OSDN Git Service

4bf203756cf84284f87fd626891be66e5c6d11f0
[uclinux-h8/linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *ino_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = META_MAPPING(sbi);
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41         f2fs_wait_on_page_writeback(page, META);
42         SetPageUptodate(page);
43         return page;
44 }
45
46 /*
47  * We guarantee no failure on the returned page.
48  */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51         struct address_space *mapping = META_MAPPING(sbi);
52         struct page *page;
53 repeat:
54         page = grab_cache_page(mapping, index);
55         if (!page) {
56                 cond_resched();
57                 goto repeat;
58         }
59         if (PageUptodate(page))
60                 goto out;
61
62         if (f2fs_submit_page_bio(sbi, page, index,
63                                 READ_SYNC | REQ_META | REQ_PRIO))
64                 goto repeat;
65
66         lock_page(page);
67         if (unlikely(page->mapping != mapping)) {
68                 f2fs_put_page(page, 1);
69                 goto repeat;
70         }
71 out:
72         return page;
73 }
74
75 static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
76 {
77         switch (type) {
78         case META_NAT:
79                 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
80         case META_SIT:
81                 return SIT_BLK_CNT(sbi);
82         case META_SSA:
83         case META_CP:
84                 return 0;
85         default:
86                 BUG();
87         }
88 }
89
90 /*
91  * Readahead CP/NAT/SIT/SSA pages
92  */
93 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
94 {
95         block_t prev_blk_addr = 0;
96         struct page *page;
97         int blkno = start;
98         int max_blks = get_max_meta_blks(sbi, type);
99
100         struct f2fs_io_info fio = {
101                 .type = META,
102                 .rw = READ_SYNC | REQ_META | REQ_PRIO
103         };
104
105         for (; nrpages-- > 0; blkno++) {
106                 block_t blk_addr;
107
108                 switch (type) {
109                 case META_NAT:
110                         /* get nat block addr */
111                         if (unlikely(blkno >= max_blks))
112                                 blkno = 0;
113                         blk_addr = current_nat_addr(sbi,
114                                         blkno * NAT_ENTRY_PER_BLOCK);
115                         break;
116                 case META_SIT:
117                         /* get sit block addr */
118                         if (unlikely(blkno >= max_blks))
119                                 goto out;
120                         blk_addr = current_sit_addr(sbi,
121                                         blkno * SIT_ENTRY_PER_BLOCK);
122                         if (blkno != start && prev_blk_addr + 1 != blk_addr)
123                                 goto out;
124                         prev_blk_addr = blk_addr;
125                         break;
126                 case META_SSA:
127                 case META_CP:
128                         /* get ssa/cp block addr */
129                         blk_addr = blkno;
130                         break;
131                 default:
132                         BUG();
133                 }
134
135                 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
136                 if (!page)
137                         continue;
138                 if (PageUptodate(page)) {
139                         f2fs_put_page(page, 1);
140                         continue;
141                 }
142
143                 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
144                 f2fs_put_page(page, 0);
145         }
146 out:
147         f2fs_submit_merged_bio(sbi, META, READ);
148         return blkno - start;
149 }
150
151 static int f2fs_write_meta_page(struct page *page,
152                                 struct writeback_control *wbc)
153 {
154         struct inode *inode = page->mapping->host;
155         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
156
157         trace_f2fs_writepage(page, META);
158
159         if (unlikely(sbi->por_doing))
160                 goto redirty_out;
161         if (wbc->for_reclaim)
162                 goto redirty_out;
163
164         /* Should not write any meta pages, if any IO error was occurred */
165         if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
166                 goto no_write;
167
168         f2fs_wait_on_page_writeback(page, META);
169         write_meta_page(sbi, page);
170 no_write:
171         dec_page_count(sbi, F2FS_DIRTY_META);
172         unlock_page(page);
173         return 0;
174
175 redirty_out:
176         redirty_page_for_writepage(wbc, page);
177         return AOP_WRITEPAGE_ACTIVATE;
178 }
179
180 static int f2fs_write_meta_pages(struct address_space *mapping,
