OSDN Git Service

Merge tag 'libata-5.7-2020-04-09' of git://git.kernel.dk/linux-block
[tomoyo/tomoyo-test1.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
22
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define NUM_PREALLOC_POST_READ_CTXS     128
30
31 static struct kmem_cache *bio_post_read_ctx_cache;
32 static struct kmem_cache *bio_entry_slab;
33 static mempool_t *bio_post_read_ctx_pool;
34 static struct bio_set f2fs_bioset;
35
36 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
37
38 int __init f2fs_init_bioset(void)
39 {
40         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
41                                         0, BIOSET_NEED_BVECS))
42                 return -ENOMEM;
43         return 0;
44 }
45
46 void f2fs_destroy_bioset(void)
47 {
48         bioset_exit(&f2fs_bioset);
49 }
50
51 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
52                                                 unsigned int nr_iovecs)
53 {
54         return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
55 }
56
57 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
58 {
59         if (noio) {
60                 /* No failure on bio allocation */
61                 return __f2fs_bio_alloc(GFP_NOIO, npages);
62         }
63
64         if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
65                 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
66                 return NULL;
67         }
68
69         return __f2fs_bio_alloc(GFP_KERNEL, npages);
70 }
71
72 static bool __is_cp_guaranteed(struct page *page)
73 {
74         struct address_space *mapping = page->mapping;
75         struct inode *inode;
76         struct f2fs_sb_info *sbi;
77
78         if (!mapping)
79                 return false;
80
81         if (f2fs_is_compressed_page(page))
82                 return false;
83
84         inode = mapping->host;
85         sbi = F2FS_I_SB(inode);
86
87         if (inode->i_ino == F2FS_META_INO(sbi) ||
88                         inode->i_ino ==  F2FS_NODE_INO(sbi) ||
89                         S_ISDIR(inode->i_mode) ||
90                         (S_ISREG(inode->i_mode) &&
91                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
92                         is_cold_data(page))
93                 return true;
94         return false;
95 }
96
97 static enum count_type __read_io_type(struct page *page)
98 {
99         struct address_space *mapping = page_file_mapping(page);
100
101         if (mapping) {
102                 struct inode *inode = mapping->host;
103                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
104
105                 if (inode->i_ino == F2FS_META_INO(sbi))
106                         return F2FS_RD_META;
107
108                 if (inode->i_ino == F2FS_NODE_INO(sbi))
109                         return F2FS_RD_NODE;
110         }
111         return F2FS_RD_DATA;
112 }
113
114 /* postprocessing steps for read bios */
115 enum bio_post_read_step {
116         STEP_DECRYPT,
117         STEP_DECOMPRESS,
118         STEP_VERITY,
119 };
120
121 struct bio_post_read_ctx {
122         struct bio *bio;
123         struct f2fs_sb_info *sbi;
124         struct work_struct work;
125         unsigned int enabled_steps;
126 };
127
128 static void __read_end_io(struct bio *bio, bool compr, bool verity)
129 {
130         struct page *page;
131         struct bio_vec *bv;
132         struct bvec_iter_all iter_all;
133
134         bio_for_each_segment_all(bv, bio, iter_all) {
135                 page = bv->bv_page;
136
137 #ifdef CONFIG_F2FS_FS_COMPRESSION
138                 if (compr && f2fs_is_compressed_page(page)) {
139                         f2fs_decompress_pages(bio, page, verity);
140                         continue;
141                 }
142                 if (verity)
143                         continue;
144 #endif
145
146                 /* PG_error was set if any post_read step failed */
147                 if (bio->bi_status || PageError(page)) {
148                         ClearPageUptodate(page);
149                         /* will re-read again later */
150                         ClearPageError(page);
151                 } else {
152                         SetPageUptodate(page);
153                 }
154                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
155                 unlock_page(page);
156         }
157 }
158
159 static void f2fs_release_read_bio(struct bio *bio);
160 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
161 {
162         if (!compr)
163                 __read_end_io(bio, false, verity);
164         f2fs_release_read_bio(bio);
165 }
166
167 static void f2fs_decompress_bio(struct bio *bio, bool verity)
168 {
169         __read_end_io(bio, true, verity);
170 }
171
172 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
173
174 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
175 {
176         fscrypt_decrypt_bio(ctx->bio);
177 }
178
179 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
180 {
181         f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
182 }
183
184 #ifdef CONFIG_F2FS_FS_COMPRESSION
185 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
186 {
187         f2fs_decompress_end_io(rpages, cluster_size, false, true);
188 }
189
190 static void f2fs_verify_bio(struct bio *bio)
191 {
192         struct bio_vec *bv;
193         struct bvec_iter_all iter_all;
194
195         bio_for_each_segment_all(bv, bio, iter_all) {
196                 struct page *page = bv->bv_page;
197                 struct decompress_io_ctx *dic;
198
199                 dic = (struct decompress_io_ctx *)page_private(page);
200
201                 if (dic) {
202                         if (refcount_dec_not_one(&dic->ref))
203                                 continue;
204                         f2fs_verify_pages(dic->rpages,
205                                                 dic->cluster_size);
206                         f2fs_free_dic(dic);
207                         continue;
208                 }
209
210                 if (bio->bi_status || PageError(page))
211                         goto clear_uptodate;
212
213                 if (fsverity_verify_page(page)) {
214                         SetPageUptodate(page);
215                         goto unlock;
216                 }
217 clear_uptodate:
218                 ClearPageUptodate(page);
219                 ClearPageError(page);
220 unlock:
221                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
222                 unlock_page(page);
223         }
224 }
225 #endif
226
227 static void f2fs_verity_work(struct work_struct *work)
228 {
229         struct bio_post_read_ctx *ctx =
230                 container_of(work, struct bio_post_read_ctx, work);
231         struct bio *bio = ctx->bio;
232 #ifdef CONFIG_F2FS_FS_COMPRESSION
233         unsigned int enabled_steps = ctx->enabled_steps;
234 #endif
235
236         /*
237          * fsverity_verify_bio() may call readpages() again, and while verity
238          * will be disabled for this, decryption may still be needed, resulting
239          * in another bio_post_read_ctx being allocated.  So to prevent
240          * deadlocks we need to release the current ctx to the mempool first.
241          * This assumes that verity is the last post-read step.
242          */
243         mempool_free(ctx, bio_post_read_ctx_pool);
244         bio->bi_private = NULL;
245
246 #ifdef CONFIG_F2FS_FS_COMPRESSION
247         /* previous step is decompression */
248         if (enabled_steps & (1 << STEP_DECOMPRESS)) {
249                 f2fs_verify_bio(bio);
250                 f2fs_release_read_bio(bio);
251                 return;
252         }
253 #endif
254
255         fsverity_verify_bio(bio);
256         __f2fs_read_end_io(bio, false, false);
257 }
258
259 static void f2fs_post_read_work(struct work_struct *work)
260 {
261         struct bio_post_read_ctx *ctx =
262                 container_of(work, struct bio_post_read_ctx, work);
263
264         if (ctx->enabled_steps & (1 << STEP_DECRYPT))
265                 f2fs_decrypt_work(ctx);
266
267         if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
268                 f2fs_decompress_work(ctx);
269
270         if (ctx->enabled_steps & (1 << STEP_VERITY)) {
271                 INIT_WORK(&ctx->work, f2fs_verity_work);
272                 fsverity_enqueue_verify_work(&ctx->work);
273                 return;
274         }
275
276         __f2fs_read_end_io(ctx->bio,
277                 ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
278 }
279
280 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
281                                                 struct work_struct *work)
282 {
283         queue_work(sbi->post_read_wq, work);
284 }
285
286 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
287 {
288         /*
289          * We use different work queues for decryption and for verity because
290          * verity may require reading metadata pages that need decryption, and
291          * we shouldn't recurse to the same workqueue.
292          */
293
294         if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
295                 ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
296                 INIT_WORK(&ctx->work, f2fs_post_read_work);
297                 f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
298                 return;
299         }
300
301         if (ctx->enabled_steps & (1 << STEP_VERITY)) {
302                 INIT_WORK(&ctx->work, f2fs_verity_work);
303                 fsverity_enqueue_verify_work(&ctx->work);
304                 return;
305         }
306
307         __f2fs_read_end_io(ctx->bio, false, false);
308 }
309
310 static bool f2fs_bio_post_read_required(struct bio *bio)
311 {
312         return bio->bi_private;
313 }
314
315 static void f2fs_read_end_io(struct bio *bio)
316 {
317         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
318
319         if (time_to_inject(sbi, FAULT_READ_IO)) {
320                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
321                 bio->bi_status = BLK_STS_IOERR;
322         }
323
324         if (f2fs_bio_post_read_required(bio)) {
325                 struct bio_post_read_ctx *ctx = bio->bi_private;
326
327                 bio_post_read_processing(ctx);
328                 return;
329         }
330
331         __f2fs_read_end_io(bio, false, false);
332 }
333
334 static void f2fs_write_end_io(struct bio *bio)
335 {
336         struct f2fs_sb_info *sbi = bio->bi_private;
337         struct bio_vec *bvec;
338         struct bvec_iter_all iter_all;
339
340         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
341                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
342                 bio->bi_status = BLK_STS_IOERR;
343         }
344
345         bio_for_each_segment_all(bvec, bio, iter_all) {
346                 struct page *page = bvec->bv_page;
347                 enum count_type type = WB_DATA_TYPE(page);
348
349                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
350                         set_page_private(page, (unsigned long)NULL);
351                         ClearPagePrivate(page);
352                         unlock_page(page);
353                         mempool_free(page, sbi->write_io_dummy);
354
355                         if (unlikely(bio->bi_status))
356                                 f2fs_stop_checkpoint(sbi, true);
357                         continue;
358                 }
359
360                 fscrypt_finalize_bounce_page(&page);
361
362 #ifdef CONFIG_F2FS_FS_COMPRESSION
363                 if (f2fs_is_compressed_page(page)) {
364                         f2fs_compress_write_end_io(bio, page);
365                         continue;
366                 }
367 #endif
368
369                 if (unlikely(bio->bi_status)) {
370                         mapping_set_error(page->mapping, -EIO);
371                         if (type == F2FS_WB_CP_DATA)
372                                 f2fs_stop_checkpoint(sbi, true);
373                 }
374
375                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
376                                         page->index != nid_of_node(page));
377
378                 dec_page_count(sbi, type);
379                 if (f2fs_in_warm_node_list(sbi, page))
380                         f2fs_del_fsync_node_entry(sbi, page);
381                 clear_cold_data(page);
382                 end_page_writeback(page);
383         }
384         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
385                                 wq_has_sleeper(&sbi->cp_wait))
386                 wake_up(&sbi->cp_wait);
387
388         bio_put(bio);
389 }
390
391 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
392                                 block_t blk_addr, struct bio *bio)
393 {
394         struct block_device *bdev = sbi->sb->s_bdev;
395         int i;
396
397         if (f2fs_is_multi_device(sbi)) {
398                 for (i = 0; i < sbi->s_ndevs; i++) {
399                         if (FDEV(i).start_blk <= blk_addr &&
400                             FDEV(i).end_blk >= blk_addr) {
401                                 blk_addr -= FDEV(i).start_blk;
402                                 bdev = FDEV(i).bdev;
403                                 break;
404                         }
405                 }
406         }
407         if (bio) {
408                 bio_set_dev(bio, bdev);
409                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
410         }
411         return bdev;
412 }
413
414 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
415 {
416         int i;
417
418         if (!f2fs_is_multi_device(sbi))
419                 return 0;
420
421         for (i = 0; i < sbi->s_ndevs; i++)
422                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
423                         return i;
424         return 0;
425 }
426
427 /*
428  * Return true, if pre_bio's bdev is same as its target device.
429  */
430 static bool __same_bdev(struct f2fs_sb_info *sbi,
431                                 block_t blk_addr, struct bio *bio)
432 {
433         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
434         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
435 }
436
437 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
438 {
439         struct f2fs_sb_info *sbi = fio->sbi;
440         struct bio *bio;
441
442         bio = f2fs_bio_alloc(sbi, npages, true);
443
444         f2fs_target_device(sbi, fio->new_blkaddr, bio);
445         if (is_read_io(fio->op)) {
446                 bio->bi_end_io = f2fs_read_end_io;
447                 bio->bi_private = NULL;
448         } else {
449                 bio->bi_end_io = f2fs_write_end_io;
450                 bio->bi_private = sbi;
451                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
452                                                 fio->type, fio->temp);
453         }
454         if (fio->io_wbc)
455                 wbc_init_bio(fio->io_wbc, bio);
456
457         return bio;
458 }
459
460 static inline void __submit_bio(struct f2fs_sb_info *sbi,
461                                 struct bio *bio, enum page_type type)
462 {
463         if (!is_read_io(bio_op(bio))) {
464                 unsigned int start;
465
466                 if (type != DATA && type != NODE)
467                         goto submit_io;
468
469                 if (f2fs_lfs_mode(sbi) && current->plug)
470                         blk_finish_plug(current->plug);
471
472                 if (F2FS_IO_ALIGNED(sbi))
473                         goto submit_io;
474
475                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
476                 start %= F2FS_IO_SIZE(sbi);
477
478                 if (start == 0)
479                         goto submit_io;
480
481                 /* fill dummy pages */
482                 for (; start < F2FS_IO_SIZE(sbi); start++) {
483                         struct page *page =
484                                 mempool_alloc(sbi->write_io_dummy,
485                                               GFP_NOIO | __GFP_NOFAIL);
486                         f2fs_bug_on(sbi, !page);
487
488                         zero_user_segment(page, 0, PAGE_SIZE);
489                         SetPagePrivate(page);
490                         set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
491                         lock_page(page);
492                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
493                                 f2fs_bug_on(sbi, 1);
494                 }
495                 /*
496                  * In the NODE case, we lose next block address chain. So, we
497                  * need to do checkpoint in f2fs_sync_file.
