OSDN Git Service

net: fec: Fix unbalanced PM runtime calls
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         enum wb_reason reason;          /* why was writeback initiated? */
57
58         struct list_head list;          /* pending work list */
59         struct wb_completion *done;     /* set if the caller waits */
60 };
61
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
70         struct wb_completion cmpl = {                                   \
71                 .cnt            = ATOMIC_INIT(1),                       \
72         }
73
74
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89         return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104         if (wb_has_dirty_io(wb)) {
105                 return false;
106         } else {
107                 set_bit(WB_has_dirty_io, &wb->state);
108                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109                 atomic_long_add(wb->avg_write_bandwidth,
110                                 &wb->bdi->tot_write_bandwidth);
111                 return true;
112         }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119                 clear_bit(WB_has_dirty_io, &wb->state);
120                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121                                         &wb->bdi->tot_write_bandwidth) < 0);
122         }
123 }
124
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136                                       struct bdi_writeback *wb,
137                                       struct list_head *head)
138 {
139         assert_spin_locked(&wb->list_lock);
140
141         list_move(&inode->i_io_list, head);
142
143         /* dirty_time doesn't count as dirty_io until expiration */
144         if (head != &wb->b_dirty_time)
145                 return wb_io_lists_populated(wb);
146
147         wb_io_lists_depopulated(wb);
148         return false;
149 }
150
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160                                      struct bdi_writeback *wb)
161 {
162         assert_spin_locked(&wb->list_lock);
163
164         list_del_init(&inode->i_io_list);
165         wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170         spin_lock_bh(&wb->work_lock);
171         if (test_bit(WB_registered, &wb->state))
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177                                   struct wb_writeback_work *work)
178 {
179         struct wb_completion *done = work->done;
180
181         if (work->auto_free)
182                 kfree(work);
183         if (done && atomic_dec_and_test(&done->cnt))
184                 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188                           struct wb_writeback_work *work)
189 {
190         trace_writeback_queue(wb, work);
191
192         if (work->done)
193                 atomic_inc(&work->done->cnt);
194
195         spin_lock_bh(&wb->work_lock);
196
197         if (test_bit(WB_registered, &wb->state)) {
198                 list_add_tail(&work->list, &wb->work_list);
199                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200         } else
201                 finish_writeback_work(wb, work);
202
203         spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218                                    struct wb_completion *done)
219 {
220         atomic_dec(&done->cnt);         /* put down the initial count */
221         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
231
232 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234                                         /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
236                                         /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238                                         /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245         struct backing_dev_info *bdi = inode_to_bdi(inode);
246         struct bdi_writeback *wb = NULL;
247
248         if (inode_cgwb_enabled(inode)) {
249                 struct cgroup_subsys_state *memcg_css;
250
251                 if (page) {
252                         memcg_css = mem_cgroup_css_from_page(page);
253                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254                 } else {
255                         /* must pin memcg_css, see wb_get_create() */
256                         memcg_css = task_get_css(current, memory_cgrp_id);
257                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258                         css_put(memcg_css);
259                 }
260         }
261
262         if (!wb)
263                 wb = &bdi->wb;
264
265         /*
266          * There may be multiple instances of this function racing to
267          * update the same inode.  Use cmpxchg() to tell the winner.
268          */
269         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270                 wb_put(wb);
271 }
272
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283         __releases(&inode->i_lock)
284         __acquires(&wb->list_lock)
285 {
286         while (true) {
287                 struct bdi_writeback *wb = inode_to_wb(inode);
288
289                 /*
290                  * inode_to_wb() association is protected by both
291                  * @inode->i_lock and @wb->list_lock but list_lock nests
292                  * outside i_lock.  Drop i_lock and verify that the
293                  * association hasn't changed after acquiring list_lock.
294                  */
295                 wb_get(wb);
296                 spin_unlock(&inode->i_lock);
297                 spin_lock(&wb->list_lock);
298
299                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300                 if (likely(wb == inode->i_wb)) {
301                         wb_put(wb);     /* @inode already has ref */
302                         return wb;
303                 }
304
305                 spin_unlock(&wb->list_lock);
306                 wb_put(wb);
307                 cpu_relax();
308                 spin_lock(&inode->i_lock);
309         }
310 }
311
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320         __acquires(&wb->list_lock)
321 {
322         spin_lock(&inode->i_lock);
323         return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327         struct inode            *inode;
328         struct bdi_writeback    *new_wb;
329
330         struct rcu_head         rcu_head;
331         struct work_struct      work;
332 };
333
334 static void inode_switch_wbs_work_fn(struct work_struct *work)
335 {
336         struct inode_switch_wbs_context *isw =
337                 container_of(work, struct inode_switch_wbs_context, work);
338         struct inode *inode = isw->inode;
339         struct address_space *mapping = inode->i_mapping;
340         struct bdi_writeback *old_wb = inode->i_wb;
341         struct bdi_writeback *new_wb = isw->new_wb;
342         struct radix_tree_iter iter;
343         bool switched = false;
344         void **slot;
345
346         /*
347          * By the time control reaches here, RCU grace period has passed
348          * since I_WB_SWITCH assertion and all wb stat update transactions
349          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
350          * synchronizing against mapping->tree_lock.
351          *
352          * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
353          * gives us exclusion against all wb related operations on @inode
354          * including IO list manipulations and stat updates.
355          */
356         if (old_wb < new_wb) {
357                 spin_lock(&old_wb->list_lock);
358                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
359         } else {
360                 spin_lock(&new_wb->list_lock);
361                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
362         }
363         spin_lock(&inode->i_lock);
364         spin_lock_irq(&mapping->tree_lock);
365
366         /*
367          * Once I_FREEING is visible under i_lock, the eviction path owns
368          * the inode and we shouldn't modify ->i_io_list.
369          */
370         if (unlikely(inode->i_state & I_FREEING))
371                 goto skip_switch;
372
373         /*
374          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
375          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
376          * pages actually under underwriteback.
377          */
378         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
379                                    PAGECACHE_TAG_DIRTY) {
380                 struct page *page = radix_tree_deref_slot_protected(slot,
381                                                         &mapping->tree_lock);
382                 if (likely(page) && PageDirty(page)) {
383                         __dec_wb_stat(old_wb, WB_RECLAIMABLE);
384                         __inc_wb_stat(new_wb, WB_RECLAIMABLE);
385                 }
386         }
387
388         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
389                                    PAGECACHE_TAG_WRITEBACK) {
390                 struct page *page = radix_tree_deref_slot_protected(slot,
391                                                         &mapping->tree_lock);
392                 if (likely(page)) {
393                         WARN_ON_ONCE(!PageWriteback(page));
394                         __dec_wb_stat(old_wb, WB_WRITEBACK);
395                         __inc_wb_stat(new_wb, WB_WRITEBACK);
396                 }
397         }
398
399         wb_get(new_wb);
400
401         /*
402          * Transfer to @new_wb's IO list if necessary.  The specific list
403          * @inode was on is ignored and the inode is put on ->b_dirty which
404          * is always correct including from ->b_dirty_time.  The transfer
405          * preserves @inode->dirtied_when ordering.
406          */
407         if (!list_empty(&inode->i_io_list)) {
408                 struct inode *pos;
409
410                 inode_io_list_del_locked(inode, old_wb);
411                 inode->i_wb = new_wb;
412                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
413                         if (time_after_eq(inode->dirtied_when,
414                                           pos->dirtied_when))
415                                 break;
416                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
417         } else {
418                 inode->i_wb = new_wb;
419         }
420
421         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
422         inode->i_wb_frn_winner = 0;
423         inode->i_wb_frn_avg_time = 0;
424         inode->i_wb_frn_history = 0;
425         switched = true;
426 skip_switch:
427         /*
428          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
429          * ensures that the new wb is visible if they see !I_WB_SWITCH.
430          */
431         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
432
433         spin_unlock_irq(&mapping->tree_lock);
434         spin_unlock(&inode->i_lock);
435         spin_unlock(&new_wb->list_lock);
436         spin_unlock(&old_wb->list_lock);
437
438         if (switched) {
439                 wb_wakeup(new_wb);
440                 wb_put(old_wb);
441         }
442         wb_put(new_wb);
443
444         iput(inode);
445         kfree(isw);
446
447         atomic_dec(&isw_nr_in_flight);
448 }
449
450 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
451 {
452         struct inode_switch_wbs_context *isw = container_of(rcu_head,
453                                 struct inode_switch_wbs_context, rcu_head);
454
455         /* needs to grab bh-unsafe locks, bounce to work item */
456         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
457         queue_work(isw_wq, &isw->work);
458 }
459
460 /**
461  * inode_switch_wbs - change the wb association of an inode
462  * @inode: target inode
463  * @new_wb_id: ID of the new wb
464  *
465  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
466  * switching is performed asynchronously and may fail silently.
