158
1159                 spin_lock(&buffer_mapping->private_lock);
1160                 list_del_init(&bh->b_assoc_buffers);
1161                 bh->b_assoc_map = NULL;
1162                 spin_unlock(&buffer_mapping->private_lock);
1163         }
1164         __brelse(bh);
1165 }
1166 EXPORT_SYMBOL(__bforget);
1167
1168 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1169 {
1170         lock_buffer(bh);
1171         if (buffer_uptodate(bh)) {
1172                 unlock_buffer(bh);
1173                 return bh;
1174         } else {
1175                 get_bh(bh);
1176                 bh->b_end_io = end_buffer_read_sync;
1177                 submit_bh(REQ_OP_READ, 0, bh);
1178                 wait_on_buffer(bh);
1179                 if (buffer_uptodate(bh))
1180                         return bh;
1181         }
1182         brelse(bh);
1183         return NULL;
1184 }
1185
1186 /*
1187  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1188  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1189  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1190  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1191  * CPU's LRUs at the same time.
1192  *
1193  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1194  * sb_find_get_block().
1195  *
1196  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1197  * a local interrupt disable for that.
1198  */
1199
1200 #define BH_LRU_SIZE     16
1201
1202 struct bh_lru {
1203         struct buffer_head *bhs[BH_LRU_SIZE];
1204 };
1205
1206 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1207
1208 #ifdef CONFIG_SMP
1209 #define bh_lru_lock()   local_irq_disable()
1210 #define bh_lru_unlock() local_irq_enable()
1211 #else
1212 #define bh_lru_lock()   preempt_disable()
1213 #define bh_lru_unlock() preempt_enable()
1214 #endif
1215
1216 static inline void check_irqs_on(void)
1217 {
1218 #ifdef irqs_disabled
1219         BUG_ON(irqs_disabled());
1220 #endif
1221 }
1222
1223 /*
1224  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1225  * inserted at the front, and the buffer_head at the back if any is evicted.
1226  * Or, if already in the LRU it is moved to the front.
1227  */
1228 static void bh_lru_install(struct buffer_head *bh)
1229 {
1230         struct buffer_head *evictee = bh;
1231         struct bh_lru *b;
1232         int i;
1233
1234         check_irqs_on();
1235         bh_lru_lock();
1236
1237         /*
1238          * the refcount of buffer_head in bh_lru prevents dropping the
1239          * attached page(i.e., try_to_free_buffers) so it could cause
1240          * failing page migration.
1241          * Skip putting upcoming bh into bh_lru until migration is done.
1242          */
1243         if (lru_cache_disabled()) {
1244                 bh_lru_unlock();
1245                 return;
1246         }
1247
1248         b = this_cpu_ptr(&bh_lrus);
1249         for (i = 0; i < BH_LRU_SIZE; i++) {
1250                 swap(evictee, b->bhs[i]);
1251                 if (evictee == bh) {
1252                         bh_lru_unlock();
1253                         return;
1254                 }
1255         }
1256
1257         get_bh(bh);
1258         bh_lru_unlock();
1259         brelse(evictee);
1260 }
1261
1262 /*
1263  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1264  */
1265 static struct buffer_head *
1266 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1267 {
1268         struct buffer_head *ret = NULL;
1269         unsigned int i;
1270
1271         check_irqs_on();
1272         bh_lru_lock();
1273         for (i = 0; i < BH_LRU_SIZE; i++) {
1274                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1275
1276                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1277                     bh->b_size == size) {
1278                         if (i) {
1279                                 while (i) {
1280                                         __this_cpu_write(bh_lrus.bhs[i],
1281                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1282                                         i--;
1283                                 }
1284                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1285                         }
1286                         get_bh(bh);
1287                         ret = bh;
1288                         break;
1289                 }
1290         }
1291         bh_lru_unlock();
1292         return ret;
1293 }
1294
1295 /*
1296  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1297  * it in the LRU and mark it as accessed.  If it is not present then return
1298  * NULL
1299  */
1300 struct buffer_head *
1301 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1302 {
1303         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1304
1305         if (bh == NULL) {
1306                 /* __find_get_block_slow will mark the page accessed */
1307                 bh = __find_get_block_slow(bdev, block);
1308                 if (bh)
1309                         bh_lru_install(bh);
1310         } else
1311                 touch_buffer(bh);
1312
1313         return bh;
1314 }
1315 EXPORT_SYMBOL(__find_get_block);
1316
1317 /*
1318  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1319  * which corresponds to the passed block_device, block and size. The
1320  * returned buffer has its reference count incremented.
1321  *
1322  * __getblk_gfp() will lock up the machine if grow_dev_page's
1323  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1324  */
1325 struct buffer_head *
1326 __getblk_gfp(struct block_device *bdev, sector_t block,
1327              unsigned size, gfp_t gfp)
1328 {
1329         struct buffer_head *bh = __find_get_block(bdev, block, size);
1330
1331         might_sleep();
1332         if (bh == NULL)
1333                 bh = __getblk_slow(bdev, block, size, gfp);
1334         return bh;
1335 }
1336 EXPORT_SYMBOL(__getblk_gfp);
1337
1338 /*
1339  * Do async read-ahead on a buffer..
1340  */
1341 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1342 {
1343         struct buffer_head *bh = __getblk(bdev, block, size);
1344         if (likely(bh)) {
1345                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1346                 brelse(bh);
1347         }
1348 }
1349 EXPORT_SYMBOL(__breadahead);
1350
1351 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1352                       gfp_t gfp)
1353 {
1354         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1355         if (likely(bh)) {
1356                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1357                 brelse(bh);
1358         }
1359 }
1360 EXPORT_SYMBOL(__breadahead_gfp);
1361
1362 /**
1363  *  __bread_gfp() - reads a specified block and returns the bh
1364  *  @bdev: the block_device to read from
1365  *  @block: number of block
1366  *  @size: size (in bytes) to read
1367  *  @gfp: page allocation flag
1368  *
1369  *  Reads a specified block, and returns buffer head that contains it.
1370  *  The page cache can be allocated from non-movable area
1371  *  not to prevent page migration if you set gfp to zero.
1372  *  It returns NULL if the block was unreadable.
1373  */
1374 struct buffer_head *
1375 __bread_gfp(struct block_device *bdev, sector_t block,
1376                    unsigned size, gfp_t gfp)
1377 {
1378         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1379
1380         if (likely(bh) && !buffer_uptodate(bh))
1381                 bh = __bread_slow(bh);
1382         return bh;
1383 }
1384 EXPORT_SYMBOL(__bread_gfp);
1385
1386 static void __invalidate_bh_lrus(struct bh_lru *b)
1387 {
1388         int i;
1389
1390         for (i = 0; i < BH_LRU_SIZE; i++) {
1391                 brelse(b->bhs[i]);
1392                 b->bhs[i] = NULL;
1393         }
1394 }
1395 /*
1396  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1397  * This doesn't race because it runs in each cpu either in irq
1398  * or with preempt disabled.
1399  */
1400 static void invalidate_bh_lru(void *arg)
1401 {
1402         struct bh_lru *b = &get_cpu_var(bh_lrus);
1403
1404         __invalidate_bh_lrus(b);
1405         put_cpu_var(bh_lrus);
1406 }
1407
1408 bool has_bh_in_lru(int cpu, void *dummy)
1409 {
1410         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1411         int i;
1412         
1413         for (i = 0; i < BH_LRU_SIZE; i++) {
1414                 if (b->bhs[i])
1415                         return true;
1416         }
1417
1418         return false;
1419 }
1420
1421 void invalidate_bh_lrus(void)
1422 {
1423         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1424 }
1425 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1426
1427 /*
1428  * It's called from workqueue context so we need a bh_lru_lock to close
1429  * the race with preemption/irq.
1430  */
1431 void invalidate_bh_lrus_cpu(void)
1432 {
1433         struct bh_lru *b;
1434
1435         bh_lru_lock();
1436         b = this_cpu_ptr(&bh_lrus);
1437         __invalidate_bh_lrus(b);
1438         bh_lru_unlock();
1439 }
1440
1441 void set_bh_page(struct buffer_head *bh,
1442                 struct page *page, unsigned long offset)
1443 {
1444         bh->b_page = page;
1445         BUG_ON(offset >= PAGE_SIZE);
1446         if (PageHighMem(page))
1447                 /*
1448                  * This catches illegal uses and preserves the offset:
1449                  */
1450                 bh->b_data = (char *)(0 + offset);
1451         else
1452                 bh->b_data = page_address(page) + offset;
1453 }
1454 EXPORT_SYMBOL(set_bh_page);
1455
1456 /*
1457  * Called when truncating a buffer on a page completely.
