OSDN Git Service

vsock: fix potential deadlock in transport->release()
[tomoyo/tomoyo-test1.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69
70 #include <trace/events/task.h>
71 #include "internal.h"
72
73 #include <trace/events/sched.h>
74
75 int suid_dumpable = 0;
76
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82         BUG_ON(!fmt);
83         if (WARN_ON(!fmt->load_binary))
84                 return;
85         write_lock(&binfmt_lock);
86         insert ? list_add(&fmt->lh, &formats) :
87                  list_add_tail(&fmt->lh, &formats);
88         write_unlock(&binfmt_lock);
89 }
90
91 EXPORT_SYMBOL(__register_binfmt);
92
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95         write_lock(&binfmt_lock);
96         list_del(&fmt->lh);
97         write_unlock(&binfmt_lock);
98 }
99
100 EXPORT_SYMBOL(unregister_binfmt);
101
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104         module_put(fmt->module);
105 }
106
107 bool path_noexec(const struct path *path)
108 {
109         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112
113 #ifdef CONFIG_USELIB
114 /*
115  * Note that a shared library must be both readable and executable due to
116  * security reasons.
117  *
118  * Also note that we take the address to load from from the file itself.
119  */
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122         struct linux_binfmt *fmt;
123         struct file *file;
124         struct filename *tmp = getname(library);
125         int error = PTR_ERR(tmp);
126         static const struct open_flags uselib_flags = {
127                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128                 .acc_mode = MAY_READ | MAY_EXEC,
129                 .intent = LOOKUP_OPEN,
130                 .lookup_flags = LOOKUP_FOLLOW,
131         };
132
133         if (IS_ERR(tmp))
134                 goto out;
135
136         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137         putname(tmp);
138         error = PTR_ERR(file);
139         if (IS_ERR(file))
140                 goto out;
141
142         error = -EINVAL;
143         if (!S_ISREG(file_inode(file)->i_mode))
144                 goto exit;
145
146         error = -EACCES;
147         if (path_noexec(&file->f_path))
148                 goto exit;
149
150         fsnotify_open(file);
151
152         error = -ENOEXEC;
153
154         read_lock(&binfmt_lock);
155         list_for_each_entry(fmt, &formats, lh) {
156                 if (!fmt->load_shlib)
157                         continue;
158                 if (!try_module_get(fmt->module))
159                         continue;
160                 read_unlock(&binfmt_lock);
161                 error = fmt->load_shlib(file);
162                 read_lock(&binfmt_lock);
163                 put_binfmt(fmt);
164                 if (error != -ENOEXEC)
165                         break;
166         }
167         read_unlock(&binfmt_lock);
168 exit:
169         fput(file);
170 out:
171         return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174
175 #ifdef CONFIG_MMU
176 /*
177  * The nascent bprm->mm is not visible until exec_mmap() but it can
178  * use a lot of memory, account these pages in current->mm temporary
179  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180  * change the counter back via acct_arg_size(0).
181  */
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184         struct mm_struct *mm = current->mm;
185         long diff = (long)(pages - bprm->vma_pages);
186
187         if (!mm || !diff)
188                 return;
189
190         bprm->vma_pages = pages;
191         add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195                 int write)
196 {
197         struct page *page;
198         int ret;
199         unsigned int gup_flags = FOLL_FORCE;
200
201 #ifdef CONFIG_STACK_GROWSUP
202         if (write) {
203                 ret = expand_downwards(bprm->vma, pos);
204                 if (ret < 0)
205                         return NULL;
206         }
207 #endif
208
209         if (write)
210                 gup_flags |= FOLL_WRITE;
211
212         /*
213          * We are doing an exec().  'current' is the process
214          * doing the exec and bprm->mm is the new process's mm.
215          */
216         ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217                         &page, NULL, NULL);
218         if (ret <= 0)
219                 return NULL;
220
221         if (write)
222                 acct_arg_size(bprm, vma_pages(bprm->vma));
223
224         return page;
225 }
226
227 static void put_arg_page(struct page *page)
228 {
229         put_page(page);
230 }
231
232 static void free_arg_pages(struct linux_binprm *bprm)
233 {
234 }
235
236 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
237                 struct page *page)
238 {
239         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
240 }
241
242 static int __bprm_mm_init(struct linux_binprm *bprm)
243 {
244         int err;
245         struct vm_area_struct *vma = NULL;
246         struct mm_struct *mm = bprm->mm;
247
248         bprm->vma = vma = vm_area_alloc(mm);
249         if (!vma)
250                 return -ENOMEM;
251         vma_set_anonymous(vma);
252
253         if (down_write_killable(&mm->mmap_sem)) {
254                 err = -EINTR;
255                 goto err_free;
256         }
257
258         /*
259          * Place the stack at the largest stack address the architecture
260          * supports. Later, we'll move this to an appropriate place. We don't
261          * use STACK_TOP because that can depend on attributes which aren't
262          * configured yet.
263          */
264         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
265         vma->vm_end = STACK_TOP_MAX;
266         vma->vm_start = vma->vm_end - PAGE_SIZE;
267         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
268         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
269
270         err = insert_vm_struct(mm, vma);
271         if (err)
272                 goto err;
273
274         mm->stack_vm = mm->total_vm = 1;
275         up_write(&mm->mmap_sem);
276         bprm->p = vma->vm_end - sizeof(void *);
277         return 0;
278 err:
279         up_write(&mm->mmap_sem);
280 err_free:
281         bprm->vma = NULL;
282         vm_area_free(vma);
283         return err;
284 }
285
286 static bool valid_arg_len(struct linux_binprm *bprm, long len)
287 {
288         return len <= MAX_ARG_STRLEN;
289 }
290
291 #else
292
293 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
294 {
295 }
296
297 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
298                 int write)
299 {
300         struct page *page;
301
302         page = bprm->page[pos / PAGE_SIZE];
303         if (!page && write) {
304                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
305                 if (!page)
306                         return NULL;
307                 bprm->page[pos / PAGE_SIZE] = page;
308         }
309
310         return page;
311 }
312
313 static void put_arg_page(struct page *page)
314 {
315 }
316
317 static void free_arg_page(struct linux_binprm *bprm, int i)
318 {
319         if (bprm->page[i]) {
320                 __free_page(bprm->page[i]);
321                 bprm->page[i] = NULL;
322         }
323 }
324
325 static void free_arg_pages(struct linux_binprm *bprm)
326 {
327         int i;
328
329         for (i = 0; i < MAX_ARG_PAGES; i++)
330                 free_arg_page(bprm, i);
331 }
332
333 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
334                 struct page *page)
335 {
336 }
337
338 static int __bprm_mm_init(struct linux_binprm *bprm)
339 {
340         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
341         return 0;
342 }
343
344 static bool valid_arg_len(struct linux_binprm *bprm, long len)
345 {
346         return len <= bprm->p;
347 }
348
349 #endif /* CONFIG_MMU */
350
351 /*
352  * Create a new mm_struct and populate it with a temporary stack
353  * vm_area_struct.  We don't have enough context at this point to set the stack
354  * flags, permissions, and offset, so we use temporary values.  We'll update
355  * them later in setup_arg_pages().
