OSDN Git Service

cifs: fallback to older infolevels on findfirst queryinfo retry
[android-x86/kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         enum wb_reason reason;          /* why was writeback initiated? */
57
58         struct list_head list;          /* pending work list */
59         struct wb_completion *done;     /* set if the caller waits */
60 };
61
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
70         struct wb_completion cmpl = {                                   \
71                 .cnt            = ATOMIC_INIT(1),                       \
72         }
73
74
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89         return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104         if (wb_has_dirty_io(wb)) {
105                 return false;
106         } else {
107                 set_bit(WB_has_dirty_io, &wb->state);
108                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109                 atomic_long_add(wb->avg_write_bandwidth,
110                                 &wb->bdi->tot_write_bandwidth);
111                 return true;
112         }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119                 clear_bit(WB_has_dirty_io, &wb->state);
120                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121                                         &wb->bdi->tot_write_bandwidth) < 0);
122         }
123 }
124
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136                                       struct bdi_writeback *wb,
137                                       struct list_head *head)
138 {
139         assert_spin_locked(&wb->list_lock);
140
141         list_move(&inode->i_io_list, head);
142
143         /* dirty_time doesn't count as dirty_io until expiration */
144         if (head != &wb->b_dirty_time)
145                 return wb_io_lists_populated(wb);
146
147         wb_io_lists_depopulated(wb);
148         return false;
149 }
150
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160                                      struct bdi_writeback *wb)
161 {
162         assert_spin_locked(&wb->list_lock);
163
164         list_del_init(&inode->i_io_list);
165         wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170         spin_lock_bh(&wb->work_lock);
171         if (test_bit(WB_registered, &wb->state))
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177                                   struct wb_writeback_work *work)
178 {
179         struct wb_completion *done = work->done;
180
181         if (work->auto_free)
182                 kfree(work);
183         if (done && atomic_dec_and_test(&done->cnt))
184                 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188                           struct wb_writeback_work *work)
189 {
190         trace_writeback_queue(wb, work);
191
192         if (work->done)
193                 atomic_inc(&work->done->cnt);
194
195         spin_lock_bh(&wb->work_lock);
196
197         if (test_bit(WB_registered, &wb->state)) {
198                 list_add_tail(&work->list, &wb->work_list);
199                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200         } else
201                 finish_writeback_work(wb, work);
202
203         spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218                                    struct wb_completion *done)
219 {
220         atomic_dec(&done->cnt);         /* put down the initial count */
221         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
231
232 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234                                         /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
236                                         /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238                                         /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245         struct backing_dev_info *bdi = inode_to_bdi(inode);
246         struct bdi_writeback *wb = NULL;
247
248         if (inode_cgwb_enabled(inode)) {
249                 struct cgroup_subsys_state *memcg_css;
250
251                 if (page) {
252                         memcg_css = mem_cgroup_css_from_page(page);
253                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254                 } else {
255                         /* must pin memcg_css, see wb_get_create() */
256                         memcg_css = task_get_css(current, memory_cgrp_id);
257                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258                         css_put(memcg_css);
259                 }
260         }
261
262         if (!wb)
263                 wb = &bdi->wb;
264
265         /*
266          * There may be multiple instances of this function racing to
267          * update the same inode.  Use cmpxchg() to tell the winner.
268          */
269         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270                 wb_put(wb);
271 }
272
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283         __releases(&inode->i_lock)
284         __acquires(&wb->list_lock)
285 {
286         while (true) {
287                 struct bdi_writeback *wb = inode_to_wb(inode);
288
289                 /*
290                  * inode_to_wb() association is protected by both
291                  * @inode->i_lock and @wb->list_lock but list_lock nests
292                  * outside i_lock.  Drop i_lock and verify that the
293                  * association hasn't changed after acquiring list_lock.
294                  */
295                 wb_get(wb);
296                 spin_unlock(&inode->i_lock);
297                 spin_lock(&wb->list_lock);
298
299                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300                 if (likely(wb == inode->i_wb)) {
301                         wb_put(wb);     /* @inode already has ref */
302                         return wb;
303                 }
304
305                 spin_unlock(&wb->list_lock);
306                 wb_put(wb);
307                 cpu_relax();
308                 spin_lock(&inode->i_lock);
309         }
310 }
311
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320         __acquires(&wb->list_lock)
321 {
322         spin_lock(&inode->i_lock);
323         return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327         struct inode            *inode;
328         struct bdi_writeback    *new_wb;
329
330         struct rcu_head         rcu_head;
331         struct work_struct      work;
332 };
333
334 static void inode_switch_wbs_work_fn(struct work_struct *work)
335 {
336         struct inode_switch_wbs_context *isw =
337                 container_of(work, struct inode_switch_wbs_context, work);
338         struct inode *inode = isw->inode;
339         struct address_space *mapping = inode->i_mapping;
340         struct bdi_writeback *old_wb = inode->i_wb;
341         struct bdi_writeback *new_wb = isw->new_wb;
342         struct radix_tree_iter iter;
343         bool switched = false;
344         void **slot;
345
346         /*
347          * By the time control reaches here, RCU grace period has passed
348          * since I_WB_SWITCH assertion and all wb stat update transactions
349          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
350          * synchronizing against mapping->tree_lock.
351          *
352          * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
353          * gives us exclusion against all wb related operations on @inode
354          * including IO list manipulations and stat updates.
355          */
356         if (old_wb < new_wb) {
357                 spin_lock(&old_wb->list_lock);
358                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
359         } else {
360                 spin_lock(&new_wb->list_lock);
361                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
362         }
363         spin_lock(&inode->i_lock);
364         spin_lock_irq(&mapping->tree_lock);
365
366         /*
367          * Once I_FREEING is visible under i_lock, the eviction path owns
368          * the inode and we shouldn't modify ->i_io_list.
369          */
370         if (unlikely(inode->i_state & I_FREEING))
371                 goto skip_switch;
372
373         /*
374          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
375          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
376          * pages actually under underwriteback.
377          */
378         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
379                                    PAGECACHE_TAG_DIRTY) {
380                 struct page *page = radix_tree_deref_slot_protected(slot,
381                                                         &mapping->tree_lock);
382                 if (likely(page) && PageDirty(page)) {
383                         __dec_wb_stat(old_wb, WB_RECLAIMABLE);
384                         __inc_wb_stat(new_wb, WB_RECLAIMABLE);
385                 }
386         }
387
388         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
389                                    PAGECACHE_TAG_WRITEBACK) {
390                 struct page *page = radix_tree_deref_slot_protected(slot,
391                                                         &mapping->tree_lock);
392                 if (likely(page)) {
393                         WARN_ON_ONCE(!PageWriteback(page));
394                         __dec_wb_stat(old_wb, WB_WRITEBACK);
395                         __inc_wb_stat(new_wb, WB_WRITEBACK);
396                 }
397         }
398
399         wb_get(new_wb);
400
401         /*
402          * Transfer to @new_wb's IO list if necessary.  The specific list
403          * @inode was on is ignored and the inode is put on ->b_dirty which
404          * is always correct including from ->b_dirty_time.  The transfer
405          * preserves @inode->dirtied_when ordering.
406          */
407         if (!list_empty(&inode->i_io_list)) {
408                 struct inode *pos;
409
410                 inode_io_list_del_locked(inode, old_wb);
411                 inode->i_wb = new_wb;
412                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
413                         if (time_after_eq(inode->dirtied_when,
414                                           pos->dirtied_when))
415                                 break;
416                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
417         } else {
418                 inode->i_wb = new_wb;
419         }
420
421         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
422         inode->i_wb_frn_winner = 0;
423         inode->i_wb_frn_avg_time = 0;
424         inode->i_wb_frn_history = 0;
425         switched = true;
426 skip_switch:
427         /*
428          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
429          * ensures that the new wb is visible if they see !I_WB_SWITCH.
430          */
431         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
432
433         spin_unlock_irq(&mapping->tree_lock);
434         spin_unlock(&inode->i_lock);
435         spin_unlock(&new_wb->list_lock);
436         spin_unlock(&old_wb->list_lock);
437
438         if (switched) {
439                 wb_wakeup(new_wb);
440                 wb_put(old_wb);
441         }
442         wb_put(new_wb);
443
444         iput(inode);
445         kfree(isw);
446
447         atomic_dec(&isw_nr_in_flight);
448 }
449
450 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
451 {
452         struct inode_switch_wbs_context *isw = container_of(rcu_head,
453                                 struct inode_switch_wbs_context, rcu_head);
454
455         /* needs to grab bh-unsafe locks, bounce to work item */
456         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
457         queue_work(isw_wq, &isw->work);
458 }
459
460 /**
461  * inode_switch_wbs - change the wb association of an inode
462  * @inode: target inode
463  * @new_wb_id: ID of the new wb
464  *
465  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
466  * switching is performed asynchronously and may fail silently.