1458  */
1459
1460 /* Bits that are cleared during an invalidate */
1461 #define BUFFER_FLAGS_DISCARD \
1462         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1463          1 << BH_Delay | 1 << BH_Unwritten)
1464
1465 static void discard_buffer(struct buffer_head * bh)
1466 {
1467         unsigned long b_state, b_state_old;
1468
1469         lock_buffer(bh);
1470         clear_buffer_dirty(bh);
1471         bh->b_bdev = NULL;
1472         b_state = bh->b_state;
1473         for (;;) {
1474                 b_state_old = cmpxchg(&bh->b_state, b_state,
1475                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1476                 if (b_state_old == b_state)
1477                         break;
1478                 b_state = b_state_old;
1479         }
1480         unlock_buffer(bh);
1481 }
1482
1483 /**
1484  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1485  * @folio: The folio which is affected.
1486  * @offset: start of the range to invalidate
1487  * @length: length of the range to invalidate
1488  *
1489  * block_invalidate_folio() is called when all or part of the folio has been
1490  * invalidated by a truncate operation.
1491  *
1492  * block_invalidate_folio() does not have to release all buffers, but it must
1493  * ensure that no dirty buffer is left outside @offset and that no I/O
1494  * is underway against any of the blocks which are outside the truncation
1495  * point.  Because the caller is about to free (and possibly reuse) those
1496  * blocks on-disk.
1497  */
1498 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1499 {
1500         struct buffer_head *head, *bh, *next;
1501         size_t curr_off = 0;
1502         size_t stop = length + offset;
1503
1504         BUG_ON(!folio_test_locked(folio));
1505
1506         /*
1507          * Check for overflow
1508          */
1509         BUG_ON(stop > folio_size(folio) || stop < length);
1510
1511         head = folio_buffers(folio);
1512         if (!head)
1513                 return;
1514
1515         bh = head;
1516         do {
1517                 size_t next_off = curr_off + bh->b_size;
1518                 next = bh->b_this_page;
1519
1520                 /*
1521                  * Are we still fully in range ?
1522                  */
1523                 if (next_off > stop)
1524                         goto out;
1525
1526                 /*
1527                  * is this block fully invalidated?
1528                  */
1529                 if (offset <= curr_off)
1530                         discard_buffer(bh);
1531                 curr_off = next_off;
1532                 bh = next;
1533         } while (bh != head);
1534
1535         /*
1536          * We release buffers only if the entire folio is being invalidated.
1537          * The get_block cached value has been unconditionally invalidated,
1538          * so real IO is not possible anymore.
1539          */
1540         if (length == folio_size(folio))
1541                 filemap_release_folio(folio, 0);
1542 out:
1543         return;
1544 }
1545 EXPORT_SYMBOL(block_invalidate_folio);
1546
1547
1548 /*
1549  * We attach and possibly dirty the buffers atomically wrt
1550  * block_dirty_folio() via private_lock.  try_to_free_buffers
1551  * is already excluded via the page lock.
1552  */
1553 void create_empty_buffers(struct page *page,
1554                         unsigned long blocksize, unsigned long b_state)
1555 {
1556         struct buffer_head *bh, *head, *tail;
1557
1558         head = alloc_page_buffers(page, blocksize, true);
1559         bh = head;
1560         do {
1561                 bh->b_state |= b_state;
1562                 tail = bh;
1563                 bh = bh->b_this_page;
1564         } while (bh);
1565         tail->b_this_page = head;
1566
1567         spin_lock(&page->mapping->private_lock);
1568         if (PageUptodate(page) || PageDirty(page)) {
1569                 bh = head;
1570                 do {
1571                         if (PageDirty(page))
1572                                 set_buffer_dirty(bh);
1573                         if (PageUptodate(page))
1574                                 set_buffer_uptodate(bh);
1575                         bh = bh->b_this_page;
1576                 } while (bh != head);
1577         }
1578         attach_page_private(page, head);
1579         spin_unlock(&page->mapping->private_lock);
1580 }
1581 EXPORT_SYMBOL(create_empty_buffers);
1582
1583 /**
1584  * clean_bdev_aliases: clean a range of buffers in block device
1585  * @bdev: Block device to clean buffers in
1586  * @block: Start of a range of blocks to clean
1587  * @len: Number of blocks to clean
1588  *
1589  * We are taking a range of blocks for data and we don't want writeback of any
1590  * buffer-cache aliases starting from return from this function and until the
1591  * moment when something will explicitly mark the buffer dirty (hopefully that
1592  * will not happen until we will free that block ;-) We don't even need to mark
1593  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1594  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1595  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1596  * would confuse anyone who might pick it with bread() afterwards...
1597  *
1598  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1599  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1600  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1601  * need to.  That happens here.
1602  */
1603 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1604 {
1605         struct inode *bd_inode = bdev->bd_inode;
1606         struct address_space *bd_mapping = bd_inode->i_mapping;
1607         struct pagevec pvec;
1608         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1609         pgoff_t end;
1610         int i, count;
1611         struct buffer_head *bh;
1612         struct buffer_head *head;
1613
1614         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1615         pagevec_init(&pvec);
1616         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1617                 count = pagevec_count(&pvec);
1618                 for (i = 0; i < count; i++) {
1619                         struct page *page = pvec.pages[i];
1620
1621                         if (!page_has_buffers(page))
1622                                 continue;
1623                         /*
1624                          * We use page lock instead of bd_mapping->private_lock
1625                          * to pin buffers here since we can afford to sleep and
1626                          * it scales better than a global spinlock lock.
1627                          */
1628                         lock_page(page);
1629                         /* Recheck when the page is locked which pins bhs */
1630                         if (!page_has_buffers(page))
1631                                 goto unlock_page;
1632                         head = page_buffers(page);
1633                         bh = head;
1634                         do {
1635                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1636                                         goto next;
1637                                 if (bh->b_blocknr >= block + len)
1638                                         break;
1639                                 clear_buffer_dirty(bh);
1640                                 wait_on_buffer(bh);
1641                                 clear_buffer_req(bh);
1642 next:
1643                                 bh = bh->b_this_page;
1644                         } while (bh != head);
1645 unlock_page:
1646                         unlock_page(page);
1647                 }
1648                 pagevec_release(&pvec);
1649                 cond_resched();
1650                 /* End of range already reached? */
1651                 if (index > end || !index)
1652                         break;
1653         }
1654 }
1655 EXPORT_SYMBOL(clean_bdev_aliases);
1656
1657 /*
1658  * Size is a power-of-two in the range 512..PAGE_SIZE,
1659  * and the case we care about most is PAGE_SIZE.
1660  *
1661  * So this *could* possibly be written with those
1662  * constraints in mind (relevant mostly if some
1663  * architecture has a slow bit-scan instruction)
1664  */
1665 static inline int block_size_bits(unsigned int blocksize)
1666 {
1667         return ilog2(blocksize);
1668 }
1669
1670 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1671 {
1672         BUG_ON(!PageLocked(page));
1673
1674         if (!page_has_buffers(page))
1675                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1676                                      b_state);
1677         return page_buffers(page);
1678 }
1679
1680 /*
1681  * NOTE! All mapped/uptodate combinations are valid:
1682  *
1683  *      Mapped  Uptodate        Meaning
1684  *
1685  *      No      No              "unknown" - must do get_block()
1686  *      No      Yes             "hole" - zero-filled
1687  *      Yes     No              "allocated" - allocated on disk, not read in
1688  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1689  *
1690  * "Dirty" is valid only with the last case (mapped+uptodate).
1691  */
1692
1693 /*
1694  * While block_write_full_page is writing back the dirty buffers under
1695  * the page lock, whoever dirtied the buffers may decide to clean them
1696  * again at any time.  We handle that by only looking at the buffer
1697  * state inside lock_buffer().
1698  *
1699  * If block_write_full_page() is called for regular writeback
1700  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1701  * locked buffer.   This only can happen if someone has written the buffer
1702  * directly, with submit_bh().  At the address_space level PageWriteback
1703  * prevents this contention from occurring.
1704  *
1705  * If block_write_full_page() is called with wbc->sync_mode ==
1706  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1707  * causes the writes to be flagged as synchronous writes.
1708  */
1709 int __block_write_full_page(struct inode *inode, struct page *page,
1710                         get_block_t *get_block, struct writeback_control *wbc,
1711                         bh_end_io_t *handler)
1712 {
1713         int err;
1714         sector_t block;
1715         sector_t last_block;
1716         struct buffer_head *bh, *head;
1717         unsigned int blocksize, bbits;
1718         int nr_underway = 0;
1719         int write_flags = wbc_to_write_flags(wbc);
1720
1721         head = create_page_buffers(page, inode,
1722                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1723
1724         /*
1725          * Be very careful.  We have no exclusion from block_dirty_folio
1726          * here, and the (potentially unmapped) buffers may become dirty at
1727          * any time.  If a buffer becomes dirty here after we've inspected it
1728          * then we just miss that fact, and the page stays dirty.
1729          *
1730          * Buffers outside i_size may be dirtied by block_dirty_folio;
1731          * handle that here by just cleaning them.
1732          */
1733
1734         bh = head;
1735         blocksize = bh->b_size;
1736         bbits = block_size_bits(blocksize);
1737
1738         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1739         last_block = (i_size_read(inode) - 1) >> bbits;
1740
1741         /*
1742          * Get all the dirty buffers mapped to disk addresses and
1743          * handle any aliases from the underlying blockdev's mapping.
