OSDN Git Service

Merge 4.4.114 into android-4.4
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39
40 static struct kmem_cache *f2fs_inode_cachep;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *fault_name[FAULT_MAX] = {
45         [FAULT_KMALLOC]         = "kmalloc",
46         [FAULT_PAGE_ALLOC]      = "page alloc",
47         [FAULT_PAGE_GET]        = "page get",
48         [FAULT_ALLOC_BIO]       = "alloc bio",
49         [FAULT_ALLOC_NID]       = "alloc nid",
50         [FAULT_ORPHAN]          = "orphan",
51         [FAULT_BLOCK]           = "no more block",
52         [FAULT_DIR_DEPTH]       = "too big dir depth",
53         [FAULT_EVICT_INODE]     = "evict_inode fail",
54         [FAULT_TRUNCATE]        = "truncate fail",
55         [FAULT_IO]              = "IO error",
56         [FAULT_CHECKPOINT]      = "checkpoint error",
57 };
58
59 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
60                                                 unsigned int rate)
61 {
62         struct f2fs_fault_info *ffi = &sbi->fault_info;
63
64         if (rate) {
65                 atomic_set(&ffi->inject_ops, 0);
66                 ffi->inject_rate = rate;
67                 ffi->inject_type = (1 << FAULT_MAX) - 1;
68         } else {
69                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
70         }
71 }
72 #endif
73
74 /* f2fs-wide shrinker description */
75 static struct shrinker f2fs_shrinker_info = {
76         .scan_objects = f2fs_shrink_scan,
77         .count_objects = f2fs_shrink_count,
78         .seeks = DEFAULT_SEEKS,
79 };
80
81 enum {
82         Opt_gc_background,
83         Opt_disable_roll_forward,
84         Opt_norecovery,
85         Opt_discard,
86         Opt_nodiscard,
87         Opt_noheap,
88         Opt_heap,
89         Opt_user_xattr,
90         Opt_nouser_xattr,
91         Opt_acl,
92         Opt_noacl,
93         Opt_active_logs,
94         Opt_disable_ext_identify,
95         Opt_inline_xattr,
96         Opt_noinline_xattr,
97         Opt_inline_xattr_size,
98         Opt_inline_data,
99         Opt_inline_dentry,
100         Opt_noinline_dentry,
101         Opt_flush_merge,
102         Opt_noflush_merge,
103         Opt_nobarrier,
104         Opt_fastboot,
105         Opt_extent_cache,
106         Opt_noextent_cache,
107         Opt_noinline_data,
108         Opt_data_flush,
109         Opt_mode,
110         Opt_io_size_bits,
111         Opt_fault_injection,
112         Opt_lazytime,
113         Opt_nolazytime,
114         Opt_quota,
115         Opt_noquota,
116         Opt_usrquota,
117         Opt_grpquota,
118         Opt_prjquota,
119         Opt_usrjquota,
120         Opt_grpjquota,
121         Opt_prjjquota,
122         Opt_offusrjquota,
123         Opt_offgrpjquota,
124         Opt_offprjjquota,
125         Opt_jqfmt_vfsold,
126         Opt_jqfmt_vfsv0,
127         Opt_jqfmt_vfsv1,
128         Opt_err,
129 };
130
131 static match_table_t f2fs_tokens = {
132         {Opt_gc_background, "background_gc=%s"},
133         {Opt_disable_roll_forward, "disable_roll_forward"},
134         {Opt_norecovery, "norecovery"},
135         {Opt_discard, "discard"},
136         {Opt_nodiscard, "nodiscard"},
137         {Opt_noheap, "no_heap"},
138         {Opt_heap, "heap"},
139         {Opt_user_xattr, "user_xattr"},
140         {Opt_nouser_xattr, "nouser_xattr"},
141         {Opt_acl, "acl"},
142         {Opt_noacl, "noacl"},
143         {Opt_active_logs, "active_logs=%u"},
144         {Opt_disable_ext_identify, "disable_ext_identify"},
145         {Opt_inline_xattr, "inline_xattr"},
146         {Opt_noinline_xattr, "noinline_xattr"},
147         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
148         {Opt_inline_data, "inline_data"},
149         {Opt_inline_dentry, "inline_dentry"},
150         {Opt_noinline_dentry, "noinline_dentry"},
151         {Opt_flush_merge, "flush_merge"},
152         {Opt_noflush_merge, "noflush_merge"},
153         {Opt_nobarrier, "nobarrier"},
154         {Opt_fastboot, "fastboot"},
155         {Opt_extent_cache, "extent_cache"},
156         {Opt_noextent_cache, "noextent_cache"},
157         {Opt_noinline_data, "noinline_data"},
158         {Opt_data_flush, "data_flush"},
159         {Opt_mode, "mode=%s"},
160         {Opt_io_size_bits, "io_bits=%u"},
161         {Opt_fault_injection, "fault_injection=%u"},
162         {Opt_lazytime, "lazytime"},
163         {Opt_nolazytime, "nolazytime"},
164         {Opt_quota, "quota"},
165         {Opt_noquota, "noquota"},
166         {Opt_usrquota, "usrquota"},
167         {Opt_grpquota, "grpquota"},
168         {Opt_prjquota, "prjquota"},
169         {Opt_usrjquota, "usrjquota=%s"},
170         {Opt_grpjquota, "grpjquota=%s"},
171         {Opt_prjjquota, "prjjquota=%s"},
172         {Opt_offusrjquota, "usrjquota="},
173         {Opt_offgrpjquota, "grpjquota="},
174         {Opt_offprjjquota, "prjjquota="},
175         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
176         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
177         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
178         {Opt_err, NULL},
179 };
180
181 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
182 {
183         struct va_format vaf;
184         va_list args;
185
186         va_start(args, fmt);
187         vaf.fmt = fmt;
188         vaf.va = &args;
189         printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
190         va_end(args);
191 }
192
193 static void init_once(void *foo)
194 {
195         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
196
197         inode_init_once(&fi->vfs_inode);
198 }
199
200 #ifdef CONFIG_QUOTA
201 static const char * const quotatypes[] = INITQFNAMES;
202 #define QTYPE2NAME(t) (quotatypes[t])
203 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
204                                                         substring_t *args)
205 {
206         struct f2fs_sb_info *sbi = F2FS_SB(sb);
207         char *qname;
208         int ret = -EINVAL;
209
210         if (sb_any_quota_loaded(sb) && !sbi->s_qf_names[qtype]) {
211                 f2fs_msg(sb, KERN_ERR,
212                         "Cannot change journaled "
213                         "quota options when quota turned on");
214                 return -EINVAL;
215         }
216         if (f2fs_sb_has_quota_ino(sb)) {
217                 f2fs_msg(sb, KERN_INFO,
218                         "QUOTA feature is enabled, so ignore qf_name");
219                 return 0;
220         }
221
222         qname = match_strdup(args);
223         if (!qname) {
224                 f2fs_msg(sb, KERN_ERR,
225                         "Not enough memory for storing quotafile name");
226                 return -EINVAL;
227         }
228         if (sbi->s_qf_names[qtype]) {
229                 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
230                         ret = 0;
231                 else
232                         f2fs_msg(sb, KERN_ERR,
233                                  "%s quota file already specified",
234                                  QTYPE2NAME(qtype));
235                 goto errout;
236         }
237         if (strchr(qname, '/')) {
238                 f2fs_msg(sb, KERN_ERR,
239                         "quotafile must be on filesystem root");
240                 goto errout;
241         }
242         sbi->s_qf_names[qtype] = qname;
243         set_opt(sbi, QUOTA);
244         return 0;
245 errout:
246         kfree(qname);
247         return ret;
248 }
249
250 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
251 {
252         struct f2fs_sb_info *sbi = F2FS_SB(sb);
253
254         if (sb_any_quota_loaded(sb) && sbi->s_qf_names[qtype]) {
255                 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
256                         " when quota turned on");
257                 return -EINVAL;
258         }
259         kfree(sbi->s_qf_names[qtype]);
260         sbi->s_qf_names[qtype] = NULL;
261         return 0;
262 }
263
264 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
265 {
266         /*
267          * We do the test below only for project quotas. 'usrquota' and
268          * 'grpquota' mount options are allowed even without quota feature
269          * to support legacy quotas in quota files.
270          */
271         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
272                 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
273                          "Cannot enable project quota enforcement.");
274                 return -1;
275         }
276         if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA] ||
277                         sbi->s_qf_names[PRJQUOTA]) {
278                 if (test_opt(sbi, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
279                         clear_opt(sbi, USRQUOTA);
280
281                 if (test_opt(sbi, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
282                         clear_opt(sbi, GRPQUOTA);
283
284                 if (test_opt(sbi, PRJQUOTA) && sbi->s_qf_names[PRJQUOTA])
285                         clear_opt(sbi, PRJQUOTA);
286
287                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
288                                 test_opt(sbi, PRJQUOTA)) {
289                         f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
290                                         "format mixing");
291                         return -1;
292                 }
293
294                 if (!sbi->s_jquota_fmt) {
295                         f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
296                                         "not specified");
297                         return -1;
298                 }
299         }
300
301         if (f2fs_sb_has_quota_ino(sbi->sb) && sbi->s_jquota_fmt) {
302                 f2fs_msg(sbi->sb, KERN_INFO,
303                         "QUOTA feature is enabled, so ignore jquota_fmt");
304                 sbi->s_jquota_fmt = 0;
305         }
306         if (f2fs_sb_has_quota_ino(sbi->sb) && sb_rdonly(sbi->sb)) {
307                 f2fs_msg(sbi->sb, KERN_INFO,
308                          "Filesystem with quota feature cannot be mounted RDWR "
309                          "without CONFIG_QUOTA");
310                 return -1;
311         }
312         return 0;
313 }
314 #endif
315
316 static int parse_options(struct super_block *sb, char *options)
317 {
318         struct f2fs_sb_info *sbi = F2FS_SB(sb);
319         struct request_queue *q;
320         substring_t args[MAX_OPT_ARGS];
321         char *p, *name;
322         int arg = 0;
323 #ifdef CONFIG_QUOTA
324         int ret;
325 #endif
326
327         if (!options)
328                 return 0;
329
330         while ((p = strsep(&options, ",")) != NULL) {
331                 int token;
332                 if (!*p)
333                         continue;
334                 /*
335                  * Initialize args struct so we know whether arg was
336                  * found; some options take optional arguments.
