OSDN Git Service

9p locks: add mount option for lock retry interval
[android-x86/kernel.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77         BUG_ON(!fmt);
78         if (WARN_ON(!fmt->load_binary))
79                 return;
80         write_lock(&binfmt_lock);
81         insert ? list_add(&fmt->lh, &formats) :
82                  list_add_tail(&fmt->lh, &formats);
83         write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90         write_lock(&binfmt_lock);
91         list_del(&fmt->lh);
92         write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99         module_put(fmt->module);
100 }
101
102 bool path_noexec(const struct path *path)
103 {
104         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117         struct linux_binfmt *fmt;
118         struct file *file;
119         struct filename *tmp = getname(library);
120         int error = PTR_ERR(tmp);
121         static const struct open_flags uselib_flags = {
122                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123                 .acc_mode = MAY_READ | MAY_EXEC,
124                 .intent = LOOKUP_OPEN,
125                 .lookup_flags = LOOKUP_FOLLOW,
126         };
127
128         if (IS_ERR(tmp))
129                 goto out;
130
131         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132         putname(tmp);
133         error = PTR_ERR(file);
134         if (IS_ERR(file))
135                 goto out;
136
137         error = -EINVAL;
138         if (!S_ISREG(file_inode(file)->i_mode))
139                 goto exit;
140
141         error = -EACCES;
142         if (path_noexec(&file->f_path))
143                 goto exit;
144
145         fsnotify_open(file);
146
147         error = -ENOEXEC;
148
149         read_lock(&binfmt_lock);
150         list_for_each_entry(fmt, &formats, lh) {
151                 if (!fmt->load_shlib)
152                         continue;
153                 if (!try_module_get(fmt->module))
154                         continue;
155                 read_unlock(&binfmt_lock);
156                 error = fmt->load_shlib(file);
157                 read_lock(&binfmt_lock);
158                 put_binfmt(fmt);
159                 if (error != -ENOEXEC)
160                         break;
161         }
162         read_unlock(&binfmt_lock);
163 exit:
164         fput(file);
165 out:
166         return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179         struct mm_struct *mm = current->mm;
180         long diff = (long)(pages - bprm->vma_pages);
181
182         if (!mm || !diff)
183                 return;
184
185         bprm->vma_pages = pages;
186         add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190                 int write)
191 {
192         struct page *page;
193         int ret;
194         unsigned int gup_flags = FOLL_FORCE;
195
196 #ifdef CONFIG_STACK_GROWSUP
197         if (write) {
198                 ret = expand_downwards(bprm->vma, pos);
199                 if (ret < 0)
200                         return NULL;
201         }
202 #endif
203
204         if (write)
205                 gup_flags |= FOLL_WRITE;
206
207         /*
208          * We are doing an exec().  'current' is the process
209          * doing the exec and bprm->mm is the new process's mm.
210          */
211         ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
212                         &page, NULL);
213         if (ret <= 0)
214                 return NULL;
215
216         if (write) {
217                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
218                 unsigned long ptr_size, limit;
219
220                 /*
221                  * Since the stack will hold pointers to the strings, we
222                  * must account for them as well.
223                  *
224                  * The size calculation is the entire vma while each arg page is
225                  * built, so each time we get here it's calculating how far it
226                  * is currently (rather than each call being just the newly
227                  * added size from the arg page).  As a result, we need to
228                  * always add the entire size of the pointers, so that on the
229                  * last call to get_arg_page() we'll actually have the entire
230                  * correct size.
231                  */
232                 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
233                 if (ptr_size > ULONG_MAX - size)
234                         goto fail;
235                 size += ptr_size;
236
237                 acct_arg_size(bprm, size / PAGE_SIZE);
238
239                 /*
240                  * We've historically supported up to 32 pages (ARG_MAX)
241                  * of argument strings even with small stacks
242                  */
243                 if (size <= ARG_MAX)
244                         return page;
245
246                 /*
247                  * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
248                  * (whichever is smaller) for the argv+env strings.
249                  * This ensures that:
250                  *  - the remaining binfmt code will not run out of stack space,
251                  *  - the program will have a reasonable amount of stack left
252                  *    to work from.
253                  */
254                 limit = _STK_LIM / 4 * 3;
255                 limit = min(limit, rlimit(RLIMIT_STACK) / 4);
256                 if (size > limit)
257                         goto fail;
258         }
259
260         return page;
261
262 fail:
263         put_page(page);
264         return NULL;
265 }
266
267 static void put_arg_page(struct page *page)
268 {
269         put_page(page);
270 }
271
272 static void free_arg_pages(struct linux_binprm *bprm)
273 {
274 }
275
276 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
277                 struct page *page)
278 {
279         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
280 }
281
282 static int __bprm_mm_init(struct linux_binprm *bprm)
283 {
284         int err;
285         struct vm_area_struct *vma = NULL;
286         struct mm_struct *mm = bprm->mm;
287
288         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
289         if (!vma)
290                 return -ENOMEM;
291
292         if (down_write_killable(&mm->mmap_sem)) {
293                 err = -EINTR;
294                 goto err_free;
295         }
296         vma->vm_mm = mm;
297
298         /*
299          * Place the stack at the largest stack address the architecture
300          * supports. Later, we'll move this to an appropriate place. We don't
301          * use STACK_TOP because that can depend on attributes which aren't
302          * configured yet.
303          */
304         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
305         vma->vm_end = STACK_TOP_MAX;
306         vma->vm_start = vma->vm_end - PAGE_SIZE;
307         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
308         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
309         INIT_LIST_HEAD(&vma->anon_vma_chain);
310
311         err = insert_vm_struct(mm, vma);
312         if (err)
313                 goto err;
314
315         mm->stack_vm = mm->total_vm = 1;
316         arch_bprm_mm_init(mm, vma);
317         up_write(&mm->mmap_sem);
318         bprm->p = vma->vm_end - sizeof(void *);
319         return 0;
320 err:
321         up_write(&mm->mmap_sem);
322 err_free:
323         bprm->vma = NULL;
324         kmem_cache_free(vm_area_cachep, vma);
325         return err;
326 }
327
328 static bool valid_arg_len(struct linux_binprm *bprm, long len)
329 {
330         return len <= MAX_ARG_STRLEN;
331 }
332
333 #else
334
335 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
336 {
337 }
338
339 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
340                 int write)
341 {
342         struct page *page;
343
344         page = bprm->page[pos / PAGE_SIZE];
345         if (!page && write) {
346                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
347                 if (!page)
348                         return NULL;
349                 bprm->page[pos / PAGE_SIZE] = page;
350         }
351
352         return page;
353 }
354
355 static void put_arg_page(struct page *page)
356 {
357 }
358
359 static void free_arg_page(struct linux_binprm *bprm, int i)
360 {
361         if (bprm->page[i]) {
362                 __free_page(bprm->page[i]);
363                 bprm->page[i] = NULL;
364         }
365 }
366
367 static void free_arg_pages(struct linux_binprm *bprm)
368 {
369         int i;
370
371         for (i = 0; i < MAX_ARG_PAGES; i++)
372                 free_arg_page(bprm, i);
373 }
374
375 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
376                 struct page *page)
377 {
378 }
379
380 static int __bprm_mm_init(struct linux_binprm *bprm)
381 {
382         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
383         return 0;
384 }
385
386 static bool valid_arg_len(struct linux_binprm *bprm, long len)
387 {
388         return len <= bprm->p;
389 }
390
391 #endif /* CONFIG_MMU */
392
393 /*
394  * Create a new mm_struct and populate it with a temporary stack
395  * vm_area_struct.  We don't have enough context at this point to set the stack
396  * flags, permissions, and offset, so we use temporary values.  We'll update
397  * them later in setup_arg_pages().
