OSDN Git Service

fs/binfmt_flat.c: make load_flat_shared_library() work
[android-x86/kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         enum wb_reason reason;          /* why was writeback initiated? */
57
58         struct list_head list;          /* pending work list */
59         struct wb_completion *done;     /* set if the caller waits */
60 };
61
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
70         struct wb_completion cmpl = {                                   \
71                 .cnt            = ATOMIC_INIT(1),                       \
72         }
73
74
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89         return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104         if (wb_has_dirty_io(wb)) {
105                 return false;
106         } else {
107                 set_bit(WB_has_dirty_io, &wb->state);
108                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109                 atomic_long_add(wb->avg_write_bandwidth,
110                                 &wb->bdi->tot_write_bandwidth);
111                 return true;
112         }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119                 clear_bit(WB_has_dirty_io, &wb->state);
120                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121                                         &wb->bdi->tot_write_bandwidth) < 0);
122         }
123 }
124
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136                                       struct bdi_writeback *wb,
137                                       struct list_head *head)
138 {
139         assert_spin_locked(&wb->list_lock);
140
141         list_move(&inode->i_io_list, head);
142
143         /* dirty_time doesn't count as dirty_io until expiration */
144         if (head != &wb->b_dirty_time)
145                 return wb_io_lists_populated(wb);
146
147         wb_io_lists_depopulated(wb);
148         return false;
149 }
150
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160                                      struct bdi_writeback *wb)
161 {
162         assert_spin_locked(&wb->list_lock);
163
164         list_del_init(&inode->i_io_list);
165         wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170         spin_lock_bh(&wb->work_lock);
171         if (test_bit(WB_registered, &wb->state))
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177                                   struct wb_writeback_work *work)
178 {
179         struct wb_completion *done = work->done;
180
181         if (work->auto_free)
182                 kfree(work);
183         if (done && atomic_dec_and_test(&done->cnt))
184                 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188                           struct wb_writeback_work *work)
189 {
190         trace_writeback_queue(wb, work);
191
192         if (work->done)
193                 atomic_inc(&work->done->cnt);
194
195         spin_lock_bh(&wb->work_lock);
196
197         if (test_bit(WB_registered, &wb->state)) {
198                 list_add_tail(&work->list, &wb->work_list);
199                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200         } else
201                 finish_writeback_work(wb, work);
202
203         spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218                                    struct wb_completion *done)
219 {
220         atomic_dec(&done->cnt);         /* put down the initial count */
221         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
231
232 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234                                         /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
236                                         /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238                                         /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245         struct backing_dev_info *bdi = inode_to_bdi(inode);
246         struct bdi_writeback *wb = NULL;
247
248         if (inode_cgwb_enabled(inode)) {
249                 struct cgroup_subsys_state *memcg_css;
250
251                 if (page) {
252                         memcg_css = mem_cgroup_css_from_page(page);
253                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254                 } else {
255                         /* must pin memcg_css, see wb_get_create() */
256                         memcg_css = task_get_css(current, memory_cgrp_id);
257                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258                         css_put(memcg_css);
259                 }
260         }
261
262         if (!wb)
263                 wb = &bdi->wb;
264
265         /*
266          * There may be multiple instances of this function racing to
267          * update the same inode.  Use cmpxchg() to tell the winner.
268          */
269         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270                 wb_put(wb);
271 }
272
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283         __releases(&inode->i_lock)
284         __acquires(&wb->list_lock)
285 {
286         while (true) {
287                 struct bdi_writeback *wb = inode_to_wb(inode);
288
289                 /*
290                  * inode_to_wb() association is protected by both
291                  * @inode->i_lock and @wb->list_lock but list_lock nests
292                  * outside i_lock.  Drop i_lock and verify that the
293                  * association hasn't changed after acquiring list_lock.
294                  */
295                 wb_get(wb);
296                 spin_unlock(&inode->i_lock);
297                 spin_lock(&wb->list_lock);
298
299                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300                 if (likely(wb == inode->i_wb)) {
301                         wb_put(wb);     /* @inode already has ref */
302                         return wb;
303                 }
304
305                 spin_unlock(&wb->list_lock);
306                 wb_put(wb);
307                 cpu_relax();
308                 spin_lock(&inode->i_lock);
309         }
310 }
311
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320         __acquires(&wb->list_lock)
321 {
322         spin_lock(&inode->i_lock);
323         return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327         struct inode            *inode;
328         struct bdi_writeback    *new_wb;
329
330         struct rcu_head         rcu_head;
331         struct work_struct      work;
332 };
333
334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336         down_write(&bdi->wb_switch_rwsem);
337 }
338
339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341         up_write(&bdi->wb_switch_rwsem);
342 }
343
344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346         struct inode_switch_wbs_context *isw =
347                 container_of(work, struct inode_switch_wbs_context, work);
348         struct inode *inode = isw->inode;
349         struct backing_dev_info *bdi = inode_to_bdi(inode);
350         struct address_space *mapping = inode->i_mapping;
351         struct bdi_writeback *old_wb = inode->i_wb;
352         struct bdi_writeback *new_wb = isw->new_wb;
353         struct radix_tree_iter iter;
354         bool switched = false;
355         void **slot;
356
357         /*
358          * If @inode switches cgwb membership while sync_inodes_sb() is
359          * being issued, sync_inodes_sb() might miss it.  Synchronize.
360          */
361         down_read(&bdi->wb_switch_rwsem);
362
363         /*
364          * By the time control reaches here, RCU grace period has passed
365          * since I_WB_SWITCH assertion and all wb stat update transactions
366          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367          * synchronizing against mapping->tree_lock.
368          *
369          * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
370          * gives us exclusion against all wb related operations on @inode
371          * including IO list manipulations and stat updates.
372          */
373         if (old_wb < new_wb) {
374                 spin_lock(&old_wb->list_lock);
375                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376         } else {
377                 spin_lock(&new_wb->list_lock);
378                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379         }
380         spin_lock(&inode->i_lock);
381         spin_lock_irq(&mapping->tree_lock);
382
383         /*
384          * Once I_FREEING is visible under i_lock, the eviction path owns
385          * the inode and we shouldn't modify ->i_io_list.
386          */
387         if (unlikely(inode->i_state & I_FREEING))
388                 goto skip_switch;
389
390         /*
391          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393          * pages actually under underwriteback.
394          */
395         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
396                                    PAGECACHE_TAG_DIRTY) {
397                 struct page *page = radix_tree_deref_slot_protected(slot,
398                                                         &mapping->tree_lock);
399                 if (likely(page) && PageDirty(page)) {
400                         __dec_wb_stat(old_wb, WB_RECLAIMABLE);
401                         __inc_wb_stat(new_wb, WB_RECLAIMABLE);
402                 }
403         }
404
405         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
406                                    PAGECACHE_TAG_WRITEBACK) {
407                 struct page *page = radix_tree_deref_slot_protected(slot,
408                                                         &mapping->tree_lock);
409                 if (likely(page)) {
410                         WARN_ON_ONCE(!PageWriteback(page));
411                         __dec_wb_stat(old_wb, WB_WRITEBACK);
412                         __inc_wb_stat(new_wb, WB_WRITEBACK);
413                 }
414         }
415
416         wb_get(new_wb);
417
418         /*
419          * Transfer to @new_wb's IO list if necessary.  The specific list
420          * @inode was on is ignored and the inode is put on ->b_dirty which
421          * is always correct including from ->b_dirty_time.  The transfer
422          * preserves @inode->dirtied_when ordering.
423          */
424         if (!list_empty(&inode->i_io_list)) {
425                 struct inode *pos;
426
427                 inode_io_list_del_locked(inode, old_wb);
428                 inode->i_wb = new_wb;
429                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
430                         if (time_after_eq(inode->dirtied_when,
431                                           pos->dirtied_when))
432                                 break;
433                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
434         } else {
435                 inode->i_wb = new_wb;
436         }
437
438         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439         inode->i_wb_frn_winner = 0;
440         inode->i_wb_frn_avg_time = 0;
441         inode->i_wb_frn_history = 0;
442         switched = true;
443 skip_switch:
444         /*
445          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446          * ensures that the new wb is visible if they see !I_WB_SWITCH.
447          */
448         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450         spin_unlock_irq(&mapping->tree_lock);
451         spin_unlock(&inode->i_lock);
452         spin_unlock(&new_wb->list_lock);
453         spin_unlock(&old_wb->list_lock);
454
455         up_read(&bdi->wb_switch_rwsem);
456
457         if (switched) {
458                 wb_wakeup(new_wb);
459                 wb_put(old_wb);
460         }
461         wb_put(new_wb);
462
463         iput(inode);
464         kfree(isw);
465
466         atomic_dec(&isw_nr_in_flight);
467 }
468
469 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
470 {
471         struct inode_switch_wbs_context *isw = container_of(rcu_head,
472                                 struct inode_switch_wbs_context, rcu_head);
473
474         /* needs to grab bh-unsafe locks, bounce to work item */
475         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
476         queue_work(isw_wq, &isw->work);
477 }
478
479 /**
480  * inode_switch_wbs - change the wb association of an inode
481  * @inode: target inode
482  * @new_wb_id: ID of the new wb
483  *
484  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
485  * switching is performed asynchronously and may fail silently.