356  */
357 static int bprm_mm_init(struct linux_binprm *bprm)
358 {
359         int err;
360         struct mm_struct *mm = NULL;
361
362         bprm->mm = mm = mm_alloc();
363         err = -ENOMEM;
364         if (!mm)
365                 goto err;
366
367         /* Save current stack limit for all calculations made during exec. */
368         task_lock(current->group_leader);
369         bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
370         task_unlock(current->group_leader);
371
372         err = __bprm_mm_init(bprm);
373         if (err)
374                 goto err;
375
376         return 0;
377
378 err:
379         if (mm) {
380                 bprm->mm = NULL;
381                 mmdrop(mm);
382         }
383
384         return err;
385 }
386
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389         bool is_compat;
390 #endif
391         union {
392                 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394                 const compat_uptr_t __user *compat;
395 #endif
396         } ptr;
397 };
398
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401         const char __user *native;
402
403 #ifdef CONFIG_COMPAT
404         if (unlikely(argv.is_compat)) {
405                 compat_uptr_t compat;
406
407                 if (get_user(compat, argv.ptr.compat + nr))
408                         return ERR_PTR(-EFAULT);
409
410                 return compat_ptr(compat);
411         }
412 #endif
413
414         if (get_user(native, argv.ptr.native + nr))
415                 return ERR_PTR(-EFAULT);
416
417         return native;
418 }
419
420 /*
421  * count() counts the number of strings in array ARGV.
422  */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425         int i = 0;
426
427         if (argv.ptr.native != NULL) {
428                 for (;;) {
429                         const char __user *p = get_user_arg_ptr(argv, i);
430
431                         if (!p)
432                                 break;
433
434                         if (IS_ERR(p))
435                                 return -EFAULT;
436
437                         if (i >= max)
438                                 return -E2BIG;
439                         ++i;
440
441                         if (fatal_signal_pending(current))
442                                 return -ERESTARTNOHAND;
443                         cond_resched();
444                 }
445         }
446         return i;
447 }
448
449 static int prepare_arg_pages(struct linux_binprm *bprm,
450                         struct user_arg_ptr argv, struct user_arg_ptr envp)
451 {
452         unsigned long limit, ptr_size;
453
454         bprm->argc = count(argv, MAX_ARG_STRINGS);
455         if (bprm->argc < 0)
456                 return bprm->argc;
457
458         bprm->envc = count(envp, MAX_ARG_STRINGS);
459         if (bprm->envc < 0)
460                 return bprm->envc;
461
462         /*
463          * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
464          * (whichever is smaller) for the argv+env strings.
465          * This ensures that:
466          *  - the remaining binfmt code will not run out of stack space,
467          *  - the program will have a reasonable amount of stack left
468          *    to work from.
469          */
470         limit = _STK_LIM / 4 * 3;
471         limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
472         /*
473          * We've historically supported up to 32 pages (ARG_MAX)
474          * of argument strings even with small stacks
475          */
476         limit = max_t(unsigned long, limit, ARG_MAX);
477         /*
478          * We must account for the size of all the argv and envp pointers to
479          * the argv and envp strings, since they will also take up space in
480          * the stack. They aren't stored until much later when we can't
481          * signal to the parent that the child has run out of stack space.
482          * Instead, calculate it here so it's possible to fail gracefully.
483          */
484         ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
485         if (limit <= ptr_size)
486                 return -E2BIG;
487         limit -= ptr_size;
488
489         bprm->argmin = bprm->p - limit;
490         return 0;
491 }
492
493 /*
494  * 'copy_strings()' copies argument/environment strings from the old
495  * processes's memory to the new process's stack.  The call to get_user_pages()
496  * ensures the destination page is created and not swapped out.
497  */
498 static int copy_strings(int argc, struct user_arg_ptr argv,
499                         struct linux_binprm *bprm)
500 {
501         struct page *kmapped_page = NULL;
502         char *kaddr = NULL;
503         unsigned long kpos = 0;
504         int ret;
505
506         while (argc-- > 0) {
507                 const char __user *str;
508                 int len;
509                 unsigned long pos;
510
511                 ret = -EFAULT;
512                 str = get_user_arg_ptr(argv, argc);
513                 if (IS_ERR(str))
514                         goto out;
515
516                 len = strnlen_user(str, MAX_ARG_STRLEN);
517                 if (!len)
518                         goto out;
519
520                 ret = -E2BIG;
521                 if (!valid_arg_len(bprm, len))
522                         goto out;
523
524                 /* We're going to work our way backwords. */
525                 pos = bprm->p;
526                 str += len;
527                 bprm->p -= len;
528 #ifdef CONFIG_MMU
529                 if (bprm->p < bprm->argmin)
530                         goto out;
531 #endif
532
533                 while (len > 0) {
534                         int offset, bytes_to_copy;
535
536                         if (fatal_signal_pending(current)) {
537                                 ret = -ERESTARTNOHAND;
538                                 goto out;
539                         }
540                         cond_resched();
541
542                         offset = pos % PAGE_SIZE;
543                         if (offset == 0)
544                                 offset = PAGE_SIZE;
545
546                         bytes_to_copy = offset;
547                         if (bytes_to_copy > len)
548                                 bytes_to_copy = len;
549
550                         offset -= bytes_to_copy;
551                         pos -= bytes_to_copy;
552                         str -= bytes_to_copy;
553                         len -= bytes_to_copy;
554
555                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
556                                 struct page *page;
557
558                                 page = get_arg_page(bprm, pos, 1);
559                                 if (!page) {
560                                         ret = -E2BIG;
561                                         goto out;
562                                 }
563
564                                 if (kmapped_page) {
565                                         flush_kernel_dcache_page(kmapped_page);
566                                         kunmap(kmapped_page);
567                                         put_arg_page(kmapped_page);
568                                 }
569                                 kmapped_page = page;
570                                 kaddr = kmap(kmapped_page);
571                                 kpos = pos & PAGE_MASK;
572                                 flush_arg_page(bprm, kpos, kmapped_page);
573                         }
574                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
575                                 ret = -EFAULT;
576                                 goto out;
577                         }
578                 }
579         }
580         ret = 0;
581 out:
582         if (kmapped_page) {
583                 flush_kernel_dcache_page(kmapped_page);
584                 kunmap(kmapped_page);
585                 put_arg_page(kmapped_page);
586         }
587         return ret;
588 }
589
590 /*
591  * Like copy_strings, but get argv and its values from kernel memory.
592  */
593 int copy_strings_kernel(int argc, const char *const *__argv,
594                         struct linux_binprm *bprm)
595 {
596         int r;
597         mm_segment_t oldfs = get_fs();
598         struct user_arg_ptr argv = {
599                 .ptr.native = (const char __user *const  __user *)__argv,
600         };
601
602         set_fs(KERNEL_DS);
603         r = copy_strings(argc, argv, bprm);
604         set_fs(oldfs);
605
606         return r;
607 }
608 EXPORT_SYMBOL(copy_strings_kernel);
609
610 #ifdef CONFIG_MMU
611
612 /*
613  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
614  * the binfmt code determines where the new stack should reside, we shift it to
615  * its final location.  The process proceeds as follows:
616  *
617  * 1) Use shift to calculate the new vma endpoints.