498                  */
499                 if (type == NODE)
500                         set_sbi_flag(sbi, SBI_NEED_CP);
501         }
502 submit_io:
503         if (is_read_io(bio_op(bio)))
504                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
505         else
506                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
507         submit_bio(bio);
508 }
509
510 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
511                                 struct bio *bio, enum page_type type)
512 {
513         __submit_bio(sbi, bio, type);
514 }
515
516 static void __submit_merged_bio(struct f2fs_bio_info *io)
517 {
518         struct f2fs_io_info *fio = &io->fio;
519
520         if (!io->bio)
521                 return;
522
523         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
524
525         if (is_read_io(fio->op))
526                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
527         else
528                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
529
530         __submit_bio(io->sbi, io->bio, fio->type);
531         io->bio = NULL;
532 }
533
534 static bool __has_merged_page(struct bio *bio, struct inode *inode,
535                                                 struct page *page, nid_t ino)
536 {
537         struct bio_vec *bvec;
538         struct bvec_iter_all iter_all;
539
540         if (!bio)
541                 return false;
542
543         if (!inode && !page && !ino)
544                 return true;
545
546         bio_for_each_segment_all(bvec, bio, iter_all) {
547                 struct page *target = bvec->bv_page;
548
549                 if (fscrypt_is_bounce_page(target)) {
550                         target = fscrypt_pagecache_page(target);
551                         if (IS_ERR(target))
552                                 continue;
553                 }
554                 if (f2fs_is_compressed_page(target)) {
555                         target = f2fs_compress_control_page(target);
556                         if (IS_ERR(target))
557                                 continue;
558                 }
559
560                 if (inode && inode == target->mapping->host)
561                         return true;
562                 if (page && page == target)
563                         return true;
564                 if (ino && ino == ino_of_node(target))
565                         return true;
566         }
567
568         return false;
569 }
570
571 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
572                                 enum page_type type, enum temp_type temp)
573 {
574         enum page_type btype = PAGE_TYPE_OF_BIO(type);
575         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
576
577         down_write(&io->io_rwsem);
578
579         /* change META to META_FLUSH in the checkpoint procedure */
580         if (type >= META_FLUSH) {
581                 io->fio.type = META_FLUSH;
582                 io->fio.op = REQ_OP_WRITE;
583                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
584                 if (!test_opt(sbi, NOBARRIER))
585                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
586         }
587         __submit_merged_bio(io);
588         up_write(&io->io_rwsem);
589 }
590
591 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
592                                 struct inode *inode, struct page *page,
593                                 nid_t ino, enum page_type type, bool force)
594 {
595         enum temp_type temp;
596         bool ret = true;
597
598         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
599                 if (!force)     {
600                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
601                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
602
603                         down_read(&io->io_rwsem);
604                         ret = __has_merged_page(io->bio, inode, page, ino);
605                         up_read(&io->io_rwsem);
606                 }
607                 if (ret)
608                         __f2fs_submit_merged_write(sbi, type, temp);
609
610                 /* TODO: use HOT temp only for meta pages now. */
611                 if (type >= META)
612                         break;
613         }
614 }
615
616 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
617 {
618         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
619 }
620
621 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
622                                 struct inode *inode, struct page *page,
623                                 nid_t ino, enum page_type type)
624 {
625         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
626 }
627
628 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
629 {
630         f2fs_submit_merged_write(sbi, DATA);
631         f2fs_submit_merged_write(sbi, NODE);
632         f2fs_submit_merged_write(sbi, META);
633 }
634
635 /*
636  * Fill the locked page with data located in the block address.
637  * A caller needs to unlock the page on failure.
638  */
639 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
640 {
641         struct bio *bio;
642         struct page *page = fio->encrypted_page ?
643                         fio->encrypted_page : fio->page;
644
645         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
646                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
647                         META_GENERIC : DATA_GENERIC_ENHANCE)))
648                 return -EFSCORRUPTED;
649
650         trace_f2fs_submit_page_bio(page, fio);
651         f2fs_trace_ios(fio, 0);
652
653         /* Allocate a new bio */
654         bio = __bio_alloc(fio, 1);
655
656         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
657                 bio_put(bio);
658                 return -EFAULT;
659         }
660
661         if (fio->io_wbc && !is_read_io(fio->op))
662                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
663
664         bio_set_op_attrs(bio, fio->op, fio->op_flags);
665
666         inc_page_count(fio->sbi, is_read_io(fio->op) ?
667                         __read_io_type(page): WB_DATA_TYPE(fio->page));
668
669         __submit_bio(fio->sbi, bio, fio->type);
670         return 0;
671 }
672
673 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
674                                 block_t last_blkaddr, block_t cur_blkaddr)
675 {
676         if (last_blkaddr + 1 != cur_blkaddr)
677                 return false;
678         return __same_bdev(sbi, cur_blkaddr, bio);
679 }
680
681 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
682                                                 struct f2fs_io_info *fio)
683 {
684         if (io->fio.op != fio->op)
685                 return false;
686         return io->fio.op_flags == fio->op_flags;
687 }
688
689 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
690                                         struct f2fs_bio_info *io,
691                                         struct f2fs_io_info *fio,
692                                         block_t last_blkaddr,
693                                         block_t cur_blkaddr)
694 {
695         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
696                 unsigned int filled_blocks =
697                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
698                 unsigned int io_size = F2FS_IO_SIZE(sbi);
699                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
700
701                 /* IOs in bio is aligned and left space of vectors is not enough */
702                 if (!(filled_blocks % io_size) && left_vecs < io_size)
703                         return false;
704         }
705         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
706                 return false;
707         return io_type_is_mergeable(io, fio);
708 }
709
710 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
711                                 struct page *page, enum temp_type temp)
712 {
713         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
714         struct bio_entry *be;
715
716         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
717         be->bio = bio;
718         bio_get(bio);
719
720         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
721                 f2fs_bug_on(sbi, 1);
722
723         down_write(&io->bio_list_lock);
724         list_add_tail(&be->list, &io->bio_list);
725         up_write(&io->bio_list_lock);
726 }
727
728 static void del_bio_entry(struct bio_entry *be)
729 {
730         list_del(&be->list);
731         kmem_cache_free(bio_entry_slab, be);
732 }
733
734 static int add_ipu_page(struct f2fs_sb_info *sbi, struct bio **bio,
735                                                         struct page *page)
736 {
737         enum temp_type temp;
738         bool found = false;
739         int ret = -EAGAIN;
740
741         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
742                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
743                 struct list_head *head = &io->bio_list;
744                 struct bio_entry *be;
745
746                 down_write(&io->bio_list_lock);
747                 list_for_each_entry(be, head, list) {
748                         if (be->bio != *bio)
749                                 continue;
750
751                         found = true;
752
753                         if (bio_add_page(*bio, page, PAGE_SIZE, 0) ==
754                                                         PAGE_SIZE) {
755                                 ret = 0;
756                                 break;
757                         }
758
759                         /* bio is full */
760                         del_bio_entry(be);
761                         __submit_bio(sbi, *bio, DATA);
762                         break;
763                 }
764                 up_write(&io->bio_list_lock);
765         }
766
767         if (ret) {
768                 bio_put(*bio);
769                 *bio = NULL;
770         }
771
772         return ret;
773 }
774
775 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
776                                         struct bio **bio, struct page *page)
777 {
778         enum temp_type temp;
779         bool found = false;
780         struct bio *target = bio ? *bio : NULL;
781
782         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
783                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
784                 struct list_head *head = &io->bio_list;
785                 struct bio_entry *be;
786
787                 if (list_empty(head))
788                         continue;
789
790                 down_read(&io->bio_list_lock);
791                 list_for_each_entry(be, head, list) {
792                         if (target)
793                                 found = (target == be->bio);
794                         else
795                                 found = __has_merged_page(be->bio, NULL,
796                                                                 page, 0);
797                         if (found)
798                                 break;
799                 }
800                 up_read(&io->bio_list_lock);
801
802                 if (!found)
803                         continue;
804
805                 found = false;
806
807                 down_write(&io->bio_list_lock);
808                 list_for_each_entry(be, head, list) {
809                         if (target)
810                                 found = (target == be->bio);
811                         else
812                                 found = __has_merged_page(be->bio, NULL,
813                                                                 page, 0);
814                         if (found) {
815                                 target = be->bio;
816                                 del_bio_entry(be);
817                                 break;
818                         }
819                 }
820                 up_write(&io->bio_list_lock);
821         }
822
823         if (found)
824                 __submit_bio(sbi, target, DATA);
825         if (bio && *bio) {
826                 bio_put(*bio);
827                 *bio = NULL;
828         }
829 }
830
831 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
832 {
833         struct bio *bio = *fio->bio;
834         struct page *page = fio->encrypted_page ?
835                         fio->encrypted_page : fio->page;
836
837         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
838                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
839                 return -EFSCORRUPTED;
840
841         trace_f2fs_submit_page_bio(page, fio);
842         f2fs_trace_ios(fio, 0);
843
844         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
845                                                 fio->new_blkaddr))
846                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
847 alloc_new:
848         if (!bio) {
849                 bio = __bio_alloc(fio, BIO_MAX_PAGES);
850                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
851
852                 add_bio_entry(fio->sbi, bio, page, fio->temp);
853         } else {
854                 if (add_ipu_page(fio->sbi, &bio, page))
855                         goto alloc_new;
856         }
857
858         if (fio->io_wbc)
859                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
860
861         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
862
863         *fio->last_block = fio->new_blkaddr;
864         *fio->bio = bio;
865
866         return 0;
867 }
868
869 void f2fs_submit_page_write(struct f2fs_io_info *fio)
870 {
871         struct f2fs_sb_info *sbi = fio->sbi;
872         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
873         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
874         struct page *bio_page;
875
876         f2fs_bug_on(sbi, is_read_io(fio->op));
877
878         down_write(&io->io_rwsem);
879 next:
880         if (fio->in_list) {
881                 spin_lock(&io->io_lock);
882                 if (list_empty(&io->io_list)) {
883                         spin_unlock(&io->io_lock);
884                         goto out;
885                 }
886                 fio = list_first_entry(&io->io_list,
887                                                 struct f2fs_io_info, list);
888                 list_del(&fio->list);
889                 spin_unlock(&io->io_lock);
890         }
891
892         verify_fio_blkaddr(fio);
893
894         if (fio->encrypted_page)
895                 bio_page = fio->encrypted_page;
896         else if (fio->compressed_page)
897                 bio_page = fio->compressed_page;
898         else
899                 bio_page = fio->page;
900
901         /* set submitted = true as a return value */
902         fio->submitted = true;
903
904         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
905
906         if (io->bio && !io_is_mergeable(sbi, io->bio, io, fio,
907                         io->last_block_in_bio, fio->new_blkaddr))
908                 __submit_merged_bio(io);
909 alloc_new:
910         if (io->bio == NULL) {
911                 if (F2FS_IO_ALIGNED(sbi) &&
912                                 (fio->type == DATA || fio->type == NODE) &&
913                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
914                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
915                         fio->retry = true;
916                         goto skip;
917                 }
918                 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
919                 io->fio = *fio;
920         }
921
922         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
923                 __submit_merged_bio(io);
924                 goto alloc_new;
925         }
926
927         if (fio->io_wbc)
928                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
929
930         io->last_block_in_bio = fio->new_blkaddr;
931         f2fs_trace_ios(fio, 0);
932
933         trace_f2fs_submit_page_write(fio->page, fio);
934 skip:
935         if (fio->in_list)
936                 goto next;
937 out:
938         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
939                                 !f2fs_is_checkpoint_ready(sbi))
940                 __submit_merged_bio(io);
941         up_write(&io->io_rwsem);
942 }
943
944 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
945 {
946         return fsverity_active(inode) &&
947                idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
948 }
949
950 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
951                                       unsigned nr_pages, unsigned op_flag,
952                                       pgoff_t first_idx, bool for_write)
953 {
954         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
955         struct bio *bio;
956         struct bio_post_read_ctx *ctx;
957         unsigned int post_read_steps = 0;
958
959         bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
960                                                                 for_write);
961         if (!bio)
962                 return ERR_PTR(-ENOMEM);
963         f2fs_target_device(sbi, blkaddr, bio);
964         bio->bi_end_io = f2fs_read_end_io;
965         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
966
967         if (f2fs_encrypted_file(inode))
968                 post_read_steps |= 1 << STEP_DECRYPT;
969         if (f2fs_compressed_file(inode))
970                 post_read_steps |= 1 << STEP_DECOMPRESS;
971         if (f2fs_need_verity(inode, first_idx))
972                 post_read_steps |= 1 << STEP_VERITY;
973
974         if (post_read_steps) {
975                 /* Due to the mempool, this never fails. */
976                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
977                 ctx->bio = bio;
978                 ctx->sbi = sbi;
979                 ctx->enabled_steps = post_read_steps;
980                 bio->bi_private = ctx;
981         }
982
983         return bio;
984 }
985
986 static void f2fs_release_read_bio(struct bio *bio)
987 {
988         if (bio->bi_private)
989                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
990         bio_put(bio);
991 }
992
993 /* This can handle encryption stuffs */
994 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
995                                                 block_t blkaddr, bool for_write)
996 {
997         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
998         struct bio *bio;
999
1000         bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index, for_write);
1001         if (IS_ERR(bio))
1002                 return PTR_ERR(bio);
1003
1004         /* wait for GCed page writeback via META_MAPPING */
1005         f2fs_wait_on_block_writeback(inode, blkaddr);
1006
1007         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1008                 bio_put(bio);
1009                 return -EFAULT;
1010         }
1011         ClearPageError(page);
1012         inc_page_count(sbi, F2FS_RD_DATA);
1013         __submit_bio(sbi, bio, DATA);
1014         return 0;
1015 }
1016
1017 static void __set_data_blkaddr(struct dnode_of_data *dn)
1018 {
1019         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1020         __le32 *addr_array;
1021         int base = 0;
1022
1023         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1024                 base = get_extra_isize(dn->inode);
1025
1026         /* Get physical address of data block */
1027         addr_array = blkaddr_in_node(rn);
1028         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1029 }
1030
1031 /*
1032  * Lock ordering for the change of data block address:
1033  * ->data_page
1034  *  ->node_page
1035  *    update block addresses in the node page
1036  */
1037 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1038 {
1039         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1040         __set_data_blkaddr(dn);
1041         if (set_page_dirty(dn->node_page))
1042                 dn->node_changed = true;
1043 }
1044
1045 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1046 {
1047         dn->data_blkaddr = blkaddr;
1048         f2fs_set_data_blkaddr(dn);
1049         f2fs_update_extent_cache(dn);
1050 }
1051
1052 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1053 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1054 {
1055         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1056         int err;
1057
1058         if (!count)
1059                 return 0;
1060
1061         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1062                 return -EPERM;
1063         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1064                 return err;
1065
1066         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1067                                                 dn->ofs_in_node, count);
1068
1069         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1070
1071         for (; count > 0; dn->ofs_in_node++) {
1072                 block_t blkaddr = f2fs_data_blkaddr(dn);
1073                 if (blkaddr == NULL_ADDR) {
1074                         dn->data_blkaddr = NEW_ADDR;
1075                         __set_data_blkaddr(dn);
1076                         count--;
1077                 }
1078         }
1079
1080         if (set_page_dirty(dn->node_page))
1081                 dn->node_changed = true;
1082         return 0;
1083 }
1084
1085 /* Should keep dn->ofs_in_node unchanged */
1086 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1087 {
1088         unsigned int ofs_in_node = dn->ofs_in_node;
1089         int ret;
1090
1091         ret = f2fs_reserve_new_blocks(dn, 1);
1092         dn->ofs_in_node = ofs_in_node;
1093         return ret;
1094 }
1095
1096 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1097 {
1098         bool need_put = dn->inode_page ? false : true;
1099         int err;
1100
1101         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1102         if (err)
1103                 return err;
1104
1105         if (dn->data_blkaddr == NULL_ADDR)
1106                 err = f2fs_reserve_new_block(dn);
1107         if (err || need_put)
1108                 f2fs_put_dnode(dn);
1109         return err;
1110 }
1111
1112 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1113 {
1114         struct extent_info ei  = {0,0,0};
1115         struct inode *inode = dn->inode;
1116
1117         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1118                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1119                 return 0;
1120         }
1121
1122         return f2fs_reserve_block(dn, index);
1123 }
1124
1125 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1126                                                 int op_flags, bool for_write)
1127 {
1128         struct address_space *mapping = inode->i_mapping;
1129         struct dnode_of_data dn;
1130         struct page *page;
1131         struct extent_info ei = {0,0,0};
1132         int err;
1133
1134         page = f2fs_grab_cache_page(mapping, index, for_write);
1135         if (!page)
1136                 return ERR_PTR(-ENOMEM);
1137
1138         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1139                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1140                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1141                                                 DATA_GENERIC_ENHANCE_READ)) {
1142                         err = -EFSCORRUPTED;
1143                         goto put_err;
1144                 }
1145                 goto got_it;
1146         }
1147
1148         set_new_dnode(&dn, inode, NULL, NULL, 0);
1149         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1150         if (err)
1151                 goto put_err;
1152         f2fs_put_dnode(&dn);
1153
1154         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1155                 err = -ENOENT;
1156                 goto put_err;
1157         }
1158         if (dn.data_blkaddr != NEW_ADDR &&
1159                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1160                                                 dn.data_blkaddr,
1161                                                 DATA_GENERIC_ENHANCE)) {
1162                 err = -EFSCORRUPTED;
1163                 goto put_err;
1164         }
1165 got_it:
1166         if (PageUptodate(page)) {
1167                 unlock_page(page);
1168                 return page;
1169         }
1170
1171         /*
1172          * A new dentry page is allocated but not able to be written, since its
1173          * new inode page couldn't be allocated due to -ENOSPC.
