OSDN Git Service

Merge upstream-f2fs-stable-linux-4.4.y into android-4.4
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         enum wb_reason reason;          /* why was writeback initiated? */
57
58         struct list_head list;          /* pending work list */
59         struct wb_completion *done;     /* set if the caller waits */
60 };
61
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
70         struct wb_completion cmpl = {                                   \
71                 .cnt            = ATOMIC_INIT(1),                       \
72         }
73
74
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89         return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104         if (wb_has_dirty_io(wb)) {
105                 return false;
106         } else {
107                 set_bit(WB_has_dirty_io, &wb->state);
108                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109                 atomic_long_add(wb->avg_write_bandwidth,
110                                 &wb->bdi->tot_write_bandwidth);
111                 return true;
112         }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119                 clear_bit(WB_has_dirty_io, &wb->state);
120                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121                                         &wb->bdi->tot_write_bandwidth) < 0);
122         }
123 }
124
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136                                       struct bdi_writeback *wb,
137                                       struct list_head *head)
138 {
139         assert_spin_locked(&wb->list_lock);
140
141         list_move(&inode->i_io_list, head);
142
143         /* dirty_time doesn't count as dirty_io until expiration */
144         if (head != &wb->b_dirty_time)
145                 return wb_io_lists_populated(wb);
146
147         wb_io_lists_depopulated(wb);
148         return false;
149 }
150
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160                                      struct bdi_writeback *wb)
161 {
162         assert_spin_locked(&wb->list_lock);
163
164         list_del_init(&inode->i_io_list);
165         wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170         spin_lock_bh(&wb->work_lock);
171         if (test_bit(WB_registered, &wb->state))
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177                                   struct wb_writeback_work *work)
178 {
179         struct wb_completion *done = work->done;
180
181         if (work->auto_free)
182                 kfree(work);
183         if (done && atomic_dec_and_test(&done->cnt))
184                 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188                           struct wb_writeback_work *work)
189 {
190         trace_writeback_queue(wb, work);
191
192         if (work->done)
193                 atomic_inc(&work->done->cnt);
194
195         spin_lock_bh(&wb->work_lock);
196
197         if (test_bit(WB_registered, &wb->state)) {
198                 list_add_tail(&work->list, &wb->work_list);
199                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200         } else
201                 finish_writeback_work(wb, work);
202
203         spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218                                    struct wb_completion *done)
219 {
220         atomic_dec(&done->cnt);         /* put down the initial count */
221         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
231
232 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234                                         /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
236                                         /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238                                         /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245         struct backing_dev_info *bdi = inode_to_bdi(inode);
246         struct bdi_writeback *wb = NULL;
247
248         if (inode_cgwb_enabled(inode)) {
249                 struct cgroup_subsys_state *memcg_css;
250
251                 if (page) {
252                         memcg_css = mem_cgroup_css_from_page(page);
253                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254                 } else {
255                         /* must pin memcg_css, see wb_get_create() */
256                         memcg_css = task_get_css(current, memory_cgrp_id);
257                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258                         css_put(memcg_css);
259                 }
260         }
261
262         if (!wb)
263                 wb = &bdi->wb;
264
265         /*
266          * There may be multiple instances of this function racing to
267          * update the same inode.  Use cmpxchg() to tell the winner.
268          */
269         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270                 wb_put(wb);
271 }
272
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283         __releases(&inode->i_lock)
284         __acquires(&wb->list_lock)
285 {
286         while (true) {
287                 struct bdi_writeback *wb = inode_to_wb(inode);
288
289                 /*
290                  * inode_to_wb() association is protected by both
291                  * @inode->i_lock and @wb->list_lock but list_lock nests
292                  * outside i_lock.  Drop i_lock and verify that the
293                  * association hasn't changed after acquiring list_lock.
294                  */
295                 wb_get(wb);
296                 spin_unlock(&inode->i_lock);
297                 spin_lock(&wb->list_lock);
298
299                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300                 if (likely(wb == inode->i_wb)) {
301                         wb_put(wb);     /* @inode already has ref */
302                         return wb;
303                 }
304
305                 spin_unlock(&wb->list_lock);
306                 wb_put(wb);
307                 cpu_relax();
308                 spin_lock(&inode->i_lock);
309         }
310 }
311
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320         __acquires(&wb->list_lock)
321 {
322         spin_lock(&inode->i_lock);
323         return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327         struct inode            *inode;
328         struct bdi_writeback    *new_wb;
329
330         struct rcu_head         rcu_head;
331         struct work_struct      work;
332 };
333
334 static void inode_switch_wbs_work_fn(struct work_struct *work)
335 {
336         struct inode_switch_wbs_context *isw =
337                 container_of(work, struct inode_switch_wbs_context, work);
338         struct inode *inode = isw->inode;
339         struct address_space *mapping = inode->i_mapping;
340         struct bdi_writeback *old_wb = inode->i_wb;
341         struct bdi_writeback *new_wb = isw->new_wb;
342         struct radix_tree_iter iter;
343         bool switched = false;
344         void **slot;
345
346         /*
347          * By the time control reaches here, RCU grace period has passed
348          * since I_WB_SWITCH assertion and all wb stat update transactions
349          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
350          * synchronizing against mapping->tree_lock.
351          *
352          * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
353          * gives us exclusion against all wb related operations on @inode
354          * including IO list manipulations and stat updates.
355          */
356         if (old_wb < new_wb) {
357                 spin_lock(&old_wb->list_lock);
358                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
359         } else {
360                 spin_lock(&new_wb->list_lock);
361                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
362         }
363         spin_lock(&inode->i_lock);
364         spin_lock_irq(&mapping->tree_lock);
365
366         /*
367          * Once I_FREEING is visible under i_lock, the eviction path owns
368          * the inode and we shouldn't modify ->i_io_list.
369          */
370         if (unlikely(inode->i_state & I_FREEING))
371                 goto skip_switch;
372
373         /*
374          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
375          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
376          * pages actually under underwriteback.
377          */
378         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
379                                    PAGECACHE_TAG_DIRTY) {
380                 struct page *page = radix_tree_deref_slot_protected(slot,
381                                                         &mapping->tree_lock);
382                 if (likely(page) && PageDirty(page)) {
383                         __dec_wb_stat(old_wb, WB_RECLAIMABLE);
384                         __inc_wb_stat(new_wb, WB_RECLAIMABLE);
385                 }
386         }
387
388         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
389                                    PAGECACHE_TAG_WRITEBACK) {
390                 struct page *page = radix_tree_deref_slot_protected(slot,
391                                                         &mapping->tree_lock);
392                 if (likely(page)) {
393                         WARN_ON_ONCE(!PageWriteback(page));
394                         __dec_wb_stat(old_wb, WB_WRITEBACK);
395                         __inc_wb_stat(new_wb, WB_WRITEBACK);
396                 }
397         }
398
399         wb_get(new_wb);
400
401         /*
402          * Transfer to @new_wb's IO list if necessary.  The specific list
403          * @inode was on is ignored and the inode is put on ->b_dirty which
404          * is always correct including from ->b_dirty_time.  The transfer
405          * preserves @inode->dirtied_when ordering.