1744          */
1745         do {
1746                 if (block > last_block) {
1747                         /*
1748                          * mapped buffers outside i_size will occur, because
1749                          * this page can be outside i_size when there is a
1750                          * truncate in progress.
1751                          */
1752                         /*
1753                          * The buffer was zeroed by block_write_full_page()
1754                          */
1755                         clear_buffer_dirty(bh);
1756                         set_buffer_uptodate(bh);
1757                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1758                            buffer_dirty(bh)) {
1759                         WARN_ON(bh->b_size != blocksize);
1760                         err = get_block(inode, block, bh, 1);
1761                         if (err)
1762                                 goto recover;
1763                         clear_buffer_delay(bh);
1764                         if (buffer_new(bh)) {
1765                                 /* blockdev mappings never come here */
1766                                 clear_buffer_new(bh);
1767                                 clean_bdev_bh_alias(bh);
1768                         }
1769                 }
1770                 bh = bh->b_this_page;
1771                 block++;
1772         } while (bh != head);
1773
1774         do {
1775                 if (!buffer_mapped(bh))
1776                         continue;
1777                 /*
1778                  * If it's a fully non-blocking write attempt and we cannot
1779                  * lock the buffer then redirty the page.  Note that this can
1780                  * potentially cause a busy-wait loop from writeback threads
1781                  * and kswapd activity, but those code paths have their own
1782                  * higher-level throttling.
1783                  */
1784                 if (wbc->sync_mode != WB_SYNC_NONE) {
1785                         lock_buffer(bh);
1786                 } else if (!trylock_buffer(bh)) {
1787                         redirty_page_for_writepage(wbc, page);
1788                         continue;
1789                 }
1790                 if (test_clear_buffer_dirty(bh)) {
1791                         mark_buffer_async_write_endio(bh, handler);
1792                 } else {
1793                         unlock_buffer(bh);
1794                 }
1795         } while ((bh = bh->b_this_page) != head);
1796
1797         /*
1798          * The page and its buffers are protected by PageWriteback(), so we can
1799          * drop the bh refcounts early.
1800          */
1801         BUG_ON(PageWriteback(page));
1802         set_page_writeback(page);
1803
1804         do {
1805                 struct buffer_head *next = bh->b_this_page;
1806                 if (buffer_async_write(bh)) {
1807                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, wbc);
1808                         nr_underway++;
1809                 }
1810                 bh = next;
1811         } while (bh != head);
1812         unlock_page(page);
1813
1814         err = 0;
1815 done:
1816         if (nr_underway == 0) {
1817                 /*
1818                  * The page was marked dirty, but the buffers were
1819                  * clean.  Someone wrote them back by hand with
1820                  * ll_rw_block/submit_bh.  A rare case.
1821                  */
1822                 end_page_writeback(page);
1823
1824                 /*
1825                  * The page and buffer_heads can be released at any time from
1826                  * here on.
1827                  */
1828         }
1829         return err;
1830
1831 recover:
1832         /*
1833          * ENOSPC, or some other error.  We may already have added some
1834          * blocks to the file, so we need to write these out to avoid
1835          * exposing stale data.
1836          * The page is currently locked and not marked for writeback
1837          */
1838         bh = head;
1839         /* Recovery: lock and submit the mapped buffers */
1840         do {
1841                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1842                     !buffer_delay(bh)) {
1843                         lock_buffer(bh);
1844                         mark_buffer_async_write_endio(bh, handler);
1845                 } else {
1846                         /*
1847                          * The buffer may have been set dirty during
1848                          * attachment to a dirty page.
1849                          */
1850                         clear_buffer_dirty(bh);
1851                 }
1852         } while ((bh = bh->b_this_page) != head);
1853         SetPageError(page);
1854         BUG_ON(PageWriteback(page));
1855         mapping_set_error(page->mapping, err);
1856         set_page_writeback(page);
1857         do {
1858                 struct buffer_head *next = bh->b_this_page;
1859                 if (buffer_async_write(bh)) {
1860                         clear_buffer_dirty(bh);
1861                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, wbc);
1862                         nr_underway++;
1863                 }
1864                 bh = next;
1865         } while (bh != head);
1866         unlock_page(page);
1867         goto done;
1868 }
1869 EXPORT_SYMBOL(__block_write_full_page);
1870
1871 /*
1872  * If a page has any new buffers, zero them out here, and mark them uptodate
1873  * and dirty so they'll be written out (in order to prevent uninitialised
1874  * block data from leaking). And clear the new bit.
1875  */
1876 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1877 {
1878         unsigned int block_start, block_end;
1879         struct buffer_head *head, *bh;
1880
1881         BUG_ON(!PageLocked(page));
1882         if (!page_has_buffers(page))
1883                 return;
1884
1885         bh = head = page_buffers(page);
1886         block_start = 0;
1887         do {
1888                 block_end = block_start + bh->b_size;
1889
1890                 if (buffer_new(bh)) {
1891                         if (block_end > from && block_start < to) {
1892                                 if (!PageUptodate(page)) {
1893                                         unsigned start, size;
1894
1895                                         start = max(from, block_start);
1896                                         size = min(to, block_end) - start;
1897
1898                                         zero_user(page, start, size);
1899                                         set_buffer_uptodate(bh);
1900                                 }
1901
1902                                 clear_buffer_new(bh);
1903                                 mark_buffer_dirty(bh);
1904                         }
1905                 }
1906
1907                 block_start = block_end;
1908                 bh = bh->b_this_page;
1909         } while (bh != head);
1910 }
1911 EXPORT_SYMBOL(page_zero_new_buffers);
1912
1913 static void
1914 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1915                 const struct iomap *iomap)
1916 {
1917         loff_t offset = block << inode->i_blkbits;
1918
1919         bh->b_bdev = iomap->bdev;
1920
1921         /*
1922          * Block points to offset in file we need to map, iomap contains
1923          * the offset at which the map starts. If the map ends before the
1924          * current block, then do not map the buffer and let the caller
1925          * handle it.
1926          */
1927         BUG_ON(offset >= iomap->offset + iomap->length);
1928
1929         switch (iomap->type) {
1930         case IOMAP_HOLE:
1931                 /*
1932                  * If the buffer is not up to date or beyond the current EOF,
1933                  * we need to mark it as new to ensure sub-block zeroing is
1934                  * executed if necessary.
1935                  */
1936                 if (!buffer_uptodate(bh) ||
1937                     (offset >= i_size_read(inode)))
1938                         set_buffer_new(bh);
1939                 break;
1940         case IOMAP_DELALLOC:
1941                 if (!buffer_uptodate(bh) ||
1942                     (offset >= i_size_read(inode)))
1943                         set_buffer_new(bh);
1944                 set_buffer_uptodate(bh);
1945                 set_buffer_mapped(bh);
1946                 set_buffer_delay(bh);
1947                 break;
1948         case IOMAP_UNWRITTEN:
1949                 /*
1950                  * For unwritten regions, we always need to ensure that regions
1951                  * in the block we are not writing to are zeroed. Mark the
1952                  * buffer as new to ensure this.
1953                  */
1954                 set_buffer_new(bh);
1955                 set_buffer_unwritten(bh);
1956                 fallthrough;
1957         case IOMAP_MAPPED:
1958                 if ((iomap->flags & IOMAP_F_NEW) ||
1959                     offset >= i_size_read(inode))
1960                         set_buffer_new(bh);
1961                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1962                                 inode->i_blkbits;
1963                 set_buffer_mapped(bh);
1964                 break;
1965         }
1966 }
1967
1968 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
1969                 get_block_t *get_block, const struct iomap *iomap)
1970 {
1971         unsigned from = pos & (PAGE_SIZE - 1);
1972         unsigned to = from + len;
1973         struct inode *inode = folio->mapping->host;
1974         unsigned block_start, block_end;
1975         sector_t block;
1976         int err = 0;
1977         unsigned blocksize, bbits;
1978         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1979
1980         BUG_ON(!folio_test_locked(folio));
1981         BUG_ON(from > PAGE_SIZE);
1982         BUG_ON(to > PAGE_SIZE);
1983         BUG_ON(from > to);
1984
1985         head = create_page_buffers(&folio->page, inode, 0);
1986         blocksize = head->b_size;
1987         bbits = block_size_bits(blocksize);
1988
1989         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1990
1991         for(bh = head, block_start = 0; bh != head || !block_start;
1992             block++, block_start=block_end, bh = bh->b_this_page) {
1993                 block_end = block_start + blocksize;
1994                 if (block_end <= from || block_start >= to) {
1995                         if (folio_test_uptodate(folio)) {
1996                                 if (!buffer_uptodate(bh))
1997                                         set_buffer_uptodate(bh);
1998                         }
1999                         continue;
2000                 }
2001                 if (buffer_new(bh))
2002                         clear_buffer_new(bh);
2003                 if (!buffer_mapped(bh)) {
2004                         WARN_ON(bh->b_size != blocksize);
2005                         if (get_block) {
2006                                 err = get_block(inode, block, bh, 1);
2007                                 if (err)
2008                                         break;
2009                         } else {
2010                                 iomap_to_bh(inode, block, bh, iomap);
2011                         }
2012
2013                         if (buffer_new(bh)) {
2014                                 clean_bdev_bh_alias(bh);
2015                                 if (folio_test_uptodate(folio)) {
2016                                         clear_buffer_new(bh);
2017                                         set_buffer_uptodate(bh);
2018                                         mark_buffer_dirty(bh);
2019                                         continue;
2020                                 }
2021                                 if (block_end > to || block_start < from)
2022                                         folio_zero_segments(folio,
2023                                                 to, block_end,
2024                                                 block_start, from);
2025                                 continue;
2026                         }
2027                 }
2028                 if (folio_test_uptodate(folio)) {
2029                         if (!buffer_uptodate(bh))
2030                                 set_buffer_uptodate(bh);
2031                         continue; 
2032                 }
2033                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2034                     !buffer_unwritten(bh) &&
2035                      (block_start < from || block_end > to)) {
2036                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2037                         *wait_bh++=bh;
2038                 }
2039         }
2040         /*
2041          * If we issued read requests - let them complete.