1174          * In such the case, its blkaddr can be remained as NEW_ADDR.
1175          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1176          * f2fs_init_inode_metadata.
1177          */
1178         if (dn.data_blkaddr == NEW_ADDR) {
1179                 zero_user_segment(page, 0, PAGE_SIZE);
1180                 if (!PageUptodate(page))
1181                         SetPageUptodate(page);
1182                 unlock_page(page);
1183                 return page;
1184         }
1185
1186         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, for_write);
1187         if (err)
1188                 goto put_err;
1189         return page;
1190
1191 put_err:
1192         f2fs_put_page(page, 1);
1193         return ERR_PTR(err);
1194 }
1195
1196 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1197 {
1198         struct address_space *mapping = inode->i_mapping;
1199         struct page *page;
1200
1201         page = find_get_page(mapping, index);
1202         if (page && PageUptodate(page))
1203                 return page;
1204         f2fs_put_page(page, 0);
1205
1206         page = f2fs_get_read_data_page(inode, index, 0, false);
1207         if (IS_ERR(page))
1208                 return page;
1209
1210         if (PageUptodate(page))
1211                 return page;
1212
1213         wait_on_page_locked(page);
1214         if (unlikely(!PageUptodate(page))) {
1215                 f2fs_put_page(page, 0);
1216                 return ERR_PTR(-EIO);
1217         }
1218         return page;
1219 }
1220
1221 /*
1222  * If it tries to access a hole, return an error.
1223  * Because, the callers, functions in dir.c and GC, should be able to know
1224  * whether this page exists or not.
1225  */
1226 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1227                                                         bool for_write)
1228 {
1229         struct address_space *mapping = inode->i_mapping;
1230         struct page *page;
1231 repeat:
1232         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1233         if (IS_ERR(page))
1234                 return page;
1235
1236         /* wait for read completion */
1237         lock_page(page);
1238         if (unlikely(page->mapping != mapping)) {
1239                 f2fs_put_page(page, 1);
1240                 goto repeat;
1241         }
1242         if (unlikely(!PageUptodate(page))) {
1243                 f2fs_put_page(page, 1);
1244                 return ERR_PTR(-EIO);
1245         }
1246         return page;
1247 }
1248
1249 /*
1250  * Caller ensures that this data page is never allocated.
1251  * A new zero-filled data page is allocated in the page cache.
1252  *
1253  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1254  * f2fs_unlock_op().
1255  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1256  * ipage should be released by this function.
1257  */
1258 struct page *f2fs_get_new_data_page(struct inode *inode,
1259                 struct page *ipage, pgoff_t index, bool new_i_size)
1260 {
1261         struct address_space *mapping = inode->i_mapping;
1262         struct page *page;
1263         struct dnode_of_data dn;
1264         int err;
1265
1266         page = f2fs_grab_cache_page(mapping, index, true);
1267         if (!page) {
1268                 /*
1269                  * before exiting, we should make sure ipage will be released
1270                  * if any error occur.
1271                  */
1272                 f2fs_put_page(ipage, 1);
1273                 return ERR_PTR(-ENOMEM);
1274         }
1275
1276         set_new_dnode(&dn, inode, ipage, NULL, 0);
1277         err = f2fs_reserve_block(&dn, index);
1278         if (err) {
1279                 f2fs_put_page(page, 1);
1280                 return ERR_PTR(err);
1281         }
1282         if (!ipage)
1283                 f2fs_put_dnode(&dn);
1284
1285         if (PageUptodate(page))
1286                 goto got_it;
1287
1288         if (dn.data_blkaddr == NEW_ADDR) {
1289                 zero_user_segment(page, 0, PAGE_SIZE);
1290                 if (!PageUptodate(page))
1291                         SetPageUptodate(page);
1292         } else {
1293                 f2fs_put_page(page, 1);
1294
1295                 /* if ipage exists, blkaddr should be NEW_ADDR */
1296                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1297                 page = f2fs_get_lock_data_page(inode, index, true);
1298                 if (IS_ERR(page))
1299                         return page;
1300         }
1301 got_it:
1302         if (new_i_size && i_size_read(inode) <
1303                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1304                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1305         return page;
1306 }
1307
1308 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1309 {
1310         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1311         struct f2fs_summary sum;
1312         struct node_info ni;
1313         block_t old_blkaddr;
1314         blkcnt_t count = 1;
1315         int err;
1316
1317         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1318                 return -EPERM;
1319
1320         err = f2fs_get_node_info(sbi, dn->nid, &ni);
1321         if (err)
1322                 return err;
1323
1324         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1325         if (dn->data_blkaddr != NULL_ADDR)
1326                 goto alloc;
1327
1328         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1329                 return err;
1330
1331 alloc:
1332         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1333         old_blkaddr = dn->data_blkaddr;
1334         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1335                                         &sum, seg_type, NULL, false);
1336         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1337                 invalidate_mapping_pages(META_MAPPING(sbi),
1338                                         old_blkaddr, old_blkaddr);
1339         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1340
1341         /*
1342          * i_size will be updated by direct_IO. Otherwise, we'll get stale
1343          * data from unwritten block via dio_read.
1344          */
1345         return 0;
1346 }
1347
1348 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1349 {
1350         struct inode *inode = file_inode(iocb->ki_filp);
1351         struct f2fs_map_blocks map;
1352         int flag;
1353         int err = 0;
1354         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1355
1356         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1357         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1358         if (map.m_len > map.m_lblk)
1359                 map.m_len -= map.m_lblk;
1360         else
1361                 map.m_len = 0;
1362
1363         map.m_next_pgofs = NULL;
1364         map.m_next_extent = NULL;
1365         map.m_seg_type = NO_CHECK_TYPE;
1366         map.m_may_create = true;
1367
1368         if (direct_io) {
1369                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1370                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1371                                         F2FS_GET_BLOCK_PRE_AIO :
1372                                         F2FS_GET_BLOCK_PRE_DIO;
1373                 goto map_blocks;
1374         }
1375         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1376                 err = f2fs_convert_inline_inode(inode);
1377                 if (err)
1378                         return err;
1379         }
1380         if (f2fs_has_inline_data(inode))
1381                 return err;
1382
1383         flag = F2FS_GET_BLOCK_PRE_AIO;
1384
1385 map_blocks:
1386         err = f2fs_map_blocks(inode, &map, 1, flag);
1387         if (map.m_len > 0 && err == -ENOSPC) {
1388                 if (!direct_io)
1389                         set_inode_flag(inode, FI_NO_PREALLOC);
1390                 err = 0;
1391         }
1392         return err;
1393 }
1394
1395 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1396 {
1397         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1398                 if (lock)
1399                         down_read(&sbi->node_change);
1400                 else
1401                         up_read(&sbi->node_change);
1402         } else {
1403                 if (lock)
1404                         f2fs_lock_op(sbi);
1405                 else
1406                         f2fs_unlock_op(sbi);
1407         }
1408 }
1409
1410 /*
1411  * f2fs_map_blocks() tries to find or build mapping relationship which
1412  * maps continuous logical blocks to physical blocks, and return such
1413  * info via f2fs_map_blocks structure.
1414  */
1415 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1416                                                 int create, int flag)
1417 {
1418         unsigned int maxblocks = map->m_len;
1419         struct dnode_of_data dn;
1420         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1421         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1422         pgoff_t pgofs, end_offset, end;
1423         int err = 0, ofs = 1;
1424         unsigned int ofs_in_node, last_ofs_in_node;
1425         blkcnt_t prealloc;
1426         struct extent_info ei = {0,0,0};
1427         block_t blkaddr;
1428         unsigned int start_pgofs;
1429
1430         if (!maxblocks)
1431                 return 0;
1432
1433         map->m_len = 0;
1434         map->m_flags = 0;
1435
1436         /* it only supports block size == page size */
1437         pgofs = (pgoff_t)map->m_lblk;
1438         end = pgofs + maxblocks;
1439
1440         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1441                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1442                                                         map->m_may_create)
1443                         goto next_dnode;
1444
1445                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1446                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1447                 map->m_flags = F2FS_MAP_MAPPED;
1448                 if (map->m_next_extent)
1449                         *map->m_next_extent = pgofs + map->m_len;
1450
1451                 /* for hardware encryption, but to avoid potential issue in future */
1452                 if (flag == F2FS_GET_BLOCK_DIO)
1453                         f2fs_wait_on_block_writeback_range(inode,
1454                                                 map->m_pblk, map->m_len);
1455                 goto out;
1456         }
1457
1458 next_dnode:
1459         if (map->m_may_create)
1460                 __do_map_lock(sbi, flag, true);
1461
1462         /* When reading holes, we need its node page */
1463         set_new_dnode(&dn, inode, NULL, NULL, 0);
1464         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1465         if (err) {
1466                 if (flag == F2FS_GET_BLOCK_BMAP)
1467                         map->m_pblk = 0;
1468                 if (err == -ENOENT) {
1469                         err = 0;
1470                         if (map->m_next_pgofs)
1471                                 *map->m_next_pgofs =
1472                                         f2fs_get_next_page_offset(&dn, pgofs);
1473                         if (map->m_next_extent)
1474                                 *map->m_next_extent =
1475                                         f2fs_get_next_page_offset(&dn, pgofs);
1476                 }
1477                 goto unlock_out;
1478         }
1479
1480         start_pgofs = pgofs;
1481         prealloc = 0;
1482         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1483         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1484
1485 next_block:
1486         blkaddr = f2fs_data_blkaddr(&dn);
1487
1488         if (__is_valid_data_blkaddr(blkaddr) &&
1489                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1490                 err = -EFSCORRUPTED;
1491                 goto sync_out;
1492         }
1493
1494         if (__is_valid_data_blkaddr(blkaddr)) {
1495                 /* use out-place-update for driect IO under LFS mode */
1496                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1497                                                         map->m_may_create) {
1498                         err = __allocate_data_block(&dn, map->m_seg_type);
1499                         if (err)
1500                                 goto sync_out;
1501                         blkaddr = dn.data_blkaddr;
1502                         set_inode_flag(inode, FI_APPEND_WRITE);
1503                 }
1504         } else {
1505                 if (create) {
1506                         if (unlikely(f2fs_cp_error(sbi))) {
1507                                 err = -EIO;
1508                                 goto sync_out;
1509                         }
1510                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1511                                 if (blkaddr == NULL_ADDR) {
1512                                         prealloc++;
1513                                         last_ofs_in_node = dn.ofs_in_node;
1514                                 }
1515                         } else {
1516                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1517                                         flag != F2FS_GET_BLOCK_DIO);
1518                                 err = __allocate_data_block(&dn,
1519                                                         map->m_seg_type);
1520                                 if (!err)
1521                                         set_inode_flag(inode, FI_APPEND_WRITE);
1522                         }
1523                         if (err)
1524                                 goto sync_out;
1525                         map->m_flags |= F2FS_MAP_NEW;
1526                         blkaddr = dn.data_blkaddr;
1527                 } else {
1528                         if (flag == F2FS_GET_BLOCK_BMAP) {
1529                                 map->m_pblk = 0;
1530                                 goto sync_out;
1531                         }
1532                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1533                                 goto sync_out;
1534                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1535                                                 blkaddr == NULL_ADDR) {
1536                                 if (map->m_next_pgofs)
1537                                         *map->m_next_pgofs = pgofs + 1;
1538                                 goto sync_out;
1539                         }
1540                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1541                                 /* for defragment case */
1542                                 if (map->m_next_pgofs)
1543                                         *map->m_next_pgofs = pgofs + 1;
1544                                 goto sync_out;
1545                         }
1546                 }
1547         }
1548
1549         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1550                 goto skip;
1551
1552         if (map->m_len == 0) {
1553                 /* preallocated unwritten block should be mapped for fiemap. */
1554                 if (blkaddr == NEW_ADDR)
1555                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1556                 map->m_flags |= F2FS_MAP_MAPPED;
1557
1558                 map->m_pblk = blkaddr;
1559                 map->m_len = 1;
1560         } else if ((map->m_pblk != NEW_ADDR &&
1561                         blkaddr == (map->m_pblk + ofs)) ||
1562                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1563                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1564                 ofs++;
1565                 map->m_len++;
1566         } else {
1567                 goto sync_out;
1568         }
1569
1570 skip:
1571         dn.ofs_in_node++;
1572         pgofs++;
1573
1574         /* preallocate blocks in batch for one dnode page */
1575         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1576                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1577
1578                 dn.ofs_in_node = ofs_in_node;
1579                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1580                 if (err)