467  */
468 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
469 {
470         struct backing_dev_info *bdi = inode_to_bdi(inode);
471         struct cgroup_subsys_state *memcg_css;
472         struct inode_switch_wbs_context *isw;
473
474         /* noop if seems to be already in progress */
475         if (inode->i_state & I_WB_SWITCH)
476                 return;
477
478         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
479         if (!isw)
480                 return;
481
482         /* find and pin the new wb */
483         rcu_read_lock();
484         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
485         if (memcg_css)
486                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
487         rcu_read_unlock();
488         if (!isw->new_wb)
489                 goto out_free;
490
491         /* while holding I_WB_SWITCH, no one else can update the association */
492         spin_lock(&inode->i_lock);
493         if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
494             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
495             inode_to_wb(inode) == isw->new_wb) {
496                 spin_unlock(&inode->i_lock);
497                 goto out_free;
498         }
499         inode->i_state |= I_WB_SWITCH;
500         spin_unlock(&inode->i_lock);
501
502         ihold(inode);
503         isw->inode = inode;
504
505         atomic_inc(&isw_nr_in_flight);
506
507         /*
508          * In addition to synchronizing among switchers, I_WB_SWITCH tells
509          * the RCU protected stat update paths to grab the mapping's
510          * tree_lock so that stat transfer can synchronize against them.
511          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
512          */
513         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
514         return;
515
516 out_free:
517         if (isw->new_wb)
518                 wb_put(isw->new_wb);
519         kfree(isw);
520 }
521
522 /**
523  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
524  * @wbc: writeback_control of interest
525  * @inode: target inode
526  *
527  * @inode is locked and about to be written back under the control of @wbc.
528  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
529  * writeback completion, wbc_detach_inode() should be called.  This is used
530  * to track the cgroup writeback context.
531  */
532 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
533                                  struct inode *inode)
534 {
535         if (!inode_cgwb_enabled(inode)) {
536                 spin_unlock(&inode->i_lock);
537                 return;
538         }
539
540         wbc->wb = inode_to_wb(inode);
541         wbc->inode = inode;
542
543         wbc->wb_id = wbc->wb->memcg_css->id;
544         wbc->wb_lcand_id = inode->i_wb_frn_winner;
545         wbc->wb_tcand_id = 0;
546         wbc->wb_bytes = 0;
547         wbc->wb_lcand_bytes = 0;
548         wbc->wb_tcand_bytes = 0;
549
550         wb_get(wbc->wb);
551         spin_unlock(&inode->i_lock);
552
553         /*
554          * A dying wb indicates that the memcg-blkcg mapping has changed
555          * and a new wb is already serving the memcg.  Switch immediately.
556          */
557         if (unlikely(wb_dying(wbc->wb)))
558                 inode_switch_wbs(inode, wbc->wb_id);
559 }
560
561 /**
562  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
563  * @wbc: writeback_control of the just finished writeback
564  *
565  * To be called after a writeback attempt of an inode finishes and undoes
566  * wbc_attach_and_unlock_inode().  Can be called under any context.
567  *
568  * As concurrent write sharing of an inode is expected to be very rare and
569  * memcg only tracks page ownership on first-use basis severely confining
570  * the usefulness of such sharing, cgroup writeback tracks ownership
571  * per-inode.  While the support for concurrent write sharing of an inode
572  * is deemed unnecessary, an inode being written to by different cgroups at
573  * different points in time is a lot more common, and, more importantly,
574  * charging only by first-use can too readily lead to grossly incorrect
575  * behaviors (single foreign page can lead to gigabytes of writeback to be
576  * incorrectly attributed).
577  *
578  * To resolve this issue, cgroup writeback detects the majority dirtier of
579  * an inode and transfers the ownership to it.  To avoid unnnecessary
580  * oscillation, the detection mechanism keeps track of history and gives
581  * out the switch verdict only if the foreign usage pattern is stable over
582  * a certain amount of time and/or writeback attempts.
583  *
584  * On each writeback attempt, @wbc tries to detect the majority writer
585  * using Boyer-Moore majority vote algorithm.  In addition to the byte
586  * count from the majority voting, it also counts the bytes written for the
587  * current wb and the last round's winner wb (max of last round's current
588  * wb, the winner from two rounds ago, and the last round's majority
589  * candidate).  Keeping track of the historical winner helps the algorithm
590  * to semi-reliably detect the most active writer even when it's not the
591  * absolute majority.
592  *
593  * Once the winner of the round is determined, whether the winner is
594  * foreign or not and how much IO time the round consumed is recorded in
595  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
596  * over a certain threshold, the switch verdict is given.
597  */
598 void wbc_detach_inode(struct writeback_control *wbc)
599 {
600         struct bdi_writeback *wb = wbc->wb;
601         struct inode *inode = wbc->inode;
602         unsigned long avg_time, max_bytes, max_time;
603         u16 history;
604         int max_id;
605
606         if (!wb)
607                 return;
608
609         history = inode->i_wb_frn_history;
610         avg_time = inode->i_wb_frn_avg_time;
611
612         /* pick the winner of this round */
613         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
614             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
615                 max_id = wbc->wb_id;
616                 max_bytes = wbc->wb_bytes;
617         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
618                 max_id = wbc->wb_lcand_id;
619                 max_bytes = wbc->wb_lcand_bytes;
620         } else {
621                 max_id = wbc->wb_tcand_id;
622                 max_bytes = wbc->wb_tcand_bytes;
623         }
624
625         /*
626          * Calculate the amount of IO time the winner consumed and fold it
627          * into the running average kept per inode.  If the consumed IO
628          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
629          * deciding whether to switch or not.  This is to prevent one-off
630          * small dirtiers from skewing the verdict.
631          */
632         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
633                                 wb->avg_write_bandwidth);
634         if (avg_time)
635                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
636                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
637         else
638                 avg_time = max_time;    /* immediate catch up on first run */
639
640         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
641                 int slots;
642
643                 /*
644                  * The switch verdict is reached if foreign wb's consume
645                  * more than a certain proportion of IO time in a
646                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
647                  * history mask where each bit represents one sixteenth of
648                  * the period.  Determine the number of slots to shift into
649                  * history from @max_time.
650                  */
651                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
652                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
653                 history <<= slots;
654                 if (wbc->wb_id != max_id)
655                         history |= (1U << slots) - 1;
656
657                 /*
658                  * Switch if the current wb isn't the consistent winner.
659                  * If there are multiple closely competing dirtiers, the
660                  * inode may switch across them repeatedly over time, which
661                  * is okay.  The main goal is avoiding keeping an inode on
662                  * the wrong wb for an extended period of time.
663                  */
664                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
665                         inode_switch_wbs(inode, max_id);
666         }
667
668         /*
669          * Multiple instances of this function may race to update the
670          * following fields but we don't mind occassional inaccuracies.
671          */
672         inode->i_wb_frn_winner = max_id;
673         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
674         inode->i_wb_frn_history = history;
675
676         wb_put(wbc->wb);
677         wbc->wb = NULL;
678 }
679
680 /**
681  * wbc_account_io - account IO issued during writeback
682  * @wbc: writeback_control of the writeback in progress
683  * @page: page being written out
684  * @bytes: number of bytes being written out
685  *
686  * @bytes from @page are about to written out during the writeback
687  * controlled by @wbc.  Keep the book for foreign inode detection.  See
688  * wbc_detach_inode().
689  */
690 void wbc_account_io(struct writeback_control *wbc, struct page *page,
691                     size_t bytes)
692 {
693         int id;
694
695         /*
696          * pageout() path doesn't attach @wbc to the inode being written
697          * out.  This is intentional as we don't want the function to block
698          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
699          * regular writeback instead of writing things out itself.
700          */
701         if (!wbc->wb)
702                 return;
703
704         rcu_read_lock();
705         id = mem_cgroup_css_from_page(page)->id;
706         rcu_read_unlock();
707
708         if (id == wbc->wb_id) {
709                 wbc->wb_bytes += bytes;
710                 return;
711         }
712
713         if (id == wbc->wb_lcand_id)
714                 wbc->wb_lcand_bytes += bytes;
715
716         /* Boyer-Moore majority vote algorithm */
717         if (!wbc->wb_tcand_bytes)
718                 wbc->wb_tcand_id = id;
719         if (id == wbc->wb_tcand_id)
720                 wbc->wb_tcand_bytes += bytes;
721         else
722                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
723 }
724 EXPORT_SYMBOL_GPL(wbc_account_io);
725
726 /**
727  * inode_congested - test whether an inode is congested
728  * @inode: inode to test for congestion (may be NULL)
729  * @cong_bits: mask of WB_[a]sync_congested bits to test
730  *
731  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
732  * bits to test and the return value is the mask of set bits.
733  *
734  * If cgroup writeback is enabled for @inode, the congestion state is
735  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
736  * associated with @inode is congested; otherwise, the root wb's congestion
737  * state is used.
738  *
739  * @inode is allowed to be NULL as this function is often called on
740  * mapping->host which is NULL for the swapper space.
741  */
742 int inode_congested(struct inode *inode, int cong_bits)
743 {
744         /*
745          * Once set, ->i_wb never becomes NULL while the inode is alive.
746          * Start transaction iff ->i_wb is visible.