181                                 struct writeback_control *wbc)
182 {
183         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
184         long diff, written;
185
186         trace_f2fs_writepages(mapping->host, wbc, META);
187
188         /* collect a number of dirty meta pages and write together */
189         if (wbc->for_kupdate ||
190                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
191                 goto skip_write;
192
193         /* if mounting is failed, skip writing node pages */
194         mutex_lock(&sbi->cp_mutex);
195         diff = nr_pages_to_write(sbi, META, wbc);
196         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
197         mutex_unlock(&sbi->cp_mutex);
198         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
199         return 0;
200
201 skip_write:
202         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
203         return 0;
204 }
205
206 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
207                                                 long nr_to_write)
208 {
209         struct address_space *mapping = META_MAPPING(sbi);
210         pgoff_t index = 0, end = LONG_MAX;
211         struct pagevec pvec;
212         long nwritten = 0;
213         struct writeback_control wbc = {
214                 .for_reclaim = 0,
215         };
216
217         pagevec_init(&pvec, 0);
218
219         while (index <= end) {
220                 int i, nr_pages;
221                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
222                                 PAGECACHE_TAG_DIRTY,
223                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
224                 if (unlikely(nr_pages == 0))
225                         break;
226
227                 for (i = 0; i < nr_pages; i++) {
228                         struct page *page = pvec.pages[i];
229
230                         lock_page(page);
231
232                         if (unlikely(page->mapping != mapping)) {
233 continue_unlock:
234                                 unlock_page(page);
235                                 continue;
236                         }
237                         if (!PageDirty(page)) {
238                                 /* someone wrote it for us */
239                                 goto continue_unlock;
240                         }
241
242                         if (!clear_page_dirty_for_io(page))
243                                 goto continue_unlock;
244
245                         if (f2fs_write_meta_page(page, &wbc)) {
246                                 unlock_page(page);
247                                 break;
248                         }
249                         nwritten++;
250                         if (unlikely(nwritten >= nr_to_write))
251                                 break;
252                 }
253                 pagevec_release(&pvec);
254                 cond_resched();
255         }
256
257         if (nwritten)
258                 f2fs_submit_merged_bio(sbi, type, WRITE);
259
260         return nwritten;
261 }
262
263 static int f2fs_set_meta_page_dirty(struct page *page)
264 {
265         struct address_space *mapping = page->mapping;
266         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
267
268         trace_f2fs_set_page_dirty(page, META);
269
270         SetPageUptodate(page);
271         if (!PageDirty(page)) {
272                 __set_page_dirty_nobuffers(page);
273                 inc_page_count(sbi, F2FS_DIRTY_META);
274                 return 1;
275         }
276         return 0;
277 }
278
279 const struct address_space_operations f2fs_meta_aops = {
280         .writepage      = f2fs_write_meta_page,
281         .writepages     = f2fs_write_meta_pages,
282         .set_page_dirty = f2fs_set_meta_page_dirty,
283 };
284
285 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
286 {
287         struct ino_entry *e;
288 retry:
289         spin_lock(&sbi->ino_lock[type]);
290
291         e = radix_tree_lookup(&sbi->ino_root[type], ino);
292         if (!e) {
293                 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
294                 if (!e) {
295                         spin_unlock(&sbi->ino_lock[type]);
296                         goto retry;
297                 }
298                 if (radix_tree_insert(&sbi->ino_root[type], ino, e)) {
299                         spin_unlock(&sbi->ino_lock[type]);
300                         kmem_cache_free(ino_entry_slab, e);
301                         goto retry;
302                 }
303                 memset(e, 0, sizeof(struct ino_entry));
304                 e->ino = ino;
305
306                 list_add_tail(&e->list, &sbi->ino_list[type]);
307         }
308         spin_unlock(&sbi->ino_lock[type]);
309 }
310
311 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
312 {
313         struct ino_entry *e;
314
315         spin_lock(&sbi->ino_lock[type]);
316         e = radix_tree_lookup(&sbi->ino_root[type], ino);