1581                         goto sync_out;
1582
1583                 map->m_len += dn.ofs_in_node - ofs_in_node;
1584                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1585                         err = -ENOSPC;
1586                         goto sync_out;
1587                 }
1588                 dn.ofs_in_node = end_offset;
1589         }
1590
1591         if (pgofs >= end)
1592                 goto sync_out;
1593         else if (dn.ofs_in_node < end_offset)
1594                 goto next_block;
1595
1596         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1597                 if (map->m_flags & F2FS_MAP_MAPPED) {
1598                         unsigned int ofs = start_pgofs - map->m_lblk;
1599
1600                         f2fs_update_extent_cache_range(&dn,
1601                                 start_pgofs, map->m_pblk + ofs,
1602                                 map->m_len - ofs);
1603                 }
1604         }
1605
1606         f2fs_put_dnode(&dn);
1607
1608         if (map->m_may_create) {
1609                 __do_map_lock(sbi, flag, false);
1610                 f2fs_balance_fs(sbi, dn.node_changed);
1611         }
1612         goto next_dnode;
1613
1614 sync_out:
1615
1616         /* for hardware encryption, but to avoid potential issue in future */
1617         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1618                 f2fs_wait_on_block_writeback_range(inode,
1619                                                 map->m_pblk, map->m_len);
1620
1621         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1622                 if (map->m_flags & F2FS_MAP_MAPPED) {
1623                         unsigned int ofs = start_pgofs - map->m_lblk;
1624
1625                         f2fs_update_extent_cache_range(&dn,
1626                                 start_pgofs, map->m_pblk + ofs,
1627                                 map->m_len - ofs);
1628                 }
1629                 if (map->m_next_extent)
1630                         *map->m_next_extent = pgofs + 1;
1631         }
1632         f2fs_put_dnode(&dn);
1633 unlock_out:
1634         if (map->m_may_create) {
1635                 __do_map_lock(sbi, flag, false);
1636                 f2fs_balance_fs(sbi, dn.node_changed);
1637         }
1638 out:
1639         trace_f2fs_map_blocks(inode, map, err);
1640         return err;
1641 }
1642
1643 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1644 {
1645         struct f2fs_map_blocks map;
1646         block_t last_lblk;
1647         int err;
1648
1649         if (pos + len > i_size_read(inode))
1650                 return false;
1651
1652         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1653         map.m_next_pgofs = NULL;
1654         map.m_next_extent = NULL;
1655         map.m_seg_type = NO_CHECK_TYPE;
1656         map.m_may_create = false;
1657         last_lblk = F2FS_BLK_ALIGN(pos + len);
1658
1659         while (map.m_lblk < last_lblk) {
1660                 map.m_len = last_lblk - map.m_lblk;
1661                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1662                 if (err || map.m_len == 0)
1663                         return false;
1664                 map.m_lblk += map.m_len;
1665         }
1666         return true;
1667 }
1668
1669 static int __get_data_block(struct inode *inode, sector_t iblock,
1670                         struct buffer_head *bh, int create, int flag,
1671                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1672 {
1673         struct f2fs_map_blocks map;
1674         int err;
1675
1676         map.m_lblk = iblock;
1677         map.m_len = bh->b_size >> inode->i_blkbits;
1678         map.m_next_pgofs = next_pgofs;
1679         map.m_next_extent = NULL;
1680         map.m_seg_type = seg_type;
1681         map.m_may_create = may_write;
1682
1683         err = f2fs_map_blocks(inode, &map, create, flag);
1684         if (!err) {
1685                 map_bh(bh, inode->i_sb, map.m_pblk);
1686                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1687                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1688         }
1689         return err;
1690 }
1691
1692 static int get_data_block(struct inode *inode, sector_t iblock,
1693                         struct buffer_head *bh_result, int create, int flag,
1694                         pgoff_t *next_pgofs)
1695 {
1696         return __get_data_block(inode, iblock, bh_result, create,
1697                                                         flag, next_pgofs,
1698                                                         NO_CHECK_TYPE, create);
1699 }
1700
1701 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1702                         struct buffer_head *bh_result, int create)
1703 {
1704         return __get_data_block(inode, iblock, bh_result, create,
1705                                 F2FS_GET_BLOCK_DIO, NULL,
1706                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1707                                 IS_SWAPFILE(inode) ? false : true);
1708 }
1709
1710 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1711                         struct buffer_head *bh_result, int create)
1712 {
1713         return __get_data_block(inode, iblock, bh_result, create,
1714                                 F2FS_GET_BLOCK_DIO, NULL,
1715                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1716                                 false);
1717 }
1718
1719 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1720                         struct buffer_head *bh_result, int create)
1721 {
1722         /* Block number less than F2FS MAX BLOCKS */
1723         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1724                 return -EFBIG;
1725
1726         return __get_data_block(inode, iblock, bh_result, create,
1727                                                 F2FS_GET_BLOCK_BMAP, NULL,
1728                                                 NO_CHECK_TYPE, create);
1729 }
1730
1731 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1732 {
1733         return (offset >> inode->i_blkbits);
1734 }
1735
1736 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1737 {
1738         return (blk << inode->i_blkbits);
1739 }
1740
1741 static int f2fs_xattr_fiemap(struct inode *inode,
1742                                 struct fiemap_extent_info *fieinfo)
1743 {
1744         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1745         struct page *page;
1746         struct node_info ni;
1747         __u64 phys = 0, len;
1748         __u32 flags;
1749         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1750         int err = 0;
1751
1752         if (f2fs_has_inline_xattr(inode)) {
1753                 int offset;
1754
1755                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1756                                                 inode->i_ino, false);
1757                 if (!page)
1758                         return -ENOMEM;
1759
1760                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1761                 if (err) {
1762                         f2fs_put_page(page, 1);
1763                         return err;
1764                 }
1765
1766                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1767                 offset = offsetof(struct f2fs_inode, i_addr) +
1768                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1769                                         get_inline_xattr_addrs(inode));
1770
1771                 phys += offset;
1772                 len = inline_xattr_size(inode);
1773
1774                 f2fs_put_page(page, 1);
1775
1776                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1777
1778                 if (!xnid)
1779                         flags |= FIEMAP_EXTENT_LAST;
1780
1781                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1782                 if (err || err == 1)
1783                         return err;
1784         }
1785
1786         if (xnid) {
1787                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1788                 if (!page)
1789                         return -ENOMEM;
1790
1791                 err = f2fs_get_node_info(sbi, xnid, &ni);
1792                 if (err) {
1793                         f2fs_put_page(page, 1);
1794                         return err;
1795                 }
1796
1797                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1798                 len = inode->i_sb->s_blocksize;
1799
1800                 f2fs_put_page(page, 1);
1801
1802                 flags = FIEMAP_EXTENT_LAST;
1803         }
1804
1805         if (phys)
1806                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1807
1808         return (err < 0 ? err : 0);
1809 }
1810
1811 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1812                 u64 start, u64 len)
1813 {
1814         struct buffer_head map_bh;
1815         sector_t start_blk, last_blk;
1816         pgoff_t next_pgofs;
1817         u64 logical = 0, phys = 0, size = 0;
1818         u32 flags = 0;
1819         int ret = 0;
1820
1821         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1822                 ret = f2fs_precache_extents(inode);
1823                 if (ret)
1824                         return ret;
1825         }
1826
1827         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1828         if (ret)
1829                 return ret;
1830
1831         inode_lock(inode);
1832
1833         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1834                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1835                 goto out;
1836         }
1837
1838         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1839                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1840                 if (ret != -EAGAIN)
1841                         goto out;
1842         }
1843
1844         if (logical_to_blk(inode, len) == 0)
1845                 len = blk_to_logical(inode, 1);
1846
1847         start_blk = logical_to_blk(inode, start);
1848         last_blk = logical_to_blk(inode, start + len - 1);
1849
1850 next:
1851         memset(&map_bh, 0, sizeof(struct buffer_head));
1852         map_bh.b_size = len;
1853
1854         ret = get_data_block(inode, start_blk, &map_bh, 0,
1855                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1856         if (ret)
1857                 goto out;
1858
1859         /* HOLE */
1860         if (!buffer_mapped(&map_bh)) {
1861                 start_blk = next_pgofs;
1862
1863                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1864                                         F2FS_I_SB(inode)->max_file_blocks))
1865                         goto prep_next;
1866
1867                 flags |= FIEMAP_EXTENT_LAST;
1868         }
1869
1870         if (size) {
1871                 if (IS_ENCRYPTED(inode))
1872                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1873
1874                 ret = fiemap_fill_next_extent(fieinfo, logical,
1875                                 phys, size, flags);
1876         }
1877
1878         if (start_blk > last_blk || ret)
1879                 goto out;
1880
1881         logical = blk_to_logical(inode, start_blk);
1882         phys = blk_to_logical(inode, map_bh.b_blocknr);
1883         size = map_bh.b_size;
1884         flags = 0;
1885         if (buffer_unwritten(&map_bh))
1886                 flags = FIEMAP_EXTENT_UNWRITTEN;
1887
1888         start_blk += logical_to_blk(inode, size);
1889
1890 prep_next:
1891         cond_resched();
1892         if (fatal_signal_pending(current))
1893                 ret = -EINTR;
1894         else
1895                 goto next;
1896 out:
1897         if (ret == 1)
1898                 ret = 0;
1899
1900         inode_unlock(inode);
1901         return ret;
1902 }
1903
1904 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1905 {
1906         if (IS_ENABLED(CONFIG_FS_VERITY) &&
1907             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1908                 return inode->i_sb->s_maxbytes;
1909
1910         return i_size_read(inode);
1911 }
1912
1913 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1914                                         unsigned nr_pages,
1915                                         struct f2fs_map_blocks *map,
1916                                         struct bio **bio_ret,
1917                                         sector_t *last_block_in_bio,
1918                                         bool is_readahead)
1919 {
1920         struct bio *bio = *bio_ret;
1921         const unsigned blkbits = inode->i_blkbits;
1922         const unsigned blocksize = 1 << blkbits;
1923         sector_t block_in_file;
1924         sector_t last_block;
1925         sector_t last_block_in_file;
1926         sector_t block_nr;
1927         int ret = 0;
1928
1929         block_in_file = (sector_t)page_index(page);
1930         last_block = block_in_file + nr_pages;
1931         last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
1932                                                         blkbits;
1933         if (last_block > last_block_in_file)
1934                 last_block = last_block_in_file;
1935
1936         /* just zeroing out page which is beyond EOF */
1937         if (block_in_file >= last_block)
1938                 goto zero_out;
1939         /*
1940          * Map blocks using the previous result first.
1941          */
1942         if ((map->m_flags & F2FS_MAP_MAPPED) &&
1943                         block_in_file > map->m_lblk &&
1944                         block_in_file < (map->m_lblk + map->m_len))
1945                 goto got_it;
1946
1947         /*
1948          * Then do more f2fs_map_blocks() calls until we are
1949          * done with this page.
1950          */
1951         map->m_lblk = block_in_file;
1952         map->m_len = last_block - block_in_file;
1953
1954         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1955         if (ret)
1956                 goto out;
1957 got_it:
1958         if ((map->m_flags & F2FS_MAP_MAPPED)) {
1959                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
1960                 SetPageMappedToDisk(page);
1961
1962                 if (!PageUptodate(page) && (!PageSwapCache(page) &&
1963                                         !cleancache_get_page(page))) {
1964                         SetPageUptodate(page);
1965                         goto confused;
1966                 }
1967
1968                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1969                                                 DATA_GENERIC_ENHANCE_READ)) {
1970                         ret = -EFSCORRUPTED;
1971                         goto out;
1972                 }
1973         } else {
1974 zero_out:
1975                 zero_user_segment(page, 0, PAGE_SIZE);
1976                 if (f2fs_need_verity(inode, page->index) &&
1977                     !fsverity_verify_page(page)) {
1978                         ret = -EIO;
1979                         goto out;
1980                 }
1981                 if (!PageUptodate(page))
1982                         SetPageUptodate(page);
1983                 unlock_page(page);
1984                 goto out;
1985         }
1986
1987         /*
1988          * This page will go to BIO.  Do we need to send this
1989          * BIO off first?
1990          */
1991         if (bio && !page_is_mergeable(F2FS_I_SB(inode), bio,
1992                                 *last_block_in_bio, block_nr)) {
1993 submit_and_realloc:
1994                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1995                 bio = NULL;
1996         }
1997         if (bio == NULL) {
1998                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1999                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2000                                 false);
2001                 if (IS_ERR(bio)) {
2002                         ret = PTR_ERR(bio);
2003                         bio = NULL;
2004                         goto out;
2005                 }
2006         }
2007
2008         /*
2009          * If the page is under writeback, we need to wait for
2010          * its completion to see the correct decrypted data.