618  * 2) Extend vma to cover both the old and new ranges.  This ensures the
619  *    arguments passed to subsequent functions are consistent.
620  * 3) Move vma's page tables to the new range.
621  * 4) Free up any cleared pgd range.
622  * 5) Shrink the vma to cover only the new range.
623  */
624 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
625 {
626         struct mm_struct *mm = vma->vm_mm;
627         unsigned long old_start = vma->vm_start;
628         unsigned long old_end = vma->vm_end;
629         unsigned long length = old_end - old_start;
630         unsigned long new_start = old_start - shift;
631         unsigned long new_end = old_end - shift;
632         struct mmu_gather tlb;
633
634         BUG_ON(new_start > new_end);
635
636         /*
637          * ensure there are no vmas between where we want to go
638          * and where we are
639          */
640         if (vma != find_vma(mm, new_start))
641                 return -EFAULT;
642
643         /*
644          * cover the whole range: [new_start, old_end)
645          */
646         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
647                 return -ENOMEM;
648
649         /*
650          * move the page tables downwards, on failure we rely on
651          * process cleanup to remove whatever mess we made.
652          */
653         if (length != move_page_tables(vma, old_start,
654                                        vma, new_start, length, false))
655                 return -ENOMEM;
656
657         lru_add_drain();
658         tlb_gather_mmu(&tlb, mm, old_start, old_end);
659         if (new_end > old_start) {
660                 /*
661                  * when the old and new regions overlap clear from new_end.
662                  */
663                 free_pgd_range(&tlb, new_end, old_end, new_end,
664                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
665         } else {
666                 /*
667                  * otherwise, clean from old_start; this is done to not touch
668                  * the address space in [new_end, old_start) some architectures
669                  * have constraints on va-space that make this illegal (IA64) -
670                  * for the others its just a little faster.
671                  */
672                 free_pgd_range(&tlb, old_start, old_end, new_end,
673                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
674         }
675         tlb_finish_mmu(&tlb, old_start, old_end);
676
677         /*
678          * Shrink the vma to just the new range.  Always succeeds.
679          */
680         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
681
682         return 0;
683 }
684
685 /*
686  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
687  * the stack is optionally relocated, and some extra space is added.
688  */
689 int setup_arg_pages(struct linux_binprm *bprm,
690                     unsigned long stack_top,
691                     int executable_stack)
692 {
693         unsigned long ret;
694         unsigned long stack_shift;
695         struct mm_struct *mm = current->mm;
696         struct vm_area_struct *vma = bprm->vma;
697         struct vm_area_struct *prev = NULL;
698         unsigned long vm_flags;
699         unsigned long stack_base;
700         unsigned long stack_size;
701         unsigned long stack_expand;
702         unsigned long rlim_stack;
703
704 #ifdef CONFIG_STACK_GROWSUP
705         /* Limit stack size */
706         stack_base = bprm->rlim_stack.rlim_max;
707         if (stack_base > STACK_SIZE_MAX)
708                 stack_base = STACK_SIZE_MAX;
709
710         /* Add space for stack randomization. */
711         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
712
713         /* Make sure we didn't let the argument array grow too large. */
714         if (vma->vm_end - vma->vm_start > stack_base)
715                 return -ENOMEM;
716
717         stack_base = PAGE_ALIGN(stack_top - stack_base);
718
719         stack_shift = vma->vm_start - stack_base;
720         mm->arg_start = bprm->p - stack_shift;
721         bprm->p = vma->vm_end - stack_shift;
722 #else
723         stack_top = arch_align_stack(stack_top);
724         stack_top = PAGE_ALIGN(stack_top);
725
726         if (unlikely(stack_top < mmap_min_addr) ||
727             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
728                 return -ENOMEM;
729
730         stack_shift = vma->vm_end - stack_top;
731
732         bprm->p -= stack_shift;
733         mm->arg_start = bprm->p;
734 #endif
735
736         if (bprm->loader)
737                 bprm->loader -= stack_shift;
738         bprm->exec -= stack_shift;
739
740         if (down_write_killable(&mm->mmap_sem))
741                 return -EINTR;
742
743         vm_flags = VM_STACK_FLAGS;
744
745         /*
746          * Adjust stack execute permissions; explicitly enable for
747          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
748          * (arch default) otherwise.
749          */
750         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
751                 vm_flags |= VM_EXEC;
752         else if (executable_stack == EXSTACK_DISABLE_X)
753                 vm_flags &= ~VM_EXEC;
754         vm_flags |= mm->def_flags;
755         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
756
757         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
758                         vm_flags);
759         if (ret)
760                 goto out_unlock;
761         BUG_ON(prev != vma);
762
763         if (unlikely(vm_flags & VM_EXEC)) {
764                 pr_warn_once("process '%pD4' started with executable stack\n",
765                              bprm->file);
766         }
767
768         /* Move stack pages down in memory. */
769         if (stack_shift) {
770                 ret = shift_arg_pages(vma, stack_shift);
771                 if (ret)
772                         goto out_unlock;
773         }
774
775         /* mprotect_fixup is overkill to remove the temporary stack flags */
776         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
777
778         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
779         stack_size = vma->vm_end - vma->vm_start;
780         /*
781          * Align this down to a page boundary as expand_stack
782          * will align it up.
783          */
784         rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
785 #ifdef CONFIG_STACK_GROWSUP
786         if (stack_size + stack_expand > rlim_stack)
787                 stack_base = vma->vm_start + rlim_stack;
788         else
789                 stack_base = vma->vm_end + stack_expand;
790 #else
791         if (stack_size + stack_expand > rlim_stack)
792                 stack_base = vma->vm_end - rlim_stack;
793         else
794                 stack_base = vma->vm_start - stack_expand;
795 #endif
796         current->mm->start_stack = bprm->p;
797         ret = expand_stack(vma, stack_base);
798         if (ret)
799                 ret = -EFAULT;
800
801 out_unlock:
802         up_write(&mm->mmap_sem);
803         return ret;
804 }
805 EXPORT_SYMBOL(setup_arg_pages);
806
807 #else
808
809 /*
810  * Transfer the program arguments and environment from the holding pages
811  * onto the stack. The provided stack pointer is adjusted accordingly.
