OSDN Git Service

smb3: Add defines for new information level, FileIdInformation
[tomoyo/tomoyo-test1.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
22
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define NUM_PREALLOC_POST_READ_CTXS     128
30
31 static struct kmem_cache *bio_post_read_ctx_cache;
32 static struct kmem_cache *bio_entry_slab;
33 static mempool_t *bio_post_read_ctx_pool;
34 static struct bio_set f2fs_bioset;
35
36 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
37
38 int __init f2fs_init_bioset(void)
39 {
40         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
41                                         0, BIOSET_NEED_BVECS))
42                 return -ENOMEM;
43         return 0;
44 }
45
46 void f2fs_destroy_bioset(void)
47 {
48         bioset_exit(&f2fs_bioset);
49 }
50
51 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
52                                                 unsigned int nr_iovecs)
53 {
54         return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
55 }
56
57 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool no_fail)
58 {
59         struct bio *bio;
60
61         if (no_fail) {
62                 /* No failure on bio allocation */
63                 bio = __f2fs_bio_alloc(GFP_NOIO, npages);
64                 if (!bio)
65                         bio = __f2fs_bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
66                 return bio;
67         }
68         if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
69                 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
70                 return NULL;
71         }
72
73         return __f2fs_bio_alloc(GFP_KERNEL, npages);
74 }
75
76 static bool __is_cp_guaranteed(struct page *page)
77 {
78         struct address_space *mapping = page->mapping;
79         struct inode *inode;
80         struct f2fs_sb_info *sbi;
81
82         if (!mapping)
83                 return false;
84
85         if (f2fs_is_compressed_page(page))
86                 return false;
87
88         inode = mapping->host;
89         sbi = F2FS_I_SB(inode);
90
91         if (inode->i_ino == F2FS_META_INO(sbi) ||
92                         inode->i_ino ==  F2FS_NODE_INO(sbi) ||
93                         S_ISDIR(inode->i_mode) ||
94                         (S_ISREG(inode->i_mode) &&
95                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
96                         is_cold_data(page))
97                 return true;
98         return false;
99 }
100
101 static enum count_type __read_io_type(struct page *page)
102 {
103         struct address_space *mapping = page_file_mapping(page);
104
105         if (mapping) {
106                 struct inode *inode = mapping->host;
107                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
108
109                 if (inode->i_ino == F2FS_META_INO(sbi))
110                         return F2FS_RD_META;
111
112                 if (inode->i_ino == F2FS_NODE_INO(sbi))
113                         return F2FS_RD_NODE;
114         }
115         return F2FS_RD_DATA;
116 }
117
118 /* postprocessing steps for read bios */
119 enum bio_post_read_step {
120         STEP_DECRYPT,
121         STEP_DECOMPRESS,
122         STEP_VERITY,
123 };
124
125 struct bio_post_read_ctx {
126         struct bio *bio;
127         struct f2fs_sb_info *sbi;
128         struct work_struct work;
129         unsigned int enabled_steps;
130 };
131
132 static void __read_end_io(struct bio *bio, bool compr, bool verity)
133 {
134         struct page *page;
135         struct bio_vec *bv;
136         struct bvec_iter_all iter_all;
137
138         bio_for_each_segment_all(bv, bio, iter_all) {
139                 page = bv->bv_page;
140
141 #ifdef CONFIG_F2FS_FS_COMPRESSION
142                 if (compr && f2fs_is_compressed_page(page)) {
143                         f2fs_decompress_pages(bio, page, verity);
144                         continue;
145                 }
146 #endif
147
148                 /* PG_error was set if any post_read step failed */
149                 if (bio->bi_status || PageError(page)) {
150                         ClearPageUptodate(page);
151                         /* will re-read again later */
152                         ClearPageError(page);
153                 } else {
154                         SetPageUptodate(page);
155                 }
156                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
157                 unlock_page(page);
158         }
159 }
160
161 static void f2fs_release_read_bio(struct bio *bio);
162 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
163 {
164         if (!compr)
165                 __read_end_io(bio, false, verity);
166         f2fs_release_read_bio(bio);
167 }
168
169 static void f2fs_decompress_bio(struct bio *bio, bool verity)
170 {
171         __read_end_io(bio, true, verity);
172 }
173
174 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
175
176 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
177 {
178         fscrypt_decrypt_bio(ctx->bio);
179 }
180
181 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
182 {
183         f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
184 }
185
186 #ifdef CONFIG_F2FS_FS_COMPRESSION
187 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
188 {
189         f2fs_decompress_end_io(rpages, cluster_size, false, true);
190 }
191
192 static void f2fs_verify_bio(struct bio *bio)
193 {
194         struct page *page = bio_first_page_all(bio);
195         struct decompress_io_ctx *dic =
196                         (struct decompress_io_ctx *)page_private(page);
197
198         f2fs_verify_pages(dic->rpages, dic->cluster_size);
199         f2fs_free_dic(dic);
200 }
201 #endif
202
203 static void f2fs_verity_work(struct work_struct *work)
204 {
205         struct bio_post_read_ctx *ctx =
206                 container_of(work, struct bio_post_read_ctx, work);
207         struct bio *bio = ctx->bio;
208 #ifdef CONFIG_F2FS_FS_COMPRESSION
209         unsigned int enabled_steps = ctx->enabled_steps;
210 #endif
211
212         /*
213          * fsverity_verify_bio() may call readpages() again, and while verity
214          * will be disabled for this, decryption may still be needed, resulting
215          * in another bio_post_read_ctx being allocated.  So to prevent
216          * deadlocks we need to release the current ctx to the mempool first.
217          * This assumes that verity is the last post-read step.
218          */
219         mempool_free(ctx, bio_post_read_ctx_pool);
220         bio->bi_private = NULL;
221
222 #ifdef CONFIG_F2FS_FS_COMPRESSION
223         /* previous step is decompression */
224         if (enabled_steps & (1 << STEP_DECOMPRESS)) {
225                 f2fs_verify_bio(bio);
226                 f2fs_release_read_bio(bio);
227                 return;
228         }
229 #endif
230
231         fsverity_verify_bio(bio);
232         __f2fs_read_end_io(bio, false, false);
233 }
234
235 static void f2fs_post_read_work(struct work_struct *work)
236 {
237         struct bio_post_read_ctx *ctx =
238                 container_of(work, struct bio_post_read_ctx, work);
239
240         if (ctx->enabled_steps & (1 << STEP_DECRYPT))
241                 f2fs_decrypt_work(ctx);
242
243         if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
244                 f2fs_decompress_work(ctx);
245
246         if (ctx->enabled_steps & (1 << STEP_VERITY)) {
247                 INIT_WORK(&ctx->work, f2fs_verity_work);
248                 fsverity_enqueue_verify_work(&ctx->work);
249                 return;
250         }
251
252         __f2fs_read_end_io(ctx->bio,
253                 ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
254 }
255
256 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
257                                                 struct work_struct *work)
258 {
259         queue_work(sbi->post_read_wq, work);
260 }
261
262 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
263 {
264         /*
265          * We use different work queues for decryption and for verity because
266          * verity may require reading metadata pages that need decryption, and
267          * we shouldn't recurse to the same workqueue.
268          */
269
270         if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
271                 ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
272                 INIT_WORK(&ctx->work, f2fs_post_read_work);
273                 f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
274                 return;
275         }
276
277         if (ctx->enabled_steps & (1 << STEP_VERITY)) {
278                 INIT_WORK(&ctx->work, f2fs_verity_work);
279                 fsverity_enqueue_verify_work(&ctx->work);
280                 return;
281         }
282
283         __f2fs_read_end_io(ctx->bio, false, false);
284 }
285
286 static bool f2fs_bio_post_read_required(struct bio *bio)
287 {
288         return bio->bi_private;
289 }
290
291 static void f2fs_read_end_io(struct bio *bio)
292 {
293         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
294
295         if (time_to_inject(sbi, FAULT_READ_IO)) {
296                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
297                 bio->bi_status = BLK_STS_IOERR;
298         }
299
300         if (f2fs_bio_post_read_required(bio)) {
301                 struct bio_post_read_ctx *ctx = bio->bi_private;
302
303                 bio_post_read_processing(ctx);
304                 return;
305         }
306
307         __f2fs_read_end_io(bio, false, false);
308 }
309
310 static void f2fs_write_end_io(struct bio *bio)
311 {
312         struct f2fs_sb_info *sbi = bio->bi_private;
313         struct bio_vec *bvec;
314         struct bvec_iter_all iter_all;
315
316         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
317                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
318                 bio->bi_status = BLK_STS_IOERR;
319         }
320
321         bio_for_each_segment_all(bvec, bio, iter_all) {
322                 struct page *page = bvec->bv_page;
323                 enum count_type type = WB_DATA_TYPE(page);
324
325                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
326                         set_page_private(page, (unsigned long)NULL);
327                         ClearPagePrivate(page);
328                         unlock_page(page);
329                         mempool_free(page, sbi->write_io_dummy);
330
331                         if (unlikely(bio->bi_status))
332                                 f2fs_stop_checkpoint(sbi, true);
333                         continue;
334                 }
335
336                 fscrypt_finalize_bounce_page(&page);
337
338 #ifdef CONFIG_F2FS_FS_COMPRESSION
339                 if (f2fs_is_compressed_page(page)) {
340                         f2fs_compress_write_end_io(bio, page);
341                         continue;
342                 }
343 #endif
344
345                 if (unlikely(bio->bi_status)) {
346                         mapping_set_error(page->mapping, -EIO);
347                         if (type == F2FS_WB_CP_DATA)
348                                 f2fs_stop_checkpoint(sbi, true);
349                 }
350
351                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
352                                         page->index != nid_of_node(page));
353
354                 dec_page_count(sbi, type);
355                 if (f2fs_in_warm_node_list(sbi, page))
356                         f2fs_del_fsync_node_entry(sbi, page);
357                 clear_cold_data(page);
358                 end_page_writeback(page);
359         }
360         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
361                                 wq_has_sleeper(&sbi->cp_wait))
362                 wake_up(&sbi->cp_wait);
363
364         bio_put(bio);
365 }
366
367 /*
368  * Return true, if pre_bio's bdev is same as its target device.
369  */
370 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
371                                 block_t blk_addr, struct bio *bio)
372 {
373         struct block_device *bdev = sbi->sb->s_bdev;
374         int i;
375
376         if (f2fs_is_multi_device(sbi)) {
377                 for (i = 0; i < sbi->s_ndevs; i++) {
378                         if (FDEV(i).start_blk <= blk_addr &&
379                             FDEV(i).end_blk >= blk_addr) {
380                                 blk_addr -= FDEV(i).start_blk;
381                                 bdev = FDEV(i).bdev;
382                                 break;
383                         }
384                 }
385         }
386         if (bio) {
387                 bio_set_dev(bio, bdev);
388                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
389         }
390         return bdev;
391 }
392
393 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
394 {
395         int i;
396
397         if (!f2fs_is_multi_device(sbi))
398                 return 0;
399
400         for (i = 0; i < sbi->s_ndevs; i++)
401                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
402                         return i;
403         return 0;
404 }
405
406 static bool __same_bdev(struct f2fs_sb_info *sbi,
407                                 block_t blk_addr, struct bio *bio)
408 {
409         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
410         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
411 }
412
413 /*
414  * Low-level block read/write IO operations.
415  */
416 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
417 {
418         struct f2fs_sb_info *sbi = fio->sbi;
419         struct bio *bio;
420
421         bio = f2fs_bio_alloc(sbi, npages, true);
422
423         f2fs_target_device(sbi, fio->new_blkaddr, bio);
424         if (is_read_io(fio->op)) {
425                 bio->bi_end_io = f2fs_read_end_io;
426                 bio->bi_private = NULL;
427         } else {
428                 bio->bi_end_io = f2fs_write_end_io;
429                 bio->bi_private = sbi;
430                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
431                                                 fio->type, fio->temp);
432         }
433         if (fio->io_wbc)
434                 wbc_init_bio(fio->io_wbc, bio);
435
436         return bio;
437 }
438
439 static inline void __submit_bio(struct f2fs_sb_info *sbi,
440                                 struct bio *bio, enum page_type type)
441 {
442         if (!is_read_io(bio_op(bio))) {
443                 unsigned int start;
444
445                 if (type != DATA && type != NODE)
446                         goto submit_io;
447
448                 if (test_opt(sbi, LFS) && current->plug)
449                         blk_finish_plug(current->plug);
450
451                 if (F2FS_IO_ALIGNED(sbi))
452                         goto submit_io;
453
454                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
455                 start %= F2FS_IO_SIZE(sbi);
456
457                 if (start == 0)
458                         goto submit_io;
459
460                 /* fill dummy pages */
461                 for (; start < F2FS_IO_SIZE(sbi); start++) {
462                         struct page *page =
463                                 mempool_alloc(sbi->write_io_dummy,
464                                               GFP_NOIO | __GFP_NOFAIL);
465                         f2fs_bug_on(sbi, !page);
466
467                         zero_user_segment(page, 0, PAGE_SIZE);
468                         SetPagePrivate(page);
469                         set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
470                         lock_page(page);
471                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
472                                 f2fs_bug_on(sbi, 1);
473                 }
474                 /*
475                  * In the NODE case, we lose next block address chain. So, we
476                  * need to do checkpoint in f2fs_sync_file.