747          */
748         if (inode && inode_to_wb_is_valid(inode)) {
749                 struct bdi_writeback *wb;
750                 bool locked, congested;
751
752                 wb = unlocked_inode_to_wb_begin(inode, &locked);
753                 congested = wb_congested(wb, cong_bits);
754                 unlocked_inode_to_wb_end(inode, locked);
755                 return congested;
756         }
757
758         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
759 }
760 EXPORT_SYMBOL_GPL(inode_congested);
761
762 /**
763  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
764  * @wb: target bdi_writeback to split @nr_pages to
765  * @nr_pages: number of pages to write for the whole bdi
766  *
767  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
768  * relation to the total write bandwidth of all wb's w/ dirty inodes on
769  * @wb->bdi.
770  */
771 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
772 {
773         unsigned long this_bw = wb->avg_write_bandwidth;
774         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
775
776         if (nr_pages == LONG_MAX)
777                 return LONG_MAX;
778
779         /*
780          * This may be called on clean wb's and proportional distribution
781          * may not make sense, just use the original @nr_pages in those
782          * cases.  In general, we wanna err on the side of writing more.
783          */
784         if (!tot_bw || this_bw >= tot_bw)
785                 return nr_pages;
786         else
787                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
788 }
789
790 /**
791  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
792  * @bdi: target backing_dev_info
793  * @base_work: wb_writeback_work to issue
794  * @skip_if_busy: skip wb's which already have writeback in progress
795  *
796  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
797  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
798  * distributed to the busy wbs according to each wb's proportion in the
799  * total active write bandwidth of @bdi.
800  */
801 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
802                                   struct wb_writeback_work *base_work,
803                                   bool skip_if_busy)
804 {
805         struct bdi_writeback *last_wb = NULL;
806         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
807                                               struct bdi_writeback, bdi_node);
808
809         might_sleep();
810 restart:
811         rcu_read_lock();
812         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
813                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
814                 struct wb_writeback_work fallback_work;
815                 struct wb_writeback_work *work;
816                 long nr_pages;
817
818                 if (last_wb) {
819                         wb_put(last_wb);
820                         last_wb = NULL;
821                 }
822
823                 /* SYNC_ALL writes out I_DIRTY_TIME too */
824                 if (!wb_has_dirty_io(wb) &&
825                     (base_work->sync_mode == WB_SYNC_NONE ||
826                      list_empty(&wb->b_dirty_time)))
827                         continue;
828                 if (skip_if_busy && writeback_in_progress(wb))
829                         continue;
830
831                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
832
833                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
834                 if (work) {
835                         *work = *base_work;
836                         work->nr_pages = nr_pages;
837                         work->auto_free = 1;
838                         wb_queue_work(wb, work);
839                         continue;
840                 }
841
842                 /* alloc failed, execute synchronously using on-stack fallback */
843                 work = &fallback_work;
844                 *work = *base_work;
845                 work->nr_pages = nr_pages;
846                 work->auto_free = 0;
847                 work->done = &fallback_work_done;
848
849                 wb_queue_work(wb, work);
850
851                 /*
852                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
853                  * continuing iteration from @wb after dropping and
854                  * regrabbing rcu read lock.
855                  */
856                 wb_get(wb);
857                 last_wb = wb;
858
859                 rcu_read_unlock();
860                 wb_wait_for_completion(bdi, &fallback_work_done);
861                 goto restart;
862         }
863         rcu_read_unlock();
864
865         if (last_wb)
866                 wb_put(last_wb);
867 }
868
869 /**
870  * cgroup_writeback_umount - flush inode wb switches for umount
871  *
872  * This function is called when a super_block is about to be destroyed and
873  * flushes in-flight inode wb switches.  An inode wb switch goes through
874  * RCU and then workqueue, so the two need to be flushed in order to ensure
875  * that all previously scheduled switches are finished.  As wb switches are
876  * rare occurrences and synchronize_rcu() can take a while, perform
877  * flushing iff wb switches are in flight.
878  */
879 void cgroup_writeback_umount(void)
880 {
881         if (atomic_read(&isw_nr_in_flight)) {
882                 synchronize_rcu();
883                 flush_workqueue(isw_wq);
884         }
885 }
886
887 static int __init cgroup_writeback_init(void)
888 {
889         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
890         if (!isw_wq)
891                 return -ENOMEM;
892         return 0;
893 }
894 fs_initcall(cgroup_writeback_init);
895
896 #else   /* CONFIG_CGROUP_WRITEBACK */
897
898 static struct bdi_writeback *
899 locked_inode_to_wb_and_lock_list(struct inode *inode)
900         __releases(&inode->i_lock)
901         __acquires(&wb->list_lock)
902 {
903         struct bdi_writeback *wb = inode_to_wb(inode);
904
905         spin_unlock(&inode->i_lock);
906         spin_lock(&wb->list_lock);
907         return wb;
908 }
909
910 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
911         __acquires(&wb->list_lock)
912 {
913         struct bdi_writeback *wb = inode_to_wb(inode);
914
915         spin_lock(&wb->list_lock);
916         return wb;
917 }
918
919 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
920 {
921         return nr_pages;
922 }
923
924 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
925                                   struct wb_writeback_work *base_work,
926                                   bool skip_if_busy)
927 {
928         might_sleep();
929
930         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
931                 base_work->auto_free = 0;
932                 wb_queue_work(&bdi->wb, base_work);
933         }
934 }
935
936 #endif  /* CONFIG_CGROUP_WRITEBACK */
937
938 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
939                         bool range_cyclic, enum wb_reason reason)
940 {
941         struct wb_writeback_work *work;
942
943         if (!wb_has_dirty_io(wb))
944                 return;
945
946         /*
947          * This is WB_SYNC_NONE writeback, so if allocation fails just
948          * wakeup the thread for old dirty data writeback
949          */
950         work = kzalloc(sizeof(*work), GFP_ATOMIC);
951         if (!work) {
952                 trace_writeback_nowork(wb);
953                 wb_wakeup(wb);
954                 return;
955         }
956
957         work->sync_mode = WB_SYNC_NONE;
958         work->nr_pages  = nr_pages;
959         work->range_cyclic = range_cyclic;
960         work->reason    = reason;
961         work->auto_free = 1;
962
963         wb_queue_work(wb, work);
964 }
965
966 /**
967  * wb_start_background_writeback - start background writeback
968  * @wb: bdi_writback to write from
969  *
970  * Description:
971  *   This makes sure WB_SYNC_NONE background writeback happens. When
972  *   this function returns, it is only guaranteed that for given wb
973  *   some IO is happening if we are over background dirty threshold.
974  *   Caller need not hold sb s_umount semaphore.
975  */
976 void wb_start_background_writeback(struct bdi_writeback *wb)
977 {
978         /*
979          * We just wake up the flusher thread. It will perform background
980          * writeback as soon as there is no other work to do.
981          */
982         trace_writeback_wake_background(wb);
983         wb_wakeup(wb);
984 }
985
986 /*
987  * Remove the inode from the writeback list it is on.
988  */
989 void inode_io_list_del(struct inode *inode)
990 {
991         struct bdi_writeback *wb;
992
993         wb = inode_to_wb_and_lock_list(inode);
994         inode_io_list_del_locked(inode, wb);
995         spin_unlock(&wb->list_lock);
996 }
997
998 /*
999  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1000  * furthest end of its superblock's dirty-inode list.
1001  *
1002  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1003  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1004  * the case then the inode must have been redirtied while it was being written
1005  * out and we don't reset its dirtied_when.
1006  */
1007 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1008 {
1009         if (!list_empty(&wb->b_dirty)) {
1010                 struct inode *tail;
1011
1012                 tail = wb_inode(wb->b_dirty.next);
1013                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1014                         inode->dirtied_when = jiffies;
1015         }
1016         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1017 }
1018
1019 /*
1020  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1021  */
1022 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1023 {
1024         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1025 }
1026
1027 static void inode_sync_complete(struct inode *inode)
1028 {
1029         inode->i_state &= ~I_SYNC;
1030         /* If inode is clean an unused, put it into LRU now... */
1031         inode_add_lru(inode);
1032         /* Waiters must see I_SYNC cleared before being woken up */
1033         smp_mb();
1034         wake_up_bit(&inode->i_state, __I_SYNC);
1035 }
1036
1037 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1038 {
1039         bool ret = time_after(inode->dirtied_when, t);
1040 #ifndef CONFIG_64BIT
1041         /*
1042          * For inodes being constantly redirtied, dirtied_when can get stuck.
1043          * It _appears_ to be in the future, but is actually in distant past.
1044          * This test is necessary to prevent such wrapped-around relative times
1045          * from permanently stopping the whole bdi writeback.
1046          */
1047         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1048 #endif
1049         return ret;
1050 }
1051
1052 #define EXPIRE_DIRTY_ATIME 0x0001
1053
1054 /*
1055  * Move expired (dirtied before work->older_than_this) dirty inodes from
1056  * @delaying_queue to @dispatch_queue.