812  */
813 int transfer_args_to_stack(struct linux_binprm *bprm,
814                            unsigned long *sp_location)
815 {
816         unsigned long index, stop, sp;
817         int ret = 0;
818
819         stop = bprm->p >> PAGE_SHIFT;
820         sp = *sp_location;
821
822         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
823                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
824                 char *src = kmap(bprm->page[index]) + offset;
825                 sp -= PAGE_SIZE - offset;
826                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
827                         ret = -EFAULT;
828                 kunmap(bprm->page[index]);
829                 if (ret)
830                         goto out;
831         }
832
833         *sp_location = sp;
834
835 out:
836         return ret;
837 }
838 EXPORT_SYMBOL(transfer_args_to_stack);
839
840 #endif /* CONFIG_MMU */
841
842 static struct file *do_open_execat(int fd, struct filename *name, int flags)
843 {
844         struct file *file;
845         int err;
846         struct open_flags open_exec_flags = {
847                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
848                 .acc_mode = MAY_EXEC,
849                 .intent = LOOKUP_OPEN,
850                 .lookup_flags = LOOKUP_FOLLOW,
851         };
852
853         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
854                 return ERR_PTR(-EINVAL);
855         if (flags & AT_SYMLINK_NOFOLLOW)
856                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
857         if (flags & AT_EMPTY_PATH)
858                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
859
860         file = do_filp_open(fd, name, &open_exec_flags);
861         if (IS_ERR(file))
862                 goto out;
863
864         err = -EACCES;
865         if (!S_ISREG(file_inode(file)->i_mode))
866                 goto exit;
867
868         if (path_noexec(&file->f_path))
869                 goto exit;
870
871         err = deny_write_access(file);
872         if (err)
873                 goto exit;
874
875         if (name->name[0] != '\0')
876                 fsnotify_open(file);
877
878 out:
879         return file;
880
881 exit:
882         fput(file);
883         return ERR_PTR(err);
884 }
885
886 struct file *open_exec(const char *name)
887 {
888         struct filename *filename = getname_kernel(name);
889         struct file *f = ERR_CAST(filename);
890
891         if (!IS_ERR(filename)) {
892                 f = do_open_execat(AT_FDCWD, filename, 0);
893                 putname(filename);
894         }
895         return f;
896 }
897 EXPORT_SYMBOL(open_exec);
898
899 int kernel_read_file(struct file *file, void **buf, loff_t *size,
900                      loff_t max_size, enum kernel_read_file_id id)
901 {
902         loff_t i_size, pos;
903         ssize_t bytes = 0;
904         int ret;
905
906         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
907                 return -EINVAL;
908
909         ret = deny_write_access(file);
910         if (ret)
911                 return ret;
912
913         ret = security_kernel_read_file(file, id);
914         if (ret)
915                 goto out;
916
917         i_size = i_size_read(file_inode(file));
918         if (i_size <= 0) {
919                 ret = -EINVAL;
920                 goto out;
921         }
922         if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
923                 ret = -EFBIG;
924                 goto out;
925         }
926
927         if (id != READING_FIRMWARE_PREALLOC_BUFFER)
928                 *buf = vmalloc(i_size);
929         if (!*buf) {
930                 ret = -ENOMEM;
931                 goto out;
932         }
933
934         pos = 0;
935         while (pos < i_size) {
936                 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
937                 if (bytes < 0) {
938                         ret = bytes;
939                         goto out_free;
940                 }
941
942                 if (bytes == 0)
943                         break;
944         }
945
946         if (pos != i_size) {
947                 ret = -EIO;
948                 goto out_free;
949         }
950
951         ret = security_kernel_post_read_file(file, *buf, i_size, id);
952         if (!ret)
953                 *size = pos;
954
955 out_free:
956         if (ret < 0) {
957                 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
958                         vfree(*buf);
959                         *buf = NULL;
960                 }
961         }
962
963 out:
964         allow_write_access(file);
965         return ret;
966 }
967 EXPORT_SYMBOL_GPL(kernel_read_file);
968
969 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
970                                loff_t max_size, enum kernel_read_file_id id)
971 {
972         struct file *file;
973         int ret;
974
975         if (!path || !*path)
976                 return -EINVAL;
977
978         file = filp_open(path, O_RDONLY, 0);
979         if (IS_ERR(file))
980                 return PTR_ERR(file);
981
982         ret = kernel_read_file(file, buf, size, max_size, id);
983         fput(file);
984         return ret;
985 }
986 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
987
988 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
989                              enum kernel_read_file_id id)
990 {
991         struct fd f = fdget(fd);
992         int ret = -EBADF;
993
994         if (!f.file)
995                 goto out;
996
997         ret = kernel_read_file(f.file, buf, size, max_size, id);
998 out:
999         fdput(f);
1000         return ret;
1001 }
1002 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1003
1004 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1005 {
1006         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1007         if (res > 0)
1008                 flush_icache_range(addr, addr + len);
1009         return res;
1010 }
1011 EXPORT_SYMBOL(read_code);
1012
1013 static int exec_mmap(struct mm_struct *mm)
1014 {
1015         struct task_struct *tsk;
1016         struct mm_struct *old_mm, *active_mm;
1017
1018         /* Notify parent that we're no longer interested in the old VM */
1019         tsk = current;
1020         old_mm = current->mm;
1021         exec_mm_release(tsk, old_mm);
1022
1023         if (old_mm) {
1024                 sync_mm_rss(old_mm);
1025                 /*
1026                  * Make sure that if there is a core dump in progress
1027                  * for the old mm, we get out and die instead of going
1028                  * through with the exec.  We must hold mmap_sem around
1029                  * checking core_state and changing tsk->mm.
1030                  */
1031                 down_read(&old_mm->mmap_sem);
1032                 if (unlikely(old_mm->core_state)) {
1033                         up_read(&old_mm->mmap_sem);
1034                         return -EINTR;
1035                 }
1036         }
1037         task_lock(tsk);
1038         active_mm = tsk->active_mm;
1039         membarrier_exec_mmap(mm);
1040         tsk->mm = mm;
1041         tsk->active_mm = mm;
1042         activate_mm(active_mm, mm);
1043         tsk->mm->vmacache_seqnum = 0;
1044         vmacache_flush(tsk);
1045         task_unlock(tsk);
1046         if (old_mm) {
1047                 up_read(&old_mm->mmap_sem);
1048                 BUG_ON(active_mm != old_mm);
1049                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1050                 mm_update_next_owner(old_mm);
1051                 mmput(old_mm);
1052                 return 0;
1053         }
1054         mmdrop(active_mm);
1055         return 0;
1056 }
1057
1058 /*
1059  * This function makes sure the current process has its own signal table,
1060  * so that flush_signal_handlers can later reset the handlers without
1061  * disturbing other processes.  (Other processes might share the signal
1062  * table via the CLONE_SIGHAND option to clone().)
1063  */
1064 static int de_thread(struct task_struct *tsk)
1065 {
1066         struct signal_struct *sig = tsk->signal;
1067         struct sighand_struct *oldsighand = tsk->sighand;
1068         spinlock_t *lock = &oldsighand->siglock;
1069
1070         if (thread_group_empty(tsk))
1071                 goto no_thread_group;
1072
1073         /*
1074          * Kill all other threads in the thread group.
1075          */
1076         spin_lock_irq(lock);
1077         if (signal_group_exit(sig)) {
1078                 /*
1079                  * Another group action in progress, just
1080                  * return so that the signal is processed.