337                  */
338                 args[0].to = args[0].from = NULL;
339                 token = match_token(p, f2fs_tokens, args);
340
341                 switch (token) {
342                 case Opt_gc_background:
343                         name = match_strdup(&args[0]);
344
345                         if (!name)
346                                 return -ENOMEM;
347                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
348                                 set_opt(sbi, BG_GC);
349                                 clear_opt(sbi, FORCE_FG_GC);
350                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
351                                 clear_opt(sbi, BG_GC);
352                                 clear_opt(sbi, FORCE_FG_GC);
353                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
354                                 set_opt(sbi, BG_GC);
355                                 set_opt(sbi, FORCE_FG_GC);
356                         } else {
357                                 kfree(name);
358                                 return -EINVAL;
359                         }
360                         kfree(name);
361                         break;
362                 case Opt_disable_roll_forward:
363                         set_opt(sbi, DISABLE_ROLL_FORWARD);
364                         break;
365                 case Opt_norecovery:
366                         /* this option mounts f2fs with ro */
367                         set_opt(sbi, DISABLE_ROLL_FORWARD);
368                         if (!f2fs_readonly(sb))
369                                 return -EINVAL;
370                         break;
371                 case Opt_discard:
372                         q = bdev_get_queue(sb->s_bdev);
373                         if (blk_queue_discard(q)) {
374                                 set_opt(sbi, DISCARD);
375                         } else if (!f2fs_sb_mounted_blkzoned(sb)) {
376                                 f2fs_msg(sb, KERN_WARNING,
377                                         "mounting with \"discard\" option, but "
378                                         "the device does not support discard");
379                         }
380                         break;
381                 case Opt_nodiscard:
382                         if (f2fs_sb_mounted_blkzoned(sb)) {
383                                 f2fs_msg(sb, KERN_WARNING,
384                                         "discard is required for zoned block devices");
385                                 return -EINVAL;
386                         }
387                         clear_opt(sbi, DISCARD);
388                         break;
389                 case Opt_noheap:
390                         set_opt(sbi, NOHEAP);
391                         break;
392                 case Opt_heap:
393                         clear_opt(sbi, NOHEAP);
394                         break;
395 #ifdef CONFIG_F2FS_FS_XATTR
396                 case Opt_user_xattr:
397                         set_opt(sbi, XATTR_USER);
398                         break;
399                 case Opt_nouser_xattr:
400                         clear_opt(sbi, XATTR_USER);
401                         break;
402                 case Opt_inline_xattr:
403                         set_opt(sbi, INLINE_XATTR);
404                         break;
405                 case Opt_noinline_xattr:
406                         clear_opt(sbi, INLINE_XATTR);
407                         break;
408                 case Opt_inline_xattr_size:
409                         if (args->from && match_int(args, &arg))
410                                 return -EINVAL;
411                         set_opt(sbi, INLINE_XATTR_SIZE);
412                         sbi->inline_xattr_size = arg;
413                         break;
414 #else
415                 case Opt_user_xattr:
416                         f2fs_msg(sb, KERN_INFO,
417                                 "user_xattr options not supported");
418                         break;
419                 case Opt_nouser_xattr:
420                         f2fs_msg(sb, KERN_INFO,
421                                 "nouser_xattr options not supported");
422                         break;
423                 case Opt_inline_xattr:
424                         f2fs_msg(sb, KERN_INFO,
425                                 "inline_xattr options not supported");
426                         break;
427                 case Opt_noinline_xattr:
428                         f2fs_msg(sb, KERN_INFO,
429                                 "noinline_xattr options not supported");
430                         break;
431 #endif
432 #ifdef CONFIG_F2FS_FS_POSIX_ACL
433                 case Opt_acl:
434                         set_opt(sbi, POSIX_ACL);
435                         break;
436                 case Opt_noacl:
437                         clear_opt(sbi, POSIX_ACL);
438                         break;
439 #else
440                 case Opt_acl:
441                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
442                         break;
443                 case Opt_noacl:
444                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
445                         break;
446 #endif
447                 case Opt_active_logs:
448                         if (args->from && match_int(args, &arg))
449                                 return -EINVAL;
450                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
451                                 return -EINVAL;
452                         sbi->active_logs = arg;
453                         break;
454                 case Opt_disable_ext_identify:
455                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
456                         break;
457                 case Opt_inline_data:
458                         set_opt(sbi, INLINE_DATA);
459                         break;
460                 case Opt_inline_dentry:
461                         set_opt(sbi, INLINE_DENTRY);
462                         break;
463                 case Opt_noinline_dentry:
464                         clear_opt(sbi, INLINE_DENTRY);
465                         break;
466                 case Opt_flush_merge:
467                         set_opt(sbi, FLUSH_MERGE);
468                         break;
469                 case Opt_noflush_merge:
470                         clear_opt(sbi, FLUSH_MERGE);
471                         break;
472                 case Opt_nobarrier:
473                         set_opt(sbi, NOBARRIER);
474                         break;
475                 case Opt_fastboot:
476                         set_opt(sbi, FASTBOOT);
477                         break;
478                 case Opt_extent_cache:
479                         set_opt(sbi, EXTENT_CACHE);
480                         break;
481                 case Opt_noextent_cache:
482                         clear_opt(sbi, EXTENT_CACHE);
483                         break;
484                 case Opt_noinline_data:
485                         clear_opt(sbi, INLINE_DATA);
486                         break;
487                 case Opt_data_flush:
488                         set_opt(sbi, DATA_FLUSH);
489                         break;
490                 case Opt_mode:
491                         name = match_strdup(&args[0]);
492
493                         if (!name)
494                                 return -ENOMEM;
495                         if (strlen(name) == 8 &&
496                                         !strncmp(name, "adaptive", 8)) {
497                                 if (f2fs_sb_mounted_blkzoned(sb)) {
498                                         f2fs_msg(sb, KERN_WARNING,
499                                                  "adaptive mode is not allowed with "
500                                                  "zoned block device feature");
501                                         kfree(name);
502                                         return -EINVAL;
503                                 }
504                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
505                         } else if (strlen(name) == 3 &&
506                                         !strncmp(name, "lfs", 3)) {
507                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
508                         } else {
509                                 kfree(name);
510                                 return -EINVAL;
511                         }
512                         kfree(name);
513                         break;
514                 case Opt_io_size_bits:
515                         if (args->from && match_int(args, &arg))
516                                 return -EINVAL;
517                         if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
518                                 f2fs_msg(sb, KERN_WARNING,
519                                         "Not support %d, larger than %d",
520                                         1 << arg, BIO_MAX_PAGES);
521                                 return -EINVAL;
522                         }
523                         sbi->write_io_size_bits = arg;
524                         break;
525                 case Opt_fault_injection:
526                         if (args->from && match_int(args, &arg))
527                                 return -EINVAL;
528 #ifdef CONFIG_F2FS_FAULT_INJECTION
529                         f2fs_build_fault_attr(sbi, arg);
530                         set_opt(sbi, FAULT_INJECTION);
531 #else
532                         f2fs_msg(sb, KERN_INFO,
533                                 "FAULT_INJECTION was not selected");
534 #endif
535                         break;
536                 case Opt_lazytime:
537                         sb->s_flags |= MS_LAZYTIME;
538                         break;
539                 case Opt_nolazytime:
540                         sb->s_flags &= ~MS_LAZYTIME;
541                         break;
542 #ifdef CONFIG_QUOTA
543                 case Opt_quota:
544                 case Opt_usrquota:
545                         set_opt(sbi, USRQUOTA);
546                         break;
547                 case Opt_grpquota:
548                         set_opt(sbi, GRPQUOTA);
549                         break;
550                 case Opt_prjquota:
551                         set_opt(sbi, PRJQUOTA);
552                         break;
553                 case Opt_usrjquota:
554                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
555                         if (ret)
556                                 return ret;
557                         break;
558                 case Opt_grpjquota:
559                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
560                         if (ret)
561                                 return ret;
562                         break;
563                 case Opt_prjjquota:
564                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
565                         if (ret)
566                                 return ret;
567                         break;
568                 case Opt_offusrjquota:
569                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
570                         if (ret)
571                                 return ret;
572                         break;
573                 case Opt_offgrpjquota:
574                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
575                         if (ret)
576                                 return ret;
577                         break;
578                 case Opt_offprjjquota:
579                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
580                         if (ret)
581                                 return ret;
582                         break;
583                 case Opt_jqfmt_vfsold:
584                         sbi->s_jquota_fmt = QFMT_VFS_OLD;
585                         break;
586                 case Opt_jqfmt_vfsv0:
587                         sbi->s_jquota_fmt = QFMT_VFS_V0;
588                         break;
589                 case Opt_jqfmt_vfsv1:
590                         sbi->s_jquota_fmt = QFMT_VFS_V1;
591                         break;
592                 case Opt_noquota:
593                         clear_opt(sbi, QUOTA);
594                         clear_opt(sbi, USRQUOTA);
595                         clear_opt(sbi, GRPQUOTA);
596                         clear_opt(sbi, PRJQUOTA);
597                         break;
598 #else
599                 case Opt_quota:
600                 case Opt_usrquota:
601                 case Opt_grpquota:
602                 case Opt_prjquota:
603                 case Opt_usrjquota:
604                 case Opt_grpjquota:
605                 case Opt_prjjquota:
606                 case Opt_offusrjquota:
607                 case Opt_offgrpjquota:
608                 case Opt_offprjjquota:
609                 case Opt_jqfmt_vfsold:
610                 case Opt_jqfmt_vfsv0:
611                 case Opt_jqfmt_vfsv1:
612                 case Opt_noquota:
613                         f2fs_msg(sb, KERN_INFO,
614                                         "quota operations not supported");
615                         break;
616 #endif
617                 default:
618                         f2fs_msg(sb, KERN_ERR,
619                                 "Unrecognized mount option \"%s\" or missing value",
620                                 p);
621                         return -EINVAL;
622                 }
623         }
624 #ifdef CONFIG_QUOTA
625         if (f2fs_check_quota_options(sbi))
626                 return -EINVAL;
627 #endif
628
629         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
630                 f2fs_msg(sb, KERN_ERR,
631                                 "Should set mode=lfs with %uKB-sized IO",
632                                 F2FS_IO_SIZE_KB(sbi));
633                 return -EINVAL;
634         }
635
636         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
637                 if (!test_opt(sbi, INLINE_XATTR)) {
638                         f2fs_msg(sb, KERN_ERR,
639                                         "inline_xattr_size option should be "
640                                         "set with inline_xattr option");
641                         return -EINVAL;
642                 }
643                 if (!sbi->inline_xattr_size ||
644                         sbi->inline_xattr_size >= DEF_ADDRS_PER_INODE -
645                                         F2FS_TOTAL_EXTRA_ATTR_SIZE -
646                                         DEF_INLINE_RESERVED_SIZE -
647                                         DEF_MIN_INLINE_SIZE) {
648                         f2fs_msg(sb, KERN_ERR,
649                                         "inline xattr size is out of range");
650                         return -EINVAL;
651                 }
652         }
653         return 0;
654 }
655
656 static struct inode *f2fs_alloc_inode(struct super_block *sb)
657 {
658         struct f2fs_inode_info *fi;
659
660         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
661         if (!fi)
662                 return NULL;
663
664         init_once((void *) fi);
665
666         /* Initialize f2fs-specific inode info */
667         atomic_set(&fi->dirty_pages, 0);
668         fi->i_current_depth = 1;
669         fi->i_advise = 0;
670         init_rwsem(&fi->i_sem);
671         INIT_LIST_HEAD(&fi->dirty_list);
672         INIT_LIST_HEAD(&fi->gdirty_list);
673         INIT_LIST_HEAD(&fi->inmem_ilist);
674         INIT_LIST_HEAD(&fi->inmem_pages);
675         mutex_init(&fi->inmem_lock);
676         init_rwsem(&fi->dio_rwsem[READ]);
677         init_rwsem(&fi->dio_rwsem[WRITE]);
678         init_rwsem(&fi->i_mmap_sem);
679         init_rwsem(&fi->i_xattr_sem);
680
681 #ifdef CONFIG_QUOTA
682         memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
683         fi->i_reserved_quota = 0;
684 #endif
685         /* Will be used by directory only */
686         fi->i_dir_level = F2FS_SB(sb)->dir_level;
687
688         return &fi->vfs_inode;
689 }
690
691 static int f2fs_drop_inode(struct inode *inode)
692 {
693         int ret;
694         /*
695          * This is to avoid a deadlock condition like below.