317         if (e) {
318                 list_del(&e->list);
319                 radix_tree_delete(&sbi->ino_root[type], ino);
320                 if (type == ORPHAN_INO)
321                         sbi->n_orphans--;
322                 spin_unlock(&sbi->ino_lock[type]);
323                 kmem_cache_free(ino_entry_slab, e);
324                 return;
325         }
326         spin_unlock(&sbi->ino_lock[type]);
327 }
328
329 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
330 {
331         int err = 0;
332
333         spin_lock(&sbi->ino_lock[ORPHAN_INO]);
334         if (unlikely(sbi->n_orphans >= sbi->max_orphans))
335                 err = -ENOSPC;
336         else
337                 sbi->n_orphans++;
338         spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
339
340         return err;
341 }
342
343 void release_orphan_inode(struct f2fs_sb_info *sbi)
344 {
345         spin_lock(&sbi->ino_lock[ORPHAN_INO]);
346         f2fs_bug_on(sbi->n_orphans == 0);
347         sbi->n_orphans--;
348         spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
349 }
350
351 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
352 {
353         /* add new orphan ino entry into list */
354         __add_ino_entry(sbi, ino, ORPHAN_INO);
355 }
356
357 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
358 {
359         /* remove orphan entry from orphan list */
360         __remove_ino_entry(sbi, ino, ORPHAN_INO);
361 }
362
363 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
364 {
365         struct inode *inode = f2fs_iget(sbi->sb, ino);
366         f2fs_bug_on(IS_ERR(inode));
367         clear_nlink(inode);
368
369         /* truncate all the data during iput */
370         iput(inode);
371 }
372
373 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
374 {
375         block_t start_blk, orphan_blkaddr, i, j;
376
377         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
378                 return;
379
380         sbi->por_doing = true;
381
382         start_blk = __start_cp_addr(sbi) + 1 +
383                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
384         orphan_blkaddr = __start_sum_addr(sbi) - 1;
385
386         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
387
388         for (i = 0; i < orphan_blkaddr; i++) {
389                 struct page *page = get_meta_page(sbi, start_blk + i);
390                 struct f2fs_orphan_block *orphan_blk;
391
392                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
393                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
394                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
395                         recover_orphan_inode(sbi, ino);
396                 }
397                 f2fs_put_page(page, 1);
398         }
399         /* clear Orphan Flag */
400         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
401         sbi->por_doing = false;
402         return;
403 }
404
405 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
406 {
407         struct list_head *head;
408         struct f2fs_orphan_block *orphan_blk = NULL;
409         unsigned int nentries = 0;
410         unsigned short index;
411         unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
412                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
413         struct page *page = NULL;
414         struct ino_entry *orphan = NULL;
415
416         for (index = 0; index < orphan_blocks; index++)
417                 grab_meta_page(sbi, start_blk + index);
418
419         index = 1;
420         spin_lock(&sbi->ino_lock[ORPHAN_INO]);
421         head = &sbi->ino_list[ORPHAN_INO];
422
423         /* loop for each orphan inode entry and write them in Jornal block */
424         list_for_each_entry(orphan, head, list) {
425                 if (!page) {
426                         page = find_get_page(META_MAPPING(sbi), start_blk++);
427                         f2fs_bug_on(!page);
428                         orphan_blk =
429                                 (struct f2fs_orphan_block *)page_address(page);
430                         memset(orphan_blk, 0, sizeof(*orphan_blk));
431                         f2fs_put_page(page, 0);
432                 }
433
434                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
435
436                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
437                         /*
438                          * an orphan block is full of 1020 entries,
439                          * then we need to flush current orphan blocks
440                          * and bring another one in memory
441                          */
442                         orphan_blk->blk_addr = cpu_to_le16(index);
443                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
444                         orphan_blk->entry_count = cpu_to_le32(nentries);
445                         set_page_dirty(page);