398  */
399 static int bprm_mm_init(struct linux_binprm *bprm)
400 {
401         int err;
402         struct mm_struct *mm = NULL;
403
404         bprm->mm = mm = mm_alloc();
405         err = -ENOMEM;
406         if (!mm)
407                 goto err;
408
409         err = __bprm_mm_init(bprm);
410         if (err)
411                 goto err;
412
413         return 0;
414
415 err:
416         if (mm) {
417                 bprm->mm = NULL;
418                 mmdrop(mm);
419         }
420
421         return err;
422 }
423
424 struct user_arg_ptr {
425 #ifdef CONFIG_COMPAT
426         bool is_compat;
427 #endif
428         union {
429                 const char __user *const __user *native;
430 #ifdef CONFIG_COMPAT
431                 const compat_uptr_t __user *compat;
432 #endif
433         } ptr;
434 };
435
436 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
437 {
438         const char __user *native;
439
440 #ifdef CONFIG_COMPAT
441         if (unlikely(argv.is_compat)) {
442                 compat_uptr_t compat;
443
444                 if (get_user(compat, argv.ptr.compat + nr))
445                         return ERR_PTR(-EFAULT);
446
447                 return compat_ptr(compat);
448         }
449 #endif
450
451         if (get_user(native, argv.ptr.native + nr))
452                 return ERR_PTR(-EFAULT);
453
454         return native;
455 }
456
457 /*
458  * count() counts the number of strings in array ARGV.
459  */
460 static int count(struct user_arg_ptr argv, int max)
461 {
462         int i = 0;
463
464         if (argv.ptr.native != NULL) {
465                 for (;;) {
466                         const char __user *p = get_user_arg_ptr(argv, i);
467
468                         if (!p)
469                                 break;
470
471                         if (IS_ERR(p))
472                                 return -EFAULT;
473
474                         if (i >= max)
475                                 return -E2BIG;
476                         ++i;
477
478                         if (fatal_signal_pending(current))
479                                 return -ERESTARTNOHAND;
480                         cond_resched();
481                 }
482         }
483         return i;
484 }
485
486 /*
487  * 'copy_strings()' copies argument/environment strings from the old
488  * processes's memory to the new process's stack.  The call to get_user_pages()
489  * ensures the destination page is created and not swapped out.
490  */
491 static int copy_strings(int argc, struct user_arg_ptr argv,
492                         struct linux_binprm *bprm)
493 {
494         struct page *kmapped_page = NULL;
495         char *kaddr = NULL;
496         unsigned long kpos = 0;
497         int ret;
498
499         while (argc-- > 0) {
500                 const char __user *str;
501                 int len;
502                 unsigned long pos;
503
504                 ret = -EFAULT;
505                 str = get_user_arg_ptr(argv, argc);
506                 if (IS_ERR(str))
507                         goto out;
508
509                 len = strnlen_user(str, MAX_ARG_STRLEN);
510                 if (!len)
511                         goto out;
512
513                 ret = -E2BIG;
514                 if (!valid_arg_len(bprm, len))
515                         goto out;
516
517                 /* We're going to work our way backwords. */
518                 pos = bprm->p;
519                 str += len;
520                 bprm->p -= len;
521
522                 while (len > 0) {
523                         int offset, bytes_to_copy;
524
525                         if (fatal_signal_pending(current)) {
526                                 ret = -ERESTARTNOHAND;
527                                 goto out;
528                         }
529                         cond_resched();
530
531                         offset = pos % PAGE_SIZE;
532                         if (offset == 0)
533                                 offset = PAGE_SIZE;
534
535                         bytes_to_copy = offset;
536                         if (bytes_to_copy > len)
537                                 bytes_to_copy = len;
538
539                         offset -= bytes_to_copy;
540                         pos -= bytes_to_copy;
541                         str -= bytes_to_copy;
542                         len -= bytes_to_copy;
543
544                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
545                                 struct page *page;
546
547                                 page = get_arg_page(bprm, pos, 1);
548                                 if (!page) {
549                                         ret = -E2BIG;
550                                         goto out;
551                                 }
552
553                                 if (kmapped_page) {
554                                         flush_kernel_dcache_page(kmapped_page);
555                                         kunmap(kmapped_page);
556                                         put_arg_page(kmapped_page);
557                                 }
558                                 kmapped_page = page;
559                                 kaddr = kmap(kmapped_page);
560                                 kpos = pos & PAGE_MASK;
561                                 flush_arg_page(bprm, kpos, kmapped_page);
562                         }
563                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
564                                 ret = -EFAULT;
565                                 goto out;
566                         }
567                 }
568         }
569         ret = 0;
570 out:
571         if (kmapped_page) {
572                 flush_kernel_dcache_page(kmapped_page);
573                 kunmap(kmapped_page);
574                 put_arg_page(kmapped_page);
575         }
576         return ret;
577 }
578
579 /*
580  * Like copy_strings, but get argv and its values from kernel memory.
581  */
582 int copy_strings_kernel(int argc, const char *const *__argv,
583                         struct linux_binprm *bprm)
584 {
585         int r;
586         mm_segment_t oldfs = get_fs();
587         struct user_arg_ptr argv = {
588                 .ptr.native = (const char __user *const  __user *)__argv,
589         };
590
591         set_fs(KERNEL_DS);
592         r = copy_strings(argc, argv, bprm);
593         set_fs(oldfs);
594
595         return r;
596 }
597 EXPORT_SYMBOL(copy_strings_kernel);
598
599 #ifdef CONFIG_MMU
600
601 /*
602  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
603  * the binfmt code determines where the new stack should reside, we shift it to
604  * its final location.  The process proceeds as follows:
605  *
606  * 1) Use shift to calculate the new vma endpoints.
607  * 2) Extend vma to cover both the old and new ranges.  This ensures the
608  *    arguments passed to subsequent functions are consistent.
609  * 3) Move vma's page tables to the new range.
610  * 4) Free up any cleared pgd range.
611  * 5) Shrink the vma to cover only the new range.