696          * writeback_single_inode(inode)
697          *  - f2fs_write_data_page
698          *    - f2fs_gc -> iput -> evict
699          *       - inode_wait_for_writeback(inode)
700          */
701         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
702                 if (!inode->i_nlink && !is_bad_inode(inode)) {
703                         /* to avoid evict_inode call simultaneously */
704                         atomic_inc(&inode->i_count);
705                         spin_unlock(&inode->i_lock);
706
707                         /* some remained atomic pages should discarded */
708                         if (f2fs_is_atomic_file(inode))
709                                 drop_inmem_pages(inode);
710
711                         /* should remain fi->extent_tree for writepage */
712                         f2fs_destroy_extent_node(inode);
713
714                         sb_start_intwrite(inode->i_sb);
715                         f2fs_i_size_write(inode, 0);
716
717                         if (F2FS_HAS_BLOCKS(inode))
718                                 f2fs_truncate(inode);
719
720                         sb_end_intwrite(inode->i_sb);
721
722                         spin_lock(&inode->i_lock);
723                         atomic_dec(&inode->i_count);
724                 }
725                 trace_f2fs_drop_inode(inode, 0);
726                 return 0;
727         }
728         ret = generic_drop_inode(inode);
729         trace_f2fs_drop_inode(inode, ret);
730         return ret;
731 }
732
733 int f2fs_inode_dirtied(struct inode *inode, bool sync)
734 {
735         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
736         int ret = 0;
737
738         spin_lock(&sbi->inode_lock[DIRTY_META]);
739         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
740                 ret = 1;
741         } else {
742                 set_inode_flag(inode, FI_DIRTY_INODE);
743                 stat_inc_dirty_inode(sbi, DIRTY_META);
744         }
745         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
746                 list_add_tail(&F2FS_I(inode)->gdirty_list,
747                                 &sbi->inode_list[DIRTY_META]);
748                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
749         }
750         spin_unlock(&sbi->inode_lock[DIRTY_META]);
751         return ret;
752 }
753
754 void f2fs_inode_synced(struct inode *inode)
755 {
756         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
757
758         spin_lock(&sbi->inode_lock[DIRTY_META]);
759         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
760                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
761                 return;
762         }
763         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
764                 list_del_init(&F2FS_I(inode)->gdirty_list);
765                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
766         }
767         clear_inode_flag(inode, FI_DIRTY_INODE);
768         clear_inode_flag(inode, FI_AUTO_RECOVER);
769         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
770         spin_unlock(&sbi->inode_lock[DIRTY_META]);
771 }
772
773 /*
774  * f2fs_dirty_inode() is called from __mark_inode_dirty()
775  *
776  * We should call set_dirty_inode to write the dirty inode through write_inode.
777  */
778 static void f2fs_dirty_inode(struct inode *inode, int flags)
779 {
780         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
781
782         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
783                         inode->i_ino == F2FS_META_INO(sbi))
784                 return;
785
786         if (flags == I_DIRTY_TIME)
787                 return;
788
789         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
790                 clear_inode_flag(inode, FI_AUTO_RECOVER);
791
792         f2fs_inode_dirtied(inode, false);
793 }
794
795 static void f2fs_i_callback(struct rcu_head *head)
796 {
797         struct inode *inode = container_of(head, struct inode, i_rcu);
798         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
799 }
800
801 static void f2fs_destroy_inode(struct inode *inode)
802 {
803         call_rcu(&inode->i_rcu, f2fs_i_callback);
804 }
805
806 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
807 {
808         percpu_counter_destroy(&sbi->alloc_valid_block_count);
809         percpu_counter_destroy(&sbi->total_valid_inode_count);
810 }
811
812 static void destroy_device_list(struct f2fs_sb_info *sbi)
813 {
814         int i;
815
816         for (i = 0; i < sbi->s_ndevs; i++) {
817                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
818 #ifdef CONFIG_BLK_DEV_ZONED
819                 kfree(FDEV(i).blkz_type);
820 #endif
821         }
822         kfree(sbi->devs);
823 }
824
825 static void f2fs_put_super(struct super_block *sb)
826 {
827         struct f2fs_sb_info *sbi = F2FS_SB(sb);
828         int i;
829         bool dropped;
830
831         f2fs_quota_off_umount(sb);
832
833         /* prevent remaining shrinker jobs */
834         mutex_lock(&sbi->umount_mutex);
835
836         /*
837          * We don't need to do checkpoint when superblock is clean.
838          * But, the previous checkpoint was not done by umount, it needs to do
839          * clean checkpoint again.
840          */
841         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
842                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
843                 struct cp_control cpc = {
844                         .reason = CP_UMOUNT,
845                 };
846                 write_checkpoint(sbi, &cpc);
847         }
848
849         /* be sure to wait for any on-going discard commands */
850         dropped = f2fs_wait_discard_bios(sbi);
851
852         if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
853                 struct cp_control cpc = {
854                         .reason = CP_UMOUNT | CP_TRIMMED,
855                 };
856                 write_checkpoint(sbi, &cpc);
857         }
858
859         /* write_checkpoint can update stat informaion */
860         f2fs_destroy_stats(sbi);
861
862         /*
863          * normally superblock is clean, so we need to release this.
864          * In addition, EIO will skip do checkpoint, we need this as well.
865          */
866         release_ino_entry(sbi, true);
867
868         f2fs_leave_shrinker(sbi);
869         mutex_unlock(&sbi->umount_mutex);
870
871         /* our cp_error case, we can wait for any writeback page */
872         f2fs_flush_merged_writes(sbi);
873
874         iput(sbi->node_inode);
875         iput(sbi->meta_inode);
876
877         /* destroy f2fs internal modules */
878         destroy_node_manager(sbi);
879         destroy_segment_manager(sbi);
880
881         kfree(sbi->ckpt);
882
883         f2fs_unregister_sysfs(sbi);
884
885         sb->s_fs_info = NULL;
886         if (sbi->s_chksum_driver)
887                 crypto_free_shash(sbi->s_chksum_driver);
888         kfree(sbi->raw_super);
889
890         destroy_device_list(sbi);
891         if (sbi->write_io_dummy)
892                 mempool_destroy(sbi->write_io_dummy);
893 #ifdef CONFIG_QUOTA
894         for (i = 0; i < MAXQUOTAS; i++)
895                 kfree(sbi->s_qf_names[i]);
896 #endif
897         destroy_percpu_info(sbi);
898         for (i = 0; i < NR_PAGE_TYPE; i++)
899                 kfree(sbi->write_io[i]);
900         kfree(sbi);
901 }
902
903 int f2fs_sync_fs(struct super_block *sb, int sync)
904 {
905         struct f2fs_sb_info *sbi = F2FS_SB(sb);
906         int err = 0;
907
908         if (unlikely(f2fs_cp_error(sbi)))
909                 return 0;
910
911         trace_f2fs_sync_fs(sb, sync);
912
913         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
914                 return -EAGAIN;
915
916         if (sync) {
917                 struct cp_control cpc;
918
919                 cpc.reason = __get_cp_reason(sbi);
920
921                 mutex_lock(&sbi->gc_mutex);
922                 err = write_checkpoint(sbi, &cpc);
923                 mutex_unlock(&sbi->gc_mutex);
924         }
925         f2fs_trace_ios(NULL, 1);
926
927         return err;
928 }
929
930 static int f2fs_freeze(struct super_block *sb)
931 {
932         if (f2fs_readonly(sb))
933                 return 0;
934
935         /* IO error happened before */
936         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
937                 return -EIO;
938
939         /* must be clean, since sync_filesystem() was already called */
940         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
941                 return -EINVAL;
942         return 0;
943 }
944
945 static int f2fs_unfreeze(struct super_block *sb)
946 {
947         return 0;
948 }
949
950 #ifdef CONFIG_QUOTA
951 static int f2fs_statfs_project(struct super_block *sb,
952                                 kprojid_t projid, struct kstatfs *buf)
953 {
954         struct kqid qid;
955         struct dquot *dquot;
956         u64 limit;
957         u64 curblock;
958
959         qid = make_kqid_projid(projid);
960         dquot = dqget(sb, qid);
961         if (IS_ERR(dquot))
962                 return PTR_ERR(dquot);
963         spin_lock(&dq_data_lock);
964
965         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
966                  dquot->dq_dqb.dqb_bsoftlimit :
967                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
968         if (limit && buf->f_blocks > limit) {
969                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
970                 buf->f_blocks = limit;
971                 buf->f_bfree = buf->f_bavail =
972                         (buf->f_blocks > curblock) ?
973                          (buf->f_blocks - curblock) : 0;
974         }
975
976         limit = dquot->dq_dqb.dqb_isoftlimit ?
977                 dquot->dq_dqb.dqb_isoftlimit :
978                 dquot->dq_dqb.dqb_ihardlimit;
979         if (limit && buf->f_files > limit) {
980                 buf->f_files = limit;
981                 buf->f_ffree =
982                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
983                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
984         }
985
986         spin_unlock(&dq_data_lock);
987         dqput(dquot);
988         return 0;
989 }
990 #endif
991
992 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
993 {
994         struct super_block *sb = dentry->d_sb;
995         struct f2fs_sb_info *sbi = F2FS_SB(sb);
996         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
997         block_t total_count, user_block_count, start_count, ovp_count;
998         u64 avail_node_count;
999
1000         total_count = le64_to_cpu(sbi->raw_super->block_count);
1001         user_block_count = sbi->user_block_count;
1002         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1003         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
1004         buf->f_type = F2FS_SUPER_MAGIC;
1005         buf->f_bsize = sbi->blocksize;
1006
1007         buf->f_blocks = total_count - start_count;
1008         buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
1009         buf->f_bavail = user_block_count - valid_user_blocks(sbi) -
1010                                                 sbi->current_reserved_blocks;
1011
1012         avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1013
1014         if (avail_node_count > user_block_count) {
1015                 buf->f_files = user_block_count;
1016                 buf->f_ffree = buf->f_bavail;
1017         } else {
1018                 buf->f_files = avail_node_count;
1019                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1020                                         buf->f_bavail);
1021         }
1022
1023         buf->f_namelen = F2FS_NAME_LEN;
1024         buf->f_fsid.val[0] = (u32)id;
1025         buf->f_fsid.val[1] = (u32)(id >> 32);
1026
1027 #ifdef CONFIG_QUOTA
1028         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1029                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1030                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1031         }
1032 #endif
1033         return 0;
1034 }
1035
1036 static inline void f2fs_show_quota_options(struct seq_file *seq,
1037                                            struct super_block *sb)
1038 {
1039 #ifdef CONFIG_QUOTA
1040         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1041
1042         if (sbi->s_jquota_fmt) {
1043                 char *fmtname = "";
1044
1045                 switch (sbi->s_jquota_fmt) {
1046                 case QFMT_VFS_OLD:
1047                         fmtname = "vfsold";
1048                         break;
1049                 case QFMT_VFS_V0:
1050                         fmtname = "vfsv0";
1051                         break;
1052                 case QFMT_VFS_V1:
1053                         fmtname = "vfsv1";
1054                         break;
1055                 }
1056                 seq_printf(seq, ",jqfmt=%s", fmtname);
1057         }
1058
1059         if (sbi->s_qf_names[USRQUOTA])
1060                 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1061
1062         if (sbi->s_qf_names[GRPQUOTA])
1063                 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1064
1065         if (sbi->s_qf_names[PRJQUOTA])
1066                 seq_show_option(seq, "prjjquota", sbi->s_qf_names[PRJQUOTA]);
1067 #endif
1068 }
1069
1070 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1071 {
1072         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1073
1074         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1075                 if (test_opt(sbi, FORCE_FG_GC))
1076                         seq_printf(seq, ",background_gc=%s", "sync");