446                         f2fs_put_page(page, 1);
447                         index++;
448                         nentries = 0;
449                         page = NULL;
450                 }
451         }
452
453         if (page) {
454                 orphan_blk->blk_addr = cpu_to_le16(index);
455                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
456                 orphan_blk->entry_count = cpu_to_le32(nentries);
457                 set_page_dirty(page);
458                 f2fs_put_page(page, 1);
459         }
460
461         spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
462 }
463
464 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
465                                 block_t cp_addr, unsigned long long *version)
466 {
467         struct page *cp_page_1, *cp_page_2 = NULL;
468         unsigned long blk_size = sbi->blocksize;
469         struct f2fs_checkpoint *cp_block;
470         unsigned long long cur_version = 0, pre_version = 0;
471         size_t crc_offset;
472         __u32 crc = 0;
473
474         /* Read the 1st cp block in this CP pack */
475         cp_page_1 = get_meta_page(sbi, cp_addr);
476
477         /* get the version number */
478         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
479         crc_offset = le32_to_cpu(cp_block->checksum_offset);
480         if (crc_offset >= blk_size)
481                 goto invalid_cp1;
482
483         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
484         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
485                 goto invalid_cp1;
486
487         pre_version = cur_cp_version(cp_block);
488
489         /* Read the 2nd cp block in this CP pack */
490         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
491         cp_page_2 = get_meta_page(sbi, cp_addr);
492
493         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
494         crc_offset = le32_to_cpu(cp_block->checksum_offset);
495         if (crc_offset >= blk_size)
496                 goto invalid_cp2;
497
498         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
499         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
500                 goto invalid_cp2;
501
502         cur_version = cur_cp_version(cp_block);
503
504         if (cur_version == pre_version) {
505                 *version = cur_version;
506                 f2fs_put_page(cp_page_2, 1);
507                 return cp_page_1;
508         }
509 invalid_cp2:
510         f2fs_put_page(cp_page_2, 1);
511 invalid_cp1:
512         f2fs_put_page(cp_page_1, 1);
513         return NULL;
514 }
515
516 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
517 {
518         struct f2fs_checkpoint *cp_block;
519         struct f2fs_super_block *fsb = sbi->raw_super;
520         struct page *cp1, *cp2, *cur_page;
521         unsigned long blk_size = sbi->blocksize;
522         unsigned long long cp1_version = 0, cp2_version = 0;
523         unsigned long long cp_start_blk_no;
524         unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
525         block_t cp_blk_no;
526         int i;
527
528         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
529         if (!sbi->ckpt)
530                 return -ENOMEM;
531         /*
532          * Finding out valid cp block involves read both
533          * sets( cp pack1 and cp pack 2)
534          */
535         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
536         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
537
538         /* The second checkpoint pack should start at the next segment */
539         cp_start_blk_no += ((unsigned long long)1) <<
540                                 le32_to_cpu(fsb->log_blocks_per_seg);
541         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
542
543         if (cp1 && cp2) {
544                 if (ver_after(cp2_version, cp1_version))
545                         cur_page = cp2;
546                 else
547                         cur_page = cp1;
548         } else if (cp1) {
549                 cur_page = cp1;
550         } else if (cp2) {
551                 cur_page = cp2;
552         } else {
553                 goto fail_no_cp;
554         }
555
556         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
557         memcpy(sbi->ckpt, cp_block, blk_size);
558
559         if (cp_blks <= 1)
560                 goto done;
561
562         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
563         if (cur_page == cp2)
564                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
565
566         for (i = 1; i < cp_blks; i++) {
567                 void *sit_bitmap_ptr;
568                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
569
570                 cur_page = get_meta_page(sbi, cp_blk_no + i);
571                 sit_bitmap_ptr = page_address(cur_page);
572                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
573                 f2fs_put_page(cur_page, 1);