1057  */
1058 static int move_expired_inodes(struct list_head *delaying_queue,
1059                                struct list_head *dispatch_queue,
1060                                int flags,
1061                                struct wb_writeback_work *work)
1062 {
1063         unsigned long *older_than_this = NULL;
1064         unsigned long expire_time;
1065         LIST_HEAD(tmp);
1066         struct list_head *pos, *node;
1067         struct super_block *sb = NULL;
1068         struct inode *inode;
1069         int do_sb_sort = 0;
1070         int moved = 0;
1071
1072         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1073                 older_than_this = work->older_than_this;
1074         else if (!work->for_sync) {
1075                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1076                 older_than_this = &expire_time;
1077         }
1078         while (!list_empty(delaying_queue)) {
1079                 inode = wb_inode(delaying_queue->prev);
1080                 if (older_than_this &&
1081                     inode_dirtied_after(inode, *older_than_this))
1082                         break;
1083                 list_move(&inode->i_io_list, &tmp);
1084                 moved++;
1085                 if (flags & EXPIRE_DIRTY_ATIME)
1086                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1087                 if (sb_is_blkdev_sb(inode->i_sb))
1088                         continue;
1089                 if (sb && sb != inode->i_sb)
1090                         do_sb_sort = 1;
1091                 sb = inode->i_sb;
1092         }
1093
1094         /* just one sb in list, splice to dispatch_queue and we're done */
1095         if (!do_sb_sort) {
1096                 list_splice(&tmp, dispatch_queue);
1097                 goto out;
1098         }
1099
1100         /* Move inodes from one superblock together */
1101         while (!list_empty(&tmp)) {
1102                 sb = wb_inode(tmp.prev)->i_sb;
1103                 list_for_each_prev_safe(pos, node, &tmp) {
1104                         inode = wb_inode(pos);
1105                         if (inode->i_sb == sb)
1106                                 list_move(&inode->i_io_list, dispatch_queue);
1107                 }
1108         }
1109 out:
1110         return moved;
1111 }
1112
1113 /*
1114  * Queue all expired dirty inodes for io, eldest first.
1115  * Before
1116  *         newly dirtied     b_dirty    b_io    b_more_io
1117  *         =============>    gf         edc     BA
1118  * After
1119  *         newly dirtied     b_dirty    b_io    b_more_io
1120  *         =============>    g          fBAedc
1121  *                                           |
1122  *                                           +--> dequeue for IO
1123  */
1124 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1125 {
1126         int moved;
1127
1128         assert_spin_locked(&wb->list_lock);
1129         list_splice_init(&wb->b_more_io, &wb->b_io);
1130         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1131         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1132                                      EXPIRE_DIRTY_ATIME, work);
1133         if (moved)
1134                 wb_io_lists_populated(wb);
1135         trace_writeback_queue_io(wb, work, moved);
1136 }
1137
1138 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1139 {
1140         int ret;
1141
1142         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1143                 trace_writeback_write_inode_start(inode, wbc);
1144                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1145                 trace_writeback_write_inode(inode, wbc);
1146                 return ret;
1147         }
1148         return 0;
1149 }
1150
1151 /*
1152  * Wait for writeback on an inode to complete. Called with i_lock held.
1153  * Caller must make sure inode cannot go away when we drop i_lock.
1154  */
1155 static void __inode_wait_for_writeback(struct inode *inode)
1156         __releases(inode->i_lock)
1157         __acquires(inode->i_lock)
1158 {
1159         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1160         wait_queue_head_t *wqh;
1161
1162         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1163         while (inode->i_state & I_SYNC) {
1164                 spin_unlock(&inode->i_lock);
1165                 __wait_on_bit(wqh, &wq, bit_wait,
1166                               TASK_UNINTERRUPTIBLE);
1167                 spin_lock(&inode->i_lock);
1168         }
1169 }
1170
1171 /*
1172  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1173  */
1174 void inode_wait_for_writeback(struct inode *inode)
1175 {
1176         spin_lock(&inode->i_lock);
1177         __inode_wait_for_writeback(inode);
1178         spin_unlock(&inode->i_lock);
1179 }
1180
1181 /*
1182  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1183  * held and drops it. It is aimed for callers not holding any inode reference
1184  * so once i_lock is dropped, inode can go away.
1185  */
1186 static void inode_sleep_on_writeback(struct inode *inode)
1187         __releases(inode->i_lock)
1188 {
1189         DEFINE_WAIT(wait);
1190         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1191         int sleep;
1192
1193         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1194         sleep = inode->i_state & I_SYNC;
1195         spin_unlock(&inode->i_lock);
1196         if (sleep)
1197                 schedule();
1198         finish_wait(wqh, &wait);
1199 }
1200
1201 /*
1202  * Find proper writeback list for the inode depending on its current state and
1203  * possibly also change of its state while we were doing writeback.  Here we
1204  * handle things such as livelock prevention or fairness of writeback among
1205  * inodes. This function can be called only by flusher thread - noone else
1206  * processes all inodes in writeback lists and requeueing inodes behind flusher
1207  * thread's back can have unexpected consequences.
1208  */
1209 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1210                           struct writeback_control *wbc)
1211 {
1212         if (inode->i_state & I_FREEING)
1213                 return;
1214
1215         /*
1216          * Sync livelock prevention. Each inode is tagged and synced in one
1217          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1218          * the dirty time to prevent enqueue and sync it again.
1219          */
1220         if ((inode->i_state & I_DIRTY) &&
1221             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1222                 inode->dirtied_when = jiffies;
1223
1224         if (wbc->pages_skipped) {
1225                 /*
1226                  * writeback is not making progress due to locked
1227                  * buffers. Skip this inode for now.
1228                  */
1229                 redirty_tail(inode, wb);
1230                 return;
1231         }
1232
1233         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1234                 /*
1235                  * We didn't write back all the pages.  nfs_writepages()
1236                  * sometimes bales out without doing anything.
1237                  */
1238                 if (wbc->nr_to_write <= 0) {
1239                         /* Slice used up. Queue for next turn. */
1240                         requeue_io(inode, wb);
1241                 } else {
1242                         /*
1243                          * Writeback blocked by something other than
1244                          * congestion. Delay the inode for some time to
1245                          * avoid spinning on the CPU (100% iowait)
1246                          * retrying writeback of the dirty page/inode
1247                          * that cannot be performed immediately.
1248                          */
1249                         redirty_tail(inode, wb);
1250                 }
1251         } else if (inode->i_state & I_DIRTY) {
1252                 /*
1253                  * Filesystems can dirty the inode during writeback operations,
1254                  * such as delayed allocation during submission or metadata
1255                  * updates after data IO completion.
1256                  */
1257                 redirty_tail(inode, wb);
1258         } else if (inode->i_state & I_DIRTY_TIME) {
1259                 inode->dirtied_when = jiffies;
1260                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1261         } else {
1262                 /* The inode is clean. Remove from writeback lists. */
1263                 inode_io_list_del_locked(inode, wb);
1264         }
1265 }
1266
1267 /*
1268  * Write out an inode and its dirty pages. Do not update the writeback list
1269  * linkage. That is left to the caller. The caller is also responsible for
1270  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1271  */
1272 static int
1273 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1274 {
1275         struct address_space *mapping = inode->i_mapping;
1276         long nr_to_write = wbc->nr_to_write;
1277         unsigned dirty;
1278         int ret;
1279
1280         WARN_ON(!(inode->i_state & I_SYNC));
1281
1282         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1283
1284         ret = do_writepages(mapping, wbc);
1285
1286         /*
1287          * Make sure to wait on the data before writing out the metadata.
1288          * This is important for filesystems that modify metadata on data
1289          * I/O completion. We don't do it for sync(2) writeback because it has a
1290          * separate, external IO completion path and ->sync_fs for guaranteeing
1291          * inode metadata is written back correctly.
1292          */
1293         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1294                 int err = filemap_fdatawait(mapping);
1295                 if (ret == 0)
1296                         ret = err;
1297         }
1298
1299         /*
1300          * Some filesystems may redirty the inode during the writeback
1301          * due to delalloc, clear dirty metadata flags right before
1302          * write_inode()
1303          */
1304         spin_lock(&inode->i_lock);
1305
1306         dirty = inode->i_state & I_DIRTY;
1307         if (inode->i_state & I_DIRTY_TIME) {
1308                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1309                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1310                     unlikely(time_after(jiffies,
1311                                         (inode->dirtied_time_when +
1312                                          dirtytime_expire_interval * HZ)))) {
1313                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1314                         trace_writeback_lazytime(inode);
1315                 }
1316         } else
1317                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1318         inode->i_state &= ~dirty;
1319
1320         /*
1321          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1322          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1323          * either they see the I_DIRTY bits cleared or we see the dirtied
1324          * inode.