406          */
407         if (!list_empty(&inode->i_io_list)) {
408                 struct inode *pos;
409
410                 inode_io_list_del_locked(inode, old_wb);
411                 inode->i_wb = new_wb;
412                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
413                         if (time_after_eq(inode->dirtied_when,
414                                           pos->dirtied_when))
415                                 break;
416                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
417         } else {
418                 inode->i_wb = new_wb;
419         }
420
421         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
422         inode->i_wb_frn_winner = 0;
423         inode->i_wb_frn_avg_time = 0;
424         inode->i_wb_frn_history = 0;
425         switched = true;
426 skip_switch:
427         /*
428          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
429          * ensures that the new wb is visible if they see !I_WB_SWITCH.
430          */
431         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
432
433         spin_unlock_irq(&mapping->tree_lock);
434         spin_unlock(&inode->i_lock);
435         spin_unlock(&new_wb->list_lock);
436         spin_unlock(&old_wb->list_lock);
437
438         if (switched) {
439                 wb_wakeup(new_wb);
440                 wb_put(old_wb);
441         }
442         wb_put(new_wb);
443
444         iput(inode);
445         kfree(isw);
446
447         atomic_dec(&isw_nr_in_flight);
448 }
449
450 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
451 {
452         struct inode_switch_wbs_context *isw = container_of(rcu_head,
453                                 struct inode_switch_wbs_context, rcu_head);
454
455         /* needs to grab bh-unsafe locks, bounce to work item */
456         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
457         queue_work(isw_wq, &isw->work);
458 }
459
460 /**
461  * inode_switch_wbs - change the wb association of an inode
462  * @inode: target inode
463  * @new_wb_id: ID of the new wb
464  *
465  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
466  * switching is performed asynchronously and may fail silently.
467  */
468 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
469 {
470         struct backing_dev_info *bdi = inode_to_bdi(inode);
471         struct cgroup_subsys_state *memcg_css;
472         struct inode_switch_wbs_context *isw;
473
474         /* noop if seems to be already in progress */
475         if (inode->i_state & I_WB_SWITCH)
476                 return;
477
478         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
479         if (!isw)
480                 return;
481
482         /* find and pin the new wb */
483         rcu_read_lock();
484         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
485         if (memcg_css)
486                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
487         rcu_read_unlock();
488         if (!isw->new_wb)
489                 goto out_free;
490
491         /* while holding I_WB_SWITCH, no one else can update the association */
492         spin_lock(&inode->i_lock);
493         if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
494             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
495             inode_to_wb(inode) == isw->new_wb) {
496                 spin_unlock(&inode->i_lock);
497                 goto out_free;
498         }
499         inode->i_state |= I_WB_SWITCH;
500         spin_unlock(&inode->i_lock);
501
502         ihold(inode);
503         isw->inode = inode;
504
505         atomic_inc(&isw_nr_in_flight);
506
507         /*
508          * In addition to synchronizing among switchers, I_WB_SWITCH tells
509          * the RCU protected stat update paths to grab the mapping's
510          * tree_lock so that stat transfer can synchronize against them.
511          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
512          */
513         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
514         return;
515
516 out_free:
517         if (isw->new_wb)
518                 wb_put(isw->new_wb);
519         kfree(isw);
520 }
521
522 /**
523  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
524  * @wbc: writeback_control of interest
525  * @inode: target inode
526  *
527  * @inode is locked and about to be written back under the control of @wbc.
528  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
529  * writeback completion, wbc_detach_inode() should be called.  This is used
530  * to track the cgroup writeback context.
531  */
532 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
533                                  struct inode *inode)
534 {
535         if (!inode_cgwb_enabled(inode)) {
536                 spin_unlock(&inode->i_lock);
537                 return;
538         }
539
540         wbc->wb = inode_to_wb(inode);
541         wbc->inode = inode;
542
543         wbc->wb_id = wbc->wb->memcg_css->id;
544         wbc->wb_lcand_id = inode->i_wb_frn_winner;
545         wbc->wb_tcand_id = 0;
546         wbc->wb_bytes = 0;
547         wbc->wb_lcand_bytes = 0;
548         wbc->wb_tcand_bytes = 0;
549
550         wb_get(wbc->wb);
551         spin_unlock(&inode->i_lock);
552
553         /*
554          * A dying wb indicates that the memcg-blkcg mapping has changed
555          * and a new wb is already serving the memcg.  Switch immediately.
556          */
557         if (unlikely(wb_dying(wbc->wb)))
558                 inode_switch_wbs(inode, wbc->wb_id);
559 }
560
561 /**
562  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
563  * @wbc: writeback_control of the just finished writeback
564  *
565  * To be called after a writeback attempt of an inode finishes and undoes
566  * wbc_attach_and_unlock_inode().  Can be called under any context.
567  *
568  * As concurrent write sharing of an inode is expected to be very rare and
569  * memcg only tracks page ownership on first-use basis severely confining
570  * the usefulness of such sharing, cgroup writeback tracks ownership
571  * per-inode.  While the support for concurrent write sharing of an inode
572  * is deemed unnecessary, an inode being written to by different cgroups at
573  * different points in time is a lot more common, and, more importantly,
574  * charging only by first-use can too readily lead to grossly incorrect
575  * behaviors (single foreign page can lead to gigabytes of writeback to be
576  * incorrectly attributed).
577  *
578  * To resolve this issue, cgroup writeback detects the majority dirtier of
579  * an inode and transfers the ownership to it.  To avoid unnnecessary
580  * oscillation, the detection mechanism keeps track of history and gives
581  * out the switch verdict only if the foreign usage pattern is stable over
582  * a certain amount of time and/or writeback attempts.
583  *
584  * On each writeback attempt, @wbc tries to detect the majority writer
585  * using Boyer-Moore majority vote algorithm.  In addition to the byte
586  * count from the majority voting, it also counts the bytes written for the
587  * current wb and the last round's winner wb (max of last round's current
588  * wb, the winner from two rounds ago, and the last round's majority
589  * candidate).  Keeping track of the historical winner helps the algorithm
590  * to semi-reliably detect the most active writer even when it's not the
591  * absolute majority.
592  *
593  * Once the winner of the round is determined, whether the winner is
594  * foreign or not and how much IO time the round consumed is recorded in
595  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
596  * over a certain threshold, the switch verdict is given.