1077                 else
1078                         seq_printf(seq, ",background_gc=%s", "on");
1079         } else {
1080                 seq_printf(seq, ",background_gc=%s", "off");
1081         }
1082         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1083                 seq_puts(seq, ",disable_roll_forward");
1084         if (test_opt(sbi, DISCARD))
1085                 seq_puts(seq, ",discard");
1086         if (test_opt(sbi, NOHEAP))
1087                 seq_puts(seq, ",no_heap");
1088         else
1089                 seq_puts(seq, ",heap");
1090 #ifdef CONFIG_F2FS_FS_XATTR
1091         if (test_opt(sbi, XATTR_USER))
1092                 seq_puts(seq, ",user_xattr");
1093         else
1094                 seq_puts(seq, ",nouser_xattr");
1095         if (test_opt(sbi, INLINE_XATTR))
1096                 seq_puts(seq, ",inline_xattr");
1097         else
1098                 seq_puts(seq, ",noinline_xattr");
1099         if (test_opt(sbi, INLINE_XATTR_SIZE))
1100                 seq_printf(seq, ",inline_xattr_size=%u",
1101                                         sbi->inline_xattr_size);
1102 #endif
1103 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1104         if (test_opt(sbi, POSIX_ACL))
1105                 seq_puts(seq, ",acl");
1106         else
1107                 seq_puts(seq, ",noacl");
1108 #endif
1109         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1110                 seq_puts(seq, ",disable_ext_identify");
1111         if (test_opt(sbi, INLINE_DATA))
1112                 seq_puts(seq, ",inline_data");
1113         else
1114                 seq_puts(seq, ",noinline_data");
1115         if (test_opt(sbi, INLINE_DENTRY))
1116                 seq_puts(seq, ",inline_dentry");
1117         else
1118                 seq_puts(seq, ",noinline_dentry");
1119         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1120                 seq_puts(seq, ",flush_merge");
1121         if (test_opt(sbi, NOBARRIER))
1122                 seq_puts(seq, ",nobarrier");
1123         if (test_opt(sbi, FASTBOOT))
1124                 seq_puts(seq, ",fastboot");
1125         if (test_opt(sbi, EXTENT_CACHE))
1126                 seq_puts(seq, ",extent_cache");
1127         else
1128                 seq_puts(seq, ",noextent_cache");
1129         if (test_opt(sbi, DATA_FLUSH))
1130                 seq_puts(seq, ",data_flush");
1131
1132         seq_puts(seq, ",mode=");
1133         if (test_opt(sbi, ADAPTIVE))
1134                 seq_puts(seq, "adaptive");
1135         else if (test_opt(sbi, LFS))
1136                 seq_puts(seq, "lfs");
1137         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
1138         if (F2FS_IO_SIZE_BITS(sbi))
1139                 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1140 #ifdef CONFIG_F2FS_FAULT_INJECTION
1141         if (test_opt(sbi, FAULT_INJECTION))
1142                 seq_printf(seq, ",fault_injection=%u",
1143                                 sbi->fault_info.inject_rate);
1144 #endif
1145 #ifdef CONFIG_QUOTA
1146         if (test_opt(sbi, QUOTA))
1147                 seq_puts(seq, ",quota");
1148         if (test_opt(sbi, USRQUOTA))
1149                 seq_puts(seq, ",usrquota");
1150         if (test_opt(sbi, GRPQUOTA))
1151                 seq_puts(seq, ",grpquota");
1152         if (test_opt(sbi, PRJQUOTA))
1153                 seq_puts(seq, ",prjquota");
1154 #endif
1155         f2fs_show_quota_options(seq, sbi->sb);
1156
1157         return 0;
1158 }
1159
1160 static void default_options(struct f2fs_sb_info *sbi)
1161 {
1162         /* init some FS parameters */
1163         sbi->active_logs = NR_CURSEG_TYPE;
1164         sbi->inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1165
1166         set_opt(sbi, BG_GC);
1167         set_opt(sbi, INLINE_XATTR);
1168         set_opt(sbi, INLINE_DATA);
1169         set_opt(sbi, INLINE_DENTRY);
1170         set_opt(sbi, EXTENT_CACHE);
1171         set_opt(sbi, NOHEAP);
1172         sbi->sb->s_flags |= MS_LAZYTIME;
1173         set_opt(sbi, FLUSH_MERGE);
1174         if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1175                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1176                 set_opt(sbi, DISCARD);
1177         } else {
1178                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1179         }
1180
1181 #ifdef CONFIG_F2FS_FS_XATTR
1182         set_opt(sbi, XATTR_USER);
1183 #endif
1184 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1185         set_opt(sbi, POSIX_ACL);
1186 #endif
1187
1188 #ifdef CONFIG_F2FS_FAULT_INJECTION
1189         f2fs_build_fault_attr(sbi, 0);
1190 #endif
1191 }
1192
1193 #ifdef CONFIG_QUOTA
1194 static int f2fs_enable_quotas(struct super_block *sb);
1195 #endif
1196 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1197 {
1198         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1199         struct f2fs_mount_info org_mount_opt;
1200         unsigned long old_sb_flags;
1201         int err, active_logs;
1202         bool need_restart_gc = false;
1203         bool need_stop_gc = false;
1204         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1205 #ifdef CONFIG_F2FS_FAULT_INJECTION
1206         struct f2fs_fault_info ffi = sbi->fault_info;
1207 #endif
1208 #ifdef CONFIG_QUOTA
1209         int s_jquota_fmt;
1210         char *s_qf_names[MAXQUOTAS];
1211         int i, j;
1212 #endif
1213
1214         /*
1215          * Save the old mount options in case we
1216          * need to restore them.
1217          */
1218         org_mount_opt = sbi->mount_opt;
1219         old_sb_flags = sb->s_flags;
1220         active_logs = sbi->active_logs;
1221
1222 #ifdef CONFIG_QUOTA
1223         s_jquota_fmt = sbi->s_jquota_fmt;
1224         for (i = 0; i < MAXQUOTAS; i++) {
1225                 if (sbi->s_qf_names[i]) {
1226                         s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
1227                                                          GFP_KERNEL);
1228                         if (!s_qf_names[i]) {
1229                                 for (j = 0; j < i; j++)
1230                                         kfree(s_qf_names[j]);
1231                                 return -ENOMEM;
1232                         }
1233                 } else {
1234                         s_qf_names[i] = NULL;
1235                 }
1236         }
1237 #endif
1238
1239         /* recover superblocks we couldn't write due to previous RO mount */
1240         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1241                 err = f2fs_commit_super(sbi, false);
1242                 f2fs_msg(sb, KERN_INFO,
1243                         "Try to recover all the superblocks, ret: %d", err);
1244                 if (!err)
1245                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1246         }
1247
1248         default_options(sbi);
1249
1250         /* parse mount options */
1251         err = parse_options(sb, data);
1252         if (err)
1253                 goto restore_opts;
1254
1255         /*
1256          * Previous and new state of filesystem is RO,
1257          * so skip checking GC and FLUSH_MERGE conditions.
1258          */
1259         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1260                 goto skip;
1261
1262 #ifdef CONFIG_QUOTA
1263         if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
1264                 err = dquot_suspend(sb, -1);
1265                 if (err < 0)
1266                         goto restore_opts;
1267         } else {
1268                 /* dquot_resume needs RW */
1269                 sb->s_flags &= ~MS_RDONLY;
1270                 if (sb_any_quota_suspended(sb)) {
1271                         dquot_resume(sb, -1);
1272                 } else if (f2fs_sb_has_quota_ino(sb)) {
1273                         err = f2fs_enable_quotas(sb);
1274                         if (err)
1275                                 goto restore_opts;
1276                 }
1277         }
1278 #endif
1279         /* disallow enable/disable extent_cache dynamically */
1280         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1281                 err = -EINVAL;
1282                 f2fs_msg(sbi->sb, KERN_WARNING,
1283                                 "switch extent_cache option is not allowed");
1284                 goto restore_opts;
1285         }
1286
1287         /*
1288          * We stop the GC thread if FS is mounted as RO
1289          * or if background_gc = off is passed in mount
1290          * option. Also sync the filesystem.
1291          */
1292         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1293                 if (sbi->gc_thread) {
1294                         stop_gc_thread(sbi);
1295                         need_restart_gc = true;
1296                 }
1297         } else if (!sbi->gc_thread) {
1298                 err = start_gc_thread(sbi);
1299                 if (err)
1300                         goto restore_opts;
1301                 need_stop_gc = true;
1302         }
1303
1304         if (*flags & MS_RDONLY) {
1305                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1306                 sync_inodes_sb(sb);
1307
1308                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1309                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1310                 f2fs_sync_fs(sb, 1);
1311                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1312         }
1313
1314         /*
1315          * We stop issue flush thread if FS is mounted as RO
1316          * or if flush_merge is not passed in mount option.
1317          */
1318         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1319                 clear_opt(sbi, FLUSH_MERGE);
1320                 destroy_flush_cmd_control(sbi, false);
1321         } else {
1322                 err = create_flush_cmd_control(sbi);
1323                 if (err)
1324                         goto restore_gc;
1325         }
1326 skip:
1327 #ifdef CONFIG_QUOTA
1328         /* Release old quota file names */
1329         for (i = 0; i < MAXQUOTAS; i++)
1330                 kfree(s_qf_names[i]);
1331 #endif
1332         /* Update the POSIXACL Flag */
1333         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1334                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1335
1336         return 0;
1337 restore_gc:
1338         if (need_restart_gc) {
1339                 if (start_gc_thread(sbi))
1340                         f2fs_msg(sbi->sb, KERN_WARNING,
1341                                 "background gc thread has stopped");
1342         } else if (need_stop_gc) {
1343                 stop_gc_thread(sbi);
1344         }
1345 restore_opts:
1346 #ifdef CONFIG_QUOTA
1347         sbi->s_jquota_fmt = s_jquota_fmt;
1348         for (i = 0; i < MAXQUOTAS; i++) {
1349                 kfree(sbi->s_qf_names[i]);
1350                 sbi->s_qf_names[i] = s_qf_names[i];
1351         }
1352 #endif
1353         sbi->mount_opt = org_mount_opt;
1354         sbi->active_logs = active_logs;
1355         sb->s_flags = old_sb_flags;
1356 #ifdef CONFIG_F2FS_FAULT_INJECTION
1357         sbi->fault_info = ffi;
1358 #endif
1359         return err;
1360 }
1361
1362 #ifdef CONFIG_QUOTA
1363 /* Read data from quotafile */
1364 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1365                                size_t len, loff_t off)
1366 {
1367         struct inode *inode = sb_dqopt(sb)->files[type];
1368         struct address_space *mapping = inode->i_mapping;
1369         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1370         int offset = off & (sb->s_blocksize - 1);
1371         int tocopy;
1372         size_t toread;
1373         loff_t i_size = i_size_read(inode);
1374         struct page *page;
1375         char *kaddr;
1376
1377         if (off > i_size)
1378                 return 0;
1379
1380         if (off + len > i_size)
1381                 len = i_size - off;
1382         toread = len;
1383         while (toread > 0) {
1384                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1385 repeat:
1386                 page = read_mapping_page(mapping, blkidx, NULL);
1387                 if (IS_ERR(page)) {
1388                         if (PTR_ERR(page) == -ENOMEM) {
1389                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1390                                 goto repeat;
1391                         }
1392                         return PTR_ERR(page);
1393                 }
1394
1395                 lock_page(page);
1396
1397                 if (unlikely(page->mapping != mapping)) {
1398                         f2fs_put_page(page, 1);
1399                         goto repeat;
1400                 }
1401                 if (unlikely(!PageUptodate(page))) {
1402                         f2fs_put_page(page, 1);
1403                         return -EIO;
1404                 }
1405
1406                 kaddr = kmap_atomic(page);
1407                 memcpy(data, kaddr + offset, tocopy);
1408                 kunmap_atomic(kaddr);
1409                 f2fs_put_page(page, 1);
1410
1411                 offset = 0;
1412                 toread -= tocopy;
1413                 data += tocopy;
1414                 blkidx++;
1415         }
1416         return len;
1417 }
1418
1419 /* Write to quotafile */
1420 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1421                                 const char *data, size_t len, loff_t off)
1422 {
1423         struct inode *inode = sb_dqopt(sb)->files[type];
1424         struct address_space *mapping = inode->i_mapping;
1425         const struct address_space_operations *a_ops = mapping->a_ops;
1426         int offset = off & (sb->s_blocksize - 1);