2011          */
2012         f2fs_wait_on_block_writeback(inode, block_nr);
2013
2014         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2015                 goto submit_and_realloc;
2016
2017         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2018         ClearPageError(page);
2019         *last_block_in_bio = block_nr;
2020         goto out;
2021 confused:
2022         if (bio) {
2023                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2024                 bio = NULL;
2025         }
2026         unlock_page(page);
2027 out:
2028         *bio_ret = bio;
2029         return ret;
2030 }
2031
2032 #ifdef CONFIG_F2FS_FS_COMPRESSION
2033 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2034                                 unsigned nr_pages, sector_t *last_block_in_bio,
2035                                 bool is_readahead, bool for_write)
2036 {
2037         struct dnode_of_data dn;
2038         struct inode *inode = cc->inode;
2039         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2040         struct bio *bio = *bio_ret;
2041         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2042         sector_t last_block_in_file;
2043         const unsigned blkbits = inode->i_blkbits;
2044         const unsigned blocksize = 1 << blkbits;
2045         struct decompress_io_ctx *dic = NULL;
2046         int i;
2047         int ret = 0;
2048
2049         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2050
2051         last_block_in_file = (f2fs_readpage_limit(inode) +
2052                                         blocksize - 1) >> blkbits;
2053
2054         /* get rid of pages beyond EOF */
2055         for (i = 0; i < cc->cluster_size; i++) {
2056                 struct page *page = cc->rpages[i];
2057
2058                 if (!page)
2059                         continue;
2060                 if ((sector_t)page->index >= last_block_in_file) {
2061                         zero_user_segment(page, 0, PAGE_SIZE);
2062                         if (!PageUptodate(page))
2063                                 SetPageUptodate(page);
2064                 } else if (!PageUptodate(page)) {
2065                         continue;
2066                 }
2067                 unlock_page(page);
2068                 cc->rpages[i] = NULL;
2069                 cc->nr_rpages--;
2070         }
2071
2072         /* we are done since all pages are beyond EOF */
2073         if (f2fs_cluster_is_empty(cc))
2074                 goto out;
2075
2076         set_new_dnode(&dn, inode, NULL, NULL, 0);
2077         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2078         if (ret)
2079                 goto out;
2080
2081         /* cluster was overwritten as normal cluster */
2082         if (dn.data_blkaddr != COMPRESS_ADDR)
2083                 goto out;
2084
2085         for (i = 1; i < cc->cluster_size; i++) {
2086                 block_t blkaddr;
2087
2088                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2089                                                 dn.ofs_in_node + i);
2090
2091                 if (!__is_valid_data_blkaddr(blkaddr))
2092                         break;
2093
2094                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2095                         ret = -EFAULT;
2096                         goto out_put_dnode;
2097                 }
2098                 cc->nr_cpages++;
2099         }
2100
2101         /* nothing to decompress */
2102         if (cc->nr_cpages == 0) {
2103                 ret = 0;
2104                 goto out_put_dnode;
2105         }
2106
2107         dic = f2fs_alloc_dic(cc);
2108         if (IS_ERR(dic)) {
2109                 ret = PTR_ERR(dic);
2110                 goto out_put_dnode;
2111         }
2112
2113         for (i = 0; i < dic->nr_cpages; i++) {
2114                 struct page *page = dic->cpages[i];
2115                 block_t blkaddr;
2116
2117                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2118                                                 dn.ofs_in_node + i + 1);
2119
2120                 if (bio && !page_is_mergeable(sbi, bio,
2121                                         *last_block_in_bio, blkaddr)) {
2122 submit_and_realloc:
2123                         __submit_bio(sbi, bio, DATA);
2124                         bio = NULL;
2125                 }
2126
2127                 if (!bio) {
2128                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2129                                         is_readahead ? REQ_RAHEAD : 0,
2130                                         page->index, for_write);
2131                         if (IS_ERR(bio)) {
2132                                 ret = PTR_ERR(bio);
2133                                 bio = NULL;
2134                                 dic->failed = true;
2135                                 if (refcount_sub_and_test(dic->nr_cpages - i,
2136                                                         &dic->ref))
2137                                         f2fs_decompress_end_io(dic->rpages,
2138                                                         cc->cluster_size, true,
2139                                                         false);
2140                                 f2fs_free_dic(dic);
2141                                 f2fs_put_dnode(&dn);
2142                                 *bio_ret = bio;
2143                                 return ret;
2144                         }
2145                 }
2146
2147                 f2fs_wait_on_block_writeback(inode, blkaddr);
2148
2149                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2150                         goto submit_and_realloc;
2151
2152                 inc_page_count(sbi, F2FS_RD_DATA);
2153                 ClearPageError(page);
2154                 *last_block_in_bio = blkaddr;
2155         }
2156
2157         f2fs_put_dnode(&dn);
2158
2159         *bio_ret = bio;
2160         return 0;
2161
2162 out_put_dnode:
2163         f2fs_put_dnode(&dn);
2164 out:
2165         f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2166         *bio_ret = bio;
2167         return ret;
2168 }
2169 #endif
2170
2171 /*
2172  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2173  * Major change was from block_size == page_size in f2fs by default.
2174  *
2175  * Note that the aops->readpages() function is ONLY used for read-ahead. If
2176  * this function ever deviates from doing just read-ahead, it should either
2177  * use ->readpage() or do the necessary surgery to decouple ->readpages()
2178  * from read-ahead.
2179  */
2180 int f2fs_mpage_readpages(struct address_space *mapping,
2181                         struct list_head *pages, struct page *page,
2182                         unsigned nr_pages, bool is_readahead)
2183 {
2184         struct bio *bio = NULL;
2185         sector_t last_block_in_bio = 0;
2186         struct inode *inode = mapping->host;
2187         struct f2fs_map_blocks map;
2188 #ifdef CONFIG_F2FS_FS_COMPRESSION
2189         struct compress_ctx cc = {
2190                 .inode = inode,
2191                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2192                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2193                 .cluster_idx = NULL_CLUSTER,
2194                 .rpages = NULL,
2195                 .cpages = NULL,
2196                 .nr_rpages = 0,
2197                 .nr_cpages = 0,
2198         };
2199 #endif
2200         unsigned max_nr_pages = nr_pages;
2201         int ret = 0;
2202
2203         map.m_pblk = 0;
2204         map.m_lblk = 0;
2205         map.m_len = 0;
2206         map.m_flags = 0;
2207         map.m_next_pgofs = NULL;
2208         map.m_next_extent = NULL;
2209         map.m_seg_type = NO_CHECK_TYPE;
2210         map.m_may_create = false;
2211
2212         for (; nr_pages; nr_pages--) {
2213                 if (pages) {
2214                         page = list_last_entry(pages, struct page, lru);
2215
2216                         prefetchw(&page->flags);
2217                         list_del(&page->lru);
2218                         if (add_to_page_cache_lru(page, mapping,
2219                                                   page_index(page),
2220                                                   readahead_gfp_mask(mapping)))
2221                                 goto next_page;
2222                 }
2223
2224 #ifdef CONFIG_F2FS_FS_COMPRESSION
2225                 if (f2fs_compressed_file(inode)) {
2226                         /* there are remained comressed pages, submit them */
2227                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2228                                 ret = f2fs_read_multi_pages(&cc, &bio,
2229                                                         max_nr_pages,
2230                                                         &last_block_in_bio,
2231                                                         is_readahead, false);
2232                                 f2fs_destroy_compress_ctx(&cc);
2233                                 if (ret)
2234                                         goto set_error_page;
2235                         }
2236                         ret = f2fs_is_compressed_cluster(inode, page->index);
2237                         if (ret < 0)
2238                                 goto set_error_page;
2239                         else if (!ret)
2240                                 goto read_single_page;
2241
2242                         ret = f2fs_init_compress_ctx(&cc);
2243                         if (ret)
2244                                 goto set_error_page;
2245
2246                         f2fs_compress_ctx_add_page(&cc, page);
2247
2248                         goto next_page;
2249                 }
2250 read_single_page:
2251 #endif
2252
2253                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2254                                         &bio, &last_block_in_bio, is_readahead);
2255                 if (ret) {
2256 #ifdef CONFIG_F2FS_FS_COMPRESSION
2257 set_error_page:
2258 #endif
2259                         SetPageError(page);
2260                         zero_user_segment(page, 0, PAGE_SIZE);
2261                         unlock_page(page);
2262                 }
2263 next_page:
2264                 if (pages)
2265                         put_page(page);
2266
2267 #ifdef CONFIG_F2FS_FS_COMPRESSION
2268                 if (f2fs_compressed_file(inode)) {
2269                         /* last page */
2270                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2271                                 ret = f2fs_read_multi_pages(&cc, &bio,
2272                                                         max_nr_pages,
2273                                                         &last_block_in_bio,
2274                                                         is_readahead, false);
2275                                 f2fs_destroy_compress_ctx(&cc);
2276                         }
2277                 }
2278 #endif
2279         }
2280         BUG_ON(pages && !list_empty(pages));
2281         if (bio)
2282                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2283         return pages ? 0 : ret;
2284 }
2285
2286 static int f2fs_read_data_page(struct file *file, struct page *page)
2287 {
2288         struct inode *inode = page_file_mapping(page)->host;
2289         int ret = -EAGAIN;
2290
2291         trace_f2fs_readpage(page, DATA);
2292
2293         if (!f2fs_is_compress_backend_ready(inode)) {
2294                 unlock_page(page);
2295                 return -EOPNOTSUPP;
2296         }
2297
2298         /* If the file has inline data, try to read it directly */
2299         if (f2fs_has_inline_data(inode))
2300                 ret = f2fs_read_inline_data(inode, page);
2301         if (ret == -EAGAIN)
2302                 ret = f2fs_mpage_readpages(page_file_mapping(page),
2303                                                 NULL, page, 1, false);
2304         return ret;
2305 }
2306
2307 static int f2fs_read_data_pages(struct file *file,
2308                         struct address_space *mapping,
2309                         struct list_head *pages, unsigned nr_pages)
2310 {
2311         struct inode *inode = mapping->host;
2312         struct page *page = list_last_entry(pages, struct page, lru);
2313
2314         trace_f2fs_readpages(inode, page, nr_pages);
2315
2316         if (!f2fs_is_compress_backend_ready(inode))
2317                 return 0;
2318
2319         /* If the file has inline data, skip readpages */
2320         if (f2fs_has_inline_data(inode))
2321                 return 0;
2322
2323         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
2324 }
2325
2326 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2327 {
2328         struct inode *inode = fio->page->mapping->host;
2329         struct page *mpage, *page;
2330         gfp_t gfp_flags = GFP_NOFS;
2331
2332         if (!f2fs_encrypted_file(inode))
2333                 return 0;
2334
2335         page = fio->compressed_page ? fio->compressed_page : fio->page;
2336
2337         /* wait for GCed page writeback via META_MAPPING */
2338         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2339
2340 retry_encrypt:
2341         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2342                                         PAGE_SIZE, 0, gfp_flags);
2343         if (IS_ERR(fio->encrypted_page)) {
2344                 /* flush pending IOs and wait for a while in the ENOMEM case */
2345                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2346                         f2fs_flush_merged_writes(fio->sbi);
2347                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2348                         gfp_flags |= __GFP_NOFAIL;
2349                         goto retry_encrypt;
2350                 }
2351                 return PTR_ERR(fio->encrypted_page);
2352         }
2353
2354         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2355         if (mpage) {
2356                 if (PageUptodate(mpage))
2357                         memcpy(page_address(mpage),
2358                                 page_address(fio->encrypted_page), PAGE_SIZE);
2359                 f2fs_put_page(mpage, 1);
2360         }
2361         return 0;
2362 }
2363
2364 static inline bool check_inplace_update_policy(struct inode *inode,
2365                                 struct f2fs_io_info *fio)
2366 {
2367         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2368         unsigned int policy = SM_I(sbi)->ipu_policy;
2369
2370         if (policy & (0x1 << F2FS_IPU_FORCE))
2371                 return true;
2372         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2373                 return true;
2374         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2375                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2376                 return true;
2377         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2378                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2379                 return true;
2380
2381         /*
2382          * IPU for rewrite async pages
2383          */
2384         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2385                         fio && fio->op == REQ_OP_WRITE &&
2386                         !(fio->op_flags & REQ_SYNC) &&
2387                         !IS_ENCRYPTED(inode))
2388                 return true;
2389
2390         /* this is only set during fdatasync */
2391         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2392                         is_inode_flag_set(inode, FI_NEED_IPU))
2393                 return true;
2394
2395         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2396                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2397                 return true;
2398
2399         return false;
2400 }
2401
2402 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2403 {
2404         if (f2fs_is_pinned_file(inode))
2405                 return true;
2406
2407         /* if this is cold file, we should overwrite to avoid fragmentation */
2408         if (file_is_cold(inode))
2409                 return true;
2410
2411         return check_inplace_update_policy(inode, fio);
2412 }
2413
2414 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2415 {
2416         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2417
2418         if (f2fs_lfs_mode(sbi))
2419                 return true;
2420         if (S_ISDIR(inode->i_mode))
2421                 return true;
2422         if (IS_NOQUOTA(inode))
2423                 return true;
2424         if (f2fs_is_atomic_file(inode))
2425                 return true;
2426         if (fio) {
2427                 if (is_cold_data(fio->page))
2428                         return true;
2429                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2430                         return true;
2431                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2432                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2433                         return true;
2434         }
2435         return false;
2436 }
2437
2438 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2439 {
2440         struct inode *inode = fio->page->mapping->host;
2441
2442         if (f2fs_should_update_outplace(inode, fio))
2443                 return false;
2444
2445         return f2fs_should_update_inplace(inode, fio);
2446 }
2447
2448 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2449 {
2450         struct page *page = fio->page;
2451         struct inode *inode = page->mapping->host;
2452         struct dnode_of_data dn;
2453         struct extent_info ei = {0,0,0};
2454         struct node_info ni;
2455         bool ipu_force = false;
2456         int err = 0;
2457
2458         set_new_dnode(&dn, inode, NULL, NULL, 0);
2459         if (need_inplace_update(fio) &&
2460                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2461                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2462
2463                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2464                                                 DATA_GENERIC_ENHANCE))
2465                         return -EFSCORRUPTED;
2466
2467                 ipu_force = true;
2468                 fio->need_lock = LOCK_DONE;
2469                 goto got_it;
2470         }
2471
2472         /* Deadlock due to between page->lock and f2fs_lock_op */
2473         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2474                 return -EAGAIN;
2475
2476         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2477         if (err)
2478                 goto out;
2479
2480         fio->old_blkaddr = dn.data_blkaddr;
2481
2482         /* This page is already truncated */
2483         if (fio->old_blkaddr == NULL_ADDR) {
2484                 ClearPageUptodate(page);
2485                 clear_cold_data(page);
2486                 goto out_writepage;
2487         }
2488 got_it:
2489         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2490                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2491                                                 DATA_GENERIC_ENHANCE)) {
2492                 err = -EFSCORRUPTED;
2493                 goto out_writepage;
2494         }
2495         /*
2496          * If current allocation needs SSR,
2497          * it had better in-place writes for updated data.