486  */
487 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
488 {
489         struct backing_dev_info *bdi = inode_to_bdi(inode);
490         struct cgroup_subsys_state *memcg_css;
491         struct inode_switch_wbs_context *isw;
492
493         /* noop if seems to be already in progress */
494         if (inode->i_state & I_WB_SWITCH)
495                 return;
496
497         /*
498          * Avoid starting new switches while sync_inodes_sb() is in
499          * progress.  Otherwise, if the down_write protected issue path
500          * blocks heavily, we might end up starting a large number of
501          * switches which will block on the rwsem.
502          */
503         if (!down_read_trylock(&bdi->wb_switch_rwsem))
504                 return;
505
506         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
507         if (!isw)
508                 goto out_unlock;
509
510         /* find and pin the new wb */
511         rcu_read_lock();
512         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513         if (memcg_css)
514                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
515         rcu_read_unlock();
516         if (!isw->new_wb)
517                 goto out_free;
518
519         /* while holding I_WB_SWITCH, no one else can update the association */
520         spin_lock(&inode->i_lock);
521         if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
522             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
523             inode_to_wb(inode) == isw->new_wb) {
524                 spin_unlock(&inode->i_lock);
525                 goto out_free;
526         }
527         inode->i_state |= I_WB_SWITCH;
528         __iget(inode);
529         spin_unlock(&inode->i_lock);
530
531         isw->inode = inode;
532
533         /*
534          * In addition to synchronizing among switchers, I_WB_SWITCH tells
535          * the RCU protected stat update paths to grab the mapping's
536          * tree_lock so that stat transfer can synchronize against them.
537          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
538          */
539         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
540
541         atomic_inc(&isw_nr_in_flight);
542
543         goto out_unlock;
544
545 out_free:
546         if (isw->new_wb)
547                 wb_put(isw->new_wb);
548         kfree(isw);
549 out_unlock:
550         up_read(&bdi->wb_switch_rwsem);
551 }
552
553 /**
554  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
555  * @wbc: writeback_control of interest
556  * @inode: target inode
557  *
558  * @inode is locked and about to be written back under the control of @wbc.
559  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
560  * writeback completion, wbc_detach_inode() should be called.  This is used
561  * to track the cgroup writeback context.
562  */
563 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
564                                  struct inode *inode)
565 {
566         if (!inode_cgwb_enabled(inode)) {
567                 spin_unlock(&inode->i_lock);
568                 return;
569         }
570
571         wbc->wb = inode_to_wb(inode);
572         wbc->inode = inode;
573
574         wbc->wb_id = wbc->wb->memcg_css->id;
575         wbc->wb_lcand_id = inode->i_wb_frn_winner;
576         wbc->wb_tcand_id = 0;
577         wbc->wb_bytes = 0;
578         wbc->wb_lcand_bytes = 0;
579         wbc->wb_tcand_bytes = 0;
580
581         wb_get(wbc->wb);
582         spin_unlock(&inode->i_lock);
583
584         /*
585          * A dying wb indicates that the memcg-blkcg mapping has changed
586          * and a new wb is already serving the memcg.  Switch immediately.
587          */
588         if (unlikely(wb_dying(wbc->wb)))
589                 inode_switch_wbs(inode, wbc->wb_id);
590 }
591
592 /**
593  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
594  * @wbc: writeback_control of the just finished writeback
595  *
596  * To be called after a writeback attempt of an inode finishes and undoes
597  * wbc_attach_and_unlock_inode().  Can be called under any context.
598  *
599  * As concurrent write sharing of an inode is expected to be very rare and
600  * memcg only tracks page ownership on first-use basis severely confining
601  * the usefulness of such sharing, cgroup writeback tracks ownership
602  * per-inode.  While the support for concurrent write sharing of an inode
603  * is deemed unnecessary, an inode being written to by different cgroups at
604  * different points in time is a lot more common, and, more importantly,
605  * charging only by first-use can too readily lead to grossly incorrect
606  * behaviors (single foreign page can lead to gigabytes of writeback to be
607  * incorrectly attributed).
608  *
609  * To resolve this issue, cgroup writeback detects the majority dirtier of
610  * an inode and transfers the ownership to it.  To avoid unnnecessary
611  * oscillation, the detection mechanism keeps track of history and gives
612  * out the switch verdict only if the foreign usage pattern is stable over
613  * a certain amount of time and/or writeback attempts.
614  *
615  * On each writeback attempt, @wbc tries to detect the majority writer
616  * using Boyer-Moore majority vote algorithm.  In addition to the byte
617  * count from the majority voting, it also counts the bytes written for the
618  * current wb and the last round's winner wb (max of last round's current
619  * wb, the winner from two rounds ago, and the last round's majority
620  * candidate).  Keeping track of the historical winner helps the algorithm
621  * to semi-reliably detect the most active writer even when it's not the
622  * absolute majority.
623  *
624  * Once the winner of the round is determined, whether the winner is
625  * foreign or not and how much IO time the round consumed is recorded in
626  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
627  * over a certain threshold, the switch verdict is given.
628  */
629 void wbc_detach_inode(struct writeback_control *wbc)
630 {
631         struct bdi_writeback *wb = wbc->wb;
632         struct inode *inode = wbc->inode;
633         unsigned long avg_time, max_bytes, max_time;
634         u16 history;
635         int max_id;
636
637         if (!wb)
638                 return;
639
640         history = inode->i_wb_frn_history;
641         avg_time = inode->i_wb_frn_avg_time;
642
643         /* pick the winner of this round */
644         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
645             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
646                 max_id = wbc->wb_id;
647                 max_bytes = wbc->wb_bytes;
648         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
649                 max_id = wbc->wb_lcand_id;
650                 max_bytes = wbc->wb_lcand_bytes;
651         } else {
652                 max_id = wbc->wb_tcand_id;
653                 max_bytes = wbc->wb_tcand_bytes;
654         }
655
656         /*
657          * Calculate the amount of IO time the winner consumed and fold it
658          * into the running average kept per inode.  If the consumed IO
659          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
660          * deciding whether to switch or not.  This is to prevent one-off
661          * small dirtiers from skewing the verdict.
662          */
663         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
664                                 wb->avg_write_bandwidth);
665         if (avg_time)
666                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
667                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
668         else
669                 avg_time = max_time;    /* immediate catch up on first run */
670
671         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
672                 int slots;
673
674                 /*
675                  * The switch verdict is reached if foreign wb's consume
676                  * more than a certain proportion of IO time in a
677                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
678                  * history mask where each bit represents one sixteenth of
679                  * the period.  Determine the number of slots to shift into
680                  * history from @max_time.
681                  */
682                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
683                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
684                 history <<= slots;
685                 if (wbc->wb_id != max_id)
686                         history |= (1U << slots) - 1;
687
688                 /*
689                  * Switch if the current wb isn't the consistent winner.
690                  * If there are multiple closely competing dirtiers, the
691                  * inode may switch across them repeatedly over time, which
692                  * is okay.  The main goal is avoiding keeping an inode on
693                  * the wrong wb for an extended period of time.
694                  */
695                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
696                         inode_switch_wbs(inode, max_id);
697         }
698
699         /*
700          * Multiple instances of this function may race to update the
701          * following fields but we don't mind occassional inaccuracies.
702          */
703         inode->i_wb_frn_winner = max_id;
704         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
705         inode->i_wb_frn_history = history;
706
707         wb_put(wbc->wb);
708         wbc->wb = NULL;
709 }
710
711 /**
712  * wbc_account_io - account IO issued during writeback
713  * @wbc: writeback_control of the writeback in progress
714  * @page: page being written out
715  * @bytes: number of bytes being written out
716  *
717  * @bytes from @page are about to written out during the writeback
718  * controlled by @wbc.  Keep the book for foreign inode detection.  See
719  * wbc_detach_inode().
720  */
721 void wbc_account_io(struct writeback_control *wbc, struct page *page,
722                     size_t bytes)
723 {
724         int id;
725
726         /*
727          * pageout() path doesn't attach @wbc to the inode being written
728          * out.  This is intentional as we don't want the function to block
729          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
730          * regular writeback instead of writing things out itself.
731          */
732         if (!wbc->wb)
733                 return;
734
735         id = mem_cgroup_css_from_page(page)->id;
736
737         if (id == wbc->wb_id) {
738                 wbc->wb_bytes += bytes;
739                 return;
740         }
741
742         if (id == wbc->wb_lcand_id)
743                 wbc->wb_lcand_bytes += bytes;
744
745         /* Boyer-Moore majority vote algorithm */
746         if (!wbc->wb_tcand_bytes)
747                 wbc->wb_tcand_id = id;
748         if (id == wbc->wb_tcand_id)
749                 wbc->wb_tcand_bytes += bytes;
750         else
751                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
752 }
753 EXPORT_SYMBOL_GPL(wbc_account_io);
754
755 /**
756  * inode_congested - test whether an inode is congested
757  * @inode: inode to test for congestion (may be NULL)
758  * @cong_bits: mask of WB_[a]sync_congested bits to test
759  *
760  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
761  * bits to test and the return value is the mask of set bits.
762  *
763  * If cgroup writeback is enabled for @inode, the congestion state is
764  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
765  * associated with @inode is congested; otherwise, the root wb's congestion
766  * state is used.
767  *
768  * @inode is allowed to be NULL as this function is often called on
769  * mapping->host which is NULL for the swapper space.
770  */
771 int inode_congested(struct inode *inode, int cong_bits)
772 {
773         /*
774          * Once set, ->i_wb never becomes NULL while the inode is alive.
775          * Start transaction iff ->i_wb is visible.