467  */
468 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
469 {
470         struct backing_dev_info *bdi = inode_to_bdi(inode);
471         struct cgroup_subsys_state *memcg_css;
472         struct inode_switch_wbs_context *isw;
473
474         /* noop if seems to be already in progress */
475         if (inode->i_state & I_WB_SWITCH)
476                 return;
477
478         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
479         if (!isw)
480                 return;
481
482         /* find and pin the new wb */
483         rcu_read_lock();
484         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
485         if (memcg_css)
486                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
487         rcu_read_unlock();
488         if (!isw->new_wb)
489                 goto out_free;
490
491         /* while holding I_WB_SWITCH, no one else can update the association */
492         spin_lock(&inode->i_lock);
493         if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
494             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
495             inode_to_wb(inode) == isw->new_wb) {
496                 spin_unlock(&inode->i_lock);
497                 goto out_free;
498         }
499         inode->i_state |= I_WB_SWITCH;
500         __iget(inode);
501         spin_unlock(&inode->i_lock);
502
503         isw->inode = inode;
504
505         atomic_inc(&isw_nr_in_flight);
506
507         /*
508          * In addition to synchronizing among switchers, I_WB_SWITCH tells
509          * the RCU protected stat update paths to grab the mapping's
510          * tree_lock so that stat transfer can synchronize against them.
511          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
512          */
513         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
514         return;
515
516 out_free:
517         if (isw->new_wb)
518                 wb_put(isw->new_wb);
519         kfree(isw);
520 }
521
522 /**
523  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
524  * @wbc: writeback_control of interest
525  * @inode: target inode
526  *
527  * @inode is locked and about to be written back under the control of @wbc.
528  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
529  * writeback completion, wbc_detach_inode() should be called.  This is used
530  * to track the cgroup writeback context.
531  */
532 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
533                                  struct inode *inode)
534 {
535         if (!inode_cgwb_enabled(inode)) {
536                 spin_unlock(&inode->i_lock);
537                 return;
538         }
539
540         wbc->wb = inode_to_wb(inode);
541         wbc->inode = inode;
542
543         wbc->wb_id = wbc->wb->memcg_css->id;
544         wbc->wb_lcand_id = inode->i_wb_frn_winner;
545         wbc->wb_tcand_id = 0;
546         wbc->wb_bytes = 0;
547         wbc->wb_lcand_bytes = 0;
548         wbc->wb_tcand_bytes = 0;
549
550         wb_get(wbc->wb);
551         spin_unlock(&inode->i_lock);
552
553         /*
554          * A dying wb indicates that the memcg-blkcg mapping has changed
555          * and a new wb is already serving the memcg.  Switch immediately.
556          */
557         if (unlikely(wb_dying(wbc->wb)))
558                 inode_switch_wbs(inode, wbc->wb_id);
559 }
560
561 /**
562  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
563  * @wbc: writeback_control of the just finished writeback
564  *
565  * To be called after a writeback attempt of an inode finishes and undoes
566  * wbc_attach_and_unlock_inode().  Can be called under any context.
567  *
568  * As concurrent write sharing of an inode is expected to be very rare and
569  * memcg only tracks page ownership on first-use basis severely confining
570  * the usefulness of such sharing, cgroup writeback tracks ownership
571  * per-inode.  While the support for concurrent write sharing of an inode
572  * is deemed unnecessary, an inode being written to by different cgroups at
573  * different points in time is a lot more common, and, more importantly,
574  * charging only by first-use can too readily lead to grossly incorrect
575  * behaviors (single foreign page can lead to gigabytes of writeback to be
576  * incorrectly attributed).
577  *
578  * To resolve this issue, cgroup writeback detects the majority dirtier of
579  * an inode and transfers the ownership to it.  To avoid unnnecessary
580  * oscillation, the detection mechanism keeps track of history and gives
581  * out the switch verdict only if the foreign usage pattern is stable over
582  * a certain amount of time and/or writeback attempts.
583  *
584  * On each writeback attempt, @wbc tries to detect the majority writer
585  * using Boyer-Moore majority vote algorithm.  In addition to the byte
586  * count from the majority voting, it also counts the bytes written for the
587  * current wb and the last round's winner wb (max of last round's current
588  * wb, the winner from two rounds ago, and the last round's majority
589  * candidate).  Keeping track of the historical winner helps the algorithm
590  * to semi-reliably detect the most active writer even when it's not the
591  * absolute majority.
592  *
593  * Once the winner of the round is determined, whether the winner is
594  * foreign or not and how much IO time the round consumed is recorded in
595  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
596  * over a certain threshold, the switch verdict is given.
597  */
598 void wbc_detach_inode(struct writeback_control *wbc)
599 {
600         struct bdi_writeback *wb = wbc->wb;
601         struct inode *inode = wbc->inode;
602         unsigned long avg_time, max_bytes, max_time;
603         u16 history;
604         int max_id;
605
606         if (!wb)
607                 return;
608
609         history = inode->i_wb_frn_history;
610         avg_time = inode->i_wb_frn_avg_time;
611
612         /* pick the winner of this round */
613         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
614             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
615                 max_id = wbc->wb_id;
616                 max_bytes = wbc->wb_bytes;
617         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
618                 max_id = wbc->wb_lcand_id;
619                 max_bytes = wbc->wb_lcand_bytes;
620         } else {
621                 max_id = wbc->wb_tcand_id;
622                 max_bytes = wbc->wb_tcand_bytes;
623         }
624
625         /*
626          * Calculate the amount of IO time the winner consumed and fold it
627          * into the running average kept per inode.  If the consumed IO
628          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
629          * deciding whether to switch or not.  This is to prevent one-off
630          * small dirtiers from skewing the verdict.
631          */
632         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
633                                 wb->avg_write_bandwidth);
634         if (avg_time)
635                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
636                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
637         else
638                 avg_time = max_time;    /* immediate catch up on first run */
639
640         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
641                 int slots;
642
643                 /*
644                  * The switch verdict is reached if foreign wb's consume
645                  * more than a certain proportion of IO time in a
646                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
647                  * history mask where each bit represents one sixteenth of
648                  * the period.  Determine the number of slots to shift into
649                  * history from @max_time.
650                  */
651                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
652                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
653                 history <<= slots;
654                 if (wbc->wb_id != max_id)
655                         history |= (1U << slots) - 1;
656
657                 /*
658                  * Switch if the current wb isn't the consistent winner.
659                  * If there are multiple closely competing dirtiers, the
660                  * inode may switch across them repeatedly over time, which
661                  * is okay.  The main goal is avoiding keeping an inode on
662                  * the wrong wb for an extended period of time.
663                  */
664                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
665                         inode_switch_wbs(inode, max_id);
666         }
667
668         /*
669          * Multiple instances of this function may race to update the
670          * following fields but we don't mind occassional inaccuracies.
671          */
672         inode->i_wb_frn_winner = max_id;
673         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
674         inode->i_wb_frn_history = history;
675
676         wb_put(wbc->wb);
677         wbc->wb = NULL;
678 }
679
680 /**
681  * wbc_account_io - account IO issued during writeback
682  * @wbc: writeback_control of the writeback in progress
683  * @page: page being written out
684  * @bytes: number of bytes being written out
685  *
686  * @bytes from @page are about to written out during the writeback
687  * controlled by @wbc.  Keep the book for foreign inode detection.  See
688  * wbc_detach_inode().
689  */
690 void wbc_account_io(struct writeback_control *wbc, struct page *page,
691                     size_t bytes)
692 {
693         int id;
694
695         /*
696          * pageout() path doesn't attach @wbc to the inode being written
697          * out.  This is intentional as we don't want the function to block
698          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
699          * regular writeback instead of writing things out itself.
700          */
701         if (!wbc->wb)
702                 return;
703
704         id = mem_cgroup_css_from_page(page)->id;
705
706         if (id == wbc->wb_id) {
707                 wbc->wb_bytes += bytes;
708                 return;
709         }
710
711         if (id == wbc->wb_lcand_id)
712                 wbc->wb_lcand_bytes += bytes;
713
714         /* Boyer-Moore majority vote algorithm */
715         if (!wbc->wb_tcand_bytes)
716                 wbc->wb_tcand_id = id;
717         if (id == wbc->wb_tcand_id)
718                 wbc->wb_tcand_bytes += bytes;
719         else
720                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
721 }
722 EXPORT_SYMBOL_GPL(wbc_account_io);
723
724 /**
725  * inode_congested - test whether an inode is congested
726  * @inode: inode to test for congestion (may be NULL)
727  * @cong_bits: mask of WB_[a]sync_congested bits to test
728  *
729  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
730  * bits to test and the return value is the mask of set bits.
731  *
732  * If cgroup writeback is enabled for @inode, the congestion state is
733  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
734  * associated with @inode is congested; otherwise, the root wb's congestion
735  * state is used.
736  *
737  * @inode is allowed to be NULL as this function is often called on
738  * mapping->host which is NULL for the swapper space.
739  */
740 int inode_congested(struct inode *inode, int cong_bits)
741 {
742         /*
743          * Once set, ->i_wb never becomes NULL while the inode is alive.
744          * Start transaction iff ->i_wb is visible.
745          */
746         if (inode && inode_to_wb_is_valid(inode)) {
747                 struct bdi_writeback *wb;
748                 struct wb_lock_cookie lock_cookie = {};
749                 bool congested;
750
751                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
752                 congested = wb_congested(wb, cong_bits);
753                 unlocked_inode_to_wb_end(inode, &lock_cookie);
754                 return congested;
755         }
756
757         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
758 }
759 EXPORT_SYMBOL_GPL(inode_congested);
760
761 /**
762  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
763  * @wb: target bdi_writeback to split @nr_pages to
764  * @nr_pages: number of pages to write for the whole bdi
765  *
766  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
767  * relation to the total write bandwidth of all wb's w/ dirty inodes on
768  * @wb->bdi.