1325          *
1326          * I_DIRTY_PAGES is always cleared together above even if @mapping
1327          * still has dirty pages.  The flag is reinstated after smp_mb() if
1328          * necessary.  This guarantees that either __mark_inode_dirty()
1329          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1330          */
1331         smp_mb();
1332
1333         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1334                 inode->i_state |= I_DIRTY_PAGES;
1335
1336         spin_unlock(&inode->i_lock);
1337
1338         if (dirty & I_DIRTY_TIME)
1339                 mark_inode_dirty_sync(inode);
1340         /* Don't write the inode if only I_DIRTY_PAGES was set */
1341         if (dirty & ~I_DIRTY_PAGES) {
1342                 int err = write_inode(inode, wbc);
1343                 if (ret == 0)
1344                         ret = err;
1345         }
1346         trace_writeback_single_inode(inode, wbc, nr_to_write);
1347         return ret;
1348 }
1349
1350 /*
1351  * Write out an inode's dirty pages. Either the caller has an active reference
1352  * on the inode or the inode has I_WILL_FREE set.
1353  *
1354  * This function is designed to be called for writing back one inode which
1355  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1356  * and does more profound writeback list handling in writeback_sb_inodes().
1357  */
1358 static int writeback_single_inode(struct inode *inode,
1359                                   struct writeback_control *wbc)
1360 {
1361         struct bdi_writeback *wb;
1362         int ret = 0;
1363
1364         spin_lock(&inode->i_lock);
1365         if (!atomic_read(&inode->i_count))
1366                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1367         else
1368                 WARN_ON(inode->i_state & I_WILL_FREE);
1369
1370         if (inode->i_state & I_SYNC) {
1371                 if (wbc->sync_mode != WB_SYNC_ALL)
1372                         goto out;
1373                 /*
1374                  * It's a data-integrity sync. We must wait. Since callers hold
1375                  * inode reference or inode has I_WILL_FREE set, it cannot go
1376                  * away under us.
1377                  */
1378                 __inode_wait_for_writeback(inode);
1379         }
1380         WARN_ON(inode->i_state & I_SYNC);
1381         /*
1382          * Skip inode if it is clean and we have no outstanding writeback in
1383          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1384          * function since flusher thread may be doing for example sync in
1385          * parallel and if we move the inode, it could get skipped. So here we
1386          * make sure inode is on some writeback list and leave it there unless
1387          * we have completely cleaned the inode.
1388          */
1389         if (!(inode->i_state & I_DIRTY_ALL) &&
1390             (wbc->sync_mode != WB_SYNC_ALL ||
1391              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1392                 goto out;
1393         inode->i_state |= I_SYNC;
1394         wbc_attach_and_unlock_inode(wbc, inode);
1395
1396         ret = __writeback_single_inode(inode, wbc);
1397
1398         wbc_detach_inode(wbc);
1399
1400         wb = inode_to_wb_and_lock_list(inode);
1401         spin_lock(&inode->i_lock);
1402         /*
1403          * If inode is clean, remove it from writeback lists. Otherwise don't
1404          * touch it. See comment above for explanation.
1405          */
1406         if (!(inode->i_state & I_DIRTY_ALL))
1407                 inode_io_list_del_locked(inode, wb);
1408         spin_unlock(&wb->list_lock);
1409         inode_sync_complete(inode);
1410 out:
1411         spin_unlock(&inode->i_lock);
1412         return ret;
1413 }
1414
1415 static long writeback_chunk_size(struct bdi_writeback *wb,
1416                                  struct wb_writeback_work *work)
1417 {
1418         long pages;
1419
1420         /*
1421          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1422          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1423          * here avoids calling into writeback_inodes_wb() more than once.
1424          *
1425          * The intended call sequence for WB_SYNC_ALL writeback is:
1426          *
1427          *      wb_writeback()
1428          *          writeback_sb_inodes()       <== called only once
1429          *              write_cache_pages()     <== called once for each inode
1430          *                   (quickly) tag currently dirty pages
1431          *                   (maybe slowly) sync all tagged pages
1432          */
1433         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1434                 pages = LONG_MAX;
1435         else {
1436                 pages = min(wb->avg_write_bandwidth / 2,
1437                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1438                 pages = min(pages, work->nr_pages);
1439                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1440                                    MIN_WRITEBACK_PAGES);
1441         }
1442
1443         return pages;
1444 }
1445
1446 /*
1447  * Write a portion of b_io inodes which belong to @sb.
1448  *
1449  * Return the number of pages and/or inodes written.
1450  *
1451  * NOTE! This is called with wb->list_lock held, and will
1452  * unlock and relock that for each inode it ends up doing
1453  * IO for.
1454  */
1455 static long writeback_sb_inodes(struct super_block *sb,
1456                                 struct bdi_writeback *wb,
1457                                 struct wb_writeback_work *work)
1458 {
1459         struct writeback_control wbc = {
1460                 .sync_mode              = work->sync_mode,
1461                 .tagged_writepages      = work->tagged_writepages,
1462                 .for_kupdate            = work->for_kupdate,
1463                 .for_background         = work->for_background,
1464                 .for_sync               = work->for_sync,
1465                 .range_cyclic           = work->range_cyclic,
1466                 .range_start            = 0,
1467                 .range_end              = LLONG_MAX,
1468         };
1469         unsigned long start_time = jiffies;
1470         long write_chunk;
1471         long wrote = 0;  /* count both pages and inodes */
1472
1473         while (!list_empty(&wb->b_io)) {
1474                 struct inode *inode = wb_inode(wb->b_io.prev);
1475                 struct bdi_writeback *tmp_wb;
1476
1477                 if (inode->i_sb != sb) {
1478                         if (work->sb) {
1479                                 /*
1480                                  * We only want to write back data for this
1481                                  * superblock, move all inodes not belonging
1482                                  * to it back onto the dirty list.
1483                                  */
1484                                 redirty_tail(inode, wb);
1485                                 continue;
1486                         }
1487
1488                         /*
1489                          * The inode belongs to a different superblock.
1490                          * Bounce back to the caller to unpin this and
1491                          * pin the next superblock.
1492                          */
1493                         break;
1494                 }
1495
1496                 /*
1497                  * Don't bother with new inodes or inodes being freed, first
1498                  * kind does not need periodic writeout yet, and for the latter
1499                  * kind writeout is handled by the freer.
1500                  */
1501                 spin_lock(&inode->i_lock);
1502                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1503                         spin_unlock(&inode->i_lock);
1504                         redirty_tail(inode, wb);
1505                         continue;
1506                 }
1507                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1508                         /*
1509                          * If this inode is locked for writeback and we are not
1510                          * doing writeback-for-data-integrity, move it to
1511                          * b_more_io so that writeback can proceed with the
1512                          * other inodes on s_io.
1513                          *
1514                          * We'll have another go at writing back this inode
1515                          * when we completed a full scan of b_io.
1516                          */
1517                         spin_unlock(&inode->i_lock);
1518                         requeue_io(inode, wb);
1519                         trace_writeback_sb_inodes_requeue(inode);
1520                         continue;
1521                 }
1522                 spin_unlock(&wb->list_lock);
1523
1524                 /*
1525                  * We already requeued the inode if it had I_SYNC set and we
1526                  * are doing WB_SYNC_NONE writeback. So this catches only the
1527                  * WB_SYNC_ALL case.
1528                  */
1529                 if (inode->i_state & I_SYNC) {
1530                         /* Wait for I_SYNC. This function drops i_lock... */
1531                         inode_sleep_on_writeback(inode);
1532                         /* Inode may be gone, start again */
1533                         spin_lock(&wb->list_lock);
1534                         continue;
1535                 }
1536                 inode->i_state |= I_SYNC;
1537                 wbc_attach_and_unlock_inode(&wbc, inode);
1538
1539                 write_chunk = writeback_chunk_size(wb, work);
1540                 wbc.nr_to_write = write_chunk;
1541                 wbc.pages_skipped = 0;
1542
1543                 /*
1544                  * We use I_SYNC to pin the inode in memory. While it is set
1545                  * evict_inode() will wait so the inode cannot be freed.
1546                  */
1547                 __writeback_single_inode(inode, &wbc);
1548
1549                 wbc_detach_inode(&wbc);
1550                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1551                 wrote += write_chunk - wbc.nr_to_write;
1552
1553                 if (need_resched()) {
1554                         /*
1555                          * We're trying to balance between building up a nice
1556                          * long list of IOs to improve our merge rate, and
1557                          * getting those IOs out quickly for anyone throttling
1558                          * in balance_dirty_pages().  cond_resched() doesn't
1559                          * unplug, so get our IOs out the door before we
1560                          * give up the CPU.
1561                          */
1562                         blk_flush_plug(current);
1563                         cond_resched();
1564                 }
1565
1566                 /*
1567                  * Requeue @inode if still dirty.  Be careful as @inode may
1568                  * have been switched to another wb in the meantime.
1569                  */
1570                 tmp_wb = inode_to_wb_and_lock_list(inode);
1571                 spin_lock(&inode->i_lock);
1572                 if (!(inode->i_state & I_DIRTY_ALL))
1573                         wrote++;
1574                 requeue_inode(inode, tmp_wb, &wbc);
1575                 inode_sync_complete(inode);
1576                 spin_unlock(&inode->i_lock);
1577
1578                 if (unlikely(tmp_wb != wb)) {
1579                         spin_unlock(&tmp_wb->list_lock);
1580                         spin_lock(&wb->list_lock);
1581                 }
1582
1583                 /*
1584                  * bail out to wb_writeback() often enough to check
1585                  * background threshold and other termination conditions.