1427         size_t towrite = len;
1428         struct page *page;
1429         char *kaddr;
1430         int err = 0;
1431         int tocopy;
1432
1433         while (towrite > 0) {
1434                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1435                                                                 towrite);
1436 retry:
1437                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1438                                                         &page, NULL);
1439                 if (unlikely(err)) {
1440                         if (err == -ENOMEM) {
1441                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1442                                 goto retry;
1443                         }
1444                         break;
1445                 }
1446
1447                 kaddr = kmap_atomic(page);
1448                 memcpy(kaddr + offset, data, tocopy);
1449                 kunmap_atomic(kaddr);
1450                 flush_dcache_page(page);
1451
1452                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1453                                                 page, NULL);
1454                 offset = 0;
1455                 towrite -= tocopy;
1456                 off += tocopy;
1457                 data += tocopy;
1458                 cond_resched();
1459         }
1460
1461         if (len == towrite)
1462                 return err;
1463         inode->i_mtime = inode->i_ctime = current_time(inode);
1464         f2fs_mark_inode_dirty_sync(inode, false);
1465         return len - towrite;
1466 }
1467
1468 static struct dquot **f2fs_get_dquots(struct inode *inode)
1469 {
1470         return F2FS_I(inode)->i_dquot;
1471 }
1472
1473 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1474 {
1475         return &F2FS_I(inode)->i_reserved_quota;
1476 }
1477
1478 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1479 {
1480         return dquot_quota_on_mount(sbi->sb, sbi->s_qf_names[type],
1481                                                 sbi->s_jquota_fmt, type);
1482 }
1483
1484 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1485 {
1486         int enabled = 0;
1487         int i, err;
1488
1489         if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1490                 err = f2fs_enable_quotas(sbi->sb);
1491                 if (err) {
1492                         f2fs_msg(sbi->sb, KERN_ERR,
1493                                         "Cannot turn on quota_ino: %d", err);
1494                         return 0;
1495                 }
1496                 return 1;
1497         }
1498
1499         for (i = 0; i < MAXQUOTAS; i++) {
1500                 if (sbi->s_qf_names[i]) {
1501                         err = f2fs_quota_on_mount(sbi, i);
1502                         if (!err) {
1503                                 enabled = 1;
1504                                 continue;
1505                         }
1506                         f2fs_msg(sbi->sb, KERN_ERR,
1507                                 "Cannot turn on quotas: %d on %d", err, i);
1508                 }
1509         }
1510         return enabled;
1511 }
1512
1513 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1514                              unsigned int flags)
1515 {
1516         struct inode *qf_inode;
1517         unsigned long qf_inum;
1518         int err;
1519
1520         BUG_ON(!f2fs_sb_has_quota_ino(sb));
1521
1522         qf_inum = f2fs_qf_ino(sb, type);
1523         if (!qf_inum)
1524                 return -EPERM;
1525
1526         qf_inode = f2fs_iget(sb, qf_inum);
1527         if (IS_ERR(qf_inode)) {
1528                 f2fs_msg(sb, KERN_ERR,
1529                         "Bad quota inode %u:%lu", type, qf_inum);
1530                 return PTR_ERR(qf_inode);
1531         }
1532
1533         /* Don't account quota for quota files to avoid recursion */
1534         qf_inode->i_flags |= S_NOQUOTA;
1535         err = dquot_enable(qf_inode, type, format_id, flags);
1536         iput(qf_inode);
1537         return err;
1538 }
1539
1540 static int f2fs_enable_quotas(struct super_block *sb)
1541 {
1542         int type, err = 0;
1543         unsigned long qf_inum;
1544         bool quota_mopt[MAXQUOTAS] = {
1545                 test_opt(F2FS_SB(sb), USRQUOTA),
1546                 test_opt(F2FS_SB(sb), GRPQUOTA),
1547                 test_opt(F2FS_SB(sb), PRJQUOTA),
1548         };
1549
1550         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
1551         for (type = 0; type < MAXQUOTAS; type++) {
1552                 qf_inum = f2fs_qf_ino(sb, type);
1553                 if (qf_inum) {
1554                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1555                                 DQUOT_USAGE_ENABLED |
1556                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1557                         if (err) {
1558                                 f2fs_msg(sb, KERN_ERR,
1559                                         "Failed to enable quota tracking "
1560                                         "(type=%d, err=%d). Please run "
1561                                         "fsck to fix.", type, err);
1562                                 for (type--; type >= 0; type--)
1563                                         dquot_quota_off(sb, type);
1564                                 return err;
1565                         }
1566                 }
1567         }
1568         return 0;
1569 }
1570
1571 static int f2fs_quota_sync(struct super_block *sb, int type)
1572 {
1573         struct quota_info *dqopt = sb_dqopt(sb);
1574         int cnt;
1575         int ret;
1576
1577         ret = dquot_writeback_dquots(sb, type);
1578         if (ret)
1579                 return ret;
1580
1581         /*
1582          * Now when everything is written we can discard the pagecache so
1583          * that userspace sees the changes.
1584          */
1585         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1586                 if (type != -1 && cnt != type)
1587                         continue;
1588                 if (!sb_has_quota_active(sb, cnt))
1589                         continue;
1590
1591                 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1592                 if (ret)
1593                         return ret;
1594
1595                 inode_lock(dqopt->files[cnt]);
1596                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1597                 inode_unlock(dqopt->files[cnt]);
1598         }
1599         return 0;
1600 }
1601
1602 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1603                                                         struct path *path)
1604 {
1605         struct inode *inode;
1606         int err;
1607
1608         err = f2fs_quota_sync(sb, type);
1609         if (err)
1610                 return err;
1611
1612         err = dquot_quota_on(sb, type, format_id, path);
1613         if (err)
1614                 return err;
1615
1616         inode = d_inode(path->dentry);
1617
1618         inode_lock(inode);
1619         F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1620         inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1621                                         S_NOATIME | S_IMMUTABLE);
1622         inode_unlock(inode);
1623         f2fs_mark_inode_dirty_sync(inode, false);
1624
1625         return 0;
1626 }
1627
1628 static int f2fs_quota_off(struct super_block *sb, int type)
1629 {
1630         struct inode *inode = sb_dqopt(sb)->files[type];
1631         int err;
1632
1633         if (!inode || !igrab(inode))
1634                 return dquot_quota_off(sb, type);
1635
1636         f2fs_quota_sync(sb, type);
1637
1638         err = dquot_quota_off(sb, type);
1639         if (err || f2fs_sb_has_quota_ino(sb))
1640                 goto out_put;
1641
1642         inode_lock(inode);
1643         F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1644         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1645         inode_unlock(inode);
1646         f2fs_mark_inode_dirty_sync(inode, false);
1647 out_put:
1648         iput(inode);
1649         return err;
1650 }
1651
1652 void f2fs_quota_off_umount(struct super_block *sb)
1653 {
1654         int type;
1655
1656         for (type = 0; type < MAXQUOTAS; type++)
1657                 f2fs_quota_off(sb, type);
1658 }
1659
1660 #if 0
1661 int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1662 {
1663         *projid = F2FS_I(inode)->i_projid;
1664         return 0;
1665 }
1666 #endif
1667
1668 static const struct dquot_operations f2fs_quota_operations = {
1669         .get_reserved_space = f2fs_get_reserved_space,
1670         .write_dquot    = dquot_commit,
1671         .acquire_dquot  = dquot_acquire,
1672         .release_dquot  = dquot_release,
1673         .mark_dirty     = dquot_mark_dquot_dirty,
1674         .write_info     = dquot_commit_info,
1675         .alloc_dquot    = dquot_alloc,
1676         .destroy_dquot  = dquot_destroy,
1677 #if 0
1678         .get_projid     = f2fs_get_projid,
1679         .get_next_id    = dquot_get_next_id,
1680 #endif
1681 };
1682
1683 static const struct quotactl_ops f2fs_quotactl_ops = {
1684         .quota_on       = f2fs_quota_on,
1685         .quota_off      = f2fs_quota_off,
1686         .quota_sync     = f2fs_quota_sync,
1687         .get_state      = dquot_get_state,
1688         .set_info       = dquot_set_dqinfo,
1689         .get_dqblk      = dquot_get_dqblk,
1690         .set_dqblk      = dquot_set_dqblk,
1691 };
1692 #else
1693 void f2fs_quota_off_umount(struct super_block *sb)
1694 {
1695 }
1696 #endif
1697
1698 static const struct super_operations f2fs_sops = {
1699         .alloc_inode    = f2fs_alloc_inode,
1700         .drop_inode     = f2fs_drop_inode,
1701         .destroy_inode  = f2fs_destroy_inode,
1702         .write_inode    = f2fs_write_inode,
1703         .dirty_inode    = f2fs_dirty_inode,
1704         .show_options   = f2fs_show_options,
1705 #ifdef CONFIG_QUOTA
1706         .quota_read     = f2fs_quota_read,
1707         .quota_write    = f2fs_quota_write,
1708         .get_dquots     = f2fs_get_dquots,
1709 #endif
1710         .evict_inode    = f2fs_evict_inode,
1711         .put_super      = f2fs_put_super,
1712         .sync_fs        = f2fs_sync_fs,
1713         .freeze_fs      = f2fs_freeze,
1714         .unfreeze_fs    = f2fs_unfreeze,
1715         .statfs         = f2fs_statfs,
1716         .remount_fs     = f2fs_remount,
1717 };
1718
1719 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1720 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1721 {
1722         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1723                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1724                                 ctx, len, NULL);
1725 }
1726
1727 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1728                                                         void *fs_data)
1729 {
1730         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1731                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1732                                 ctx, len, fs_data, XATTR_CREATE);
1733 }
1734
1735 static unsigned f2fs_max_namelen(struct inode *inode)
1736 {
1737         return S_ISLNK(inode->i_mode) ?
1738                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1739 }
1740
1741 static const struct fscrypt_operations f2fs_cryptops = {
1742         .key_prefix     = "f2fs:",
1743         .get_context    = f2fs_get_context,
1744         .set_context    = f2fs_set_context,
1745         .empty_dir      = f2fs_empty_dir,
1746         .max_namelen    = f2fs_max_namelen,
1747 };
1748 #endif
1749
1750 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1751                 u64 ino, u32 generation)
1752 {
1753         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1754         struct inode *inode;
1755
1756         if (check_nid_range(sbi, ino))
1757                 return ERR_PTR(-ESTALE);
1758
1759         /*
1760          * f2fs_iget isn't quite right if the inode is currently unallocated!
1761          * However f2fs_iget currently does appropriate checks to handle stale
1762          * inodes so everything is OK.
1763          */
1764         inode = f2fs_iget(sb, ino);
1765         if (IS_ERR(inode))
1766                 return ERR_CAST(inode);
1767         if (unlikely(generation && inode->i_generation != generation)) {
1768                 /* we didn't find the right inode.. */
1769                 iput(inode);
1770                 return ERR_PTR(-ESTALE);
1771         }
1772         return inode;
1773 }
1774
1775 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1776                 int fh_len, int fh_type)
1777 {
1778         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1779                                     f2fs_nfs_get_inode);
1780 }
1781
1782 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1783                 int fh_len, int fh_type)
1784 {
1785         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1786                                     f2fs_nfs_get_inode);
1787 }
1788
1789 static const struct export_operations f2fs_export_ops = {
1790         .fh_to_dentry = f2fs_fh_to_dentry,
1791         .fh_to_parent = f2fs_fh_to_parent,
1792         .get_parent = f2fs_get_parent,
1793 };
1794
1795 static loff_t max_file_blocks(void)
1796 {
1797         loff_t result = 0;
1798         loff_t leaf_count = ADDRS_PER_BLOCK;
1799
1800         /*
1801          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1802          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1803          * space in inode.i_addr, it will be more safe to reassign
1804          * result as zero.