769  */
770 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
771 {
772         unsigned long this_bw = wb->avg_write_bandwidth;
773         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
774
775         if (nr_pages == LONG_MAX)
776                 return LONG_MAX;
777
778         /*
779          * This may be called on clean wb's and proportional distribution
780          * may not make sense, just use the original @nr_pages in those
781          * cases.  In general, we wanna err on the side of writing more.
782          */
783         if (!tot_bw || this_bw >= tot_bw)
784                 return nr_pages;
785         else
786                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
787 }
788
789 /**
790  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
791  * @bdi: target backing_dev_info
792  * @base_work: wb_writeback_work to issue
793  * @skip_if_busy: skip wb's which already have writeback in progress
794  *
795  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
796  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
797  * distributed to the busy wbs according to each wb's proportion in the
798  * total active write bandwidth of @bdi.
799  */
800 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
801                                   struct wb_writeback_work *base_work,
802                                   bool skip_if_busy)
803 {
804         struct bdi_writeback *last_wb = NULL;
805         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
806                                               struct bdi_writeback, bdi_node);
807
808         might_sleep();
809 restart:
810         rcu_read_lock();
811         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
812                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
813                 struct wb_writeback_work fallback_work;
814                 struct wb_writeback_work *work;
815                 long nr_pages;
816
817                 if (last_wb) {
818                         wb_put(last_wb);
819                         last_wb = NULL;
820                 }
821
822                 /* SYNC_ALL writes out I_DIRTY_TIME too */
823                 if (!wb_has_dirty_io(wb) &&
824                     (base_work->sync_mode == WB_SYNC_NONE ||
825                      list_empty(&wb->b_dirty_time)))
826                         continue;
827                 if (skip_if_busy && writeback_in_progress(wb))
828                         continue;
829
830                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
831
832                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
833                 if (work) {
834                         *work = *base_work;
835                         work->nr_pages = nr_pages;
836                         work->auto_free = 1;
837                         wb_queue_work(wb, work);
838                         continue;
839                 }
840
841                 /* alloc failed, execute synchronously using on-stack fallback */
842                 work = &fallback_work;
843                 *work = *base_work;
844                 work->nr_pages = nr_pages;
845                 work->auto_free = 0;
846                 work->done = &fallback_work_done;
847
848                 wb_queue_work(wb, work);
849
850                 /*
851                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
852                  * continuing iteration from @wb after dropping and
853                  * regrabbing rcu read lock.
854                  */
855                 wb_get(wb);
856                 last_wb = wb;
857
858                 rcu_read_unlock();
859                 wb_wait_for_completion(bdi, &fallback_work_done);
860                 goto restart;
861         }
862         rcu_read_unlock();
863
864         if (last_wb)
865                 wb_put(last_wb);
866 }
867
868 /**
869  * cgroup_writeback_umount - flush inode wb switches for umount
870  *
871  * This function is called when a super_block is about to be destroyed and
872  * flushes in-flight inode wb switches.  An inode wb switch goes through
873  * RCU and then workqueue, so the two need to be flushed in order to ensure
874  * that all previously scheduled switches are finished.  As wb switches are
875  * rare occurrences and synchronize_rcu() can take a while, perform
876  * flushing iff wb switches are in flight.
877  */
878 void cgroup_writeback_umount(void)
879 {
880         if (atomic_read(&isw_nr_in_flight)) {
881                 synchronize_rcu();
882                 flush_workqueue(isw_wq);
883         }
884 }
885
886 static int __init cgroup_writeback_init(void)
887 {
888         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
889         if (!isw_wq)
890                 return -ENOMEM;
891         return 0;
892 }
893 fs_initcall(cgroup_writeback_init);
894
895 #else   /* CONFIG_CGROUP_WRITEBACK */
896
897 static struct bdi_writeback *
898 locked_inode_to_wb_and_lock_list(struct inode *inode)
899         __releases(&inode->i_lock)
900         __acquires(&wb->list_lock)
901 {
902         struct bdi_writeback *wb = inode_to_wb(inode);
903
904         spin_unlock(&inode->i_lock);
905         spin_lock(&wb->list_lock);
906         return wb;
907 }
908
909 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
910         __acquires(&wb->list_lock)
911 {
912         struct bdi_writeback *wb = inode_to_wb(inode);
913
914         spin_lock(&wb->list_lock);
915         return wb;
916 }
917
918 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
919 {
920         return nr_pages;
921 }
922
923 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
924                                   struct wb_writeback_work *base_work,
925                                   bool skip_if_busy)
926 {
927         might_sleep();
928
929         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
930                 base_work->auto_free = 0;
931                 wb_queue_work(&bdi->wb, base_work);
932         }
933 }
934
935 #endif  /* CONFIG_CGROUP_WRITEBACK */
936
937 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
938                         bool range_cyclic, enum wb_reason reason)
939 {
940         struct wb_writeback_work *work;
941
942         if (!wb_has_dirty_io(wb))
943                 return;
944
945         /*
946          * This is WB_SYNC_NONE writeback, so if allocation fails just
947          * wakeup the thread for old dirty data writeback
948          */
949         work = kzalloc(sizeof(*work),
950                        GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
951         if (!work) {
952                 trace_writeback_nowork(wb);
953                 wb_wakeup(wb);
954                 return;
955         }
956
957         work->sync_mode = WB_SYNC_NONE;
958         work->nr_pages  = nr_pages;
959         work->range_cyclic = range_cyclic;
960         work->reason    = reason;
961         work->auto_free = 1;
962
963         wb_queue_work(wb, work);
964 }
965
966 /**
967  * wb_start_background_writeback - start background writeback
968  * @wb: bdi_writback to write from
969  *
970  * Description:
971  *   This makes sure WB_SYNC_NONE background writeback happens. When
972  *   this function returns, it is only guaranteed that for given wb
973  *   some IO is happening if we are over background dirty threshold.
974  *   Caller need not hold sb s_umount semaphore.
975  */
976 void wb_start_background_writeback(struct bdi_writeback *wb)
977 {
978         /*
979          * We just wake up the flusher thread. It will perform background
980          * writeback as soon as there is no other work to do.
981          */
982         trace_writeback_wake_background(wb);
983         wb_wakeup(wb);
984 }
985
986 /*
987  * Remove the inode from the writeback list it is on.
988  */
989 void inode_io_list_del(struct inode *inode)
990 {
991         struct bdi_writeback *wb;
992
993         wb = inode_to_wb_and_lock_list(inode);
994         inode_io_list_del_locked(inode, wb);
995         spin_unlock(&wb->list_lock);
996 }
997
998 /*
999  * mark an inode as under writeback on the sb
1000  */
1001 void sb_mark_inode_writeback(struct inode *inode)
1002 {
1003         struct super_block *sb = inode->i_sb;
1004         unsigned long flags;
1005
1006         if (list_empty(&inode->i_wb_list)) {
1007                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1008                 if (list_empty(&inode->i_wb_list)) {
1009                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1010                         trace_sb_mark_inode_writeback(inode);
1011                 }
1012                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1013         }
1014 }
1015
1016 /*
1017  * clear an inode as under writeback on the sb
1018  */
1019 void sb_clear_inode_writeback(struct inode *inode)
1020 {
1021         struct super_block *sb = inode->i_sb;
1022         unsigned long flags;
1023
1024         if (!list_empty(&inode->i_wb_list)) {
1025                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1026                 if (!list_empty(&inode->i_wb_list)) {
1027                         list_del_init(&inode->i_wb_list);
1028                         trace_sb_clear_inode_writeback(inode);
1029                 }
1030                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1031         }
1032 }
1033
1034 /*
1035  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1036  * furthest end of its superblock's dirty-inode list.
1037  *
1038  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1039  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1040  * the case then the inode must have been redirtied while it was being written
1041  * out and we don't reset its dirtied_when.
1042  */
1043 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1044 {
1045         if (!list_empty(&wb->b_dirty)) {
1046                 struct inode *tail;
1047
1048                 tail = wb_inode(wb->b_dirty.next);
1049                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1050                         inode->dirtied_when = jiffies;
1051         }
1052         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1053 }
1054
1055 /*
1056  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1057  */
1058 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1059 {
1060         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1061 }
1062
1063 static void inode_sync_complete(struct inode *inode)
1064 {
1065         inode->i_state &= ~I_SYNC;
1066         /* If inode is clean an unused, put it into LRU now... */
1067         inode_add_lru(inode);
1068         /* Waiters must see I_SYNC cleared before being woken up */
1069         smp_mb();
1070         wake_up_bit(&inode->i_state, __I_SYNC);
1071 }
1072
1073 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1074 {
1075         bool ret = time_after(inode->dirtied_when, t);
1076 #ifndef CONFIG_64BIT
1077         /*
1078          * For inodes being constantly redirtied, dirtied_when can get stuck.
1079          * It _appears_ to be in the future, but is actually in distant past.
1080          * This test is necessary to prevent such wrapped-around relative times
1081          * from permanently stopping the whole bdi writeback.