776          */
777         if (inode && inode_to_wb_is_valid(inode)) {
778                 struct bdi_writeback *wb;
779                 struct wb_lock_cookie lock_cookie = {};
780                 bool congested;
781
782                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
783                 congested = wb_congested(wb, cong_bits);
784                 unlocked_inode_to_wb_end(inode, &lock_cookie);
785                 return congested;
786         }
787
788         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
789 }
790 EXPORT_SYMBOL_GPL(inode_congested);
791
792 /**
793  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
794  * @wb: target bdi_writeback to split @nr_pages to
795  * @nr_pages: number of pages to write for the whole bdi
796  *
797  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
798  * relation to the total write bandwidth of all wb's w/ dirty inodes on
799  * @wb->bdi.
800  */
801 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
802 {
803         unsigned long this_bw = wb->avg_write_bandwidth;
804         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
805
806         if (nr_pages == LONG_MAX)
807                 return LONG_MAX;
808
809         /*
810          * This may be called on clean wb's and proportional distribution
811          * may not make sense, just use the original @nr_pages in those
812          * cases.  In general, we wanna err on the side of writing more.
813          */
814         if (!tot_bw || this_bw >= tot_bw)
815                 return nr_pages;
816         else
817                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
818 }
819
820 /**
821  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
822  * @bdi: target backing_dev_info
823  * @base_work: wb_writeback_work to issue
824  * @skip_if_busy: skip wb's which already have writeback in progress
825  *
826  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
827  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
828  * distributed to the busy wbs according to each wb's proportion in the
829  * total active write bandwidth of @bdi.
830  */
831 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
832                                   struct wb_writeback_work *base_work,
833                                   bool skip_if_busy)
834 {
835         struct bdi_writeback *last_wb = NULL;
836         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
837                                               struct bdi_writeback, bdi_node);
838
839         might_sleep();
840 restart:
841         rcu_read_lock();
842         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
843                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
844                 struct wb_writeback_work fallback_work;
845                 struct wb_writeback_work *work;
846                 long nr_pages;
847
848                 if (last_wb) {
849                         wb_put(last_wb);
850                         last_wb = NULL;
851                 }
852
853                 /* SYNC_ALL writes out I_DIRTY_TIME too */
854                 if (!wb_has_dirty_io(wb) &&
855                     (base_work->sync_mode == WB_SYNC_NONE ||
856                      list_empty(&wb->b_dirty_time)))
857                         continue;
858                 if (skip_if_busy && writeback_in_progress(wb))
859                         continue;
860
861                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
862
863                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
864                 if (work) {
865                         *work = *base_work;
866                         work->nr_pages = nr_pages;
867                         work->auto_free = 1;
868                         wb_queue_work(wb, work);
869                         continue;
870                 }
871
872                 /* alloc failed, execute synchronously using on-stack fallback */
873                 work = &fallback_work;
874                 *work = *base_work;
875                 work->nr_pages = nr_pages;
876                 work->auto_free = 0;
877                 work->done = &fallback_work_done;
878
879                 wb_queue_work(wb, work);
880
881                 /*
882                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
883                  * continuing iteration from @wb after dropping and
884                  * regrabbing rcu read lock.
885                  */
886                 wb_get(wb);
887                 last_wb = wb;
888
889                 rcu_read_unlock();
890                 wb_wait_for_completion(bdi, &fallback_work_done);
891                 goto restart;
892         }
893         rcu_read_unlock();
894
895         if (last_wb)
896                 wb_put(last_wb);
897 }
898
899 /**
900  * cgroup_writeback_umount - flush inode wb switches for umount
901  *
902  * This function is called when a super_block is about to be destroyed and
903  * flushes in-flight inode wb switches.  An inode wb switch goes through
904  * RCU and then workqueue, so the two need to be flushed in order to ensure
905  * that all previously scheduled switches are finished.  As wb switches are
906  * rare occurrences and synchronize_rcu() can take a while, perform
907  * flushing iff wb switches are in flight.
908  */
909 void cgroup_writeback_umount(void)
910 {
911         if (atomic_read(&isw_nr_in_flight)) {
912                 /*
913                  * Use rcu_barrier() to wait for all pending callbacks to
914                  * ensure that all in-flight wb switches are in the workqueue.
915                  */
916                 rcu_barrier();
917                 flush_workqueue(isw_wq);
918         }
919 }
920
921 static int __init cgroup_writeback_init(void)
922 {
923         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
924         if (!isw_wq)
925                 return -ENOMEM;
926         return 0;
927 }
928 fs_initcall(cgroup_writeback_init);
929
930 #else   /* CONFIG_CGROUP_WRITEBACK */
931
932 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
933 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
934
935 static struct bdi_writeback *
936 locked_inode_to_wb_and_lock_list(struct inode *inode)
937         __releases(&inode->i_lock)
938         __acquires(&wb->list_lock)
939 {
940         struct bdi_writeback *wb = inode_to_wb(inode);
941
942         spin_unlock(&inode->i_lock);
943         spin_lock(&wb->list_lock);
944         return wb;
945 }
946
947 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
948         __acquires(&wb->list_lock)
949 {
950         struct bdi_writeback *wb = inode_to_wb(inode);
951
952         spin_lock(&wb->list_lock);
953         return wb;
954 }
955
956 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
957 {
958         return nr_pages;
959 }
960
961 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
962                                   struct wb_writeback_work *base_work,
963                                   bool skip_if_busy)
964 {
965         might_sleep();
966
967         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
968                 base_work->auto_free = 0;
969                 wb_queue_work(&bdi->wb, base_work);
970         }
971 }
972
973 #endif  /* CONFIG_CGROUP_WRITEBACK */
974
975 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
976                         bool range_cyclic, enum wb_reason reason)
977 {
978         struct wb_writeback_work *work;
979
980         if (!wb_has_dirty_io(wb))
981                 return;
982
983         /*
984          * This is WB_SYNC_NONE writeback, so if allocation fails just
985          * wakeup the thread for old dirty data writeback
986          */
987         work = kzalloc(sizeof(*work),
988                        GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
989         if (!work) {
990                 trace_writeback_nowork(wb);
991                 wb_wakeup(wb);
992                 return;
993         }
994
995         work->sync_mode = WB_SYNC_NONE;
996         work->nr_pages  = nr_pages;
997         work->range_cyclic = range_cyclic;
998         work->reason    = reason;
999         work->auto_free = 1;
1000
1001         wb_queue_work(wb, work);
1002 }
1003
1004 /**
1005  * wb_start_background_writeback - start background writeback
1006  * @wb: bdi_writback to write from
1007  *
1008  * Description:
1009  *   This makes sure WB_SYNC_NONE background writeback happens. When
1010  *   this function returns, it is only guaranteed that for given wb
1011  *   some IO is happening if we are over background dirty threshold.
1012  *   Caller need not hold sb s_umount semaphore.
1013  */
1014 void wb_start_background_writeback(struct bdi_writeback *wb)
1015 {
1016         /*
1017          * We just wake up the flusher thread. It will perform background
1018          * writeback as soon as there is no other work to do.
1019          */
1020         trace_writeback_wake_background(wb);
1021         wb_wakeup(wb);
1022 }
1023
1024 /*
1025  * Remove the inode from the writeback list it is on.
1026  */
1027 void inode_io_list_del(struct inode *inode)
1028 {
1029         struct bdi_writeback *wb;
1030
1031         wb = inode_to_wb_and_lock_list(inode);
1032         inode_io_list_del_locked(inode, wb);
1033         spin_unlock(&wb->list_lock);
1034 }
1035
1036 /*
1037  * mark an inode as under writeback on the sb
1038  */
1039 void sb_mark_inode_writeback(struct inode *inode)
1040 {
1041         struct super_block *sb = inode->i_sb;
1042         unsigned long flags;
1043
1044         if (list_empty(&inode->i_wb_list)) {
1045                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1046                 if (list_empty(&inode->i_wb_list)) {
1047                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1048                         trace_sb_mark_inode_writeback(inode);
1049                 }
1050                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1051         }
1052 }
1053
1054 /*
1055  * clear an inode as under writeback on the sb
1056  */
1057 void sb_clear_inode_writeback(struct inode *inode)
1058 {
1059         struct super_block *sb = inode->i_sb;
1060         unsigned long flags;
1061
1062         if (!list_empty(&inode->i_wb_list)) {
1063                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1064                 if (!list_empty(&inode->i_wb_list)) {
1065                         list_del_init(&inode->i_wb_list);
1066                         trace_sb_clear_inode_writeback(inode);
1067                 }
1068                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1069         }
1070 }
1071
1072 /*
1073  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1074  * furthest end of its superblock's dirty-inode list.
1075  *
1076  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1077  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1078  * the case then the inode must have been redirtied while it was being written
1079  * out and we don't reset its dirtied_when.
1080  */
1081 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1082 {
1083         if (!list_empty(&wb->b_dirty)) {
1084                 struct inode *tail;
1085
1086                 tail = wb_inode(wb->b_dirty.next);
1087                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1088                         inode->dirtied_when = jiffies;
1089         }
1090         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1091 }
1092
1093 /*
1094  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1095  */
1096 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1097 {
1098         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1099 }
1100
1101 static void inode_sync_complete(struct inode *inode)
1102 {
1103         inode->i_state &= ~I_SYNC;
1104         /* If inode is clean an unused, put it into LRU now... */
1105         inode_add_lru(inode);
1106         /* Waiters must see I_SYNC cleared before being woken up */
1107         smp_mb();
1108         wake_up_bit(&inode->i_state, __I_SYNC);
1109 }
1110
1111 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1112 {
1113         bool ret = time_after(inode->dirtied_when, t);
1114 #ifndef CONFIG_64BIT
1115         /*
1116          * For inodes being constantly redirtied, dirtied_when can get stuck.