612  */
613 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
614 {
615         struct mm_struct *mm = vma->vm_mm;
616         unsigned long old_start = vma->vm_start;
617         unsigned long old_end = vma->vm_end;
618         unsigned long length = old_end - old_start;
619         unsigned long new_start = old_start - shift;
620         unsigned long new_end = old_end - shift;
621         struct mmu_gather tlb;
622
623         BUG_ON(new_start > new_end);
624
625         /*
626          * ensure there are no vmas between where we want to go
627          * and where we are
628          */
629         if (vma != find_vma(mm, new_start))
630                 return -EFAULT;
631
632         /*
633          * cover the whole range: [new_start, old_end)
634          */
635         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
636                 return -ENOMEM;
637
638         /*
639          * move the page tables downwards, on failure we rely on
640          * process cleanup to remove whatever mess we made.
641          */
642         if (length != move_page_tables(vma, old_start,
643                                        vma, new_start, length, false))
644                 return -ENOMEM;
645
646         lru_add_drain();
647         tlb_gather_mmu(&tlb, mm, old_start, old_end);
648         if (new_end > old_start) {
649                 /*
650                  * when the old and new regions overlap clear from new_end.
651                  */
652                 free_pgd_range(&tlb, new_end, old_end, new_end,
653                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
654         } else {
655                 /*
656                  * otherwise, clean from old_start; this is done to not touch
657                  * the address space in [new_end, old_start) some architectures
658                  * have constraints on va-space that make this illegal (IA64) -
659                  * for the others its just a little faster.
660                  */
661                 free_pgd_range(&tlb, old_start, old_end, new_end,
662                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
663         }
664         tlb_finish_mmu(&tlb, old_start, old_end);
665
666         /*
667          * Shrink the vma to just the new range.  Always succeeds.
668          */
669         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
670
671         return 0;
672 }
673
674 /*
675  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
676  * the stack is optionally relocated, and some extra space is added.
677  */
678 int setup_arg_pages(struct linux_binprm *bprm,
679                     unsigned long stack_top,
680                     int executable_stack)
681 {
682         unsigned long ret;
683         unsigned long stack_shift;
684         struct mm_struct *mm = current->mm;
685         struct vm_area_struct *vma = bprm->vma;
686         struct vm_area_struct *prev = NULL;
687         unsigned long vm_flags;
688         unsigned long stack_base;
689         unsigned long stack_size;
690         unsigned long stack_expand;
691         unsigned long rlim_stack;
692
693 #ifdef CONFIG_STACK_GROWSUP
694         /* Limit stack size */
695         stack_base = rlimit_max(RLIMIT_STACK);
696         if (stack_base > STACK_SIZE_MAX)
697                 stack_base = STACK_SIZE_MAX;
698
699         /* Add space for stack randomization. */
700         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
701
702         /* Make sure we didn't let the argument array grow too large. */
703         if (vma->vm_end - vma->vm_start > stack_base)
704                 return -ENOMEM;
705
706         stack_base = PAGE_ALIGN(stack_top - stack_base);
707
708         stack_shift = vma->vm_start - stack_base;
709         mm->arg_start = bprm->p - stack_shift;
710         bprm->p = vma->vm_end - stack_shift;
711 #else
712         stack_top = arch_align_stack(stack_top);
713         stack_top = PAGE_ALIGN(stack_top);
714
715         if (unlikely(stack_top < mmap_min_addr) ||
716             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
717                 return -ENOMEM;
718
719         stack_shift = vma->vm_end - stack_top;
720
721         bprm->p -= stack_shift;
722         mm->arg_start = bprm->p;
723 #endif
724
725         if (bprm->loader)
726                 bprm->loader -= stack_shift;
727         bprm->exec -= stack_shift;
728
729         if (down_write_killable(&mm->mmap_sem))
730                 return -EINTR;
731
732         vm_flags = VM_STACK_FLAGS;
733
734         /*
735          * Adjust stack execute permissions; explicitly enable for
736          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
737          * (arch default) otherwise.
738          */
739         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
740                 vm_flags |= VM_EXEC;
741         else if (executable_stack == EXSTACK_DISABLE_X)
742                 vm_flags &= ~VM_EXEC;
743         vm_flags |= mm->def_flags;
744         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
745
746         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
747                         vm_flags);
748         if (ret)
749                 goto out_unlock;
750         BUG_ON(prev != vma);
751
752         /* Move stack pages down in memory. */
753         if (stack_shift) {
754                 ret = shift_arg_pages(vma, stack_shift);
755                 if (ret)
756                         goto out_unlock;
757         }
758
759         /* mprotect_fixup is overkill to remove the temporary stack flags */
760         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
761
762         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
763         stack_size = vma->vm_end - vma->vm_start;
764         /*
765          * Align this down to a page boundary as expand_stack
766          * will align it up.
767          */
768         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
769 #ifdef CONFIG_STACK_GROWSUP
770         if (stack_size + stack_expand > rlim_stack)
771                 stack_base = vma->vm_start + rlim_stack;
772         else
773                 stack_base = vma->vm_end + stack_expand;
774 #else
775         if (stack_size + stack_expand > rlim_stack)
776                 stack_base = vma->vm_end - rlim_stack;
777         else
778                 stack_base = vma->vm_start - stack_expand;
779 #endif
780         current->mm->start_stack = bprm->p;
781         ret = expand_stack(vma, stack_base);
782         if (ret)
783                 ret = -EFAULT;
784
785 out_unlock:
786         up_write(&mm->mmap_sem);
787         return ret;
788 }
789 EXPORT_SYMBOL(setup_arg_pages);
790
791 #else
792
793 /*
794  * Transfer the program arguments and environment from the holding pages
795  * onto the stack. The provided stack pointer is adjusted accordingly.