2498          */
2499         if (ipu_force ||
2500                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2501                                         need_inplace_update(fio))) {
2502                 err = f2fs_encrypt_one_page(fio);
2503                 if (err)
2504                         goto out_writepage;
2505
2506                 set_page_writeback(page);
2507                 ClearPageError(page);
2508                 f2fs_put_dnode(&dn);
2509                 if (fio->need_lock == LOCK_REQ)
2510                         f2fs_unlock_op(fio->sbi);
2511                 err = f2fs_inplace_write_data(fio);
2512                 if (err) {
2513                         if (f2fs_encrypted_file(inode))
2514                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2515                         if (PageWriteback(page))
2516                                 end_page_writeback(page);
2517                 } else {
2518                         set_inode_flag(inode, FI_UPDATE_WRITE);
2519                 }
2520                 trace_f2fs_do_write_data_page(fio->page, IPU);
2521                 return err;
2522         }
2523
2524         if (fio->need_lock == LOCK_RETRY) {
2525                 if (!f2fs_trylock_op(fio->sbi)) {
2526                         err = -EAGAIN;
2527                         goto out_writepage;
2528                 }
2529                 fio->need_lock = LOCK_REQ;
2530         }
2531
2532         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2533         if (err)
2534                 goto out_writepage;
2535
2536         fio->version = ni.version;
2537
2538         err = f2fs_encrypt_one_page(fio);
2539         if (err)
2540                 goto out_writepage;
2541
2542         set_page_writeback(page);
2543         ClearPageError(page);
2544
2545         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2546                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2547
2548         /* LFS mode write path */
2549         f2fs_outplace_write_data(&dn, fio);
2550         trace_f2fs_do_write_data_page(page, OPU);
2551         set_inode_flag(inode, FI_APPEND_WRITE);
2552         if (page->index == 0)
2553                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2554 out_writepage:
2555         f2fs_put_dnode(&dn);
2556 out:
2557         if (fio->need_lock == LOCK_REQ)
2558                 f2fs_unlock_op(fio->sbi);
2559         return err;
2560 }
2561
2562 int f2fs_write_single_data_page(struct page *page, int *submitted,
2563                                 struct bio **bio,
2564                                 sector_t *last_block,
2565                                 struct writeback_control *wbc,
2566                                 enum iostat_type io_type,
2567                                 int compr_blocks)
2568 {
2569         struct inode *inode = page->mapping->host;
2570         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2571         loff_t i_size = i_size_read(inode);
2572         const pgoff_t end_index = ((unsigned long long)i_size)
2573                                                         >> PAGE_SHIFT;
2574         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2575         unsigned offset = 0;
2576         bool need_balance_fs = false;
2577         int err = 0;
2578         struct f2fs_io_info fio = {
2579                 .sbi = sbi,
2580                 .ino = inode->i_ino,
2581                 .type = DATA,
2582                 .op = REQ_OP_WRITE,
2583                 .op_flags = wbc_to_write_flags(wbc),
2584                 .old_blkaddr = NULL_ADDR,
2585                 .page = page,
2586                 .encrypted_page = NULL,
2587                 .submitted = false,
2588                 .compr_blocks = compr_blocks,
2589                 .need_lock = LOCK_RETRY,
2590                 .io_type = io_type,
2591                 .io_wbc = wbc,
2592                 .bio = bio,
2593                 .last_block = last_block,
2594         };
2595
2596         trace_f2fs_writepage(page, DATA);
2597
2598         /* we should bypass data pages to proceed the kworkder jobs */
2599         if (unlikely(f2fs_cp_error(sbi))) {
2600                 mapping_set_error(page->mapping, -EIO);
2601                 /*
2602                  * don't drop any dirty dentry pages for keeping lastest
2603                  * directory structure.
2604                  */
2605                 if (S_ISDIR(inode->i_mode))
2606                         goto redirty_out;
2607                 goto out;
2608         }
2609
2610         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2611                 goto redirty_out;
2612
2613         if (page->index < end_index ||
2614                         f2fs_verity_in_progress(inode) ||
2615                         compr_blocks)
2616                 goto write;
2617
2618         /*
2619          * If the offset is out-of-range of file size,
2620          * this page does not have to be written to disk.
2621          */
2622         offset = i_size & (PAGE_SIZE - 1);
2623         if ((page->index >= end_index + 1) || !offset)
2624                 goto out;
2625
2626         zero_user_segment(page, offset, PAGE_SIZE);
2627 write:
2628         if (f2fs_is_drop_cache(inode))
2629                 goto out;
2630         /* we should not write 0'th page having journal header */
2631         if (f2fs_is_volatile_file(inode) && (!page->index ||
2632                         (!wbc->for_reclaim &&
2633                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2634                 goto redirty_out;
2635
2636         /* Dentry blocks are controlled by checkpoint */
2637         if (S_ISDIR(inode->i_mode)) {
2638                 fio.need_lock = LOCK_DONE;
2639                 err = f2fs_do_write_data_page(&fio);
2640                 goto done;
2641         }
2642
2643         if (!wbc->for_reclaim)
2644                 need_balance_fs = true;
2645         else if (has_not_enough_free_secs(sbi, 0, 0))
2646                 goto redirty_out;
2647         else
2648                 set_inode_flag(inode, FI_HOT_DATA);
2649
2650         err = -EAGAIN;
2651         if (f2fs_has_inline_data(inode)) {
2652                 err = f2fs_write_inline_data(inode, page);
2653                 if (!err)
2654                         goto out;
2655         }
2656
2657         if (err == -EAGAIN) {
2658                 err = f2fs_do_write_data_page(&fio);
2659                 if (err == -EAGAIN) {
2660                         fio.need_lock = LOCK_REQ;
2661                         err = f2fs_do_write_data_page(&fio);
2662                 }
2663         }
2664
2665         if (err) {
2666                 file_set_keep_isize(inode);
2667         } else {
2668                 spin_lock(&F2FS_I(inode)->i_size_lock);
2669                 if (F2FS_I(inode)->last_disk_size < psize)
2670                         F2FS_I(inode)->last_disk_size = psize;
2671                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2672         }
2673
2674 done:
2675         if (err && err != -ENOENT)
2676                 goto redirty_out;
2677
2678 out:
2679         inode_dec_dirty_pages(inode);
2680         if (err) {
2681                 ClearPageUptodate(page);
2682                 clear_cold_data(page);
2683         }
2684
2685         if (wbc->for_reclaim) {
2686                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2687                 clear_inode_flag(inode, FI_HOT_DATA);
2688                 f2fs_remove_dirty_inode(inode);
2689                 submitted = NULL;
2690         }
2691         unlock_page(page);
2692         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2693                                         !F2FS_I(inode)->cp_task)
2694                 f2fs_balance_fs(sbi, need_balance_fs);
2695
2696         if (unlikely(f2fs_cp_error(sbi))) {
2697                 f2fs_submit_merged_write(sbi, DATA);
2698                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2699                 submitted = NULL;
2700         }
2701
2702         if (submitted)
2703                 *submitted = fio.submitted ? 1 : 0;
2704
2705         return 0;
2706
2707 redirty_out:
2708         redirty_page_for_writepage(wbc, page);
2709         /*
2710          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2711          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2712          * file_write_and_wait_range() will see EIO error, which is critical
2713          * to return value of fsync() followed by atomic_write failure to user.
2714          */
2715         if (!err || wbc->for_reclaim)
2716                 return AOP_WRITEPAGE_ACTIVATE;
2717         unlock_page(page);
2718         return err;
2719 }
2720
2721 static int f2fs_write_data_page(struct page *page,
2722                                         struct writeback_control *wbc)
2723 {
2724 #ifdef CONFIG_F2FS_FS_COMPRESSION
2725         struct inode *inode = page->mapping->host;
2726
2727         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2728                 goto out;
2729
2730         if (f2fs_compressed_file(inode)) {
2731                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2732                         redirty_page_for_writepage(wbc, page);
2733                         return AOP_WRITEPAGE_ACTIVATE;
2734                 }
2735         }
2736 out:
2737 #endif
2738
2739         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2740                                                 wbc, FS_DATA_IO, 0);
2741 }
2742
2743 /*
2744  * This function was copied from write_cche_pages from mm/page-writeback.c.
2745  * The major change is making write step of cold data page separately from
2746  * warm/hot data page.
2747  */
2748 static int f2fs_write_cache_pages(struct address_space *mapping,
2749                                         struct writeback_control *wbc,
2750                                         enum iostat_type io_type)
2751 {
2752         int ret = 0;
2753         int done = 0, retry = 0;
2754         struct pagevec pvec;
2755         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2756         struct bio *bio = NULL;
2757         sector_t last_block;
2758 #ifdef CONFIG_F2FS_FS_COMPRESSION
2759         struct inode *inode = mapping->host;
2760         struct compress_ctx cc = {
2761                 .inode = inode,
2762                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2763                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2764                 .cluster_idx = NULL_CLUSTER,
2765                 .rpages = NULL,
2766                 .nr_rpages = 0,
2767                 .cpages = NULL,
2768                 .rbuf = NULL,
2769                 .cbuf = NULL,
2770                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2771                 .private = NULL,
2772         };
2773 #endif
2774         int nr_pages;
2775         pgoff_t uninitialized_var(writeback_index);
2776         pgoff_t index;
2777         pgoff_t end;            /* Inclusive */
2778         pgoff_t done_index;
2779         int cycled;
2780         int range_whole = 0;
2781         xa_mark_t tag;
2782         int nwritten = 0;
2783         int submitted = 0;
2784         int i;
2785
2786         pagevec_init(&pvec);
2787
2788         if (get_dirty_pages(mapping->host) <=
2789                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2790                 set_inode_flag(mapping->host, FI_HOT_DATA);
2791         else
2792                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2793
2794         if (wbc->range_cyclic) {
2795                 writeback_index = mapping->writeback_index; /* prev offset */
2796                 index = writeback_index;
2797                 if (index == 0)
2798                         cycled = 1;
2799                 else
2800                         cycled = 0;
2801                 end = -1;
2802         } else {
2803                 index = wbc->range_start >> PAGE_SHIFT;
2804                 end = wbc->range_end >> PAGE_SHIFT;
2805                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2806                         range_whole = 1;
2807                 cycled = 1; /* ignore range_cyclic tests */
2808         }
2809         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2810                 tag = PAGECACHE_TAG_TOWRITE;
2811         else
2812                 tag = PAGECACHE_TAG_DIRTY;
2813 retry:
2814         retry = 0;
2815         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2816                 tag_pages_for_writeback(mapping, index, end);
2817         done_index = index;
2818         while (!done && !retry && (index <= end)) {
2819                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2820                                 tag);
2821                 if (nr_pages == 0)
2822                         break;
2823
2824                 for (i = 0; i < nr_pages; i++) {
2825                         struct page *page = pvec.pages[i];
2826                         bool need_readd;
2827 readd:
2828                         need_readd = false;
2829 #ifdef CONFIG_F2FS_FS_COMPRESSION
2830                         if (f2fs_compressed_file(inode)) {
2831                                 ret = f2fs_init_compress_ctx(&cc);
2832                                 if (ret) {
2833                                         done = 1;
2834                                         break;
2835                                 }
2836
2837                                 if (!f2fs_cluster_can_merge_page(&cc,
2838                                                                 page->index)) {
2839                                         ret = f2fs_write_multi_pages(&cc,
2840                                                 &submitted, wbc, io_type);
2841                                         if (!ret)
2842                                                 need_readd = true;
2843                                         goto result;
2844                                 }
2845
2846                                 if (unlikely(f2fs_cp_error(sbi)))
2847                                         goto lock_page;
2848
2849                                 if (f2fs_cluster_is_empty(&cc)) {
2850                                         void *fsdata = NULL;
2851                                         struct page *pagep;
2852                                         int ret2;
2853
2854                                         ret2 = f2fs_prepare_compress_overwrite(
2855                                                         inode, &pagep,
2856                                                         page->index, &fsdata);
2857                                         if (ret2 < 0) {
2858                                                 ret = ret2;
2859                                                 done = 1;
2860                                                 break;
2861                                         } else if (ret2 &&
2862                                                 !f2fs_compress_write_end(inode,
2863                                                                 fsdata, page->index,
2864                                                                 1)) {
2865                                                 retry = 1;
2866                                                 break;
2867                                         }
2868                                 } else {
2869                                         goto lock_page;
2870                                 }
2871                         }
2872 #endif
2873                         /* give a priority to WB_SYNC threads */
2874                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2875                                         wbc->sync_mode == WB_SYNC_NONE) {
2876                                 done = 1;
2877                                 break;
2878                         }
2879 #ifdef CONFIG_F2FS_FS_COMPRESSION
2880 lock_page:
2881 #endif
2882                         done_index = page->index;
2883 retry_write:
2884                         lock_page(page);
2885
2886                         if (unlikely(page->mapping != mapping)) {
2887 continue_unlock:
2888                                 unlock_page(page);
2889                                 continue;
2890                         }
2891
2892                         if (!PageDirty(page)) {
2893                                 /* someone wrote it for us */
2894                                 goto continue_unlock;
2895                         }
2896
2897                         if (PageWriteback(page)) {
2898                                 if (wbc->sync_mode != WB_SYNC_NONE)
2899                                         f2fs_wait_on_page_writeback(page,
2900                                                         DATA, true, true);
2901                                 else
2902                                         goto continue_unlock;
2903                         }
2904
2905                         if (!clear_page_dirty_for_io(page))
2906                                 goto continue_unlock;
2907
2908 #ifdef CONFIG_F2FS_FS_COMPRESSION
2909                         if (f2fs_compressed_file(inode)) {
2910                                 get_page(page);
2911                                 f2fs_compress_ctx_add_page(&cc, page);
2912                                 continue;
2913                         }
2914 #endif
2915                         ret = f2fs_write_single_data_page(page, &submitted,
2916                                         &bio, &last_block, wbc, io_type, 0);
2917                         if (ret == AOP_WRITEPAGE_ACTIVATE)
2918                                 unlock_page(page);
2919 #ifdef CONFIG_F2FS_FS_COMPRESSION
2920 result:
2921 #endif
2922                         nwritten += submitted;
2923                         wbc->nr_to_write -= submitted;
2924
2925                         if (unlikely(ret)) {
2926                                 /*
2927                                  * keep nr_to_write, since vfs uses this to
2928                                  * get # of written pages.