1805          */
1806
1807         /* two direct node blocks */
1808         result += (leaf_count * 2);
1809
1810         /* two indirect node blocks */
1811         leaf_count *= NIDS_PER_BLOCK;
1812         result += (leaf_count * 2);
1813
1814         /* one double indirect node block */
1815         leaf_count *= NIDS_PER_BLOCK;
1816         result += leaf_count;
1817
1818         return result;
1819 }
1820
1821 static int __f2fs_commit_super(struct buffer_head *bh,
1822                         struct f2fs_super_block *super)
1823 {
1824         lock_buffer(bh);
1825         if (super)
1826                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1827         set_buffer_uptodate(bh);
1828         set_buffer_dirty(bh);
1829         unlock_buffer(bh);
1830
1831         /* it's rare case, we can do fua all the time */
1832         return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1833 }
1834
1835 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1836                                         struct buffer_head *bh)
1837 {
1838         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1839                                         (bh->b_data + F2FS_SUPER_OFFSET);
1840         struct super_block *sb = sbi->sb;
1841         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1842         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1843         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1844         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1845         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1846         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1847         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1848         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1849         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1850         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1851         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1852         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1853         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1854         u64 main_end_blkaddr = main_blkaddr +
1855                                 (segment_count_main << log_blocks_per_seg);
1856         u64 seg_end_blkaddr = segment0_blkaddr +
1857                                 (segment_count << log_blocks_per_seg);
1858
1859         if (segment0_blkaddr != cp_blkaddr) {
1860                 f2fs_msg(sb, KERN_INFO,
1861                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1862                         segment0_blkaddr, cp_blkaddr);
1863                 return true;
1864         }
1865
1866         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1867                                                         sit_blkaddr) {
1868                 f2fs_msg(sb, KERN_INFO,
1869                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1870                         cp_blkaddr, sit_blkaddr,
1871                         segment_count_ckpt << log_blocks_per_seg);
1872                 return true;
1873         }
1874
1875         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1876                                                         nat_blkaddr) {
1877                 f2fs_msg(sb, KERN_INFO,
1878                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1879                         sit_blkaddr, nat_blkaddr,
1880                         segment_count_sit << log_blocks_per_seg);
1881                 return true;
1882         }
1883
1884         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1885                                                         ssa_blkaddr) {
1886                 f2fs_msg(sb, KERN_INFO,
1887                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1888                         nat_blkaddr, ssa_blkaddr,
1889                         segment_count_nat << log_blocks_per_seg);
1890                 return true;
1891         }
1892
1893         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1894                                                         main_blkaddr) {
1895                 f2fs_msg(sb, KERN_INFO,
1896                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1897                         ssa_blkaddr, main_blkaddr,
1898                         segment_count_ssa << log_blocks_per_seg);
1899                 return true;
1900         }
1901
1902         if (main_end_blkaddr > seg_end_blkaddr) {
1903                 f2fs_msg(sb, KERN_INFO,
1904                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1905                         main_blkaddr,
1906                         segment0_blkaddr +
1907                                 (segment_count << log_blocks_per_seg),
1908                         segment_count_main << log_blocks_per_seg);
1909                 return true;
1910         } else if (main_end_blkaddr < seg_end_blkaddr) {
1911                 int err = 0;
1912                 char *res;
1913
1914                 /* fix in-memory information all the time */
1915                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1916                                 segment0_blkaddr) >> log_blocks_per_seg);
1917
1918                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1919                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1920                         res = "internally";
1921                 } else {
1922                         err = __f2fs_commit_super(bh, NULL);
1923                         res = err ? "failed" : "done";
1924                 }
1925                 f2fs_msg(sb, KERN_INFO,
1926                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1927                         res, main_blkaddr,
1928                         segment0_blkaddr +
1929                                 (segment_count << log_blocks_per_seg),
1930                         segment_count_main << log_blocks_per_seg);
1931                 if (err)
1932                         return true;
1933         }
1934         return false;
1935 }
1936
1937 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1938                                 struct buffer_head *bh)
1939 {
1940         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1941                                         (bh->b_data + F2FS_SUPER_OFFSET);
1942         struct super_block *sb = sbi->sb;
1943         unsigned int blocksize;
1944
1945         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1946                 f2fs_msg(sb, KERN_INFO,
1947                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
1948                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1949                 return 1;
1950         }
1951
1952         /* Currently, support only 4KB page cache size */
1953         if (F2FS_BLKSIZE != PAGE_SIZE) {
1954                 f2fs_msg(sb, KERN_INFO,
1955                         "Invalid page_cache_size (%lu), supports only 4KB\n",
1956                         PAGE_SIZE);
1957                 return 1;
1958         }
1959
1960         /* Currently, support only 4KB block size */
1961         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1962         if (blocksize != F2FS_BLKSIZE) {
1963                 f2fs_msg(sb, KERN_INFO,
1964                         "Invalid blocksize (%u), supports only 4KB\n",
1965                         blocksize);
1966                 return 1;
1967         }
1968
1969         /* check log blocks per segment */
1970         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1971                 f2fs_msg(sb, KERN_INFO,
1972                         "Invalid log blocks per segment (%u)\n",
1973                         le32_to_cpu(raw_super->log_blocks_per_seg));
1974                 return 1;
1975         }
1976
1977         /* Currently, support 512/1024/2048/4096 bytes sector size */
1978         if (le32_to_cpu(raw_super->log_sectorsize) >
1979                                 F2FS_MAX_LOG_SECTOR_SIZE ||
1980                 le32_to_cpu(raw_super->log_sectorsize) <
1981                                 F2FS_MIN_LOG_SECTOR_SIZE) {
1982                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1983                         le32_to_cpu(raw_super->log_sectorsize));
1984                 return 1;
1985         }
1986         if (le32_to_cpu(raw_super->log_sectors_per_block) +
1987                 le32_to_cpu(raw_super->log_sectorsize) !=
1988                         F2FS_MAX_LOG_SECTOR_SIZE) {
1989                 f2fs_msg(sb, KERN_INFO,
1990                         "Invalid log sectors per block(%u) log sectorsize(%u)",
1991                         le32_to_cpu(raw_super->log_sectors_per_block),
1992                         le32_to_cpu(raw_super->log_sectorsize));
1993                 return 1;
1994         }
1995
1996         /* check reserved ino info */
1997         if (le32_to_cpu(raw_super->node_ino) != 1 ||
1998                 le32_to_cpu(raw_super->meta_ino) != 2 ||
1999                 le32_to_cpu(raw_super->root_ino) != 3) {
2000                 f2fs_msg(sb, KERN_INFO,
2001                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2002                         le32_to_cpu(raw_super->node_ino),
2003                         le32_to_cpu(raw_super->meta_ino),
2004                         le32_to_cpu(raw_super->root_ino));
2005                 return 1;
2006         }
2007
2008         if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
2009                 f2fs_msg(sb, KERN_INFO,
2010                         "Invalid segment count (%u)",
2011                         le32_to_cpu(raw_super->segment_count));
2012                 return 1;
2013         }
2014
2015         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2016         if (sanity_check_area_boundary(sbi, bh))
2017                 return 1;
2018
2019         return 0;
2020 }
2021
2022 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
2023 {
2024         unsigned int total, fsmeta;
2025         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2026         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2027         unsigned int ovp_segments, reserved_segments;
2028         unsigned int main_segs, blocks_per_seg;
2029         int i;
2030
2031         total = le32_to_cpu(raw_super->segment_count);
2032         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2033         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
2034         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
2035         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2036         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2037
2038         if (unlikely(fsmeta >= total))
2039                 return 1;
2040
2041         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2042         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2043
2044         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2045                         ovp_segments == 0 || reserved_segments == 0)) {
2046                 f2fs_msg(sbi->sb, KERN_ERR,
2047                         "Wrong layout: check mkfs.f2fs version");
2048                 return 1;
2049         }
2050
2051         main_segs = le32_to_cpu(raw_super->segment_count_main);
2052         blocks_per_seg = sbi->blocks_per_seg;
2053
2054         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2055                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2056                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2057                         return 1;
2058         }
2059         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2060                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2061                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2062                         return 1;
2063         }
2064
2065         if (unlikely(f2fs_cp_error(sbi))) {
2066                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2067                 return 1;
2068         }
2069         return 0;
2070 }
2071
2072 static void init_sb_info(struct f2fs_sb_info *sbi)
2073 {
2074         struct f2fs_super_block *raw_super = sbi->raw_super;
2075         int i, j;
2076
2077         sbi->log_sectors_per_block =
2078                 le32_to_cpu(raw_super->log_sectors_per_block);
2079         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2080         sbi->blocksize = 1 << sbi->log_blocksize;
2081         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2082         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2083         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2084         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2085         sbi->total_sections = le32_to_cpu(raw_super->section_count);
2086         sbi->total_node_count =
2087                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2088                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2089         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2090         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2091         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2092         sbi->cur_victim_sec = NULL_SECNO;
2093         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2094
2095         sbi->dir_level = DEF_DIR_LEVEL;
2096         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2097         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2098         clear_sbi_flag(sbi, SBI_NEED_FSCK);
2099
2100         for (i = 0; i < NR_COUNT_TYPE; i++)
2101                 atomic_set(&sbi->nr_pages[i], 0);
2102
2103         atomic_set(&sbi->wb_sync_req, 0);
2104
2105         INIT_LIST_HEAD(&sbi->s_list);
2106         mutex_init(&sbi->umount_mutex);
2107         for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2108                 for (j = HOT; j < NR_TEMP_TYPE; j++)
2109                         mutex_init(&sbi->wio_mutex[i][j]);
2110         spin_lock_init(&sbi->cp_lock);
2111
2112         sbi->dirty_device = 0;
2113         spin_lock_init(&sbi->dev_lock);
2114 }
2115
2116 static int init_percpu_info(struct f2fs_sb_info *sbi)
2117 {
2118         int err;
2119
2120         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2121         if (err)
2122                 return err;
2123
2124         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2125                                                                 GFP_KERNEL);
2126 }
2127
2128 #ifdef CONFIG_BLK_DEV_ZONED
2129 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2130 {
2131         struct block_device *bdev = FDEV(devi).bdev;
2132         sector_t nr_sectors = bdev->bd_part->nr_sects;
2133         sector_t sector = 0;
2134         struct blk_zone *zones;
2135         unsigned int i, nr_zones;
2136         unsigned int n = 0;
2137         int err = -EIO;
2138
2139         if (!f2fs_sb_mounted_blkzoned(sbi->sb))
2140                 return 0;
2141
2142         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2143                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2144                 return -EINVAL;
2145         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2146         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2147                                 __ilog2_u32(sbi->blocks_per_blkz))
2148                 return -EINVAL;
2149         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2150         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2151                                         sbi->log_blocks_per_blkz;
2152         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2153                 FDEV(devi).nr_blkz++;
2154
2155         FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
2156         if (!FDEV(devi).blkz_type)
2157                 return -ENOMEM;
2158
2159 #define F2FS_REPORT_NR_ZONES   4096
2160
2161         zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
2162                         GFP_KERNEL);
2163         if (!zones)
2164                 return -ENOMEM;
2165
2166         /* Get block zones type */
2167         while (zones && sector < nr_sectors) {
2168
2169                 nr_zones = F2FS_REPORT_NR_ZONES;
2170                 err = blkdev_report_zones(bdev, sector,
2171                                           zones, &nr_zones,
2172                                           GFP_KERNEL);
2173                 if (err)
2174                         break;
2175                 if (!nr_zones) {
2176                         err = -EIO;
2177                         break;
2178                 }
2179
2180                 for (i = 0; i < nr_zones; i++) {
2181                         FDEV(devi).blkz_type[n] = zones[i].type;
2182                         sector += zones[i].len;
2183                         n++;
2184                 }
2185         }
2186
2187         kfree(zones);
2188
2189         return err;
2190 }
2191 #endif
2192
2193 /*
2194  * Read f2fs raw super block.