597  */
598 void wbc_detach_inode(struct writeback_control *wbc)
599 {
600         struct bdi_writeback *wb = wbc->wb;
601         struct inode *inode = wbc->inode;
602         unsigned long avg_time, max_bytes, max_time;
603         u16 history;
604         int max_id;
605
606         if (!wb)
607                 return;
608
609         history = inode->i_wb_frn_history;
610         avg_time = inode->i_wb_frn_avg_time;
611
612         /* pick the winner of this round */
613         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
614             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
615                 max_id = wbc->wb_id;
616                 max_bytes = wbc->wb_bytes;
617         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
618                 max_id = wbc->wb_lcand_id;
619                 max_bytes = wbc->wb_lcand_bytes;
620         } else {
621                 max_id = wbc->wb_tcand_id;
622                 max_bytes = wbc->wb_tcand_bytes;
623         }
624
625         /*
626          * Calculate the amount of IO time the winner consumed and fold it
627          * into the running average kept per inode.  If the consumed IO
628          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
629          * deciding whether to switch or not.  This is to prevent one-off
630          * small dirtiers from skewing the verdict.
631          */
632         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
633                                 wb->avg_write_bandwidth);
634         if (avg_time)
635                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
636                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
637         else
638                 avg_time = max_time;    /* immediate catch up on first run */
639
640         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
641                 int slots;
642
643                 /*
644                  * The switch verdict is reached if foreign wb's consume
645                  * more than a certain proportion of IO time in a
646                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
647                  * history mask where each bit represents one sixteenth of
648                  * the period.  Determine the number of slots to shift into
649                  * history from @max_time.
650                  */
651                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
652                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
653                 history <<= slots;
654                 if (wbc->wb_id != max_id)
655                         history |= (1U << slots) - 1;
656
657                 /*
658                  * Switch if the current wb isn't the consistent winner.
659                  * If there are multiple closely competing dirtiers, the
660                  * inode may switch across them repeatedly over time, which
661                  * is okay.  The main goal is avoiding keeping an inode on
662                  * the wrong wb for an extended period of time.
663                  */
664                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
665                         inode_switch_wbs(inode, max_id);
666         }
667
668         /*
669          * Multiple instances of this function may race to update the
670          * following fields but we don't mind occassional inaccuracies.
671          */
672         inode->i_wb_frn_winner = max_id;
673         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
674         inode->i_wb_frn_history = history;
675
676         wb_put(wbc->wb);
677         wbc->wb = NULL;
678 }
679
680 /**
681  * wbc_account_io - account IO issued during writeback
682  * @wbc: writeback_control of the writeback in progress
683  * @page: page being written out
684  * @bytes: number of bytes being written out
685  *
686  * @bytes from @page are about to written out during the writeback
687  * controlled by @wbc.  Keep the book for foreign inode detection.  See
688  * wbc_detach_inode().
689  */
690 void wbc_account_io(struct writeback_control *wbc, struct page *page,
691                     size_t bytes)
692 {
693         int id;
694
695         /*
696          * pageout() path doesn't attach @wbc to the inode being written
697          * out.  This is intentional as we don't want the function to block
698          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
699          * regular writeback instead of writing things out itself.
700          */
701         if (!wbc->wb)
702                 return;
703
704         rcu_read_lock();
705         id = mem_cgroup_css_from_page(page)->id;
706         rcu_read_unlock();
707
708         if (id == wbc->wb_id) {
709                 wbc->wb_bytes += bytes;
710                 return;
711         }
712
713         if (id == wbc->wb_lcand_id)
714                 wbc->wb_lcand_bytes += bytes;
715
716         /* Boyer-Moore majority vote algorithm */
717         if (!wbc->wb_tcand_bytes)
718                 wbc->wb_tcand_id = id;
719         if (id == wbc->wb_tcand_id)
720                 wbc->wb_tcand_bytes += bytes;
721         else
722                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
723 }
724 EXPORT_SYMBOL_GPL(wbc_account_io);
725
726 /**
727  * inode_congested - test whether an inode is congested
728  * @inode: inode to test for congestion (may be NULL)
729  * @cong_bits: mask of WB_[a]sync_congested bits to test
730  *
731  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
732  * bits to test and the return value is the mask of set bits.
733  *
734  * If cgroup writeback is enabled for @inode, the congestion state is
735  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
736  * associated with @inode is congested; otherwise, the root wb's congestion
737  * state is used.
738  *
739  * @inode is allowed to be NULL as this function is often called on
740  * mapping->host which is NULL for the swapper space.
741  */
742 int inode_congested(struct inode *inode, int cong_bits)
743 {
744         /*
745          * Once set, ->i_wb never becomes NULL while the inode is alive.
746          * Start transaction iff ->i_wb is visible.
747          */
748         if (inode && inode_to_wb_is_valid(inode)) {
749                 struct bdi_writeback *wb;
750                 struct wb_lock_cookie lock_cookie = {};
751                 bool congested;
752
753                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
754                 congested = wb_congested(wb, cong_bits);
755                 unlocked_inode_to_wb_end(inode, &lock_cookie);
756                 return congested;
757         }
758
759         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
760 }
761 EXPORT_SYMBOL_GPL(inode_congested);
762
763 /**
764  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
765  * @wb: target bdi_writeback to split @nr_pages to
766  * @nr_pages: number of pages to write for the whole bdi
767  *
768  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
769  * relation to the total write bandwidth of all wb's w/ dirty inodes on
770  * @wb->bdi.
771  */
772 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
773 {
774         unsigned long this_bw = wb->avg_write_bandwidth;
775         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
776
777         if (nr_pages == LONG_MAX)
778                 return LONG_MAX;
779
780         /*
781          * This may be called on clean wb's and proportional distribution
782          * may not make sense, just use the original @nr_pages in those
783          * cases.  In general, we wanna err on the side of writing more.
784          */
785         if (!tot_bw || this_bw >= tot_bw)
786                 return nr_pages;
787         else
788                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
789 }
790
791 /**
792  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
793  * @bdi: target backing_dev_info
794  * @base_work: wb_writeback_work to issue
795  * @skip_if_busy: skip wb's which already have writeback in progress
796  *
797  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
798  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
799  * distributed to the busy wbs according to each wb's proportion in the
800  * total active write bandwidth of @bdi.
801  */
802 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
803                                   struct wb_writeback_work *base_work,
804                                   bool skip_if_busy)
805 {
806         struct bdi_writeback *last_wb = NULL;
807         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
808                                               struct bdi_writeback, bdi_node);
809
810         might_sleep();
811 restart:
812         rcu_read_lock();
813         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
814                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
815                 struct wb_writeback_work fallback_work;
816                 struct wb_writeback_work *work;
817                 long nr_pages;
818
819                 if (last_wb) {
820                         wb_put(last_wb);
821                         last_wb = NULL;
822                 }
823
824                 /* SYNC_ALL writes out I_DIRTY_TIME too */
825                 if (!wb_has_dirty_io(wb) &&
826                     (base_work->sync_mode == WB_SYNC_NONE ||
827                      list_empty(&wb->b_dirty_time)))
828                         continue;
829                 if (skip_if_busy && writeback_in_progress(wb))
830                         continue;
831
832                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
833
834                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
835                 if (work) {
836                         *work = *base_work;
837                         work->nr_pages = nr_pages;
838                         work->auto_free = 1;
839                         wb_queue_work(wb, work);
840                         continue;
841                 }
842
843                 /* alloc failed, execute synchronously using on-stack fallback */
844                 work = &fallback_work;
845                 *work = *base_work;
846                 work->nr_pages = nr_pages;
847                 work->auto_free = 0;
848                 work->done = &fallback_work_done;
849
850                 wb_queue_work(wb, work);
851
852                 /*
853                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
854                  * continuing iteration from @wb after dropping and
855                  * regrabbing rcu read lock.