2929                                  */
2930                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2931                                         ret = 0;
2932                                         goto next;
2933                                 } else if (ret == -EAGAIN) {
2934                                         ret = 0;
2935                                         if (wbc->sync_mode == WB_SYNC_ALL) {
2936                                                 cond_resched();
2937                                                 congestion_wait(BLK_RW_ASYNC,
2938                                                         DEFAULT_IO_TIMEOUT);
2939                                                 goto retry_write;
2940                                         }
2941                                         goto next;
2942                                 }
2943                                 done_index = page->index + 1;
2944                                 done = 1;
2945                                 break;
2946                         }
2947
2948                         if (wbc->nr_to_write <= 0 &&
2949                                         wbc->sync_mode == WB_SYNC_NONE) {
2950                                 done = 1;
2951                                 break;
2952                         }
2953 next:
2954                         if (need_readd)
2955                                 goto readd;
2956                 }
2957                 pagevec_release(&pvec);
2958                 cond_resched();
2959         }
2960 #ifdef CONFIG_F2FS_FS_COMPRESSION
2961         /* flush remained pages in compress cluster */
2962         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
2963                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
2964                 nwritten += submitted;
2965                 wbc->nr_to_write -= submitted;
2966                 if (ret) {
2967                         done = 1;
2968                         retry = 0;
2969                 }
2970         }
2971 #endif
2972         if ((!cycled && !done) || retry) {
2973                 cycled = 1;
2974                 index = 0;
2975                 end = writeback_index - 1;
2976                 goto retry;
2977         }
2978         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2979                 mapping->writeback_index = done_index;
2980
2981         if (nwritten)
2982                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2983                                                                 NULL, 0, DATA);
2984         /* submit cached bio of IPU write */
2985         if (bio)
2986                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
2987
2988         return ret;
2989 }
2990
2991 static inline bool __should_serialize_io(struct inode *inode,
2992                                         struct writeback_control *wbc)
2993 {
2994         /* to avoid deadlock in path of data flush */
2995         if (F2FS_I(inode)->cp_task)
2996                 return false;
2997
2998         if (!S_ISREG(inode->i_mode))
2999                 return false;
3000         if (IS_NOQUOTA(inode))
3001                 return false;
3002
3003         if (f2fs_compressed_file(inode))
3004                 return true;
3005         if (wbc->sync_mode != WB_SYNC_ALL)
3006                 return true;
3007         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3008                 return true;
3009         return false;
3010 }
3011
3012 static int __f2fs_write_data_pages(struct address_space *mapping,
3013                                                 struct writeback_control *wbc,
3014                                                 enum iostat_type io_type)
3015 {
3016         struct inode *inode = mapping->host;
3017         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3018         struct blk_plug plug;
3019         int ret;
3020         bool locked = false;
3021
3022         /* deal with chardevs and other special file */
3023         if (!mapping->a_ops->writepage)
3024                 return 0;
3025
3026         /* skip writing if there is no dirty page in this inode */
3027         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3028                 return 0;
3029
3030         /* during POR, we don't need to trigger writepage at all. */
3031         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3032                 goto skip_write;
3033
3034         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3035                         wbc->sync_mode == WB_SYNC_NONE &&
3036                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3037                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3038                 goto skip_write;
3039
3040         /* skip writing during file defragment */
3041         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3042                 goto skip_write;
3043
3044         trace_f2fs_writepages(mapping->host, wbc, DATA);
3045
3046         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3047         if (wbc->sync_mode == WB_SYNC_ALL)
3048                 atomic_inc(&sbi->wb_sync_req[DATA]);
3049         else if (atomic_read(&sbi->wb_sync_req[DATA]))
3050                 goto skip_write;
3051
3052         if (__should_serialize_io(inode, wbc)) {
3053                 mutex_lock(&sbi->writepages);
3054                 locked = true;
3055         }
3056
3057         blk_start_plug(&plug);
3058         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3059         blk_finish_plug(&plug);
3060
3061         if (locked)
3062                 mutex_unlock(&sbi->writepages);
3063
3064         if (wbc->sync_mode == WB_SYNC_ALL)
3065                 atomic_dec(&sbi->wb_sync_req[DATA]);
3066         /*
3067          * if some pages were truncated, we cannot guarantee its mapping->host
3068          * to detect pending bios.
3069          */
3070
3071         f2fs_remove_dirty_inode(inode);
3072         return ret;
3073
3074 skip_write:
3075         wbc->pages_skipped += get_dirty_pages(inode);
3076         trace_f2fs_writepages(mapping->host, wbc, DATA);
3077         return 0;
3078 }
3079
3080 static int f2fs_write_data_pages(struct address_space *mapping,
3081                             struct writeback_control *wbc)
3082 {
3083         struct inode *inode = mapping->host;
3084
3085         return __f2fs_write_data_pages(mapping, wbc,
3086                         F2FS_I(inode)->cp_task == current ?
3087                         FS_CP_DATA_IO : FS_DATA_IO);
3088 }
3089
3090 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3091 {
3092         struct inode *inode = mapping->host;
3093         loff_t i_size = i_size_read(inode);
3094
3095         if (IS_NOQUOTA(inode))
3096                 return;
3097
3098         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3099         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3100                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3101                 down_write(&F2FS_I(inode)->i_mmap_sem);
3102
3103                 truncate_pagecache(inode, i_size);
3104                 f2fs_truncate_blocks(inode, i_size, true);
3105
3106                 up_write(&F2FS_I(inode)->i_mmap_sem);
3107                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3108         }
3109 }
3110
3111 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3112                         struct page *page, loff_t pos, unsigned len,
3113                         block_t *blk_addr, bool *node_changed)
3114 {
3115         struct inode *inode = page->mapping->host;
3116         pgoff_t index = page->index;
3117         struct dnode_of_data dn;
3118         struct page *ipage;
3119         bool locked = false;
3120         struct extent_info ei = {0,0,0};
3121         int err = 0;
3122         int flag;
3123
3124         /*
3125          * we already allocated all the blocks, so we don't need to get
3126          * the block addresses when there is no need to fill the page.
3127          */
3128         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3129             !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3130             !f2fs_verity_in_progress(inode))
3131                 return 0;
3132
3133         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3134         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3135                 flag = F2FS_GET_BLOCK_DEFAULT;
3136         else
3137                 flag = F2FS_GET_BLOCK_PRE_AIO;
3138
3139         if (f2fs_has_inline_data(inode) ||
3140                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3141                 __do_map_lock(sbi, flag, true);
3142                 locked = true;
3143         }
3144
3145 restart:
3146         /* check inline_data */
3147         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3148         if (IS_ERR(ipage)) {
3149                 err = PTR_ERR(ipage);
3150                 goto unlock_out;
3151         }
3152
3153         set_new_dnode(&dn, inode, ipage, ipage, 0);
3154
3155         if (f2fs_has_inline_data(inode)) {
3156                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3157                         f2fs_do_read_inline_data(page, ipage);
3158                         set_inode_flag(inode, FI_DATA_EXIST);
3159                         if (inode->i_nlink)
3160                                 set_inline_node(ipage);
3161                 } else {
3162                         err = f2fs_convert_inline_page(&dn, page);
3163                         if (err)
3164                                 goto out;
3165                         if (dn.data_blkaddr == NULL_ADDR)
3166                                 err = f2fs_get_block(&dn, index);
3167                 }
3168         } else if (locked) {
3169                 err = f2fs_get_block(&dn, index);
3170         } else {
3171                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3172                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3173                 } else {
3174                         /* hole case */
3175                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3176                         if (err || dn.data_blkaddr == NULL_ADDR) {
3177                                 f2fs_put_dnode(&dn);
3178                                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3179                                                                 true);
3180                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3181                                 locked = true;
3182                                 goto restart;
3183                         }
3184                 }
3185         }
3186
3187         /* convert_inline_page can make node_changed */
3188         *blk_addr = dn.data_blkaddr;
3189         *node_changed = dn.node_changed;
3190 out:
3191         f2fs_put_dnode(&dn);
3192 unlock_out:
3193         if (locked)
3194                 __do_map_lock(sbi, flag, false);
3195         return err;
3196 }
3197
3198 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3199                 loff_t pos, unsigned len, unsigned flags,
3200                 struct page **pagep, void **fsdata)
3201 {
3202         struct inode *inode = mapping->host;
3203         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3204         struct page *page = NULL;
3205         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3206         bool need_balance = false, drop_atomic = false;
3207         block_t blkaddr = NULL_ADDR;
3208         int err = 0;
3209
3210         trace_f2fs_write_begin(inode, pos, len, flags);
3211
3212         if (!f2fs_is_checkpoint_ready(sbi)) {
3213                 err = -ENOSPC;
3214                 goto fail;
3215         }
3216
3217         if ((f2fs_is_atomic_file(inode) &&
3218                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3219                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3220                 err = -ENOMEM;
3221                 drop_atomic = true;
3222                 goto fail;
3223         }
3224
3225         /*
3226          * We should check this at this moment to avoid deadlock on inode page
3227          * and #0 page. The locking rule for inline_data conversion should be:
3228          * lock_page(page #0) -> lock_page(inode_page)
3229          */
3230         if (index != 0) {
3231                 err = f2fs_convert_inline_inode(inode);
3232                 if (err)
3233                         goto fail;
3234         }
3235
3236 #ifdef CONFIG_F2FS_FS_COMPRESSION
3237         if (f2fs_compressed_file(inode)) {
3238                 int ret;
3239
3240                 *fsdata = NULL;
3241
3242                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3243                                                         index, fsdata);
3244                 if (ret < 0) {
3245                         err = ret;
3246                         goto fail;
3247                 } else if (ret) {
3248                         return 0;
3249                 }
3250         }
3251 #endif
3252
3253 repeat:
3254         /*
3255          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3256          * wait_for_stable_page. Will wait that below with our IO control.
3257          */
3258         page = f2fs_pagecache_get_page(mapping, index,
3259                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3260         if (!page) {
3261                 err = -ENOMEM;
3262                 goto fail;
3263         }
3264
3265         /* TODO: cluster can be compressed due to race with .writepage */
3266
3267         *pagep = page;
3268
3269         err = prepare_write_begin(sbi, page, pos, len,
3270                                         &blkaddr, &need_balance);
3271         if (err)
3272                 goto fail;
3273
3274         if (need_balance && !IS_NOQUOTA(inode) &&
3275                         has_not_enough_free_secs(sbi, 0, 0)) {
3276                 unlock_page(page);
3277                 f2fs_balance_fs(sbi, true);
3278                 lock_page(page);
3279                 if (page->mapping != mapping) {
3280                         /* The page got truncated from under us */
3281                         f2fs_put_page(page, 1);
3282                         goto repeat;
3283                 }
3284         }
3285
3286         f2fs_wait_on_page_writeback(page, DATA, false, true);
3287
3288         if (len == PAGE_SIZE || PageUptodate(page))
3289                 return 0;
3290
3291         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3292             !f2fs_verity_in_progress(inode)) {
3293                 zero_user_segment(page, len, PAGE_SIZE);
3294                 return 0;
3295         }
3296
3297         if (blkaddr == NEW_ADDR) {
3298                 zero_user_segment(page, 0, PAGE_SIZE);
3299                 SetPageUptodate(page);
3300         } else {
3301                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3302                                 DATA_GENERIC_ENHANCE_READ)) {
3303                         err = -EFSCORRUPTED;
3304                         goto fail;
3305                 }
3306                 err = f2fs_submit_page_read(inode, page, blkaddr, true);
3307                 if (err)
3308                         goto fail;
3309
3310                 lock_page(page);
3311                 if (unlikely(page->mapping != mapping)) {
3312                         f2fs_put_page(page, 1);
3313                         goto repeat;
3314                 }
3315                 if (unlikely(!PageUptodate(page))) {
3316                         err = -EIO;
3317                         goto fail;
3318                 }
3319         }
3320         return 0;
3321
3322 fail:
3323         f2fs_put_page(page, 1);
3324         f2fs_write_failed(mapping, pos + len);
3325         if (drop_atomic)
3326                 f2fs_drop_inmem_pages_all(sbi, false);
3327         return err;
3328 }
3329
3330 static int f2fs_write_end(struct file *file,
3331                         struct address_space *mapping,
3332                         loff_t pos, unsigned len, unsigned copied,
3333                         struct page *page, void *fsdata)
3334 {
3335         struct inode *inode = page->mapping->host;
3336
3337         trace_f2fs_write_end(inode, pos, len, copied);
3338
3339         /*
3340          * This should be come from len == PAGE_SIZE, and we expect copied
3341          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3342          * let generic_perform_write() try to copy data again through copied=0.