796  */
797 int transfer_args_to_stack(struct linux_binprm *bprm,
798                            unsigned long *sp_location)
799 {
800         unsigned long index, stop, sp;
801         int ret = 0;
802
803         stop = bprm->p >> PAGE_SHIFT;
804         sp = *sp_location;
805
806         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
807                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
808                 char *src = kmap(bprm->page[index]) + offset;
809                 sp -= PAGE_SIZE - offset;
810                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
811                         ret = -EFAULT;
812                 kunmap(bprm->page[index]);
813                 if (ret)
814                         goto out;
815         }
816
817         *sp_location = sp;
818
819 out:
820         return ret;
821 }
822 EXPORT_SYMBOL(transfer_args_to_stack);
823
824 #endif /* CONFIG_MMU */
825
826 static struct file *do_open_execat(int fd, struct filename *name, int flags)
827 {
828         struct file *file;
829         int err;
830         struct open_flags open_exec_flags = {
831                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
832                 .acc_mode = MAY_EXEC,
833                 .intent = LOOKUP_OPEN,
834                 .lookup_flags = LOOKUP_FOLLOW,
835         };
836
837         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
838                 return ERR_PTR(-EINVAL);
839         if (flags & AT_SYMLINK_NOFOLLOW)
840                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
841         if (flags & AT_EMPTY_PATH)
842                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
843
844         file = do_filp_open(fd, name, &open_exec_flags);
845         if (IS_ERR(file))
846                 goto out;
847
848         err = -EACCES;
849         if (!S_ISREG(file_inode(file)->i_mode))
850                 goto exit;
851
852         if (path_noexec(&file->f_path))
853                 goto exit;
854
855         err = deny_write_access(file);
856         if (err)
857                 goto exit;
858
859         if (name->name[0] != '\0')
860                 fsnotify_open(file);
861
862 out:
863         return file;
864
865 exit:
866         fput(file);
867         return ERR_PTR(err);
868 }
869
870 struct file *open_exec(const char *name)
871 {
872         struct filename *filename = getname_kernel(name);
873         struct file *f = ERR_CAST(filename);
874
875         if (!IS_ERR(filename)) {
876                 f = do_open_execat(AT_FDCWD, filename, 0);
877                 putname(filename);
878         }
879         return f;
880 }
881 EXPORT_SYMBOL(open_exec);
882
883 int kernel_read(struct file *file, loff_t offset,
884                 char *addr, unsigned long count)
885 {
886         mm_segment_t old_fs;
887         loff_t pos = offset;
888         int result;
889
890         old_fs = get_fs();
891         set_fs(get_ds());
892         /* The cast to a user pointer is valid due to the set_fs() */
893         result = vfs_read(file, (void __user *)addr, count, &pos);
894         set_fs(old_fs);
895         return result;
896 }
897
898 EXPORT_SYMBOL(kernel_read);
899
900 int kernel_read_file(struct file *file, void **buf, loff_t *size,
901                      loff_t max_size, enum kernel_read_file_id id)
902 {
903         loff_t i_size, pos;
904         ssize_t bytes = 0;
905         int ret;
906
907         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
908                 return -EINVAL;
909
910         ret = security_kernel_read_file(file, id);
911         if (ret)
912                 return ret;
913
914         ret = deny_write_access(file);
915         if (ret)
916                 return ret;
917
918         i_size = i_size_read(file_inode(file));
919         if (max_size > 0 && i_size > max_size) {
920                 ret = -EFBIG;
921                 goto out;
922         }
923         if (i_size <= 0) {
924                 ret = -EINVAL;
925                 goto out;
926         }
927
928         if (id != READING_FIRMWARE_PREALLOC_BUFFER)
929                 *buf = vmalloc(i_size);
930         if (!*buf) {
931                 ret = -ENOMEM;
932                 goto out;
933         }
934
935         pos = 0;
936         while (pos < i_size) {
937                 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
938                                     i_size - pos);
939                 if (bytes < 0) {
940                         ret = bytes;
941                         goto out_free;
942                 }
943
944                 if (bytes == 0)
945                         break;
946                 pos += bytes;
947         }
948
949         if (pos != i_size) {
950                 ret = -EIO;
951                 goto out_free;
952         }
953
954         ret = security_kernel_post_read_file(file, *buf, i_size, id);
955         if (!ret)
956                 *size = pos;
957
958 out_free:
959         if (ret < 0) {
960                 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
961                         vfree(*buf);
962                         *buf = NULL;
963                 }
964         }
965
966 out:
967         allow_write_access(file);
968         return ret;
969 }
970 EXPORT_SYMBOL_GPL(kernel_read_file);
971
972 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
973                                loff_t max_size, enum kernel_read_file_id id)
974 {
975         struct file *file;
976         int ret;
977
978         if (!path || !*path)
979                 return -EINVAL;
980
981         file = filp_open(path, O_RDONLY, 0);
982         if (IS_ERR(file))
983                 return PTR_ERR(file);
984
985         ret = kernel_read_file(file, buf, size, max_size, id);
986         fput(file);
987         return ret;
988 }
989 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
990
991 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
992                              enum kernel_read_file_id id)
993 {
994         struct fd f = fdget(fd);
995         int ret = -EBADF;
996
997         if (!f.file)
998                 goto out;
999
1000         ret = kernel_read_file(f.file, buf, size, max_size, id);
1001 out:
1002         fdput(f);
1003         return ret;
1004 }
1005 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1006
1007 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1008 {
1009         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1010         if (res > 0)
1011                 flush_icache_range(addr, addr + len);
1012         return res;
1013 }
1014 EXPORT_SYMBOL(read_code);
1015
1016 static int exec_mmap(struct mm_struct *mm)
1017 {
1018         struct task_struct *tsk;
1019         struct mm_struct *old_mm, *active_mm;
1020
1021         /* Notify parent that we're no longer interested in the old VM */
1022         tsk = current;
1023         old_mm = current->mm;
1024         mm_release(tsk, old_mm);
1025
1026         if (old_mm) {
1027                 sync_mm_rss(old_mm);
1028                 /*
1029                  * Make sure that if there is a core dump in progress
1030                  * for the old mm, we get out and die instead of going
1031                  * through with the exec.  We must hold mmap_sem around
1032                  * checking core_state and changing tsk->mm.
1033                  */
1034                 down_read(&old_mm->mmap_sem);
1035                 if (unlikely(old_mm->core_state)) {
1036                         up_read(&old_mm->mmap_sem);
1037                         return -EINTR;
1038                 }
1039         }
1040         task_lock(tsk);
1041         active_mm = tsk->active_mm;
1042         tsk->mm = mm;
1043         tsk->active_mm = mm;
1044         activate_mm(active_mm, mm);
1045         tsk->mm->vmacache_seqnum = 0;
1046         vmacache_flush(tsk);
1047         task_unlock(tsk);
1048         if (old_mm) {
1049                 up_read(&old_mm->mmap_sem);
1050                 BUG_ON(active_mm != old_mm);
1051                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1052                 mm_update_next_owner(old_mm);
1053                 mmput(old_mm);
1054                 return 0;
1055         }
1056         mmdrop(active_mm);
1057         return 0;
1058 }
1059
1060 /*
1061  * This function makes sure the current process has its own signal table,
1062  * so that flush_signal_handlers can later reset the handlers without
1063  * disturbing other processes.  (Other processes might share the signal
1064  * table via the CLONE_SIGHAND option to clone().)
1065  */
1066 static int de_thread(struct task_struct *tsk)
1067 {
1068         struct signal_struct *sig = tsk->signal;
1069         struct sighand_struct *oldsighand = tsk->sighand;
1070         spinlock_t *lock = &oldsighand->siglock;
1071
1072         if (thread_group_empty(tsk))
1073                 goto no_thread_group;
1074
1075         /*
1076          * Kill all other threads in the thread group.
1077          */
1078         spin_lock_irq(lock);
1079         if (signal_group_exit(sig)) {
1080                 /*
1081                  * Another group action in progress, just
1082                  * return so that the signal is processed.