574         }
575 done:
576         f2fs_put_page(cp1, 1);
577         f2fs_put_page(cp2, 1);
578         return 0;
579
580 fail_no_cp:
581         kfree(sbi->ckpt);
582         return -EINVAL;
583 }
584
585 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
586 {
587         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
588
589         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
590                 return -EEXIST;
591
592         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
593         F2FS_I(inode)->dirty_dir = new;
594         list_add_tail(&new->list, &sbi->dir_inode_list);
595         stat_inc_dirty_dir(sbi);
596         return 0;
597 }
598
599 void set_dirty_dir_page(struct inode *inode, struct page *page)
600 {
601         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
602         struct dir_inode_entry *new;
603         int ret = 0;
604
605         if (!S_ISDIR(inode->i_mode))
606                 return;
607
608         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
609         new->inode = inode;
610         INIT_LIST_HEAD(&new->list);
611
612         spin_lock(&sbi->dir_inode_lock);
613         ret = __add_dirty_inode(inode, new);
614         inode_inc_dirty_dents(inode);
615         SetPagePrivate(page);
616         spin_unlock(&sbi->dir_inode_lock);
617
618         if (ret)
619                 kmem_cache_free(inode_entry_slab, new);
620 }
621
622 void add_dirty_dir_inode(struct inode *inode)
623 {
624         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
625         struct dir_inode_entry *new =
626                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
627         int ret = 0;
628
629         new->inode = inode;
630         INIT_LIST_HEAD(&new->list);
631
632         spin_lock(&sbi->dir_inode_lock);
633         ret = __add_dirty_inode(inode, new);
634         spin_unlock(&sbi->dir_inode_lock);
635
636         if (ret)
637                 kmem_cache_free(inode_entry_slab, new);
638 }
639
640 void remove_dirty_dir_inode(struct inode *inode)
641 {
642         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
643         struct dir_inode_entry *entry;
644
645         if (!S_ISDIR(inode->i_mode))
646                 return;
647
648         spin_lock(&sbi->dir_inode_lock);
649         if (get_dirty_dents(inode) ||
650                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
651                 spin_unlock(&sbi->dir_inode_lock);
652                 return;
653         }
654
655         entry = F2FS_I(inode)->dirty_dir;
656         list_del(&entry->list);
657         F2FS_I(inode)->dirty_dir = NULL;
658         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
659         stat_dec_dirty_dir(sbi);
660         spin_unlock(&sbi->dir_inode_lock);
661         kmem_cache_free(inode_entry_slab, entry);
662
663         /* Only from the recovery routine */
664         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
665                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
666                 iput(inode);
667         }
668 }
669
670 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
671 {
672         struct list_head *head;
673         struct dir_inode_entry *entry;
674         struct inode *inode;
675 retry:
676         spin_lock(&sbi->dir_inode_lock);
677
678         head = &sbi->dir_inode_list;
679         if (list_empty(head)) {
680                 spin_unlock(&sbi->dir_inode_lock);
681                 return;
682         }
683         entry = list_entry(head->next, struct dir_inode_entry, list);
684         inode = igrab(entry->inode);
685         spin_unlock(&sbi->dir_inode_lock);
686         if (inode) {
687                 filemap_fdatawrite(inode->i_mapping);
688                 iput(inode);
689         } else {
690                 /*
691                  * We should submit bio, since it exists several
692                  * wribacking dentry pages in the freeing inode.
693                  */
694                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
695         }
696         goto retry;
697 }
698
699 /*
700  * Freeze all the FS-operations for checkpoint.
701  */
702 static void block_operations(struct f2fs_sb_info *sbi)
703 {
704         struct writeback_control wbc = {
705                 .sync_mode = WB_SYNC_ALL,
706                 .nr_to_write = LONG_MAX,
707                 .for_reclaim = 0,
708         };
709         struct blk_plug plug;
710
711         blk_start_plug(&plug);
712
713 retry_flush_dents:
714         f2fs_lock_all(sbi);
715         /* write all the dirty dentry pages */
716         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
717                 f2fs_unlock_all(sbi);
718                 sync_dirty_dir_inodes(sbi);
719                 goto retry_flush_dents;
720         }
721
722         /*
723          * POR: we should ensure that there is no dirty node pages
724          * until finishing nat/sit flush.