1117          * It _appears_ to be in the future, but is actually in distant past.
1118          * This test is necessary to prevent such wrapped-around relative times
1119          * from permanently stopping the whole bdi writeback.
1120          */
1121         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1122 #endif
1123         return ret;
1124 }
1125
1126 #define EXPIRE_DIRTY_ATIME 0x0001
1127
1128 /*
1129  * Move expired (dirtied before work->older_than_this) dirty inodes from
1130  * @delaying_queue to @dispatch_queue.
1131  */
1132 static int move_expired_inodes(struct list_head *delaying_queue,
1133                                struct list_head *dispatch_queue,
1134                                int flags,
1135                                struct wb_writeback_work *work)
1136 {
1137         unsigned long *older_than_this = NULL;
1138         unsigned long expire_time;
1139         LIST_HEAD(tmp);
1140         struct list_head *pos, *node;
1141         struct super_block *sb = NULL;
1142         struct inode *inode;
1143         int do_sb_sort = 0;
1144         int moved = 0;
1145
1146         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1147                 older_than_this = work->older_than_this;
1148         else if (!work->for_sync) {
1149                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1150                 older_than_this = &expire_time;
1151         }
1152         while (!list_empty(delaying_queue)) {
1153                 inode = wb_inode(delaying_queue->prev);
1154                 if (older_than_this &&
1155                     inode_dirtied_after(inode, *older_than_this))
1156                         break;
1157                 list_move(&inode->i_io_list, &tmp);
1158                 moved++;
1159                 if (flags & EXPIRE_DIRTY_ATIME)
1160                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1161                 if (sb_is_blkdev_sb(inode->i_sb))
1162                         continue;
1163                 if (sb && sb != inode->i_sb)
1164                         do_sb_sort = 1;
1165                 sb = inode->i_sb;
1166         }
1167
1168         /* just one sb in list, splice to dispatch_queue and we're done */
1169         if (!do_sb_sort) {
1170                 list_splice(&tmp, dispatch_queue);
1171                 goto out;
1172         }
1173
1174         /* Move inodes from one superblock together */
1175         while (!list_empty(&tmp)) {
1176                 sb = wb_inode(tmp.prev)->i_sb;
1177                 list_for_each_prev_safe(pos, node, &tmp) {
1178                         inode = wb_inode(pos);
1179                         if (inode->i_sb == sb)
1180                                 list_move(&inode->i_io_list, dispatch_queue);
1181                 }
1182         }
1183 out:
1184         return moved;
1185 }
1186
1187 /*
1188  * Queue all expired dirty inodes for io, eldest first.
1189  * Before
1190  *         newly dirtied     b_dirty    b_io    b_more_io
1191  *         =============>    gf         edc     BA
1192  * After
1193  *         newly dirtied     b_dirty    b_io    b_more_io
1194  *         =============>    g          fBAedc
1195  *                                           |
1196  *                                           +--> dequeue for IO
1197  */
1198 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1199 {
1200         int moved;
1201
1202         assert_spin_locked(&wb->list_lock);
1203         list_splice_init(&wb->b_more_io, &wb->b_io);
1204         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1205         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1206                                      EXPIRE_DIRTY_ATIME, work);
1207         if (moved)
1208                 wb_io_lists_populated(wb);
1209         trace_writeback_queue_io(wb, work, moved);
1210 }
1211
1212 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1213 {
1214         int ret;
1215
1216         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1217                 trace_writeback_write_inode_start(inode, wbc);
1218                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1219                 trace_writeback_write_inode(inode, wbc);
1220                 return ret;
1221         }
1222         return 0;
1223 }
1224
1225 /*
1226  * Wait for writeback on an inode to complete. Called with i_lock held.
1227  * Caller must make sure inode cannot go away when we drop i_lock.
1228  */
1229 static void __inode_wait_for_writeback(struct inode *inode)
1230         __releases(inode->i_lock)
1231         __acquires(inode->i_lock)
1232 {
1233         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1234         wait_queue_head_t *wqh;
1235
1236         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1237         while (inode->i_state & I_SYNC) {
1238                 spin_unlock(&inode->i_lock);
1239                 __wait_on_bit(wqh, &wq, bit_wait,
1240                               TASK_UNINTERRUPTIBLE);
1241                 spin_lock(&inode->i_lock);
1242         }
1243 }
1244
1245 /*
1246  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1247  */
1248 void inode_wait_for_writeback(struct inode *inode)
1249 {
1250         spin_lock(&inode->i_lock);
1251         __inode_wait_for_writeback(inode);
1252         spin_unlock(&inode->i_lock);
1253 }
1254
1255 /*
1256  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1257  * held and drops it. It is aimed for callers not holding any inode reference
1258  * so once i_lock is dropped, inode can go away.
1259  */
1260 static void inode_sleep_on_writeback(struct inode *inode)
1261         __releases(inode->i_lock)
1262 {
1263         DEFINE_WAIT(wait);
1264         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1265         int sleep;
1266
1267         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1268         sleep = inode->i_state & I_SYNC;
1269         spin_unlock(&inode->i_lock);
1270         if (sleep)
1271                 schedule();
1272         finish_wait(wqh, &wait);
1273 }
1274
1275 /*
1276  * Find proper writeback list for the inode depending on its current state and
1277  * possibly also change of its state while we were doing writeback.  Here we
1278  * handle things such as livelock prevention or fairness of writeback among
1279  * inodes. This function can be called only by flusher thread - noone else
1280  * processes all inodes in writeback lists and requeueing inodes behind flusher
1281  * thread's back can have unexpected consequences.
1282  */
1283 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1284                           struct writeback_control *wbc)
1285 {
1286         if (inode->i_state & I_FREEING)
1287                 return;
1288
1289         /*
1290          * Sync livelock prevention. Each inode is tagged and synced in one
1291          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1292          * the dirty time to prevent enqueue and sync it again.
1293          */
1294         if ((inode->i_state & I_DIRTY) &&
1295             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1296                 inode->dirtied_when = jiffies;
1297
1298         if (wbc->pages_skipped) {
1299                 /*
1300                  * writeback is not making progress due to locked
1301                  * buffers. Skip this inode for now.
1302                  */
1303                 redirty_tail(inode, wb);
1304                 return;
1305         }
1306
1307         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1308                 /*
1309                  * We didn't write back all the pages.  nfs_writepages()
1310                  * sometimes bales out without doing anything.
1311                  */
1312                 if (wbc->nr_to_write <= 0) {
1313                         /* Slice used up. Queue for next turn. */
1314                         requeue_io(inode, wb);
1315                 } else {
1316                         /*
1317                          * Writeback blocked by something other than
1318                          * congestion. Delay the inode for some time to
1319                          * avoid spinning on the CPU (100% iowait)
1320                          * retrying writeback of the dirty page/inode
1321                          * that cannot be performed immediately.
1322                          */
1323                         redirty_tail(inode, wb);
1324                 }
1325         } else if (inode->i_state & I_DIRTY) {
1326                 /*
1327                  * Filesystems can dirty the inode during writeback operations,
1328                  * such as delayed allocation during submission or metadata
1329                  * updates after data IO completion.
1330                  */
1331                 redirty_tail(inode, wb);
1332         } else if (inode->i_state & I_DIRTY_TIME) {
1333                 inode->dirtied_when = jiffies;
1334                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1335         } else {
1336                 /* The inode is clean. Remove from writeback lists. */
1337                 inode_io_list_del_locked(inode, wb);
1338         }
1339 }
1340
1341 /*
1342  * Write out an inode and its dirty pages. Do not update the writeback list
1343  * linkage. That is left to the caller. The caller is also responsible for
1344  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1345  */
1346 static int
1347 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1348 {
1349         struct address_space *mapping = inode->i_mapping;
1350         long nr_to_write = wbc->nr_to_write;
1351         unsigned dirty;
1352         int ret;
1353
1354         WARN_ON(!(inode->i_state & I_SYNC));
1355
1356         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1357
1358         ret = do_writepages(mapping, wbc);
1359
1360         /*
1361          * Make sure to wait on the data before writing out the metadata.
1362          * This is important for filesystems that modify metadata on data
1363          * I/O completion. We don't do it for sync(2) writeback because it has a
1364          * separate, external IO completion path and ->sync_fs for guaranteeing
1365          * inode metadata is written back correctly.
1366          */
1367         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1368                 int err = filemap_fdatawait(mapping);
1369                 if (ret == 0)
1370                         ret = err;
1371         }
1372
1373         /*
1374          * Some filesystems may redirty the inode during the writeback
1375          * due to delalloc, clear dirty metadata flags right before
1376          * write_inode()
1377          */
1378         spin_lock(&inode->i_lock);
1379
1380         dirty = inode->i_state & I_DIRTY;
1381         if (inode->i_state & I_DIRTY_TIME) {
1382                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1383                     wbc->sync_mode == WB_SYNC_ALL ||
1384                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1385                     unlikely(time_after(jiffies,
1386                                         (inode->dirtied_time_when +
1387                                          dirtytime_expire_interval * HZ)))) {
1388                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1389                         trace_writeback_lazytime(inode);
1390                 }
1391         } else
1392                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1393         inode->i_state &= ~dirty;
1394
1395         /*
1396          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1397          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1398          * either they see the I_DIRTY bits cleared or we see the dirtied
1399          * inode.
