OSDN Git Service

writeback: disassociate inodes from dying bdi_writebacks
[uclinux-h8/linux.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         unsigned int single_wait:1;
57         unsigned int single_done:1;
58         enum wb_reason reason;          /* why was writeback initiated? */
59
60         struct list_head list;          /* pending work list */
61         struct wb_completion *done;     /* set if the caller waits */
62 };
63
64 /*
65  * If one wants to wait for one or more wb_writeback_works, each work's
66  * ->done should be set to a wb_completion defined using the following
67  * macro.  Once all work items are issued with wb_queue_work(), the caller
68  * can wait for the completion of all using wb_wait_for_completion().  Work
69  * items which are waited upon aren't freed automatically on completion.
70  */
71 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
72         struct wb_completion cmpl = {                                   \
73                 .cnt            = ATOMIC_INIT(1),                       \
74         }
75
76
77 /*
78  * If an inode is constantly having its pages dirtied, but then the
79  * updates stop dirtytime_expire_interval seconds in the past, it's
80  * possible for the worst case time between when an inode has its
81  * timestamps updated and when they finally get written out to be two
82  * dirtytime_expire_intervals.  We set the default to 12 hours (in
83  * seconds), which means most of the time inodes will have their
84  * timestamps written to disk after 12 hours, but in the worst case a
85  * few inodes might not their timestamps updated for 24 hours.
86  */
87 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
89 static inline struct inode *wb_inode(struct list_head *head)
90 {
91         return list_entry(head, struct inode, i_wb_list);
92 }
93
94 /*
95  * Include the creation of the trace points after defining the
96  * wb_writeback_work structure and inline functions so that the definition
97  * remains local to this file.
98  */
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/writeback.h>
101
102 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
104 static bool wb_io_lists_populated(struct bdi_writeback *wb)
105 {
106         if (wb_has_dirty_io(wb)) {
107                 return false;
108         } else {
109                 set_bit(WB_has_dirty_io, &wb->state);
110                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
111                 atomic_long_add(wb->avg_write_bandwidth,
112                                 &wb->bdi->tot_write_bandwidth);
113                 return true;
114         }
115 }
116
117 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118 {
119         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121                 clear_bit(WB_has_dirty_io, &wb->state);
122                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123                                         &wb->bdi->tot_write_bandwidth) < 0);
124         }
125 }
126
127 /**
128  * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129  * @inode: inode to be moved
130  * @wb: target bdi_writeback
131  * @head: one of @wb->b_{dirty|io|more_io}
132  *
133  * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134  * Returns %true if @inode is the first occupant of the !dirty_time IO
135  * lists; otherwise, %false.
136  */
137 static bool inode_wb_list_move_locked(struct inode *inode,
138                                       struct bdi_writeback *wb,
139                                       struct list_head *head)
140 {
141         assert_spin_locked(&wb->list_lock);
142
143         list_move(&inode->i_wb_list, head);
144
145         /* dirty_time doesn't count as dirty_io until expiration */
146         if (head != &wb->b_dirty_time)
147                 return wb_io_lists_populated(wb);
148
149         wb_io_lists_depopulated(wb);
150         return false;
151 }
152
153 /**
154  * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155  * @inode: inode to be removed
156  * @wb: bdi_writeback @inode is being removed from
157  *
158  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159  * clear %WB_has_dirty_io if all are empty afterwards.
160  */
161 static void inode_wb_list_del_locked(struct inode *inode,
162                                      struct bdi_writeback *wb)
163 {
164         assert_spin_locked(&wb->list_lock);
165
166         list_del_init(&inode->i_wb_list);
167         wb_io_lists_depopulated(wb);
168 }
169
170 static void wb_wakeup(struct bdi_writeback *wb)
171 {
172         spin_lock_bh(&wb->work_lock);
173         if (test_bit(WB_registered, &wb->state))
174                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175         spin_unlock_bh(&wb->work_lock);
176 }
177
178 static void wb_queue_work(struct bdi_writeback *wb,
179                           struct wb_writeback_work *work)
180 {
181         trace_writeback_queue(wb->bdi, work);
182
183         spin_lock_bh(&wb->work_lock);
184         if (!test_bit(WB_registered, &wb->state)) {
185                 if (work->single_wait)
186                         work->single_done = 1;
187                 goto out_unlock;
188         }
189         if (work->done)
190                 atomic_inc(&work->done->cnt);
191         list_add_tail(&work->list, &wb->work_list);
192         mod_delayed_work(bdi_wq, &wb->dwork, 0);
193 out_unlock:
194         spin_unlock_bh(&wb->work_lock);
195 }
196
197 /**
198  * wb_wait_for_completion - wait for completion of bdi_writeback_works
199  * @bdi: bdi work items were issued to
200  * @done: target wb_completion
201  *
202  * Wait for one or more work items issued to @bdi with their ->done field
203  * set to @done, which should have been defined with
204  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
205  * work items are completed.  Work items which are waited upon aren't freed
206  * automatically on completion.
207  */
208 static void wb_wait_for_completion(struct backing_dev_info *bdi,
209                                    struct wb_completion *done)
210 {
211         atomic_dec(&done->cnt);         /* put down the initial count */
212         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213 }
214
215 #ifdef CONFIG_CGROUP_WRITEBACK
216
217 /* parameters for foreign inode detection, see wb_detach_inode() */
218 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
219 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
220 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
221 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
222
223 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
224 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225                                         /* each slot's duration is 2s / 16 */
226 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
227                                         /* if foreign slots >= 8, switch */
228 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
229                                         /* one round can affect upto 5 slots */
230
231 void __inode_attach_wb(struct inode *inode, struct page *page)
232 {
233         struct backing_dev_info *bdi = inode_to_bdi(inode);
234         struct bdi_writeback *wb = NULL;
235
236         if (inode_cgwb_enabled(inode)) {
237                 struct cgroup_subsys_state *memcg_css;
238
239                 if (page) {
240                         memcg_css = mem_cgroup_css_from_page(page);
241                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242                 } else {
243                         /* must pin memcg_css, see wb_get_create() */
244                         memcg_css = task_get_css(current, memory_cgrp_id);
245                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246                         css_put(memcg_css);
247                 }
248         }
249
250         if (!wb)
251                 wb = &bdi->wb;
252
253         /*
254          * There may be multiple instances of this function racing to
255          * update the same inode.  Use cmpxchg() to tell the winner.
256          */
257         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258                 wb_put(wb);
259 }
260
261 /**
262  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
263  * @inode: inode of interest with i_lock held
264  *
265  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
266  * held on entry and is released on return.  The returned wb is guaranteed
267  * to stay @inode's associated wb until its list_lock is released.
268  */
269 static struct bdi_writeback *
270 locked_inode_to_wb_and_lock_list(struct inode *inode)
271         __releases(&inode->i_lock)
272         __acquires(&wb->list_lock)
273 {
274         while (true) {
275                 struct bdi_writeback *wb = inode_to_wb(inode);
276
277                 /*
278                  * inode_to_wb() association is protected by both
279                  * @inode->i_lock and @wb->list_lock but list_lock nests
280                  * outside i_lock.  Drop i_lock and verify that the
281                  * association hasn't changed after acquiring list_lock.
282                  */
283                 wb_get(wb);
284                 spin_unlock(&inode->i_lock);
285                 spin_lock(&wb->list_lock);
286                 wb_put(wb);             /* not gonna deref it anymore */
287
288                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
289                 if (likely(wb == inode->i_wb))
290                         return wb;      /* @inode already has ref */
291
292                 spin_unlock(&wb->list_lock);
293                 cpu_relax();
294                 spin_lock(&inode->i_lock);
295         }
296 }
297
298 /**
299  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300  * @inode: inode of interest
301  *
302  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303  * on entry.
304  */
305 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306         __acquires(&wb->list_lock)
307 {
308         spin_lock(&inode->i_lock);
309         return locked_inode_to_wb_and_lock_list(inode);
310 }
311
312 struct inode_switch_wbs_context {
313         struct inode            *inode;
314         struct bdi_writeback    *new_wb;
315
316         struct rcu_head         rcu_head;
317         struct work_struct      work;
318 };
319
320 static void inode_switch_wbs_work_fn(struct work_struct *work)
321 {
322         struct inode_switch_wbs_context *isw =
323                 container_of(work, struct inode_switch_wbs_context, work);
324         struct inode *inode = isw->inode;
325         struct address_space *mapping = inode->i_mapping;
326         struct bdi_writeback *old_wb = inode->i_wb;
327         struct bdi_writeback *new_wb = isw->new_wb;
328         struct radix_tree_iter iter;
329         bool switched = false;
330         void **slot;
331
332         /*
333          * By the time control reaches here, RCU grace period has passed
334          * since I_WB_SWITCH assertion and all wb stat update transactions
335          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336          * synchronizing against mapping->tree_lock.
337          *
338          * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339          * gives us exclusion against all wb related operations on @inode
340          * including IO list manipulations and stat updates.
341          */
342         if (old_wb < new_wb) {
343                 spin_lock(&old_wb->list_lock);
344                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345         } else {
346                 spin_lock(&new_wb->list_lock);
347                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348         }
349         spin_lock(&inode->i_lock);
350         spin_lock_irq(&mapping->tree_lock);
351
352         /*
353          * Once I_FREEING is visible under i_lock, the eviction path owns
354          * the inode and we shouldn't modify ->i_wb_list.