477                  */
478                 if (type == NODE)
479                         set_sbi_flag(sbi, SBI_NEED_CP);
480         }
481 submit_io:
482         if (is_read_io(bio_op(bio)))
483                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
484         else
485                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
486         submit_bio(bio);
487 }
488
489 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
490                                 struct bio *bio, enum page_type type)
491 {
492         __submit_bio(sbi, bio, type);
493 }
494
495 static void __submit_merged_bio(struct f2fs_bio_info *io)
496 {
497         struct f2fs_io_info *fio = &io->fio;
498
499         if (!io->bio)
500                 return;
501
502         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
503
504         if (is_read_io(fio->op))
505                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
506         else
507                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
508
509         __submit_bio(io->sbi, io->bio, fio->type);
510         io->bio = NULL;
511 }
512
513 static bool __has_merged_page(struct bio *bio, struct inode *inode,
514                                                 struct page *page, nid_t ino)
515 {
516         struct bio_vec *bvec;
517         struct bvec_iter_all iter_all;
518
519         if (!bio)
520                 return false;
521
522         if (!inode && !page && !ino)
523                 return true;
524
525         bio_for_each_segment_all(bvec, bio, iter_all) {
526                 struct page *target = bvec->bv_page;
527
528                 if (fscrypt_is_bounce_page(target)) {
529                         target = fscrypt_pagecache_page(target);
530                         if (IS_ERR(target))
531                                 continue;
532                 }
533                 if (f2fs_is_compressed_page(target)) {
534                         target = f2fs_compress_control_page(target);
535                         if (IS_ERR(target))
536                                 continue;
537                 }
538
539                 if (inode && inode == target->mapping->host)
540                         return true;
541                 if (page && page == target)
542                         return true;
543                 if (ino && ino == ino_of_node(target))
544                         return true;
545         }
546
547         return false;
548 }
549
550 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
551                                 enum page_type type, enum temp_type temp)
552 {
553         enum page_type btype = PAGE_TYPE_OF_BIO(type);
554         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
555
556         down_write(&io->io_rwsem);
557
558         /* change META to META_FLUSH in the checkpoint procedure */
559         if (type >= META_FLUSH) {
560                 io->fio.type = META_FLUSH;
561                 io->fio.op = REQ_OP_WRITE;
562                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
563                 if (!test_opt(sbi, NOBARRIER))
564                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
565         }
566         __submit_merged_bio(io);
567         up_write(&io->io_rwsem);
568 }
569
570 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
571                                 struct inode *inode, struct page *page,
572                                 nid_t ino, enum page_type type, bool force)
573 {
574         enum temp_type temp;
575         bool ret = true;
576
577         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
578                 if (!force)     {
579                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
580                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
581
582                         down_read(&io->io_rwsem);
583                         ret = __has_merged_page(io->bio, inode, page, ino);
584                         up_read(&io->io_rwsem);
585                 }
586                 if (ret)
587                         __f2fs_submit_merged_write(sbi, type, temp);
588
589                 /* TODO: use HOT temp only for meta pages now. */
590                 if (type >= META)
591                         break;
592         }
593 }
594
595 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
596 {
597         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
598 }
599
600 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
601                                 struct inode *inode, struct page *page,
602                                 nid_t ino, enum page_type type)
603 {
604         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
605 }
606
607 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
608 {
609         f2fs_submit_merged_write(sbi, DATA);
610         f2fs_submit_merged_write(sbi, NODE);
611         f2fs_submit_merged_write(sbi, META);
612 }
613
614 /*
615  * Fill the locked page with data located in the block address.
616  * A caller needs to unlock the page on failure.
617  */
618 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
619 {
620         struct bio *bio;
621         struct page *page = fio->encrypted_page ?
622                         fio->encrypted_page : fio->page;
623
624         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
625                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
626                         META_GENERIC : DATA_GENERIC_ENHANCE)))
627                 return -EFSCORRUPTED;
628
629         trace_f2fs_submit_page_bio(page, fio);
630         f2fs_trace_ios(fio, 0);
631
632         /* Allocate a new bio */
633         bio = __bio_alloc(fio, 1);
634
635         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
636                 bio_put(bio);
637                 return -EFAULT;
638         }
639
640         if (fio->io_wbc && !is_read_io(fio->op))
641                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
642
643         bio_set_op_attrs(bio, fio->op, fio->op_flags);
644
645         inc_page_count(fio->sbi, is_read_io(fio->op) ?
646                         __read_io_type(page): WB_DATA_TYPE(fio->page));
647
648         __submit_bio(fio->sbi, bio, fio->type);
649         return 0;
650 }
651
652 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
653                                 block_t last_blkaddr, block_t cur_blkaddr)
654 {
655         if (last_blkaddr + 1 != cur_blkaddr)
656                 return false;
657         return __same_bdev(sbi, cur_blkaddr, bio);
658 }
659
660 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
661                                                 struct f2fs_io_info *fio)
662 {
663         if (io->fio.op != fio->op)
664                 return false;
665         return io->fio.op_flags == fio->op_flags;
666 }
667
668 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
669                                         struct f2fs_bio_info *io,
670                                         struct f2fs_io_info *fio,
671                                         block_t last_blkaddr,
672                                         block_t cur_blkaddr)
673 {
674         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
675                 unsigned int filled_blocks =
676                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
677                 unsigned int io_size = F2FS_IO_SIZE(sbi);
678                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
679
680                 /* IOs in bio is aligned and left space of vectors is not enough */
681                 if (!(filled_blocks % io_size) && left_vecs < io_size)
682                         return false;
683         }
684         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
685                 return false;
686         return io_type_is_mergeable(io, fio);
687 }
688
689 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
690                                 struct page *page, enum temp_type temp)
691 {
692         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
693         struct bio_entry *be;
694
695         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
696         be->bio = bio;
697         bio_get(bio);
698
699         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
700                 f2fs_bug_on(sbi, 1);
701
702         down_write(&io->bio_list_lock);
703         list_add_tail(&be->list, &io->bio_list);
704         up_write(&io->bio_list_lock);
705 }
706
707 static void del_bio_entry(struct bio_entry *be)
708 {
709         list_del(&be->list);
710         kmem_cache_free(bio_entry_slab, be);
711 }
712
713 static int add_ipu_page(struct f2fs_sb_info *sbi, struct bio **bio,
714                                                         struct page *page)
715 {
716         enum temp_type temp;
717         bool found = false;
718         int ret = -EAGAIN;
719
720         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
721                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
722                 struct list_head *head = &io->bio_list;
723                 struct bio_entry *be;
724
725                 down_write(&io->bio_list_lock);
726                 list_for_each_entry(be, head, list) {
727                         if (be->bio != *bio)
728                                 continue;
729
730                         found = true;
731
732                         if (bio_add_page(*bio, page, PAGE_SIZE, 0) ==
733                                                         PAGE_SIZE) {
734                                 ret = 0;
735                                 break;
736                         }
737
738                         /* bio is full */
739                         del_bio_entry(be);
740                         __submit_bio(sbi, *bio, DATA);
741                         break;
742                 }
743                 up_write(&io->bio_list_lock);
744         }
745
746         if (ret) {
747                 bio_put(*bio);
748                 *bio = NULL;
749         }
750
751         return ret;
752 }
753
754 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
755                                         struct bio **bio, struct page *page)
756 {
757         enum temp_type temp;
758         bool found = false;
759         struct bio *target = bio ? *bio : NULL;
760
761         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
762                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
763                 struct list_head *head = &io->bio_list;
764                 struct bio_entry *be;
765
766                 if (list_empty(head))
767                         continue;
768
769                 down_read(&io->bio_list_lock);
770                 list_for_each_entry(be, head, list) {
771                         if (target)
772                                 found = (target == be->bio);
773                         else
774                                 found = __has_merged_page(be->bio, NULL,
775                                                                 page, 0);
776                         if (found)
777                                 break;
778                 }
779                 up_read(&io->bio_list_lock);
780
781                 if (!found)
782                         continue;
783
784                 found = false;
785
786                 down_write(&io->bio_list_lock);
787                 list_for_each_entry(be, head, list) {
788                         if (target)
789                                 found = (target == be->bio);
790                         else
791                                 found = __has_merged_page(be->bio, NULL,
792                                                                 page, 0);
793                         if (found) {
794                                 target = be->bio;
795                                 del_bio_entry(be);
796                                 break;
797                         }
798                 }
799                 up_write(&io->bio_list_lock);
800         }
801
802         if (found)
803                 __submit_bio(sbi, target, DATA);
804         if (bio && *bio) {
805                 bio_put(*bio);
806                 *bio = NULL;
807         }
808 }
809
810 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
811 {
812         struct bio *bio = *fio->bio;
813         struct page *page = fio->encrypted_page ?
814                         fio->encrypted_page : fio->page;
815
816         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
817                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
818                 return -EFSCORRUPTED;
819
820         trace_f2fs_submit_page_bio(page, fio);
821         f2fs_trace_ios(fio, 0);
822
823         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
824                                                 fio->new_blkaddr))
825                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
826 alloc_new:
827         if (!bio) {
828                 bio = __bio_alloc(fio, BIO_MAX_PAGES);
829                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
830
831                 add_bio_entry(fio->sbi, bio, page, fio->temp);
832         } else {
833                 if (add_ipu_page(fio->sbi, &bio, page))
834                         goto alloc_new;
835         }
836
837         if (fio->io_wbc)
838                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
839
840         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
841
842         *fio->last_block = fio->new_blkaddr;
843         *fio->bio = bio;
844
845         return 0;
846 }
847
848 void f2fs_submit_page_write(struct f2fs_io_info *fio)
849 {
850         struct f2fs_sb_info *sbi = fio->sbi;
851         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
852         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
853         struct page *bio_page;
854
855         f2fs_bug_on(sbi, is_read_io(fio->op));
856
857         down_write(&io->io_rwsem);
858 next:
859         if (fio->in_list) {
860                 spin_lock(&io->io_lock);
861                 if (list_empty(&io->io_list)) {
862                         spin_unlock(&io->io_lock);
863                         goto out;
864                 }
865                 fio = list_first_entry(&io->io_list,
866                                                 struct f2fs_io_info, list);
867                 list_del(&fio->list);
868                 spin_unlock(&io->io_lock);
869         }
870
871         verify_fio_blkaddr(fio);
872
873         if (fio->encrypted_page)
874                 bio_page = fio->encrypted_page;
875         else if (fio->compressed_page)
876                 bio_page = fio->compressed_page;
877         else
878                 bio_page = fio->page;
879
880         /* set submitted = true as a return value */
881         fio->submitted = true;
882
883         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
884
885         if (io->bio && !io_is_mergeable(sbi, io->bio, io, fio,
886                         io->last_block_in_bio, fio->new_blkaddr))
887                 __submit_merged_bio(io);
888 alloc_new:
889         if (io->bio == NULL) {
890                 if (F2FS_IO_ALIGNED(sbi) &&
891                                 (fio->type == DATA || fio->type == NODE) &&
892                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
893                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
894                         fio->retry = true;
895                         goto skip;
896                 }
897                 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
898                 io->fio = *fio;
899         }
900
901         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
902                 __submit_merged_bio(io);
903                 goto alloc_new;
904         }
905
906         if (fio->io_wbc)
907                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
908
909         io->last_block_in_bio = fio->new_blkaddr;
910         f2fs_trace_ios(fio, 0);
911
912         trace_f2fs_submit_page_write(fio->page, fio);
913 skip:
914         if (fio->in_list)
915                 goto next;
916 out:
917         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
918                                 !f2fs_is_checkpoint_ready(sbi))
919                 __submit_merged_bio(io);
920         up_write(&io->io_rwsem);
921 }
922
923 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
924 {
925         return fsverity_active(inode) &&
926                idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
927 }
928
929 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
930                                       unsigned nr_pages, unsigned op_flag,
931                                       pgoff_t first_idx)
932 {
933         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
934         struct bio *bio;
935         struct bio_post_read_ctx *ctx;
936         unsigned int post_read_steps = 0;
937
938         bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
939         if (!bio)
940                 return ERR_PTR(-ENOMEM);
941         f2fs_target_device(sbi, blkaddr, bio);
942         bio->bi_end_io = f2fs_read_end_io;
943         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
944
945         if (f2fs_encrypted_file(inode))
946                 post_read_steps |= 1 << STEP_DECRYPT;
947         if (f2fs_compressed_file(inode))
948                 post_read_steps |= 1 << STEP_DECOMPRESS;
949         if (f2fs_need_verity(inode, first_idx))
950                 post_read_steps |= 1 << STEP_VERITY;
951
952         if (post_read_steps) {
953                 /* Due to the mempool, this never fails. */
954                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
955                 ctx->bio = bio;
956                 ctx->sbi = sbi;
957                 ctx->enabled_steps = post_read_steps;
958                 bio->bi_private = ctx;
959         }
960
961         return bio;
962 }
963
964 static void f2fs_release_read_bio(struct bio *bio)
965 {
966         if (bio->bi_private)
967                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
968         bio_put(bio);
969 }
970
971 /* This can handle encryption stuffs */
972 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
973                                                         block_t blkaddr)
974 {
975         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
976         struct bio *bio;
977
978         bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index);
979         if (IS_ERR(bio))
980                 return PTR_ERR(bio);
981
982         /* wait for GCed page writeback via META_MAPPING */
983         f2fs_wait_on_block_writeback(inode, blkaddr);
984
985         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
986                 bio_put(bio);
987                 return -EFAULT;
988         }
989         ClearPageError(page);
990         inc_page_count(sbi, F2FS_RD_DATA);
991         __submit_bio(sbi, bio, DATA);
992         return 0;
993 }
994
995 static void __set_data_blkaddr(struct dnode_of_data *dn)
996 {
997         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
998         __le32 *addr_array;
999         int base = 0;
1000
1001         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1002                 base = get_extra_isize(dn->inode);
1003
1004         /* Get physical address of data block */
1005         addr_array = blkaddr_in_node(rn);
1006         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1007 }
1008
1009 /*
1010  * Lock ordering for the change of data block address:
1011  * ->data_page
1012  *  ->node_page
1013  *    update block addresses in the node page
1014  */
1015 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1016 {
1017         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1018         __set_data_blkaddr(dn);
1019         if (set_page_dirty(dn->node_page))
1020                 dn->node_changed = true;
1021 }
1022
1023 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1024 {
1025         dn->data_blkaddr = blkaddr;
1026         f2fs_set_data_blkaddr(dn);
1027         f2fs_update_extent_cache(dn);
1028 }
1029
1030 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1031 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1032 {
1033         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1034         int err;
1035
1036         if (!count)
1037                 return 0;
1038
1039         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1040                 return -EPERM;
1041         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1042                 return err;
1043
1044         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1045                                                 dn->ofs_in_node, count);
1046
1047         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1048
1049         for (; count > 0; dn->ofs_in_node++) {
1050                 block_t blkaddr = datablock_addr(dn->inode,
1051                                         dn->node_page, dn->ofs_in_node);
1052                 if (blkaddr == NULL_ADDR) {
1053                         dn->data_blkaddr = NEW_ADDR;
1054                         __set_data_blkaddr(dn);
1055                         count--;
1056                 }
1057         }
1058
1059         if (set_page_dirty(dn->node_page))
1060                 dn->node_changed = true;
1061         return 0;
1062 }
1063
1064 /* Should keep dn->ofs_in_node unchanged */
1065 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1066 {
1067         unsigned int ofs_in_node = dn->ofs_in_node;
1068         int ret;
1069
1070         ret = f2fs_reserve_new_blocks(dn, 1);
1071         dn->ofs_in_node = ofs_in_node;
1072         return ret;
1073 }
1074
1075 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1076 {
1077         bool need_put = dn->inode_page ? false : true;
1078         int err;
1079
1080         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1081         if (err)
1082                 return err;
1083
1084         if (dn->data_blkaddr == NULL_ADDR)
1085                 err = f2fs_reserve_new_block(dn);
1086         if (err || need_put)
1087                 f2fs_put_dnode(dn);
1088         return err;
1089 }
1090
1091 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1092 {
1093         struct extent_info ei  = {0,0,0};
1094         struct inode *inode = dn->inode;
1095
1096         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1097                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1098                 return 0;
1099         }
1100
1101         return f2fs_reserve_block(dn, index);
1102 }
1103
1104 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1105                                                 int op_flags, bool for_write)
1106 {
1107         struct address_space *mapping = inode->i_mapping;
1108         struct dnode_of_data dn;
1109         struct page *page;
1110         struct extent_info ei = {0,0,0};
1111         int err;
1112
1113         page = f2fs_grab_cache_page(mapping, index, for_write);
1114         if (!page)
1115                 return ERR_PTR(-ENOMEM);
1116
1117         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1118                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1119                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1120                                                 DATA_GENERIC_ENHANCE_READ)) {
1121                         err = -EFSCORRUPTED;
1122                         goto put_err;
1123                 }
1124                 goto got_it;
1125         }
1126
1127         set_new_dnode(&dn, inode, NULL, NULL, 0);
1128         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1129         if (err)
1130                 goto put_err;
1131         f2fs_put_dnode(&dn);
1132
1133         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1134                 err = -ENOENT;
1135                 goto put_err;
1136         }
1137         if (dn.data_blkaddr != NEW_ADDR &&
1138                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1139                                                 dn.data_blkaddr,
1140                                                 DATA_GENERIC_ENHANCE)) {
1141                 err = -EFSCORRUPTED;
1142                 goto put_err;
1143         }
1144 got_it:
1145         if (PageUptodate(page)) {
1146                 unlock_page(page);
1147                 return page;
1148         }
1149
1150         /*
1151          * A new dentry page is allocated but not able to be written, since its
1152          * new inode page couldn't be allocated due to -ENOSPC.