2042          */
2043         while(wait_bh > wait) {
2044                 wait_on_buffer(*--wait_bh);
2045                 if (!buffer_uptodate(*wait_bh))
2046                         err = -EIO;
2047         }
2048         if (unlikely(err))
2049                 page_zero_new_buffers(&folio->page, from, to);
2050         return err;
2051 }
2052
2053 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2054                 get_block_t *get_block)
2055 {
2056         return __block_write_begin_int(page_folio(page), pos, len, get_block,
2057                                        NULL);
2058 }
2059 EXPORT_SYMBOL(__block_write_begin);
2060
2061 static int __block_commit_write(struct inode *inode, struct page *page,
2062                 unsigned from, unsigned to)
2063 {
2064         unsigned block_start, block_end;
2065         int partial = 0;
2066         unsigned blocksize;
2067         struct buffer_head *bh, *head;
2068
2069         bh = head = page_buffers(page);
2070         blocksize = bh->b_size;
2071
2072         block_start = 0;
2073         do {
2074                 block_end = block_start + blocksize;
2075                 if (block_end <= from || block_start >= to) {
2076                         if (!buffer_uptodate(bh))
2077                                 partial = 1;
2078                 } else {
2079                         set_buffer_uptodate(bh);
2080                         mark_buffer_dirty(bh);
2081                 }
2082                 if (buffer_new(bh))
2083                         clear_buffer_new(bh);
2084
2085                 block_start = block_end;
2086                 bh = bh->b_this_page;
2087         } while (bh != head);
2088
2089         /*
2090          * If this is a partial write which happened to make all buffers
2091          * uptodate then we can optimize away a bogus readpage() for
2092          * the next read(). Here we 'discover' whether the page went
2093          * uptodate as a result of this (potentially partial) write.
2094          */
2095         if (!partial)
2096                 SetPageUptodate(page);
2097         return 0;
2098 }
2099
2100 /*
2101  * block_write_begin takes care of the basic task of block allocation and
2102  * bringing partial write blocks uptodate first.
2103  *
2104  * The filesystem needs to handle block truncation upon failure.
2105  */
2106 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2107                 unsigned flags, struct page **pagep, get_block_t *get_block)
2108 {
2109         pgoff_t index = pos >> PAGE_SHIFT;
2110         struct page *page;
2111         int status;
2112
2113         page = grab_cache_page_write_begin(mapping, index, flags);
2114         if (!page)
2115                 return -ENOMEM;
2116
2117         status = __block_write_begin(page, pos, len, get_block);
2118         if (unlikely(status)) {
2119                 unlock_page(page);
2120                 put_page(page);
2121                 page = NULL;
2122         }
2123
2124         *pagep = page;
2125         return status;
2126 }
2127 EXPORT_SYMBOL(block_write_begin);
2128
2129 int block_write_end(struct file *file, struct address_space *mapping,
2130                         loff_t pos, unsigned len, unsigned copied,
2131                         struct page *page, void *fsdata)
2132 {
2133         struct inode *inode = mapping->host;
2134         unsigned start;
2135
2136         start = pos & (PAGE_SIZE - 1);
2137
2138         if (unlikely(copied < len)) {
2139                 /*
2140                  * The buffers that were written will now be uptodate, so we
2141                  * don't have to worry about a readpage reading them and
2142                  * overwriting a partial write. However if we have encountered
2143                  * a short write and only partially written into a buffer, it
2144                  * will not be marked uptodate, so a readpage might come in and
2145                  * destroy our partial write.
2146                  *
2147                  * Do the simplest thing, and just treat any short write to a
2148                  * non uptodate page as a zero-length write, and force the
2149                  * caller to redo the whole thing.
2150                  */
2151                 if (!PageUptodate(page))
2152                         copied = 0;
2153
2154                 page_zero_new_buffers(page, start+copied, start+len);
2155         }
2156         flush_dcache_page(page);
2157
2158         /* This could be a short (even 0-length) commit */
2159         __block_commit_write(inode, page, start, start+copied);
2160
2161         return copied;
2162 }
2163 EXPORT_SYMBOL(block_write_end);
2164
2165 int generic_write_end(struct file *file, struct address_space *mapping,
2166                         loff_t pos, unsigned len, unsigned copied,
2167                         struct page *page, void *fsdata)
2168 {
2169         struct inode *inode = mapping->host;
2170         loff_t old_size = inode->i_size;
2171         bool i_size_changed = false;
2172
2173         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2174
2175         /*
2176          * No need to use i_size_read() here, the i_size cannot change under us
2177          * because we hold i_rwsem.
2178          *
2179          * But it's important to update i_size while still holding page lock:
2180          * page writeout could otherwise come in and zero beyond i_size.
2181          */
2182         if (pos + copied > inode->i_size) {
2183                 i_size_write(inode, pos + copied);
2184                 i_size_changed = true;
2185         }
2186
2187         unlock_page(page);
2188         put_page(page);
2189
2190         if (old_size < pos)
2191                 pagecache_isize_extended(inode, old_size, pos);
2192         /*
2193          * Don't mark the inode dirty under page lock. First, it unnecessarily
2194          * makes the holding time of page lock longer. Second, it forces lock
2195          * ordering of page lock and transaction start for journaling
2196          * filesystems.
2197          */
2198         if (i_size_changed)
2199                 mark_inode_dirty(inode);
2200         return copied;
2201 }
2202 EXPORT_SYMBOL(generic_write_end);
2203
2204 /*
2205  * block_is_partially_uptodate checks whether buffers within a folio are
2206  * uptodate or not.
2207  *
2208  * Returns true if all buffers which correspond to the specified part
2209  * of the folio are uptodate.
2210  */
2211 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2212 {
2213         unsigned block_start, block_end, blocksize;
2214         unsigned to;
2215         struct buffer_head *bh, *head;
2216         bool ret = true;
2217
2218         head = folio_buffers(folio);
2219         if (!head)
2220                 return false;
2221         blocksize = head->b_size;
2222         to = min_t(unsigned, folio_size(folio) - from, count);
2223         to = from + to;
2224         if (from < blocksize && to > folio_size(folio) - blocksize)
2225                 return false;
2226
2227         bh = head;
2228         block_start = 0;
2229         do {
2230                 block_end = block_start + blocksize;
2231                 if (block_end > from && block_start < to) {
2232                         if (!buffer_uptodate(bh)) {
2233                                 ret = false;
2234                                 break;
2235                         }
2236                         if (block_end >= to)
2237                                 break;
2238                 }
2239                 block_start = block_end;
2240                 bh = bh->b_this_page;
2241         } while (bh != head);
2242
2243         return ret;
2244 }
2245 EXPORT_SYMBOL(block_is_partially_uptodate);
2246
2247 /*
2248  * Generic "read page" function for block devices that have the normal
2249  * get_block functionality. This is most of the block device filesystems.
2250  * Reads the page asynchronously --- the unlock_buffer() and
2251  * set/clear_buffer_uptodate() functions propagate buffer state into the
2252  * page struct once IO has completed.
2253  */
2254 int block_read_full_page(struct page *page, get_block_t *get_block)
2255 {
2256         struct inode *inode = page->mapping->host;
2257         sector_t iblock, lblock;
2258         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2259         unsigned int blocksize, bbits;
2260         int nr, i;
2261         int fully_mapped = 1;
2262
2263         head = create_page_buffers(page, inode, 0);
2264         blocksize = head->b_size;
2265         bbits = block_size_bits(blocksize);
2266
2267         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2268         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2269         bh = head;
2270         nr = 0;
2271         i = 0;
2272
2273         do {
2274                 if (buffer_uptodate(bh))
2275                         continue;
2276
2277                 if (!buffer_mapped(bh)) {
2278                         int err = 0;
2279
2280                         fully_mapped = 0;
2281                         if (iblock < lblock) {
2282                                 WARN_ON(bh->b_size != blocksize);
2283                                 err = get_block(inode, iblock, bh, 0);
2284                                 if (err)
2285                                         SetPageError(page);
2286                         }
2287                         if (!buffer_mapped(bh)) {
2288                                 zero_user(page, i * blocksize, blocksize);
2289                                 if (!err)
2290                                         set_buffer_uptodate(bh);
2291                                 continue;
2292                         }
2293                         /*
2294                          * get_block() might have updated the buffer
2295                          * synchronously
2296                          */
2297                         if (buffer_uptodate(bh))
2298                                 continue;
2299                 }
2300                 arr[nr++] = bh;
2301         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2302
2303         if (fully_mapped)
2304                 SetPageMappedToDisk(page);
2305
2306         if (!nr) {
2307                 /*
2308                  * All buffers are uptodate - we can set the page uptodate
2309                  * as well. But not if get_block() returned an error.