1081                  */
1082                 spin_unlock_irq(lock);
1083                 return -EAGAIN;
1084         }
1085
1086         sig->group_exit_task = tsk;
1087         sig->notify_count = zap_other_threads(tsk);
1088         if (!thread_group_leader(tsk))
1089                 sig->notify_count--;
1090
1091         while (sig->notify_count) {
1092                 __set_current_state(TASK_KILLABLE);
1093                 spin_unlock_irq(lock);
1094                 schedule();
1095                 if (__fatal_signal_pending(tsk))
1096                         goto killed;
1097                 spin_lock_irq(lock);
1098         }
1099         spin_unlock_irq(lock);
1100
1101         /*
1102          * At this point all other threads have exited, all we have to
1103          * do is to wait for the thread group leader to become inactive,
1104          * and to assume its PID:
1105          */
1106         if (!thread_group_leader(tsk)) {
1107                 struct task_struct *leader = tsk->group_leader;
1108
1109                 for (;;) {
1110                         cgroup_threadgroup_change_begin(tsk);
1111                         write_lock_irq(&tasklist_lock);
1112                         /*
1113                          * Do this under tasklist_lock to ensure that
1114                          * exit_notify() can't miss ->group_exit_task
1115                          */
1116                         sig->notify_count = -1;
1117                         if (likely(leader->exit_state))
1118                                 break;
1119                         __set_current_state(TASK_KILLABLE);
1120                         write_unlock_irq(&tasklist_lock);
1121                         cgroup_threadgroup_change_end(tsk);
1122                         schedule();
1123                         if (__fatal_signal_pending(tsk))
1124                                 goto killed;
1125                 }
1126
1127                 /*
1128                  * The only record we have of the real-time age of a
1129                  * process, regardless of execs it's done, is start_time.
1130                  * All the past CPU time is accumulated in signal_struct
1131                  * from sister threads now dead.  But in this non-leader
1132                  * exec, nothing survives from the original leader thread,
1133                  * whose birth marks the true age of this process now.
1134                  * When we take on its identity by switching to its PID, we
1135                  * also take its birthdate (always earlier than our own).
1136                  */
1137                 tsk->start_time = leader->start_time;
1138                 tsk->start_boottime = leader->start_boottime;
1139
1140                 BUG_ON(!same_thread_group(leader, tsk));
1141                 BUG_ON(has_group_leader_pid(tsk));
1142                 /*
1143                  * An exec() starts a new thread group with the
1144                  * TGID of the previous thread group. Rehash the
1145                  * two threads with a switched PID, and release
1146                  * the former thread group leader:
1147                  */
1148
1149                 /* Become a process group leader with the old leader's pid.
1150                  * The old leader becomes a thread of the this thread group.
1151                  * Note: The old leader also uses this pid until release_task
1152                  *       is called.  Odd but simple and correct.
1153                  */
1154                 tsk->pid = leader->pid;
1155                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1156                 transfer_pid(leader, tsk, PIDTYPE_TGID);
1157                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1158                 transfer_pid(leader, tsk, PIDTYPE_SID);
1159
1160                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1161                 list_replace_init(&leader->sibling, &tsk->sibling);
1162
1163                 tsk->group_leader = tsk;
1164                 leader->group_leader = tsk;
1165
1166                 tsk->exit_signal = SIGCHLD;
1167                 leader->exit_signal = -1;
1168
1169                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1170                 leader->exit_state = EXIT_DEAD;
1171
1172                 /*
1173                  * We are going to release_task()->ptrace_unlink() silently,
1174                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1175                  * the tracer wont't block again waiting for this thread.
1176                  */
1177                 if (unlikely(leader->ptrace))
1178                         __wake_up_parent(leader, leader->parent);
1179                 write_unlock_irq(&tasklist_lock);
1180                 cgroup_threadgroup_change_end(tsk);
1181
1182                 release_task(leader);
1183         }
1184
1185         sig->group_exit_task = NULL;
1186         sig->notify_count = 0;
1187
1188 no_thread_group:
1189         /* we have changed execution domain */
1190         tsk->exit_signal = SIGCHLD;
1191
1192 #ifdef CONFIG_POSIX_TIMERS
1193         exit_itimers(sig);
1194         flush_itimer_signals();
1195 #endif
1196
1197         if (refcount_read(&oldsighand->count) != 1) {
1198                 struct sighand_struct *newsighand;
1199                 /*
1200                  * This ->sighand is shared with the CLONE_SIGHAND
1201                  * but not CLONE_THREAD task, switch to the new one.
1202                  */
1203                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1204                 if (!newsighand)
1205                         return -ENOMEM;
1206
1207                 refcount_set(&newsighand->count, 1);
1208                 memcpy(newsighand->action, oldsighand->action,
1209                        sizeof(newsighand->action));
1210
1211                 write_lock_irq(&tasklist_lock);
1212                 spin_lock(&oldsighand->siglock);
1213                 rcu_assign_pointer(tsk->sighand, newsighand);
1214                 spin_unlock(&oldsighand->siglock);
1215                 write_unlock_irq(&tasklist_lock);
1216
1217                 __cleanup_sighand(oldsighand);
1218         }
1219
1220         BUG_ON(!thread_group_leader(tsk));
1221         return 0;
1222
1223 killed:
1224         /* protects against exit_notify() and __exit_signal() */
1225         read_lock(&tasklist_lock);
1226         sig->group_exit_task = NULL;
1227         sig->notify_count = 0;
1228         read_unlock(&tasklist_lock);
1229         return -EAGAIN;
1230 }
1231
1232 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1233 {
1234         task_lock(tsk);
1235         strncpy(buf, tsk->comm, buf_size);
1236         task_unlock(tsk);
1237         return buf;
1238 }
1239 EXPORT_SYMBOL_GPL(__get_task_comm);
1240
1241 /*
1242  * These functions flushes out all traces of the currently running executable
1243  * so that a new one can be started
1244  */
1245
1246 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1247 {
1248         task_lock(tsk);
1249         trace_task_rename(tsk, buf);
1250         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1251         task_unlock(tsk);
1252         perf_event_comm(tsk, exec);
1253 }
1254
1255 /*
1256  * Calling this is the point of no return. None of the failures will be
1257  * seen by userspace since either the process is already taking a fatal
1258  * signal (via de_thread() or coredump), or will have SEGV raised
1259  * (after exec_mmap()) by search_binary_handlers (see below).
1260  */
1261 int flush_old_exec(struct linux_binprm * bprm)
1262 {
1263         int retval;
1264
1265         /*
1266          * Make sure we have a private signal table and that
1267          * we are unassociated from the previous thread group.
1268          */
1269         retval = de_thread(current);
1270         if (retval)
1271                 goto out;
1272
1273         /*
1274          * Must be called _before_ exec_mmap() as bprm->mm is
1275          * not visibile until then. This also enables the update
1276          * to be lockless.
1277          */
1278         set_mm_exe_file(bprm->mm, bprm->file);
1279
1280         /*
1281          * Release all of the old mmap stuff
1282          */
1283         acct_arg_size(bprm, 0);
1284         retval = exec_mmap(bprm->mm);
1285         if (retval)
1286                 goto out;
1287
1288         /*
1289          * After clearing bprm->mm (to mark that current is using the
1290          * prepared mm now), we have nothing left of the original
1291          * process. If anything from here on returns an error, the check
1292          * in search_binary_handler() will SEGV current.
1293          */
1294         bprm->mm = NULL;
1295
1296         set_fs(USER_DS);
1297         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1298                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1299         flush_thread();
1300         current->personality &= ~bprm->per_clear;
1301
1302         /*
1303          * We have to apply CLOEXEC before we change whether the process is
1304          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1305          * trying to access the should-be-closed file descriptors of a process
1306          * undergoing exec(2).