1153          * In such the case, its blkaddr can be remained as NEW_ADDR.
1154          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1155          * f2fs_init_inode_metadata.
1156          */
1157         if (dn.data_blkaddr == NEW_ADDR) {
1158                 zero_user_segment(page, 0, PAGE_SIZE);
1159                 if (!PageUptodate(page))
1160                         SetPageUptodate(page);
1161                 unlock_page(page);
1162                 return page;
1163         }
1164
1165         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
1166         if (err)
1167                 goto put_err;
1168         return page;
1169
1170 put_err:
1171         f2fs_put_page(page, 1);
1172         return ERR_PTR(err);
1173 }
1174
1175 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1176 {
1177         struct address_space *mapping = inode->i_mapping;
1178         struct page *page;
1179
1180         page = find_get_page(mapping, index);
1181         if (page && PageUptodate(page))
1182                 return page;
1183         f2fs_put_page(page, 0);
1184
1185         page = f2fs_get_read_data_page(inode, index, 0, false);
1186         if (IS_ERR(page))
1187                 return page;
1188
1189         if (PageUptodate(page))
1190                 return page;
1191
1192         wait_on_page_locked(page);
1193         if (unlikely(!PageUptodate(page))) {
1194                 f2fs_put_page(page, 0);
1195                 return ERR_PTR(-EIO);
1196         }
1197         return page;
1198 }
1199
1200 /*
1201  * If it tries to access a hole, return an error.
1202  * Because, the callers, functions in dir.c and GC, should be able to know
1203  * whether this page exists or not.
1204  */
1205 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1206                                                         bool for_write)
1207 {
1208         struct address_space *mapping = inode->i_mapping;
1209         struct page *page;
1210 repeat:
1211         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1212         if (IS_ERR(page))
1213                 return page;
1214
1215         /* wait for read completion */
1216         lock_page(page);
1217         if (unlikely(page->mapping != mapping)) {
1218                 f2fs_put_page(page, 1);
1219                 goto repeat;
1220         }
1221         if (unlikely(!PageUptodate(page))) {
1222                 f2fs_put_page(page, 1);
1223                 return ERR_PTR(-EIO);
1224         }
1225         return page;
1226 }
1227
1228 /*
1229  * Caller ensures that this data page is never allocated.
1230  * A new zero-filled data page is allocated in the page cache.
1231  *
1232  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1233  * f2fs_unlock_op().
1234  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1235  * ipage should be released by this function.
1236  */
1237 struct page *f2fs_get_new_data_page(struct inode *inode,
1238                 struct page *ipage, pgoff_t index, bool new_i_size)
1239 {
1240         struct address_space *mapping = inode->i_mapping;
1241         struct page *page;
1242         struct dnode_of_data dn;
1243         int err;
1244
1245         page = f2fs_grab_cache_page(mapping, index, true);
1246         if (!page) {
1247                 /*
1248                  * before exiting, we should make sure ipage will be released
1249                  * if any error occur.
1250                  */
1251                 f2fs_put_page(ipage, 1);
1252                 return ERR_PTR(-ENOMEM);
1253         }
1254
1255         set_new_dnode(&dn, inode, ipage, NULL, 0);
1256         err = f2fs_reserve_block(&dn, index);
1257         if (err) {
1258                 f2fs_put_page(page, 1);
1259                 return ERR_PTR(err);
1260         }
1261         if (!ipage)
1262                 f2fs_put_dnode(&dn);
1263
1264         if (PageUptodate(page))
1265                 goto got_it;
1266
1267         if (dn.data_blkaddr == NEW_ADDR) {
1268                 zero_user_segment(page, 0, PAGE_SIZE);
1269                 if (!PageUptodate(page))
1270                         SetPageUptodate(page);
1271         } else {
1272                 f2fs_put_page(page, 1);
1273
1274                 /* if ipage exists, blkaddr should be NEW_ADDR */
1275                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1276                 page = f2fs_get_lock_data_page(inode, index, true);
1277                 if (IS_ERR(page))
1278                         return page;
1279         }
1280 got_it:
1281         if (new_i_size && i_size_read(inode) <
1282                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1283                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1284         return page;
1285 }
1286
1287 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1288 {
1289         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1290         struct f2fs_summary sum;
1291         struct node_info ni;
1292         block_t old_blkaddr;
1293         blkcnt_t count = 1;
1294         int err;
1295
1296         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1297                 return -EPERM;
1298
1299         err = f2fs_get_node_info(sbi, dn->nid, &ni);
1300         if (err)
1301                 return err;
1302
1303         dn->data_blkaddr = datablock_addr(dn->inode,
1304                                 dn->node_page, dn->ofs_in_node);
1305         if (dn->data_blkaddr != NULL_ADDR)
1306                 goto alloc;
1307
1308         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1309                 return err;
1310
1311 alloc:
1312         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1313         old_blkaddr = dn->data_blkaddr;
1314         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1315                                         &sum, seg_type, NULL, false);
1316         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1317                 invalidate_mapping_pages(META_MAPPING(sbi),
1318                                         old_blkaddr, old_blkaddr);
1319         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1320
1321         /*
1322          * i_size will be updated by direct_IO. Otherwise, we'll get stale
1323          * data from unwritten block via dio_read.
1324          */
1325         return 0;
1326 }
1327
1328 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1329 {
1330         struct inode *inode = file_inode(iocb->ki_filp);
1331         struct f2fs_map_blocks map;
1332         int flag;
1333         int err = 0;
1334         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1335
1336         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1337         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1338         if (map.m_len > map.m_lblk)
1339                 map.m_len -= map.m_lblk;
1340         else
1341                 map.m_len = 0;
1342
1343         map.m_next_pgofs = NULL;
1344         map.m_next_extent = NULL;
1345         map.m_seg_type = NO_CHECK_TYPE;
1346         map.m_may_create = true;
1347
1348         if (direct_io) {
1349                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1350                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1351                                         F2FS_GET_BLOCK_PRE_AIO :
1352                                         F2FS_GET_BLOCK_PRE_DIO;
1353                 goto map_blocks;
1354         }
1355         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1356                 err = f2fs_convert_inline_inode(inode);
1357                 if (err)
1358                         return err;
1359         }
1360         if (f2fs_has_inline_data(inode))
1361                 return err;
1362
1363         flag = F2FS_GET_BLOCK_PRE_AIO;
1364
1365 map_blocks:
1366         err = f2fs_map_blocks(inode, &map, 1, flag);
1367         if (map.m_len > 0 && err == -ENOSPC) {
1368                 if (!direct_io)
1369                         set_inode_flag(inode, FI_NO_PREALLOC);
1370                 err = 0;
1371         }
1372         return err;
1373 }
1374
1375 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1376 {
1377         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1378                 if (lock)
1379                         down_read(&sbi->node_change);
1380                 else
1381                         up_read(&sbi->node_change);
1382         } else {
1383                 if (lock)
1384                         f2fs_lock_op(sbi);
1385                 else
1386                         f2fs_unlock_op(sbi);
1387         }
1388 }
1389
1390 /*
1391  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1392  * f2fs_map_blocks structure.
1393  * If original data blocks are allocated, then give them to blockdev.
1394  * Otherwise,
1395  *     a. preallocate requested block addresses
1396  *     b. do not use extent cache for better performance
1397  *     c. give the block addresses to blockdev
1398  */
1399 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1400                                                 int create, int flag)
1401 {
1402         unsigned int maxblocks = map->m_len;
1403         struct dnode_of_data dn;
1404         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1405         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1406         pgoff_t pgofs, end_offset, end;
1407         int err = 0, ofs = 1;
1408         unsigned int ofs_in_node, last_ofs_in_node;
1409         blkcnt_t prealloc;
1410         struct extent_info ei = {0,0,0};
1411         block_t blkaddr;
1412         unsigned int start_pgofs;
1413
1414         if (!maxblocks)
1415                 return 0;
1416
1417         map->m_len = 0;
1418         map->m_flags = 0;
1419
1420         /* it only supports block size == page size */
1421         pgofs = (pgoff_t)map->m_lblk;
1422         end = pgofs + maxblocks;
1423
1424         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1425                 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1426                                                         map->m_may_create)
1427                         goto next_dnode;
1428
1429                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1430                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1431                 map->m_flags = F2FS_MAP_MAPPED;
1432                 if (map->m_next_extent)
1433                         *map->m_next_extent = pgofs + map->m_len;
1434
1435                 /* for hardware encryption, but to avoid potential issue in future */
1436                 if (flag == F2FS_GET_BLOCK_DIO)
1437                         f2fs_wait_on_block_writeback_range(inode,
1438                                                 map->m_pblk, map->m_len);
1439                 goto out;
1440         }
1441
1442 next_dnode:
1443         if (map->m_may_create)
1444                 __do_map_lock(sbi, flag, true);
1445
1446         /* When reading holes, we need its node page */
1447         set_new_dnode(&dn, inode, NULL, NULL, 0);
1448         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1449         if (err) {
1450                 if (flag == F2FS_GET_BLOCK_BMAP)
1451                         map->m_pblk = 0;
1452                 if (err == -ENOENT) {
1453                         err = 0;
1454                         if (map->m_next_pgofs)
1455                                 *map->m_next_pgofs =
1456                                         f2fs_get_next_page_offset(&dn, pgofs);
1457                         if (map->m_next_extent)
1458                                 *map->m_next_extent =
1459                                         f2fs_get_next_page_offset(&dn, pgofs);
1460                 }
1461                 goto unlock_out;
1462         }
1463
1464         start_pgofs = pgofs;
1465         prealloc = 0;
1466         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1467         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1468
1469 next_block:
1470         blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1471
1472         if (__is_valid_data_blkaddr(blkaddr) &&
1473                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1474                 err = -EFSCORRUPTED;
1475                 goto sync_out;
1476         }
1477
1478         if (__is_valid_data_blkaddr(blkaddr)) {
1479                 /* use out-place-update for driect IO under LFS mode */
1480                 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1481                                                         map->m_may_create) {
1482                         err = __allocate_data_block(&dn, map->m_seg_type);
1483                         if (err)
1484                                 goto sync_out;
1485                         blkaddr = dn.data_blkaddr;
1486                         set_inode_flag(inode, FI_APPEND_WRITE);
1487                 }
1488         } else {
1489                 if (create) {
1490                         if (unlikely(f2fs_cp_error(sbi))) {
1491                                 err = -EIO;
1492                                 goto sync_out;
1493                         }
1494                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1495                                 if (blkaddr == NULL_ADDR) {
1496                                         prealloc++;
1497                                         last_ofs_in_node = dn.ofs_in_node;
1498                                 }
1499                         } else {
1500                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1501                                         flag != F2FS_GET_BLOCK_DIO);
1502                                 err = __allocate_data_block(&dn,
1503                                                         map->m_seg_type);
1504                                 if (!err)
1505                                         set_inode_flag(inode, FI_APPEND_WRITE);
1506                         }
1507                         if (err)
1508                                 goto sync_out;
1509                         map->m_flags |= F2FS_MAP_NEW;
1510                         blkaddr = dn.data_blkaddr;
1511                 } else {
1512                         if (flag == F2FS_GET_BLOCK_BMAP) {
1513                                 map->m_pblk = 0;
1514                                 goto sync_out;
1515                         }
1516                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1517                                 goto sync_out;
1518                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1519                                                 blkaddr == NULL_ADDR) {
1520                                 if (map->m_next_pgofs)
1521                                         *map->m_next_pgofs = pgofs + 1;
1522                                 goto sync_out;
1523                         }
1524                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1525                                 /* for defragment case */
1526                                 if (map->m_next_pgofs)
1527                                         *map->m_next_pgofs = pgofs + 1;
1528                                 goto sync_out;
1529                         }
1530                 }
1531         }
1532
1533         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1534                 goto skip;
1535
1536         if (map->m_len == 0) {
1537                 /* preallocated unwritten block should be mapped for fiemap. */
1538                 if (blkaddr == NEW_ADDR)
1539                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1540                 map->m_flags |= F2FS_MAP_MAPPED;
1541
1542                 map->m_pblk = blkaddr;
1543                 map->m_len = 1;
1544         } else if ((map->m_pblk != NEW_ADDR &&
1545                         blkaddr == (map->m_pblk + ofs)) ||
1546                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1547                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1548                 ofs++;
1549                 map->m_len++;
1550         } else {
1551                 goto sync_out;
1552         }
1553
1554 skip:
1555         dn.ofs_in_node++;
1556         pgofs++;
1557
1558         /* preallocate blocks in batch for one dnode page */
1559         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1560                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1561