1586                  */
1587                 if (wrote) {
1588                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1589                                 break;
1590                         if (work->nr_pages <= 0)
1591                                 break;
1592                 }
1593         }
1594         return wrote;
1595 }
1596
1597 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1598                                   struct wb_writeback_work *work)
1599 {
1600         unsigned long start_time = jiffies;
1601         long wrote = 0;
1602
1603         while (!list_empty(&wb->b_io)) {
1604                 struct inode *inode = wb_inode(wb->b_io.prev);
1605                 struct super_block *sb = inode->i_sb;
1606
1607                 if (!trylock_super(sb)) {
1608                         /*
1609                          * trylock_super() may fail consistently due to
1610                          * s_umount being grabbed by someone else. Don't use
1611                          * requeue_io() to avoid busy retrying the inode/sb.
1612                          */
1613                         redirty_tail(inode, wb);
1614                         continue;
1615                 }
1616                 wrote += writeback_sb_inodes(sb, wb, work);
1617                 up_read(&sb->s_umount);
1618
1619                 /* refer to the same tests at the end of writeback_sb_inodes */
1620                 if (wrote) {
1621                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1622                                 break;
1623                         if (work->nr_pages <= 0)
1624                                 break;
1625                 }
1626         }
1627         /* Leave any unwritten inodes on b_io */
1628         return wrote;
1629 }
1630
1631 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1632                                 enum wb_reason reason)
1633 {
1634         struct wb_writeback_work work = {
1635                 .nr_pages       = nr_pages,
1636                 .sync_mode      = WB_SYNC_NONE,
1637                 .range_cyclic   = 1,
1638                 .reason         = reason,
1639         };
1640         struct blk_plug plug;
1641
1642         blk_start_plug(&plug);
1643         spin_lock(&wb->list_lock);
1644         if (list_empty(&wb->b_io))
1645                 queue_io(wb, &work);
1646         __writeback_inodes_wb(wb, &work);
1647         spin_unlock(&wb->list_lock);
1648         blk_finish_plug(&plug);
1649
1650         return nr_pages - work.nr_pages;
1651 }
1652
1653 /*
1654  * Explicit flushing or periodic writeback of "old" data.
1655  *
1656  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1657  * dirtying-time in the inode's address_space.  So this periodic writeback code
1658  * just walks the superblock inode list, writing back any inodes which are
1659  * older than a specific point in time.
1660  *
1661  * Try to run once per dirty_writeback_interval.  But if a writeback event
1662  * takes longer than a dirty_writeback_interval interval, then leave a
1663  * one-second gap.
1664  *
1665  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1666  * all dirty pages if they are all attached to "old" mappings.
1667  */
1668 static long wb_writeback(struct bdi_writeback *wb,
1669                          struct wb_writeback_work *work)
1670 {
1671         unsigned long wb_start = jiffies;
1672         long nr_pages = work->nr_pages;
1673         unsigned long oldest_jif;
1674         struct inode *inode;
1675         long progress;
1676         struct blk_plug plug;
1677
1678         oldest_jif = jiffies;
1679         work->older_than_this = &oldest_jif;
1680
1681         blk_start_plug(&plug);
1682         spin_lock(&wb->list_lock);
1683         for (;;) {
1684                 /*
1685                  * Stop writeback when nr_pages has been consumed
1686                  */
1687                 if (work->nr_pages <= 0)
1688                         break;
1689
1690                 /*
1691                  * Background writeout and kupdate-style writeback may
1692                  * run forever. Stop them if there is other work to do
1693                  * so that e.g. sync can proceed. They'll be restarted
1694                  * after the other works are all done.
1695                  */
1696                 if ((work->for_background || work->for_kupdate) &&
1697                     !list_empty(&wb->work_list))
1698                         break;
1699
1700                 /*
1701                  * For background writeout, stop when we are below the
1702                  * background dirty threshold
1703                  */
1704                 if (work->for_background && !wb_over_bg_thresh(wb))
1705                         break;
1706
1707                 /*
1708                  * Kupdate and background works are special and we want to
1709                  * include all inodes that need writing. Livelock avoidance is
1710                  * handled by these works yielding to any other work so we are
1711                  * safe.
1712                  */
1713                 if (work->for_kupdate) {
1714                         oldest_jif = jiffies -
1715                                 msecs_to_jiffies(dirty_expire_interval * 10);
1716                 } else if (work->for_background)
1717                         oldest_jif = jiffies;
1718
1719                 trace_writeback_start(wb, work);
1720                 if (list_empty(&wb->b_io))
1721                         queue_io(wb, work);
1722                 if (work->sb)
1723                         progress = writeback_sb_inodes(work->sb, wb, work);
1724                 else
1725                         progress = __writeback_inodes_wb(wb, work);
1726                 trace_writeback_written(wb, work);
1727
1728                 wb_update_bandwidth(wb, wb_start);
1729
1730                 /*
1731                  * Did we write something? Try for more
1732                  *
1733                  * Dirty inodes are moved to b_io for writeback in batches.
1734                  * The completion of the current batch does not necessarily
1735                  * mean the overall work is done. So we keep looping as long
1736                  * as made some progress on cleaning pages or inodes.
1737                  */
1738                 if (progress)
1739                         continue;
1740                 /*
1741                  * No more inodes for IO, bail
1742                  */
1743                 if (list_empty(&wb->b_more_io))
1744                         break;
1745                 /*
1746                  * Nothing written. Wait for some inode to
1747                  * become available for writeback. Otherwise
1748                  * we'll just busyloop.
1749                  */
1750                 if (!list_empty(&wb->b_more_io))  {
1751                         trace_writeback_wait(wb, work);
1752                         inode = wb_inode(wb->b_more_io.prev);
1753                         spin_lock(&inode->i_lock);
1754                         spin_unlock(&wb->list_lock);
1755                         /* This function drops i_lock... */
1756                         inode_sleep_on_writeback(inode);
1757                         spin_lock(&wb->list_lock);
1758                 }
1759         }
1760         spin_unlock(&wb->list_lock);
1761         blk_finish_plug(&plug);
1762
1763         return nr_pages - work->nr_pages;
1764 }
1765
1766 /*
1767  * Return the next wb_writeback_work struct that hasn't been processed yet.
1768  */
1769 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1770 {
1771         struct wb_writeback_work *work = NULL;
1772
1773         spin_lock_bh(&wb->work_lock);
1774         if (!list_empty(&wb->work_list)) {
1775                 work = list_entry(wb->work_list.next,
1776                                   struct wb_writeback_work, list);
1777                 list_del_init(&work->list);
1778         }
1779         spin_unlock_bh(&wb->work_lock);
1780         return work;
1781 }
1782
1783 /*
1784  * Add in the number of potentially dirty inodes, because each inode
1785  * write can dirty pagecache in the underlying blockdev.
1786  */
1787 static unsigned long get_nr_dirty_pages(void)
1788 {
1789         return global_page_state(NR_FILE_DIRTY) +
1790                 global_page_state(NR_UNSTABLE_NFS) +
1791                 get_nr_dirty_inodes();
1792 }
1793
1794 static long wb_check_background_flush(struct bdi_writeback *wb)
1795 {
1796         if (wb_over_bg_thresh(wb)) {
1797
1798                 struct wb_writeback_work work = {
1799                         .nr_pages       = LONG_MAX,
1800                         .sync_mode      = WB_SYNC_NONE,
1801                         .for_background = 1,
1802                         .range_cyclic   = 1,
1803                         .reason         = WB_REASON_BACKGROUND,
1804                 };
1805
1806                 return wb_writeback(wb, &work);
1807         }
1808
1809         return 0;
1810 }
1811
1812 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1813 {
1814         unsigned long expired;
1815         long nr_pages;
1816
1817         /*
1818          * When set to zero, disable periodic writeback
1819          */
1820         if (!dirty_writeback_interval)
1821                 return 0;
1822
1823         expired = wb->last_old_flush +
1824                         msecs_to_jiffies(dirty_writeback_interval * 10);
1825         if (time_before(jiffies, expired))
1826                 return 0;
1827
1828         wb->last_old_flush = jiffies;
1829         nr_pages = get_nr_dirty_pages();
1830
1831         if (nr_pages) {
1832                 struct wb_writeback_work work = {
1833                         .nr_pages       = nr_pages,
1834                         .sync_mode      = WB_SYNC_NONE,
1835                         .for_kupdate    = 1,
1836                         .range_cyclic   = 1,
1837                         .reason         = WB_REASON_PERIODIC,
1838                 };
1839
1840                 return wb_writeback(wb, &work);
1841         }
1842
1843         return 0;
1844 }
1845
1846 /*
1847  * Retrieve work items and do the writeback they describe
1848  */
1849 static long wb_do_writeback(struct bdi_writeback *wb)
1850 {
1851         struct wb_writeback_work *work;
1852         long wrote = 0;
1853
1854         set_bit(WB_writeback_running, &wb->state);
1855         while ((work = get_next_work_item(wb)) != NULL) {
1856                 trace_writeback_exec(wb, work);
1857                 wrote += wb_writeback(wb, work);
1858                 finish_writeback_work(wb, work);
1859         }
1860
1861         /*
1862          * Check for periodic writeback, kupdated() style
1863          */
1864         wrote += wb_check_old_data_flush(wb);
1865         wrote += wb_check_background_flush(wb);
1866         clear_bit(WB_writeback_running, &wb->state);
1867
1868         return wrote;
1869 }
1870
1871 /*
1872  * Handle writeback of dirty data for the device backed by this bdi. Also
1873  * reschedules periodically and does kupdated style flushing.