725          */
726 retry_flush_nodes:
727         mutex_lock(&sbi->node_write);
728
729         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
730                 mutex_unlock(&sbi->node_write);
731                 sync_node_pages(sbi, 0, &wbc);
732                 goto retry_flush_nodes;
733         }
734         blk_finish_plug(&plug);
735 }
736
737 static void unblock_operations(struct f2fs_sb_info *sbi)
738 {
739         mutex_unlock(&sbi->node_write);
740         f2fs_unlock_all(sbi);
741 }
742
743 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
744 {
745         DEFINE_WAIT(wait);
746
747         for (;;) {
748                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
749
750                 if (!get_pages(sbi, F2FS_WRITEBACK))
751                         break;
752
753                 io_schedule();
754         }
755         finish_wait(&sbi->cp_wait, &wait);
756 }
757
758 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
759 {
760         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
761         nid_t last_nid = 0;
762         block_t start_blk;
763         struct page *cp_page;
764         unsigned int data_sum_blocks, orphan_blocks;
765         __u32 crc32 = 0;
766         void *kaddr;
767         int i;
768         int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
769
770         /*
771          * This avoids to conduct wrong roll-forward operations and uses
772          * metapages, so should be called prior to sync_meta_pages below.
773          */
774         discard_next_dnode(sbi);
775
776         /* Flush all the NAT/SIT pages */
777         while (get_pages(sbi, F2FS_DIRTY_META))
778                 sync_meta_pages(sbi, META, LONG_MAX);
779
780         next_free_nid(sbi, &last_nid);
781
782         /*
783          * modify checkpoint
784          * version number is already updated
785          */
786         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
787         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
788         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
789         for (i = 0; i < 3; i++) {
790                 ckpt->cur_node_segno[i] =
791                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
792                 ckpt->cur_node_blkoff[i] =
793                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
794                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
795                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
796         }
797         for (i = 0; i < 3; i++) {
798                 ckpt->cur_data_segno[i] =
799                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
800                 ckpt->cur_data_blkoff[i] =
801                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
802                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
803                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
804         }
805
806         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
807         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
808         ckpt->next_free_nid = cpu_to_le32(last_nid);
809
810         /* 2 cp  + n data seg summary + orphan inode blocks */
811         data_sum_blocks = npages_for_summary_flush(sbi);
812         if (data_sum_blocks < 3)
813                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
814         else
815                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
816
817         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
818                                         / F2FS_ORPHANS_PER_BLOCK;
819         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
820                         orphan_blocks);
821
822         if (is_umount) {
823                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
824                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
825                                 cp_payload_blks + data_sum_blocks +
826                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
827         } else {
828                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
829                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
830                                 cp_payload_blks + data_sum_blocks +
831                                 orphan_blocks);
832         }
833
834         if (sbi->n_orphans)
835                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
836         else
837                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
838
839         /* update SIT/NAT bitmap */
840         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
841         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
842
843         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
844         *((__le32 *)((unsigned char *)ckpt +
845                                 le32_to_cpu(ckpt->checksum_offset)))
846                                 = cpu_to_le32(crc32);
847
848         start_blk = __start_cp_addr(sbi);
849