1083                  */
1084                 spin_unlock_irq(lock);
1085                 return -EAGAIN;
1086         }
1087
1088         sig->group_exit_task = tsk;
1089         sig->notify_count = zap_other_threads(tsk);
1090         if (!thread_group_leader(tsk))
1091                 sig->notify_count--;
1092
1093         while (sig->notify_count) {
1094                 __set_current_state(TASK_KILLABLE);
1095                 spin_unlock_irq(lock);
1096                 schedule();
1097                 if (unlikely(__fatal_signal_pending(tsk)))
1098                         goto killed;
1099                 spin_lock_irq(lock);
1100         }
1101         spin_unlock_irq(lock);
1102
1103         /*
1104          * At this point all other threads have exited, all we have to
1105          * do is to wait for the thread group leader to become inactive,
1106          * and to assume its PID:
1107          */
1108         if (!thread_group_leader(tsk)) {
1109                 struct task_struct *leader = tsk->group_leader;
1110
1111                 for (;;) {
1112                         threadgroup_change_begin(tsk);
1113                         write_lock_irq(&tasklist_lock);
1114                         /*
1115                          * Do this under tasklist_lock to ensure that
1116                          * exit_notify() can't miss ->group_exit_task
1117                          */
1118                         sig->notify_count = -1;
1119                         if (likely(leader->exit_state))
1120                                 break;
1121                         __set_current_state(TASK_KILLABLE);
1122                         write_unlock_irq(&tasklist_lock);
1123                         threadgroup_change_end(tsk);
1124                         schedule();
1125                         if (unlikely(__fatal_signal_pending(tsk)))
1126                                 goto killed;
1127                 }
1128
1129                 /*
1130                  * The only record we have of the real-time age of a
1131                  * process, regardless of execs it's done, is start_time.
1132                  * All the past CPU time is accumulated in signal_struct
1133                  * from sister threads now dead.  But in this non-leader
1134                  * exec, nothing survives from the original leader thread,
1135                  * whose birth marks the true age of this process now.
1136                  * When we take on its identity by switching to its PID, we
1137                  * also take its birthdate (always earlier than our own).
1138                  */
1139                 tsk->start_time = leader->start_time;
1140                 tsk->real_start_time = leader->real_start_time;
1141
1142                 BUG_ON(!same_thread_group(leader, tsk));
1143                 BUG_ON(has_group_leader_pid(tsk));
1144                 /*
1145                  * An exec() starts a new thread group with the
1146                  * TGID of the previous thread group. Rehash the
1147                  * two threads with a switched PID, and release
1148                  * the former thread group leader:
1149                  */
1150
1151                 /* Become a process group leader with the old leader's pid.
1152                  * The old leader becomes a thread of the this thread group.
1153                  * Note: The old leader also uses this pid until release_task
1154                  *       is called.  Odd but simple and correct.
1155                  */
1156                 tsk->pid = leader->pid;
1157                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1158                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1159                 transfer_pid(leader, tsk, PIDTYPE_SID);
1160
1161                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1162                 list_replace_init(&leader->sibling, &tsk->sibling);
1163
1164                 tsk->group_leader = tsk;
1165                 leader->group_leader = tsk;
1166
1167                 tsk->exit_signal = SIGCHLD;
1168                 leader->exit_signal = -1;
1169
1170                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1171                 leader->exit_state = EXIT_DEAD;
1172
1173                 /*
1174                  * We are going to release_task()->ptrace_unlink() silently,
1175                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1176                  * the tracer wont't block again waiting for this thread.
1177                  */
1178                 if (unlikely(leader->ptrace))
1179                         __wake_up_parent(leader, leader->parent);
1180                 write_unlock_irq(&tasklist_lock);
1181                 threadgroup_change_end(tsk);
1182
1183                 release_task(leader);
1184         }
1185
1186         sig->group_exit_task = NULL;
1187         sig->notify_count = 0;
1188
1189 no_thread_group:
1190         /* we have changed execution domain */
1191         tsk->exit_signal = SIGCHLD;
1192
1193         exit_itimers(sig);
1194         flush_itimer_signals();
1195
1196         if (atomic_read(&oldsighand->count) != 1) {
1197                 struct sighand_struct *newsighand;
1198                 /*
1199                  * This ->sighand is shared with the CLONE_SIGHAND
1200                  * but not CLONE_THREAD task, switch to the new one.
1201                  */
1202                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1203                 if (!newsighand)
1204                         return -ENOMEM;
1205
1206                 atomic_set(&newsighand->count, 1);
1207                 memcpy(newsighand->action, oldsighand->action,
1208                        sizeof(newsighand->action));
1209
1210                 write_lock_irq(&tasklist_lock);
1211                 spin_lock(&oldsighand->siglock);
1212                 rcu_assign_pointer(tsk->sighand, newsighand);
1213                 spin_unlock(&oldsighand->siglock);
1214                 write_unlock_irq(&tasklist_lock);
1215
1216                 __cleanup_sighand(oldsighand);
1217         }
1218
1219         BUG_ON(!thread_group_leader(tsk));
1220         return 0;
1221
1222 killed:
1223         /* protects against exit_notify() and __exit_signal() */
1224         read_lock(&tasklist_lock);
1225         sig->group_exit_task = NULL;
1226         sig->notify_count = 0;
1227         read_unlock(&tasklist_lock);
1228         return -EAGAIN;
1229 }
1230
1231 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1232 {
1233         task_lock(tsk);
1234         strncpy(buf, tsk->comm, buf_size);
1235         task_unlock(tsk);
1236         return buf;
1237 }
1238 EXPORT_SYMBOL_GPL(__get_task_comm);
1239
1240 /*
1241  * These functions flushes out all traces of the currently running executable
1242  * so that a new one can be started
1243  */
1244
1245 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1246 {
1247         task_lock(tsk);
1248         trace_task_rename(tsk, buf);
1249         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1250         task_unlock(tsk);
1251         perf_event_comm(tsk, exec);
1252 }
1253
1254 int flush_old_exec(struct linux_binprm * bprm)
1255 {
1256         int retval;
1257
1258         /*
1259          * Make sure we have a private signal table and that
1260          * we are unassociated from the previous thread group.
1261          */
1262         retval = de_thread(current);
1263         if (retval)
1264                 goto out;
1265
1266         /*
1267          * Must be called _before_ exec_mmap() as bprm->mm is
1268          * not visibile until then. This also enables the update
1269          * to be lockless.
1270          */
1271         set_mm_exe_file(bprm->mm, bprm->file);
1272
1273         /*
1274          * Release all of the old mmap stuff
1275          */
1276         acct_arg_size(bprm, 0);
1277         retval = exec_mmap(bprm->mm);
1278         if (retval)
1279                 goto out;
1280
1281         bprm->mm = NULL;                /* We're using it now */
1282
1283         set_fs(USER_DS);
1284         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1285                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1286         flush_thread();
1287         current->personality &= ~bprm->per_clear;
1288
1289         /*
1290          * We have to apply CLOEXEC before we change whether the process is
1291          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1292          * trying to access the should-be-closed file descriptors of a process
1293          * undergoing exec(2).