1874  */
1875 void wb_workfn(struct work_struct *work)
1876 {
1877         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1878                                                 struct bdi_writeback, dwork);
1879         long pages_written;
1880
1881         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1882         current->flags |= PF_SWAPWRITE;
1883
1884         if (likely(!current_is_workqueue_rescuer() ||
1885                    !test_bit(WB_registered, &wb->state))) {
1886                 /*
1887                  * The normal path.  Keep writing back @wb until its
1888                  * work_list is empty.  Note that this path is also taken
1889                  * if @wb is shutting down even when we're running off the
1890                  * rescuer as work_list needs to be drained.
1891                  */
1892                 do {
1893                         pages_written = wb_do_writeback(wb);
1894                         trace_writeback_pages_written(pages_written);
1895                 } while (!list_empty(&wb->work_list));
1896         } else {
1897                 /*
1898                  * bdi_wq can't get enough workers and we're running off
1899                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1900                  * enough for efficient IO.
1901                  */
1902                 pages_written = writeback_inodes_wb(wb, 1024,
1903                                                     WB_REASON_FORKER_THREAD);
1904                 trace_writeback_pages_written(pages_written);
1905         }
1906
1907         if (!list_empty(&wb->work_list))
1908                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1909         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1910                 wb_wakeup_delayed(wb);
1911
1912         current->flags &= ~PF_SWAPWRITE;
1913 }
1914
1915 /*
1916  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1917  * the whole world.
1918  */
1919 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1920 {
1921         struct backing_dev_info *bdi;
1922
1923         if (!nr_pages)
1924                 nr_pages = get_nr_dirty_pages();
1925
1926         rcu_read_lock();
1927         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1928                 struct bdi_writeback *wb;
1929
1930                 if (!bdi_has_dirty_io(bdi))
1931                         continue;
1932
1933                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1934                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1935                                            false, reason);
1936         }
1937         rcu_read_unlock();
1938 }
1939
1940 /*
1941  * Wake up bdi's periodically to make sure dirtytime inodes gets
1942  * written back periodically.  We deliberately do *not* check the
1943  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1944  * kernel to be constantly waking up once there are any dirtytime
1945  * inodes on the system.  So instead we define a separate delayed work
1946  * function which gets called much more rarely.  (By default, only
1947  * once every 12 hours.)
1948  *
1949  * If there is any other write activity going on in the file system,
1950  * this function won't be necessary.  But if the only thing that has
1951  * happened on the file system is a dirtytime inode caused by an atime
1952  * update, we need this infrastructure below to make sure that inode
1953  * eventually gets pushed out to disk.
1954  */
1955 static void wakeup_dirtytime_writeback(struct work_struct *w);
1956 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1957
1958 static void wakeup_dirtytime_writeback(struct work_struct *w)
1959 {
1960         struct backing_dev_info *bdi;
1961
1962         rcu_read_lock();
1963         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1964                 struct bdi_writeback *wb;
1965
1966                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1967                         if (!list_empty(&wb->b_dirty_time))
1968                                 wb_wakeup(wb);
1969         }
1970         rcu_read_unlock();
1971         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1972 }
1973
1974 static int __init start_dirtytime_writeback(void)
1975 {
1976         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1977         return 0;
1978 }
1979 __initcall(start_dirtytime_writeback);
1980
1981 int dirtytime_interval_handler(struct ctl_table *table, int write,
1982                                void __user *buffer, size_t *lenp, loff_t *ppos)
1983 {
1984         int ret;
1985
1986         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1987         if (ret == 0 && write)
1988                 mod_delayed_work(system_wq, &dirtytime_work, 0);
1989         return ret;
1990 }
1991
1992 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1993 {
1994         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1995                 struct dentry *dentry;
1996                 const char *name = "?";
1997
1998                 dentry = d_find_alias(inode);
1999                 if (dentry) {
2000                         spin_lock(&dentry->d_lock);
2001                         name = (const char *) dentry->d_name.name;
2002                 }
2003                 printk(KERN_DEBUG
2004                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2005                        current->comm, task_pid_nr(current), inode->i_ino,
2006                        name, inode->i_sb->s_id);
2007                 if (dentry) {
2008                         spin_unlock(&dentry->d_lock);
2009                         dput(dentry);
2010                 }
2011         }
2012 }
2013
2014 /**
2015  *      __mark_inode_dirty -    internal function
2016  *      @inode: inode to mark
2017  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2018  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
2019  *      mark_inode_dirty_sync.
2020  *
2021  * Put the inode on the super block's dirty list.
2022  *
2023  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2024  * dirty list only if it is hashed or if it refers to a blockdev.
2025  * If it was not hashed, it will never be added to the dirty list
2026  * even if it is later hashed, as it will have been marked dirty already.
2027  *
2028  * In short, make sure you hash any inodes _before_ you start marking
2029  * them dirty.
2030  *
2031  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2032  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2033  * the kernel-internal blockdev inode represents the dirtying time of the
2034  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2035  * page->mapping->host, so the page-dirtying time is recorded in the internal
2036  * blockdev inode.
2037  */
2038 void __mark_inode_dirty(struct inode *inode, int flags)
2039 {
2040 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2041         struct super_block *sb = inode->i_sb;
2042         int dirtytime;
2043
2044         trace_writeback_mark_inode_dirty(inode, flags);
2045
2046         /*
2047          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2048          * dirty the inode itself
2049          */
2050         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2051                 trace_writeback_dirty_inode_start(inode, flags);
2052
2053                 if (sb->s_op->dirty_inode)
2054                         sb->s_op->dirty_inode(inode, flags);
2055
2056                 trace_writeback_dirty_inode(inode, flags);
2057         }
2058         if (flags & I_DIRTY_INODE)
2059                 flags &= ~I_DIRTY_TIME;
2060         dirtytime = flags & I_DIRTY_TIME;
2061
2062         /*
2063          * Paired with smp_mb() in __writeback_single_inode() for the
2064          * following lockless i_state test.  See there for details.
2065          */
2066         smp_mb();
2067
2068         if (((inode->i_state & flags) == flags) ||
2069             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2070                 return;
2071
2072         if (unlikely(block_dump))
2073                 block_dump___mark_inode_dirty(inode);
2074
2075         spin_lock(&inode->i_lock);
2076         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2077                 goto out_unlock_inode;
2078         if ((inode->i_state & flags) != flags) {
2079                 const int was_dirty = inode->i_state & I_DIRTY;
2080
2081                 inode_attach_wb(inode, NULL);
2082
2083                 if (flags & I_DIRTY_INODE)
2084                         inode->i_state &= ~I_DIRTY_TIME;
2085                 inode->i_state |= flags;
2086
2087                 /*
2088                  * If the inode is being synced, just update its dirty state.
2089                  * The unlocker will place the inode on the appropriate
2090                  * superblock list, based upon its state.
2091                  */
2092                 if (inode->i_state & I_SYNC)
2093                         goto out_unlock_inode;
2094
2095                 /*
2096                  * Only add valid (hashed) inodes to the superblock's
2097                  * dirty list.  Add blockdev inodes as well.
2098                  */
2099                 if (!S_ISBLK(inode->i_mode)) {
2100                         if (inode_unhashed(inode))
2101                                 goto out_unlock_inode;
2102                 }
2103                 if (inode->i_state & I_FREEING)
2104                         goto out_unlock_inode;
2105
2106                 /*
2107                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2108                  * reposition it (that would break b_dirty time-ordering).
2109                  */
2110                 if (!was_dirty) {
2111                         struct bdi_writeback *wb;
2112                         struct list_head *dirty_list;
2113                         bool wakeup_bdi = false;
2114
2115                         wb = locked_inode_to_wb_and_lock_list(inode);
2116
2117                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2118                              !test_bit(WB_registered, &wb->state),
2119                              "bdi-%s not registered\n", wb->bdi->name);
2120
2121                         inode->dirtied_when = jiffies;
2122                         if (dirtytime)
2123                                 inode->dirtied_time_when = jiffies;
2124
2125                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2126                                 dirty_list = &wb->b_dirty;
2127                         else
2128                                 dirty_list = &wb->b_dirty_time;
2129
2130                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2131                                                                dirty_list);
2132
2133                         spin_unlock(&wb->list_lock);
2134                         trace_writeback_dirty_inode_enqueue(inode);
2135
2136                         /*
2137                          * If this is the first dirty inode for this bdi,
2138                          * we have to wake-up the corresponding bdi thread
2139                          * to make sure background write-back happens
2140                          * later.