1562                 dn.ofs_in_node = ofs_in_node;
1563                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1564                 if (err)
1565                         goto sync_out;
1566
1567                 map->m_len += dn.ofs_in_node - ofs_in_node;
1568                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1569                         err = -ENOSPC;
1570                         goto sync_out;
1571                 }
1572                 dn.ofs_in_node = end_offset;
1573         }
1574
1575         if (pgofs >= end)
1576                 goto sync_out;
1577         else if (dn.ofs_in_node < end_offset)
1578                 goto next_block;
1579
1580         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1581                 if (map->m_flags & F2FS_MAP_MAPPED) {
1582                         unsigned int ofs = start_pgofs - map->m_lblk;
1583
1584                         f2fs_update_extent_cache_range(&dn,
1585                                 start_pgofs, map->m_pblk + ofs,
1586                                 map->m_len - ofs);
1587                 }
1588         }
1589
1590         f2fs_put_dnode(&dn);
1591
1592         if (map->m_may_create) {
1593                 __do_map_lock(sbi, flag, false);
1594                 f2fs_balance_fs(sbi, dn.node_changed);
1595         }
1596         goto next_dnode;
1597
1598 sync_out:
1599
1600         /* for hardware encryption, but to avoid potential issue in future */
1601         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1602                 f2fs_wait_on_block_writeback_range(inode,
1603                                                 map->m_pblk, map->m_len);
1604
1605         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1606                 if (map->m_flags & F2FS_MAP_MAPPED) {
1607                         unsigned int ofs = start_pgofs - map->m_lblk;
1608
1609                         f2fs_update_extent_cache_range(&dn,
1610                                 start_pgofs, map->m_pblk + ofs,
1611                                 map->m_len - ofs);
1612                 }
1613                 if (map->m_next_extent)
1614                         *map->m_next_extent = pgofs + 1;
1615         }
1616         f2fs_put_dnode(&dn);
1617 unlock_out:
1618         if (map->m_may_create) {
1619                 __do_map_lock(sbi, flag, false);
1620                 f2fs_balance_fs(sbi, dn.node_changed);
1621         }
1622 out:
1623         trace_f2fs_map_blocks(inode, map, err);
1624         return err;
1625 }
1626
1627 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1628 {
1629         struct f2fs_map_blocks map;
1630         block_t last_lblk;
1631         int err;
1632
1633         if (pos + len > i_size_read(inode))
1634                 return false;
1635
1636         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1637         map.m_next_pgofs = NULL;
1638         map.m_next_extent = NULL;
1639         map.m_seg_type = NO_CHECK_TYPE;
1640         map.m_may_create = false;
1641         last_lblk = F2FS_BLK_ALIGN(pos + len);
1642
1643         while (map.m_lblk < last_lblk) {
1644                 map.m_len = last_lblk - map.m_lblk;
1645                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1646                 if (err || map.m_len == 0)
1647                         return false;
1648                 map.m_lblk += map.m_len;
1649         }
1650         return true;
1651 }
1652
1653 static int __get_data_block(struct inode *inode, sector_t iblock,
1654                         struct buffer_head *bh, int create, int flag,
1655                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1656 {
1657         struct f2fs_map_blocks map;
1658         int err;
1659
1660         map.m_lblk = iblock;
1661         map.m_len = bh->b_size >> inode->i_blkbits;
1662         map.m_next_pgofs = next_pgofs;
1663         map.m_next_extent = NULL;
1664         map.m_seg_type = seg_type;
1665         map.m_may_create = may_write;
1666
1667         err = f2fs_map_blocks(inode, &map, create, flag);
1668         if (!err) {
1669                 map_bh(bh, inode->i_sb, map.m_pblk);
1670                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1671                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1672         }
1673         return err;
1674 }
1675
1676 static int get_data_block(struct inode *inode, sector_t iblock,
1677                         struct buffer_head *bh_result, int create, int flag,
1678                         pgoff_t *next_pgofs)
1679 {
1680         return __get_data_block(inode, iblock, bh_result, create,
1681                                                         flag, next_pgofs,
1682                                                         NO_CHECK_TYPE, create);
1683 }
1684
1685 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1686                         struct buffer_head *bh_result, int create)
1687 {
1688         return __get_data_block(inode, iblock, bh_result, create,
1689                                 F2FS_GET_BLOCK_DIO, NULL,
1690                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1691                                 IS_SWAPFILE(inode) ? false : true);
1692 }
1693
1694 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1695                         struct buffer_head *bh_result, int create)
1696 {
1697         return __get_data_block(inode, iblock, bh_result, create,
1698                                 F2FS_GET_BLOCK_DIO, NULL,
1699                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1700                                 false);
1701 }
1702
1703 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1704                         struct buffer_head *bh_result, int create)
1705 {
1706         /* Block number less than F2FS MAX BLOCKS */
1707         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1708                 return -EFBIG;
1709
1710         return __get_data_block(inode, iblock, bh_result, create,
1711                                                 F2FS_GET_BLOCK_BMAP, NULL,
1712                                                 NO_CHECK_TYPE, create);
1713 }
1714
1715 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1716 {
1717         return (offset >> inode->i_blkbits);
1718 }
1719
1720 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1721 {
1722         return (blk << inode->i_blkbits);
1723 }
1724
1725 static int f2fs_xattr_fiemap(struct inode *inode,
1726                                 struct fiemap_extent_info *fieinfo)
1727 {
1728         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1729         struct page *page;
1730         struct node_info ni;
1731         __u64 phys = 0, len;
1732         __u32 flags;
1733         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1734         int err = 0;
1735
1736         if (f2fs_has_inline_xattr(inode)) {
1737                 int offset;
1738
1739                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1740                                                 inode->i_ino, false);
1741                 if (!page)
1742                         return -ENOMEM;
1743
1744                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1745                 if (err) {
1746                         f2fs_put_page(page, 1);
1747                         return err;
1748                 }
1749
1750                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1751                 offset = offsetof(struct f2fs_inode, i_addr) +
1752                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1753                                         get_inline_xattr_addrs(inode));
1754
1755                 phys += offset;
1756                 len = inline_xattr_size(inode);
1757
1758                 f2fs_put_page(page, 1);
1759
1760                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1761
1762                 if (!xnid)
1763                         flags |= FIEMAP_EXTENT_LAST;
1764
1765                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1766                 if (err || err == 1)
1767                         return err;
1768         }
1769
1770         if (xnid) {
1771                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1772                 if (!page)
1773                         return -ENOMEM;
1774
1775                 err = f2fs_get_node_info(sbi, xnid, &ni);
1776                 if (err) {
1777                         f2fs_put_page(page, 1);
1778                         return err;
1779                 }
1780
1781                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1782                 len = inode->i_sb->s_blocksize;
1783
1784                 f2fs_put_page(page, 1);
1785
1786                 flags = FIEMAP_EXTENT_LAST;
1787         }
1788
1789         if (phys)
1790                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1791
1792         return (err < 0 ? err : 0);
1793 }
1794
1795 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1796                 u64 start, u64 len)
1797 {
1798         struct buffer_head map_bh;
1799         sector_t start_blk, last_blk;
1800         pgoff_t next_pgofs;
1801         u64 logical = 0, phys = 0, size = 0;
1802         u32 flags = 0;
1803         int ret = 0;
1804
1805         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1806                 ret = f2fs_precache_extents(inode);
1807                 if (ret)
1808                         return ret;
1809         }
1810
1811         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1812         if (ret)
1813                 return ret;
1814
1815         inode_lock(inode);
1816
1817         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1818                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1819                 goto out;
1820         }
1821
1822         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1823                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1824                 if (ret != -EAGAIN)
1825                         goto out;
1826         }
1827
1828         if (logical_to_blk(inode, len) == 0)
1829                 len = blk_to_logical(inode, 1);
1830
1831         start_blk = logical_to_blk(inode, start);
1832         last_blk = logical_to_blk(inode, start + len - 1);
1833
1834 next:
1835         memset(&map_bh, 0, sizeof(struct buffer_head));
1836         map_bh.b_size = len;
1837
1838         ret = get_data_block(inode, start_blk, &map_bh, 0,
1839                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1840         if (ret)
1841                 goto out;
1842
1843         /* HOLE */
1844         if (!buffer_mapped(&map_bh)) {
1845                 start_blk = next_pgofs;
1846
1847                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1848                                         F2FS_I_SB(inode)->max_file_blocks))
1849                         goto prep_next;
1850
1851                 flags |= FIEMAP_EXTENT_LAST;
1852         }
1853
1854         if (size) {
1855                 if (IS_ENCRYPTED(inode))
1856                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1857
1858                 ret = fiemap_fill_next_extent(fieinfo, logical,
1859                                 phys, size, flags);
1860         }
1861
1862         if (start_blk > last_blk || ret)
1863                 goto out;
1864
1865         logical = blk_to_logical(inode, start_blk);
1866         phys = blk_to_logical(inode, map_bh.b_blocknr);
1867         size = map_bh.b_size;
1868         flags = 0;
1869         if (buffer_unwritten(&map_bh))
1870                 flags = FIEMAP_EXTENT_UNWRITTEN;
1871
1872         start_blk += logical_to_blk(inode, size);
1873
1874 prep_next:
1875         cond_resched();
1876         if (fatal_signal_pending(current))
1877                 ret = -EINTR;
1878         else
1879                 goto next;
1880 out:
1881         if (ret == 1)
1882                 ret = 0;
1883
1884         inode_unlock(inode);
1885         return ret;
1886 }
1887
1888 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1889 {
1890         if (IS_ENABLED(CONFIG_FS_VERITY) &&
1891             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1892                 return inode->i_sb->s_maxbytes;
1893
1894         return i_size_read(inode);
1895 }
1896
1897 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1898                                         unsigned nr_pages,
1899                                         struct f2fs_map_blocks *map,
1900                                         struct bio **bio_ret,
1901                                         sector_t *last_block_in_bio,
1902                                         bool is_readahead)
1903 {
1904         struct bio *bio = *bio_ret;
1905         const unsigned blkbits = inode->i_blkbits;
1906         const unsigned blocksize = 1 << blkbits;
1907         sector_t block_in_file;
1908         sector_t last_block;
1909         sector_t last_block_in_file;
1910         sector_t block_nr;
1911         int ret = 0;
1912
1913         block_in_file = (sector_t)page_index(page);
1914         last_block = block_in_file + nr_pages;
1915         last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
1916                                                         blkbits;
1917         if (last_block > last_block_in_file)
1918                 last_block = last_block_in_file;
1919
1920         /* just zeroing out page which is beyond EOF */
1921         if (block_in_file >= last_block)
1922                 goto zero_out;
1923         /*
1924          * Map blocks using the previous result first.
1925          */
1926         if ((map->m_flags & F2FS_MAP_MAPPED) &&
1927                         block_in_file > map->m_lblk &&
1928                         block_in_file < (map->m_lblk + map->m_len))
1929                 goto got_it;
1930
1931         /*
1932          * Then do more f2fs_map_blocks() calls until we are
1933          * done with this page.
1934          */
1935         map->m_lblk = block_in_file;
1936         map->m_len = last_block - block_in_file;
1937
1938         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1939         if (ret)
1940                 goto out;
1941 got_it:
1942         if ((map->m_flags & F2FS_MAP_MAPPED)) {
1943                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
1944                 SetPageMappedToDisk(page);
1945
1946                 if (!PageUptodate(page) && (!PageSwapCache(page) &&
1947                                         !cleancache_get_page(page))) {
1948                         SetPageUptodate(page);
1949                         goto confused;
1950                 }
1951
1952                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1953                                                 DATA_GENERIC_ENHANCE_READ)) {
1954                         ret = -EFSCORRUPTED;
1955                         goto out;
1956                 }
1957         } else {
1958 zero_out:
1959                 zero_user_segment(page, 0, PAGE_SIZE);
1960                 if (f2fs_need_verity(inode, page->index) &&
1961                     !fsverity_verify_page(page)) {
1962                         ret = -EIO;
1963                         goto out;
1964                 }
1965                 if (!PageUptodate(page))
1966                         SetPageUptodate(page);
1967                 unlock_page(page);
1968                 goto out;
1969         }
1970
1971         /*
1972          * This page will go to BIO.  Do we need to send this
1973          * BIO off first?
1974          */
1975         if (bio && !page_is_mergeable(F2FS_I_SB(inode), bio,
1976                                 *last_block_in_bio, block_nr)) {
1977 submit_and_realloc:
1978                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1979                 bio = NULL;
1980         }
1981         if (bio == NULL) {
1982                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1983                                 is_readahead ? REQ_RAHEAD : 0, page->index);
1984                 if (IS_ERR(bio)) {
1985                         ret = PTR_ERR(bio);
1986                         bio = NULL;
1987                         goto out;
1988                 }
1989         }
1990
1991         /*
1992          * If the page is under writeback, we need to wait for
1993          * its completion to see the correct decrypted data.