1294          */
1295         do_close_on_exec(current->files);
1296         return 0;
1297
1298 out:
1299         return retval;
1300 }
1301 EXPORT_SYMBOL(flush_old_exec);
1302
1303 void would_dump(struct linux_binprm *bprm, struct file *file)
1304 {
1305         struct inode *inode = file_inode(file);
1306         if (inode_permission(inode, MAY_READ) < 0) {
1307                 struct user_namespace *old, *user_ns;
1308                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1309
1310                 /* Ensure mm->user_ns contains the executable */
1311                 user_ns = old = bprm->mm->user_ns;
1312                 while ((user_ns != &init_user_ns) &&
1313                        !privileged_wrt_inode_uidgid(user_ns, inode))
1314                         user_ns = user_ns->parent;
1315
1316                 if (old != user_ns) {
1317                         bprm->mm->user_ns = get_user_ns(user_ns);
1318                         put_user_ns(old);
1319                 }
1320         }
1321 }
1322 EXPORT_SYMBOL(would_dump);
1323
1324 void setup_new_exec(struct linux_binprm * bprm)
1325 {
1326         arch_pick_mmap_layout(current->mm);
1327
1328         /* This is the point of no return */
1329         current->sas_ss_sp = current->sas_ss_size = 0;
1330
1331         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1332                 set_dumpable(current->mm, SUID_DUMP_USER);
1333         else
1334                 set_dumpable(current->mm, suid_dumpable);
1335
1336         perf_event_exec();
1337         __set_task_comm(current, kbasename(bprm->filename), true);
1338
1339         /* Set the new mm task size. We have to do that late because it may
1340          * depend on TIF_32BIT which is only updated in flush_thread() on
1341          * some architectures like powerpc
1342          */
1343         current->mm->task_size = TASK_SIZE;
1344
1345         /* install the new credentials */
1346         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1347             !gid_eq(bprm->cred->gid, current_egid())) {
1348                 current->pdeath_signal = 0;
1349         } else {
1350                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1351                         set_dumpable(current->mm, suid_dumpable);
1352         }
1353
1354         /* An exec changes our domain. We are no longer part of the thread
1355            group */
1356         current->self_exec_id++;
1357         flush_signal_handlers(current, 0);
1358 }
1359 EXPORT_SYMBOL(setup_new_exec);
1360
1361 /*
1362  * Prepare credentials and lock ->cred_guard_mutex.
1363  * install_exec_creds() commits the new creds and drops the lock.
1364  * Or, if exec fails before, free_bprm() should release ->cred and
1365  * and unlock.
1366  */
1367 int prepare_bprm_creds(struct linux_binprm *bprm)
1368 {
1369         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1370                 return -ERESTARTNOINTR;
1371
1372         bprm->cred = prepare_exec_creds();
1373         if (likely(bprm->cred))
1374                 return 0;
1375
1376         mutex_unlock(&current->signal->cred_guard_mutex);
1377         return -ENOMEM;
1378 }
1379
1380 static void free_bprm(struct linux_binprm *bprm)
1381 {
1382         free_arg_pages(bprm);
1383         if (bprm->cred) {
1384                 mutex_unlock(&current->signal->cred_guard_mutex);
1385                 abort_creds(bprm->cred);
1386         }
1387         if (bprm->file) {
1388                 allow_write_access(bprm->file);
1389                 fput(bprm->file);
1390         }
1391         /* If a binfmt changed the interp, free it. */
1392         if (bprm->interp != bprm->filename)
1393                 kfree(bprm->interp);
1394         kfree(bprm);
1395 }
1396
1397 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1398 {
1399         /* If a binfmt changed the interp, free it first. */
1400         if (bprm->interp != bprm->filename)
1401                 kfree(bprm->interp);
1402         bprm->interp = kstrdup(interp, GFP_KERNEL);
1403         if (!bprm->interp)
1404                 return -ENOMEM;
1405         return 0;
1406 }
1407 EXPORT_SYMBOL(bprm_change_interp);
1408
1409 /*
1410  * install the new credentials for this executable
1411  */
1412 void install_exec_creds(struct linux_binprm *bprm)
1413 {
1414         security_bprm_committing_creds(bprm);
1415
1416         commit_creds(bprm->cred);
1417         bprm->cred = NULL;
1418
1419         /*
1420          * Disable monitoring for regular users
1421          * when executing setuid binaries. Must
1422          * wait until new credentials are committed
1423          * by commit_creds() above
1424          */
1425         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1426                 perf_event_exit_task(current);
1427         /*
1428          * cred_guard_mutex must be held at least to this point to prevent
1429          * ptrace_attach() from altering our determination of the task's
1430          * credentials; any time after this it may be unlocked.
1431          */
1432         security_bprm_committed_creds(bprm);
1433         mutex_unlock(&current->signal->cred_guard_mutex);
1434 }
1435 EXPORT_SYMBOL(install_exec_creds);
1436
1437 /*
1438  * determine how safe it is to execute the proposed program
1439  * - the caller must hold ->cred_guard_mutex to protect against
1440  *   PTRACE_ATTACH or seccomp thread-sync
1441  */
1442 static void check_unsafe_exec(struct linux_binprm *bprm)
1443 {
1444         struct task_struct *p = current, *t;
1445         unsigned n_fs;
1446
1447         if (p->ptrace) {
1448                 if (ptracer_capable(p, current_user_ns()))
1449                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1450                 else
1451                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1452         }
1453
1454         /*
1455          * This isn't strictly necessary, but it makes it harder for LSMs to
1456          * mess up.
1457          */
1458         if (task_no_new_privs(current))
1459                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1460
1461         t = p;
1462         n_fs = 1;
1463         spin_lock(&p->fs->lock);
1464         rcu_read_lock();
1465         while_each_thread(p, t) {
1466                 if (t->fs == p->fs)
1467                         n_fs++;
1468         }
1469         rcu_read_unlock();
1470
1471         if (p->fs->users > n_fs)
1472                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1473         else
1474                 p->fs->in_exec = 1;
1475         spin_unlock(&p->fs->lock);
1476 }
1477
1478 static void bprm_fill_uid(struct linux_binprm *bprm)
1479 {
1480         struct inode *inode;
1481         unsigned int mode;
1482         kuid_t uid;
1483         kgid_t gid;
1484
1485         /*
1486          * Since this can be called multiple times (via prepare_binprm),
1487          * we must clear any previous work done when setting set[ug]id
1488          * bits from any earlier bprm->file uses (for example when run
1489          * first for a setuid script then again for its interpreter).