2310                  */
2311                 if (!PageError(page))
2312                         SetPageUptodate(page);
2313                 unlock_page(page);
2314                 return 0;
2315         }
2316
2317         /* Stage two: lock the buffers */
2318         for (i = 0; i < nr; i++) {
2319                 bh = arr[i];
2320                 lock_buffer(bh);
2321                 mark_buffer_async_read(bh);
2322         }
2323
2324         /*
2325          * Stage 3: start the IO.  Check for uptodateness
2326          * inside the buffer lock in case another process reading
2327          * the underlying blockdev brought it uptodate (the sct fix).
2328          */
2329         for (i = 0; i < nr; i++) {
2330                 bh = arr[i];
2331                 if (buffer_uptodate(bh))
2332                         end_buffer_async_read(bh, 1);
2333                 else
2334                         submit_bh(REQ_OP_READ, 0, bh);
2335         }
2336         return 0;
2337 }
2338 EXPORT_SYMBOL(block_read_full_page);
2339
2340 /* utility function for filesystems that need to do work on expanding
2341  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2342  * deal with the hole.  
2343  */
2344 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2345 {
2346         struct address_space *mapping = inode->i_mapping;
2347         struct page *page;
2348         void *fsdata;
2349         int err;
2350
2351         err = inode_newsize_ok(inode, size);
2352         if (err)
2353                 goto out;
2354
2355         err = pagecache_write_begin(NULL, mapping, size, 0,
2356                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2357         if (err)
2358                 goto out;
2359
2360         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2361         BUG_ON(err > 0);
2362
2363 out:
2364         return err;
2365 }
2366 EXPORT_SYMBOL(generic_cont_expand_simple);
2367
2368 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2369                             loff_t pos, loff_t *bytes)
2370 {
2371         struct inode *inode = mapping->host;
2372         unsigned int blocksize = i_blocksize(inode);
2373         struct page *page;
2374         void *fsdata;
2375         pgoff_t index, curidx;
2376         loff_t curpos;
2377         unsigned zerofrom, offset, len;
2378         int err = 0;
2379
2380         index = pos >> PAGE_SHIFT;
2381         offset = pos & ~PAGE_MASK;
2382
2383         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2384                 zerofrom = curpos & ~PAGE_MASK;
2385                 if (zerofrom & (blocksize-1)) {
2386                         *bytes |= (blocksize-1);
2387                         (*bytes)++;
2388                 }
2389                 len = PAGE_SIZE - zerofrom;
2390
2391                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2392                                             &page, &fsdata);
2393                 if (err)
2394                         goto out;
2395                 zero_user(page, zerofrom, len);
2396                 err = pagecache_write_end(file, mapping, curpos, len, len,
2397                                                 page, fsdata);
2398                 if (err < 0)
2399                         goto out;
2400                 BUG_ON(err != len);
2401                 err = 0;
2402
2403                 balance_dirty_pages_ratelimited(mapping);
2404
2405                 if (fatal_signal_pending(current)) {
2406                         err = -EINTR;
2407                         goto out;
2408                 }
2409         }
2410
2411         /* page covers the boundary, find the boundary offset */
2412         if (index == curidx) {
2413                 zerofrom = curpos & ~PAGE_MASK;
2414                 /* if we will expand the thing last block will be filled */
2415                 if (offset <= zerofrom) {
2416                         goto out;
2417                 }
2418                 if (zerofrom & (blocksize-1)) {
2419                         *bytes |= (blocksize-1);
2420                         (*bytes)++;
2421                 }
2422                 len = offset - zerofrom;
2423
2424                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2425                                             &page, &fsdata);
2426                 if (err)
2427                         goto out;
2428                 zero_user(page, zerofrom, len);
2429                 err = pagecache_write_end(file, mapping, curpos, len, len,
2430                                                 page, fsdata);
2431                 if (err < 0)
2432                         goto out;
2433                 BUG_ON(err != len);
2434                 err = 0;
2435         }
2436 out:
2437         return err;
2438 }
2439
2440 /*
2441  * For moronic filesystems that do not allow holes in file.
2442  * We may have to extend the file.
2443  */
2444 int cont_write_begin(struct file *file, struct address_space *mapping,
2445                         loff_t pos, unsigned len, unsigned flags,
2446                         struct page **pagep, void **fsdata,
2447                         get_block_t *get_block, loff_t *bytes)
2448 {
2449         struct inode *inode = mapping->host;
2450         unsigned int blocksize = i_blocksize(inode);
2451         unsigned int zerofrom;
2452         int err;
2453
2454         err = cont_expand_zero(file, mapping, pos, bytes);
2455         if (err)
2456                 return err;
2457
2458         zerofrom = *bytes & ~PAGE_MASK;
2459         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2460                 *bytes |= (blocksize-1);
2461                 (*bytes)++;
2462         }
2463
2464         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2465 }
2466 EXPORT_SYMBOL(cont_write_begin);
2467
2468 int block_commit_write(struct page *page, unsigned from, unsigned to)
2469 {
2470         struct inode *inode = page->mapping->host;
2471         __block_commit_write(inode,page,from,to);
2472         return 0;
2473 }
2474 EXPORT_SYMBOL(block_commit_write);
2475
2476 /*
2477  * block_page_mkwrite() is not allowed to change the file size as it gets
2478  * called from a page fault handler when a page is first dirtied. Hence we must
2479  * be careful to check for EOF conditions here. We set the page up correctly
2480  * for a written page which means we get ENOSPC checking when writing into
2481  * holes and correct delalloc and unwritten extent mapping on filesystems that
2482  * support these features.
2483  *
2484  * We are not allowed to take the i_mutex here so we have to play games to
2485  * protect against truncate races as the page could now be beyond EOF.  Because
2486  * truncate writes the inode size before removing pages, once we have the
2487  * page lock we can determine safely if the page is beyond EOF. If it is not
2488  * beyond EOF, then the page is guaranteed safe against truncation until we
2489  * unlock the page.
2490  *
2491  * Direct callers of this function should protect against filesystem freezing
2492  * using sb_start_pagefault() - sb_end_pagefault() functions.
2493  */
2494 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2495                          get_block_t get_block)
2496 {
2497         struct page *page = vmf->page;
2498         struct inode *inode = file_inode(vma->vm_file);
2499         unsigned long end;
2500         loff_t size;
2501         int ret;
2502
2503         lock_page(page);
2504         size = i_size_read(inode);
2505         if ((page->mapping != inode->i_mapping) ||
2506             (page_offset(page) > size)) {
2507                 /* We overload EFAULT to mean page got truncated */
2508                 ret = -EFAULT;
2509                 goto out_unlock;
2510         }
2511
2512         /* page is wholly or partially inside EOF */
2513         if (((page->index + 1) << PAGE_SHIFT) > size)
2514                 end = size & ~PAGE_MASK;
2515         else
2516                 end = PAGE_SIZE;
2517
2518         ret = __block_write_begin(page, 0, end, get_block);
2519         if (!ret)
2520                 ret = block_commit_write(page, 0, end);
2521
2522         if (unlikely(ret < 0))
2523                 goto out_unlock;
2524         set_page_dirty(page);
2525         wait_for_stable_page(page);
2526         return 0;
2527 out_unlock:
2528         unlock_page(page);
2529         return ret;
2530 }
2531 EXPORT_SYMBOL(block_page_mkwrite);
2532
2533 /*
2534  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2535  * immediately, while under the page lock.  So it needs a special end_io
2536  * handler which does not touch the bh after unlocking it.
2537  */
2538 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2539 {
2540         __end_buffer_read_notouch(bh, uptodate);
2541 }
2542
2543 /*
2544  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2545  * the page (converting it to circular linked list and taking care of page
2546  * dirty races).
2547  */
2548 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2549 {
2550         struct buffer_head *bh;
2551
2552         BUG_ON(!PageLocked(page));
2553
2554         spin_lock(&page->mapping->private_lock);
2555         bh = head;
2556         do {
2557                 if (PageDirty(page))
2558                         set_buffer_dirty(bh);
2559                 if (!bh->b_this_page)
2560                         bh->b_this_page = head;
2561                 bh = bh->b_this_page;
2562         } while (bh != head);
2563         attach_page_private(page, head);
2564         spin_unlock(&page->mapping->private_lock);
2565 }
2566
2567 /*
2568  * On entry, the page is fully not uptodate.