1400          *
1401          * I_DIRTY_PAGES is always cleared together above even if @mapping
1402          * still has dirty pages.  The flag is reinstated after smp_mb() if
1403          * necessary.  This guarantees that either __mark_inode_dirty()
1404          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1405          */
1406         smp_mb();
1407
1408         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1409                 inode->i_state |= I_DIRTY_PAGES;
1410
1411         spin_unlock(&inode->i_lock);
1412
1413         if (dirty & I_DIRTY_TIME)
1414                 mark_inode_dirty_sync(inode);
1415         /* Don't write the inode if only I_DIRTY_PAGES was set */
1416         if (dirty & ~I_DIRTY_PAGES) {
1417                 int err = write_inode(inode, wbc);
1418                 if (ret == 0)
1419                         ret = err;
1420         }
1421         trace_writeback_single_inode(inode, wbc, nr_to_write);
1422         return ret;
1423 }
1424
1425 /*
1426  * Write out an inode's dirty pages. Either the caller has an active reference
1427  * on the inode or the inode has I_WILL_FREE set.
1428  *
1429  * This function is designed to be called for writing back one inode which
1430  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1431  * and does more profound writeback list handling in writeback_sb_inodes().
1432  */
1433 static int writeback_single_inode(struct inode *inode,
1434                                   struct writeback_control *wbc)
1435 {
1436         struct bdi_writeback *wb;
1437         int ret = 0;
1438
1439         spin_lock(&inode->i_lock);
1440         if (!atomic_read(&inode->i_count))
1441                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1442         else
1443                 WARN_ON(inode->i_state & I_WILL_FREE);
1444
1445         if (inode->i_state & I_SYNC) {
1446                 if (wbc->sync_mode != WB_SYNC_ALL)
1447                         goto out;
1448                 /*
1449                  * It's a data-integrity sync. We must wait. Since callers hold
1450                  * inode reference or inode has I_WILL_FREE set, it cannot go
1451                  * away under us.
1452                  */
1453                 __inode_wait_for_writeback(inode);
1454         }
1455         WARN_ON(inode->i_state & I_SYNC);
1456         /*
1457          * Skip inode if it is clean and we have no outstanding writeback in
1458          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1459          * function since flusher thread may be doing for example sync in
1460          * parallel and if we move the inode, it could get skipped. So here we
1461          * make sure inode is on some writeback list and leave it there unless
1462          * we have completely cleaned the inode.
1463          */
1464         if (!(inode->i_state & I_DIRTY_ALL) &&
1465             (wbc->sync_mode != WB_SYNC_ALL ||
1466              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1467                 goto out;
1468         inode->i_state |= I_SYNC;
1469         wbc_attach_and_unlock_inode(wbc, inode);
1470
1471         ret = __writeback_single_inode(inode, wbc);
1472
1473         wbc_detach_inode(wbc);
1474
1475         wb = inode_to_wb_and_lock_list(inode);
1476         spin_lock(&inode->i_lock);
1477         /*
1478          * If inode is clean, remove it from writeback lists. Otherwise don't
1479          * touch it. See comment above for explanation.
1480          */
1481         if (!(inode->i_state & I_DIRTY_ALL))
1482                 inode_io_list_del_locked(inode, wb);
1483         spin_unlock(&wb->list_lock);
1484         inode_sync_complete(inode);
1485 out:
1486         spin_unlock(&inode->i_lock);
1487         return ret;
1488 }
1489
1490 static long writeback_chunk_size(struct bdi_writeback *wb,
1491                                  struct wb_writeback_work *work)
1492 {
1493         long pages;
1494
1495         /*
1496          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1497          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1498          * here avoids calling into writeback_inodes_wb() more than once.
1499          *
1500          * The intended call sequence for WB_SYNC_ALL writeback is:
1501          *
1502          *      wb_writeback()
1503          *          writeback_sb_inodes()       <== called only once
1504          *              write_cache_pages()     <== called once for each inode
1505          *                   (quickly) tag currently dirty pages
1506          *                   (maybe slowly) sync all tagged pages
1507          */
1508         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1509                 pages = LONG_MAX;
1510         else {
1511                 pages = min(wb->avg_write_bandwidth / 2,
1512                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1513                 pages = min(pages, work->nr_pages);
1514                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1515                                    MIN_WRITEBACK_PAGES);
1516         }
1517
1518         return pages;
1519 }
1520
1521 /*
1522  * Write a portion of b_io inodes which belong to @sb.
1523  *
1524  * Return the number of pages and/or inodes written.
1525  *
1526  * NOTE! This is called with wb->list_lock held, and will
1527  * unlock and relock that for each inode it ends up doing
1528  * IO for.
1529  */
1530 static long writeback_sb_inodes(struct super_block *sb,
1531                                 struct bdi_writeback *wb,
1532                                 struct wb_writeback_work *work)
1533 {
1534         struct writeback_control wbc = {
1535                 .sync_mode              = work->sync_mode,
1536                 .tagged_writepages      = work->tagged_writepages,
1537                 .for_kupdate            = work->for_kupdate,
1538                 .for_background         = work->for_background,
1539                 .for_sync               = work->for_sync,
1540                 .range_cyclic           = work->range_cyclic,
1541                 .range_start            = 0,
1542                 .range_end              = LLONG_MAX,
1543         };
1544         unsigned long start_time = jiffies;
1545         long write_chunk;
1546         long wrote = 0;  /* count both pages and inodes */
1547
1548         while (!list_empty(&wb->b_io)) {
1549                 struct inode *inode = wb_inode(wb->b_io.prev);
1550                 struct bdi_writeback *tmp_wb;
1551
1552                 if (inode->i_sb != sb) {
1553                         if (work->sb) {
1554                                 /*
1555                                  * We only want to write back data for this
1556                                  * superblock, move all inodes not belonging
1557                                  * to it back onto the dirty list.
1558                                  */
1559                                 redirty_tail(inode, wb);
1560                                 continue;
1561                         }
1562
1563                         /*
1564                          * The inode belongs to a different superblock.
1565                          * Bounce back to the caller to unpin this and
1566                          * pin the next superblock.
1567                          */
1568                         break;
1569                 }
1570
1571                 /*
1572                  * Don't bother with new inodes or inodes being freed, first
1573                  * kind does not need periodic writeout yet, and for the latter
1574                  * kind writeout is handled by the freer.
1575                  */
1576                 spin_lock(&inode->i_lock);
1577                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1578                         spin_unlock(&inode->i_lock);
1579                         redirty_tail(inode, wb);
1580                         continue;
1581                 }
1582                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1583                         /*
1584                          * If this inode is locked for writeback and we are not
1585                          * doing writeback-for-data-integrity, move it to
1586                          * b_more_io so that writeback can proceed with the
1587                          * other inodes on s_io.
1588                          *
1589                          * We'll have another go at writing back this inode
1590                          * when we completed a full scan of b_io.
1591                          */
1592                         spin_unlock(&inode->i_lock);
1593                         requeue_io(inode, wb);
1594                         trace_writeback_sb_inodes_requeue(inode);
1595                         continue;
1596                 }
1597                 spin_unlock(&wb->list_lock);
1598
1599                 /*
1600                  * We already requeued the inode if it had I_SYNC set and we
1601                  * are doing WB_SYNC_NONE writeback. So this catches only the
1602                  * WB_SYNC_ALL case.
1603                  */
1604                 if (inode->i_state & I_SYNC) {
1605                         /* Wait for I_SYNC. This function drops i_lock... */
1606                         inode_sleep_on_writeback(inode);
1607                         /* Inode may be gone, start again */
1608                         spin_lock(&wb->list_lock);
1609                         continue;
1610                 }
1611                 inode->i_state |= I_SYNC;
1612                 wbc_attach_and_unlock_inode(&wbc, inode);
1613
1614                 write_chunk = writeback_chunk_size(wb, work);
1615                 wbc.nr_to_write = write_chunk;
1616                 wbc.pages_skipped = 0;
1617
1618                 /*
1619                  * We use I_SYNC to pin the inode in memory. While it is set
1620                  * evict_inode() will wait so the inode cannot be freed.
1621                  */
1622                 __writeback_single_inode(inode, &wbc);
1623
1624                 wbc_detach_inode(&wbc);
1625                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1626                 wrote += write_chunk - wbc.nr_to_write;
1627
1628                 if (need_resched()) {
1629                         /*
1630                          * We're trying to balance between building up a nice
1631                          * long list of IOs to improve our merge rate, and
1632                          * getting those IOs out quickly for anyone throttling
1633                          * in balance_dirty_pages().  cond_resched() doesn't
1634                          * unplug, so get our IOs out the door before we
1635                          * give up the CPU.
1636                          */
1637                         blk_flush_plug(current);
1638                         cond_resched();
1639                 }
1640
1641                 /*
1642                  * Requeue @inode if still dirty.  Be careful as @inode may
1643                  * have been switched to another wb in the meantime.