1082          */
1083         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1084 #endif
1085         return ret;
1086 }
1087
1088 #define EXPIRE_DIRTY_ATIME 0x0001
1089
1090 /*
1091  * Move expired (dirtied before work->older_than_this) dirty inodes from
1092  * @delaying_queue to @dispatch_queue.
1093  */
1094 static int move_expired_inodes(struct list_head *delaying_queue,
1095                                struct list_head *dispatch_queue,
1096                                int flags,
1097                                struct wb_writeback_work *work)
1098 {
1099         unsigned long *older_than_this = NULL;
1100         unsigned long expire_time;
1101         LIST_HEAD(tmp);
1102         struct list_head *pos, *node;
1103         struct super_block *sb = NULL;
1104         struct inode *inode;
1105         int do_sb_sort = 0;
1106         int moved = 0;
1107
1108         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1109                 older_than_this = work->older_than_this;
1110         else if (!work->for_sync) {
1111                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1112                 older_than_this = &expire_time;
1113         }
1114         while (!list_empty(delaying_queue)) {
1115                 inode = wb_inode(delaying_queue->prev);
1116                 if (older_than_this &&
1117                     inode_dirtied_after(inode, *older_than_this))
1118                         break;
1119                 list_move(&inode->i_io_list, &tmp);
1120                 moved++;
1121                 if (flags & EXPIRE_DIRTY_ATIME)
1122                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1123                 if (sb_is_blkdev_sb(inode->i_sb))
1124                         continue;
1125                 if (sb && sb != inode->i_sb)
1126                         do_sb_sort = 1;
1127                 sb = inode->i_sb;
1128         }
1129
1130         /* just one sb in list, splice to dispatch_queue and we're done */
1131         if (!do_sb_sort) {
1132                 list_splice(&tmp, dispatch_queue);
1133                 goto out;
1134         }
1135
1136         /* Move inodes from one superblock together */
1137         while (!list_empty(&tmp)) {
1138                 sb = wb_inode(tmp.prev)->i_sb;
1139                 list_for_each_prev_safe(pos, node, &tmp) {
1140                         inode = wb_inode(pos);
1141                         if (inode->i_sb == sb)
1142                                 list_move(&inode->i_io_list, dispatch_queue);
1143                 }
1144         }
1145 out:
1146         return moved;
1147 }
1148
1149 /*
1150  * Queue all expired dirty inodes for io, eldest first.
1151  * Before
1152  *         newly dirtied     b_dirty    b_io    b_more_io
1153  *         =============>    gf         edc     BA
1154  * After
1155  *         newly dirtied     b_dirty    b_io    b_more_io
1156  *         =============>    g          fBAedc
1157  *                                           |
1158  *                                           +--> dequeue for IO
1159  */
1160 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1161 {
1162         int moved;
1163
1164         assert_spin_locked(&wb->list_lock);
1165         list_splice_init(&wb->b_more_io, &wb->b_io);
1166         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1167         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1168                                      EXPIRE_DIRTY_ATIME, work);
1169         if (moved)
1170                 wb_io_lists_populated(wb);
1171         trace_writeback_queue_io(wb, work, moved);
1172 }
1173
1174 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1175 {
1176         int ret;
1177
1178         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1179                 trace_writeback_write_inode_start(inode, wbc);
1180                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1181                 trace_writeback_write_inode(inode, wbc);
1182                 return ret;
1183         }
1184         return 0;
1185 }
1186
1187 /*
1188  * Wait for writeback on an inode to complete. Called with i_lock held.
1189  * Caller must make sure inode cannot go away when we drop i_lock.
1190  */
1191 static void __inode_wait_for_writeback(struct inode *inode)
1192         __releases(inode->i_lock)
1193         __acquires(inode->i_lock)
1194 {
1195         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1196         wait_queue_head_t *wqh;
1197
1198         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1199         while (inode->i_state & I_SYNC) {
1200                 spin_unlock(&inode->i_lock);
1201                 __wait_on_bit(wqh, &wq, bit_wait,
1202                               TASK_UNINTERRUPTIBLE);
1203                 spin_lock(&inode->i_lock);
1204         }
1205 }
1206
1207 /*
1208  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1209  */
1210 void inode_wait_for_writeback(struct inode *inode)
1211 {
1212         spin_lock(&inode->i_lock);
1213         __inode_wait_for_writeback(inode);
1214         spin_unlock(&inode->i_lock);
1215 }
1216
1217 /*
1218  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1219  * held and drops it. It is aimed for callers not holding any inode reference
1220  * so once i_lock is dropped, inode can go away.
1221  */
1222 static void inode_sleep_on_writeback(struct inode *inode)
1223         __releases(inode->i_lock)
1224 {
1225         DEFINE_WAIT(wait);
1226         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1227         int sleep;
1228
1229         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1230         sleep = inode->i_state & I_SYNC;
1231         spin_unlock(&inode->i_lock);
1232         if (sleep)
1233                 schedule();
1234         finish_wait(wqh, &wait);
1235 }
1236
1237 /*
1238  * Find proper writeback list for the inode depending on its current state and
1239  * possibly also change of its state while we were doing writeback.  Here we
1240  * handle things such as livelock prevention or fairness of writeback among
1241  * inodes. This function can be called only by flusher thread - noone else
1242  * processes all inodes in writeback lists and requeueing inodes behind flusher
1243  * thread's back can have unexpected consequences.
1244  */
1245 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1246                           struct writeback_control *wbc)
1247 {
1248         if (inode->i_state & I_FREEING)
1249                 return;
1250
1251         /*
1252          * Sync livelock prevention. Each inode is tagged and synced in one
1253          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1254          * the dirty time to prevent enqueue and sync it again.
1255          */
1256         if ((inode->i_state & I_DIRTY) &&
1257             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1258                 inode->dirtied_when = jiffies;
1259
1260         if (wbc->pages_skipped) {
1261                 /*
1262                  * writeback is not making progress due to locked
1263                  * buffers. Skip this inode for now.
1264                  */
1265                 redirty_tail(inode, wb);
1266                 return;
1267         }
1268
1269         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1270                 /*
1271                  * We didn't write back all the pages.  nfs_writepages()
1272                  * sometimes bales out without doing anything.
1273                  */
1274                 if (wbc->nr_to_write <= 0) {
1275                         /* Slice used up. Queue for next turn. */
1276                         requeue_io(inode, wb);
1277                 } else {
1278                         /*
1279                          * Writeback blocked by something other than
1280                          * congestion. Delay the inode for some time to
1281                          * avoid spinning on the CPU (100% iowait)
1282                          * retrying writeback of the dirty page/inode
1283                          * that cannot be performed immediately.
1284                          */
1285                         redirty_tail(inode, wb);
1286                 }
1287         } else if (inode->i_state & I_DIRTY) {
1288                 /*
1289                  * Filesystems can dirty the inode during writeback operations,
1290                  * such as delayed allocation during submission or metadata
1291                  * updates after data IO completion.
1292                  */
1293                 redirty_tail(inode, wb);
1294         } else if (inode->i_state & I_DIRTY_TIME) {
1295                 inode->dirtied_when = jiffies;
1296                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1297         } else {
1298                 /* The inode is clean. Remove from writeback lists. */
1299                 inode_io_list_del_locked(inode, wb);
1300         }
1301 }
1302
1303 /*
1304  * Write out an inode and its dirty pages. Do not update the writeback list
1305  * linkage. That is left to the caller. The caller is also responsible for
1306  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1307  */
1308 static int
1309 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1310 {
1311         struct address_space *mapping = inode->i_mapping;
1312         long nr_to_write = wbc->nr_to_write;
1313         unsigned dirty;
1314         int ret;
1315
1316         WARN_ON(!(inode->i_state & I_SYNC));
1317
1318         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1319
1320         ret = do_writepages(mapping, wbc);
1321
1322         /*
1323          * Make sure to wait on the data before writing out the metadata.
1324          * This is important for filesystems that modify metadata on data
1325          * I/O completion. We don't do it for sync(2) writeback because it has a
1326          * separate, external IO completion path and ->sync_fs for guaranteeing
1327          * inode metadata is written back correctly.
1328          */
1329         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1330                 int err = filemap_fdatawait(mapping);
1331                 if (ret == 0)
1332                         ret = err;
1333         }
1334
1335         /*
1336          * Some filesystems may redirty the inode during the writeback
1337          * due to delalloc, clear dirty metadata flags right before
1338          * write_inode()
1339          */
1340         spin_lock(&inode->i_lock);
1341
1342         dirty = inode->i_state & I_DIRTY;
1343         if (inode->i_state & I_DIRTY_TIME) {
1344                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1345                     wbc->sync_mode == WB_SYNC_ALL ||
1346                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1347                     unlikely(time_after(jiffies,
1348                                         (inode->dirtied_time_when +
1349                                          dirtytime_expire_interval * HZ)))) {
1350                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1351                         trace_writeback_lazytime(inode);
1352                 }
1353         } else
1354                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1355         inode->i_state &= ~dirty;
1356
1357         /*
1358          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1359          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1360          * either they see the I_DIRTY bits cleared or we see the dirtied
1361          * inode.