2569  * On exit the page is fully uptodate in the areas outside (from,to)
2570  * The filesystem needs to handle block truncation upon failure.
2571  */
2572 int nobh_write_begin(struct address_space *mapping,
2573                         loff_t pos, unsigned len, unsigned flags,
2574                         struct page **pagep, void **fsdata,
2575                         get_block_t *get_block)
2576 {
2577         struct inode *inode = mapping->host;
2578         const unsigned blkbits = inode->i_blkbits;
2579         const unsigned blocksize = 1 << blkbits;
2580         struct buffer_head *head, *bh;
2581         struct page *page;
2582         pgoff_t index;
2583         unsigned from, to;
2584         unsigned block_in_page;
2585         unsigned block_start, block_end;
2586         sector_t block_in_file;
2587         int nr_reads = 0;
2588         int ret = 0;
2589         int is_mapped_to_disk = 1;
2590
2591         index = pos >> PAGE_SHIFT;
2592         from = pos & (PAGE_SIZE - 1);
2593         to = from + len;
2594
2595         page = grab_cache_page_write_begin(mapping, index, flags);
2596         if (!page)
2597                 return -ENOMEM;
2598         *pagep = page;
2599         *fsdata = NULL;
2600
2601         if (page_has_buffers(page)) {
2602                 ret = __block_write_begin(page, pos, len, get_block);
2603                 if (unlikely(ret))
2604                         goto out_release;
2605                 return ret;
2606         }
2607
2608         if (PageMappedToDisk(page))
2609                 return 0;
2610
2611         /*
2612          * Allocate buffers so that we can keep track of state, and potentially
2613          * attach them to the page if an error occurs. In the common case of
2614          * no error, they will just be freed again without ever being attached
2615          * to the page (which is all OK, because we're under the page lock).
2616          *
2617          * Be careful: the buffer linked list is a NULL terminated one, rather
2618          * than the circular one we're used to.
2619          */
2620         head = alloc_page_buffers(page, blocksize, false);
2621         if (!head) {
2622                 ret = -ENOMEM;
2623                 goto out_release;
2624         }
2625
2626         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2627
2628         /*
2629          * We loop across all blocks in the page, whether or not they are
2630          * part of the affected region.  This is so we can discover if the
2631          * page is fully mapped-to-disk.
2632          */
2633         for (block_start = 0, block_in_page = 0, bh = head;
2634                   block_start < PAGE_SIZE;
2635                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2636                 int create;
2637
2638                 block_end = block_start + blocksize;
2639                 bh->b_state = 0;
2640                 create = 1;
2641                 if (block_start >= to)
2642                         create = 0;
2643                 ret = get_block(inode, block_in_file + block_in_page,
2644                                         bh, create);
2645                 if (ret)
2646                         goto failed;
2647                 if (!buffer_mapped(bh))
2648                         is_mapped_to_disk = 0;
2649                 if (buffer_new(bh))
2650                         clean_bdev_bh_alias(bh);
2651                 if (PageUptodate(page)) {
2652                         set_buffer_uptodate(bh);
2653                         continue;
2654                 }
2655                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2656                         zero_user_segments(page, block_start, from,
2657                                                         to, block_end);
2658                         continue;
2659                 }
2660                 if (buffer_uptodate(bh))
2661                         continue;       /* reiserfs does this */
2662                 if (block_start < from || block_end > to) {
2663                         lock_buffer(bh);
2664                         bh->b_end_io = end_buffer_read_nobh;
2665                         submit_bh(REQ_OP_READ, 0, bh);
2666                         nr_reads++;
2667                 }
2668         }
2669
2670         if (nr_reads) {
2671                 /*
2672                  * The page is locked, so these buffers are protected from
2673                  * any VM or truncate activity.  Hence we don't need to care
2674                  * for the buffer_head refcounts.
2675                  */
2676                 for (bh = head; bh; bh = bh->b_this_page) {
2677                         wait_on_buffer(bh);
2678                         if (!buffer_uptodate(bh))
2679                                 ret = -EIO;
2680                 }
2681                 if (ret)
2682                         goto failed;
2683         }
2684
2685         if (is_mapped_to_disk)
2686                 SetPageMappedToDisk(page);
2687
2688         *fsdata = head; /* to be released by nobh_write_end */
2689
2690         return 0;
2691
2692 failed:
2693         BUG_ON(!ret);
2694         /*
2695          * Error recovery is a bit difficult. We need to zero out blocks that
2696          * were newly allocated, and dirty them to ensure they get written out.
2697          * Buffers need to be attached to the page at this point, otherwise
2698          * the handling of potential IO errors during writeout would be hard
2699          * (could try doing synchronous writeout, but what if that fails too?)
2700          */
2701         attach_nobh_buffers(page, head);
2702         page_zero_new_buffers(page, from, to);
2703
2704 out_release:
2705         unlock_page(page);
2706         put_page(page);
2707         *pagep = NULL;
2708
2709         return ret;
2710 }
2711 EXPORT_SYMBOL(nobh_write_begin);
2712
2713 int nobh_write_end(struct file *file, struct address_space *mapping,
2714                         loff_t pos, unsigned len, unsigned copied,
2715                         struct page *page, void *fsdata)
2716 {
2717         struct inode *inode = page->mapping->host;
2718         struct buffer_head *head = fsdata;
2719         struct buffer_head *bh;
2720         BUG_ON(fsdata != NULL && page_has_buffers(page));
2721
2722         if (unlikely(copied < len) && head)
2723                 attach_nobh_buffers(page, head);
2724         if (page_has_buffers(page))
2725                 return generic_write_end(file, mapping, pos, len,
2726                                         copied, page, fsdata);
2727
2728         SetPageUptodate(page);
2729         set_page_dirty(page);
2730         if (pos+copied > inode->i_size) {
2731                 i_size_write(inode, pos+copied);
2732                 mark_inode_dirty(inode);
2733         }
2734
2735         unlock_page(page);
2736         put_page(page);
2737
2738         while (head) {
2739                 bh = head;
2740                 head = head->b_this_page;
2741                 free_buffer_head(bh);
2742         }
2743
2744         return copied;
2745 }
2746 EXPORT_SYMBOL(nobh_write_end);
2747
2748 /*
2749  * nobh_writepage() - based on block_full_write_page() except
2750  * that it tries to operate without attaching bufferheads to
2751  * the page.
2752  */
2753 int nobh_writepage(struct page *page, get_block_t *get_block,
2754                         struct writeback_control *wbc)
2755 {
2756         struct inode * const inode = page->mapping->host;
2757         loff_t i_size = i_size_read(inode);
2758         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2759         unsigned offset;
2760         int ret;
2761
2762         /* Is the page fully inside i_size? */
2763         if (page->index < end_index)
2764                 goto out;
2765
2766         /* Is the page fully outside i_size? (truncate in progress) */
2767         offset = i_size & (PAGE_SIZE-1);
2768         if (page->index >= end_index+1 || !offset) {
2769                 unlock_page(page);
2770                 return 0; /* don't care */
2771         }
2772
2773         /*
2774          * The page straddles i_size.  It must be zeroed out on each and every
2775          * writepage invocation because it may be mmapped.  "A file is mapped
2776          * in multiples of the page size.  For a file that is not a multiple of
2777          * the  page size, the remaining memory is zeroed when mapped, and
2778          * writes to that region are not written out to the file."