355          */
356         if (unlikely(inode->i_state & I_FREEING))
357                 goto skip_switch;
358
359         /*
360          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
361          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362          * pages actually under underwriteback.
363          */
364         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365                                    PAGECACHE_TAG_DIRTY) {
366                 struct page *page = radix_tree_deref_slot_protected(slot,
367                                                         &mapping->tree_lock);
368                 if (likely(page) && PageDirty(page)) {
369                         __dec_wb_stat(old_wb, WB_RECLAIMABLE);
370                         __inc_wb_stat(new_wb, WB_RECLAIMABLE);
371                 }
372         }
373
374         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375                                    PAGECACHE_TAG_WRITEBACK) {
376                 struct page *page = radix_tree_deref_slot_protected(slot,
377                                                         &mapping->tree_lock);
378                 if (likely(page)) {
379                         WARN_ON_ONCE(!PageWriteback(page));
380                         __dec_wb_stat(old_wb, WB_WRITEBACK);
381                         __inc_wb_stat(new_wb, WB_WRITEBACK);
382                 }
383         }
384
385         wb_get(new_wb);
386
387         /*
388          * Transfer to @new_wb's IO list if necessary.  The specific list
389          * @inode was on is ignored and the inode is put on ->b_dirty which
390          * is always correct including from ->b_dirty_time.  The transfer
391          * preserves @inode->dirtied_when ordering.
392          */
393         if (!list_empty(&inode->i_wb_list)) {
394                 struct inode *pos;
395
396                 inode_wb_list_del_locked(inode, old_wb);
397                 inode->i_wb = new_wb;
398                 list_for_each_entry(pos, &new_wb->b_dirty, i_wb_list)
399                         if (time_after_eq(inode->dirtied_when,
400                                           pos->dirtied_when))
401                                 break;
402                 inode_wb_list_move_locked(inode, new_wb, pos->i_wb_list.prev);
403         } else {
404                 inode->i_wb = new_wb;
405         }
406
407         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408         inode->i_wb_frn_winner = 0;
409         inode->i_wb_frn_avg_time = 0;
410         inode->i_wb_frn_history = 0;
411         switched = true;
412 skip_switch:
413         /*
414          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415          * ensures that the new wb is visible if they see !I_WB_SWITCH.
416          */
417         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418
419         spin_unlock_irq(&mapping->tree_lock);
420         spin_unlock(&inode->i_lock);
421         spin_unlock(&new_wb->list_lock);
422         spin_unlock(&old_wb->list_lock);
423
424         if (switched) {
425                 wb_wakeup(new_wb);
426                 wb_put(old_wb);
427         }
428         wb_put(new_wb);
429
430         iput(inode);
431         kfree(isw);
432 }
433
434 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
435 {
436         struct inode_switch_wbs_context *isw = container_of(rcu_head,
437                                 struct inode_switch_wbs_context, rcu_head);
438
439         /* needs to grab bh-unsafe locks, bounce to work item */
440         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
441         schedule_work(&isw->work);
442 }
443
444 /**
445  * inode_switch_wbs - change the wb association of an inode
446  * @inode: target inode
447  * @new_wb_id: ID of the new wb
448  *
449  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
450  * switching is performed asynchronously and may fail silently.
451  */
452 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
453 {
454         struct backing_dev_info *bdi = inode_to_bdi(inode);
455         struct cgroup_subsys_state *memcg_css;
456         struct inode_switch_wbs_context *isw;
457
458         /* noop if seems to be already in progress */
459         if (inode->i_state & I_WB_SWITCH)
460                 return;
461
462         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
463         if (!isw)
464                 return;
465
466         /* find and pin the new wb */
467         rcu_read_lock();
468         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
469         if (memcg_css)
470                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
471         rcu_read_unlock();
472         if (!isw->new_wb)
473                 goto out_free;
474
475         /* while holding I_WB_SWITCH, no one else can update the association */
476         spin_lock(&inode->i_lock);
477         if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
478             inode_to_wb(inode) == isw->new_wb) {
479                 spin_unlock(&inode->i_lock);
480                 goto out_free;
481         }
482         inode->i_state |= I_WB_SWITCH;
483         spin_unlock(&inode->i_lock);
484
485         ihold(inode);
486         isw->inode = inode;
487
488         /*
489          * In addition to synchronizing among switchers, I_WB_SWITCH tells
490          * the RCU protected stat update paths to grab the mapping's
491          * tree_lock so that stat transfer can synchronize against them.
492          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
493          */
494         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
495         return;
496
497 out_free:
498         if (isw->new_wb)
499                 wb_put(isw->new_wb);
500         kfree(isw);
501 }
502
503 /**
504  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
505  * @wbc: writeback_control of interest
506  * @inode: target inode
507  *
508  * @inode is locked and about to be written back under the control of @wbc.
509  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
510  * writeback completion, wbc_detach_inode() should be called.  This is used
511  * to track the cgroup writeback context.
512  */
513 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
514                                  struct inode *inode)
515 {
516         wbc->wb = inode_to_wb(inode);
517         wbc->inode = inode;
518
519         wbc->wb_id = wbc->wb->memcg_css->id;
520         wbc->wb_lcand_id = inode->i_wb_frn_winner;
521         wbc->wb_tcand_id = 0;
522         wbc->wb_bytes = 0;
523         wbc->wb_lcand_bytes = 0;
524         wbc->wb_tcand_bytes = 0;
525
526         wb_get(wbc->wb);
527         spin_unlock(&inode->i_lock);
528
529         /*
530          * A dying wb indicates that the memcg-blkcg mapping has changed
531          * and a new wb is already serving the memcg.  Switch immediately.
532          */
533         if (unlikely(wb_dying(wbc->wb)))
534                 inode_switch_wbs(inode, wbc->wb_id);
535 }
536
537 /**
538  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
539  * @wbc: writeback_control of the just finished writeback
540  *
541  * To be called after a writeback attempt of an inode finishes and undoes
542  * wbc_attach_and_unlock_inode().  Can be called under any context.
543  *
544  * As concurrent write sharing of an inode is expected to be very rare and
545  * memcg only tracks page ownership on first-use basis severely confining
546  * the usefulness of such sharing, cgroup writeback tracks ownership
547  * per-inode.  While the support for concurrent write sharing of an inode
548  * is deemed unnecessary, an inode being written to by different cgroups at
549  * different points in time is a lot more common, and, more importantly,
550  * charging only by first-use can too readily lead to grossly incorrect
551  * behaviors (single foreign page can lead to gigabytes of writeback to be
552  * incorrectly attributed).
553  *
554  * To resolve this issue, cgroup writeback detects the majority dirtier of
555  * an inode and transfers the ownership to it.  To avoid unnnecessary
556  * oscillation, the detection mechanism keeps track of history and gives
557  * out the switch verdict only if the foreign usage pattern is stable over
558  * a certain amount of time and/or writeback attempts.
559  *
560  * On each writeback attempt, @wbc tries to detect the majority writer
561  * using Boyer-Moore majority vote algorithm.  In addition to the byte
562  * count from the majority voting, it also counts the bytes written for the
563  * current wb and the last round's winner wb (max of last round's current
564  * wb, the winner from two rounds ago, and the last round's majority
565  * candidate).  Keeping track of the historical winner helps the algorithm
566  * to semi-reliably detect the most active writer even when it's not the
567  * absolute majority.
568  *
569  * Once the winner of the round is determined, whether the winner is
570  * foreign or not and how much IO time the round consumed is recorded in
571  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
572  * over a certain threshold, the switch verdict is given.
573  */
574 void wbc_detach_inode(struct writeback_control *wbc)
575 {
576         struct bdi_writeback *wb = wbc->wb;
577         struct inode *inode = wbc->inode;
578         u16 history = inode->i_wb_frn_history;
579         unsigned long avg_time = inode->i_wb_frn_avg_time;
580         unsigned long max_bytes, max_time;
581         int max_id;
582
583         /* pick the winner of this round */
584         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
585             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
586                 max_id = wbc->wb_id;
587                 max_bytes = wbc->wb_bytes;
588         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
589                 max_id = wbc->wb_lcand_id;
590                 max_bytes = wbc->wb_lcand_bytes;
591         } else {
592                 max_id = wbc->wb_tcand_id;
593                 max_bytes = wbc->wb_tcand_bytes;
594         }
595
596         /*
597          * Calculate the amount of IO time the winner consumed and fold it
598          * into the running average kept per inode.  If the consumed IO
599          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
600          * deciding whether to switch or not.  This is to prevent one-off
601          * small dirtiers from skewing the verdict.
602          */
603         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
604                                 wb->avg_write_bandwidth);
605         if (avg_time)
606                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
607                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
608         else
609                 avg_time = max_time;    /* immediate catch up on first run */
610
611         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
612                 int slots;
613
614                 /*
615                  * The switch verdict is reached if foreign wb's consume
616                  * more than a certain proportion of IO time in a
617                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
618                  * history mask where each bit represents one sixteenth of
619                  * the period.  Determine the number of slots to shift into
620                  * history from @max_time.
621                  */
622                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
623                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
624                 history <<= slots;
625                 if (wbc->wb_id != max_id)
626                         history |= (1U << slots) - 1;
627
628                 /*
629                  * Switch if the current wb isn't the consistent winner.