1994          */
1995         f2fs_wait_on_block_writeback(inode, block_nr);
1996
1997         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1998                 goto submit_and_realloc;
1999
2000         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2001         ClearPageError(page);
2002         *last_block_in_bio = block_nr;
2003         goto out;
2004 confused:
2005         if (bio) {
2006                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2007                 bio = NULL;
2008         }
2009         unlock_page(page);
2010 out:
2011         *bio_ret = bio;
2012         return ret;
2013 }
2014
2015 #ifdef CONFIG_F2FS_FS_COMPRESSION
2016 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2017                                 unsigned nr_pages, sector_t *last_block_in_bio,
2018                                 bool is_readahead)
2019 {
2020         struct dnode_of_data dn;
2021         struct inode *inode = cc->inode;
2022         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2023         struct bio *bio = *bio_ret;
2024         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2025         sector_t last_block_in_file;
2026         const unsigned blkbits = inode->i_blkbits;
2027         const unsigned blocksize = 1 << blkbits;
2028         struct decompress_io_ctx *dic = NULL;
2029         int i;
2030         int ret = 0;
2031
2032         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2033
2034         last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
2035
2036         /* get rid of pages beyond EOF */
2037         for (i = 0; i < cc->cluster_size; i++) {
2038                 struct page *page = cc->rpages[i];
2039
2040                 if (!page)
2041                         continue;
2042                 if ((sector_t)page->index >= last_block_in_file) {
2043                         zero_user_segment(page, 0, PAGE_SIZE);
2044                         if (!PageUptodate(page))
2045                                 SetPageUptodate(page);
2046                 } else if (!PageUptodate(page)) {
2047                         continue;
2048                 }
2049                 unlock_page(page);
2050                 cc->rpages[i] = NULL;
2051                 cc->nr_rpages--;
2052         }
2053
2054         /* we are done since all pages are beyond EOF */
2055         if (f2fs_cluster_is_empty(cc))
2056                 goto out;
2057
2058         set_new_dnode(&dn, inode, NULL, NULL, 0);
2059         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2060         if (ret)
2061                 goto out;
2062
2063         /* cluster was overwritten as normal cluster */
2064         if (dn.data_blkaddr != COMPRESS_ADDR)
2065                 goto out;
2066
2067         for (i = 1; i < cc->cluster_size; i++) {
2068                 block_t blkaddr;
2069
2070                 blkaddr = datablock_addr(dn.inode, dn.node_page,
2071                                                 dn.ofs_in_node + i);
2072
2073                 if (!__is_valid_data_blkaddr(blkaddr))
2074                         break;
2075
2076                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2077                         ret = -EFAULT;
2078                         goto out_put_dnode;
2079                 }
2080                 cc->nr_cpages++;
2081         }
2082
2083         /* nothing to decompress */
2084         if (cc->nr_cpages == 0) {
2085                 ret = 0;
2086                 goto out_put_dnode;
2087         }
2088
2089         dic = f2fs_alloc_dic(cc);
2090         if (IS_ERR(dic)) {
2091                 ret = PTR_ERR(dic);
2092                 goto out_put_dnode;
2093         }
2094
2095         for (i = 0; i < dic->nr_cpages; i++) {
2096                 struct page *page = dic->cpages[i];
2097                 block_t blkaddr;
2098
2099                 blkaddr = datablock_addr(dn.inode, dn.node_page,
2100                                                 dn.ofs_in_node + i + 1);
2101
2102                 if (bio && !page_is_mergeable(sbi, bio,
2103                                         *last_block_in_bio, blkaddr)) {
2104 submit_and_realloc:
2105                         __submit_bio(sbi, bio, DATA);
2106                         bio = NULL;
2107                 }
2108
2109                 if (!bio) {
2110                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2111                                         is_readahead ? REQ_RAHEAD : 0,
2112                                         page->index);
2113                         if (IS_ERR(bio)) {
2114                                 ret = PTR_ERR(bio);
2115                                 bio = NULL;
2116                                 dic->failed = true;
2117                                 if (refcount_sub_and_test(dic->nr_cpages - i,
2118                                                         &dic->ref))
2119                                         f2fs_decompress_end_io(dic->rpages,
2120                                                         cc->cluster_size, true,
2121                                                         false);
2122                                 f2fs_free_dic(dic);
2123                                 f2fs_put_dnode(&dn);
2124                                 *bio_ret = bio;
2125                                 return ret;
2126                         }
2127                 }
2128
2129                 f2fs_wait_on_block_writeback(inode, blkaddr);
2130
2131                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2132                         goto submit_and_realloc;
2133
2134                 inc_page_count(sbi, F2FS_RD_DATA);
2135                 ClearPageError(page);
2136                 *last_block_in_bio = blkaddr;
2137         }
2138
2139         f2fs_put_dnode(&dn);
2140
2141         *bio_ret = bio;
2142         return 0;
2143
2144 out_put_dnode:
2145         f2fs_put_dnode(&dn);
2146 out:
2147         f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2148         *bio_ret = bio;
2149         return ret;
2150 }
2151 #endif
2152
2153 /*
2154  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2155  * Major change was from block_size == page_size in f2fs by default.
2156  *
2157  * Note that the aops->readpages() function is ONLY used for read-ahead. If
2158  * this function ever deviates from doing just read-ahead, it should either
2159  * use ->readpage() or do the necessary surgery to decouple ->readpages()
2160  * from read-ahead.
2161  */
2162 int f2fs_mpage_readpages(struct address_space *mapping,
2163                         struct list_head *pages, struct page *page,
2164                         unsigned nr_pages, bool is_readahead)
2165 {
2166         struct bio *bio = NULL;
2167         sector_t last_block_in_bio = 0;
2168         struct inode *inode = mapping->host;
2169         struct f2fs_map_blocks map;
2170 #ifdef CONFIG_F2FS_FS_COMPRESSION
2171         struct compress_ctx cc = {
2172                 .inode = inode,
2173                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2174                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2175                 .cluster_idx = NULL_CLUSTER,
2176                 .rpages = NULL,
2177                 .cpages = NULL,
2178                 .nr_rpages = 0,
2179                 .nr_cpages = 0,
2180         };
2181 #endif
2182         unsigned max_nr_pages = nr_pages;
2183         int ret = 0;
2184
2185         map.m_pblk = 0;
2186         map.m_lblk = 0;
2187         map.m_len = 0;
2188         map.m_flags = 0;
2189         map.m_next_pgofs = NULL;
2190         map.m_next_extent = NULL;
2191         map.m_seg_type = NO_CHECK_TYPE;
2192         map.m_may_create = false;
2193
2194         for (; nr_pages; nr_pages--) {
2195                 if (pages) {
2196                         page = list_last_entry(pages, struct page, lru);
2197
2198                         prefetchw(&page->flags);
2199                         list_del(&page->lru);
2200                         if (add_to_page_cache_lru(page, mapping,
2201                                                   page_index(page),
2202                                                   readahead_gfp_mask(mapping)))
2203                                 goto next_page;
2204                 }
2205
2206 #ifdef CONFIG_F2FS_FS_COMPRESSION
2207                 if (f2fs_compressed_file(inode)) {
2208                         /* there are remained comressed pages, submit them */
2209                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2210                                 ret = f2fs_read_multi_pages(&cc, &bio,
2211                                                         max_nr_pages,
2212                                                         &last_block_in_bio,
2213                                                         is_readahead);
2214                                 f2fs_destroy_compress_ctx(&cc);
2215                                 if (ret)
2216                                         goto set_error_page;
2217                         }
2218                         ret = f2fs_is_compressed_cluster(inode, page->index);
2219                         if (ret < 0)
2220                                 goto set_error_page;
2221                         else if (!ret)
2222                                 goto read_single_page;
2223
2224                         ret = f2fs_init_compress_ctx(&cc);
2225                         if (ret)
2226                                 goto set_error_page;
2227
2228                         f2fs_compress_ctx_add_page(&cc, page);
2229
2230                         goto next_page;
2231                 }
2232 read_single_page:
2233 #endif
2234
2235                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2236                                         &bio, &last_block_in_bio, is_readahead);
2237                 if (ret) {
2238 #ifdef CONFIG_F2FS_FS_COMPRESSION
2239 set_error_page:
2240 #endif
2241                         SetPageError(page);
2242                         zero_user_segment(page, 0, PAGE_SIZE);
2243                         unlock_page(page);
2244                 }
2245 next_page:
2246                 if (pages)
2247                         put_page(page);
2248
2249 #ifdef CONFIG_F2FS_FS_COMPRESSION
2250                 if (f2fs_compressed_file(inode)) {
2251                         /* last page */
2252                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2253                                 ret = f2fs_read_multi_pages(&cc, &bio,
2254                                                         max_nr_pages,
2255                                                         &last_block_in_bio,
2256                                                         is_readahead);
2257                                 f2fs_destroy_compress_ctx(&cc);
2258                         }
2259                 }
2260 #endif
2261         }
2262         BUG_ON(pages && !list_empty(pages));
2263         if (bio)
2264                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2265         return pages ? 0 : ret;
2266 }
2267
2268 static int f2fs_read_data_page(struct file *file, struct page *page)
2269 {
2270         struct inode *inode = page_file_mapping(page)->host;
2271         int ret = -EAGAIN;
2272
2273         trace_f2fs_readpage(page, DATA);
2274
2275         if (!f2fs_is_compress_backend_ready(inode)) {
2276                 unlock_page(page);
2277                 return -EOPNOTSUPP;
2278         }
2279
2280         /* If the file has inline data, try to read it directly */
2281         if (f2fs_has_inline_data(inode))
2282                 ret = f2fs_read_inline_data(inode, page);
2283         if (ret == -EAGAIN)
2284                 ret = f2fs_mpage_readpages(page_file_mapping(page),
2285                                                 NULL, page, 1, false);
2286         return ret;
2287 }
2288
2289 static int f2fs_read_data_pages(struct file *file,
2290                         struct address_space *mapping,
2291                         struct list_head *pages, unsigned nr_pages)
2292 {
2293         struct inode *inode = mapping->host;
2294         struct page *page = list_last_entry(pages, struct page, lru);
2295
2296         trace_f2fs_readpages(inode, page, nr_pages);
2297
2298         if (!f2fs_is_compress_backend_ready(inode))
2299                 return 0;
2300
2301         /* If the file has inline data, skip readpages */
2302         if (f2fs_has_inline_data(inode))
2303                 return 0;
2304
2305         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
2306 }
2307
2308 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2309 {
2310         struct inode *inode = fio->page->mapping->host;
2311         struct page *mpage, *page;
2312         gfp_t gfp_flags = GFP_NOFS;
2313
2314         if (!f2fs_encrypted_file(inode))
2315                 return 0;
2316
2317         page = fio->compressed_page ? fio->compressed_page : fio->page;
2318
2319         /* wait for GCed page writeback via META_MAPPING */
2320         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2321
2322 retry_encrypt:
2323         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2324                                         PAGE_SIZE, 0, gfp_flags);
2325         if (IS_ERR(fio->encrypted_page)) {
2326                 /* flush pending IOs and wait for a while in the ENOMEM case */
2327                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2328                         f2fs_flush_merged_writes(fio->sbi);
2329                         congestion_wait(BLK_RW_ASYNC, HZ/50);
2330                         gfp_flags |= __GFP_NOFAIL;
2331                         goto retry_encrypt;
2332                 }
2333                 return PTR_ERR(fio->encrypted_page);
2334         }
2335
2336         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2337         if (mpage) {
2338                 if (PageUptodate(mpage))
2339                         memcpy(page_address(mpage),
2340                                 page_address(fio->encrypted_page), PAGE_SIZE);
2341                 f2fs_put_page(mpage, 1);
2342         }
2343         return 0;
2344 }
2345
2346 static inline bool check_inplace_update_policy(struct inode *inode,
2347                                 struct f2fs_io_info *fio)
2348 {
2349         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2350         unsigned int policy = SM_I(sbi)->ipu_policy;
2351
2352         if (policy & (0x1 << F2FS_IPU_FORCE))
2353                 return true;
2354         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2355                 return true;
2356         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2357                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2358                 return true;
2359         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2360                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2361                 return true;
2362
2363         /*
2364          * IPU for rewrite async pages
2365          */
2366         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2367                         fio && fio->op == REQ_OP_WRITE &&
2368                         !(fio->op_flags & REQ_SYNC) &&
2369                         !IS_ENCRYPTED(inode))
2370                 return true;
2371
2372         /* this is only set during fdatasync */
2373         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2374                         is_inode_flag_set(inode, FI_NEED_IPU))
2375                 return true;
2376
2377         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2378                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2379                 return true;
2380
2381         return false;
2382 }
2383
2384 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2385 {
2386         if (f2fs_is_pinned_file(inode))
2387                 return true;
2388
2389         /* if this is cold file, we should overwrite to avoid fragmentation */
2390         if (file_is_cold(inode))
2391                 return true;
2392
2393         return check_inplace_update_policy(inode, fio);
2394 }
2395
2396 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2397 {
2398         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2399
2400         if (test_opt(sbi, LFS))
2401                 return true;
2402         if (S_ISDIR(inode->i_mode))
2403                 return true;
2404         if (IS_NOQUOTA(inode))
2405                 return true;
2406         if (f2fs_is_atomic_file(inode))
2407                 return true;
2408         if (fio) {
2409                 if (is_cold_data(fio->page))
2410                         return true;
2411                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2412                         return true;
2413                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2414                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2415                         return true;
2416         }
2417         return false;
2418 }
2419
2420 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2421 {
2422         struct inode *inode = fio->page->mapping->host;
2423
2424         if (f2fs_should_update_outplace(inode, fio))
2425                 return false;
2426
2427         return f2fs_should_update_inplace(inode, fio);
2428 }
2429
2430 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2431 {
2432         struct page *page = fio->page;
2433         struct inode *inode = page->mapping->host;
2434         struct dnode_of_data dn;
2435         struct extent_info ei = {0,0,0};
2436         struct node_info ni;
2437         bool ipu_force = false;
2438         int err = 0;
2439
2440         set_new_dnode(&dn, inode, NULL, NULL, 0);
2441         if (need_inplace_update(fio) &&
2442                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2443                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2444
2445                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2446                                                 DATA_GENERIC_ENHANCE))
2447                         return -EFSCORRUPTED;
2448
2449                 ipu_force = true;
2450                 fio->need_lock = LOCK_DONE;
2451                 goto got_it;
2452         }
2453
2454         /* Deadlock due to between page->lock and f2fs_lock_op */
2455         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2456                 return -EAGAIN;
2457
2458         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2459         if (err)
2460                 goto out;
2461
2462         fio->old_blkaddr = dn.data_blkaddr;
2463
2464         /* This page is already truncated */
2465         if (fio->old_blkaddr == NULL_ADDR) {
2466                 ClearPageUptodate(page);
2467                 clear_cold_data(page);
2468                 goto out_writepage;
2469         }
2470 got_it:
2471         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2472                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2473                                                 DATA_GENERIC_ENHANCE)) {
2474                 err = -EFSCORRUPTED;
2475                 goto out_writepage;
2476         }
2477         /*
2478          * If current allocation needs SSR,
2479          * it had better in-place writes for updated data.