2195  * Because we have two copies of super block, so read both of them
2196  * to get the first valid one. If any one of them is broken, we pass
2197  * them recovery flag back to the caller.
2198  */
2199 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2200                         struct f2fs_super_block **raw_super,
2201                         int *valid_super_block, int *recovery)
2202 {
2203         struct super_block *sb = sbi->sb;
2204         int block;
2205         struct buffer_head *bh;
2206         struct f2fs_super_block *super;
2207         int err = 0;
2208
2209         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2210         if (!super)
2211                 return -ENOMEM;
2212
2213         for (block = 0; block < 2; block++) {
2214                 bh = sb_bread(sb, block);
2215                 if (!bh) {
2216                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2217                                 block + 1);
2218                         err = -EIO;
2219                         continue;
2220                 }
2221
2222                 /* sanity checking of raw super */
2223                 if (sanity_check_raw_super(sbi, bh)) {
2224                         f2fs_msg(sb, KERN_ERR,
2225                                 "Can't find valid F2FS filesystem in %dth superblock",
2226                                 block + 1);
2227                         err = -EINVAL;
2228                         brelse(bh);
2229                         continue;
2230                 }
2231
2232                 if (!*raw_super) {
2233                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2234                                                         sizeof(*super));
2235                         *valid_super_block = block;
2236                         *raw_super = super;
2237                 }
2238                 brelse(bh);
2239         }
2240
2241         /* Fail to read any one of the superblocks*/
2242         if (err < 0)
2243                 *recovery = 1;
2244
2245         /* No valid superblock */
2246         if (!*raw_super)
2247                 kfree(super);
2248         else
2249                 err = 0;
2250
2251         return err;
2252 }
2253
2254 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2255 {
2256         struct buffer_head *bh;
2257         int err;
2258
2259         if ((recover && f2fs_readonly(sbi->sb)) ||
2260                                 bdev_read_only(sbi->sb->s_bdev)) {
2261                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2262                 return -EROFS;
2263         }
2264
2265         /* write back-up superblock first */
2266         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
2267         if (!bh)
2268                 return -EIO;
2269         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2270         brelse(bh);
2271
2272         /* if we are in recovery path, skip writing valid superblock */
2273         if (recover || err)
2274                 return err;
2275
2276         /* write current valid superblock */
2277         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
2278         if (!bh)
2279                 return -EIO;
2280         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2281         brelse(bh);
2282         return err;
2283 }
2284
2285 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2286 {
2287         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2288         unsigned int max_devices = MAX_DEVICES;
2289         int i;
2290
2291         /* Initialize single device information */
2292         if (!RDEV(0).path[0]) {
2293 #ifdef CONFIG_BLK_DEV_ZONED
2294                 if (!bdev_is_zoned(sbi->sb->s_bdev))
2295                         return 0;
2296                 max_devices = 1;
2297 #else
2298                 return 0;
2299 #endif
2300         }
2301
2302         /*
2303          * Initialize multiple devices information, or single
2304          * zoned block device information.
2305          */
2306         sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
2307                                 GFP_KERNEL);
2308         if (!sbi->devs)
2309                 return -ENOMEM;
2310
2311         for (i = 0; i < max_devices; i++) {
2312
2313                 if (i > 0 && !RDEV(i).path[0])
2314                         break;
2315
2316                 if (max_devices == 1) {
2317                         /* Single zoned block device mount */
2318                         FDEV(0).bdev =
2319                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2320                                         sbi->sb->s_mode, sbi->sb->s_type);
2321                 } else {
2322                         /* Multi-device mount */
2323                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2324                         FDEV(i).total_segments =
2325                                 le32_to_cpu(RDEV(i).total_segments);
2326                         if (i == 0) {
2327                                 FDEV(i).start_blk = 0;
2328                                 FDEV(i).end_blk = FDEV(i).start_blk +
2329                                     (FDEV(i).total_segments <<
2330                                     sbi->log_blocks_per_seg) - 1 +
2331                                     le32_to_cpu(raw_super->segment0_blkaddr);
2332                         } else {
2333                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2334                                 FDEV(i).end_blk = FDEV(i).start_blk +
2335                                         (FDEV(i).total_segments <<
2336                                         sbi->log_blocks_per_seg) - 1;
2337                         }
2338                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2339                                         sbi->sb->s_mode, sbi->sb->s_type);
2340                 }
2341                 if (IS_ERR(FDEV(i).bdev))
2342                         return PTR_ERR(FDEV(i).bdev);
2343
2344                 /* to release errored devices */
2345                 sbi->s_ndevs = i + 1;
2346
2347 #ifdef CONFIG_BLK_DEV_ZONED
2348                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2349                                 !f2fs_sb_mounted_blkzoned(sbi->sb)) {
2350                         f2fs_msg(sbi->sb, KERN_ERR,
2351                                 "Zoned block device feature not enabled\n");
2352                         return -EINVAL;
2353                 }
2354                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2355                         if (init_blkz_info(sbi, i)) {
2356                                 f2fs_msg(sbi->sb, KERN_ERR,
2357                                         "Failed to initialize F2FS blkzone information");
2358                                 return -EINVAL;
2359                         }
2360                         if (max_devices == 1)
2361                                 break;
2362                         f2fs_msg(sbi->sb, KERN_INFO,
2363                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2364                                 i, FDEV(i).path,
2365                                 FDEV(i).total_segments,
2366                                 FDEV(i).start_blk, FDEV(i).end_blk,
2367                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2368                                 "Host-aware" : "Host-managed");
2369                         continue;
2370                 }
2371 #endif
2372                 f2fs_msg(sbi->sb, KERN_INFO,
2373                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2374                                 i, FDEV(i).path,
2375                                 FDEV(i).total_segments,
2376                                 FDEV(i).start_blk, FDEV(i).end_blk);
2377         }
2378         f2fs_msg(sbi->sb, KERN_INFO,
2379                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2380         return 0;
2381 }
2382
2383 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2384 {
2385         struct f2fs_sb_info *sbi;
2386         struct f2fs_super_block *raw_super;
2387         struct inode *root;
2388         int err;
2389         bool retry = true, need_fsck = false;
2390         char *options = NULL;
2391         int recovery, i, valid_super_block;
2392         struct curseg_info *seg_i;
2393
2394 try_onemore:
2395         err = -EINVAL;
2396         raw_super = NULL;
2397         valid_super_block = -1;
2398         recovery = 0;
2399
2400         /* allocate memory for f2fs-specific super block info */
2401         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2402         if (!sbi)
2403                 return -ENOMEM;
2404
2405         sbi->sb = sb;
2406
2407         /* Load the checksum driver */
2408         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2409         if (IS_ERR(sbi->s_chksum_driver)) {
2410                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2411                 err = PTR_ERR(sbi->s_chksum_driver);
2412                 sbi->s_chksum_driver = NULL;
2413                 goto free_sbi;
2414         }
2415
2416         /* set a block size */
2417         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2418                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2419                 goto free_sbi;
2420         }
2421
2422         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2423                                                                 &recovery);
2424         if (err)
2425                 goto free_sbi;
2426
2427         sb->s_fs_info = sbi;
2428         sbi->raw_super = raw_super;
2429
2430         /* precompute checksum seed for metadata */
2431         if (f2fs_sb_has_inode_chksum(sb))
2432                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2433                                                 sizeof(raw_super->uuid));
2434
2435         /*
2436          * The BLKZONED feature indicates that the drive was formatted with
2437          * zone alignment optimization. This is optional for host-aware
2438          * devices, but mandatory for host-managed zoned block devices.
2439          */
2440 #ifndef CONFIG_BLK_DEV_ZONED
2441         if (f2fs_sb_mounted_blkzoned(sb)) {
2442                 f2fs_msg(sb, KERN_ERR,
2443                          "Zoned block device support is not enabled\n");
2444                 err = -EOPNOTSUPP;
2445                 goto free_sb_buf;
2446         }
2447 #endif
2448         default_options(sbi);
2449         /* parse mount options */
2450         options = kstrdup((const char *)data, GFP_KERNEL);
2451         if (data && !options) {
2452                 err = -ENOMEM;
2453                 goto free_sb_buf;
2454         }
2455
2456         err = parse_options(sb, options);
2457         if (err)
2458                 goto free_options;
2459
2460         sbi->max_file_blocks = max_file_blocks();
2461         sb->s_maxbytes = sbi->max_file_blocks <<
2462                                 le32_to_cpu(raw_super->log_blocksize);
2463         sb->s_max_links = F2FS_LINK_MAX;
2464         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2465
2466 #ifdef CONFIG_QUOTA
2467         sb->dq_op = &f2fs_quota_operations;
2468         if (f2fs_sb_has_quota_ino(sb))
2469                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
2470         else
2471                 sb->s_qcop = &f2fs_quotactl_ops;
2472         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2473 #endif
2474
2475         sb->s_op = &f2fs_sops;
2476 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2477         sb->s_cop = &f2fs_cryptops;
2478 #endif
2479         sb->s_xattr = f2fs_xattr_handlers;
2480         sb->s_export_op = &f2fs_export_ops;
2481         sb->s_magic = F2FS_SUPER_MAGIC;
2482         sb->s_time_gran = 1;
2483         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2484                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
2485         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2486
2487         /* init f2fs-specific super block info */
2488         sbi->valid_super_block = valid_super_block;
2489         mutex_init(&sbi->gc_mutex);
2490         mutex_init(&sbi->cp_mutex);
2491         init_rwsem(&sbi->node_write);
2492         init_rwsem(&sbi->node_change);
2493
2494         /* disallow all the data/node/meta page writes */
2495         set_sbi_flag(sbi, SBI_POR_DOING);
2496         spin_lock_init(&sbi->stat_lock);
2497
2498         /* init iostat info */
2499         spin_lock_init(&sbi->iostat_lock);
2500         sbi->iostat_enable = false;
2501
2502         for (i = 0; i < NR_PAGE_TYPE; i++) {
2503                 int n = (i == META) ? 1: NR_TEMP_TYPE;
2504                 int j;
2505
2506                 sbi->write_io[i] = kmalloc(n * sizeof(struct f2fs_bio_info),
2507                                                                 GFP_KERNEL);
2508                 if (!sbi->write_io[i]) {
2509                         err = -ENOMEM;
2510                         goto free_options;
2511                 }
2512
2513                 for (j = HOT; j < n; j++) {
2514                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
2515                         sbi->write_io[i][j].sbi = sbi;
2516                         sbi->write_io[i][j].bio = NULL;
2517                         spin_lock_init(&sbi->write_io[i][j].io_lock);
2518                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2519                 }
2520         }
2521
2522         init_rwsem(&sbi->cp_rwsem);
2523         init_waitqueue_head(&sbi->cp_wait);
2524         init_sb_info(sbi);
2525
2526         err = init_percpu_info(sbi);
2527         if (err)
2528                 goto free_options;
2529
2530         if (F2FS_IO_SIZE(sbi) > 1) {
2531                 sbi->write_io_dummy =
2532                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2533                 if (!sbi->write_io_dummy) {
2534                         err = -ENOMEM;
2535                         goto free_options;
2536                 }
2537         }
2538
2539         /* get an inode for meta space */
2540         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2541         if (IS_ERR(sbi->meta_inode)) {
2542                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2543                 err = PTR_ERR(sbi->meta_inode);
2544                 goto free_io_dummy;
2545         }
2546
2547         err = get_valid_checkpoint(sbi);
2548         if (err) {
2549                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2550                 goto free_meta_inode;
2551         }
2552
2553         /* Initialize device list */
2554         err = f2fs_scan_devices(sbi);
2555         if (err) {
2556                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2557                 goto free_devices;
2558         }
2559
2560         sbi->total_valid_node_count =
2561                                 le32_to_cpu(sbi->ckpt->valid_node_count);
2562         percpu_counter_set(&sbi->total_valid_inode_count,
2563                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
2564         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2565         sbi->total_valid_block_count =
2566                                 le64_to_cpu(sbi->ckpt->valid_block_count);
2567         sbi->last_valid_block_count = sbi->total_valid_block_count;
2568         sbi->reserved_blocks = 0;
2569         sbi->current_reserved_blocks = 0;
2570
2571         for (i = 0; i < NR_INODE_TYPE; i++) {
2572                 INIT_LIST_HEAD(&sbi->inode_list[i]);
2573                 spin_lock_init(&sbi->inode_lock[i]);
2574         }
2575
2576         init_extent_cache_info(sbi);
2577
2578         init_ino_entry_info(sbi);
2579
2580         /* setup f2fs internal modules */
2581         err = build_segment_manager(sbi);
2582         if (err) {
2583                 f2fs_msg(sb, KERN_ERR,
2584                         "Failed to initialize F2FS segment manager");
2585                 goto free_sm;
2586         }
2587         err = build_node_manager(sbi);
2588         if (err) {
2589                 f2fs_msg(sb, KERN_ERR,
2590                         "Failed to initialize F2FS node manager");
2591                 goto free_nm;
2592         }
2593
2594         /* For write statistics */
2595         if (sb->s_bdev->bd_part)
2596                 sbi->sectors_written_start =
2597                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2598
2599         /* Read accumulated write IO statistics if exists */
2600         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2601         if (__exist_node_summaries(sbi))
2602                 sbi->kbytes_written =
2603                         le64_to_cpu(seg_i->journal->info.kbytes_written);
2604
2605         build_gc_manager(sbi);
2606
2607         /* get an inode for node space */
2608         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2609         if (IS_ERR(sbi->node_inode)) {
2610                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2611                 err = PTR_ERR(sbi->node_inode);
2612                 goto free_nm;
2613         }
2614
2615         f2fs_join_shrinker(sbi);
2616
2617         err = f2fs_build_stats(sbi);
2618         if (err)
2619                 goto free_nm;
2620
2621         /* read root inode and dentry */
2622         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2623         if (IS_ERR(root)) {
2624                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2625                 err = PTR_ERR(root);
2626                 goto free_node_inode;
2627         }
2628         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2629                 iput(root);
2630                 err = -EINVAL;
2631                 goto free_node_inode;
2632         }
2633
2634         sb->s_root = d_make_root(root); /* allocate root dentry */
2635         if (!sb->s_root) {
2636                 err = -ENOMEM;
2637                 goto free_root_inode;
2638         }
2639
2640         err = f2fs_register_sysfs(sbi);
2641         if (err)
2642                 goto free_root_inode;
2643
2644 #ifdef CONFIG_QUOTA
2645         /*
2646          * Turn on quotas which were not enabled for read-only mounts if
2647          * filesystem has quota feature, so that they are updated correctly.