1490          */
1491         bprm->cred->euid = current_euid();
1492         bprm->cred->egid = current_egid();
1493
1494         if (!mnt_may_suid(bprm->file->f_path.mnt))
1495                 return;
1496
1497         if (task_no_new_privs(current))
1498                 return;
1499
1500         inode = file_inode(bprm->file);
1501         mode = READ_ONCE(inode->i_mode);
1502         if (!(mode & (S_ISUID|S_ISGID)))
1503                 return;
1504
1505         /* Be careful if suid/sgid is set */
1506         inode_lock(inode);
1507
1508         /* reload atomically mode/uid/gid now that lock held */
1509         mode = inode->i_mode;
1510         uid = inode->i_uid;
1511         gid = inode->i_gid;
1512         inode_unlock(inode);
1513
1514         /* We ignore suid/sgid if there are no mappings for them in the ns */
1515         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1516                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1517                 return;
1518
1519         if (mode & S_ISUID) {
1520                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1521                 bprm->cred->euid = uid;
1522         }
1523
1524         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1525                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1526                 bprm->cred->egid = gid;
1527         }
1528 }
1529
1530 /*
1531  * Fill the binprm structure from the inode.
1532  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1533  *
1534  * This may be called multiple times for binary chains (scripts for example).
1535  */
1536 int prepare_binprm(struct linux_binprm *bprm)
1537 {
1538         int retval;
1539
1540         bprm_fill_uid(bprm);
1541
1542         /* fill in binprm security blob */
1543         retval = security_bprm_set_creds(bprm);
1544         if (retval)
1545                 return retval;
1546         bprm->cred_prepared = 1;
1547
1548         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1549         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1550 }
1551
1552 EXPORT_SYMBOL(prepare_binprm);
1553
1554 /*
1555  * Arguments are '\0' separated strings found at the location bprm->p
1556  * points to; chop off the first by relocating brpm->p to right after
1557  * the first '\0' encountered.
1558  */
1559 int remove_arg_zero(struct linux_binprm *bprm)
1560 {
1561         int ret = 0;
1562         unsigned long offset;
1563         char *kaddr;
1564         struct page *page;
1565
1566         if (!bprm->argc)
1567                 return 0;
1568
1569         do {
1570                 offset = bprm->p & ~PAGE_MASK;
1571                 page = get_arg_page(bprm, bprm->p, 0);
1572                 if (!page) {
1573                         ret = -EFAULT;
1574                         goto out;
1575                 }
1576                 kaddr = kmap_atomic(page);
1577
1578                 for (; offset < PAGE_SIZE && kaddr[offset];
1579                                 offset++, bprm->p++)
1580                         ;
1581
1582                 kunmap_atomic(kaddr);
1583                 put_arg_page(page);
1584         } while (offset == PAGE_SIZE);
1585
1586         bprm->p++;
1587         bprm->argc--;
1588         ret = 0;
1589
1590 out:
1591         return ret;
1592 }
1593 EXPORT_SYMBOL(remove_arg_zero);
1594
1595 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1596 /*
1597  * cycle the list of binary formats handler, until one recognizes the image
1598  */
1599 int search_binary_handler(struct linux_binprm *bprm)
1600 {
1601         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1602         struct linux_binfmt *fmt;
1603         int retval;
1604
1605         /* This allows 4 levels of binfmt rewrites before failing hard. */
1606         if (bprm->recursion_depth > 5)
1607                 return -ELOOP;
1608
1609         retval = security_bprm_check(bprm);
1610         if (retval)
1611                 return retval;
1612
1613         retval = -ENOENT;
1614  retry:
1615         read_lock(&binfmt_lock);
1616         list_for_each_entry(fmt, &formats, lh) {
1617                 if (!try_module_get(fmt->module))
1618                         continue;
1619                 read_unlock(&binfmt_lock);
1620                 bprm->recursion_depth++;
1621                 retval = fmt->load_binary(bprm);
1622                 read_lock(&binfmt_lock);
1623                 put_binfmt(fmt);
1624                 bprm->recursion_depth--;
1625                 if (retval < 0 && !bprm->mm) {
1626                         /* we got to flush_old_exec() and failed after it */
1627                         read_unlock(&binfmt_lock);
1628                         force_sigsegv(SIGSEGV, current);
1629                         return retval;
1630                 }
1631                 if (retval != -ENOEXEC || !bprm->file) {
1632                         read_unlock(&binfmt_lock);
1633                         return retval;
1634                 }
1635         }
1636         read_unlock(&binfmt_lock);
1637
1638         if (need_retry) {
1639                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1640                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1641                         return retval;
1642                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1643                         return retval;
1644                 need_retry = false;
1645                 goto retry;
1646         }
1647
1648         return retval;
1649 }
1650 EXPORT_SYMBOL(search_binary_handler);
1651
1652 static int exec_binprm(struct linux_binprm *bprm)
1653 {
1654         pid_t old_pid, old_vpid;
1655         int ret;
1656
1657         /* Need to fetch pid before load_binary changes it */
1658         old_pid = current->pid;
1659         rcu_read_lock();
1660         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1661         rcu_read_unlock();
1662
1663         ret = search_binary_handler(bprm);
1664         if (ret >= 0) {
1665                 audit_bprm(bprm);
1666                 trace_sched_process_exec(current, old_pid, bprm);
1667                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1668                 proc_exec_connector(current);
1669         }
1670
1671         return ret;
1672 }
1673
1674 /*
1675  * sys_execve() executes a new program.
1676  */
1677 static int do_execveat_common(int fd, struct filename *filename,
1678                               struct user_arg_ptr argv,
1679                               struct user_arg_ptr envp,
1680                               int flags)
1681 {
1682         char *pathbuf = NULL;
1683         struct linux_binprm *bprm;
1684         struct file *file;
1685         struct files_struct *displaced;
1686         int retval;
1687
1688         if (IS_ERR(filename))
1689                 return PTR_ERR(filename);
1690
1691         /*
1692          * We move the actual failure in case of RLIMIT_NPROC excess from
1693          * set*uid() to execve() because too many poorly written programs
1694          * don't check setuid() return code.  Here we additionally recheck
1695          * whether NPROC limit is still exceeded.