2480          */
2481         if (ipu_force ||
2482                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2483                                         need_inplace_update(fio))) {
2484                 err = f2fs_encrypt_one_page(fio);
2485                 if (err)
2486                         goto out_writepage;
2487
2488                 set_page_writeback(page);
2489                 ClearPageError(page);
2490                 f2fs_put_dnode(&dn);
2491                 if (fio->need_lock == LOCK_REQ)
2492                         f2fs_unlock_op(fio->sbi);
2493                 err = f2fs_inplace_write_data(fio);
2494                 if (err) {
2495                         if (f2fs_encrypted_file(inode))
2496                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2497                         if (PageWriteback(page))
2498                                 end_page_writeback(page);
2499                 } else {
2500                         set_inode_flag(inode, FI_UPDATE_WRITE);
2501                 }
2502                 trace_f2fs_do_write_data_page(fio->page, IPU);
2503                 return err;
2504         }
2505
2506         if (fio->need_lock == LOCK_RETRY) {
2507                 if (!f2fs_trylock_op(fio->sbi)) {
2508                         err = -EAGAIN;
2509                         goto out_writepage;
2510                 }
2511                 fio->need_lock = LOCK_REQ;
2512         }
2513
2514         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2515         if (err)
2516                 goto out_writepage;
2517
2518         fio->version = ni.version;
2519
2520         err = f2fs_encrypt_one_page(fio);
2521         if (err)
2522                 goto out_writepage;
2523
2524         set_page_writeback(page);
2525         ClearPageError(page);
2526
2527         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2528                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2529
2530         /* LFS mode write path */
2531         f2fs_outplace_write_data(&dn, fio);
2532         trace_f2fs_do_write_data_page(page, OPU);
2533         set_inode_flag(inode, FI_APPEND_WRITE);
2534         if (page->index == 0)
2535                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2536 out_writepage:
2537         f2fs_put_dnode(&dn);
2538 out:
2539         if (fio->need_lock == LOCK_REQ)
2540                 f2fs_unlock_op(fio->sbi);
2541         return err;
2542 }
2543
2544 int f2fs_write_single_data_page(struct page *page, int *submitted,
2545                                 struct bio **bio,
2546                                 sector_t *last_block,
2547                                 struct writeback_control *wbc,
2548                                 enum iostat_type io_type,
2549                                 int compr_blocks)
2550 {
2551         struct inode *inode = page->mapping->host;
2552         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2553         loff_t i_size = i_size_read(inode);
2554         const pgoff_t end_index = ((unsigned long long)i_size)
2555                                                         >> PAGE_SHIFT;
2556         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2557         unsigned offset = 0;
2558         bool need_balance_fs = false;
2559         int err = 0;
2560         struct f2fs_io_info fio = {
2561                 .sbi = sbi,
2562                 .ino = inode->i_ino,
2563                 .type = DATA,
2564                 .op = REQ_OP_WRITE,
2565                 .op_flags = wbc_to_write_flags(wbc),
2566                 .old_blkaddr = NULL_ADDR,
2567                 .page = page,
2568                 .encrypted_page = NULL,
2569                 .submitted = false,
2570                 .compr_blocks = compr_blocks,
2571                 .need_lock = LOCK_RETRY,
2572                 .io_type = io_type,
2573                 .io_wbc = wbc,
2574                 .bio = bio,
2575                 .last_block = last_block,
2576         };
2577
2578         trace_f2fs_writepage(page, DATA);
2579
2580         /* we should bypass data pages to proceed the kworkder jobs */
2581         if (unlikely(f2fs_cp_error(sbi))) {
2582                 mapping_set_error(page->mapping, -EIO);
2583                 /*
2584                  * don't drop any dirty dentry pages for keeping lastest
2585                  * directory structure.
2586                  */
2587                 if (S_ISDIR(inode->i_mode))
2588                         goto redirty_out;
2589                 goto out;
2590         }
2591
2592         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2593                 goto redirty_out;
2594
2595         if (page->index < end_index ||
2596                         f2fs_verity_in_progress(inode) ||
2597                         compr_blocks)
2598                 goto write;
2599
2600         /*
2601          * If the offset is out-of-range of file size,
2602          * this page does not have to be written to disk.
2603          */
2604         offset = i_size & (PAGE_SIZE - 1);
2605         if ((page->index >= end_index + 1) || !offset)
2606                 goto out;
2607
2608         zero_user_segment(page, offset, PAGE_SIZE);
2609 write:
2610         if (f2fs_is_drop_cache(inode))
2611                 goto out;
2612         /* we should not write 0'th page having journal header */
2613         if (f2fs_is_volatile_file(inode) && (!page->index ||
2614                         (!wbc->for_reclaim &&
2615                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2616                 goto redirty_out;
2617
2618         /* Dentry blocks are controlled by checkpoint */
2619         if (S_ISDIR(inode->i_mode)) {
2620                 fio.need_lock = LOCK_DONE;
2621                 err = f2fs_do_write_data_page(&fio);
2622                 goto done;
2623         }
2624
2625         if (!wbc->for_reclaim)
2626                 need_balance_fs = true;
2627         else if (has_not_enough_free_secs(sbi, 0, 0))
2628                 goto redirty_out;
2629         else
2630                 set_inode_flag(inode, FI_HOT_DATA);
2631
2632         err = -EAGAIN;
2633         if (f2fs_has_inline_data(inode)) {
2634                 err = f2fs_write_inline_data(inode, page);
2635                 if (!err)
2636                         goto out;
2637         }
2638
2639         if (err == -EAGAIN) {
2640                 err = f2fs_do_write_data_page(&fio);
2641                 if (err == -EAGAIN) {
2642                         fio.need_lock = LOCK_REQ;
2643                         err = f2fs_do_write_data_page(&fio);
2644                 }
2645         }
2646
2647         if (err) {
2648                 file_set_keep_isize(inode);
2649         } else {
2650                 down_write(&F2FS_I(inode)->i_sem);
2651                 if (F2FS_I(inode)->last_disk_size < psize)
2652                         F2FS_I(inode)->last_disk_size = psize;
2653                 up_write(&F2FS_I(inode)->i_sem);
2654         }
2655
2656 done:
2657         if (err && err != -ENOENT)
2658                 goto redirty_out;
2659
2660 out:
2661         inode_dec_dirty_pages(inode);
2662         if (err) {
2663                 ClearPageUptodate(page);
2664                 clear_cold_data(page);
2665         }
2666
2667         if (wbc->for_reclaim) {
2668                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2669                 clear_inode_flag(inode, FI_HOT_DATA);
2670                 f2fs_remove_dirty_inode(inode);
2671                 submitted = NULL;
2672         }
2673         unlock_page(page);
2674         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2675                                         !F2FS_I(inode)->cp_task)
2676                 f2fs_balance_fs(sbi, need_balance_fs);
2677
2678         if (unlikely(f2fs_cp_error(sbi))) {
2679                 f2fs_submit_merged_write(sbi, DATA);
2680                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2681                 submitted = NULL;
2682         }
2683
2684         if (submitted)
2685                 *submitted = fio.submitted ? 1 : 0;
2686
2687         return 0;
2688
2689 redirty_out:
2690         redirty_page_for_writepage(wbc, page);
2691         /*
2692          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2693          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2694          * file_write_and_wait_range() will see EIO error, which is critical
2695          * to return value of fsync() followed by atomic_write failure to user.
2696          */
2697         if (!err || wbc->for_reclaim)
2698                 return AOP_WRITEPAGE_ACTIVATE;
2699         unlock_page(page);
2700         return err;
2701 }
2702
2703 static int f2fs_write_data_page(struct page *page,
2704                                         struct writeback_control *wbc)
2705 {
2706 #ifdef CONFIG_F2FS_FS_COMPRESSION
2707         struct inode *inode = page->mapping->host;
2708
2709         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2710                 goto out;
2711
2712         if (f2fs_compressed_file(inode)) {
2713                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2714                         redirty_page_for_writepage(wbc, page);
2715                         return AOP_WRITEPAGE_ACTIVATE;
2716                 }
2717         }
2718 out:
2719 #endif
2720
2721         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2722                                                 wbc, FS_DATA_IO, 0);
2723 }
2724
2725 /*
2726  * This function was copied from write_cche_pages from mm/page-writeback.c.
2727  * The major change is making write step of cold data page separately from
2728  * warm/hot data page.
2729  */
2730 static int f2fs_write_cache_pages(struct address_space *mapping,
2731                                         struct writeback_control *wbc,
2732                                         enum iostat_type io_type)
2733 {
2734         int ret = 0;
2735         int done = 0, retry = 0;
2736         struct pagevec pvec;
2737         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2738         struct bio *bio = NULL;
2739         sector_t last_block;
2740 #ifdef CONFIG_F2FS_FS_COMPRESSION
2741         struct inode *inode = mapping->host;
2742         struct compress_ctx cc = {
2743                 .inode = inode,
2744                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2745                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2746                 .cluster_idx = NULL_CLUSTER,
2747                 .rpages = NULL,
2748                 .nr_rpages = 0,
2749                 .cpages = NULL,
2750                 .rbuf = NULL,
2751                 .cbuf = NULL,
2752                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2753                 .private = NULL,
2754         };
2755 #endif
2756         int nr_pages;
2757         pgoff_t uninitialized_var(writeback_index);
2758         pgoff_t index;
2759         pgoff_t end;            /* Inclusive */
2760         pgoff_t done_index;
2761         int cycled;
2762         int range_whole = 0;
2763         xa_mark_t tag;
2764         int nwritten = 0;
2765         int submitted = 0;
2766         int i;
2767
2768         pagevec_init(&pvec);
2769
2770         if (get_dirty_pages(mapping->host) <=
2771                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2772                 set_inode_flag(mapping->host, FI_HOT_DATA);
2773         else
2774                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2775
2776         if (wbc->range_cyclic) {
2777                 writeback_index = mapping->writeback_index; /* prev offset */
2778                 index = writeback_index;
2779                 if (index == 0)
2780                         cycled = 1;
2781                 else
2782                         cycled = 0;
2783                 end = -1;
2784         } else {
2785                 index = wbc->range_start >> PAGE_SHIFT;
2786                 end = wbc->range_end >> PAGE_SHIFT;
2787                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2788                         range_whole = 1;
2789                 cycled = 1; /* ignore range_cyclic tests */
2790         }
2791         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2792                 tag = PAGECACHE_TAG_TOWRITE;
2793         else
2794                 tag = PAGECACHE_TAG_DIRTY;
2795 retry:
2796         retry = 0;
2797         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2798                 tag_pages_for_writeback(mapping, index, end);
2799         done_index = index;
2800         while (!done && !retry && (index <= end)) {
2801                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2802                                 tag);
2803                 if (nr_pages == 0)
2804                         break;
2805
2806                 for (i = 0; i < nr_pages; i++) {
2807                         struct page *page = pvec.pages[i];
2808                         bool need_readd;
2809 readd:
2810                         need_readd = false;
2811 #ifdef CONFIG_F2FS_FS_COMPRESSION
2812                         if (f2fs_compressed_file(inode)) {
2813                                 ret = f2fs_init_compress_ctx(&cc);
2814                                 if (ret) {
2815                                         done = 1;
2816                                         break;
2817                                 }
2818
2819                                 if (!f2fs_cluster_can_merge_page(&cc,
2820                                                                 page->index)) {
2821                                         ret = f2fs_write_multi_pages(&cc,
2822                                                 &submitted, wbc, io_type);
2823                                         if (!ret)
2824                                                 need_readd = true;
2825                                         goto result;
2826                                 }
2827
2828                                 if (unlikely(f2fs_cp_error(sbi)))
2829                                         goto lock_page;
2830
2831                                 if (f2fs_cluster_is_empty(&cc)) {
2832                                         void *fsdata = NULL;
2833                                         struct page *pagep;
2834                                         int ret2;
2835
2836                                         ret2 = f2fs_prepare_compress_overwrite(
2837                                                         inode, &pagep,
2838                                                         page->index, &fsdata);
2839                                         if (ret2 < 0) {
2840                                                 ret = ret2;
2841                                                 done = 1;
2842                                                 break;
2843                                         } else if (ret2 &&
2844                                                 !f2fs_compress_write_end(inode,
2845                                                                 fsdata, page->index,
2846                                                                 1)) {
2847                                                 retry = 1;
2848                                                 break;
2849                                         }
2850                                 } else {
2851                                         goto lock_page;
2852                                 }
2853                         }
2854 #endif
2855                         /* give a priority to WB_SYNC threads */
2856                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2857                                         wbc->sync_mode == WB_SYNC_NONE) {
2858                                 done = 1;
2859                                 break;
2860                         }
2861 #ifdef CONFIG_F2FS_FS_COMPRESSION
2862 lock_page:
2863 #endif
2864                         done_index = page->index;
2865 retry_write:
2866                         lock_page(page);
2867
2868                         if (unlikely(page->mapping != mapping)) {
2869 continue_unlock:
2870                                 unlock_page(page);
2871                                 continue;
2872                         }
2873
2874                         if (!PageDirty(page)) {
2875                                 /* someone wrote it for us */
2876                                 goto continue_unlock;
2877                         }
2878
2879                         if (PageWriteback(page)) {
2880                                 if (wbc->sync_mode != WB_SYNC_NONE)
2881                                         f2fs_wait_on_page_writeback(page,
2882                                                         DATA, true, true);
2883                                 else
2884                                         goto continue_unlock;
2885                         }
2886
2887                         if (!clear_page_dirty_for_io(page))
2888                                 goto continue_unlock;
2889
2890 #ifdef CONFIG_F2FS_FS_COMPRESSION
2891                         if (f2fs_compressed_file(inode)) {
2892                                 get_page(page);
2893                                 f2fs_compress_ctx_add_page(&cc, page);
2894                                 continue;
2895                         }
2896 #endif
2897                         ret = f2fs_write_single_data_page(page, &submitted,
2898                                         &bio, &last_block, wbc, io_type, 0);
2899                         if (ret == AOP_WRITEPAGE_ACTIVATE)
2900                                 unlock_page(page);
2901 #ifdef CONFIG_F2FS_FS_COMPRESSION
2902 result:
2903 #endif
2904                         nwritten += submitted;
2905                         wbc->nr_to_write -= submitted;
2906
2907                         if (unlikely(ret)) {
2908                                 /*
2909                                  * keep nr_to_write, since vfs uses this to
2910                                  * get # of written pages.