1644                  */
1645                 tmp_wb = inode_to_wb_and_lock_list(inode);
1646                 spin_lock(&inode->i_lock);
1647                 if (!(inode->i_state & I_DIRTY_ALL))
1648                         wrote++;
1649                 requeue_inode(inode, tmp_wb, &wbc);
1650                 inode_sync_complete(inode);
1651                 spin_unlock(&inode->i_lock);
1652
1653                 if (unlikely(tmp_wb != wb)) {
1654                         spin_unlock(&tmp_wb->list_lock);
1655                         spin_lock(&wb->list_lock);
1656                 }
1657
1658                 /*
1659                  * bail out to wb_writeback() often enough to check
1660                  * background threshold and other termination conditions.
1661                  */
1662                 if (wrote) {
1663                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1664                                 break;
1665                         if (work->nr_pages <= 0)
1666                                 break;
1667                 }
1668         }
1669         return wrote;
1670 }
1671
1672 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1673                                   struct wb_writeback_work *work)
1674 {
1675         unsigned long start_time = jiffies;
1676         long wrote = 0;
1677
1678         while (!list_empty(&wb->b_io)) {
1679                 struct inode *inode = wb_inode(wb->b_io.prev);
1680                 struct super_block *sb = inode->i_sb;
1681
1682                 if (!trylock_super(sb)) {
1683                         /*
1684                          * trylock_super() may fail consistently due to
1685                          * s_umount being grabbed by someone else. Don't use
1686                          * requeue_io() to avoid busy retrying the inode/sb.
1687                          */
1688                         redirty_tail(inode, wb);
1689                         continue;
1690                 }
1691                 wrote += writeback_sb_inodes(sb, wb, work);
1692                 up_read(&sb->s_umount);
1693
1694                 /* refer to the same tests at the end of writeback_sb_inodes */
1695                 if (wrote) {
1696                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1697                                 break;
1698                         if (work->nr_pages <= 0)
1699                                 break;
1700                 }
1701         }
1702         /* Leave any unwritten inodes on b_io */
1703         return wrote;
1704 }
1705
1706 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1707                                 enum wb_reason reason)
1708 {
1709         struct wb_writeback_work work = {
1710                 .nr_pages       = nr_pages,
1711                 .sync_mode      = WB_SYNC_NONE,
1712                 .range_cyclic   = 1,
1713                 .reason         = reason,
1714         };
1715         struct blk_plug plug;
1716
1717         blk_start_plug(&plug);
1718         spin_lock(&wb->list_lock);
1719         if (list_empty(&wb->b_io))
1720                 queue_io(wb, &work);
1721         __writeback_inodes_wb(wb, &work);
1722         spin_unlock(&wb->list_lock);
1723         blk_finish_plug(&plug);
1724
1725         return nr_pages - work.nr_pages;
1726 }
1727
1728 /*
1729  * Explicit flushing or periodic writeback of "old" data.
1730  *
1731  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1732  * dirtying-time in the inode's address_space.  So this periodic writeback code
1733  * just walks the superblock inode list, writing back any inodes which are
1734  * older than a specific point in time.
1735  *
1736  * Try to run once per dirty_writeback_interval.  But if a writeback event
1737  * takes longer than a dirty_writeback_interval interval, then leave a
1738  * one-second gap.
1739  *
1740  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1741  * all dirty pages if they are all attached to "old" mappings.
1742  */
1743 static long wb_writeback(struct bdi_writeback *wb,
1744                          struct wb_writeback_work *work)
1745 {
1746         unsigned long wb_start = jiffies;
1747         long nr_pages = work->nr_pages;
1748         unsigned long oldest_jif;
1749         struct inode *inode;
1750         long progress;
1751         struct blk_plug plug;
1752
1753         oldest_jif = jiffies;
1754         work->older_than_this = &oldest_jif;
1755
1756         blk_start_plug(&plug);
1757         spin_lock(&wb->list_lock);
1758         for (;;) {
1759                 /*
1760                  * Stop writeback when nr_pages has been consumed
1761                  */
1762                 if (work->nr_pages <= 0)
1763                         break;
1764
1765                 /*
1766                  * Background writeout and kupdate-style writeback may
1767                  * run forever. Stop them if there is other work to do
1768                  * so that e.g. sync can proceed. They'll be restarted
1769                  * after the other works are all done.
1770                  */
1771                 if ((work->for_background || work->for_kupdate) &&
1772                     !list_empty(&wb->work_list))
1773                         break;
1774
1775                 /*
1776                  * For background writeout, stop when we are below the
1777                  * background dirty threshold
1778                  */
1779                 if (work->for_background && !wb_over_bg_thresh(wb))
1780                         break;
1781
1782                 /*
1783                  * Kupdate and background works are special and we want to
1784                  * include all inodes that need writing. Livelock avoidance is
1785                  * handled by these works yielding to any other work so we are
1786                  * safe.
1787                  */
1788                 if (work->for_kupdate) {
1789                         oldest_jif = jiffies -
1790                                 msecs_to_jiffies(dirty_expire_interval * 10);
1791                 } else if (work->for_background)
1792                         oldest_jif = jiffies;
1793
1794                 trace_writeback_start(wb, work);
1795                 if (list_empty(&wb->b_io))
1796                         queue_io(wb, work);
1797                 if (work->sb)
1798                         progress = writeback_sb_inodes(work->sb, wb, work);
1799                 else
1800                         progress = __writeback_inodes_wb(wb, work);
1801                 trace_writeback_written(wb, work);
1802
1803                 wb_update_bandwidth(wb, wb_start);
1804
1805                 /*
1806                  * Did we write something? Try for more
1807                  *
1808                  * Dirty inodes are moved to b_io for writeback in batches.
1809                  * The completion of the current batch does not necessarily
1810                  * mean the overall work is done. So we keep looping as long
1811                  * as made some progress on cleaning pages or inodes.
1812                  */
1813                 if (progress)
1814                         continue;
1815                 /*
1816                  * No more inodes for IO, bail
1817                  */
1818                 if (list_empty(&wb->b_more_io))
1819                         break;
1820                 /*
1821                  * Nothing written. Wait for some inode to
1822                  * become available for writeback. Otherwise
1823                  * we'll just busyloop.
1824                  */
1825                 if (!list_empty(&wb->b_more_io))  {
1826                         trace_writeback_wait(wb, work);
1827                         inode = wb_inode(wb->b_more_io.prev);
1828                         spin_lock(&inode->i_lock);
1829                         spin_unlock(&wb->list_lock);
1830                         /* This function drops i_lock... */
1831                         inode_sleep_on_writeback(inode);
1832                         spin_lock(&wb->list_lock);
1833                 }
1834         }
1835         spin_unlock(&wb->list_lock);
1836         blk_finish_plug(&plug);
1837
1838         return nr_pages - work->nr_pages;
1839 }
1840
1841 /*
1842  * Return the next wb_writeback_work struct that hasn't been processed yet.
1843  */
1844 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1845 {
1846         struct wb_writeback_work *work = NULL;
1847
1848         spin_lock_bh(&wb->work_lock);
1849         if (!list_empty(&wb->work_list)) {
1850                 work = list_entry(wb->work_list.next,
1851                                   struct wb_writeback_work, list);
1852                 list_del_init(&work->list);
1853         }
1854         spin_unlock_bh(&wb->work_lock);
1855         return work;
1856 }
1857
1858 /*
1859  * Add in the number of potentially dirty inodes, because each inode
1860  * write can dirty pagecache in the underlying blockdev.
1861  */
1862 static unsigned long get_nr_dirty_pages(void)
1863 {
1864         return global_node_page_state(NR_FILE_DIRTY) +
1865                 global_node_page_state(NR_UNSTABLE_NFS) +
1866                 get_nr_dirty_inodes();
1867 }
1868
1869 static long wb_check_background_flush(struct bdi_writeback *wb)
1870 {
1871         if (wb_over_bg_thresh(wb)) {
1872
1873                 struct wb_writeback_work work = {
1874                         .nr_pages       = LONG_MAX,
1875                         .sync_mode      = WB_SYNC_NONE,
1876                         .for_background = 1,
1877                         .range_cyclic   = 1,
1878                         .reason         = WB_REASON_BACKGROUND,
1879                 };
1880
1881                 return wb_writeback(wb, &work);
1882         }
1883
1884         return 0;
1885 }
1886
1887 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1888 {
1889         unsigned long expired;
1890         long nr_pages;
1891
1892         /*
1893          * When set to zero, disable periodic writeback
1894          */
1895         if (!dirty_writeback_interval)
1896                 return 0;
1897
1898         expired = wb->last_old_flush +
1899                         msecs_to_jiffies(dirty_writeback_interval * 10);
1900         if (time_before(jiffies, expired))
1901                 return 0;
1902
1903         wb->last_old_flush = jiffies;
1904         nr_pages = get_nr_dirty_pages();
1905
1906         if (nr_pages) {
1907                 struct wb_writeback_work work = {
1908                         .nr_pages       = nr_pages,
1909                         .sync_mode      = WB_SYNC_NONE,
1910                         .for_kupdate    = 1,
1911                         .range_cyclic   = 1,
1912                         .reason         = WB_REASON_PERIODIC,
1913                 };
1914
1915                 return wb_writeback(wb, &work);
1916         }
1917
1918         return 0;
1919 }
1920
1921 /*
1922  * Retrieve work items and do the writeback they describe
1923  */
1924 static long wb_do_writeback(struct bdi_writeback *wb)
1925 {
1926         struct wb_writeback_work *work;
1927         long wrote = 0;
1928
1929         set_bit(WB_writeback_running, &wb->state);
1930         while ((work = get_next_work_item(wb)) != NULL) {
1931                 trace_writeback_exec(wb, work);
1932                 wrote += wb_writeback(wb, work);
1933                 finish_writeback_work(wb, work);
1934         }
1935
1936         /*
1937          * Check for periodic writeback, kupdated() style
1938          */
1939         wrote += wb_check_old_data_flush(wb);
1940         wrote += wb_check_background_flush(wb);
1941         clear_bit(WB_writeback_running, &wb->state);
1942
1943         return wrote;
1944 }
1945
1946 /*
1947  * Handle writeback of dirty data for the device backed by this bdi. Also
1948  * reschedules periodically and does kupdated style flushing.