1307          */
1308         do_close_on_exec(current->files);
1309         return 0;
1310
1311 out:
1312         return retval;
1313 }
1314 EXPORT_SYMBOL(flush_old_exec);
1315
1316 void would_dump(struct linux_binprm *bprm, struct file *file)
1317 {
1318         struct inode *inode = file_inode(file);
1319         if (inode_permission(inode, MAY_READ) < 0) {
1320                 struct user_namespace *old, *user_ns;
1321                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1322
1323                 /* Ensure mm->user_ns contains the executable */
1324                 user_ns = old = bprm->mm->user_ns;
1325                 while ((user_ns != &init_user_ns) &&
1326                        !privileged_wrt_inode_uidgid(user_ns, inode))
1327                         user_ns = user_ns->parent;
1328
1329                 if (old != user_ns) {
1330                         bprm->mm->user_ns = get_user_ns(user_ns);
1331                         put_user_ns(old);
1332                 }
1333         }
1334 }
1335 EXPORT_SYMBOL(would_dump);
1336
1337 void setup_new_exec(struct linux_binprm * bprm)
1338 {
1339         /*
1340          * Once here, prepare_binrpm() will not be called any more, so
1341          * the final state of setuid/setgid/fscaps can be merged into the
1342          * secureexec flag.
1343          */
1344         bprm->secureexec |= bprm->cap_elevated;
1345
1346         if (bprm->secureexec) {
1347                 /* Make sure parent cannot signal privileged process. */
1348                 current->pdeath_signal = 0;
1349
1350                 /*
1351                  * For secureexec, reset the stack limit to sane default to
1352                  * avoid bad behavior from the prior rlimits. This has to
1353                  * happen before arch_pick_mmap_layout(), which examines
1354                  * RLIMIT_STACK, but after the point of no return to avoid
1355                  * needing to clean up the change on failure.
1356                  */
1357                 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1358                         bprm->rlim_stack.rlim_cur = _STK_LIM;
1359         }
1360
1361         arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1362
1363         current->sas_ss_sp = current->sas_ss_size = 0;
1364
1365         /*
1366          * Figure out dumpability. Note that this checking only of current
1367          * is wrong, but userspace depends on it. This should be testing
1368          * bprm->secureexec instead.
1369          */
1370         if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1371             !(uid_eq(current_euid(), current_uid()) &&
1372               gid_eq(current_egid(), current_gid())))
1373                 set_dumpable(current->mm, suid_dumpable);
1374         else
1375                 set_dumpable(current->mm, SUID_DUMP_USER);
1376
1377         arch_setup_new_exec();
1378         perf_event_exec();
1379         __set_task_comm(current, kbasename(bprm->filename), true);
1380
1381         /* Set the new mm task size. We have to do that late because it may
1382          * depend on TIF_32BIT which is only updated in flush_thread() on
1383          * some architectures like powerpc
1384          */
1385         current->mm->task_size = TASK_SIZE;
1386
1387         /* An exec changes our domain. We are no longer part of the thread
1388            group */
1389         current->self_exec_id++;
1390         flush_signal_handlers(current, 0);
1391 }
1392 EXPORT_SYMBOL(setup_new_exec);
1393
1394 /* Runs immediately before start_thread() takes over. */
1395 void finalize_exec(struct linux_binprm *bprm)
1396 {
1397         /* Store any stack rlimit changes before starting thread. */
1398         task_lock(current->group_leader);
1399         current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1400         task_unlock(current->group_leader);
1401 }
1402 EXPORT_SYMBOL(finalize_exec);
1403
1404 /*
1405  * Prepare credentials and lock ->cred_guard_mutex.
1406  * install_exec_creds() commits the new creds and drops the lock.
1407  * Or, if exec fails before, free_bprm() should release ->cred and
1408  * and unlock.
1409  */
1410 static int prepare_bprm_creds(struct linux_binprm *bprm)
1411 {
1412         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1413                 return -ERESTARTNOINTR;
1414
1415         bprm->cred = prepare_exec_creds();
1416         if (likely(bprm->cred))
1417                 return 0;
1418
1419         mutex_unlock(&current->signal->cred_guard_mutex);
1420         return -ENOMEM;
1421 }
1422
1423 static void free_bprm(struct linux_binprm *bprm)
1424 {
1425         free_arg_pages(bprm);
1426         if (bprm->cred) {
1427                 mutex_unlock(&current->signal->cred_guard_mutex);
1428                 abort_creds(bprm->cred);
1429         }
1430         if (bprm->file) {
1431                 allow_write_access(bprm->file);
1432                 fput(bprm->file);
1433         }
1434         /* If a binfmt changed the interp, free it. */
1435         if (bprm->interp != bprm->filename)
1436                 kfree(bprm->interp);
1437         kfree(bprm);
1438 }
1439
1440 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1441 {
1442         /* If a binfmt changed the interp, free it first. */
1443         if (bprm->interp != bprm->filename)
1444                 kfree(bprm->interp);
1445         bprm->interp = kstrdup(interp, GFP_KERNEL);
1446         if (!bprm->interp)
1447                 return -ENOMEM;
1448         return 0;
1449 }
1450 EXPORT_SYMBOL(bprm_change_interp);
1451
1452 /*
1453  * install the new credentials for this executable
1454  */
1455 void install_exec_creds(struct linux_binprm *bprm)
1456 {
1457         security_bprm_committing_creds(bprm);
1458
1459         commit_creds(bprm->cred);
1460         bprm->cred = NULL;
1461
1462         /*
1463          * Disable monitoring for regular users
1464          * when executing setuid binaries. Must
1465          * wait until new credentials are committed
1466          * by commit_creds() above
1467          */
1468         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1469                 perf_event_exit_task(current);
1470         /*
1471          * cred_guard_mutex must be held at least to this point to prevent
1472          * ptrace_attach() from altering our determination of the task's
1473          * credentials; any time after this it may be unlocked.
1474          */
1475         security_bprm_committed_creds(bprm);
1476         mutex_unlock(&current->signal->cred_guard_mutex);
1477 }
1478 EXPORT_SYMBOL(install_exec_creds);
1479
1480 /*
1481  * determine how safe it is to execute the proposed program
1482  * - the caller must hold ->cred_guard_mutex to protect against
1483  *   PTRACE_ATTACH or seccomp thread-sync
1484  */
1485 static void check_unsafe_exec(struct linux_binprm *bprm)
1486 {
1487         struct task_struct *p = current, *t;
1488         unsigned n_fs;
1489
1490         if (p->ptrace)
1491                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1492
1493         /*
1494          * This isn't strictly necessary, but it makes it harder for LSMs to
1495          * mess up.
1496          */
1497         if (task_no_new_privs(current))
1498                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1499
1500         t = p;
1501         n_fs = 1;
1502         spin_lock(&p->fs->lock);
1503         rcu_read_lock();
1504         while_each_thread(p, t) {
1505                 if (t->fs == p->fs)
1506                         n_fs++;
1507         }
1508         rcu_read_unlock();
1509
1510         if (p->fs->users > n_fs)
1511                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1512         else
1513                 p->fs->in_exec = 1;
1514         spin_unlock(&p->fs->lock);
1515 }
1516
1517 static void bprm_fill_uid(struct linux_binprm *bprm)
1518 {
1519         struct inode *inode;
1520         unsigned int mode;
1521         kuid_t uid;
1522         kgid_t gid;
1523
1524         /*
1525          * Since this can be called multiple times (via prepare_binprm),
1526          * we must clear any previous work done when setting set[ug]id
1527          * bits from any earlier bprm->file uses (for example when run
1528          * first for a setuid script then again for its interpreter).