630                  * If there are multiple closely competing dirtiers, the
631                  * inode may switch across them repeatedly over time, which
632                  * is okay.  The main goal is avoiding keeping an inode on
633                  * the wrong wb for an extended period of time.
634                  */
635                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
636                         inode_switch_wbs(inode, max_id);
637         }
638
639         /*
640          * Multiple instances of this function may race to update the
641          * following fields but we don't mind occassional inaccuracies.
642          */
643         inode->i_wb_frn_winner = max_id;
644         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
645         inode->i_wb_frn_history = history;
646
647         wb_put(wbc->wb);
648         wbc->wb = NULL;
649 }
650
651 /**
652  * wbc_account_io - account IO issued during writeback
653  * @wbc: writeback_control of the writeback in progress
654  * @page: page being written out
655  * @bytes: number of bytes being written out
656  *
657  * @bytes from @page are about to written out during the writeback
658  * controlled by @wbc.  Keep the book for foreign inode detection.  See
659  * wbc_detach_inode().
660  */
661 void wbc_account_io(struct writeback_control *wbc, struct page *page,
662                     size_t bytes)
663 {
664         int id;
665
666         /*
667          * pageout() path doesn't attach @wbc to the inode being written
668          * out.  This is intentional as we don't want the function to block
669          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
670          * regular writeback instead of writing things out itself.
671          */
672         if (!wbc->wb)
673                 return;
674
675         rcu_read_lock();
676         id = mem_cgroup_css_from_page(page)->id;
677         rcu_read_unlock();
678
679         if (id == wbc->wb_id) {
680                 wbc->wb_bytes += bytes;
681                 return;
682         }
683
684         if (id == wbc->wb_lcand_id)
685                 wbc->wb_lcand_bytes += bytes;
686
687         /* Boyer-Moore majority vote algorithm */
688         if (!wbc->wb_tcand_bytes)
689                 wbc->wb_tcand_id = id;
690         if (id == wbc->wb_tcand_id)
691                 wbc->wb_tcand_bytes += bytes;
692         else
693                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
694 }
695
696 /**
697  * inode_congested - test whether an inode is congested
698  * @inode: inode to test for congestion
699  * @cong_bits: mask of WB_[a]sync_congested bits to test
700  *
701  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
702  * bits to test and the return value is the mask of set bits.
703  *
704  * If cgroup writeback is enabled for @inode, the congestion state is
705  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
706  * associated with @inode is congested; otherwise, the root wb's congestion
707  * state is used.
708  */
709 int inode_congested(struct inode *inode, int cong_bits)
710 {
711         /*
712          * Once set, ->i_wb never becomes NULL while the inode is alive.
713          * Start transaction iff ->i_wb is visible.
714          */
715         if (inode && inode_to_wb_is_valid(inode)) {
716                 struct bdi_writeback *wb;
717                 bool locked, congested;
718
719                 wb = unlocked_inode_to_wb_begin(inode, &locked);
720                 congested = wb_congested(wb, cong_bits);
721                 unlocked_inode_to_wb_end(inode, locked);
722                 return congested;
723         }
724
725         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
726 }
727 EXPORT_SYMBOL_GPL(inode_congested);
728
729 /**
730  * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
731  * @bdi: bdi the work item was issued to
732  * @work: work item to wait for
733  *
734  * Wait for the completion of @work which was issued to one of @bdi's
735  * bdi_writeback's.  The caller must have set @work->single_wait before
736  * issuing it.  This wait operates independently fo
737  * wb_wait_for_completion() and also disables automatic freeing of @work.
738  */
739 static void wb_wait_for_single_work(struct backing_dev_info *bdi,
740                                     struct wb_writeback_work *work)
741 {
742         if (WARN_ON_ONCE(!work->single_wait))
743                 return;
744
745         wait_event(bdi->wb_waitq, work->single_done);
746
747         /*
748          * Paired with smp_wmb() in wb_do_writeback() and ensures that all
749          * modifications to @work prior to assertion of ->single_done is
750          * visible to the caller once this function returns.
751          */
752         smp_rmb();
753 }
754
755 /**
756  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
757  * @wb: target bdi_writeback to split @nr_pages to
758  * @nr_pages: number of pages to write for the whole bdi
759  *
760  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
761  * relation to the total write bandwidth of all wb's w/ dirty inodes on
762  * @wb->bdi.
763  */
764 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
765 {
766         unsigned long this_bw = wb->avg_write_bandwidth;
767         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
768
769         if (nr_pages == LONG_MAX)
770                 return LONG_MAX;
771
772         /*
773          * This may be called on clean wb's and proportional distribution
774          * may not make sense, just use the original @nr_pages in those
775          * cases.  In general, we wanna err on the side of writing more.
776          */
777         if (!tot_bw || this_bw >= tot_bw)
778                 return nr_pages;
779         else
780                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
781 }
782
783 /**
784  * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
785  * @wb: target bdi_writeback
786  * @base_work: source wb_writeback_work
787  *
788  * Try to make a clone of @base_work and issue it to @wb.  If cloning
789  * succeeds, %true is returned; otherwise, @base_work is issued directly
790  * and %false is returned.  In the latter case, the caller is required to
791  * wait for @base_work's completion using wb_wait_for_single_work().
792  *
793  * A clone is auto-freed on completion.  @base_work never is.
794  */
795 static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
796                                     struct wb_writeback_work *base_work)
797 {
798         struct wb_writeback_work *work;
799
800         work = kmalloc(sizeof(*work), GFP_ATOMIC);
801         if (work) {
802                 *work = *base_work;
803                 work->auto_free = 1;
804                 work->single_wait = 0;
805         } else {
806                 work = base_work;
807                 work->auto_free = 0;
808                 work->single_wait = 1;
809         }
810         work->single_done = 0;
811         wb_queue_work(wb, work);
812         return work != base_work;
813 }
814
815 /**
816  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
817  * @bdi: target backing_dev_info
818  * @base_work: wb_writeback_work to issue
819  * @skip_if_busy: skip wb's which already have writeback in progress
820  *
821  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
822  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
823  * distributed to the busy wbs according to each wb's proportion in the
824  * total active write bandwidth of @bdi.
825  */
826 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
827                                   struct wb_writeback_work *base_work,
828                                   bool skip_if_busy)
829 {
830         long nr_pages = base_work->nr_pages;
831         int next_blkcg_id = 0;
832         struct bdi_writeback *wb;
833         struct wb_iter iter;
834
835         might_sleep();
836
837         if (!bdi_has_dirty_io(bdi))
838                 return;
839 restart:
840         rcu_read_lock();
841         bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
842                 if (!wb_has_dirty_io(wb) ||
843                     (skip_if_busy && writeback_in_progress(wb)))
844                         continue;
845
846                 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
847                 if (!wb_clone_and_queue_work(wb, base_work)) {
848                         next_blkcg_id = wb->blkcg_css->id + 1;
849                         rcu_read_unlock();
850                         wb_wait_for_single_work(bdi, base_work);
851                         goto restart;
852                 }
853         }
854         rcu_read_unlock();
855 }
856
857 #else   /* CONFIG_CGROUP_WRITEBACK */
858
859 static struct bdi_writeback *
860 locked_inode_to_wb_and_lock_list(struct inode *inode)
861         __releases(&inode->i_lock)
862         __acquires(&wb->list_lock)
863 {
864         struct bdi_writeback *wb = inode_to_wb(inode);
865
866         spin_unlock(&inode->i_lock);
867         spin_lock(&wb->list_lock);
868         return wb;
869 }
870
871 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
872         __acquires(&wb->list_lock)
873 {
874         struct bdi_writeback *wb = inode_to_wb(inode);
875
876         spin_lock(&wb->list_lock);
877         return wb;
878 }
879
880 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
881 {
882         return nr_pages;
883 }
884
885 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
886                                   struct wb_writeback_work *base_work,
887                                   bool skip_if_busy)
888 {
889         might_sleep();
890
891         if (bdi_has_dirty_io(bdi) &&
892             (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
893                 base_work->auto_free = 0;
894                 base_work->single_wait = 0;
895                 base_work->single_done = 0;
896                 wb_queue_work(&bdi->wb, base_work);
897         }
898 }
899
900 #endif  /* CONFIG_CGROUP_WRITEBACK */
901
902 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
903                         bool range_cyclic, enum wb_reason reason)
904 {
905         struct wb_writeback_work *work;
906
907         if (!wb_has_dirty_io(wb))
908                 return;
909
910         /*
911          * This is WB_SYNC_NONE writeback, so if allocation fails just
912          * wakeup the thread for old dirty data writeback
913          */
914         work = kzalloc(sizeof(*work), GFP_ATOMIC);
915         if (!work) {
916                 trace_writeback_nowork(wb->bdi);
917                 wb_wakeup(wb);
918                 return;
919         }
920
921         work->sync_mode = WB_SYNC_NONE;
922         work->nr_pages  = nr_pages;
923         work->range_cyclic = range_cyclic;
924         work->reason    = reason;
925         work->auto_free = 1;
926
927         wb_queue_work(wb, work);
928 }
929
930 /**
931  * wb_start_background_writeback - start background writeback
932  * @wb: bdi_writback to write from
933  *
934  * Description:
935  *   This makes sure WB_SYNC_NONE background writeback happens. When
936  *   this function returns, it is only guaranteed that for given wb
937  *   some IO is happening if we are over background dirty threshold.