856                  */
857                 wb_get(wb);
858                 last_wb = wb;
859
860                 rcu_read_unlock();
861                 wb_wait_for_completion(bdi, &fallback_work_done);
862                 goto restart;
863         }
864         rcu_read_unlock();
865
866         if (last_wb)
867                 wb_put(last_wb);
868 }
869
870 /**
871  * cgroup_writeback_umount - flush inode wb switches for umount
872  *
873  * This function is called when a super_block is about to be destroyed and
874  * flushes in-flight inode wb switches.  An inode wb switch goes through
875  * RCU and then workqueue, so the two need to be flushed in order to ensure
876  * that all previously scheduled switches are finished.  As wb switches are
877  * rare occurrences and synchronize_rcu() can take a while, perform
878  * flushing iff wb switches are in flight.
879  */
880 void cgroup_writeback_umount(void)
881 {
882         if (atomic_read(&isw_nr_in_flight)) {
883                 synchronize_rcu();
884                 flush_workqueue(isw_wq);
885         }
886 }
887
888 static int __init cgroup_writeback_init(void)
889 {
890         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
891         if (!isw_wq)
892                 return -ENOMEM;
893         return 0;
894 }
895 fs_initcall(cgroup_writeback_init);
896
897 #else   /* CONFIG_CGROUP_WRITEBACK */
898
899 static struct bdi_writeback *
900 locked_inode_to_wb_and_lock_list(struct inode *inode)
901         __releases(&inode->i_lock)
902         __acquires(&wb->list_lock)
903 {
904         struct bdi_writeback *wb = inode_to_wb(inode);
905
906         spin_unlock(&inode->i_lock);
907         spin_lock(&wb->list_lock);
908         return wb;
909 }
910
911 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
912         __acquires(&wb->list_lock)
913 {
914         struct bdi_writeback *wb = inode_to_wb(inode);
915
916         spin_lock(&wb->list_lock);
917         return wb;
918 }
919
920 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
921 {
922         return nr_pages;
923 }
924
925 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
926                                   struct wb_writeback_work *base_work,
927                                   bool skip_if_busy)
928 {
929         might_sleep();
930
931         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
932                 base_work->auto_free = 0;
933                 wb_queue_work(&bdi->wb, base_work);
934         }
935 }
936
937 #endif  /* CONFIG_CGROUP_WRITEBACK */
938
939 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
940                         bool range_cyclic, enum wb_reason reason)
941 {
942         struct wb_writeback_work *work;
943
944         if (!wb_has_dirty_io(wb))
945                 return;
946
947         /*
948          * This is WB_SYNC_NONE writeback, so if allocation fails just
949          * wakeup the thread for old dirty data writeback
950          */
951         work = kzalloc(sizeof(*work), GFP_ATOMIC);
952         if (!work) {
953                 trace_writeback_nowork(wb);
954                 wb_wakeup(wb);
955                 return;
956         }
957
958         work->sync_mode = WB_SYNC_NONE;
959         work->nr_pages  = nr_pages;
960         work->range_cyclic = range_cyclic;
961         work->reason    = reason;
962         work->auto_free = 1;
963
964         wb_queue_work(wb, work);
965 }
966
967 /**
968  * wb_start_background_writeback - start background writeback
969  * @wb: bdi_writback to write from
970  *
971  * Description:
972  *   This makes sure WB_SYNC_NONE background writeback happens. When
973  *   this function returns, it is only guaranteed that for given wb
974  *   some IO is happening if we are over background dirty threshold.
975  *   Caller need not hold sb s_umount semaphore.
976  */
977 void wb_start_background_writeback(struct bdi_writeback *wb)
978 {
979         /*
980          * We just wake up the flusher thread. It will perform background
981          * writeback as soon as there is no other work to do.
982          */
983         trace_writeback_wake_background(wb);
984         wb_wakeup(wb);
985 }
986
987 /*
988  * Remove the inode from the writeback list it is on.
989  */
990 void inode_io_list_del(struct inode *inode)
991 {
992         struct bdi_writeback *wb;
993
994         wb = inode_to_wb_and_lock_list(inode);
995         inode_io_list_del_locked(inode, wb);
996         spin_unlock(&wb->list_lock);
997 }
998
999 /*
1000  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1001  * furthest end of its superblock's dirty-inode list.
1002  *
1003  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1004  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1005  * the case then the inode must have been redirtied while it was being written
1006  * out and we don't reset its dirtied_when.
1007  */
1008 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1009 {
1010         if (!list_empty(&wb->b_dirty)) {
1011                 struct inode *tail;
1012
1013                 tail = wb_inode(wb->b_dirty.next);
1014                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1015                         inode->dirtied_when = jiffies;
1016         }
1017         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1018 }
1019
1020 /*
1021  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1022  */
1023 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1024 {
1025         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1026 }
1027
1028 static void inode_sync_complete(struct inode *inode)
1029 {
1030         inode->i_state &= ~I_SYNC;
1031         /* If inode is clean an unused, put it into LRU now... */
1032         inode_add_lru(inode);
1033         /* Waiters must see I_SYNC cleared before being woken up */
1034         smp_mb();
1035         wake_up_bit(&inode->i_state, __I_SYNC);
1036 }
1037
1038 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1039 {
1040         bool ret = time_after(inode->dirtied_when, t);
1041 #ifndef CONFIG_64BIT
1042         /*
1043          * For inodes being constantly redirtied, dirtied_when can get stuck.
1044          * It _appears_ to be in the future, but is actually in distant past.
1045          * This test is necessary to prevent such wrapped-around relative times
1046          * from permanently stopping the whole bdi writeback.
1047          */
1048         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1049 #endif
1050         return ret;
1051 }
1052
1053 #define EXPIRE_DIRTY_ATIME 0x0001
1054
1055 /*
1056  * Move expired (dirtied before work->older_than_this) dirty inodes from
1057  * @delaying_queue to @dispatch_queue.