1362          *
1363          * I_DIRTY_PAGES is always cleared together above even if @mapping
1364          * still has dirty pages.  The flag is reinstated after smp_mb() if
1365          * necessary.  This guarantees that either __mark_inode_dirty()
1366          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1367          */
1368         smp_mb();
1369
1370         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1371                 inode->i_state |= I_DIRTY_PAGES;
1372
1373         spin_unlock(&inode->i_lock);
1374
1375         if (dirty & I_DIRTY_TIME)
1376                 mark_inode_dirty_sync(inode);
1377         /* Don't write the inode if only I_DIRTY_PAGES was set */
1378         if (dirty & ~I_DIRTY_PAGES) {
1379                 int err = write_inode(inode, wbc);
1380                 if (ret == 0)
1381                         ret = err;
1382         }
1383         trace_writeback_single_inode(inode, wbc, nr_to_write);
1384         return ret;
1385 }
1386
1387 /*
1388  * Write out an inode's dirty pages. Either the caller has an active reference
1389  * on the inode or the inode has I_WILL_FREE set.
1390  *
1391  * This function is designed to be called for writing back one inode which
1392  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1393  * and does more profound writeback list handling in writeback_sb_inodes().
1394  */
1395 static int writeback_single_inode(struct inode *inode,
1396                                   struct writeback_control *wbc)
1397 {
1398         struct bdi_writeback *wb;
1399         int ret = 0;
1400
1401         spin_lock(&inode->i_lock);
1402         if (!atomic_read(&inode->i_count))
1403                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1404         else
1405                 WARN_ON(inode->i_state & I_WILL_FREE);
1406
1407         if (inode->i_state & I_SYNC) {
1408                 if (wbc->sync_mode != WB_SYNC_ALL)
1409                         goto out;
1410                 /*
1411                  * It's a data-integrity sync. We must wait. Since callers hold
1412                  * inode reference or inode has I_WILL_FREE set, it cannot go
1413                  * away under us.
1414                  */
1415                 __inode_wait_for_writeback(inode);
1416         }
1417         WARN_ON(inode->i_state & I_SYNC);
1418         /*
1419          * Skip inode if it is clean and we have no outstanding writeback in
1420          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1421          * function since flusher thread may be doing for example sync in
1422          * parallel and if we move the inode, it could get skipped. So here we
1423          * make sure inode is on some writeback list and leave it there unless
1424          * we have completely cleaned the inode.
1425          */
1426         if (!(inode->i_state & I_DIRTY_ALL) &&
1427             (wbc->sync_mode != WB_SYNC_ALL ||
1428              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1429                 goto out;
1430         inode->i_state |= I_SYNC;
1431         wbc_attach_and_unlock_inode(wbc, inode);
1432
1433         ret = __writeback_single_inode(inode, wbc);
1434
1435         wbc_detach_inode(wbc);
1436
1437         wb = inode_to_wb_and_lock_list(inode);
1438         spin_lock(&inode->i_lock);
1439         /*
1440          * If inode is clean, remove it from writeback lists. Otherwise don't
1441          * touch it. See comment above for explanation.
1442          */
1443         if (!(inode->i_state & I_DIRTY_ALL))
1444                 inode_io_list_del_locked(inode, wb);
1445         spin_unlock(&wb->list_lock);
1446         inode_sync_complete(inode);
1447 out:
1448         spin_unlock(&inode->i_lock);
1449         return ret;
1450 }
1451
1452 static long writeback_chunk_size(struct bdi_writeback *wb,
1453                                  struct wb_writeback_work *work)
1454 {
1455         long pages;
1456
1457         /*
1458          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1459          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1460          * here avoids calling into writeback_inodes_wb() more than once.
1461          *
1462          * The intended call sequence for WB_SYNC_ALL writeback is:
1463          *
1464          *      wb_writeback()
1465          *          writeback_sb_inodes()       <== called only once
1466          *              write_cache_pages()     <== called once for each inode
1467          *                   (quickly) tag currently dirty pages
1468          *                   (maybe slowly) sync all tagged pages
1469          */
1470         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1471                 pages = LONG_MAX;
1472         else {
1473                 pages = min(wb->avg_write_bandwidth / 2,
1474                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1475                 pages = min(pages, work->nr_pages);
1476                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1477                                    MIN_WRITEBACK_PAGES);
1478         }
1479
1480         return pages;
1481 }
1482
1483 /*
1484  * Write a portion of b_io inodes which belong to @sb.
1485  *
1486  * Return the number of pages and/or inodes written.
1487  *
1488  * NOTE! This is called with wb->list_lock held, and will
1489  * unlock and relock that for each inode it ends up doing
1490  * IO for.
1491  */
1492 static long writeback_sb_inodes(struct super_block *sb,
1493                                 struct bdi_writeback *wb,
1494                                 struct wb_writeback_work *work)
1495 {
1496         struct writeback_control wbc = {
1497                 .sync_mode              = work->sync_mode,
1498                 .tagged_writepages      = work->tagged_writepages,
1499                 .for_kupdate            = work->for_kupdate,
1500                 .for_background         = work->for_background,
1501                 .for_sync               = work->for_sync,
1502                 .range_cyclic           = work->range_cyclic,
1503                 .range_start            = 0,
1504                 .range_end              = LLONG_MAX,
1505         };
1506         unsigned long start_time = jiffies;
1507         long write_chunk;
1508         long wrote = 0;  /* count both pages and inodes */
1509
1510         while (!list_empty(&wb->b_io)) {
1511                 struct inode *inode = wb_inode(wb->b_io.prev);
1512                 struct bdi_writeback *tmp_wb;
1513
1514                 if (inode->i_sb != sb) {
1515                         if (work->sb) {
1516                                 /*
1517                                  * We only want to write back data for this
1518                                  * superblock, move all inodes not belonging
1519                                  * to it back onto the dirty list.
1520                                  */
1521                                 redirty_tail(inode, wb);
1522                                 continue;
1523                         }
1524
1525                         /*
1526                          * The inode belongs to a different superblock.
1527                          * Bounce back to the caller to unpin this and
1528                          * pin the next superblock.
1529                          */
1530                         break;
1531                 }
1532
1533                 /*
1534                  * Don't bother with new inodes or inodes being freed, first
1535                  * kind does not need periodic writeout yet, and for the latter
1536                  * kind writeout is handled by the freer.
1537                  */
1538                 spin_lock(&inode->i_lock);
1539                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1540                         spin_unlock(&inode->i_lock);
1541                         redirty_tail(inode, wb);
1542                         continue;
1543                 }
1544                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1545                         /*
1546                          * If this inode is locked for writeback and we are not
1547                          * doing writeback-for-data-integrity, move it to
1548                          * b_more_io so that writeback can proceed with the
1549                          * other inodes on s_io.
1550                          *
1551                          * We'll have another go at writing back this inode
1552                          * when we completed a full scan of b_io.
1553                          */
1554                         spin_unlock(&inode->i_lock);
1555                         requeue_io(inode, wb);
1556                         trace_writeback_sb_inodes_requeue(inode);
1557                         continue;
1558                 }
1559                 spin_unlock(&wb->list_lock);
1560
1561                 /*
1562                  * We already requeued the inode if it had I_SYNC set and we
1563                  * are doing WB_SYNC_NONE writeback. So this catches only the
1564                  * WB_SYNC_ALL case.
1565                  */
1566                 if (inode->i_state & I_SYNC) {
1567                         /* Wait for I_SYNC. This function drops i_lock... */
1568                         inode_sleep_on_writeback(inode);
1569                         /* Inode may be gone, start again */
1570                         spin_lock(&wb->list_lock);
1571                         continue;
1572                 }
1573                 inode->i_state |= I_SYNC;
1574                 wbc_attach_and_unlock_inode(&wbc, inode);
1575
1576                 write_chunk = writeback_chunk_size(wb, work);
1577                 wbc.nr_to_write = write_chunk;
1578                 wbc.pages_skipped = 0;
1579
1580                 /*
1581                  * We use I_SYNC to pin the inode in memory. While it is set
1582                  * evict_inode() will wait so the inode cannot be freed.
1583                  */
1584                 __writeback_single_inode(inode, &wbc);
1585
1586                 wbc_detach_inode(&wbc);
1587                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1588                 wrote += write_chunk - wbc.nr_to_write;
1589
1590                 if (need_resched()) {
1591                         /*
1592                          * We're trying to balance between building up a nice
1593                          * long list of IOs to improve our merge rate, and
1594                          * getting those IOs out quickly for anyone throttling
1595                          * in balance_dirty_pages().  cond_resched() doesn't
1596                          * unplug, so get our IOs out the door before we
1597                          * give up the CPU.
1598                          */
1599                         blk_flush_plug(current);
1600                         cond_resched();
1601                 }
1602
1603                 /*
1604                  * Requeue @inode if still dirty.  Be careful as @inode may
1605                  * have been switched to another wb in the meantime.
1606                  */
1607                 tmp_wb = inode_to_wb_and_lock_list(inode);
1608                 spin_lock(&inode->i_lock);
1609                 if (!(inode->i_state & I_DIRTY_ALL))
1610                         wrote++;
1611                 requeue_inode(inode, tmp_wb, &wbc);
1612                 inode_sync_complete(inode);
1613                 spin_unlock(&inode->i_lock);
1614
1615                 if (unlikely(tmp_wb != wb)) {
1616                         spin_unlock(&tmp_wb->list_lock);
1617                         spin_lock(&wb->list_lock);
1618                 }
1619
1620                 /*
1621                  * bail out to wb_writeback() often enough to check
1622                  * background threshold and other termination conditions.