938  *   Caller need not hold sb s_umount semaphore.
939  */
940 void wb_start_background_writeback(struct bdi_writeback *wb)
941 {
942         /*
943          * We just wake up the flusher thread. It will perform background
944          * writeback as soon as there is no other work to do.
945          */
946         trace_writeback_wake_background(wb->bdi);
947         wb_wakeup(wb);
948 }
949
950 /*
951  * Remove the inode from the writeback list it is on.
952  */
953 void inode_wb_list_del(struct inode *inode)
954 {
955         struct bdi_writeback *wb;
956
957         wb = inode_to_wb_and_lock_list(inode);
958         inode_wb_list_del_locked(inode, wb);
959         spin_unlock(&wb->list_lock);
960 }
961
962 /*
963  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
964  * furthest end of its superblock's dirty-inode list.
965  *
966  * Before stamping the inode's ->dirtied_when, we check to see whether it is
967  * already the most-recently-dirtied inode on the b_dirty list.  If that is
968  * the case then the inode must have been redirtied while it was being written
969  * out and we don't reset its dirtied_when.
970  */
971 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
972 {
973         if (!list_empty(&wb->b_dirty)) {
974                 struct inode *tail;
975
976                 tail = wb_inode(wb->b_dirty.next);
977                 if (time_before(inode->dirtied_when, tail->dirtied_when))
978                         inode->dirtied_when = jiffies;
979         }
980         inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
981 }
982
983 /*
984  * requeue inode for re-scanning after bdi->b_io list is exhausted.
985  */
986 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
987 {
988         inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
989 }
990
991 static void inode_sync_complete(struct inode *inode)
992 {
993         inode->i_state &= ~I_SYNC;
994         /* If inode is clean an unused, put it into LRU now... */
995         inode_add_lru(inode);
996         /* Waiters must see I_SYNC cleared before being woken up */
997         smp_mb();
998         wake_up_bit(&inode->i_state, __I_SYNC);
999 }
1000
1001 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1002 {
1003         bool ret = time_after(inode->dirtied_when, t);
1004 #ifndef CONFIG_64BIT
1005         /*
1006          * For inodes being constantly redirtied, dirtied_when can get stuck.
1007          * It _appears_ to be in the future, but is actually in distant past.
1008          * This test is necessary to prevent such wrapped-around relative times
1009          * from permanently stopping the whole bdi writeback.
1010          */
1011         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1012 #endif
1013         return ret;
1014 }
1015
1016 #define EXPIRE_DIRTY_ATIME 0x0001
1017
1018 /*
1019  * Move expired (dirtied before work->older_than_this) dirty inodes from
1020  * @delaying_queue to @dispatch_queue.
1021  */
1022 static int move_expired_inodes(struct list_head *delaying_queue,
1023                                struct list_head *dispatch_queue,
1024                                int flags,
1025                                struct wb_writeback_work *work)
1026 {
1027         unsigned long *older_than_this = NULL;
1028         unsigned long expire_time;
1029         LIST_HEAD(tmp);
1030         struct list_head *pos, *node;
1031         struct super_block *sb = NULL;
1032         struct inode *inode;
1033         int do_sb_sort = 0;
1034         int moved = 0;
1035
1036         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1037                 older_than_this = work->older_than_this;
1038         else if (!work->for_sync) {
1039                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1040                 older_than_this = &expire_time;
1041         }
1042         while (!list_empty(delaying_queue)) {
1043                 inode = wb_inode(delaying_queue->prev);
1044                 if (older_than_this &&
1045                     inode_dirtied_after(inode, *older_than_this))
1046                         break;
1047                 list_move(&inode->i_wb_list, &tmp);
1048                 moved++;
1049                 if (flags & EXPIRE_DIRTY_ATIME)
1050                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1051                 if (sb_is_blkdev_sb(inode->i_sb))
1052                         continue;
1053                 if (sb && sb != inode->i_sb)
1054                         do_sb_sort = 1;
1055                 sb = inode->i_sb;
1056         }
1057
1058         /* just one sb in list, splice to dispatch_queue and we're done */
1059         if (!do_sb_sort) {
1060                 list_splice(&tmp, dispatch_queue);
1061                 goto out;
1062         }
1063
1064         /* Move inodes from one superblock together */
1065         while (!list_empty(&tmp)) {
1066                 sb = wb_inode(tmp.prev)->i_sb;
1067                 list_for_each_prev_safe(pos, node, &tmp) {
1068                         inode = wb_inode(pos);
1069                         if (inode->i_sb == sb)
1070                                 list_move(&inode->i_wb_list, dispatch_queue);
1071                 }
1072         }
1073 out:
1074         return moved;
1075 }
1076
1077 /*
1078  * Queue all expired dirty inodes for io, eldest first.
1079  * Before
1080  *         newly dirtied     b_dirty    b_io    b_more_io
1081  *         =============>    gf         edc     BA
1082  * After
1083  *         newly dirtied     b_dirty    b_io    b_more_io
1084  *         =============>    g          fBAedc
1085  *                                           |
1086  *                                           +--> dequeue for IO
1087  */
1088 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1089 {
1090         int moved;
1091
1092         assert_spin_locked(&wb->list_lock);
1093         list_splice_init(&wb->b_more_io, &wb->b_io);
1094         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1095         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1096                                      EXPIRE_DIRTY_ATIME, work);
1097         if (moved)
1098                 wb_io_lists_populated(wb);
1099         trace_writeback_queue_io(wb, work, moved);
1100 }
1101
1102 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1103 {
1104         int ret;
1105
1106         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1107                 trace_writeback_write_inode_start(inode, wbc);
1108                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1109                 trace_writeback_write_inode(inode, wbc);
1110                 return ret;
1111         }
1112         return 0;
1113 }
1114
1115 /*
1116  * Wait for writeback on an inode to complete. Called with i_lock held.
1117  * Caller must make sure inode cannot go away when we drop i_lock.
1118  */
1119 static void __inode_wait_for_writeback(struct inode *inode)
1120         __releases(inode->i_lock)
1121         __acquires(inode->i_lock)
1122 {
1123         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1124         wait_queue_head_t *wqh;
1125
1126         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1127         while (inode->i_state & I_SYNC) {
1128                 spin_unlock(&inode->i_lock);
1129                 __wait_on_bit(wqh, &wq, bit_wait,
1130                               TASK_UNINTERRUPTIBLE);
1131                 spin_lock(&inode->i_lock);
1132         }
1133 }
1134
1135 /*
1136  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1137  */
1138 void inode_wait_for_writeback(struct inode *inode)
1139 {
1140         spin_lock(&inode->i_lock);
1141         __inode_wait_for_writeback(inode);
1142         spin_unlock(&inode->i_lock);
1143 }
1144
1145 /*
1146  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1147  * held and drops it. It is aimed for callers not holding any inode reference
1148  * so once i_lock is dropped, inode can go away.
1149  */
1150 static void inode_sleep_on_writeback(struct inode *inode)
1151         __releases(inode->i_lock)
1152 {
1153         DEFINE_WAIT(wait);
1154         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1155         int sleep;
1156
1157         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1158         sleep = inode->i_state & I_SYNC;
1159         spin_unlock(&inode->i_lock);
1160         if (sleep)
1161                 schedule();
1162         finish_wait(wqh, &wait);
1163 }
1164
1165 /*
1166  * Find proper writeback list for the inode depending on its current state and
1167  * possibly also change of its state while we were doing writeback.  Here we
1168  * handle things such as livelock prevention or fairness of writeback among
1169  * inodes. This function can be called only by flusher thread - noone else
1170  * processes all inodes in writeback lists and requeueing inodes behind flusher
1171  * thread's back can have unexpected consequences.
1172  */
1173 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1174                           struct writeback_control *wbc)
1175 {
1176         if (inode->i_state & I_FREEING)
1177                 return;
1178
1179         /*
1180          * Sync livelock prevention. Each inode is tagged and synced in one
1181          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1182          * the dirty time to prevent enqueue and sync it again.
1183          */
1184         if ((inode->i_state & I_DIRTY) &&
1185             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1186                 inode->dirtied_when = jiffies;
1187
1188         if (wbc->pages_skipped) {
1189                 /*
1190                  * writeback is not making progress due to locked
1191                  * buffers. Skip this inode for now.
1192                  */
1193                 redirty_tail(inode, wb);
1194                 return;
1195         }
1196
1197         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1198                 /*
1199                  * We didn't write back all the pages.  nfs_writepages()
1200                  * sometimes bales out without doing anything.
1201                  */
1202                 if (wbc->nr_to_write <= 0) {
1203                         /* Slice used up. Queue for next turn. */
1204                         requeue_io(inode, wb);
1205                 } else {
1206                         /*
1207                          * Writeback blocked by something other than
1208                          * congestion. Delay the inode for some time to
1209                          * avoid spinning on the CPU (100% iowait)
1210                          * retrying writeback of the dirty page/inode
1211                          * that cannot be performed immediately.
1212                          */
1213                         redirty_tail(inode, wb);
1214                 }
1215         } else if (inode->i_state & I_DIRTY) {
1216                 /*
1217                  * Filesystems can dirty the inode during writeback operations,
1218                  * such as delayed allocation during submission or metadata
1219                  * updates after data IO completion.