1058  */
1059 static int move_expired_inodes(struct list_head *delaying_queue,
1060                                struct list_head *dispatch_queue,
1061                                int flags,
1062                                struct wb_writeback_work *work)
1063 {
1064         unsigned long *older_than_this = NULL;
1065         unsigned long expire_time;
1066         LIST_HEAD(tmp);
1067         struct list_head *pos, *node;
1068         struct super_block *sb = NULL;
1069         struct inode *inode;
1070         int do_sb_sort = 0;
1071         int moved = 0;
1072
1073         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1074                 older_than_this = work->older_than_this;
1075         else if (!work->for_sync) {
1076                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1077                 older_than_this = &expire_time;
1078         }
1079         while (!list_empty(delaying_queue)) {
1080                 inode = wb_inode(delaying_queue->prev);
1081                 if (older_than_this &&
1082                     inode_dirtied_after(inode, *older_than_this))
1083                         break;
1084                 list_move(&inode->i_io_list, &tmp);
1085                 moved++;
1086                 if (flags & EXPIRE_DIRTY_ATIME)
1087                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1088                 if (sb_is_blkdev_sb(inode->i_sb))
1089                         continue;
1090                 if (sb && sb != inode->i_sb)
1091                         do_sb_sort = 1;
1092                 sb = inode->i_sb;
1093         }
1094
1095         /* just one sb in list, splice to dispatch_queue and we're done */
1096         if (!do_sb_sort) {
1097                 list_splice(&tmp, dispatch_queue);
1098                 goto out;
1099         }
1100
1101         /* Move inodes from one superblock together */
1102         while (!list_empty(&tmp)) {
1103                 sb = wb_inode(tmp.prev)->i_sb;
1104                 list_for_each_prev_safe(pos, node, &tmp) {
1105                         inode = wb_inode(pos);
1106                         if (inode->i_sb == sb)
1107                                 list_move(&inode->i_io_list, dispatch_queue);
1108                 }
1109         }
1110 out:
1111         return moved;
1112 }
1113
1114 /*
1115  * Queue all expired dirty inodes for io, eldest first.
1116  * Before
1117  *         newly dirtied     b_dirty    b_io    b_more_io
1118  *         =============>    gf         edc     BA
1119  * After
1120  *         newly dirtied     b_dirty    b_io    b_more_io
1121  *         =============>    g          fBAedc
1122  *                                           |
1123  *                                           +--> dequeue for IO
1124  */
1125 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1126 {
1127         int moved;
1128
1129         assert_spin_locked(&wb->list_lock);
1130         list_splice_init(&wb->b_more_io, &wb->b_io);
1131         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1132         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1133                                      EXPIRE_DIRTY_ATIME, work);
1134         if (moved)
1135                 wb_io_lists_populated(wb);
1136         trace_writeback_queue_io(wb, work, moved);
1137 }
1138
1139 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1140 {
1141         int ret;
1142
1143         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1144                 trace_writeback_write_inode_start(inode, wbc);
1145                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1146                 trace_writeback_write_inode(inode, wbc);
1147                 return ret;
1148         }
1149         return 0;
1150 }
1151
1152 /*
1153  * Wait for writeback on an inode to complete. Called with i_lock held.
1154  * Caller must make sure inode cannot go away when we drop i_lock.
1155  */
1156 static void __inode_wait_for_writeback(struct inode *inode)
1157         __releases(inode->i_lock)
1158         __acquires(inode->i_lock)
1159 {
1160         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1161         wait_queue_head_t *wqh;
1162
1163         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1164         while (inode->i_state & I_SYNC) {
1165                 spin_unlock(&inode->i_lock);
1166                 __wait_on_bit(wqh, &wq, bit_wait,
1167                               TASK_UNINTERRUPTIBLE);
1168                 spin_lock(&inode->i_lock);
1169         }
1170 }
1171
1172 /*
1173  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1174  */
1175 void inode_wait_for_writeback(struct inode *inode)
1176 {
1177         spin_lock(&inode->i_lock);
1178         __inode_wait_for_writeback(inode);
1179         spin_unlock(&inode->i_lock);
1180 }
1181
1182 /*
1183  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1184  * held and drops it. It is aimed for callers not holding any inode reference
1185  * so once i_lock is dropped, inode can go away.
1186  */
1187 static void inode_sleep_on_writeback(struct inode *inode)
1188         __releases(inode->i_lock)
1189 {
1190         DEFINE_WAIT(wait);
1191         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1192         int sleep;
1193
1194         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1195         sleep = inode->i_state & I_SYNC;
1196         spin_unlock(&inode->i_lock);
1197         if (sleep)
1198                 schedule();
1199         finish_wait(wqh, &wait);
1200 }
1201
1202 /*
1203  * Find proper writeback list for the inode depending on its current state and
1204  * possibly also change of its state while we were doing writeback.  Here we
1205  * handle things such as livelock prevention or fairness of writeback among
1206  * inodes. This function can be called only by flusher thread - noone else
1207  * processes all inodes in writeback lists and requeueing inodes behind flusher
1208  * thread's back can have unexpected consequences.
1209  */
1210 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1211                           struct writeback_control *wbc)
1212 {
1213         if (inode->i_state & I_FREEING)
1214                 return;
1215
1216         /*
1217          * Sync livelock prevention. Each inode is tagged and synced in one
1218          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1219          * the dirty time to prevent enqueue and sync it again.
1220          */
1221         if ((inode->i_state & I_DIRTY) &&
1222             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1223                 inode->dirtied_when = jiffies;
1224
1225         if (wbc->pages_skipped) {
1226                 /*
1227                  * writeback is not making progress due to locked
1228                  * buffers. Skip this inode for now.
1229                  */
1230                 redirty_tail(inode, wb);
1231                 return;
1232         }
1233
1234         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1235                 /*
1236                  * We didn't write back all the pages.  nfs_writepages()
1237                  * sometimes bales out without doing anything.
1238                  */
1239                 if (wbc->nr_to_write <= 0) {
1240                         /* Slice used up. Queue for next turn. */
1241                         requeue_io(inode, wb);
1242                 } else {
1243                         /*
1244                          * Writeback blocked by something other than
1245                          * congestion. Delay the inode for some time to
1246                          * avoid spinning on the CPU (100% iowait)
1247                          * retrying writeback of the dirty page/inode
1248                          * that cannot be performed immediately.
1249                          */
1250                         redirty_tail(inode, wb);
1251                 }
1252         } else if (inode->i_state & I_DIRTY) {
1253                 /*
1254                  * Filesystems can dirty the inode during writeback operations,
1255                  * such as delayed allocation during submission or metadata
1256                  * updates after data IO completion.
1257                  */
1258                 redirty_tail(inode, wb);
1259         } else if (inode->i_state & I_DIRTY_TIME) {
1260                 inode->dirtied_when = jiffies;
1261                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1262         } else {
1263                 /* The inode is clean. Remove from writeback lists. */
1264                 inode_io_list_del_locked(inode, wb);
1265         }
1266 }
1267
1268 /*
1269  * Write out an inode and its dirty pages. Do not update the writeback list
1270  * linkage. That is left to the caller. The caller is also responsible for
1271  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1272  */
1273 static int
1274 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1275 {
1276         struct address_space *mapping = inode->i_mapping;
1277         long nr_to_write = wbc->nr_to_write;
1278         unsigned dirty;
1279         int ret;
1280
1281         WARN_ON(!(inode->i_state & I_SYNC));
1282
1283         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1284
1285         ret = do_writepages(mapping, wbc);
1286
1287         /*
1288          * Make sure to wait on the data before writing out the metadata.