1623                  */
1624                 if (wrote) {
1625                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1626                                 break;
1627                         if (work->nr_pages <= 0)
1628                                 break;
1629                 }
1630         }
1631         return wrote;
1632 }
1633
1634 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1635                                   struct wb_writeback_work *work)
1636 {
1637         unsigned long start_time = jiffies;
1638         long wrote = 0;
1639
1640         while (!list_empty(&wb->b_io)) {
1641                 struct inode *inode = wb_inode(wb->b_io.prev);
1642                 struct super_block *sb = inode->i_sb;
1643
1644                 if (!trylock_super(sb)) {
1645                         /*
1646                          * trylock_super() may fail consistently due to
1647                          * s_umount being grabbed by someone else. Don't use
1648                          * requeue_io() to avoid busy retrying the inode/sb.
1649                          */
1650                         redirty_tail(inode, wb);
1651                         continue;
1652                 }
1653                 wrote += writeback_sb_inodes(sb, wb, work);
1654                 up_read(&sb->s_umount);
1655
1656                 /* refer to the same tests at the end of writeback_sb_inodes */
1657                 if (wrote) {
1658                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1659                                 break;
1660                         if (work->nr_pages <= 0)
1661                                 break;
1662                 }
1663         }
1664         /* Leave any unwritten inodes on b_io */
1665         return wrote;
1666 }
1667
1668 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1669                                 enum wb_reason reason)
1670 {
1671         struct wb_writeback_work work = {
1672                 .nr_pages       = nr_pages,
1673                 .sync_mode      = WB_SYNC_NONE,
1674                 .range_cyclic   = 1,
1675                 .reason         = reason,
1676         };
1677         struct blk_plug plug;
1678
1679         blk_start_plug(&plug);
1680         spin_lock(&wb->list_lock);
1681         if (list_empty(&wb->b_io))
1682                 queue_io(wb, &work);
1683         __writeback_inodes_wb(wb, &work);
1684         spin_unlock(&wb->list_lock);
1685         blk_finish_plug(&plug);
1686
1687         return nr_pages - work.nr_pages;
1688 }
1689
1690 /*
1691  * Explicit flushing or periodic writeback of "old" data.
1692  *
1693  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1694  * dirtying-time in the inode's address_space.  So this periodic writeback code
1695  * just walks the superblock inode list, writing back any inodes which are
1696  * older than a specific point in time.
1697  *
1698  * Try to run once per dirty_writeback_interval.  But if a writeback event
1699  * takes longer than a dirty_writeback_interval interval, then leave a
1700  * one-second gap.
1701  *
1702  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1703  * all dirty pages if they are all attached to "old" mappings.
1704  */
1705 static long wb_writeback(struct bdi_writeback *wb,
1706                          struct wb_writeback_work *work)
1707 {
1708         unsigned long wb_start = jiffies;
1709         long nr_pages = work->nr_pages;
1710         unsigned long oldest_jif;
1711         struct inode *inode;
1712         long progress;
1713         struct blk_plug plug;
1714
1715         oldest_jif = jiffies;
1716         work->older_than_this = &oldest_jif;
1717
1718         blk_start_plug(&plug);
1719         spin_lock(&wb->list_lock);
1720         for (;;) {
1721                 /*
1722                  * Stop writeback when nr_pages has been consumed
1723                  */
1724                 if (work->nr_pages <= 0)
1725                         break;
1726
1727                 /*
1728                  * Background writeout and kupdate-style writeback may
1729                  * run forever. Stop them if there is other work to do
1730                  * so that e.g. sync can proceed. They'll be restarted
1731                  * after the other works are all done.
1732                  */
1733                 if ((work->for_background || work->for_kupdate) &&
1734                     !list_empty(&wb->work_list))
1735                         break;
1736
1737                 /*
1738                  * For background writeout, stop when we are below the
1739                  * background dirty threshold
1740                  */
1741                 if (work->for_background && !wb_over_bg_thresh(wb))
1742                         break;
1743
1744                 /*
1745                  * Kupdate and background works are special and we want to
1746                  * include all inodes that need writing. Livelock avoidance is
1747                  * handled by these works yielding to any other work so we are
1748                  * safe.
1749                  */
1750                 if (work->for_kupdate) {
1751                         oldest_jif = jiffies -
1752                                 msecs_to_jiffies(dirty_expire_interval * 10);
1753                 } else if (work->for_background)
1754                         oldest_jif = jiffies;
1755
1756                 trace_writeback_start(wb, work);
1757                 if (list_empty(&wb->b_io))
1758                         queue_io(wb, work);
1759                 if (work->sb)
1760                         progress = writeback_sb_inodes(work->sb, wb, work);
1761                 else
1762                         progress = __writeback_inodes_wb(wb, work);
1763                 trace_writeback_written(wb, work);
1764
1765                 wb_update_bandwidth(wb, wb_start);
1766
1767                 /*
1768                  * Did we write something? Try for more
1769                  *
1770                  * Dirty inodes are moved to b_io for writeback in batches.
1771                  * The completion of the current batch does not necessarily
1772                  * mean the overall work is done. So we keep looping as long
1773                  * as made some progress on cleaning pages or inodes.
1774                  */
1775                 if (progress)
1776                         continue;
1777                 /*
1778                  * No more inodes for IO, bail
1779                  */
1780                 if (list_empty(&wb->b_more_io))
1781                         break;
1782                 /*
1783                  * Nothing written. Wait for some inode to
1784                  * become available for writeback. Otherwise
1785                  * we'll just busyloop.
1786                  */
1787                 if (!list_empty(&wb->b_more_io))  {
1788                         trace_writeback_wait(wb, work);
1789                         inode = wb_inode(wb->b_more_io.prev);
1790                         spin_lock(&inode->i_lock);
1791                         spin_unlock(&wb->list_lock);
1792                         /* This function drops i_lock... */
1793                         inode_sleep_on_writeback(inode);
1794                         spin_lock(&wb->list_lock);
1795                 }
1796         }
1797         spin_unlock(&wb->list_lock);
1798         blk_finish_plug(&plug);
1799
1800         return nr_pages - work->nr_pages;
1801 }
1802
1803 /*
1804  * Return the next wb_writeback_work struct that hasn't been processed yet.
1805  */
1806 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1807 {
1808         struct wb_writeback_work *work = NULL;
1809
1810         spin_lock_bh(&wb->work_lock);
1811         if (!list_empty(&wb->work_list)) {
1812                 work = list_entry(wb->work_list.next,
1813                                   struct wb_writeback_work, list);
1814                 list_del_init(&work->list);
1815         }
1816         spin_unlock_bh(&wb->work_lock);
1817         return work;
1818 }
1819
1820 /*
1821  * Add in the number of potentially dirty inodes, because each inode
1822  * write can dirty pagecache in the underlying blockdev.
1823  */
1824 static unsigned long get_nr_dirty_pages(void)
1825 {
1826         return global_node_page_state(NR_FILE_DIRTY) +
1827                 global_node_page_state(NR_UNSTABLE_NFS) +
1828                 get_nr_dirty_inodes();
1829 }
1830
1831 static long wb_check_background_flush(struct bdi_writeback *wb)
1832 {
1833         if (wb_over_bg_thresh(wb)) {
1834
1835                 struct wb_writeback_work work = {
1836                         .nr_pages       = LONG_MAX,
1837                         .sync_mode      = WB_SYNC_NONE,
1838                         .for_background = 1,
1839                         .range_cyclic   = 1,
1840                         .reason         = WB_REASON_BACKGROUND,
1841                 };
1842
1843                 return wb_writeback(wb, &work);
1844         }
1845
1846         return 0;
1847 }
1848
1849 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1850 {
1851         unsigned long expired;
1852         long nr_pages;
1853
1854         /*
1855          * When set to zero, disable periodic writeback
1856          */
1857         if (!dirty_writeback_interval)
1858                 return 0;
1859
1860         expired = wb->last_old_flush +
1861                         msecs_to_jiffies(dirty_writeback_interval * 10);
1862         if (time_before(jiffies, expired))
1863                 return 0;
1864
1865         wb->last_old_flush = jiffies;
1866         nr_pages = get_nr_dirty_pages();
1867
1868         if (nr_pages) {
1869                 struct wb_writeback_work work = {
1870                         .nr_pages       = nr_pages,
1871                         .sync_mode      = WB_SYNC_NONE,
1872                         .for_kupdate    = 1,
1873                         .range_cyclic   = 1,
1874                         .reason         = WB_REASON_PERIODIC,
1875                 };
1876
1877                 return wb_writeback(wb, &work);
1878         }
1879
1880         return 0;
1881 }
1882
1883 /*
1884  * Retrieve work items and do the writeback they describe
1885  */
1886 static long wb_do_writeback(struct bdi_writeback *wb)
1887 {
1888         struct wb_writeback_work *work;
1889         long wrote = 0;
1890
1891         set_bit(WB_writeback_running, &wb->state);
1892         while ((work = get_next_work_item(wb)) != NULL) {
1893                 trace_writeback_exec(wb, work);
1894                 wrote += wb_writeback(wb, work);
1895                 finish_writeback_work(wb, work);
1896         }
1897
1898         /*
1899          * Check for periodic writeback, kupdated() style
1900          */
1901         wrote += wb_check_old_data_flush(wb);
1902         wrote += wb_check_background_flush(wb);
1903         clear_bit(WB_writeback_running, &wb->state);
1904
1905         return wrote;
1906 }
1907
1908 /*
1909  * Handle writeback of dirty data for the device backed by this bdi. Also
1910  * reschedules periodically and does kupdated style flushing.