2911                                  */
2912                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2913                                         ret = 0;
2914                                         goto next;
2915                                 } else if (ret == -EAGAIN) {
2916                                         ret = 0;
2917                                         if (wbc->sync_mode == WB_SYNC_ALL) {
2918                                                 cond_resched();
2919                                                 congestion_wait(BLK_RW_ASYNC,
2920                                                                 HZ/50);
2921                                                 goto retry_write;
2922                                         }
2923                                         goto next;
2924                                 }
2925                                 done_index = page->index + 1;
2926                                 done = 1;
2927                                 break;
2928                         }
2929
2930                         if (wbc->nr_to_write <= 0 &&
2931                                         wbc->sync_mode == WB_SYNC_NONE) {
2932                                 done = 1;
2933                                 break;
2934                         }
2935 next:
2936                         if (need_readd)
2937                                 goto readd;
2938                 }
2939                 pagevec_release(&pvec);
2940                 cond_resched();
2941         }
2942 #ifdef CONFIG_F2FS_FS_COMPRESSION
2943         /* flush remained pages in compress cluster */
2944         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
2945                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
2946                 nwritten += submitted;
2947                 wbc->nr_to_write -= submitted;
2948                 if (ret) {
2949                         done = 1;
2950                         retry = 0;
2951                 }
2952         }
2953 #endif
2954         if ((!cycled && !done) || retry) {
2955                 cycled = 1;
2956                 index = 0;
2957                 end = writeback_index - 1;
2958                 goto retry;
2959         }
2960         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2961                 mapping->writeback_index = done_index;
2962
2963         if (nwritten)
2964                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2965                                                                 NULL, 0, DATA);
2966         /* submit cached bio of IPU write */
2967         if (bio)
2968                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
2969
2970         return ret;
2971 }
2972
2973 static inline bool __should_serialize_io(struct inode *inode,
2974                                         struct writeback_control *wbc)
2975 {
2976         if (!S_ISREG(inode->i_mode))
2977                 return false;
2978         if (f2fs_compressed_file(inode))
2979                 return true;
2980         if (IS_NOQUOTA(inode))
2981                 return false;
2982         /* to avoid deadlock in path of data flush */
2983         if (F2FS_I(inode)->cp_task)
2984                 return false;
2985         if (wbc->sync_mode != WB_SYNC_ALL)
2986                 return true;
2987         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2988                 return true;
2989         return false;
2990 }
2991
2992 static int __f2fs_write_data_pages(struct address_space *mapping,
2993                                                 struct writeback_control *wbc,
2994                                                 enum iostat_type io_type)
2995 {
2996         struct inode *inode = mapping->host;
2997         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2998         struct blk_plug plug;
2999         int ret;
3000         bool locked = false;
3001
3002         /* deal with chardevs and other special file */
3003         if (!mapping->a_ops->writepage)
3004                 return 0;
3005
3006         /* skip writing if there is no dirty page in this inode */
3007         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3008                 return 0;
3009
3010         /* during POR, we don't need to trigger writepage at all. */
3011         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3012                 goto skip_write;
3013
3014         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3015                         wbc->sync_mode == WB_SYNC_NONE &&
3016                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3017                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3018                 goto skip_write;
3019
3020         /* skip writing during file defragment */
3021         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3022                 goto skip_write;
3023
3024         trace_f2fs_writepages(mapping->host, wbc, DATA);
3025
3026         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3027         if (wbc->sync_mode == WB_SYNC_ALL)
3028                 atomic_inc(&sbi->wb_sync_req[DATA]);
3029         else if (atomic_read(&sbi->wb_sync_req[DATA]))
3030                 goto skip_write;
3031
3032         if (__should_serialize_io(inode, wbc)) {
3033                 mutex_lock(&sbi->writepages);
3034                 locked = true;
3035         }
3036
3037         blk_start_plug(&plug);
3038         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3039         blk_finish_plug(&plug);
3040
3041         if (locked)
3042                 mutex_unlock(&sbi->writepages);
3043
3044         if (wbc->sync_mode == WB_SYNC_ALL)
3045                 atomic_dec(&sbi->wb_sync_req[DATA]);
3046         /*
3047          * if some pages were truncated, we cannot guarantee its mapping->host
3048          * to detect pending bios.
3049          */
3050
3051         f2fs_remove_dirty_inode(inode);
3052         return ret;
3053
3054 skip_write:
3055         wbc->pages_skipped += get_dirty_pages(inode);
3056         trace_f2fs_writepages(mapping->host, wbc, DATA);
3057         return 0;
3058 }
3059
3060 static int f2fs_write_data_pages(struct address_space *mapping,
3061                             struct writeback_control *wbc)
3062 {
3063         struct inode *inode = mapping->host;
3064
3065         return __f2fs_write_data_pages(mapping, wbc,
3066                         F2FS_I(inode)->cp_task == current ?
3067                         FS_CP_DATA_IO : FS_DATA_IO);
3068 }
3069
3070 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3071 {
3072         struct inode *inode = mapping->host;
3073         loff_t i_size = i_size_read(inode);
3074
3075         if (IS_NOQUOTA(inode))
3076                 return;
3077
3078         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3079         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3080                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3081                 down_write(&F2FS_I(inode)->i_mmap_sem);
3082
3083                 truncate_pagecache(inode, i_size);
3084                 f2fs_truncate_blocks(inode, i_size, true);
3085
3086                 up_write(&F2FS_I(inode)->i_mmap_sem);
3087                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3088         }
3089 }
3090
3091 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3092                         struct page *page, loff_t pos, unsigned len,
3093                         block_t *blk_addr, bool *node_changed)
3094 {
3095         struct inode *inode = page->mapping->host;
3096         pgoff_t index = page->index;
3097         struct dnode_of_data dn;
3098         struct page *ipage;
3099         bool locked = false;
3100         struct extent_info ei = {0,0,0};
3101         int err = 0;
3102         int flag;
3103
3104         /*
3105          * we already allocated all the blocks, so we don't need to get
3106          * the block addresses when there is no need to fill the page.
3107          */
3108         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3109             !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3110             !f2fs_verity_in_progress(inode))
3111                 return 0;
3112
3113         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3114         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3115                 flag = F2FS_GET_BLOCK_DEFAULT;
3116         else
3117                 flag = F2FS_GET_BLOCK_PRE_AIO;
3118
3119         if (f2fs_has_inline_data(inode) ||
3120                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3121                 __do_map_lock(sbi, flag, true);
3122                 locked = true;
3123         }
3124
3125 restart:
3126         /* check inline_data */
3127         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3128         if (IS_ERR(ipage)) {
3129                 err = PTR_ERR(ipage);
3130                 goto unlock_out;
3131         }
3132
3133         set_new_dnode(&dn, inode, ipage, ipage, 0);
3134
3135         if (f2fs_has_inline_data(inode)) {
3136                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3137                         f2fs_do_read_inline_data(page, ipage);
3138                         set_inode_flag(inode, FI_DATA_EXIST);
3139                         if (inode->i_nlink)
3140                                 set_inline_node(ipage);
3141                 } else {
3142                         err = f2fs_convert_inline_page(&dn, page);
3143                         if (err)
3144                                 goto out;
3145                         if (dn.data_blkaddr == NULL_ADDR)
3146                                 err = f2fs_get_block(&dn, index);
3147                 }
3148         } else if (locked) {
3149                 err = f2fs_get_block(&dn, index);
3150         } else {
3151                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3152                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3153                 } else {
3154                         /* hole case */
3155                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3156                         if (err || dn.data_blkaddr == NULL_ADDR) {
3157                                 f2fs_put_dnode(&dn);
3158                                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3159                                                                 true);
3160                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3161                                 locked = true;
3162                                 goto restart;
3163                         }
3164                 }
3165         }
3166
3167         /* convert_inline_page can make node_changed */
3168         *blk_addr = dn.data_blkaddr;
3169         *node_changed = dn.node_changed;
3170 out:
3171         f2fs_put_dnode(&dn);
3172 unlock_out:
3173         if (locked)
3174                 __do_map_lock(sbi, flag, false);
3175         return err;
3176 }
3177
3178 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3179                 loff_t pos, unsigned len, unsigned flags,
3180                 struct page **pagep, void **fsdata)
3181 {
3182         struct inode *inode = mapping->host;
3183         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3184         struct page *page = NULL;
3185         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3186         bool need_balance = false, drop_atomic = false;
3187         block_t blkaddr = NULL_ADDR;
3188         int err = 0;
3189
3190         trace_f2fs_write_begin(inode, pos, len, flags);
3191
3192         if (!f2fs_is_checkpoint_ready(sbi)) {
3193                 err = -ENOSPC;
3194                 goto fail;
3195         }
3196
3197         if ((f2fs_is_atomic_file(inode) &&
3198                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3199                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3200                 err = -ENOMEM;
3201                 drop_atomic = true;
3202                 goto fail;
3203         }
3204
3205         /*
3206          * We should check this at this moment to avoid deadlock on inode page
3207          * and #0 page. The locking rule for inline_data conversion should be:
3208          * lock_page(page #0) -> lock_page(inode_page)
3209          */
3210         if (index != 0) {
3211                 err = f2fs_convert_inline_inode(inode);
3212                 if (err)
3213                         goto fail;
3214         }
3215
3216 #ifdef CONFIG_F2FS_FS_COMPRESSION
3217         if (f2fs_compressed_file(inode)) {
3218                 int ret;
3219
3220                 *fsdata = NULL;
3221
3222                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3223                                                         index, fsdata);
3224                 if (ret < 0) {
3225                         err = ret;
3226                         goto fail;
3227                 } else if (ret) {
3228                         return 0;
3229                 }
3230         }
3231 #endif
3232
3233 repeat:
3234         /*
3235          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3236          * wait_for_stable_page. Will wait that below with our IO control.
3237          */
3238         page = f2fs_pagecache_get_page(mapping, index,
3239                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3240         if (!page) {
3241                 err = -ENOMEM;
3242                 goto fail;
3243         }
3244
3245         /* TODO: cluster can be compressed due to race with .writepage */
3246
3247         *pagep = page;
3248
3249         err = prepare_write_begin(sbi, page, pos, len,
3250                                         &blkaddr, &need_balance);
3251         if (err)
3252                 goto fail;
3253
3254         if (need_balance && !IS_NOQUOTA(inode) &&
3255                         has_not_enough_free_secs(sbi, 0, 0)) {
3256                 unlock_page(page);
3257                 f2fs_balance_fs(sbi, true);
3258                 lock_page(page);
3259                 if (page->mapping != mapping) {
3260                         /* The page got truncated from under us */
3261                         f2fs_put_page(page, 1);
3262                         goto repeat;
3263                 }
3264         }
3265
3266         f2fs_wait_on_page_writeback(page, DATA, false, true);
3267
3268         if (len == PAGE_SIZE || PageUptodate(page))
3269                 return 0;
3270
3271         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3272             !f2fs_verity_in_progress(inode)) {
3273                 zero_user_segment(page, len, PAGE_SIZE);
3274                 return 0;
3275         }
3276
3277         if (blkaddr == NEW_ADDR) {
3278                 zero_user_segment(page, 0, PAGE_SIZE);
3279                 SetPageUptodate(page);
3280         } else {
3281                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3282                                 DATA_GENERIC_ENHANCE_READ)) {
3283                         err = -EFSCORRUPTED;
3284                         goto fail;
3285                 }
3286                 err = f2fs_submit_page_read(inode, page, blkaddr);
3287                 if (err)
3288                         goto fail;
3289
3290                 lock_page(page);
3291                 if (unlikely(page->mapping != mapping)) {
3292                         f2fs_put_page(page, 1);
3293                         goto repeat;
3294                 }
3295                 if (unlikely(!PageUptodate(page))) {
3296                         err = -EIO;
3297                         goto fail;
3298                 }
3299         }
3300         return 0;
3301
3302 fail:
3303         f2fs_put_page(page, 1);
3304         f2fs_write_failed(mapping, pos + len);
3305         if (drop_atomic)
3306                 f2fs_drop_inmem_pages_all(sbi, false);
3307         return err;
3308 }
3309
3310 static int f2fs_write_end(struct file *file,
3311                         struct address_space *mapping,
3312                         loff_t pos, unsigned len, unsigned copied,
3313                         struct page *page, void *fsdata)
3314 {
3315         struct inode *inode = page->mapping->host;
3316
3317         trace_f2fs_write_end(inode, pos, len, copied);
3318
3319         /*
3320          * This should be come from len == PAGE_SIZE, and we expect copied
3321          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3322          * let generic_perform_write() try to copy data again through copied=0.