2779          */
2780         zero_user_segment(page, offset, PAGE_SIZE);
2781 out:
2782         ret = mpage_writepage(page, get_block, wbc);
2783         if (ret == -EAGAIN)
2784                 ret = __block_write_full_page(inode, page, get_block, wbc,
2785                                               end_buffer_async_write);
2786         return ret;
2787 }
2788 EXPORT_SYMBOL(nobh_writepage);
2789
2790 int nobh_truncate_page(struct address_space *mapping,
2791                         loff_t from, get_block_t *get_block)
2792 {
2793         pgoff_t index = from >> PAGE_SHIFT;
2794         unsigned offset = from & (PAGE_SIZE-1);
2795         unsigned blocksize;
2796         sector_t iblock;
2797         unsigned length, pos;
2798         struct inode *inode = mapping->host;
2799         struct page *page;
2800         struct buffer_head map_bh;
2801         int err;
2802
2803         blocksize = i_blocksize(inode);
2804         length = offset & (blocksize - 1);
2805
2806         /* Block boundary? Nothing to do */
2807         if (!length)
2808                 return 0;
2809
2810         length = blocksize - length;
2811         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2812
2813         page = grab_cache_page(mapping, index);
2814         err = -ENOMEM;
2815         if (!page)
2816                 goto out;
2817
2818         if (page_has_buffers(page)) {
2819 has_buffers:
2820                 unlock_page(page);
2821                 put_page(page);
2822                 return block_truncate_page(mapping, from, get_block);
2823         }
2824
2825         /* Find the buffer that contains "offset" */
2826         pos = blocksize;
2827         while (offset >= pos) {
2828                 iblock++;
2829                 pos += blocksize;
2830         }
2831
2832         map_bh.b_size = blocksize;
2833         map_bh.b_state = 0;
2834         err = get_block(inode, iblock, &map_bh, 0);
2835         if (err)
2836                 goto unlock;
2837         /* unmapped? It's a hole - nothing to do */
2838         if (!buffer_mapped(&map_bh))
2839                 goto unlock;
2840
2841         /* Ok, it's mapped. Make sure it's up-to-date */
2842         if (!PageUptodate(page)) {
2843                 err = mapping->a_ops->readpage(NULL, page);
2844                 if (err) {
2845                         put_page(page);
2846                         goto out;
2847                 }
2848                 lock_page(page);
2849                 if (!PageUptodate(page)) {
2850                         err = -EIO;
2851                         goto unlock;
2852                 }
2853                 if (page_has_buffers(page))
2854                         goto has_buffers;
2855         }
2856         zero_user(page, offset, length);
2857         set_page_dirty(page);
2858         err = 0;
2859
2860 unlock:
2861         unlock_page(page);
2862         put_page(page);
2863 out:
2864         return err;
2865 }
2866 EXPORT_SYMBOL(nobh_truncate_page);
2867
2868 int block_truncate_page(struct address_space *mapping,
2869                         loff_t from, get_block_t *get_block)
2870 {
2871         pgoff_t index = from >> PAGE_SHIFT;
2872         unsigned offset = from & (PAGE_SIZE-1);
2873         unsigned blocksize;
2874         sector_t iblock;
2875         unsigned length, pos;
2876         struct inode *inode = mapping->host;
2877         struct page *page;
2878         struct buffer_head *bh;
2879         int err;
2880
2881         blocksize = i_blocksize(inode);
2882         length = offset & (blocksize - 1);
2883
2884         /* Block boundary? Nothing to do */
2885         if (!length)
2886                 return 0;
2887
2888         length = blocksize - length;
2889         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2890         
2891         page = grab_cache_page(mapping, index);
2892         err = -ENOMEM;
2893         if (!page)
2894                 goto out;
2895
2896         if (!page_has_buffers(page))
2897                 create_empty_buffers(page, blocksize, 0);
2898
2899         /* Find the buffer that contains "offset" */
2900         bh = page_buffers(page);
2901         pos = blocksize;
2902         while (offset >= pos) {
2903                 bh = bh->b_this_page;
2904                 iblock++;
2905                 pos += blocksize;
2906         }
2907
2908         err = 0;
2909         if (!buffer_mapped(bh)) {
2910                 WARN_ON(bh->b_size != blocksize);
2911                 err = get_block(inode, iblock, bh, 0);
2912                 if (err)
2913                         goto unlock;
2914                 /* unmapped? It's a hole - nothing to do */
2915                 if (!buffer_mapped(bh))
2916                         goto unlock;
2917         }
2918
2919         /* Ok, it's mapped. Make sure it's up-to-date */
2920         if (PageUptodate(page))
2921                 set_buffer_uptodate(bh);
2922
2923         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2924                 err = -EIO;
2925                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2926                 wait_on_buffer(bh);
2927                 /* Uhhuh. Read error. Complain and punt. */
2928                 if (!buffer_uptodate(bh))
2929                         goto unlock;
2930         }
2931
2932         zero_user(page, offset, length);
2933         mark_buffer_dirty(bh);
2934         err = 0;
2935
2936 unlock:
2937         unlock_page(page);
2938         put_page(page);
2939 out:
2940         return err;
2941 }
2942 EXPORT_SYMBOL(block_truncate_page);
2943
2944 /*
2945  * The generic ->writepage function for buffer-backed address_spaces
2946  */
2947 int block_write_full_page(struct page *page, get_block_t *get_block,
2948                         struct writeback_control *wbc)
2949 {
2950         struct inode * const inode = page->mapping->host;
2951         loff_t i_size = i_size_read(inode);
2952         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2953         unsigned offset;
2954
2955         /* Is the page fully inside i_size? */
2956         if (page->index < end_index)
2957                 return __block_write_full_page(inode, page, get_block, wbc,
2958                                                end_buffer_async_write);
2959
2960         /* Is the page fully outside i_size? (truncate in progress) */
2961         offset = i_size & (PAGE_SIZE-1);
2962         if (page->index >= end_index+1 || !offset) {
2963                 unlock_page(page);
2964                 return 0; /* don't care */
2965         }
2966
2967         /*
2968          * The page straddles i_size.  It must be zeroed out on each and every
2969          * writepage invocation because it may be mmapped.  "A file is mapped
2970          * in multiples of the page size.  For a file that is not a multiple of
2971          * the  page size, the remaining memory is zeroed when mapped, and
2972          * writes to that region are not written out to the file."
2973          */
2974         zero_user_segment(page, offset, PAGE_SIZE);
2975         return __block_write_full_page(inode, page, get_block, wbc,
2976                                                         end_buffer_async_write);
2977 }
2978 EXPORT_SYMBOL(block_write_full_page);
2979
2980 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2981                             get_block_t *get_block)
2982 {
2983         struct inode *inode = mapping->host;
2984         struct buffer_head tmp = {
2985                 .b_size = i_blocksize(inode),
2986         };
2987
2988         get_block(inode, block, &tmp, 0);
2989         return tmp.b_blocknr;
2990 }
2991 EXPORT_SYMBOL(generic_block_bmap);
2992
2993 static void end_bio_bh_io_sync(struct bio *bio)
2994 {
2995         struct buffer_head *bh = bio->bi_private;
2996
2997         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2998                 set_bit(BH_Quiet, &bh->b_state);
2999
3000         bh->b_end_io(bh, !bio->bi_status);
3001         bio_put(bio);
3002 }
3003
3004 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3005                          struct writeback_control *wbc)
3006 {
3007         struct bio *bio;
3008
3009         BUG_ON(!buffer_locked(bh));
3010         BUG_ON(!buffer_mapped(bh));
3011         BUG_ON(!bh->b_end_io);
3012         BUG_ON(buffer_delay(bh));
3013         BUG_ON(buffer_unwritten(bh));
3014
3015         /*
3016          * Only clear out a write error when rewriting
3017          */
3018         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3019                 clear_buffer_write_io_error(bh);
3020
3021         if (buffer_meta(bh))
3022                 op_flags |= REQ_META;
3023         if (buffer_prio(bh))
3024                 op_flags |= REQ_PRIO;
3025
3026         bio = bio_alloc(bh->b_bdev, 1, op | op_flags, GFP_NOIO);
3027
3028         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3029
3030         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3031
3032         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3033         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3034
3035         bio->bi_end_io = end_bio_bh_io_sync;
3036         bio->bi_private = bh;
3037
3038         /* Take care of bh's that straddle the end of the device */
3039         guard_bio_eod(bio);
3040
3041         if (wbc) {
3042                 wbc_init_bio(wbc, bio);
3043                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3044         }
3045
3046         submit_bio(bio);
3047         return 0;
3048 }
3049
3050 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3051 {
3052         return submit_bh_wbc(op, op_flags, bh, NULL);
3053 }
3054 EXPORT_SYMBOL(submit_bh);
3055
3056 /**
3057  * ll_rw_block: low-level access to block devices (DEPRECATED)
3058  * @op: whether to %READ or %WRITE
3059  * @op_flags: req_flag_bits
3060  * @nr: number of &struct buffer_heads in the array
3061  * @bhs: array of pointers to &struct buffer_head
3062  *
3063  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3064  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3065  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3066  * %REQ_RAHEAD.
3067  *
3068  * This function drops any buffer that it cannot get a lock on (with the
3069  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3070  * request, and any buffer that appears to be up-to-date when doing read
3071  * request.  Further it marks as clean buffers that are processed for
3072  * writing (the buffer cache won't assume that they are actually clean
3073  * until the buffer gets unlocked).
3074  *
3075  * ll_rw_block sets b_end_io to simple completion handler that marks
3076  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3077  * any waiters. 
3078  *
3079  * All of the buffers must be for the same device, and must also be a
3080  * multiple of the current approved size for the device.
3081  */
3082 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3083 {
3084         int i;
3085
3086         for (i = 0; i < nr; i++) {
3087                 struct buffer_head *bh = bhs[i];
3088
3089                 if (!trylock_buffer(bh))
3090                         continue;
3091                 if (op == WRITE) {
3092                         if (test_clear_buffer_dirty(bh)) {
3093                                 bh->b_end_io = end_buffer_write_sync;
3094                                 get_bh(bh);
3095                                 submit_bh(op, op_flags, bh);
3096                                 continue;
3097                         }
3098                 } else {
3099                         if (!buffer_uptodate(bh)) {
3100                                 bh->b_end_io = end_buffer_read_sync;
3101                                 get_bh(bh);
3102                                 submit_bh(op, op_flags, bh);
3103                                 continue;
3104                         }
3105                 }
3106                 unlock_buffer(bh);
3107         }
3108 }
3109 EXPORT_SYMBOL(ll_rw_block);
3110
3111 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3112 {
3113         lock_buffer(bh);
3114         if (!test_clear_buffer_dirty(bh)) {
3115                 unlock_buffer(bh);
3116                 return;
3117         }
3118         bh->b_end_io = end_buffer_write_sync;
3119         get_bh(bh);
3120         submit_bh(REQ_OP_WRITE, op_flags, bh);
3121 }
3122 EXPORT_SYMBOL(write_dirty_buffer);
3123
3124 /*
3125  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3126  * and then start new I/O and then wait upon it.  The caller must have a ref on
3127  * the buffer_head.