1289          * This is important for filesystems that modify metadata on data
1290          * I/O completion. We don't do it for sync(2) writeback because it has a
1291          * separate, external IO completion path and ->sync_fs for guaranteeing
1292          * inode metadata is written back correctly.
1293          */
1294         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1295                 int err = filemap_fdatawait(mapping);
1296                 if (ret == 0)
1297                         ret = err;
1298         }
1299
1300         /*
1301          * Some filesystems may redirty the inode during the writeback
1302          * due to delalloc, clear dirty metadata flags right before
1303          * write_inode()
1304          */
1305         spin_lock(&inode->i_lock);
1306
1307         dirty = inode->i_state & I_DIRTY;
1308         if (inode->i_state & I_DIRTY_TIME) {
1309                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1310                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1311                     unlikely(time_after(jiffies,
1312                                         (inode->dirtied_time_when +
1313                                          dirtytime_expire_interval * HZ)))) {
1314                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1315                         trace_writeback_lazytime(inode);
1316                 }
1317         } else
1318                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1319         inode->i_state &= ~dirty;
1320
1321         /*
1322          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1323          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1324          * either they see the I_DIRTY bits cleared or we see the dirtied
1325          * inode.
1326          *
1327          * I_DIRTY_PAGES is always cleared together above even if @mapping
1328          * still has dirty pages.  The flag is reinstated after smp_mb() if
1329          * necessary.  This guarantees that either __mark_inode_dirty()
1330          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1331          */
1332         smp_mb();
1333
1334         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1335                 inode->i_state |= I_DIRTY_PAGES;
1336
1337         spin_unlock(&inode->i_lock);
1338
1339         if (dirty & I_DIRTY_TIME)
1340                 mark_inode_dirty_sync(inode);
1341         /* Don't write the inode if only I_DIRTY_PAGES was set */
1342         if (dirty & ~I_DIRTY_PAGES) {
1343                 int err = write_inode(inode, wbc);
1344                 if (ret == 0)
1345                         ret = err;
1346         }
1347         trace_writeback_single_inode(inode, wbc, nr_to_write);
1348         return ret;
1349 }
1350
1351 /*
1352  * Write out an inode's dirty pages. Either the caller has an active reference
1353  * on the inode or the inode has I_WILL_FREE set.
1354  *
1355  * This function is designed to be called for writing back one inode which
1356  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1357  * and does more profound writeback list handling in writeback_sb_inodes().
1358  */
1359 static int writeback_single_inode(struct inode *inode,
1360                                   struct writeback_control *wbc)
1361 {
1362         struct bdi_writeback *wb;
1363         int ret = 0;
1364
1365         spin_lock(&inode->i_lock);
1366         if (!atomic_read(&inode->i_count))
1367                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1368         else
1369                 WARN_ON(inode->i_state & I_WILL_FREE);
1370
1371         if (inode->i_state & I_SYNC) {
1372                 if (wbc->sync_mode != WB_SYNC_ALL)
1373                         goto out;
1374                 /*
1375                  * It's a data-integrity sync. We must wait. Since callers hold
1376                  * inode reference or inode has I_WILL_FREE set, it cannot go
1377                  * away under us.
1378                  */
1379                 __inode_wait_for_writeback(inode);
1380         }
1381         WARN_ON(inode->i_state & I_SYNC);
1382         /*
1383          * Skip inode if it is clean and we have no outstanding writeback in
1384          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1385          * function since flusher thread may be doing for example sync in
1386          * parallel and if we move the inode, it could get skipped. So here we
1387          * make sure inode is on some writeback list and leave it there unless
1388          * we have completely cleaned the inode.
1389          */
1390         if (!(inode->i_state & I_DIRTY_ALL) &&
1391             (wbc->sync_mode != WB_SYNC_ALL ||
1392              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1393                 goto out;
1394         inode->i_state |= I_SYNC;
1395         wbc_attach_and_unlock_inode(wbc, inode);
1396
1397         ret = __writeback_single_inode(inode, wbc);
1398
1399         wbc_detach_inode(wbc);
1400
1401         wb = inode_to_wb_and_lock_list(inode);
1402         spin_lock(&inode->i_lock);
1403         /*
1404          * If inode is clean, remove it from writeback lists. Otherwise don't
1405          * touch it. See comment above for explanation.
1406          */
1407         if (!(inode->i_state & I_DIRTY_ALL))
1408                 inode_io_list_del_locked(inode, wb);
1409         spin_unlock(&wb->list_lock);
1410         inode_sync_complete(inode);
1411 out:
1412         spin_unlock(&inode->i_lock);
1413         return ret;
1414 }
1415
1416 static long writeback_chunk_size(struct bdi_writeback *wb,
1417                                  struct wb_writeback_work *work)
1418 {
1419         long pages;
1420
1421         /*
1422          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1423          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1424          * here avoids calling into writeback_inodes_wb() more than once.
1425          *
1426          * The intended call sequence for WB_SYNC_ALL writeback is:
1427          *
1428          *      wb_writeback()
1429          *          writeback_sb_inodes()       <== called only once
1430          *              write_cache_pages()     <== called once for each inode
1431          *                   (quickly) tag currently dirty pages
1432          *                   (maybe slowly) sync all tagged pages
1433          */
1434         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1435                 pages = LONG_MAX;
1436         else {
1437                 pages = min(wb->avg_write_bandwidth / 2,
1438                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1439                 pages = min(pages, work->nr_pages);
1440                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1441                                    MIN_WRITEBACK_PAGES);
1442         }
1443
1444         return pages;
1445 }
1446
1447 /*
1448  * Write a portion of b_io inodes which belong to @sb.
1449  *
1450  * Return the number of pages and/or inodes written.
1451  *
1452  * NOTE! This is called with wb->list_lock held, and will
1453  * unlock and relock that for each inode it ends up doing
1454  * IO for.
1455  */
1456 static long writeback_sb_inodes(struct super_block *sb,
1457                                 struct bdi_writeback *wb,
1458                                 struct wb_writeback_work *work)
1459 {
1460         struct writeback_control wbc = {
1461                 .sync_mode              = work->sync_mode,
1462                 .tagged_writepages      = work->tagged_writepages,
1463                 .for_kupdate            = work->for_kupdate,
1464                 .for_background         = work->for_background,
1465                 .for_sync               = work->for_sync,
1466                 .range_cyclic           = work->range_cyclic,
1467                 .range_start            = 0,
1468                 .range_end              = LLONG_MAX,
1469         };
1470         unsigned long start_time = jiffies;
1471         long write_chunk;
1472         long wrote = 0;  /* count both pages and inodes */
1473
1474         while (!list_empty(&wb->b_io)) {
1475                 struct inode *inode = wb_inode(wb->b_io.prev);
1476                 struct bdi_writeback *tmp_wb;
1477
1478                 if (inode->i_sb != sb) {
1479                         if (work->sb) {
1480                                 /*
1481                                  * We only want to write back data for this
1482                                  * superblock, move all inodes not belonging
1483                                  * to it back onto the dirty list.