1529          */
1530         bprm->cred->euid = current_euid();
1531         bprm->cred->egid = current_egid();
1532
1533         if (!mnt_may_suid(bprm->file->f_path.mnt))
1534                 return;
1535
1536         if (task_no_new_privs(current))
1537                 return;
1538
1539         inode = bprm->file->f_path.dentry->d_inode;
1540         mode = READ_ONCE(inode->i_mode);
1541         if (!(mode & (S_ISUID|S_ISGID)))
1542                 return;
1543
1544         /* Be careful if suid/sgid is set */
1545         inode_lock(inode);
1546
1547         /* reload atomically mode/uid/gid now that lock held */
1548         mode = inode->i_mode;
1549         uid = inode->i_uid;
1550         gid = inode->i_gid;
1551         inode_unlock(inode);
1552
1553         /* We ignore suid/sgid if there are no mappings for them in the ns */
1554         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1555                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1556                 return;
1557
1558         if (mode & S_ISUID) {
1559                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1560                 bprm->cred->euid = uid;
1561         }
1562
1563         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1564                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1565                 bprm->cred->egid = gid;
1566         }
1567 }
1568
1569 /*
1570  * Fill the binprm structure from the inode.
1571  * Check permissions, then read the first BINPRM_BUF_SIZE bytes
1572  *
1573  * This may be called multiple times for binary chains (scripts for example).
1574  */
1575 int prepare_binprm(struct linux_binprm *bprm)
1576 {
1577         int retval;
1578         loff_t pos = 0;
1579
1580         bprm_fill_uid(bprm);
1581
1582         /* fill in binprm security blob */
1583         retval = security_bprm_set_creds(bprm);
1584         if (retval)
1585                 return retval;
1586         bprm->called_set_creds = 1;
1587
1588         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1589         return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1590 }
1591
1592 EXPORT_SYMBOL(prepare_binprm);
1593
1594 /*
1595  * Arguments are '\0' separated strings found at the location bprm->p
1596  * points to; chop off the first by relocating brpm->p to right after
1597  * the first '\0' encountered.
1598  */
1599 int remove_arg_zero(struct linux_binprm *bprm)
1600 {
1601         int ret = 0;
1602         unsigned long offset;
1603         char *kaddr;
1604         struct page *page;
1605
1606         if (!bprm->argc)
1607                 return 0;
1608
1609         do {
1610                 offset = bprm->p & ~PAGE_MASK;
1611                 page = get_arg_page(bprm, bprm->p, 0);
1612                 if (!page) {
1613                         ret = -EFAULT;
1614                         goto out;
1615                 }
1616                 kaddr = kmap_atomic(page);
1617
1618                 for (; offset < PAGE_SIZE && kaddr[offset];
1619                                 offset++, bprm->p++)
1620                         ;
1621
1622                 kunmap_atomic(kaddr);
1623                 put_arg_page(page);
1624         } while (offset == PAGE_SIZE);
1625
1626         bprm->p++;
1627         bprm->argc--;
1628         ret = 0;
1629
1630 out:
1631         return ret;
1632 }
1633 EXPORT_SYMBOL(remove_arg_zero);
1634
1635 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1636 /*
1637  * cycle the list of binary formats handler, until one recognizes the image
1638  */
1639 int search_binary_handler(struct linux_binprm *bprm)
1640 {
1641         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1642         struct linux_binfmt *fmt;
1643         int retval;
1644
1645         /* This allows 4 levels of binfmt rewrites before failing hard. */
1646         if (bprm->recursion_depth > 5)
1647                 return -ELOOP;
1648
1649         retval = security_bprm_check(bprm);
1650         if (retval)
1651                 return retval;
1652
1653         retval = -ENOENT;
1654  retry:
1655         read_lock(&binfmt_lock);
1656         list_for_each_entry(fmt, &formats, lh) {
1657                 if (!try_module_get(fmt->module))
1658                         continue;
1659                 read_unlock(&binfmt_lock);
1660
1661                 bprm->recursion_depth++;
1662                 retval = fmt->load_binary(bprm);
1663                 bprm->recursion_depth--;
1664
1665                 read_lock(&binfmt_lock);
1666                 put_binfmt(fmt);
1667                 if (retval < 0 && !bprm->mm) {
1668                         /* we got to flush_old_exec() and failed after it */
1669                         read_unlock(&binfmt_lock);
1670                         force_sigsegv(SIGSEGV);
1671                         return retval;
1672                 }
1673                 if (retval != -ENOEXEC || !bprm->file) {
1674                         read_unlock(&binfmt_lock);
1675                         return retval;
1676                 }
1677         }
1678         read_unlock(&binfmt_lock);
1679
1680         if (need_retry) {
1681                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1682                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1683                         return retval;
1684                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1685                         return retval;
1686                 need_retry = false;
1687                 goto retry;
1688         }
1689
1690         return retval;
1691 }
1692 EXPORT_SYMBOL(search_binary_handler);
1693
1694 static int exec_binprm(struct linux_binprm *bprm)
1695 {
1696         pid_t old_pid, old_vpid;
1697         int ret;
1698
1699         /* Need to fetch pid before load_binary changes it */
1700         old_pid = current->pid;
1701         rcu_read_lock();
1702         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1703         rcu_read_unlock();
1704
1705         ret = search_binary_handler(bprm);
1706         if (ret >= 0) {
1707                 audit_bprm(bprm);
1708                 trace_sched_process_exec(current, old_pid, bprm);
1709                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1710                 proc_exec_connector(current);
1711         }
1712
1713         return ret;
1714 }
1715
1716 /*
1717  * sys_execve() executes a new program.
1718  */
1719 static int __do_execve_file(int fd, struct filename *filename,
1720                             struct user_arg_ptr argv,
1721                             struct user_arg_ptr envp,
1722                             int flags, struct file *file)
1723 {
1724         char *pathbuf = NULL;
1725         struct linux_binprm *bprm;
1726         struct files_struct *displaced;
1727         int retval;
1728
1729         if (IS_ERR(filename))
1730                 return PTR_ERR(filename);
1731
1732         /*
1733          * We move the actual failure in case of RLIMIT_NPROC excess from
1734          * set*uid() to execve() because too many poorly written programs
1735          * don't check setuid() return code.  Here we additionally recheck
1736          * whether NPROC limit is still exceeded.