1949  */
1950 void wb_workfn(struct work_struct *work)
1951 {
1952         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1953                                                 struct bdi_writeback, dwork);
1954         long pages_written;
1955
1956         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1957         current->flags |= PF_SWAPWRITE;
1958
1959         if (likely(!current_is_workqueue_rescuer() ||
1960                    !test_bit(WB_registered, &wb->state))) {
1961                 /*
1962                  * The normal path.  Keep writing back @wb until its
1963                  * work_list is empty.  Note that this path is also taken
1964                  * if @wb is shutting down even when we're running off the
1965                  * rescuer as work_list needs to be drained.
1966                  */
1967                 do {
1968                         pages_written = wb_do_writeback(wb);
1969                         trace_writeback_pages_written(pages_written);
1970                 } while (!list_empty(&wb->work_list));
1971         } else {
1972                 /*
1973                  * bdi_wq can't get enough workers and we're running off
1974                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1975                  * enough for efficient IO.
1976                  */
1977                 pages_written = writeback_inodes_wb(wb, 1024,
1978                                                     WB_REASON_FORKER_THREAD);
1979                 trace_writeback_pages_written(pages_written);
1980         }
1981
1982         if (!list_empty(&wb->work_list))
1983                 wb_wakeup(wb);
1984         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1985                 wb_wakeup_delayed(wb);
1986
1987         current->flags &= ~PF_SWAPWRITE;
1988 }
1989
1990 /*
1991  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1992  * the whole world.
1993  */
1994 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1995 {
1996         struct backing_dev_info *bdi;
1997
1998         /*
1999          * If we are expecting writeback progress we must submit plugged IO.
2000          */
2001         if (blk_needs_flush_plug(current))
2002                 blk_schedule_flush_plug(current);
2003
2004         if (!nr_pages)
2005                 nr_pages = get_nr_dirty_pages();
2006
2007         rcu_read_lock();
2008         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2009                 struct bdi_writeback *wb;
2010
2011                 if (!bdi_has_dirty_io(bdi))
2012                         continue;
2013
2014                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2015                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
2016                                            false, reason);
2017         }
2018         rcu_read_unlock();
2019 }
2020
2021 /*
2022  * Wake up bdi's periodically to make sure dirtytime inodes gets
2023  * written back periodically.  We deliberately do *not* check the
2024  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2025  * kernel to be constantly waking up once there are any dirtytime
2026  * inodes on the system.  So instead we define a separate delayed work
2027  * function which gets called much more rarely.  (By default, only
2028  * once every 12 hours.)
2029  *
2030  * If there is any other write activity going on in the file system,
2031  * this function won't be necessary.  But if the only thing that has
2032  * happened on the file system is a dirtytime inode caused by an atime
2033  * update, we need this infrastructure below to make sure that inode
2034  * eventually gets pushed out to disk.
2035  */
2036 static void wakeup_dirtytime_writeback(struct work_struct *w);
2037 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2038
2039 static void wakeup_dirtytime_writeback(struct work_struct *w)
2040 {
2041         struct backing_dev_info *bdi;
2042
2043         rcu_read_lock();
2044         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2045                 struct bdi_writeback *wb;
2046
2047                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2048                         if (!list_empty(&wb->b_dirty_time))
2049                                 wb_wakeup(wb);
2050         }
2051         rcu_read_unlock();
2052         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2053 }
2054
2055 static int __init start_dirtytime_writeback(void)
2056 {
2057         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2058         return 0;
2059 }
2060 __initcall(start_dirtytime_writeback);
2061
2062 int dirtytime_interval_handler(struct ctl_table *table, int write,
2063                                void __user *buffer, size_t *lenp, loff_t *ppos)
2064 {
2065         int ret;
2066
2067         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2068         if (ret == 0 && write)
2069                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2070         return ret;
2071 }
2072
2073 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2074 {
2075         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2076                 struct dentry *dentry;
2077                 const char *name = "?";
2078
2079                 dentry = d_find_alias(inode);
2080                 if (dentry) {
2081                         spin_lock(&dentry->d_lock);
2082                         name = (const char *) dentry->d_name.name;
2083                 }
2084                 printk(KERN_DEBUG
2085                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2086                        current->comm, task_pid_nr(current), inode->i_ino,
2087                        name, inode->i_sb->s_id);
2088                 if (dentry) {
2089                         spin_unlock(&dentry->d_lock);
2090                         dput(dentry);
2091                 }
2092         }
2093 }
2094
2095 /**
2096  *      __mark_inode_dirty -    internal function
2097  *      @inode: inode to mark
2098  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2099  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
2100  *      mark_inode_dirty_sync.
2101  *
2102  * Put the inode on the super block's dirty list.
2103  *
2104  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2105  * dirty list only if it is hashed or if it refers to a blockdev.
2106  * If it was not hashed, it will never be added to the dirty list
2107  * even if it is later hashed, as it will have been marked dirty already.
2108  *
2109  * In short, make sure you hash any inodes _before_ you start marking
2110  * them dirty.
2111  *
2112  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2113  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2114  * the kernel-internal blockdev inode represents the dirtying time of the
2115  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2116  * page->mapping->host, so the page-dirtying time is recorded in the internal
2117  * blockdev inode.
2118  */
2119 void __mark_inode_dirty(struct inode *inode, int flags)
2120 {
2121 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2122         struct super_block *sb = inode->i_sb;
2123         int dirtytime;
2124
2125         trace_writeback_mark_inode_dirty(inode, flags);
2126
2127         /*
2128          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2129          * dirty the inode itself
2130          */
2131         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2132                 trace_writeback_dirty_inode_start(inode, flags);
2133
2134                 if (sb->s_op->dirty_inode)
2135                         sb->s_op->dirty_inode(inode, flags);
2136
2137                 trace_writeback_dirty_inode(inode, flags);
2138         }
2139         if (flags & I_DIRTY_INODE)
2140                 flags &= ~I_DIRTY_TIME;
2141         dirtytime = flags & I_DIRTY_TIME;
2142
2143         /*
2144          * Paired with smp_mb() in __writeback_single_inode() for the
2145          * following lockless i_state test.  See there for details.
2146          */
2147         smp_mb();
2148
2149         if (((inode->i_state & flags) == flags) ||
2150             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2151                 return;
2152
2153         if (unlikely(block_dump))
2154                 block_dump___mark_inode_dirty(inode);
2155
2156         spin_lock(&inode->i_lock);
2157         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2158                 goto out_unlock_inode;
2159         if ((inode->i_state & flags) != flags) {
2160                 const int was_dirty = inode->i_state & I_DIRTY;
2161
2162                 inode_attach_wb(inode, NULL);
2163
2164                 if (flags & I_DIRTY_INODE)
2165                         inode->i_state &= ~I_DIRTY_TIME;
2166                 inode->i_state |= flags;
2167
2168                 /*
2169                  * If the inode is being synced, just update its dirty state.
2170                  * The unlocker will place the inode on the appropriate
2171                  * superblock list, based upon its state.
2172                  */
2173                 if (inode->i_state & I_SYNC)
2174                         goto out_unlock_inode;
2175
2176                 /*
2177                  * Only add valid (hashed) inodes to the superblock's
2178                  * dirty list.  Add blockdev inodes as well.
2179                  */
2180                 if (!S_ISBLK(inode->i_mode)) {
2181                         if (inode_unhashed(inode))
2182                                 goto out_unlock_inode;
2183                 }
2184                 if (inode->i_state & I_FREEING)
2185                         goto out_unlock_inode;
2186
2187                 /*
2188                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2189                  * reposition it (that would break b_dirty time-ordering).
2190                  */
2191                 if (!was_dirty) {
2192                         struct bdi_writeback *wb;
2193                         struct list_head *dirty_list;
2194                         bool wakeup_bdi = false;
2195
2196                         wb = locked_inode_to_wb_and_lock_list(inode);
2197
2198                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2199                              !test_bit(WB_registered, &wb->state),
2200                              "bdi-%s not registered\n", wb->bdi->name);
2201
2202                         inode->dirtied_when = jiffies;
2203                         if (dirtytime)
2204                                 inode->dirtied_time_when = jiffies;
2205
2206                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2207                                 dirty_list = &wb->b_dirty;
2208                         else
2209                                 dirty_list = &wb->b_dirty_time;
2210
2211                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2212                                                                dirty_list);
2213
2214                         spin_unlock(&wb->list_lock);
2215                         trace_writeback_dirty_inode_enqueue(inode);
2216
2217                         /*
2218                          * If this is the first dirty inode for this bdi,
2219                          * we have to wake-up the corresponding bdi thread
2220                          * to make sure background write-back happens
2221                          * later.