850         /* write out checkpoint buffer at block 0 */
851         cp_page = grab_meta_page(sbi, start_blk++);
852         kaddr = page_address(cp_page);
853         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
854         set_page_dirty(cp_page);
855         f2fs_put_page(cp_page, 1);
856
857         for (i = 1; i < 1 + cp_payload_blks; i++) {
858                 cp_page = grab_meta_page(sbi, start_blk++);
859                 kaddr = page_address(cp_page);
860                 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
861                                 (1 << sbi->log_blocksize));
862                 set_page_dirty(cp_page);
863                 f2fs_put_page(cp_page, 1);
864         }
865
866         if (sbi->n_orphans) {
867                 write_orphan_inodes(sbi, start_blk);
868                 start_blk += orphan_blocks;
869         }
870
871         write_data_summaries(sbi, start_blk);
872         start_blk += data_sum_blocks;
873         if (is_umount) {
874                 write_node_summaries(sbi, start_blk);
875                 start_blk += NR_CURSEG_NODE_TYPE;
876         }
877
878         /* writeout checkpoint block */
879         cp_page = grab_meta_page(sbi, start_blk);
880         kaddr = page_address(cp_page);
881         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
882         set_page_dirty(cp_page);
883         f2fs_put_page(cp_page, 1);
884
885         /* wait for previous submitted node/meta pages writeback */
886         wait_on_all_pages_writeback(sbi);
887
888         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
889         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
890
891         /* update user_block_counts */
892         sbi->last_valid_block_count = sbi->total_valid_block_count;
893         sbi->alloc_valid_block_count = 0;
894
895         /* Here, we only have one bio having CP pack */
896         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
897
898         if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
899                 clear_prefree_segments(sbi);
900                 F2FS_RESET_SB_DIRT(sbi);
901         }
902 }
903
904 /*
905  * We guarantee that this checkpoint procedure should not fail.
906  */
907 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
908 {
909         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
910         unsigned long long ckpt_ver;
911
912         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
913
914         mutex_lock(&sbi->cp_mutex);
915         block_operations(sbi);
916
917         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
918
919         f2fs_submit_merged_bio(sbi, DATA, WRITE);
920         f2fs_submit_merged_bio(sbi, NODE, WRITE);
921         f2fs_submit_merged_bio(sbi, META, WRITE);
922
923         /*
924          * update checkpoint pack index
925          * Increase the version number so that
926          * SIT entries and seg summaries are written at correct place
927          */
928         ckpt_ver = cur_cp_version(ckpt);
929         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
930
931         /* write cached NAT/SIT entries to NAT/SIT area */
932         flush_nat_entries(sbi);
933         flush_sit_entries(sbi);
934
935         /* unlock all the fs_lock[] in do_checkpoint() */
936         do_checkpoint(sbi, is_umount);
937
938         unblock_operations(sbi);
939         mutex_unlock(&sbi->cp_mutex);
940
941         stat_inc_cp_count(sbi->stat_info);
942         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
943 }
944
945 void init_ino_entry_info(struct f2fs_sb_info *sbi)
946 {
947         int i;
948
949         for (i = 0; i < MAX_INO_ENTRY; i++) {
950                 INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC);
951                 spin_lock_init(&sbi->ino_lock[i]);
952                 INIT_LIST_HEAD(&sbi->ino_list[i]);
953         }
954
955         /*
956          * considering 512 blocks in a segment 8 blocks are needed for cp
957          * and log segment summaries. Remaining blocks are used to keep
958          * orphan entries with the limitation one reserved segment
959          * for cp pack we can have max 1020*504 orphan entries
960          */
961         sbi->n_orphans = 0;
962         sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
963                                 * F2FS_ORPHANS_PER_BLOCK;
964 }
965
966 int __init create_checkpoint_caches(void)
967 {
968         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
969                         sizeof(struct ino_entry));
970         if (!ino_entry_slab)
971                 return -ENOMEM;
972         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
973                         sizeof(struct dir_inode_entry));
974         if (!inode_entry_slab) {
975                 kmem_cache_destroy(ino_entry_slab);
976                 return -ENOMEM;
977         }
978         return 0;
979 }
980
981 void destroy_checkpoint_caches(void)
982 {
983         kmem_cache_destroy(ino_entry_slab);
984         kmem_cache_destroy(inode_entry_slab);
985 }