3323          */
3324         if (!PageUptodate(page)) {
3325                 if (unlikely(copied != len))
3326                         copied = 0;
3327                 else
3328                         SetPageUptodate(page);
3329         }
3330
3331 #ifdef CONFIG_F2FS_FS_COMPRESSION
3332         /* overwrite compressed file */
3333         if (f2fs_compressed_file(inode) && fsdata) {
3334                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3335                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3336                 return copied;
3337         }
3338 #endif
3339
3340         if (!copied)
3341                 goto unlock_out;
3342
3343         set_page_dirty(page);
3344
3345         if (pos + copied > i_size_read(inode) &&
3346             !f2fs_verity_in_progress(inode))
3347                 f2fs_i_size_write(inode, pos + copied);
3348 unlock_out:
3349         f2fs_put_page(page, 1);
3350         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3351         return copied;
3352 }
3353
3354 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3355                            loff_t offset)
3356 {
3357         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3358         unsigned blkbits = i_blkbits;
3359         unsigned blocksize_mask = (1 << blkbits) - 1;
3360         unsigned long align = offset | iov_iter_alignment(iter);
3361         struct block_device *bdev = inode->i_sb->s_bdev;
3362
3363         if (align & blocksize_mask) {
3364                 if (bdev)
3365                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
3366                 blocksize_mask = (1 << blkbits) - 1;
3367                 if (align & blocksize_mask)
3368                         return -EINVAL;
3369                 return 1;
3370         }
3371         return 0;
3372 }
3373
3374 static void f2fs_dio_end_io(struct bio *bio)
3375 {
3376         struct f2fs_private_dio *dio = bio->bi_private;
3377
3378         dec_page_count(F2FS_I_SB(dio->inode),
3379                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3380
3381         bio->bi_private = dio->orig_private;
3382         bio->bi_end_io = dio->orig_end_io;
3383
3384         kvfree(dio);
3385
3386         bio_endio(bio);
3387 }
3388
3389 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3390                                                         loff_t file_offset)
3391 {
3392         struct f2fs_private_dio *dio;
3393         bool write = (bio_op(bio) == REQ_OP_WRITE);
3394
3395         dio = f2fs_kzalloc(F2FS_I_SB(inode),
3396                         sizeof(struct f2fs_private_dio), GFP_NOFS);
3397         if (!dio)
3398                 goto out;
3399
3400         dio->inode = inode;
3401         dio->orig_end_io = bio->bi_end_io;
3402         dio->orig_private = bio->bi_private;
3403         dio->write = write;
3404
3405         bio->bi_end_io = f2fs_dio_end_io;
3406         bio->bi_private = dio;
3407
3408         inc_page_count(F2FS_I_SB(inode),
3409                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3410
3411         submit_bio(bio);
3412         return;
3413 out:
3414         bio->bi_status = BLK_STS_IOERR;
3415         bio_endio(bio);
3416 }
3417
3418 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3419 {
3420         struct address_space *mapping = iocb->ki_filp->f_mapping;
3421         struct inode *inode = mapping->host;
3422         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3423         struct f2fs_inode_info *fi = F2FS_I(inode);
3424         size_t count = iov_iter_count(iter);
3425         loff_t offset = iocb->ki_pos;
3426         int rw = iov_iter_rw(iter);
3427         int err;
3428         enum rw_hint hint = iocb->ki_hint;
3429         int whint_mode = F2FS_OPTION(sbi).whint_mode;
3430         bool do_opu;
3431
3432         err = check_direct_IO(inode, iter, offset);
3433         if (err)
3434                 return err < 0 ? err : 0;
3435
3436         if (f2fs_force_buffered_io(inode, iocb, iter))
3437                 return 0;
3438
3439         do_opu = allow_outplace_dio(inode, iocb, iter);
3440
3441         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3442
3443         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3444                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3445
3446         if (iocb->ki_flags & IOCB_NOWAIT) {
3447                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3448                         iocb->ki_hint = hint;
3449                         err = -EAGAIN;
3450                         goto out;
3451                 }
3452                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3453                         up_read(&fi->i_gc_rwsem[rw]);
3454                         iocb->ki_hint = hint;
3455                         err = -EAGAIN;
3456                         goto out;
3457                 }
3458         } else {
3459                 down_read(&fi->i_gc_rwsem[rw]);
3460                 if (do_opu)
3461                         down_read(&fi->i_gc_rwsem[READ]);
3462         }
3463
3464         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3465                         iter, rw == WRITE ? get_data_block_dio_write :
3466                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
3467                         DIO_LOCKING | DIO_SKIP_HOLES);
3468
3469         if (do_opu)
3470                 up_read(&fi->i_gc_rwsem[READ]);
3471
3472         up_read(&fi->i_gc_rwsem[rw]);
3473
3474         if (rw == WRITE) {
3475                 if (whint_mode == WHINT_MODE_OFF)
3476                         iocb->ki_hint = hint;
3477                 if (err > 0) {
3478                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3479                                                                         err);
3480                         if (!do_opu)
3481                                 set_inode_flag(inode, FI_UPDATE_WRITE);
3482                 } else if (err < 0) {
3483                         f2fs_write_failed(mapping, offset + count);
3484                 }
3485         }
3486
3487 out:
3488         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3489
3490         return err;
3491 }
3492
3493 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3494                                                         unsigned int length)
3495 {
3496         struct inode *inode = page->mapping->host;
3497         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3498
3499         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3500                 (offset % PAGE_SIZE || length != PAGE_SIZE))
3501                 return;
3502
3503         if (PageDirty(page)) {
3504                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3505                         dec_page_count(sbi, F2FS_DIRTY_META);
3506                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3507                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3508                 } else {
3509                         inode_dec_dirty_pages(inode);
3510                         f2fs_remove_dirty_inode(inode);
3511                 }
3512         }
3513
3514         clear_cold_data(page);
3515
3516         if (IS_ATOMIC_WRITTEN_PAGE(page))
3517                 return f2fs_drop_inmem_page(inode, page);
3518
3519         f2fs_clear_page_private(page);
3520 }
3521
3522 int f2fs_release_page(struct page *page, gfp_t wait)
3523 {
3524         /* If this is dirty page, keep PagePrivate */
3525         if (PageDirty(page))
3526                 return 0;
3527
3528         /* This is atomic written page, keep Private */
3529         if (IS_ATOMIC_WRITTEN_PAGE(page))
3530                 return 0;
3531
3532         clear_cold_data(page);
3533         f2fs_clear_page_private(page);
3534         return 1;
3535 }
3536
3537 static int f2fs_set_data_page_dirty(struct page *page)
3538 {
3539         struct inode *inode = page_file_mapping(page)->host;
3540
3541         trace_f2fs_set_page_dirty(page, DATA);
3542
3543         if (!PageUptodate(page))
3544                 SetPageUptodate(page);
3545         if (PageSwapCache(page))
3546                 return __set_page_dirty_nobuffers(page);
3547
3548         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3549                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3550                         f2fs_register_inmem_page(inode, page);
3551                         return 1;
3552                 }
3553                 /*
3554                  * Previously, this page has been registered, we just
3555                  * return here.
3556                  */
3557                 return 0;
3558         }
3559
3560         if (!PageDirty(page)) {
3561                 __set_page_dirty_nobuffers(page);
3562                 f2fs_update_dirty_page(inode, page);
3563                 return 1;
3564         }
3565         return 0;
3566 }
3567
3568 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3569 {
3570         struct inode *inode = mapping->host;
3571
3572         if (f2fs_has_inline_data(inode))
3573                 return 0;
3574
3575         /* make sure allocating whole blocks */
3576         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3577                 filemap_write_and_wait(mapping);
3578
3579         return generic_block_bmap(mapping, block, get_data_block_bmap);
3580 }
3581
3582 #ifdef CONFIG_MIGRATION
3583 #include <linux/migrate.h>
3584
3585 int f2fs_migrate_page(struct address_space *mapping,
3586                 struct page *newpage, struct page *page, enum migrate_mode mode)
3587 {
3588         int rc, extra_count;
3589         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3590         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3591
3592         BUG_ON(PageWriteback(page));
3593
3594         /* migrating an atomic written page is safe with the inmem_lock hold */
3595         if (atomic_written) {
3596                 if (mode != MIGRATE_SYNC)
3597                         return -EBUSY;
3598                 if (!mutex_trylock(&fi->inmem_lock))
3599                         return -EAGAIN;
3600         }
3601
3602         /* one extra reference was held for atomic_write page */
3603         extra_count = atomic_written ? 1 : 0;
3604         rc = migrate_page_move_mapping(mapping, newpage,
3605                                 page, extra_count);
3606         if (rc != MIGRATEPAGE_SUCCESS) {
3607                 if (atomic_written)
3608                         mutex_unlock(&fi->inmem_lock);
3609                 return rc;
3610         }
3611
3612         if (atomic_written) {
3613                 struct inmem_pages *cur;
3614                 list_for_each_entry(cur, &fi->inmem_pages, list)
3615                         if (cur->page == page) {
3616                                 cur->page = newpage;
3617                                 break;
3618                         }
3619                 mutex_unlock(&fi->inmem_lock);
3620                 put_page(page);
3621                 get_page(newpage);
3622         }
3623
3624         if (PagePrivate(page)) {
3625                 f2fs_set_page_private(newpage, page_private(page));
3626                 f2fs_clear_page_private(page);
3627         }
3628
3629         if (mode != MIGRATE_SYNC_NO_COPY)
3630                 migrate_page_copy(newpage, page);
3631         else
3632                 migrate_page_states(newpage, page);
3633
3634         return MIGRATEPAGE_SUCCESS;
3635 }
3636 #endif
3637
3638 #ifdef CONFIG_SWAP
3639 /* Copied from generic_swapfile_activate() to check any holes */
3640 static int check_swap_activate(struct swap_info_struct *sis,
3641                                 struct file *swap_file, sector_t *span)
3642 {
3643         struct address_space *mapping = swap_file->f_mapping;
3644         struct inode *inode = mapping->host;
3645         unsigned blocks_per_page;
3646         unsigned long page_no;
3647         unsigned blkbits;
3648         sector_t probe_block;
3649         sector_t last_block;
3650         sector_t lowest_block = -1;
3651         sector_t highest_block = 0;
3652         int nr_extents = 0;
3653         int ret;
3654
3655         blkbits = inode->i_blkbits;
3656         blocks_per_page = PAGE_SIZE >> blkbits;
3657
3658         /*
3659          * Map all the blocks into the extent list.  This code doesn't try
3660          * to be very smart.
3661          */
3662         probe_block = 0;
3663         page_no = 0;
3664         last_block = i_size_read(inode) >> blkbits;
3665         while ((probe_block + blocks_per_page) <= last_block &&
3666                         page_no < sis->max) {
3667                 unsigned block_in_page;
3668                 sector_t first_block;
3669
3670                 cond_resched();
3671
3672                 first_block = bmap(inode, probe_block);
3673                 if (first_block == 0)
3674                         goto bad_bmap;
3675
3676                 /*
3677                  * It must be PAGE_SIZE aligned on-disk
3678                  */
3679                 if (first_block & (blocks_per_page - 1)) {
3680                         probe_block++;
3681                         goto reprobe;
3682                 }
3683
3684                 for (block_in_page = 1; block_in_page < blocks_per_page;
3685                                         block_in_page++) {
3686                         sector_t block;
3687
3688                         block = bmap(inode, probe_block + block_in_page);
3689                         if (block == 0)
3690                                 goto bad_bmap;
3691                         if (block != first_block + block_in_page) {
3692                                 /* Discontiguity */
3693                                 probe_block++;
3694                                 goto reprobe;
3695                         }
3696                 }
3697
3698                 first_block >>= (PAGE_SHIFT - blkbits);
3699                 if (page_no) {  /* exclude the header page */
3700                         if (first_block < lowest_block)
3701                                 lowest_block = first_block;
3702                         if (first_block > highest_block)
3703                                 highest_block = first_block;
3704                 }
3705
3706                 /*
3707                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3708                  */
3709                 ret = add_swap_extent(sis, page_no, 1, first_block);
3710                 if (ret < 0)
3711                         goto out;
3712                 nr_extents += ret;
3713                 page_no++;
3714                 probe_block += blocks_per_page;
3715 reprobe:
3716                 continue;
3717         }
3718         ret = nr_extents;
3719         *span = 1 + highest_block - lowest_block;
3720         if (page_no == 0)
3721                 page_no = 1;    /* force Empty message */
3722         sis->max = page_no;
3723         sis->pages = page_no - 1;
3724         sis->highest_bit = page_no - 1;
3725 out:
3726         return ret;
3727 bad_bmap:
3728         pr_err("swapon: swapfile has holes\n");
3729         return -EINVAL;
3730 }
3731
3732 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3733                                 sector_t *span)
3734 {
3735         struct inode *inode = file_inode(file);
3736         int ret;
3737
3738         if (!S_ISREG(inode->i_mode))
3739                 return -EINVAL;
3740
3741         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3742                 return -EROFS;
3743
3744         ret = f2fs_convert_inline_inode(inode);
3745         if (ret)
3746                 return ret;
3747
3748         if (f2fs_disable_compressed_file(inode))
3749                 return -EINVAL;
3750
3751         ret = check_swap_activate(sis, file, span);
3752         if (ret < 0)
3753                 return ret;
3754
3755         set_inode_flag(inode, FI_PIN_FILE);
3756         f2fs_precache_extents(inode);
3757         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3758         return ret;
3759 }
3760
3761 static void f2fs_swap_deactivate(struct file *file)
3762 {
3763         struct inode *inode = file_inode(file);
3764
3765         clear_inode_flag(inode, FI_PIN_FILE);
3766 }
3767 #else
3768 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3769                                 sector_t *span)
3770 {
3771         return -EOPNOTSUPP;
3772 }
3773
3774 static void f2fs_swap_deactivate(struct file *file)
3775 {
3776 }
3777 #endif
3778
3779 const struct address_space_operations f2fs_dblock_aops = {
3780         .readpage       = f2fs_read_data_page,
3781         .readpages      = f2fs_read_data_pages,
3782         .writepage      = f2fs_write_data_page,
3783         .writepages     = f2fs_write_data_pages,
3784         .write_begin    = f2fs_write_begin,
3785         .write_end      = f2fs_write_end,
3786         .set_page_dirty = f2fs_set_data_page_dirty,
3787         .invalidatepage = f2fs_invalidate_page,
3788         .releasepage    = f2fs_release_page,
3789         .direct_IO      = f2fs_direct_IO,
3790         .bmap           = f2fs_bmap,
3791         .swap_activate  = f2fs_swap_activate,
3792         .swap_deactivate = f2fs_swap_deactivate,
3793 #ifdef CONFIG_MIGRATION
3794         .migratepage    = f2fs_migrate_page,
3795 #endif
3796 };
3797
3798 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3799 {
3800         struct address_space *mapping = page_mapping(page);
3801         unsigned long flags;
3802
3803         xa_lock_irqsave(&mapping->i_pages, flags);
3804         __xa_clear_mark(&mapping->i_pages, page_index(page),
3805                                                 PAGECACHE_TAG_DIRTY);
3806         xa_unlock_irqrestore(&mapping->i_pages, flags);
3807 }
3808
3809 int __init f2fs_init_post_read_processing(void)
3810 {
3811         bio_post_read_ctx_cache =
3812                 kmem_cache_create("f2fs_bio_post_read_ctx",
3813                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3814         if (!bio_post_read_ctx_cache)
3815                 goto fail;
3816         bio_post_read_ctx_pool =
3817                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3818                                          bio_post_read_ctx_cache);
3819         if (!bio_post_read_ctx_pool)
3820                 goto fail_free_cache;
3821         return 0;
3822
3823 fail_free_cache:
3824         kmem_cache_destroy(bio_post_read_ctx_cache);
3825 fail:
3826         return -ENOMEM;
3827 }
3828
3829 void f2fs_destroy_post_read_processing(void)
3830 {
3831         mempool_destroy(bio_post_read_ctx_pool);
3832         kmem_cache_destroy(bio_post_read_ctx_cache);
3833 }
3834
3835 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
3836 {
3837         if (!f2fs_sb_has_encrypt(sbi) &&
3838                 !f2fs_sb_has_verity(sbi) &&
3839                 !f2fs_sb_has_compression(sbi))
3840                 return 0;
3841
3842         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
3843                                                  WQ_UNBOUND | WQ_HIGHPRI,
3844                                                  num_online_cpus());
3845         if (!sbi->post_read_wq)
3846                 return -ENOMEM;
3847         return 0;
3848 }
3849
3850 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
3851 {
3852         if (sbi->post_read_wq)
3853                 destroy_workqueue(sbi->post_read_wq);
3854 }
3855
3856 int __init f2fs_init_bio_entry_cache(void)
3857 {
3858         bio_entry_slab = f2fs_kmem_cache_create("bio_entry_slab",
3859                         sizeof(struct bio_entry));
3860         if (!bio_entry_slab)
3861                 return -ENOMEM;
3862         return 0;
3863 }
3864
3865 void f2fs_destroy_bio_entry_cache(void)
3866 {
3867         kmem_cache_destroy(bio_entry_slab);
3868 }