1484                                  */
1485                                 redirty_tail(inode, wb);
1486                                 continue;
1487                         }
1488
1489                         /*
1490                          * The inode belongs to a different superblock.
1491                          * Bounce back to the caller to unpin this and
1492                          * pin the next superblock.
1493                          */
1494                         break;
1495                 }
1496
1497                 /*
1498                  * Don't bother with new inodes or inodes being freed, first
1499                  * kind does not need periodic writeout yet, and for the latter
1500                  * kind writeout is handled by the freer.
1501                  */
1502                 spin_lock(&inode->i_lock);
1503                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1504                         spin_unlock(&inode->i_lock);
1505                         redirty_tail(inode, wb);
1506                         continue;
1507                 }
1508                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1509                         /*
1510                          * If this inode is locked for writeback and we are not
1511                          * doing writeback-for-data-integrity, move it to
1512                          * b_more_io so that writeback can proceed with the
1513                          * other inodes on s_io.
1514                          *
1515                          * We'll have another go at writing back this inode
1516                          * when we completed a full scan of b_io.
1517                          */
1518                         spin_unlock(&inode->i_lock);
1519                         requeue_io(inode, wb);
1520                         trace_writeback_sb_inodes_requeue(inode);
1521                         continue;
1522                 }
1523                 spin_unlock(&wb->list_lock);
1524
1525                 /*
1526                  * We already requeued the inode if it had I_SYNC set and we
1527                  * are doing WB_SYNC_NONE writeback. So this catches only the
1528                  * WB_SYNC_ALL case.
1529                  */
1530                 if (inode->i_state & I_SYNC) {
1531                         /* Wait for I_SYNC. This function drops i_lock... */
1532                         inode_sleep_on_writeback(inode);
1533                         /* Inode may be gone, start again */
1534                         spin_lock(&wb->list_lock);
1535                         continue;
1536                 }
1537                 inode->i_state |= I_SYNC;
1538                 wbc_attach_and_unlock_inode(&wbc, inode);
1539
1540                 write_chunk = writeback_chunk_size(wb, work);
1541                 wbc.nr_to_write = write_chunk;
1542                 wbc.pages_skipped = 0;
1543
1544                 /*
1545                  * We use I_SYNC to pin the inode in memory. While it is set
1546                  * evict_inode() will wait so the inode cannot be freed.
1547                  */
1548                 __writeback_single_inode(inode, &wbc);
1549
1550                 wbc_detach_inode(&wbc);
1551                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1552                 wrote += write_chunk - wbc.nr_to_write;
1553
1554                 if (need_resched()) {
1555                         /*
1556                          * We're trying to balance between building up a nice
1557                          * long list of IOs to improve our merge rate, and
1558                          * getting those IOs out quickly for anyone throttling
1559                          * in balance_dirty_pages().  cond_resched() doesn't
1560                          * unplug, so get our IOs out the door before we
1561                          * give up the CPU.
1562                          */
1563                         blk_flush_plug(current);
1564                         cond_resched();
1565                 }
1566
1567                 /*
1568                  * Requeue @inode if still dirty.  Be careful as @inode may
1569                  * have been switched to another wb in the meantime.
1570                  */
1571                 tmp_wb = inode_to_wb_and_lock_list(inode);
1572                 spin_lock(&inode->i_lock);
1573                 if (!(inode->i_state & I_DIRTY_ALL))
1574                         wrote++;
1575                 requeue_inode(inode, tmp_wb, &wbc);
1576                 inode_sync_complete(inode);
1577                 spin_unlock(&inode->i_lock);
1578
1579                 if (unlikely(tmp_wb != wb)) {
1580                         spin_unlock(&tmp_wb->list_lock);
1581                         spin_lock(&wb->list_lock);
1582                 }
1583
1584                 /*
1585                  * bail out to wb_writeback() often enough to check
1586                  * background threshold and other termination conditions.
1587                  */
1588                 if (wrote) {
1589                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1590                                 break;
1591                         if (work->nr_pages <= 0)
1592                                 break;
1593                 }
1594         }
1595         return wrote;
1596 }
1597
1598 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1599                                   struct wb_writeback_work *work)
1600 {
1601         unsigned long start_time = jiffies;
1602         long wrote = 0;
1603
1604         while (!list_empty(&wb->b_io)) {
1605                 struct inode *inode = wb_inode(wb->b_io.prev);
1606                 struct super_block *sb = inode->i_sb;
1607
1608                 if (!trylock_super(sb)) {
1609                         /*
1610                          * trylock_super() may fail consistently due to
1611                          * s_umount being grabbed by someone else. Don't use
1612                          * requeue_io() to avoid busy retrying the inode/sb.
1613                          */
1614                         redirty_tail(inode, wb);
1615                         continue;
1616                 }
1617                 wrote += writeback_sb_inodes(sb, wb, work);
1618                 up_read(&sb->s_umount);
1619
1620                 /* refer to the same tests at the end of writeback_sb_inodes */
1621                 if (wrote) {
1622                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1623                                 break;
1624                         if (work->nr_pages <= 0)
1625                                 break;
1626                 }
1627         }
1628         /* Leave any unwritten inodes on b_io */
1629         return wrote;
1630 }
1631
1632 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1633                                 enum wb_reason reason)
1634 {
1635         struct wb_writeback_work work = {
1636                 .nr_pages       = nr_pages,
1637                 .sync_mode      = WB_SYNC_NONE,
1638                 .range_cyclic   = 1,
1639                 .reason         = reason,
1640         };
1641         struct blk_plug plug;
1642
1643         blk_start_plug(&plug);
1644         spin_lock(&wb->list_lock);
1645         if (list_empty(&wb->b_io))
1646                 queue_io(wb, &work);
1647         __writeback_inodes_wb(wb, &work);
1648         spin_unlock(&wb->list_lock);
1649         blk_finish_plug(&plug);
1650
1651         return nr_pages - work.nr_pages;
1652 }
1653
1654 /*
1655  * Explicit flushing or periodic writeback of "old" data.
1656  *
1657  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1658  * dirtying-time in the inode's address_space.  So this periodic writeback code
1659  * just walks the superblock inode list, writing back any inodes which are
1660  * older than a specific point in time.
1661  *
1662  * Try to run once per dirty_writeback_interval.  But if a writeback event
1663  * takes longer than a dirty_writeback_interval interval, then leave a
1664  * one-second gap.
1665  *
1666  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1667  * all dirty pages if they are all attached to "old" mappings.
1668  */
1669 static long wb_writeback(struct bdi_writeback *wb,
1670                          struct wb_writeback_work *work)
1671 {
1672         unsigned long wb_start = jiffies;
1673         long nr_pages = work->nr_pages;
1674         unsigned long oldest_jif;
1675         struct inode *inode;
1676         long progress;
1677         struct blk_plug plug;
1678
1679         oldest_jif = jiffies;
1680         work->older_than_this = &oldest_jif;
1681
1682         blk_start_plug(&plug);
1683         spin_lock(&wb->list_lock);
1684         for (;;) {
1685                 /*
1686                  * Stop writeback when nr_pages has been consumed
1687                  */
1688                 if (work->nr_pages <= 0)
1689                         break;
1690
1691                 /*
1692                  * Background writeout and kupdate-style writeback may
1693                  * run forever. Stop them if there is other work to do
1694                  * so that e.g. sync can proceed. They'll be restarted
1695                  * after the other works are all done.