2141                          */
2142                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2143                                 wb_wakeup_delayed(wb);
2144                         return;
2145                 }
2146         }
2147 out_unlock_inode:
2148         spin_unlock(&inode->i_lock);
2149
2150 #undef I_DIRTY_INODE
2151 }
2152 EXPORT_SYMBOL(__mark_inode_dirty);
2153
2154 /*
2155  * The @s_sync_lock is used to serialise concurrent sync operations
2156  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2157  * Concurrent callers will block on the s_sync_lock rather than doing contending
2158  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2159  * has been issued up to the time this function is enter is guaranteed to be
2160  * completed by the time we have gained the lock and waited for all IO that is
2161  * in progress regardless of the order callers are granted the lock.
2162  */
2163 static void wait_sb_inodes(struct super_block *sb)
2164 {
2165         struct inode *inode, *old_inode = NULL;
2166
2167         /*
2168          * We need to be protected against the filesystem going from
2169          * r/o to r/w or vice versa.
2170          */
2171         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2172
2173         mutex_lock(&sb->s_sync_lock);
2174         spin_lock(&sb->s_inode_list_lock);
2175
2176         /*
2177          * Data integrity sync. Must wait for all pages under writeback,
2178          * because there may have been pages dirtied before our sync
2179          * call, but which had writeout started before we write it out.
2180          * In which case, the inode may not be on the dirty list, but
2181          * we still have to wait for that writeout.
2182          */
2183         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2184                 struct address_space *mapping = inode->i_mapping;
2185
2186                 spin_lock(&inode->i_lock);
2187                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2188                     (mapping->nrpages == 0)) {
2189                         spin_unlock(&inode->i_lock);
2190                         continue;
2191                 }
2192                 __iget(inode);
2193                 spin_unlock(&inode->i_lock);
2194                 spin_unlock(&sb->s_inode_list_lock);
2195
2196                 /*
2197                  * We hold a reference to 'inode' so it couldn't have been
2198                  * removed from s_inodes list while we dropped the
2199                  * s_inode_list_lock.  We cannot iput the inode now as we can
2200                  * be holding the last reference and we cannot iput it under
2201                  * s_inode_list_lock. So we keep the reference and iput it
2202                  * later.
2203                  */
2204                 iput(old_inode);
2205                 old_inode = inode;
2206
2207                 /*
2208                  * We keep the error status of individual mapping so that
2209                  * applications can catch the writeback error using fsync(2).
2210                  * See filemap_fdatawait_keep_errors() for details.
2211                  */
2212                 filemap_fdatawait_keep_errors(mapping);
2213
2214                 cond_resched();
2215
2216                 spin_lock(&sb->s_inode_list_lock);
2217         }
2218         spin_unlock(&sb->s_inode_list_lock);
2219         iput(old_inode);
2220         mutex_unlock(&sb->s_sync_lock);
2221 }
2222
2223 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2224                                      enum wb_reason reason, bool skip_if_busy)
2225 {
2226         DEFINE_WB_COMPLETION_ONSTACK(done);
2227         struct wb_writeback_work work = {
2228                 .sb                     = sb,
2229                 .sync_mode              = WB_SYNC_NONE,
2230                 .tagged_writepages      = 1,
2231                 .done                   = &done,
2232                 .nr_pages               = nr,
2233                 .reason                 = reason,
2234         };
2235         struct backing_dev_info *bdi = sb->s_bdi;
2236
2237         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2238                 return;
2239         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2240
2241         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2242         wb_wait_for_completion(bdi, &done);
2243 }
2244
2245 /**
2246  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2247  * @sb: the superblock
2248  * @nr: the number of pages to write
2249  * @reason: reason why some writeback work initiated
2250  *
2251  * Start writeback on some inodes on this super_block. No guarantees are made
2252  * on how many (if any) will be written, and this function does not wait
2253  * for IO completion of submitted IO.
2254  */
2255 void writeback_inodes_sb_nr(struct super_block *sb,
2256                             unsigned long nr,
2257                             enum wb_reason reason)
2258 {
2259         __writeback_inodes_sb_nr(sb, nr, reason, false);
2260 }
2261 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2262
2263 /**
2264  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2265  * @sb: the superblock
2266  * @reason: reason why some writeback work was initiated
2267  *
2268  * Start writeback on some inodes on this super_block. No guarantees are made
2269  * on how many (if any) will be written, and this function does not wait
2270  * for IO completion of submitted IO.
2271  */
2272 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2273 {
2274         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2275 }
2276 EXPORT_SYMBOL(writeback_inodes_sb);
2277
2278 /**
2279  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2280  * @sb: the superblock
2281  * @nr: the number of pages to write
2282  * @reason: the reason of writeback
2283  *
2284  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2285  * Returns 1 if writeback was started, 0 if not.
2286  */
2287 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2288                                    enum wb_reason reason)
2289 {
2290         if (!down_read_trylock(&sb->s_umount))
2291                 return false;
2292
2293         __writeback_inodes_sb_nr(sb, nr, reason, true);
2294         up_read(&sb->s_umount);
2295         return true;
2296 }
2297 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2298
2299 /**
2300  * try_to_writeback_inodes_sb - try to start writeback if none underway
2301  * @sb: the superblock
2302  * @reason: reason why some writeback work was initiated
2303  *
2304  * Implement by try_to_writeback_inodes_sb_nr()
2305  * Returns 1 if writeback was started, 0 if not.
2306  */
2307 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2308 {
2309         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2310 }
2311 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2312
2313 /**
2314  * sync_inodes_sb       -       sync sb inode pages
2315  * @sb: the superblock
2316  *
2317  * This function writes and waits on any dirty inode belonging to this
2318  * super_block.
2319  */
2320 void sync_inodes_sb(struct super_block *sb)
2321 {
2322         DEFINE_WB_COMPLETION_ONSTACK(done);
2323         struct wb_writeback_work work = {
2324                 .sb             = sb,
2325                 .sync_mode      = WB_SYNC_ALL,
2326                 .nr_pages       = LONG_MAX,
2327                 .range_cyclic   = 0,
2328                 .done           = &done,
2329                 .reason         = WB_REASON_SYNC,
2330                 .for_sync       = 1,
2331         };
2332         struct backing_dev_info *bdi = sb->s_bdi;
2333
2334         /*
2335          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2336          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2337          * bdi_has_dirty() need to be written out too.
2338          */
2339         if (bdi == &noop_backing_dev_info)
2340                 return;
2341         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2342
2343         bdi_split_work_to_wbs(bdi, &work, false);
2344         wb_wait_for_completion(bdi, &done);
2345
2346         wait_sb_inodes(sb);
2347 }
2348 EXPORT_SYMBOL(sync_inodes_sb);
2349
2350 /**
2351  * write_inode_now      -       write an inode to disk
2352  * @inode: inode to write to disk
2353  * @sync: whether the write should be synchronous or not
2354  *
2355  * This function commits an inode to disk immediately if it is dirty. This is
2356  * primarily needed by knfsd.
2357  *
2358  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2359  */
2360 int write_inode_now(struct inode *inode, int sync)
2361 {
2362         struct writeback_control wbc = {
2363                 .nr_to_write = LONG_MAX,
2364                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2365                 .range_start = 0,
2366                 .range_end = LLONG_MAX,
2367         };
2368
2369         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2370                 wbc.nr_to_write = 0;
2371
2372         might_sleep();
2373         return writeback_single_inode(inode, &wbc);
2374 }
2375 EXPORT_SYMBOL(write_inode_now);
2376
2377 /**
2378  * sync_inode - write an inode and its pages to disk.
2379  * @inode: the inode to sync
2380  * @wbc: controls the writeback mode
2381  *
2382  * sync_inode() will write an inode and its pages to disk.  It will also
2383  * correctly update the inode on its superblock's dirty inode lists and will
2384  * update inode->i_state.
2385  *
2386  * The caller must have a ref on the inode.
2387  */
2388 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2389 {
2390         return writeback_single_inode(inode, wbc);
2391 }
2392 EXPORT_SYMBOL(sync_inode);
2393
2394 /**
2395  * sync_inode_metadata - write an inode to disk
2396  * @inode: the inode to sync
2397  * @wait: wait for I/O to complete.
2398  *
2399  * Write an inode to disk and adjust its dirty state after completion.
2400  *
2401  * Note: only writes the actual inode, no associated data or other metadata.
2402  */
2403 int sync_inode_metadata(struct inode *inode, int wait)
2404 {
2405         struct writeback_control wbc = {
2406                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2407                 .nr_to_write = 0, /* metadata-only */
2408         };
2409
2410         return sync_inode(inode, &wbc);
2411 }
2412 EXPORT_SYMBOL(sync_inode_metadata);