2648          */
2649         if (f2fs_sb_has_quota_ino(sb) && !sb_rdonly(sb)) {
2650                 err = f2fs_enable_quotas(sb);
2651                 if (err) {
2652                         f2fs_msg(sb, KERN_ERR,
2653                                 "Cannot turn on quotas: error %d", err);
2654                         goto free_sysfs;
2655                 }
2656         }
2657 #endif
2658         /* if there are nt orphan nodes free them */
2659         err = recover_orphan_inodes(sbi);
2660         if (err)
2661                 goto free_meta;
2662
2663         /* recover fsynced data */
2664         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2665                 /*
2666                  * mount should be failed, when device has readonly mode, and
2667                  * previous checkpoint was not done by clean system shutdown.
2668                  */
2669                 if (bdev_read_only(sb->s_bdev) &&
2670                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2671                         err = -EROFS;
2672                         goto free_meta;
2673                 }
2674
2675                 if (need_fsck)
2676                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2677
2678                 if (!retry)
2679                         goto skip_recovery;
2680
2681                 err = recover_fsync_data(sbi, false);
2682                 if (err < 0) {
2683                         need_fsck = true;
2684                         f2fs_msg(sb, KERN_ERR,
2685                                 "Cannot recover all fsync data errno=%d", err);
2686                         goto free_meta;
2687                 }
2688         } else {
2689                 err = recover_fsync_data(sbi, true);
2690
2691                 if (!f2fs_readonly(sb) && err > 0) {
2692                         err = -EINVAL;
2693                         f2fs_msg(sb, KERN_ERR,
2694                                 "Need to recover fsync data");
2695                         goto free_meta;
2696                 }
2697         }
2698 skip_recovery:
2699         /* recover_fsync_data() cleared this already */
2700         clear_sbi_flag(sbi, SBI_POR_DOING);
2701
2702         /*
2703          * If filesystem is not mounted as read-only then
2704          * do start the gc_thread.
2705          */
2706         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2707                 /* After POR, we can run background GC thread.*/
2708                 err = start_gc_thread(sbi);
2709                 if (err)
2710                         goto free_meta;
2711         }
2712         kfree(options);
2713
2714         /* recover broken superblock */
2715         if (recovery) {
2716                 err = f2fs_commit_super(sbi, true);
2717                 f2fs_msg(sb, KERN_INFO,
2718                         "Try to recover %dth superblock, ret: %d",
2719                         sbi->valid_super_block ? 1 : 2, err);
2720         }
2721
2722         f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2723                                 cur_cp_version(F2FS_CKPT(sbi)));
2724         f2fs_update_time(sbi, CP_TIME);
2725         f2fs_update_time(sbi, REQ_TIME);
2726         return 0;
2727
2728 free_meta:
2729 #ifdef CONFIG_QUOTA
2730         if (f2fs_sb_has_quota_ino(sb) && !sb_rdonly(sb))
2731                 f2fs_quota_off_umount(sbi->sb);
2732 #endif
2733         f2fs_sync_inode_meta(sbi);
2734         /*
2735          * Some dirty meta pages can be produced by recover_orphan_inodes()
2736          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2737          * followed by write_checkpoint() through f2fs_write_node_pages(), which
2738          * falls into an infinite loop in sync_meta_pages().
2739          */
2740         truncate_inode_pages_final(META_MAPPING(sbi));
2741 #ifdef CONFIG_QUOTA
2742 free_sysfs:
2743 #endif
2744         f2fs_unregister_sysfs(sbi);
2745 free_root_inode:
2746         dput(sb->s_root);
2747         sb->s_root = NULL;
2748 free_node_inode:
2749         truncate_inode_pages_final(NODE_MAPPING(sbi));
2750         mutex_lock(&sbi->umount_mutex);
2751         release_ino_entry(sbi, true);
2752         f2fs_leave_shrinker(sbi);
2753         iput(sbi->node_inode);
2754         mutex_unlock(&sbi->umount_mutex);
2755         f2fs_destroy_stats(sbi);
2756 free_nm:
2757         destroy_node_manager(sbi);
2758 free_sm:
2759         destroy_segment_manager(sbi);
2760 free_devices:
2761         destroy_device_list(sbi);
2762         kfree(sbi->ckpt);
2763 free_meta_inode:
2764         make_bad_inode(sbi->meta_inode);
2765         iput(sbi->meta_inode);
2766 free_io_dummy:
2767         mempool_destroy(sbi->write_io_dummy);
2768 free_options:
2769         for (i = 0; i < NR_PAGE_TYPE; i++)
2770                 kfree(sbi->write_io[i]);
2771         destroy_percpu_info(sbi);
2772 #ifdef CONFIG_QUOTA
2773         for (i = 0; i < MAXQUOTAS; i++)
2774                 kfree(sbi->s_qf_names[i]);
2775 #endif
2776         kfree(options);
2777 free_sb_buf:
2778         kfree(raw_super);
2779 free_sbi:
2780         if (sbi->s_chksum_driver)
2781                 crypto_free_shash(sbi->s_chksum_driver);
2782         kfree(sbi);
2783
2784         /* give only one another chance */
2785         if (retry) {
2786                 retry = false;
2787                 shrink_dcache_sb(sb);
2788                 goto try_onemore;
2789         }
2790         return err;
2791 }
2792
2793 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2794                         const char *dev_name, void *data)
2795 {
2796         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2797 }
2798
2799 static void kill_f2fs_super(struct super_block *sb)
2800 {
2801         if (sb->s_root) {
2802                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2803                 stop_gc_thread(F2FS_SB(sb));
2804                 stop_discard_thread(F2FS_SB(sb));
2805         }
2806         kill_block_super(sb);
2807 }
2808
2809 static struct file_system_type f2fs_fs_type = {
2810         .owner          = THIS_MODULE,
2811         .name           = "f2fs",
2812         .mount          = f2fs_mount,
2813         .kill_sb        = kill_f2fs_super,
2814         .fs_flags       = FS_REQUIRES_DEV,
2815 };
2816 MODULE_ALIAS_FS("f2fs");
2817
2818 static int __init init_inodecache(void)
2819 {
2820         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2821                         sizeof(struct f2fs_inode_info), 0,
2822                         SLAB_RECLAIM_ACCOUNT, NULL);
2823         if (!f2fs_inode_cachep)
2824                 return -ENOMEM;
2825         return 0;
2826 }
2827
2828 static void destroy_inodecache(void)
2829 {
2830         /*
2831          * Make sure all delayed rcu free inodes are flushed before we
2832          * destroy cache.
2833          */
2834         rcu_barrier();
2835         kmem_cache_destroy(f2fs_inode_cachep);
2836 }
2837
2838 static int __init init_f2fs_fs(void)
2839 {
2840         int err;
2841
2842         f2fs_build_trace_ios();
2843
2844         err = init_inodecache();
2845         if (err)
2846                 goto fail;
2847         err = create_node_manager_caches();
2848         if (err)
2849                 goto free_inodecache;
2850         err = create_segment_manager_caches();
2851         if (err)
2852                 goto free_node_manager_caches;
2853         err = create_checkpoint_caches();
2854         if (err)
2855                 goto free_segment_manager_caches;
2856         err = create_extent_cache();
2857         if (err)
2858                 goto free_checkpoint_caches;
2859         err = f2fs_init_sysfs();
2860         if (err)
2861                 goto free_extent_cache;
2862         err = register_shrinker(&f2fs_shrinker_info);
2863         if (err)
2864                 goto free_sysfs;
2865         err = register_filesystem(&f2fs_fs_type);
2866         if (err)
2867                 goto free_shrinker;
2868         err = f2fs_create_root_stats();
2869         if (err)
2870                 goto free_filesystem;
2871         return 0;
2872
2873 free_filesystem:
2874         unregister_filesystem(&f2fs_fs_type);
2875 free_shrinker:
2876         unregister_shrinker(&f2fs_shrinker_info);
2877 free_sysfs:
2878         f2fs_exit_sysfs();
2879 free_extent_cache:
2880         destroy_extent_cache();
2881 free_checkpoint_caches:
2882         destroy_checkpoint_caches();
2883 free_segment_manager_caches:
2884         destroy_segment_manager_caches();
2885 free_node_manager_caches:
2886         destroy_node_manager_caches();
2887 free_inodecache:
2888         destroy_inodecache();
2889 fail:
2890         return err;
2891 }
2892
2893 static void __exit exit_f2fs_fs(void)
2894 {
2895         f2fs_destroy_root_stats();
2896         unregister_filesystem(&f2fs_fs_type);
2897         unregister_shrinker(&f2fs_shrinker_info);
2898         f2fs_exit_sysfs();
2899         destroy_extent_cache();
2900         destroy_checkpoint_caches();
2901         destroy_segment_manager_caches();
2902         destroy_node_manager_caches();
2903         destroy_inodecache();
2904         f2fs_destroy_trace_ios();
2905 }
2906
2907 module_init(init_f2fs_fs)
2908 module_exit(exit_f2fs_fs)
2909
2910 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2911 MODULE_DESCRIPTION("Flash Friendly File System");
2912 MODULE_LICENSE("GPL");
2913