3343          */
3344         if (!PageUptodate(page)) {
3345                 if (unlikely(copied != len))
3346                         copied = 0;
3347                 else
3348                         SetPageUptodate(page);
3349         }
3350
3351 #ifdef CONFIG_F2FS_FS_COMPRESSION
3352         /* overwrite compressed file */
3353         if (f2fs_compressed_file(inode) && fsdata) {
3354                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3355                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3356                 return copied;
3357         }
3358 #endif
3359
3360         if (!copied)
3361                 goto unlock_out;
3362
3363         set_page_dirty(page);
3364
3365         if (pos + copied > i_size_read(inode) &&
3366             !f2fs_verity_in_progress(inode))
3367                 f2fs_i_size_write(inode, pos + copied);
3368 unlock_out:
3369         f2fs_put_page(page, 1);
3370         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3371         return copied;
3372 }
3373
3374 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3375                            loff_t offset)
3376 {
3377         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3378         unsigned blkbits = i_blkbits;
3379         unsigned blocksize_mask = (1 << blkbits) - 1;
3380         unsigned long align = offset | iov_iter_alignment(iter);
3381         struct block_device *bdev = inode->i_sb->s_bdev;
3382
3383         if (align & blocksize_mask) {
3384                 if (bdev)
3385                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
3386                 blocksize_mask = (1 << blkbits) - 1;
3387                 if (align & blocksize_mask)
3388                         return -EINVAL;
3389                 return 1;
3390         }
3391         return 0;
3392 }
3393
3394 static void f2fs_dio_end_io(struct bio *bio)
3395 {
3396         struct f2fs_private_dio *dio = bio->bi_private;
3397
3398         dec_page_count(F2FS_I_SB(dio->inode),
3399                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3400
3401         bio->bi_private = dio->orig_private;
3402         bio->bi_end_io = dio->orig_end_io;
3403
3404         kvfree(dio);
3405
3406         bio_endio(bio);
3407 }
3408
3409 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3410                                                         loff_t file_offset)
3411 {
3412         struct f2fs_private_dio *dio;
3413         bool write = (bio_op(bio) == REQ_OP_WRITE);
3414
3415         dio = f2fs_kzalloc(F2FS_I_SB(inode),
3416                         sizeof(struct f2fs_private_dio), GFP_NOFS);
3417         if (!dio)
3418                 goto out;
3419
3420         dio->inode = inode;
3421         dio->orig_end_io = bio->bi_end_io;
3422         dio->orig_private = bio->bi_private;
3423         dio->write = write;
3424
3425         bio->bi_end_io = f2fs_dio_end_io;
3426         bio->bi_private = dio;
3427
3428         inc_page_count(F2FS_I_SB(inode),
3429                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3430
3431         submit_bio(bio);
3432         return;
3433 out:
3434         bio->bi_status = BLK_STS_IOERR;
3435         bio_endio(bio);
3436 }
3437
3438 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3439 {
3440         struct address_space *mapping = iocb->ki_filp->f_mapping;
3441         struct inode *inode = mapping->host;
3442         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3443         struct f2fs_inode_info *fi = F2FS_I(inode);
3444         size_t count = iov_iter_count(iter);
3445         loff_t offset = iocb->ki_pos;
3446         int rw = iov_iter_rw(iter);
3447         int err;
3448         enum rw_hint hint = iocb->ki_hint;
3449         int whint_mode = F2FS_OPTION(sbi).whint_mode;
3450         bool do_opu;
3451
3452         err = check_direct_IO(inode, iter, offset);
3453         if (err)
3454                 return err < 0 ? err : 0;
3455
3456         if (f2fs_force_buffered_io(inode, iocb, iter))
3457                 return 0;
3458
3459         do_opu = allow_outplace_dio(inode, iocb, iter);
3460
3461         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3462
3463         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3464                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3465
3466         if (iocb->ki_flags & IOCB_NOWAIT) {
3467                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3468                         iocb->ki_hint = hint;
3469                         err = -EAGAIN;
3470                         goto out;
3471                 }
3472                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3473                         up_read(&fi->i_gc_rwsem[rw]);
3474                         iocb->ki_hint = hint;
3475                         err = -EAGAIN;
3476                         goto out;
3477                 }
3478         } else {
3479                 down_read(&fi->i_gc_rwsem[rw]);
3480                 if (do_opu)
3481                         down_read(&fi->i_gc_rwsem[READ]);
3482         }
3483
3484         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3485                         iter, rw == WRITE ? get_data_block_dio_write :
3486                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
3487                         rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3488                         DIO_SKIP_HOLES);
3489
3490         if (do_opu)
3491                 up_read(&fi->i_gc_rwsem[READ]);
3492
3493         up_read(&fi->i_gc_rwsem[rw]);
3494
3495         if (rw == WRITE) {
3496                 if (whint_mode == WHINT_MODE_OFF)
3497                         iocb->ki_hint = hint;
3498                 if (err > 0) {
3499                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3500                                                                         err);
3501                         if (!do_opu)
3502                                 set_inode_flag(inode, FI_UPDATE_WRITE);
3503                 } else if (err < 0) {
3504                         f2fs_write_failed(mapping, offset + count);
3505                 }
3506         }
3507
3508 out:
3509         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3510
3511         return err;
3512 }
3513
3514 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3515                                                         unsigned int length)
3516 {
3517         struct inode *inode = page->mapping->host;
3518         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3519
3520         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3521                 (offset % PAGE_SIZE || length != PAGE_SIZE))
3522                 return;
3523
3524         if (PageDirty(page)) {
3525                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3526                         dec_page_count(sbi, F2FS_DIRTY_META);
3527                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3528                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3529                 } else {
3530                         inode_dec_dirty_pages(inode);
3531                         f2fs_remove_dirty_inode(inode);
3532                 }
3533         }
3534
3535         clear_cold_data(page);
3536
3537         if (IS_ATOMIC_WRITTEN_PAGE(page))
3538                 return f2fs_drop_inmem_page(inode, page);
3539
3540         f2fs_clear_page_private(page);
3541 }
3542
3543 int f2fs_release_page(struct page *page, gfp_t wait)
3544 {
3545         /* If this is dirty page, keep PagePrivate */
3546         if (PageDirty(page))
3547                 return 0;
3548
3549         /* This is atomic written page, keep Private */
3550         if (IS_ATOMIC_WRITTEN_PAGE(page))
3551                 return 0;
3552
3553         clear_cold_data(page);
3554         f2fs_clear_page_private(page);
3555         return 1;
3556 }
3557
3558 static int f2fs_set_data_page_dirty(struct page *page)
3559 {
3560         struct inode *inode = page_file_mapping(page)->host;
3561
3562         trace_f2fs_set_page_dirty(page, DATA);
3563
3564         if (!PageUptodate(page))
3565                 SetPageUptodate(page);
3566         if (PageSwapCache(page))
3567                 return __set_page_dirty_nobuffers(page);
3568
3569         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3570                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3571                         f2fs_register_inmem_page(inode, page);
3572                         return 1;
3573                 }
3574                 /*
3575                  * Previously, this page has been registered, we just
3576                  * return here.
3577                  */
3578                 return 0;
3579         }
3580
3581         if (!PageDirty(page)) {
3582                 __set_page_dirty_nobuffers(page);
3583                 f2fs_update_dirty_page(inode, page);
3584                 return 1;
3585         }
3586         return 0;
3587 }
3588
3589 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3590 {
3591         struct inode *inode = mapping->host;
3592
3593         if (f2fs_has_inline_data(inode))
3594                 return 0;
3595
3596         /* make sure allocating whole blocks */
3597         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3598                 filemap_write_and_wait(mapping);
3599
3600         return generic_block_bmap(mapping, block, get_data_block_bmap);
3601 }
3602
3603 #ifdef CONFIG_MIGRATION
3604 #include <linux/migrate.h>
3605
3606 int f2fs_migrate_page(struct address_space *mapping,
3607                 struct page *newpage, struct page *page, enum migrate_mode mode)
3608 {
3609         int rc, extra_count;
3610         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3611         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3612
3613         BUG_ON(PageWriteback(page));
3614
3615         /* migrating an atomic written page is safe with the inmem_lock hold */
3616         if (atomic_written) {
3617                 if (mode != MIGRATE_SYNC)
3618                         return -EBUSY;
3619                 if (!mutex_trylock(&fi->inmem_lock))
3620                         return -EAGAIN;
3621         }
3622
3623         /* one extra reference was held for atomic_write page */
3624         extra_count = atomic_written ? 1 : 0;
3625         rc = migrate_page_move_mapping(mapping, newpage,
3626                                 page, extra_count);
3627         if (rc != MIGRATEPAGE_SUCCESS) {
3628                 if (atomic_written)
3629                         mutex_unlock(&fi->inmem_lock);
3630                 return rc;
3631         }
3632
3633         if (atomic_written) {
3634                 struct inmem_pages *cur;
3635                 list_for_each_entry(cur, &fi->inmem_pages, list)
3636                         if (cur->page == page) {
3637                                 cur->page = newpage;
3638                                 break;
3639                         }
3640                 mutex_unlock(&fi->inmem_lock);
3641                 put_page(page);
3642                 get_page(newpage);
3643         }
3644
3645         if (PagePrivate(page)) {
3646                 f2fs_set_page_private(newpage, page_private(page));
3647                 f2fs_clear_page_private(page);
3648         }
3649
3650         if (mode != MIGRATE_SYNC_NO_COPY)
3651                 migrate_page_copy(newpage, page);
3652         else
3653                 migrate_page_states(newpage, page);
3654
3655         return MIGRATEPAGE_SUCCESS;
3656 }
3657 #endif
3658
3659 #ifdef CONFIG_SWAP
3660 /* Copied from generic_swapfile_activate() to check any holes */
3661 static int check_swap_activate(struct swap_info_struct *sis,
3662                                 struct file *swap_file, sector_t *span)
3663 {
3664         struct address_space *mapping = swap_file->f_mapping;
3665         struct inode *inode = mapping->host;
3666         unsigned blocks_per_page;
3667         unsigned long page_no;
3668         unsigned blkbits;
3669         sector_t probe_block;
3670         sector_t last_block;
3671         sector_t lowest_block = -1;
3672         sector_t highest_block = 0;
3673         int nr_extents = 0;
3674         int ret;
3675
3676         blkbits = inode->i_blkbits;
3677         blocks_per_page = PAGE_SIZE >> blkbits;
3678
3679         /*
3680          * Map all the blocks into the extent list.  This code doesn't try
3681          * to be very smart.
3682          */
3683         probe_block = 0;
3684         page_no = 0;
3685         last_block = i_size_read(inode) >> blkbits;
3686         while ((probe_block + blocks_per_page) <= last_block &&
3687                         page_no < sis->max) {
3688                 unsigned block_in_page;
3689                 sector_t first_block;
3690                 sector_t block = 0;
3691                 int      err = 0;
3692
3693                 cond_resched();
3694
3695                 block = probe_block;
3696                 err = bmap(inode, &block);
3697                 if (err || !block)
3698                         goto bad_bmap;
3699                 first_block = block;
3700
3701                 /*
3702                  * It must be PAGE_SIZE aligned on-disk
3703                  */
3704                 if (first_block & (blocks_per_page - 1)) {
3705                         probe_block++;
3706                         goto reprobe;
3707                 }
3708
3709                 for (block_in_page = 1; block_in_page < blocks_per_page;
3710                                         block_in_page++) {
3711
3712                         block = probe_block + block_in_page;
3713                         err = bmap(inode, &block);
3714
3715                         if (err || !block)
3716                                 goto bad_bmap;
3717
3718                         if (block != first_block + block_in_page) {
3719                                 /* Discontiguity */
3720                                 probe_block++;
3721                                 goto reprobe;
3722                         }
3723                 }
3724
3725                 first_block >>= (PAGE_SHIFT - blkbits);
3726                 if (page_no) {  /* exclude the header page */
3727                         if (first_block < lowest_block)
3728                                 lowest_block = first_block;
3729                         if (first_block > highest_block)
3730                                 highest_block = first_block;
3731                 }
3732
3733                 /*
3734                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3735                  */
3736                 ret = add_swap_extent(sis, page_no, 1, first_block);
3737                 if (ret < 0)
3738                         goto out;
3739                 nr_extents += ret;
3740                 page_no++;
3741                 probe_block += blocks_per_page;
3742 reprobe:
3743                 continue;
3744         }
3745         ret = nr_extents;
3746         *span = 1 + highest_block - lowest_block;
3747         if (page_no == 0)
3748                 page_no = 1;    /* force Empty message */
3749         sis->max = page_no;
3750         sis->pages = page_no - 1;
3751         sis->highest_bit = page_no - 1;
3752 out:
3753         return ret;
3754 bad_bmap:
3755         pr_err("swapon: swapfile has holes\n");
3756         return -EINVAL;
3757 }
3758
3759 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3760                                 sector_t *span)
3761 {
3762         struct inode *inode = file_inode(file);
3763         int ret;
3764
3765         if (!S_ISREG(inode->i_mode))
3766                 return -EINVAL;
3767
3768         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3769                 return -EROFS;
3770
3771         ret = f2fs_convert_inline_inode(inode);
3772         if (ret)
3773                 return ret;
3774
3775         if (f2fs_disable_compressed_file(inode))
3776                 return -EINVAL;
3777
3778         ret = check_swap_activate(sis, file, span);
3779         if (ret < 0)
3780                 return ret;
3781
3782         set_inode_flag(inode, FI_PIN_FILE);
3783         f2fs_precache_extents(inode);
3784         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3785         return ret;
3786 }
3787
3788 static void f2fs_swap_deactivate(struct file *file)
3789 {
3790         struct inode *inode = file_inode(file);
3791
3792         clear_inode_flag(inode, FI_PIN_FILE);
3793 }
3794 #else
3795 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3796                                 sector_t *span)
3797 {
3798         return -EOPNOTSUPP;
3799 }
3800
3801 static void f2fs_swap_deactivate(struct file *file)
3802 {
3803 }
3804 #endif
3805
3806 const struct address_space_operations f2fs_dblock_aops = {
3807         .readpage       = f2fs_read_data_page,
3808         .readpages      = f2fs_read_data_pages,
3809         .writepage      = f2fs_write_data_page,
3810         .writepages     = f2fs_write_data_pages,
3811         .write_begin    = f2fs_write_begin,
3812         .write_end      = f2fs_write_end,
3813         .set_page_dirty = f2fs_set_data_page_dirty,
3814         .invalidatepage = f2fs_invalidate_page,
3815         .releasepage    = f2fs_release_page,
3816         .direct_IO      = f2fs_direct_IO,
3817         .bmap           = f2fs_bmap,
3818         .swap_activate  = f2fs_swap_activate,
3819         .swap_deactivate = f2fs_swap_deactivate,
3820 #ifdef CONFIG_MIGRATION
3821         .migratepage    = f2fs_migrate_page,
3822 #endif
3823 };
3824
3825 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3826 {
3827         struct address_space *mapping = page_mapping(page);
3828         unsigned long flags;
3829
3830         xa_lock_irqsave(&mapping->i_pages, flags);
3831         __xa_clear_mark(&mapping->i_pages, page_index(page),
3832                                                 PAGECACHE_TAG_DIRTY);
3833         xa_unlock_irqrestore(&mapping->i_pages, flags);
3834 }
3835
3836 int __init f2fs_init_post_read_processing(void)
3837 {
3838         bio_post_read_ctx_cache =
3839                 kmem_cache_create("f2fs_bio_post_read_ctx",
3840                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3841         if (!bio_post_read_ctx_cache)
3842                 goto fail;
3843         bio_post_read_ctx_pool =
3844                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3845                                          bio_post_read_ctx_cache);
3846         if (!bio_post_read_ctx_pool)
3847                 goto fail_free_cache;
3848         return 0;
3849
3850 fail_free_cache:
3851         kmem_cache_destroy(bio_post_read_ctx_cache);
3852 fail:
3853         return -ENOMEM;
3854 }
3855
3856 void f2fs_destroy_post_read_processing(void)
3857 {
3858         mempool_destroy(bio_post_read_ctx_pool);
3859         kmem_cache_destroy(bio_post_read_ctx_cache);
3860 }
3861
3862 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
3863 {
3864         if (!f2fs_sb_has_encrypt(sbi) &&
3865                 !f2fs_sb_has_verity(sbi) &&
3866                 !f2fs_sb_has_compression(sbi))
3867                 return 0;
3868
3869         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
3870                                                  WQ_UNBOUND | WQ_HIGHPRI,
3871                                                  num_online_cpus());
3872         if (!sbi->post_read_wq)
3873                 return -ENOMEM;
3874         return 0;
3875 }
3876
3877 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
3878 {
3879         if (sbi->post_read_wq)
3880                 destroy_workqueue(sbi->post_read_wq);
3881 }
3882
3883 int __init f2fs_init_bio_entry_cache(void)
3884 {
3885         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
3886                         sizeof(struct bio_entry));
3887         if (!bio_entry_slab)
3888                 return -ENOMEM;
3889         return 0;
3890 }
3891
3892 void f2fs_destroy_bio_entry_cache(void)
3893 {
3894         kmem_cache_destroy(bio_entry_slab);
3895 }