1220                  */
1221                 redirty_tail(inode, wb);
1222         } else if (inode->i_state & I_DIRTY_TIME) {
1223                 inode->dirtied_when = jiffies;
1224                 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
1225         } else {
1226                 /* The inode is clean. Remove from writeback lists. */
1227                 inode_wb_list_del_locked(inode, wb);
1228         }
1229 }
1230
1231 /*
1232  * Write out an inode and its dirty pages. Do not update the writeback list
1233  * linkage. That is left to the caller. The caller is also responsible for
1234  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1235  */
1236 static int
1237 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1238 {
1239         struct address_space *mapping = inode->i_mapping;
1240         long nr_to_write = wbc->nr_to_write;
1241         unsigned dirty;
1242         int ret;
1243
1244         WARN_ON(!(inode->i_state & I_SYNC));
1245
1246         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1247
1248         ret = do_writepages(mapping, wbc);
1249
1250         /*
1251          * Make sure to wait on the data before writing out the metadata.
1252          * This is important for filesystems that modify metadata on data
1253          * I/O completion. We don't do it for sync(2) writeback because it has a
1254          * separate, external IO completion path and ->sync_fs for guaranteeing
1255          * inode metadata is written back correctly.
1256          */
1257         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1258                 int err = filemap_fdatawait(mapping);
1259                 if (ret == 0)
1260                         ret = err;
1261         }
1262
1263         /*
1264          * Some filesystems may redirty the inode during the writeback
1265          * due to delalloc, clear dirty metadata flags right before
1266          * write_inode()
1267          */
1268         spin_lock(&inode->i_lock);
1269
1270         dirty = inode->i_state & I_DIRTY;
1271         if (inode->i_state & I_DIRTY_TIME) {
1272                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1273                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1274                     unlikely(time_after(jiffies,
1275                                         (inode->dirtied_time_when +
1276                                          dirtytime_expire_interval * HZ)))) {
1277                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1278                         trace_writeback_lazytime(inode);
1279                 }
1280         } else
1281                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1282         inode->i_state &= ~dirty;
1283
1284         /*
1285          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1286          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1287          * either they see the I_DIRTY bits cleared or we see the dirtied
1288          * inode.
1289          *
1290          * I_DIRTY_PAGES is always cleared together above even if @mapping
1291          * still has dirty pages.  The flag is reinstated after smp_mb() if
1292          * necessary.  This guarantees that either __mark_inode_dirty()
1293          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1294          */
1295         smp_mb();
1296
1297         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1298                 inode->i_state |= I_DIRTY_PAGES;
1299
1300         spin_unlock(&inode->i_lock);
1301
1302         if (dirty & I_DIRTY_TIME)
1303                 mark_inode_dirty_sync(inode);
1304         /* Don't write the inode if only I_DIRTY_PAGES was set */
1305         if (dirty & ~I_DIRTY_PAGES) {
1306                 int err = write_inode(inode, wbc);
1307                 if (ret == 0)
1308                         ret = err;
1309         }
1310         trace_writeback_single_inode(inode, wbc, nr_to_write);
1311         return ret;
1312 }
1313
1314 /*
1315  * Write out an inode's dirty pages. Either the caller has an active reference
1316  * on the inode or the inode has I_WILL_FREE set.
1317  *
1318  * This function is designed to be called for writing back one inode which
1319  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1320  * and does more profound writeback list handling in writeback_sb_inodes().
1321  */
1322 static int
1323 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1324                        struct writeback_control *wbc)
1325 {
1326         int ret = 0;
1327
1328         spin_lock(&inode->i_lock);
1329         if (!atomic_read(&inode->i_count))
1330                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1331         else
1332                 WARN_ON(inode->i_state & I_WILL_FREE);
1333
1334         if (inode->i_state & I_SYNC) {
1335                 if (wbc->sync_mode != WB_SYNC_ALL)
1336                         goto out;
1337                 /*
1338                  * It's a data-integrity sync. We must wait. Since callers hold
1339                  * inode reference or inode has I_WILL_FREE set, it cannot go
1340                  * away under us.
1341                  */
1342                 __inode_wait_for_writeback(inode);
1343         }
1344         WARN_ON(inode->i_state & I_SYNC);
1345         /*
1346          * Skip inode if it is clean and we have no outstanding writeback in
1347          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1348          * function since flusher thread may be doing for example sync in
1349          * parallel and if we move the inode, it could get skipped. So here we
1350          * make sure inode is on some writeback list and leave it there unless
1351          * we have completely cleaned the inode.
1352          */
1353         if (!(inode->i_state & I_DIRTY_ALL) &&
1354             (wbc->sync_mode != WB_SYNC_ALL ||
1355              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1356                 goto out;
1357         inode->i_state |= I_SYNC;
1358         wbc_attach_and_unlock_inode(wbc, inode);
1359
1360         ret = __writeback_single_inode(inode, wbc);
1361
1362         wbc_detach_inode(wbc);
1363         spin_lock(&wb->list_lock);
1364         spin_lock(&inode->i_lock);
1365         /*
1366          * If inode is clean, remove it from writeback lists. Otherwise don't
1367          * touch it. See comment above for explanation.
1368          */
1369         if (!(inode->i_state & I_DIRTY_ALL))
1370                 inode_wb_list_del_locked(inode, wb);
1371         spin_unlock(&wb->list_lock);
1372         inode_sync_complete(inode);
1373 out:
1374         spin_unlock(&inode->i_lock);
1375         return ret;
1376 }
1377
1378 static long writeback_chunk_size(struct bdi_writeback *wb,
1379                                  struct wb_writeback_work *work)
1380 {
1381         long pages;
1382
1383         /*
1384          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1385          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1386          * here avoids calling into writeback_inodes_wb() more than once.
1387          *
1388          * The intended call sequence for WB_SYNC_ALL writeback is:
1389          *
1390          *      wb_writeback()
1391          *          writeback_sb_inodes()       <== called only once
1392          *              write_cache_pages()     <== called once for each inode
1393          *                   (quickly) tag currently dirty pages
1394          *                   (maybe slowly) sync all tagged pages
1395          */
1396         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1397                 pages = LONG_MAX;
1398         else {
1399                 pages = min(wb->avg_write_bandwidth / 2,
1400                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1401                 pages = min(pages, work->nr_pages);
1402                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1403                                    MIN_WRITEBACK_PAGES);
1404         }
1405
1406         return pages;
1407 }
1408
1409 /*
1410  * Write a portion of b_io inodes which belong to @sb.
1411  *
1412  * Return the number of pages and/or inodes written.
1413  */
1414 static long writeback_sb_inodes(struct super_block *sb,
1415                                 struct bdi_writeback *wb,
1416                                 struct wb_writeback_work *work)
1417 {
1418         struct writeback_control wbc = {
1419                 .sync_mode              = work->sync_mode,
1420                 .tagged_writepages      = work->tagged_writepages,
1421                 .for_kupdate            = work->for_kupdate,
1422                 .for_background         = work->for_background,
1423                 .for_sync               = work->for_sync,
1424                 .range_cyclic           = work->range_cyclic,
1425                 .range_start            = 0,
1426                 .range_end              = LLONG_MAX,
1427         };
1428         unsigned long start_time = jiffies;
1429         long write_chunk;
1430         long wrote = 0;  /* count both pages and inodes */
1431
1432         while (!list_empty(&wb->b_io)) {
1433                 struct inode *inode = wb_inode(wb->b_io.prev);
1434
1435                 if (inode->i_sb != sb) {
1436                         if (work->sb) {
1437                                 /*
1438                                  * We only want to write back data for this
1439                                  * superblock, move all inodes not belonging
1440                                  * to it back onto the dirty list.
1441                                  */
1442                                 redirty_tail(inode, wb);
1443                                 continue;
1444                         }
1445
1446                         /*
1447                          * The inode belongs to a different superblock.
1448                          * Bounce back to the caller to unpin this and
1449                          * pin the next superblock.
1450                          */
1451                         break;
1452                 }
1453
1454                 /*
1455                  * Don't bother with new inodes or inodes being freed, first
1456                  * kind does not need periodic writeout yet, and for the latter
1457                  * kind writeout is handled by the freer.
1458                  */
1459                 spin_lock(&inode->i_lock);
1460                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1461                         spin_unlock(&inode->i_lock);
1462                         redirty_tail(inode, wb);
1463                         continue;
1464                 }
1465                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1466                         /*
1467                          * If this inode is locked for writeback and we are not
1468                          * doing writeback-for-data-integrity, move it to
1469                          * b_more_io so that writeback can proceed with the
1470                          * other inodes on s_io.
1471                          *
1472                          * We'll have another go at writing back this inode
1473                          * when we completed a full scan of b_io.
1474                          */
1475                         spin_unlock(&inode->i_lock);
1476                         requeue_io(inode, wb);
1477                         trace_writeback_sb_inodes_requeue(inode);
1478                         continue;
1479                 }
1480                 spin_unlock(&wb->list_lock);
1481
1482                 /*
1483                  * We already requeued the inode if it had I_SYNC set and we
1484                  * are doing WB_SYNC_NONE writeback. So this catches only the
1485                  * WB_SYNC_ALL case.