1911  */
1912 void wb_workfn(struct work_struct *work)
1913 {
1914         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1915                                                 struct bdi_writeback, dwork);
1916         long pages_written;
1917
1918         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1919         current->flags |= PF_SWAPWRITE;
1920
1921         if (likely(!current_is_workqueue_rescuer() ||
1922                    !test_bit(WB_registered, &wb->state))) {
1923                 /*
1924                  * The normal path.  Keep writing back @wb until its
1925                  * work_list is empty.  Note that this path is also taken
1926                  * if @wb is shutting down even when we're running off the
1927                  * rescuer as work_list needs to be drained.
1928                  */
1929                 do {
1930                         pages_written = wb_do_writeback(wb);
1931                         trace_writeback_pages_written(pages_written);
1932                 } while (!list_empty(&wb->work_list));
1933         } else {
1934                 /*
1935                  * bdi_wq can't get enough workers and we're running off
1936                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1937                  * enough for efficient IO.
1938                  */
1939                 pages_written = writeback_inodes_wb(wb, 1024,
1940                                                     WB_REASON_FORKER_THREAD);
1941                 trace_writeback_pages_written(pages_written);
1942         }
1943
1944         if (!list_empty(&wb->work_list))
1945                 wb_wakeup(wb);
1946         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1947                 wb_wakeup_delayed(wb);
1948
1949         current->flags &= ~PF_SWAPWRITE;
1950 }
1951
1952 /*
1953  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1954  * the whole world.
1955  */
1956 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1957 {
1958         struct backing_dev_info *bdi;
1959
1960         /*
1961          * If we are expecting writeback progress we must submit plugged IO.
1962          */
1963         if (blk_needs_flush_plug(current))
1964                 blk_schedule_flush_plug(current);
1965
1966         if (!nr_pages)
1967                 nr_pages = get_nr_dirty_pages();
1968
1969         rcu_read_lock();
1970         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1971                 struct bdi_writeback *wb;
1972
1973                 if (!bdi_has_dirty_io(bdi))
1974                         continue;
1975
1976                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1977                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1978                                            false, reason);
1979         }
1980         rcu_read_unlock();
1981 }
1982
1983 /*
1984  * Wake up bdi's periodically to make sure dirtytime inodes gets
1985  * written back periodically.  We deliberately do *not* check the
1986  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1987  * kernel to be constantly waking up once there are any dirtytime
1988  * inodes on the system.  So instead we define a separate delayed work
1989  * function which gets called much more rarely.  (By default, only
1990  * once every 12 hours.)
1991  *
1992  * If there is any other write activity going on in the file system,
1993  * this function won't be necessary.  But if the only thing that has
1994  * happened on the file system is a dirtytime inode caused by an atime
1995  * update, we need this infrastructure below to make sure that inode
1996  * eventually gets pushed out to disk.
1997  */
1998 static void wakeup_dirtytime_writeback(struct work_struct *w);
1999 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2000
2001 static void wakeup_dirtytime_writeback(struct work_struct *w)
2002 {
2003         struct backing_dev_info *bdi;
2004
2005         rcu_read_lock();
2006         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2007                 struct bdi_writeback *wb;
2008
2009                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2010                         if (!list_empty(&wb->b_dirty_time))
2011                                 wb_wakeup(wb);
2012         }
2013         rcu_read_unlock();
2014         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2015 }
2016
2017 static int __init start_dirtytime_writeback(void)
2018 {
2019         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2020         return 0;
2021 }
2022 __initcall(start_dirtytime_writeback);
2023
2024 int dirtytime_interval_handler(struct ctl_table *table, int write,
2025                                void __user *buffer, size_t *lenp, loff_t *ppos)
2026 {
2027         int ret;
2028
2029         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2030         if (ret == 0 && write)
2031                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2032         return ret;
2033 }
2034
2035 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2036 {
2037         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2038                 struct dentry *dentry;
2039                 const char *name = "?";
2040
2041                 dentry = d_find_alias(inode);
2042                 if (dentry) {
2043                         spin_lock(&dentry->d_lock);
2044                         name = (const char *) dentry->d_name.name;
2045                 }
2046                 printk(KERN_DEBUG
2047                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2048                        current->comm, task_pid_nr(current), inode->i_ino,
2049                        name, inode->i_sb->s_id);
2050                 if (dentry) {
2051                         spin_unlock(&dentry->d_lock);
2052                         dput(dentry);
2053                 }
2054         }
2055 }
2056
2057 /**
2058  *      __mark_inode_dirty -    internal function
2059  *      @inode: inode to mark
2060  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2061  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
2062  *      mark_inode_dirty_sync.
2063  *
2064  * Put the inode on the super block's dirty list.
2065  *
2066  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2067  * dirty list only if it is hashed or if it refers to a blockdev.
2068  * If it was not hashed, it will never be added to the dirty list
2069  * even if it is later hashed, as it will have been marked dirty already.
2070  *
2071  * In short, make sure you hash any inodes _before_ you start marking
2072  * them dirty.
2073  *
2074  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2075  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2076  * the kernel-internal blockdev inode represents the dirtying time of the
2077  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2078  * page->mapping->host, so the page-dirtying time is recorded in the internal
2079  * blockdev inode.
2080  */
2081 void __mark_inode_dirty(struct inode *inode, int flags)
2082 {
2083 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2084         struct super_block *sb = inode->i_sb;
2085         int dirtytime;
2086
2087         trace_writeback_mark_inode_dirty(inode, flags);
2088
2089         /*
2090          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2091          * dirty the inode itself
2092          */
2093         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2094                 trace_writeback_dirty_inode_start(inode, flags);
2095
2096                 if (sb->s_op->dirty_inode)
2097                         sb->s_op->dirty_inode(inode, flags);
2098
2099                 trace_writeback_dirty_inode(inode, flags);
2100         }
2101         if (flags & I_DIRTY_INODE)
2102                 flags &= ~I_DIRTY_TIME;
2103         dirtytime = flags & I_DIRTY_TIME;
2104
2105         /*
2106          * Paired with smp_mb() in __writeback_single_inode() for the
2107          * following lockless i_state test.  See there for details.
2108          */
2109         smp_mb();
2110
2111         if (((inode->i_state & flags) == flags) ||
2112             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2113                 return;
2114
2115         if (unlikely(block_dump))
2116                 block_dump___mark_inode_dirty(inode);
2117
2118         spin_lock(&inode->i_lock);
2119         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2120                 goto out_unlock_inode;
2121         if ((inode->i_state & flags) != flags) {
2122                 const int was_dirty = inode->i_state & I_DIRTY;
2123
2124                 inode_attach_wb(inode, NULL);
2125
2126                 if (flags & I_DIRTY_INODE)
2127                         inode->i_state &= ~I_DIRTY_TIME;
2128                 inode->i_state |= flags;
2129
2130                 /*
2131                  * If the inode is being synced, just update its dirty state.
2132                  * The unlocker will place the inode on the appropriate
2133                  * superblock list, based upon its state.
2134                  */
2135                 if (inode->i_state & I_SYNC)
2136                         goto out_unlock_inode;
2137
2138                 /*
2139                  * Only add valid (hashed) inodes to the superblock's
2140                  * dirty list.  Add blockdev inodes as well.
2141                  */
2142                 if (!S_ISBLK(inode->i_mode)) {
2143                         if (inode_unhashed(inode))
2144                                 goto out_unlock_inode;
2145                 }
2146                 if (inode->i_state & I_FREEING)
2147                         goto out_unlock_inode;
2148
2149                 /*
2150                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2151                  * reposition it (that would break b_dirty time-ordering).
2152                  */
2153                 if (!was_dirty) {
2154                         struct bdi_writeback *wb;
2155                         struct list_head *dirty_list;
2156                         bool wakeup_bdi = false;
2157
2158                         wb = locked_inode_to_wb_and_lock_list(inode);
2159
2160                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2161                              !test_bit(WB_registered, &wb->state),
2162                              "bdi-%s not registered\n", wb->bdi->name);
2163
2164                         inode->dirtied_when = jiffies;
2165                         if (dirtytime)
2166                                 inode->dirtied_time_when = jiffies;
2167
2168                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2169                                 dirty_list = &wb->b_dirty;
2170                         else
2171                                 dirty_list = &wb->b_dirty_time;
2172
2173                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2174                                                                dirty_list);
2175
2176                         spin_unlock(&wb->list_lock);
2177                         trace_writeback_dirty_inode_enqueue(inode);
2178
2179                         /*
2180                          * If this is the first dirty inode for this bdi,
2181                          * we have to wake-up the corresponding bdi thread
2182                          * to make sure background write-back happens
2183                          * later.