2222                          */
2223                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2224                                 wb_wakeup_delayed(wb);
2225                         return;
2226                 }
2227         }
2228 out_unlock_inode:
2229         spin_unlock(&inode->i_lock);
2230
2231 #undef I_DIRTY_INODE
2232 }
2233 EXPORT_SYMBOL(__mark_inode_dirty);
2234
2235 /*
2236  * The @s_sync_lock is used to serialise concurrent sync operations
2237  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2238  * Concurrent callers will block on the s_sync_lock rather than doing contending
2239  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2240  * has been issued up to the time this function is enter is guaranteed to be
2241  * completed by the time we have gained the lock and waited for all IO that is
2242  * in progress regardless of the order callers are granted the lock.
2243  */
2244 static void wait_sb_inodes(struct super_block *sb)
2245 {
2246         LIST_HEAD(sync_list);
2247
2248         /*
2249          * We need to be protected against the filesystem going from
2250          * r/o to r/w or vice versa.
2251          */
2252         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2253
2254         mutex_lock(&sb->s_sync_lock);
2255
2256         /*
2257          * Splice the writeback list onto a temporary list to avoid waiting on
2258          * inodes that have started writeback after this point.
2259          *
2260          * Use rcu_read_lock() to keep the inodes around until we have a
2261          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2262          * the local list because inodes can be dropped from either by writeback
2263          * completion.
2264          */
2265         rcu_read_lock();
2266         spin_lock_irq(&sb->s_inode_wblist_lock);
2267         list_splice_init(&sb->s_inodes_wb, &sync_list);
2268
2269         /*
2270          * Data integrity sync. Must wait for all pages under writeback, because
2271          * there may have been pages dirtied before our sync call, but which had
2272          * writeout started before we write it out.  In which case, the inode
2273          * may not be on the dirty list, but we still have to wait for that
2274          * writeout.
2275          */
2276         while (!list_empty(&sync_list)) {
2277                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2278                                                        i_wb_list);
2279                 struct address_space *mapping = inode->i_mapping;
2280
2281                 /*
2282                  * Move each inode back to the wb list before we drop the lock
2283                  * to preserve consistency between i_wb_list and the mapping
2284                  * writeback tag. Writeback completion is responsible to remove
2285                  * the inode from either list once the writeback tag is cleared.
2286                  */
2287                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2288
2289                 /*
2290                  * The mapping can appear untagged while still on-list since we
2291                  * do not have the mapping lock. Skip it here, wb completion
2292                  * will remove it.
2293                  */
2294                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2295                         continue;
2296
2297                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2298
2299                 spin_lock(&inode->i_lock);
2300                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2301                         spin_unlock(&inode->i_lock);
2302
2303                         spin_lock_irq(&sb->s_inode_wblist_lock);
2304                         continue;
2305                 }
2306                 __iget(inode);
2307                 spin_unlock(&inode->i_lock);
2308                 rcu_read_unlock();
2309
2310                 /*
2311                  * We keep the error status of individual mapping so that
2312                  * applications can catch the writeback error using fsync(2).
2313                  * See filemap_fdatawait_keep_errors() for details.
2314                  */
2315                 filemap_fdatawait_keep_errors(mapping);
2316
2317                 cond_resched();
2318
2319                 iput(inode);
2320
2321                 rcu_read_lock();
2322                 spin_lock_irq(&sb->s_inode_wblist_lock);
2323         }
2324         spin_unlock_irq(&sb->s_inode_wblist_lock);
2325         rcu_read_unlock();
2326         mutex_unlock(&sb->s_sync_lock);
2327 }
2328
2329 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2330                                      enum wb_reason reason, bool skip_if_busy)
2331 {
2332         DEFINE_WB_COMPLETION_ONSTACK(done);
2333         struct wb_writeback_work work = {
2334                 .sb                     = sb,
2335                 .sync_mode              = WB_SYNC_NONE,
2336                 .tagged_writepages      = 1,
2337                 .done                   = &done,
2338                 .nr_pages               = nr,
2339                 .reason                 = reason,
2340         };
2341         struct backing_dev_info *bdi = sb->s_bdi;
2342
2343         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2344                 return;
2345         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2346
2347         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2348         wb_wait_for_completion(bdi, &done);
2349 }
2350
2351 /**
2352  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2353  * @sb: the superblock
2354  * @nr: the number of pages to write
2355  * @reason: reason why some writeback work initiated
2356  *
2357  * Start writeback on some inodes on this super_block. No guarantees are made
2358  * on how many (if any) will be written, and this function does not wait
2359  * for IO completion of submitted IO.
2360  */
2361 void writeback_inodes_sb_nr(struct super_block *sb,
2362                             unsigned long nr,
2363                             enum wb_reason reason)
2364 {
2365         __writeback_inodes_sb_nr(sb, nr, reason, false);
2366 }
2367 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2368
2369 /**
2370  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2371  * @sb: the superblock
2372  * @reason: reason why some writeback work was initiated
2373  *
2374  * Start writeback on some inodes on this super_block. No guarantees are made
2375  * on how many (if any) will be written, and this function does not wait
2376  * for IO completion of submitted IO.
2377  */
2378 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2379 {
2380         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2381 }
2382 EXPORT_SYMBOL(writeback_inodes_sb);
2383
2384 /**
2385  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2386  * @sb: the superblock
2387  * @nr: the number of pages to write
2388  * @reason: the reason of writeback
2389  *
2390  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2391  * Returns 1 if writeback was started, 0 if not.
2392  */
2393 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2394                                    enum wb_reason reason)
2395 {
2396         if (!down_read_trylock(&sb->s_umount))
2397                 return false;
2398
2399         __writeback_inodes_sb_nr(sb, nr, reason, true);
2400         up_read(&sb->s_umount);
2401         return true;
2402 }
2403 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2404
2405 /**
2406  * try_to_writeback_inodes_sb - try to start writeback if none underway
2407  * @sb: the superblock
2408  * @reason: reason why some writeback work was initiated
2409  *
2410  * Implement by try_to_writeback_inodes_sb_nr()
2411  * Returns 1 if writeback was started, 0 if not.
2412  */
2413 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2414 {
2415         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2416 }
2417 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2418
2419 /**
2420  * sync_inodes_sb       -       sync sb inode pages
2421  * @sb: the superblock
2422  *
2423  * This function writes and waits on any dirty inode belonging to this
2424  * super_block.
2425  */
2426 void sync_inodes_sb(struct super_block *sb)
2427 {
2428         DEFINE_WB_COMPLETION_ONSTACK(done);
2429         struct wb_writeback_work work = {
2430                 .sb             = sb,
2431                 .sync_mode      = WB_SYNC_ALL,
2432                 .nr_pages       = LONG_MAX,
2433                 .range_cyclic   = 0,
2434                 .done           = &done,
2435                 .reason         = WB_REASON_SYNC,
2436                 .for_sync       = 1,
2437         };
2438         struct backing_dev_info *bdi = sb->s_bdi;
2439
2440         /*
2441          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2442          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2443          * bdi_has_dirty() need to be written out too.
2444          */
2445         if (bdi == &noop_backing_dev_info)
2446                 return;
2447         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2448
2449         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2450         bdi_down_write_wb_switch_rwsem(bdi);
2451         bdi_split_work_to_wbs(bdi, &work, false);
2452         wb_wait_for_completion(bdi, &done);
2453         bdi_up_write_wb_switch_rwsem(bdi);
2454
2455         wait_sb_inodes(sb);
2456 }
2457 EXPORT_SYMBOL(sync_inodes_sb);
2458
2459 /**
2460  * write_inode_now      -       write an inode to disk
2461  * @inode: inode to write to disk
2462  * @sync: whether the write should be synchronous or not
2463  *
2464  * This function commits an inode to disk immediately if it is dirty. This is
2465  * primarily needed by knfsd.
2466  *
2467  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2468  */
2469 int write_inode_now(struct inode *inode, int sync)
2470 {
2471         struct writeback_control wbc = {
2472                 .nr_to_write = LONG_MAX,
2473                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2474                 .range_start = 0,
2475                 .range_end = LLONG_MAX,
2476         };
2477
2478         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2479                 wbc.nr_to_write = 0;
2480
2481         might_sleep();
2482         return writeback_single_inode(inode, &wbc);
2483 }
2484 EXPORT_SYMBOL(write_inode_now);
2485
2486 /**
2487  * sync_inode - write an inode and its pages to disk.
2488  * @inode: the inode to sync
2489  * @wbc: controls the writeback mode
2490  *
2491  * sync_inode() will write an inode and its pages to disk.  It will also
2492  * correctly update the inode on its superblock's dirty inode lists and will
2493  * update inode->i_state.
2494  *
2495  * The caller must have a ref on the inode.
2496  */
2497 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2498 {
2499         return writeback_single_inode(inode, wbc);
2500 }
2501 EXPORT_SYMBOL(sync_inode);
2502
2503 /**
2504  * sync_inode_metadata - write an inode to disk
2505  * @inode: the inode to sync
2506  * @wait: wait for I/O to complete.
2507  *
2508  * Write an inode to disk and adjust its dirty state after completion.
2509  *
2510  * Note: only writes the actual inode, no associated data or other metadata.
2511  */
2512 int sync_inode_metadata(struct inode *inode, int wait)
2513 {
2514         struct writeback_control wbc = {
2515                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2516                 .nr_to_write = 0, /* metadata-only */
2517         };
2518
2519         return sync_inode(inode, &wbc);
2520 }
2521 EXPORT_SYMBOL(sync_inode_metadata);