3128  */
3129 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3130 {
3131         int ret = 0;
3132
3133         WARN_ON(atomic_read(&bh->b_count) < 1);
3134         lock_buffer(bh);
3135         if (test_clear_buffer_dirty(bh)) {
3136                 /*
3137                  * The bh should be mapped, but it might not be if the
3138                  * device was hot-removed. Not much we can do but fail the I/O.
3139                  */
3140                 if (!buffer_mapped(bh)) {
3141                         unlock_buffer(bh);
3142                         return -EIO;
3143                 }
3144
3145                 get_bh(bh);
3146                 bh->b_end_io = end_buffer_write_sync;
3147                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3148                 wait_on_buffer(bh);
3149                 if (!ret && !buffer_uptodate(bh))
3150                         ret = -EIO;
3151         } else {
3152                 unlock_buffer(bh);
3153         }
3154         return ret;
3155 }
3156 EXPORT_SYMBOL(__sync_dirty_buffer);
3157
3158 int sync_dirty_buffer(struct buffer_head *bh)
3159 {
3160         return __sync_dirty_buffer(bh, REQ_SYNC);
3161 }
3162 EXPORT_SYMBOL(sync_dirty_buffer);
3163
3164 /*
3165  * try_to_free_buffers() checks if all the buffers on this particular page
3166  * are unused, and releases them if so.
3167  *
3168  * Exclusion against try_to_free_buffers may be obtained by either
3169  * locking the page or by holding its mapping's private_lock.
3170  *
3171  * If the page is dirty but all the buffers are clean then we need to
3172  * be sure to mark the page clean as well.  This is because the page
3173  * may be against a block device, and a later reattachment of buffers
3174  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3175  * filesystem data on the same device.
3176  *
3177  * The same applies to regular filesystem pages: if all the buffers are
3178  * clean then we set the page clean and proceed.  To do that, we require
3179  * total exclusion from block_dirty_folio().  That is obtained with
3180  * private_lock.
3181  *
3182  * try_to_free_buffers() is non-blocking.
3183  */
3184 static inline int buffer_busy(struct buffer_head *bh)
3185 {
3186         return atomic_read(&bh->b_count) |
3187                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3188 }
3189
3190 static int
3191 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3192 {
3193         struct buffer_head *head = page_buffers(page);
3194         struct buffer_head *bh;
3195
3196         bh = head;
3197         do {
3198                 if (buffer_busy(bh))
3199                         goto failed;
3200                 bh = bh->b_this_page;
3201         } while (bh != head);
3202
3203         do {
3204                 struct buffer_head *next = bh->b_this_page;
3205
3206                 if (bh->b_assoc_map)
3207                         __remove_assoc_queue(bh);
3208                 bh = next;
3209         } while (bh != head);
3210         *buffers_to_free = head;
3211         detach_page_private(page);
3212         return 1;
3213 failed:
3214         return 0;
3215 }
3216
3217 int try_to_free_buffers(struct page *page)
3218 {
3219         struct address_space * const mapping = page->mapping;
3220         struct buffer_head *buffers_to_free = NULL;
3221         int ret = 0;
3222
3223         BUG_ON(!PageLocked(page));
3224         if (PageWriteback(page))
3225                 return 0;
3226
3227         if (mapping == NULL) {          /* can this still happen? */
3228                 ret = drop_buffers(page, &buffers_to_free);
3229                 goto out;
3230         }
3231
3232         spin_lock(&mapping->private_lock);
3233         ret = drop_buffers(page, &buffers_to_free);
3234
3235         /*
3236          * If the filesystem writes its buffers by hand (eg ext3)
3237          * then we can have clean buffers against a dirty page.  We
3238          * clean the page here; otherwise the VM will never notice
3239          * that the filesystem did any IO at all.
3240          *
3241          * Also, during truncate, discard_buffer will have marked all
3242          * the page's buffers clean.  We discover that here and clean
3243          * the page also.
3244          *
3245          * private_lock must be held over this entire operation in order
3246          * to synchronise against block_dirty_folio and prevent the
3247          * dirty bit from being lost.
3248          */
3249         if (ret)
3250                 cancel_dirty_page(page);
3251         spin_unlock(&mapping->private_lock);
3252 out:
3253         if (buffers_to_free) {
3254                 struct buffer_head *bh = buffers_to_free;
3255
3256                 do {
3257                         struct buffer_head *next = bh->b_this_page;
3258                         free_buffer_head(bh);
3259                         bh = next;
3260                 } while (bh != buffers_to_free);
3261         }
3262         return ret;
3263 }
3264 EXPORT_SYMBOL(try_to_free_buffers);
3265
3266 /*
3267  * Buffer-head allocation
3268  */
3269 static struct kmem_cache *bh_cachep __read_mostly;
3270
3271 /*
3272  * Once the number of bh's in the machine exceeds this level, we start
3273  * stripping them in writeback.
3274  */
3275 static unsigned long max_buffer_heads;
3276
3277 int buffer_heads_over_limit;
3278
3279 struct bh_accounting {
3280         int nr;                 /* Number of live bh's */
3281         int ratelimit;          /* Limit cacheline bouncing */
3282 };
3283
3284 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3285
3286 static void recalc_bh_state(void)
3287 {
3288         int i;
3289         int tot = 0;
3290
3291         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3292                 return;
3293         __this_cpu_write(bh_accounting.ratelimit, 0);
3294         for_each_online_cpu(i)
3295                 tot += per_cpu(bh_accounting, i).nr;
3296         buffer_heads_over_limit = (tot > max_buffer_heads);
3297 }
3298
3299 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3300 {
3301         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3302         if (ret) {
3303                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3304                 spin_lock_init(&ret->b_uptodate_lock);
3305                 preempt_disable();
3306                 __this_cpu_inc(bh_accounting.nr);
3307                 recalc_bh_state();
3308                 preempt_enable();
3309         }
3310         return ret;
3311 }
3312 EXPORT_SYMBOL(alloc_buffer_head);
3313
3314 void free_buffer_head(struct buffer_head *bh)
3315 {
3316         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3317         kmem_cache_free(bh_cachep, bh);
3318         preempt_disable();
3319         __this_cpu_dec(bh_accounting.nr);
3320         recalc_bh_state();
3321         preempt_enable();
3322 }
3323 EXPORT_SYMBOL(free_buffer_head);
3324
3325 static int buffer_exit_cpu_dead(unsigned int cpu)
3326 {
3327         int i;
3328         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3329
3330         for (i = 0; i < BH_LRU_SIZE; i++) {
3331                 brelse(b->bhs[i]);
3332                 b->bhs[i] = NULL;
3333         }
3334         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3335         per_cpu(bh_accounting, cpu).nr = 0;
3336         return 0;
3337 }
3338
3339 /**
3340  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3341  * @bh: struct buffer_head
3342  *
3343  * Return true if the buffer is up-to-date and false,
3344  * with the buffer locked, if not.
3345  */
3346 int bh_uptodate_or_lock(struct buffer_head *bh)
3347 {
3348         if (!buffer_uptodate(bh)) {
3349                 lock_buffer(bh);
3350                 if (!buffer_uptodate(bh))
3351                         return 0;
3352                 unlock_buffer(bh);
3353         }
3354         return 1;
3355 }
3356 EXPORT_SYMBOL(bh_uptodate_or_lock);
3357
3358 /**
3359  * bh_submit_read - Submit a locked buffer for reading
3360  * @bh: struct buffer_head
3361  *
3362  * Returns zero on success and -EIO on error.
3363  */
3364 int bh_submit_read(struct buffer_head *bh)
3365 {
3366         BUG_ON(!buffer_locked(bh));
3367
3368         if (buffer_uptodate(bh)) {
3369                 unlock_buffer(bh);
3370                 return 0;
3371         }
3372
3373         get_bh(bh);
3374         bh->b_end_io = end_buffer_read_sync;
3375         submit_bh(REQ_OP_READ, 0, bh);
3376         wait_on_buffer(bh);
3377         if (buffer_uptodate(bh))
3378                 return 0;
3379         return -EIO;
3380 }
3381 EXPORT_SYMBOL(bh_submit_read);
3382
3383 void __init buffer_init(void)
3384 {
3385         unsigned long nrpages;
3386         int ret;
3387
3388         bh_cachep = kmem_cache_create("buffer_head",
3389                         sizeof(struct buffer_head), 0,
3390                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3391                                 SLAB_MEM_SPREAD),
3392                                 NULL);
3393
3394         /*
3395          * Limit the bh occupancy to 10% of ZONE_NORMAL
3396          */
3397         nrpages = (nr_free_buffer_pages() * 10) / 100;
3398         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3399         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3400                                         NULL, buffer_exit_cpu_dead);
3401         WARN_ON(ret < 0);
3402 }