2184                          */
2185                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2186                                 wb_wakeup_delayed(wb);
2187                         return;
2188                 }
2189         }
2190 out_unlock_inode:
2191         spin_unlock(&inode->i_lock);
2192
2193 #undef I_DIRTY_INODE
2194 }
2195 EXPORT_SYMBOL(__mark_inode_dirty);
2196
2197 /*
2198  * The @s_sync_lock is used to serialise concurrent sync operations
2199  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2200  * Concurrent callers will block on the s_sync_lock rather than doing contending
2201  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2202  * has been issued up to the time this function is enter is guaranteed to be
2203  * completed by the time we have gained the lock and waited for all IO that is
2204  * in progress regardless of the order callers are granted the lock.
2205  */
2206 static void wait_sb_inodes(struct super_block *sb)
2207 {
2208         LIST_HEAD(sync_list);
2209
2210         /*
2211          * We need to be protected against the filesystem going from
2212          * r/o to r/w or vice versa.
2213          */
2214         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2215
2216         mutex_lock(&sb->s_sync_lock);
2217
2218         /*
2219          * Splice the writeback list onto a temporary list to avoid waiting on
2220          * inodes that have started writeback after this point.
2221          *
2222          * Use rcu_read_lock() to keep the inodes around until we have a
2223          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2224          * the local list because inodes can be dropped from either by writeback
2225          * completion.
2226          */
2227         rcu_read_lock();
2228         spin_lock_irq(&sb->s_inode_wblist_lock);
2229         list_splice_init(&sb->s_inodes_wb, &sync_list);
2230
2231         /*
2232          * Data integrity sync. Must wait for all pages under writeback, because
2233          * there may have been pages dirtied before our sync call, but which had
2234          * writeout started before we write it out.  In which case, the inode
2235          * may not be on the dirty list, but we still have to wait for that
2236          * writeout.
2237          */
2238         while (!list_empty(&sync_list)) {
2239                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2240                                                        i_wb_list);
2241                 struct address_space *mapping = inode->i_mapping;
2242
2243                 /*
2244                  * Move each inode back to the wb list before we drop the lock
2245                  * to preserve consistency between i_wb_list and the mapping
2246                  * writeback tag. Writeback completion is responsible to remove
2247                  * the inode from either list once the writeback tag is cleared.
2248                  */
2249                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2250
2251                 /*
2252                  * The mapping can appear untagged while still on-list since we
2253                  * do not have the mapping lock. Skip it here, wb completion
2254                  * will remove it.
2255                  */
2256                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2257                         continue;
2258
2259                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2260
2261                 spin_lock(&inode->i_lock);
2262                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2263                         spin_unlock(&inode->i_lock);
2264
2265                         spin_lock_irq(&sb->s_inode_wblist_lock);
2266                         continue;
2267                 }
2268                 __iget(inode);
2269                 spin_unlock(&inode->i_lock);
2270                 rcu_read_unlock();
2271
2272                 /*
2273                  * We keep the error status of individual mapping so that
2274                  * applications can catch the writeback error using fsync(2).
2275                  * See filemap_fdatawait_keep_errors() for details.
2276                  */
2277                 filemap_fdatawait_keep_errors(mapping);
2278
2279                 cond_resched();
2280
2281                 iput(inode);
2282
2283                 rcu_read_lock();
2284                 spin_lock_irq(&sb->s_inode_wblist_lock);
2285         }
2286         spin_unlock_irq(&sb->s_inode_wblist_lock);
2287         rcu_read_unlock();
2288         mutex_unlock(&sb->s_sync_lock);
2289 }
2290
2291 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2292                                      enum wb_reason reason, bool skip_if_busy)
2293 {
2294         DEFINE_WB_COMPLETION_ONSTACK(done);
2295         struct wb_writeback_work work = {
2296                 .sb                     = sb,
2297                 .sync_mode              = WB_SYNC_NONE,
2298                 .tagged_writepages      = 1,
2299                 .done                   = &done,
2300                 .nr_pages               = nr,
2301                 .reason                 = reason,
2302         };
2303         struct backing_dev_info *bdi = sb->s_bdi;
2304
2305         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2306                 return;
2307         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2308
2309         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2310         wb_wait_for_completion(bdi, &done);
2311 }
2312
2313 /**
2314  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2315  * @sb: the superblock
2316  * @nr: the number of pages to write
2317  * @reason: reason why some writeback work initiated
2318  *
2319  * Start writeback on some inodes on this super_block. No guarantees are made
2320  * on how many (if any) will be written, and this function does not wait
2321  * for IO completion of submitted IO.
2322  */
2323 void writeback_inodes_sb_nr(struct super_block *sb,
2324                             unsigned long nr,
2325                             enum wb_reason reason)
2326 {
2327         __writeback_inodes_sb_nr(sb, nr, reason, false);
2328 }
2329 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2330
2331 /**
2332  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2333  * @sb: the superblock
2334  * @reason: reason why some writeback work was initiated
2335  *
2336  * Start writeback on some inodes on this super_block. No guarantees are made
2337  * on how many (if any) will be written, and this function does not wait
2338  * for IO completion of submitted IO.
2339  */
2340 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2341 {
2342         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2343 }
2344 EXPORT_SYMBOL(writeback_inodes_sb);
2345
2346 /**
2347  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2348  * @sb: the superblock
2349  * @nr: the number of pages to write
2350  * @reason: the reason of writeback
2351  *
2352  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2353  * Returns 1 if writeback was started, 0 if not.
2354  */
2355 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2356                                    enum wb_reason reason)
2357 {
2358         if (!down_read_trylock(&sb->s_umount))
2359                 return false;
2360
2361         __writeback_inodes_sb_nr(sb, nr, reason, true);
2362         up_read(&sb->s_umount);
2363         return true;
2364 }
2365 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2366
2367 /**
2368  * try_to_writeback_inodes_sb - try to start writeback if none underway
2369  * @sb: the superblock
2370  * @reason: reason why some writeback work was initiated
2371  *
2372  * Implement by try_to_writeback_inodes_sb_nr()
2373  * Returns 1 if writeback was started, 0 if not.
2374  */
2375 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2376 {
2377         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2378 }
2379 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2380
2381 /**
2382  * sync_inodes_sb       -       sync sb inode pages
2383  * @sb: the superblock
2384  *
2385  * This function writes and waits on any dirty inode belonging to this
2386  * super_block.
2387  */
2388 void sync_inodes_sb(struct super_block *sb)
2389 {
2390         DEFINE_WB_COMPLETION_ONSTACK(done);
2391         struct wb_writeback_work work = {
2392                 .sb             = sb,
2393                 .sync_mode      = WB_SYNC_ALL,
2394                 .nr_pages       = LONG_MAX,
2395                 .range_cyclic   = 0,
2396                 .done           = &done,
2397                 .reason         = WB_REASON_SYNC,
2398                 .for_sync       = 1,
2399         };
2400         struct backing_dev_info *bdi = sb->s_bdi;
2401
2402         /*
2403          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2404          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2405          * bdi_has_dirty() need to be written out too.
2406          */
2407         if (bdi == &noop_backing_dev_info)
2408                 return;
2409         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2410
2411         bdi_split_work_to_wbs(bdi, &work, false);
2412         wb_wait_for_completion(bdi, &done);
2413
2414         wait_sb_inodes(sb);
2415 }
2416 EXPORT_SYMBOL(sync_inodes_sb);
2417
2418 /**
2419  * write_inode_now      -       write an inode to disk
2420  * @inode: inode to write to disk
2421  * @sync: whether the write should be synchronous or not
2422  *
2423  * This function commits an inode to disk immediately if it is dirty. This is
2424  * primarily needed by knfsd.
2425  *
2426  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2427  */
2428 int write_inode_now(struct inode *inode, int sync)
2429 {
2430         struct writeback_control wbc = {
2431                 .nr_to_write = LONG_MAX,
2432                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2433                 .range_start = 0,
2434                 .range_end = LLONG_MAX,
2435         };
2436
2437         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2438                 wbc.nr_to_write = 0;
2439
2440         might_sleep();
2441         return writeback_single_inode(inode, &wbc);
2442 }
2443 EXPORT_SYMBOL(write_inode_now);
2444
2445 /**
2446  * sync_inode - write an inode and its pages to disk.
2447  * @inode: the inode to sync
2448  * @wbc: controls the writeback mode
2449  *
2450  * sync_inode() will write an inode and its pages to disk.  It will also
2451  * correctly update the inode on its superblock's dirty inode lists and will
2452  * update inode->i_state.
2453  *
2454  * The caller must have a ref on the inode.
2455  */
2456 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2457 {
2458         return writeback_single_inode(inode, wbc);
2459 }
2460 EXPORT_SYMBOL(sync_inode);
2461
2462 /**
2463  * sync_inode_metadata - write an inode to disk
2464  * @inode: the inode to sync
2465  * @wait: wait for I/O to complete.
2466  *
2467  * Write an inode to disk and adjust its dirty state after completion.
2468  *
2469  * Note: only writes the actual inode, no associated data or other metadata.
2470  */
2471 int sync_inode_metadata(struct inode *inode, int wait)
2472 {
2473         struct writeback_control wbc = {
2474                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2475                 .nr_to_write = 0, /* metadata-only */
2476         };
2477
2478         return sync_inode(inode, &wbc);
2479 }
2480 EXPORT_SYMBOL(sync_inode_metadata);