1696          */
1697         if ((current->flags & PF_NPROC_EXCEEDED) &&
1698             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1699                 retval = -EAGAIN;
1700                 goto out_ret;
1701         }
1702
1703         /* We're below the limit (still or again), so we don't want to make
1704          * further execve() calls fail. */
1705         current->flags &= ~PF_NPROC_EXCEEDED;
1706
1707         retval = unshare_files(&displaced);
1708         if (retval)
1709                 goto out_ret;
1710
1711         retval = -ENOMEM;
1712         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1713         if (!bprm)
1714                 goto out_files;
1715
1716         retval = prepare_bprm_creds(bprm);
1717         if (retval)
1718                 goto out_free;
1719
1720         check_unsafe_exec(bprm);
1721         current->in_execve = 1;
1722
1723         file = do_open_execat(fd, filename, flags);
1724         retval = PTR_ERR(file);
1725         if (IS_ERR(file))
1726                 goto out_unmark;
1727
1728         sched_exec();
1729
1730         bprm->file = file;
1731         if (fd == AT_FDCWD || filename->name[0] == '/') {
1732                 bprm->filename = filename->name;
1733         } else {
1734                 if (filename->name[0] == '\0')
1735                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1736                 else
1737                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1738                                             fd, filename->name);
1739                 if (!pathbuf) {
1740                         retval = -ENOMEM;
1741                         goto out_unmark;
1742                 }
1743                 /*
1744                  * Record that a name derived from an O_CLOEXEC fd will be
1745                  * inaccessible after exec. Relies on having exclusive access to
1746                  * current->files (due to unshare_files above).
1747                  */
1748                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1749                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1750                 bprm->filename = pathbuf;
1751         }
1752         bprm->interp = bprm->filename;
1753
1754         retval = bprm_mm_init(bprm);
1755         if (retval)
1756                 goto out_unmark;
1757
1758         bprm->argc = count(argv, MAX_ARG_STRINGS);
1759         if ((retval = bprm->argc) < 0)
1760                 goto out;
1761
1762         bprm->envc = count(envp, MAX_ARG_STRINGS);
1763         if ((retval = bprm->envc) < 0)
1764                 goto out;
1765
1766         retval = prepare_binprm(bprm);
1767         if (retval < 0)
1768                 goto out;
1769
1770         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1771         if (retval < 0)
1772                 goto out;
1773
1774         bprm->exec = bprm->p;
1775         retval = copy_strings(bprm->envc, envp, bprm);
1776         if (retval < 0)
1777                 goto out;
1778
1779         retval = copy_strings(bprm->argc, argv, bprm);
1780         if (retval < 0)
1781                 goto out;
1782
1783         would_dump(bprm, bprm->file);
1784
1785         retval = exec_binprm(bprm);
1786         if (retval < 0)
1787                 goto out;
1788
1789         /* execve succeeded */
1790         current->fs->in_exec = 0;
1791         current->in_execve = 0;
1792         acct_update_integrals(current);
1793         task_numa_free(current);
1794         free_bprm(bprm);
1795         kfree(pathbuf);
1796         putname(filename);
1797         if (displaced)
1798                 put_files_struct(displaced);
1799         return retval;
1800
1801 out:
1802         if (bprm->mm) {
1803                 acct_arg_size(bprm, 0);
1804                 mmput(bprm->mm);
1805         }
1806
1807 out_unmark:
1808         current->fs->in_exec = 0;
1809         current->in_execve = 0;
1810
1811 out_free:
1812         free_bprm(bprm);
1813         kfree(pathbuf);
1814
1815 out_files:
1816         if (displaced)
1817                 reset_files_struct(displaced);
1818 out_ret:
1819         putname(filename);
1820         return retval;
1821 }
1822
1823 int do_execve(struct filename *filename,
1824         const char __user *const __user *__argv,
1825         const char __user *const __user *__envp)
1826 {
1827         struct user_arg_ptr argv = { .ptr.native = __argv };
1828         struct user_arg_ptr envp = { .ptr.native = __envp };
1829         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1830 }
1831
1832 int do_execveat(int fd, struct filename *filename,
1833                 const char __user *const __user *__argv,
1834                 const char __user *const __user *__envp,
1835                 int flags)
1836 {
1837         struct user_arg_ptr argv = { .ptr.native = __argv };
1838         struct user_arg_ptr envp = { .ptr.native = __envp };
1839
1840         return do_execveat_common(fd, filename, argv, envp, flags);
1841 }
1842
1843 #ifdef CONFIG_COMPAT
1844 static int compat_do_execve(struct filename *filename,
1845         const compat_uptr_t __user *__argv,
1846         const compat_uptr_t __user *__envp)
1847 {
1848         struct user_arg_ptr argv = {
1849                 .is_compat = true,
1850                 .ptr.compat = __argv,
1851         };
1852         struct user_arg_ptr envp = {
1853                 .is_compat = true,
1854                 .ptr.compat = __envp,
1855         };
1856         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1857 }
1858
1859 static int compat_do_execveat(int fd, struct filename *filename,
1860                               const compat_uptr_t __user *__argv,
1861                               const compat_uptr_t __user *__envp,
1862                               int flags)
1863 {
1864         struct user_arg_ptr argv = {
1865                 .is_compat = true,
1866                 .ptr.compat = __argv,
1867         };
1868         struct user_arg_ptr envp = {
1869                 .is_compat = true,
1870                 .ptr.compat = __envp,
1871         };
1872         return do_execveat_common(fd, filename, argv, envp, flags);
1873 }
1874 #endif
1875
1876 void set_binfmt(struct linux_binfmt *new)
1877 {
1878         struct mm_struct *mm = current->mm;
1879
1880         if (mm->binfmt)
1881                 module_put(mm->binfmt->module);
1882
1883         mm->binfmt = new;
1884         if (new)
1885                 __module_get(new->module);
1886 }
1887 EXPORT_SYMBOL(set_binfmt);
1888
1889 /*
1890  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1891  */
1892 void set_dumpable(struct mm_struct *mm, int value)
1893 {
1894         unsigned long old, new;
1895
1896         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1897                 return;
1898
1899         do {
1900                 old = ACCESS_ONCE(mm->flags);
1901                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1902         } while (cmpxchg(&mm->flags, old, new) != old);
1903 }
1904
1905 SYSCALL_DEFINE3(execve,
1906                 const char __user *, filename,
1907                 const char __user *const __user *, argv,
1908                 const char __user *const __user *, envp)
1909 {
1910         return do_execve(getname(filename), argv, envp);
1911 }
1912
1913 SYSCALL_DEFINE5(execveat,
1914                 int, fd, const char __user *, filename,
1915                 const char __user *const __user *, argv,
1916                 const char __user *const __user *, envp,
1917                 int, flags)
1918 {
1919         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1920
1921         return do_execveat(fd,
1922                            getname_flags(filename, lookup_flags, NULL),
1923                            argv, envp, flags);
1924 }
1925
1926 #ifdef CONFIG_COMPAT
1927 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1928         const compat_uptr_t __user *, argv,
1929         const compat_uptr_t __user *, envp)
1930 {
1931         return compat_do_execve(getname(filename), argv, envp);
1932 }
1933
1934 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1935                        const char __user *, filename,
1936                        const compat_uptr_t __user *, argv,
1937                        const compat_uptr_t __user *, envp,
1938                        int,  flags)
1939 {
1940         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1941
1942         return compat_do_execveat(fd,
1943                                   getname_flags(filename, lookup_flags, NULL),
1944                                   argv, envp, flags);
1945 }
1946 #endif