1486                  */
1487                 if (inode->i_state & I_SYNC) {
1488                         /* Wait for I_SYNC. This function drops i_lock... */
1489                         inode_sleep_on_writeback(inode);
1490                         /* Inode may be gone, start again */
1491                         spin_lock(&wb->list_lock);
1492                         continue;
1493                 }
1494                 inode->i_state |= I_SYNC;
1495                 wbc_attach_and_unlock_inode(&wbc, inode);
1496
1497                 write_chunk = writeback_chunk_size(wb, work);
1498                 wbc.nr_to_write = write_chunk;
1499                 wbc.pages_skipped = 0;
1500
1501                 /*
1502                  * We use I_SYNC to pin the inode in memory. While it is set
1503                  * evict_inode() will wait so the inode cannot be freed.
1504                  */
1505                 __writeback_single_inode(inode, &wbc);
1506
1507                 wbc_detach_inode(&wbc);
1508                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1509                 wrote += write_chunk - wbc.nr_to_write;
1510                 spin_lock(&wb->list_lock);
1511                 spin_lock(&inode->i_lock);
1512                 if (!(inode->i_state & I_DIRTY_ALL))
1513                         wrote++;
1514                 requeue_inode(inode, wb, &wbc);
1515                 inode_sync_complete(inode);
1516                 spin_unlock(&inode->i_lock);
1517                 cond_resched_lock(&wb->list_lock);
1518                 /*
1519                  * bail out to wb_writeback() often enough to check
1520                  * background threshold and other termination conditions.
1521                  */
1522                 if (wrote) {
1523                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1524                                 break;
1525                         if (work->nr_pages <= 0)
1526                                 break;
1527                 }
1528         }
1529         return wrote;
1530 }
1531
1532 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1533                                   struct wb_writeback_work *work)
1534 {
1535         unsigned long start_time = jiffies;
1536         long wrote = 0;
1537
1538         while (!list_empty(&wb->b_io)) {
1539                 struct inode *inode = wb_inode(wb->b_io.prev);
1540                 struct super_block *sb = inode->i_sb;
1541
1542                 if (!trylock_super(sb)) {
1543                         /*
1544                          * trylock_super() may fail consistently due to
1545                          * s_umount being grabbed by someone else. Don't use
1546                          * requeue_io() to avoid busy retrying the inode/sb.
1547                          */
1548                         redirty_tail(inode, wb);
1549                         continue;
1550                 }
1551                 wrote += writeback_sb_inodes(sb, wb, work);
1552                 up_read(&sb->s_umount);
1553
1554                 /* refer to the same tests at the end of writeback_sb_inodes */
1555                 if (wrote) {
1556                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1557                                 break;
1558                         if (work->nr_pages <= 0)
1559                                 break;
1560                 }
1561         }
1562         /* Leave any unwritten inodes on b_io */
1563         return wrote;
1564 }
1565
1566 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1567                                 enum wb_reason reason)
1568 {
1569         struct wb_writeback_work work = {
1570                 .nr_pages       = nr_pages,
1571                 .sync_mode      = WB_SYNC_NONE,
1572                 .range_cyclic   = 1,
1573                 .reason         = reason,
1574         };
1575
1576         spin_lock(&wb->list_lock);
1577         if (list_empty(&wb->b_io))
1578                 queue_io(wb, &work);
1579         __writeback_inodes_wb(wb, &work);
1580         spin_unlock(&wb->list_lock);
1581
1582         return nr_pages - work.nr_pages;
1583 }
1584
1585 /*
1586  * Explicit flushing or periodic writeback of "old" data.
1587  *
1588  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1589  * dirtying-time in the inode's address_space.  So this periodic writeback code
1590  * just walks the superblock inode list, writing back any inodes which are
1591  * older than a specific point in time.
1592  *
1593  * Try to run once per dirty_writeback_interval.  But if a writeback event
1594  * takes longer than a dirty_writeback_interval interval, then leave a
1595  * one-second gap.
1596  *
1597  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1598  * all dirty pages if they are all attached to "old" mappings.
1599  */
1600 static long wb_writeback(struct bdi_writeback *wb,
1601                          struct wb_writeback_work *work)
1602 {
1603         unsigned long wb_start = jiffies;
1604         long nr_pages = work->nr_pages;
1605         unsigned long oldest_jif;
1606         struct inode *inode;
1607         long progress;
1608
1609         oldest_jif = jiffies;
1610         work->older_than_this = &oldest_jif;
1611
1612         spin_lock(&wb->list_lock);
1613         for (;;) {
1614                 /*
1615                  * Stop writeback when nr_pages has been consumed
1616                  */
1617                 if (work->nr_pages <= 0)
1618                         break;
1619
1620                 /*
1621                  * Background writeout and kupdate-style writeback may
1622                  * run forever. Stop them if there is other work to do
1623                  * so that e.g. sync can proceed. They'll be restarted
1624                  * after the other works are all done.
1625                  */
1626                 if ((work->for_background || work->for_kupdate) &&
1627                     !list_empty(&wb->work_list))
1628                         break;
1629
1630                 /*
1631                  * For background writeout, stop when we are below the
1632                  * background dirty threshold
1633                  */
1634                 if (work->for_background && !wb_over_bg_thresh(wb))
1635                         break;
1636
1637                 /*
1638                  * Kupdate and background works are special and we want to
1639                  * include all inodes that need writing. Livelock avoidance is
1640                  * handled by these works yielding to any other work so we are
1641                  * safe.
1642                  */
1643                 if (work->for_kupdate) {
1644                         oldest_jif = jiffies -
1645                                 msecs_to_jiffies(dirty_expire_interval * 10);
1646                 } else if (work->for_background)
1647                         oldest_jif = jiffies;
1648
1649                 trace_writeback_start(wb->bdi, work);
1650                 if (list_empty(&wb->b_io))
1651                         queue_io(wb, work);
1652                 if (work->sb)
1653                         progress = writeback_sb_inodes(work->sb, wb, work);
1654                 else
1655                         progress = __writeback_inodes_wb(wb, work);
1656                 trace_writeback_written(wb->bdi, work);
1657
1658                 wb_update_bandwidth(wb, wb_start);
1659
1660                 /*
1661                  * Did we write something? Try for more
1662                  *
1663                  * Dirty inodes are moved to b_io for writeback in batches.
1664                  * The completion of the current batch does not necessarily
1665                  * mean the overall work is done. So we keep looping as long
1666                  * as made some progress on cleaning pages or inodes.
1667                  */
1668                 if (progress)
1669                         continue;
1670                 /*
1671                  * No more inodes for IO, bail
1672                  */
1673                 if (list_empty(&wb->b_more_io))
1674                         break;
1675                 /*
1676                  * Nothing written. Wait for some inode to
1677                  * become available for writeback. Otherwise
1678                  * we'll just busyloop.
1679                  */
1680                 if (!list_empty(&wb->b_more_io))  {
1681                         trace_writeback_wait(wb->bdi, work);
1682                         inode = wb_inode(wb->b_more_io.prev);
1683                         spin_lock(&inode->i_lock);
1684                         spin_unlock(&wb->list_lock);
1685                         /* This function drops i_lock... */
1686                         inode_sleep_on_writeback(inode);
1687                         spin_lock(&wb->list_lock);
1688                 }
1689         }
1690         spin_unlock(&wb->list_lock);
1691
1692         return nr_pages - work->nr_pages;
1693 }
1694
1695 /*
1696  * Return the next wb_writeback_work struct that hasn't been processed yet.
1697  */
1698 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1699 {
1700         struct wb_writeback_work *work = NULL;
1701
1702         spin_lock_bh(&wb->work_lock);
1703         if (!list_empty(&wb->work_list)) {
1704                 work = list_entry(wb->work_list.next,
1705                                   struct wb_writeback_work, list);
1706                 list_del_init(&work->list);
1707         }
1708         spin_unlock_bh(&wb->work_lock);
1709         return work;
1710 }
1711
1712 /*
1713  * Add in the number of potentially dirty inodes, because each inode
1714  * write can dirty pagecache in the underlying blockdev.