1737          */
1738         if ((current->flags & PF_NPROC_EXCEEDED) &&
1739             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1740                 retval = -EAGAIN;
1741                 goto out_ret;
1742         }
1743
1744         /* We're below the limit (still or again), so we don't want to make
1745          * further execve() calls fail. */
1746         current->flags &= ~PF_NPROC_EXCEEDED;
1747
1748         retval = unshare_files(&displaced);
1749         if (retval)
1750                 goto out_ret;
1751
1752         retval = -ENOMEM;
1753         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1754         if (!bprm)
1755                 goto out_files;
1756
1757         retval = prepare_bprm_creds(bprm);
1758         if (retval)
1759                 goto out_free;
1760
1761         check_unsafe_exec(bprm);
1762         current->in_execve = 1;
1763
1764         if (!file)
1765                 file = do_open_execat(fd, filename, flags);
1766         retval = PTR_ERR(file);
1767         if (IS_ERR(file))
1768                 goto out_unmark;
1769
1770         sched_exec();
1771
1772         bprm->file = file;
1773         if (!filename) {
1774                 bprm->filename = "none";
1775         } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1776                 bprm->filename = filename->name;
1777         } else {
1778                 if (filename->name[0] == '\0')
1779                         pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1780                 else
1781                         pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1782                                             fd, filename->name);
1783                 if (!pathbuf) {
1784                         retval = -ENOMEM;
1785                         goto out_unmark;
1786                 }
1787                 /*
1788                  * Record that a name derived from an O_CLOEXEC fd will be
1789                  * inaccessible after exec. Relies on having exclusive access to
1790                  * current->files (due to unshare_files above).
1791                  */
1792                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1793                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1794                 bprm->filename = pathbuf;
1795         }
1796         bprm->interp = bprm->filename;
1797
1798         retval = bprm_mm_init(bprm);
1799         if (retval)
1800                 goto out_unmark;
1801
1802         retval = prepare_arg_pages(bprm, argv, envp);
1803         if (retval < 0)
1804                 goto out;
1805
1806         retval = prepare_binprm(bprm);
1807         if (retval < 0)
1808                 goto out;
1809
1810         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1811         if (retval < 0)
1812                 goto out;
1813
1814         bprm->exec = bprm->p;
1815         retval = copy_strings(bprm->envc, envp, bprm);
1816         if (retval < 0)
1817                 goto out;
1818
1819         retval = copy_strings(bprm->argc, argv, bprm);
1820         if (retval < 0)
1821                 goto out;
1822
1823         would_dump(bprm, bprm->file);
1824
1825         retval = exec_binprm(bprm);
1826         if (retval < 0)
1827                 goto out;
1828
1829         /* execve succeeded */
1830         current->fs->in_exec = 0;
1831         current->in_execve = 0;
1832         rseq_execve(current);
1833         acct_update_integrals(current);
1834         task_numa_free(current, false);
1835         free_bprm(bprm);
1836         kfree(pathbuf);
1837         if (filename)
1838                 putname(filename);
1839         if (displaced)
1840                 put_files_struct(displaced);
1841         return retval;
1842
1843 out:
1844         if (bprm->mm) {
1845                 acct_arg_size(bprm, 0);
1846                 mmput(bprm->mm);
1847         }
1848
1849 out_unmark:
1850         current->fs->in_exec = 0;
1851         current->in_execve = 0;
1852
1853 out_free:
1854         free_bprm(bprm);
1855         kfree(pathbuf);
1856
1857 out_files:
1858         if (displaced)
1859                 reset_files_struct(displaced);
1860 out_ret:
1861         if (filename)
1862                 putname(filename);
1863         return retval;
1864 }
1865
1866 static int do_execveat_common(int fd, struct filename *filename,
1867                               struct user_arg_ptr argv,
1868                               struct user_arg_ptr envp,
1869                               int flags)
1870 {
1871         return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1872 }
1873
1874 int do_execve_file(struct file *file, void *__argv, void *__envp)
1875 {
1876         struct user_arg_ptr argv = { .ptr.native = __argv };
1877         struct user_arg_ptr envp = { .ptr.native = __envp };
1878
1879         return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1880 }
1881
1882 int do_execve(struct filename *filename,
1883         const char __user *const __user *__argv,
1884         const char __user *const __user *__envp)
1885 {
1886         struct user_arg_ptr argv = { .ptr.native = __argv };
1887         struct user_arg_ptr envp = { .ptr.native = __envp };
1888         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1889 }
1890
1891 int do_execveat(int fd, struct filename *filename,
1892                 const char __user *const __user *__argv,
1893                 const char __user *const __user *__envp,
1894                 int flags)
1895 {
1896         struct user_arg_ptr argv = { .ptr.native = __argv };
1897         struct user_arg_ptr envp = { .ptr.native = __envp };
1898
1899         return do_execveat_common(fd, filename, argv, envp, flags);
1900 }
1901
1902 #ifdef CONFIG_COMPAT
1903 static int compat_do_execve(struct filename *filename,
1904         const compat_uptr_t __user *__argv,
1905         const compat_uptr_t __user *__envp)
1906 {
1907         struct user_arg_ptr argv = {
1908                 .is_compat = true,
1909                 .ptr.compat = __argv,
1910         };
1911         struct user_arg_ptr envp = {
1912                 .is_compat = true,
1913                 .ptr.compat = __envp,
1914         };
1915         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1916 }
1917
1918 static int compat_do_execveat(int fd, struct filename *filename,
1919                               const compat_uptr_t __user *__argv,
1920                               const compat_uptr_t __user *__envp,
1921                               int flags)
1922 {
1923         struct user_arg_ptr argv = {
1924                 .is_compat = true,
1925                 .ptr.compat = __argv,
1926         };
1927         struct user_arg_ptr envp = {
1928                 .is_compat = true,
1929                 .ptr.compat = __envp,
1930         };
1931         return do_execveat_common(fd, filename, argv, envp, flags);
1932 }
1933 #endif
1934
1935 void set_binfmt(struct linux_binfmt *new)
1936 {
1937         struct mm_struct *mm = current->mm;
1938
1939         if (mm->binfmt)
1940                 module_put(mm->binfmt->module);
1941
1942         mm->binfmt = new;
1943         if (new)
1944                 __module_get(new->module);
1945 }
1946 EXPORT_SYMBOL(set_binfmt);
1947
1948 /*
1949  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1950  */
1951 void set_dumpable(struct mm_struct *mm, int value)
1952 {
1953         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1954                 return;
1955
1956         set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
1957 }
1958
1959 SYSCALL_DEFINE3(execve,
1960                 const char __user *, filename,
1961                 const char __user *const __user *, argv,
1962                 const char __user *const __user *, envp)
1963 {
1964         return do_execve(getname(filename), argv, envp);
1965 }
1966
1967 SYSCALL_DEFINE5(execveat,
1968                 int, fd, const char __user *, filename,
1969                 const char __user *const __user *, argv,
1970                 const char __user *const __user *, envp,
1971                 int, flags)
1972 {
1973         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1974
1975         return do_execveat(fd,
1976                            getname_flags(filename, lookup_flags, NULL),
1977                            argv, envp, flags);
1978 }
1979
1980 #ifdef CONFIG_COMPAT
1981 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1982         const compat_uptr_t __user *, argv,
1983         const compat_uptr_t __user *, envp)
1984 {
1985         return compat_do_execve(getname(filename), argv, envp);
1986 }
1987
1988 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1989                        const char __user *, filename,
1990                        const compat_uptr_t __user *, argv,
1991                        const compat_uptr_t __user *, envp,
1992                        int,  flags)
1993 {
1994         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1995
1996         return compat_do_execveat(fd,
1997                                   getname_flags(filename, lookup_flags, NULL),
1998                                   argv, envp, flags);
1999 }
2000 #endif