1715  */
1716 static unsigned long get_nr_dirty_pages(void)
1717 {
1718         return global_page_state(NR_FILE_DIRTY) +
1719                 global_page_state(NR_UNSTABLE_NFS) +
1720                 get_nr_dirty_inodes();
1721 }
1722
1723 static long wb_check_background_flush(struct bdi_writeback *wb)
1724 {
1725         if (wb_over_bg_thresh(wb)) {
1726
1727                 struct wb_writeback_work work = {
1728                         .nr_pages       = LONG_MAX,
1729                         .sync_mode      = WB_SYNC_NONE,
1730                         .for_background = 1,
1731                         .range_cyclic   = 1,
1732                         .reason         = WB_REASON_BACKGROUND,
1733                 };
1734
1735                 return wb_writeback(wb, &work);
1736         }
1737
1738         return 0;
1739 }
1740
1741 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1742 {
1743         unsigned long expired;
1744         long nr_pages;
1745
1746         /*
1747          * When set to zero, disable periodic writeback
1748          */
1749         if (!dirty_writeback_interval)
1750                 return 0;
1751
1752         expired = wb->last_old_flush +
1753                         msecs_to_jiffies(dirty_writeback_interval * 10);
1754         if (time_before(jiffies, expired))
1755                 return 0;
1756
1757         wb->last_old_flush = jiffies;
1758         nr_pages = get_nr_dirty_pages();
1759
1760         if (nr_pages) {
1761                 struct wb_writeback_work work = {
1762                         .nr_pages       = nr_pages,
1763                         .sync_mode      = WB_SYNC_NONE,
1764                         .for_kupdate    = 1,
1765                         .range_cyclic   = 1,
1766                         .reason         = WB_REASON_PERIODIC,
1767                 };
1768
1769                 return wb_writeback(wb, &work);
1770         }
1771
1772         return 0;
1773 }
1774
1775 /*
1776  * Retrieve work items and do the writeback they describe
1777  */
1778 static long wb_do_writeback(struct bdi_writeback *wb)
1779 {
1780         struct wb_writeback_work *work;
1781         long wrote = 0;
1782
1783         set_bit(WB_writeback_running, &wb->state);
1784         while ((work = get_next_work_item(wb)) != NULL) {
1785                 struct wb_completion *done = work->done;
1786                 bool need_wake_up = false;
1787
1788                 trace_writeback_exec(wb->bdi, work);
1789
1790                 wrote += wb_writeback(wb, work);
1791
1792                 if (work->single_wait) {
1793                         WARN_ON_ONCE(work->auto_free);
1794                         /* paired w/ rmb in wb_wait_for_single_work() */
1795                         smp_wmb();
1796                         work->single_done = 1;
1797                         need_wake_up = true;
1798                 } else if (work->auto_free) {
1799                         kfree(work);
1800                 }
1801
1802                 if (done && atomic_dec_and_test(&done->cnt))
1803                         need_wake_up = true;
1804
1805                 if (need_wake_up)
1806                         wake_up_all(&wb->bdi->wb_waitq);
1807         }
1808
1809         /*
1810          * Check for periodic writeback, kupdated() style
1811          */
1812         wrote += wb_check_old_data_flush(wb);
1813         wrote += wb_check_background_flush(wb);
1814         clear_bit(WB_writeback_running, &wb->state);
1815
1816         return wrote;
1817 }
1818
1819 /*
1820  * Handle writeback of dirty data for the device backed by this bdi. Also
1821  * reschedules periodically and does kupdated style flushing.
1822  */
1823 void wb_workfn(struct work_struct *work)
1824 {
1825         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1826                                                 struct bdi_writeback, dwork);
1827         long pages_written;
1828
1829         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1830         current->flags |= PF_SWAPWRITE;
1831
1832         if (likely(!current_is_workqueue_rescuer() ||
1833                    !test_bit(WB_registered, &wb->state))) {
1834                 /*
1835                  * The normal path.  Keep writing back @wb until its
1836                  * work_list is empty.  Note that this path is also taken
1837                  * if @wb is shutting down even when we're running off the
1838                  * rescuer as work_list needs to be drained.
1839                  */
1840                 do {
1841                         pages_written = wb_do_writeback(wb);
1842                         trace_writeback_pages_written(pages_written);
1843                 } while (!list_empty(&wb->work_list));
1844         } else {
1845                 /*
1846                  * bdi_wq can't get enough workers and we're running off
1847                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1848                  * enough for efficient IO.
1849                  */
1850                 pages_written = writeback_inodes_wb(wb, 1024,
1851                                                     WB_REASON_FORKER_THREAD);
1852                 trace_writeback_pages_written(pages_written);
1853         }
1854
1855         if (!list_empty(&wb->work_list))
1856                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1857         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1858                 wb_wakeup_delayed(wb);
1859
1860         current->flags &= ~PF_SWAPWRITE;
1861 }
1862
1863 /*
1864  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1865  * the whole world.
1866  */
1867 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1868 {
1869         struct backing_dev_info *bdi;
1870
1871         if (!nr_pages)
1872                 nr_pages = get_nr_dirty_pages();
1873
1874         rcu_read_lock();
1875         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1876                 struct bdi_writeback *wb;
1877                 struct wb_iter iter;
1878
1879                 if (!bdi_has_dirty_io(bdi))
1880                         continue;
1881
1882                 bdi_for_each_wb(wb, bdi, &iter, 0)
1883                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1884                                            false, reason);
1885         }
1886         rcu_read_unlock();
1887 }
1888
1889 /*
1890  * Wake up bdi's periodically to make sure dirtytime inodes gets
1891  * written back periodically.  We deliberately do *not* check the
1892  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1893  * kernel to be constantly waking up once there are any dirtytime
1894  * inodes on the system.  So instead we define a separate delayed work
1895  * function which gets called much more rarely.  (By default, only
1896  * once every 12 hours.)
1897  *
1898  * If there is any other write activity going on in the file system,
1899  * this function won't be necessary.  But if the only thing that has
1900  * happened on the file system is a dirtytime inode caused by an atime
1901  * update, we need this infrastructure below to make sure that inode
1902  * eventually gets pushed out to disk.
1903  */
1904 static void wakeup_dirtytime_writeback(struct work_struct *w);
1905 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1906
1907 static void wakeup_dirtytime_writeback(struct work_struct *w)
1908 {
1909         struct backing_dev_info *bdi;
1910
1911         rcu_read_lock();
1912         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1913                 struct bdi_writeback *wb;
1914                 struct wb_iter iter;
1915
1916                 bdi_for_each_wb(wb, bdi, &iter, 0)
1917                         if (!list_empty(&bdi->wb.b_dirty_time))
1918                                 wb_wakeup(&bdi->wb);
1919         }
1920         rcu_read_unlock();
1921         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1922 }
1923
1924 static int __init start_dirtytime_writeback(void)
1925 {
1926         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1927         return 0;
1928 }
1929 __initcall(start_dirtytime_writeback);
1930
1931 int dirtytime_interval_handler(struct ctl_table *table, int write,
1932                                void __user *buffer, size_t *lenp, loff_t *ppos)
1933 {
1934         int ret;
1935
1936         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1937         if (ret == 0 && write)
1938                 mod_delayed_work(system_wq, &dirtytime_work, 0);
1939         return ret;
1940 }
1941
1942 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1943 {
1944         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1945                 struct dentry *dentry;
1946                 const char *name = "?";
1947
1948                 dentry = d_find_alias(inode);
1949                 if (dentry) {
1950                         spin_lock(&dentry->d_lock);
1951                         name = (const char *) dentry->d_name.name;
1952                 }
1953                 printk(KERN_DEBUG
1954                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1955                        current->comm, task_pid_nr(current), inode->i_ino,
1956                        name, inode->i_sb->s_id);
1957                 if (dentry) {
1958                         spin_unlock(&dentry->d_lock);
1959                         dput(dentry);
1960                 }
1961         }
1962 }
1963
1964 /**
1965  *      __mark_inode_dirty -    internal function
1966  *      @inode: inode to mark
1967  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1968  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1969  *      mark_inode_dirty_sync.
1970  *
1971  * Put the inode on the super block's dirty list.
1972  *
1973  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1974  * dirty list only if it is hashed or if it refers to a blockdev.
1975  * If it was not hashed, it will never be added to the dirty list
1976  * even if it is later hashed, as it will have been marked dirty already.
1977  *
1978  * In short, make sure you hash any inodes _before_ you start marking
1979  * them dirty.
1980  *
1981  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1982  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1983  * the kernel-internal blockdev inode represents the dirtying time of the
1984  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1985  * page->mapping->host, so the page-dirtying time is recorded in the internal
1986  * blockdev inode.
1987  */
1988 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1989 void __mark_inode_dirty(struct inode *inode, int flags)
1990 {
1991         struct super_block *sb = inode->i_sb;
1992         int dirtytime;
1993
1994         trace_writeback_mark_inode_dirty(inode, flags);
1995
1996         /*
1997          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1998          * dirty the inode itself
1999          */
2000         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2001                 trace_writeback_dirty_inode_start(inode, flags);
2002
2003                 if (sb->s_op->dirty_inode)
2004                         sb->s_op->dirty_inode(inode, flags);
2005
2006                 trace_writeback_dirty_inode(inode, flags);
2007         }
2008         if (flags & I_DIRTY_INODE)
2009                 flags &= ~I_DIRTY_TIME;
2010         dirtytime = flags & I_DIRTY_TIME;
2011
2012         /*
2013          * Paired with smp_mb() in __writeback_single_inode() for the
2014          * following lockless i_state test.  See there for details.
2015          */
2016         smp_mb();
2017
2018         if (((inode->i_state & flags) == flags) ||
2019             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2020                 return;
2021
2022         if (unlikely(block_dump))
2023                 block_dump___mark_inode_dirty(inode);
2024
2025         spin_lock(&inode->i_lock);
2026         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2027                 goto out_unlock_inode;
2028         if ((inode->i_state & flags) != flags) {
2029                 const int was_dirty = inode->i_state & I_DIRTY;
2030
2031                 inode_attach_wb(inode, NULL);
2032
2033                 if (flags & I_DIRTY_INODE)
2034                         inode->i_state &= ~I_DIRTY_TIME;
2035                 inode->i_state |= flags;
2036
2037                 /*
2038                  * If the inode is being synced, just update its dirty state.
2039                  * The unlocker will place the inode on the appropriate
2040                  * superblock list, based upon its state.
2041                  */
2042                 if (inode->i_state & I_SYNC)
2043                         goto out_unlock_inode;
2044
2045                 /*
2046                  * Only add valid (hashed) inodes to the superblock's
2047                  * dirty list.  Add blockdev inodes as well.
2048                  */
2049                 if (!S_ISBLK(inode->i_mode)) {
2050                         if (inode_unhashed(inode))
2051                                 goto out_unlock_inode;
2052                 }
2053                 if (inode->i_state & I_FREEING)
2054                         goto out_unlock_inode;
2055
2056                 /*
2057                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2058                  * reposition it (that would break b_dirty time-ordering).
2059                  */
2060                 if (!was_dirty) {
2061                         struct bdi_writeback *wb;
2062                         struct list_head *dirty_list;
2063                         bool wakeup_bdi = false;
2064
2065                         wb = locked_inode_to_wb_and_lock_list(inode);
2066
2067                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2068                              !test_bit(WB_registered, &wb->state),
2069                              "bdi-%s not registered\n", wb->bdi->name);
2070
2071                         inode->dirtied_when = jiffies;
2072                         if (dirtytime)
2073                                 inode->dirtied_time_when = jiffies;
2074
2075                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2076                                 dirty_list = &wb->b_dirty;
2077                         else
2078                                 dirty_list = &wb->b_dirty_time;
2079
2080                         wakeup_bdi = inode_wb_list_move_locked(inode, wb,
2081                                                                dirty_list);
2082
2083                         spin_unlock(&wb->list_lock);
2084                         trace_writeback_dirty_inode_enqueue(inode);
2085
2086                         /*
2087                          * If this is the first dirty inode for this bdi,
2088                          * we have to wake-up the corresponding bdi thread
2089                          * to make sure background write-back happens
2090                          * later.
2091                          */
2092                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2093                                 wb_wakeup_delayed(wb);
2094                         return;
2095                 }
2096         }
2097 out_unlock_inode:
2098         spin_unlock(&inode->i_lock);
2099
2100 }
2101 EXPORT_SYMBOL(__mark_inode_dirty);
2102
2103 static void wait_sb_inodes(struct super_block *sb)
2104 {
2105         struct inode *inode, *old_inode = NULL;
2106
2107         /*
2108          * We need to be protected against the filesystem going from
2109          * r/o to r/w or vice versa.
2110          */
2111         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2112
2113         spin_lock(&inode_sb_list_lock);
2114
2115         /*
2116          * Data integrity sync. Must wait for all pages under writeback,
2117          * because there may have been pages dirtied before our sync
2118          * call, but which had writeout started before we write it out.
2119          * In which case, the inode may not be on the dirty list, but
2120          * we still have to wait for that writeout.
2121          */
2122         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2123                 struct address_space *mapping = inode->i_mapping;
2124
2125                 spin_lock(&inode->i_lock);
2126                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2127                     (mapping->nrpages == 0)) {
2128                         spin_unlock(&inode->i_lock);
2129                         continue;
2130                 }
2131                 __iget(inode);
2132                 spin_unlock(&inode->i_lock);
2133                 spin_unlock(&inode_sb_list_lock);
2134
2135                 /*
2136                  * We hold a reference to 'inode' so it couldn't have been
2137                  * removed from s_inodes list while we dropped the
2138                  * inode_sb_list_lock.  We cannot iput the inode now as we can
2139                  * be holding the last reference and we cannot iput it under
2140                  * inode_sb_list_lock. So we keep the reference and iput it
2141                  * later.
2142                  */
2143                 iput(old_inode);
2144                 old_inode = inode;
2145
2146                 filemap_fdatawait(mapping);
2147
2148                 cond_resched();
2149
2150                 spin_lock(&inode_sb_list_lock);
2151         }
2152         spin_unlock(&inode_sb_list_lock);
2153         iput(old_inode);
2154 }
2155
2156 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2157                                      enum wb_reason reason, bool skip_if_busy)
2158 {
2159         DEFINE_WB_COMPLETION_ONSTACK(done);
2160         struct wb_writeback_work work = {
2161                 .sb                     = sb,
2162                 .sync_mode              = WB_SYNC_NONE,
2163                 .tagged_writepages      = 1,
2164                 .done                   = &done,
2165                 .nr_pages               = nr,
2166                 .reason                 = reason,
2167         };
2168         struct backing_dev_info *bdi = sb->s_bdi;
2169
2170         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2171                 return;
2172         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2173
2174         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2175         wb_wait_for_completion(bdi, &done);
2176 }
2177
2178 /**
2179  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2180  * @sb: the superblock
2181  * @nr: the number of pages to write
2182  * @reason: reason why some writeback work initiated
2183  *
2184  * Start writeback on some inodes on this super_block. No guarantees are made
2185  * on how many (if any) will be written, and this function does not wait
2186  * for IO completion of submitted IO.
2187  */
2188 void writeback_inodes_sb_nr(struct super_block *sb,
2189                             unsigned long nr,
2190                             enum wb_reason reason)
2191 {
2192         __writeback_inodes_sb_nr(sb, nr, reason, false);
2193 }
2194 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2195
2196 /**
2197  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2198  * @sb: the superblock
2199  * @reason: reason why some writeback work was initiated
2200  *
2201  * Start writeback on some inodes on this super_block. No guarantees are made
2202  * on how many (if any) will be written, and this function does not wait
2203  * for IO completion of submitted IO.
2204  */
2205 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2206 {
2207         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2208 }
2209 EXPORT_SYMBOL(writeback_inodes_sb);
2210
2211 /**
2212  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2213  * @sb: the superblock
2214  * @nr: the number of pages to write
2215  * @reason: the reason of writeback
2216  *
2217  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2218  * Returns 1 if writeback was started, 0 if not.
2219  */
2220 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2221                                    enum wb_reason reason)
2222 {
2223         if (!down_read_trylock(&sb->s_umount))
2224                 return false;
2225
2226         __writeback_inodes_sb_nr(sb, nr, reason, true);
2227         up_read(&sb->s_umount);
2228         return true;
2229 }
2230 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2231
2232 /**
2233  * try_to_writeback_inodes_sb - try to start writeback if none underway
2234  * @sb: the superblock
2235  * @reason: reason why some writeback work was initiated
2236  *
2237  * Implement by try_to_writeback_inodes_sb_nr()
2238  * Returns 1 if writeback was started, 0 if not.
2239  */
2240 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2241 {
2242         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2243 }
2244 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2245
2246 /**
2247  * sync_inodes_sb       -       sync sb inode pages
2248  * @sb: the superblock
2249  *
2250  * This function writes and waits on any dirty inode belonging to this
2251  * super_block.
2252  */
2253 void sync_inodes_sb(struct super_block *sb)
2254 {
2255         DEFINE_WB_COMPLETION_ONSTACK(done);
2256         struct wb_writeback_work work = {
2257                 .sb             = sb,
2258                 .sync_mode      = WB_SYNC_ALL,
2259                 .nr_pages       = LONG_MAX,
2260                 .range_cyclic   = 0,
2261                 .done           = &done,
2262                 .reason         = WB_REASON_SYNC,
2263                 .for_sync       = 1,
2264         };
2265         struct backing_dev_info *bdi = sb->s_bdi;
2266
2267         /* Nothing to do? */
2268         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2269                 return;
2270         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2271
2272         bdi_split_work_to_wbs(bdi, &work, false);
2273         wb_wait_for_completion(bdi, &done);
2274
2275         wait_sb_inodes(sb);
2276 }
2277 EXPORT_SYMBOL(sync_inodes_sb);
2278
2279 /**
2280  * write_inode_now      -       write an inode to disk
2281  * @inode: inode to write to disk
2282  * @sync: whether the write should be synchronous or not
2283  *
2284  * This function commits an inode to disk immediately if it is dirty. This is
2285  * primarily needed by knfsd.
2286  *
2287  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2288  */
2289 int write_inode_now(struct inode *inode, int sync)
2290 {
2291         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2292         struct writeback_control wbc = {
2293                 .nr_to_write = LONG_MAX,
2294                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2295                 .range_start = 0,
2296                 .range_end = LLONG_MAX,
2297         };
2298
2299         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2300                 wbc.nr_to_write = 0;
2301
2302         might_sleep();
2303         return writeback_single_inode(inode, wb, &wbc);
2304 }
2305 EXPORT_SYMBOL(write_inode_now);
2306
2307 /**
2308  * sync_inode - write an inode and its pages to disk.
2309  * @inode: the inode to sync
2310  * @wbc: controls the writeback mode
2311  *
2312  * sync_inode() will write an inode and its pages to disk.  It will also
2313  * correctly update the inode on its superblock's dirty inode lists and will
2314  * update inode->i_state.
2315  *
2316  * The caller must have a ref on the inode.
2317  */
2318 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2319 {
2320         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2321 }
2322 EXPORT_SYMBOL(sync_inode);
2323
2324 /**
2325  * sync_inode_metadata - write an inode to disk
2326  * @inode: the inode to sync
2327  * @wait: wait for I/O to complete.
2328  *
2329  * Write an inode to disk and adjust its dirty state after completion.
2330  *
2331  * Note: only writes the actual inode, no associated data or other metadata.
2332  */
2333 int sync_inode_metadata(struct inode *inode, int wait)
2334 {
2335         struct writeback_control wbc = {
2336                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2337                 .nr_to_write = 0, /* metadata-only */
2338         };
2339
2340         return sync_inode(inode, &wbc);
2341 }
2342 EXPORT_SYMBOL(sync_inode_metadata);