1696                  */
1697                 if ((work->for_background || work->for_kupdate) &&
1698                     !list_empty(&wb->work_list))
1699                         break;
1700
1701                 /*
1702                  * For background writeout, stop when we are below the
1703                  * background dirty threshold
1704                  */
1705                 if (work->for_background && !wb_over_bg_thresh(wb))
1706                         break;
1707
1708                 /*
1709                  * Kupdate and background works are special and we want to
1710                  * include all inodes that need writing. Livelock avoidance is
1711                  * handled by these works yielding to any other work so we are
1712                  * safe.
1713                  */
1714                 if (work->for_kupdate) {
1715                         oldest_jif = jiffies -
1716                                 msecs_to_jiffies(dirty_expire_interval * 10);
1717                 } else if (work->for_background)
1718                         oldest_jif = jiffies;
1719
1720                 trace_writeback_start(wb, work);
1721                 if (list_empty(&wb->b_io))
1722                         queue_io(wb, work);
1723                 if (work->sb)
1724                         progress = writeback_sb_inodes(work->sb, wb, work);
1725                 else
1726                         progress = __writeback_inodes_wb(wb, work);
1727                 trace_writeback_written(wb, work);
1728
1729                 wb_update_bandwidth(wb, wb_start);
1730
1731                 /*
1732                  * Did we write something? Try for more
1733                  *
1734                  * Dirty inodes are moved to b_io for writeback in batches.
1735                  * The completion of the current batch does not necessarily
1736                  * mean the overall work is done. So we keep looping as long
1737                  * as made some progress on cleaning pages or inodes.
1738                  */
1739                 if (progress)
1740                         continue;
1741                 /*
1742                  * No more inodes for IO, bail
1743                  */
1744                 if (list_empty(&wb->b_more_io))
1745                         break;
1746                 /*
1747                  * Nothing written. Wait for some inode to
1748                  * become available for writeback. Otherwise
1749                  * we'll just busyloop.
1750                  */
1751                 if (!list_empty(&wb->b_more_io))  {
1752                         trace_writeback_wait(wb, work);
1753                         inode = wb_inode(wb->b_more_io.prev);
1754                         spin_lock(&inode->i_lock);
1755                         spin_unlock(&wb->list_lock);
1756                         /* This function drops i_lock... */
1757                         inode_sleep_on_writeback(inode);
1758                         spin_lock(&wb->list_lock);
1759                 }
1760         }
1761         spin_unlock(&wb->list_lock);
1762         blk_finish_plug(&plug);
1763
1764         return nr_pages - work->nr_pages;
1765 }
1766
1767 /*
1768  * Return the next wb_writeback_work struct that hasn't been processed yet.
1769  */
1770 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1771 {
1772         struct wb_writeback_work *work = NULL;
1773
1774         spin_lock_bh(&wb->work_lock);
1775         if (!list_empty(&wb->work_list)) {
1776                 work = list_entry(wb->work_list.next,
1777                                   struct wb_writeback_work, list);
1778                 list_del_init(&work->list);
1779         }
1780         spin_unlock_bh(&wb->work_lock);
1781         return work;
1782 }
1783
1784 /*
1785  * Add in the number of potentially dirty inodes, because each inode
1786  * write can dirty pagecache in the underlying blockdev.
1787  */
1788 static unsigned long get_nr_dirty_pages(void)
1789 {
1790         return global_page_state(NR_FILE_DIRTY) +
1791                 global_page_state(NR_UNSTABLE_NFS) +
1792                 get_nr_dirty_inodes();
1793 }
1794
1795 static long wb_check_background_flush(struct bdi_writeback *wb)
1796 {
1797         if (wb_over_bg_thresh(wb)) {
1798
1799                 struct wb_writeback_work work = {
1800                         .nr_pages       = LONG_MAX,
1801                         .sync_mode      = WB_SYNC_NONE,
1802                         .for_background = 1,
1803                         .range_cyclic   = 1,
1804                         .reason         = WB_REASON_BACKGROUND,
1805                 };
1806
1807                 return wb_writeback(wb, &work);
1808         }
1809
1810         return 0;
1811 }
1812
1813 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1814 {
1815         unsigned long expired;
1816         long nr_pages;
1817
1818         /*
1819          * When set to zero, disable periodic writeback
1820          */
1821         if (!dirty_writeback_interval)
1822                 return 0;
1823
1824         expired = wb->last_old_flush +
1825                         msecs_to_jiffies(dirty_writeback_interval * 10);
1826         if (time_before(jiffies, expired))
1827                 return 0;
1828
1829         wb->last_old_flush = jiffies;
1830         nr_pages = get_nr_dirty_pages();
1831
1832         if (nr_pages) {
1833                 struct wb_writeback_work work = {
1834                         .nr_pages       = nr_pages,
1835                         .sync_mode      = WB_SYNC_NONE,
1836                         .for_kupdate    = 1,
1837                         .range_cyclic   = 1,
1838                         .reason         = WB_REASON_PERIODIC,
1839                 };
1840
1841                 return wb_writeback(wb, &work);
1842         }
1843
1844         return 0;
1845 }
1846
1847 /*
1848  * Retrieve work items and do the writeback they describe
1849  */
1850 static long wb_do_writeback(struct bdi_writeback *wb)
1851 {
1852         struct wb_writeback_work *work;
1853         long wrote = 0;
1854
1855         set_bit(WB_writeback_running, &wb->state);
1856         while ((work = get_next_work_item(wb)) != NULL) {
1857                 trace_writeback_exec(wb, work);
1858                 wrote += wb_writeback(wb, work);
1859                 finish_writeback_work(wb, work);
1860         }
1861
1862         /*
1863          * Check for periodic writeback, kupdated() style
1864          */
1865         wrote += wb_check_old_data_flush(wb);
1866         wrote += wb_check_background_flush(wb);
1867         clear_bit(WB_writeback_running, &wb->state);
1868
1869         return wrote;
1870 }
1871
1872 /*
1873  * Handle writeback of dirty data for the device backed by this bdi. Also
1874  * reschedules periodically and does kupdated style flushing.
1875  */
1876 void wb_workfn(struct work_struct *work)
1877 {
1878         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1879                                                 struct bdi_writeback, dwork);
1880         long pages_written;
1881
1882         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1883         current->flags |= PF_SWAPWRITE;
1884
1885         if (likely(!current_is_workqueue_rescuer() ||
1886                    !test_bit(WB_registered, &wb->state))) {
1887                 /*
1888                  * The normal path.  Keep writing back @wb until its
1889                  * work_list is empty.  Note that this path is also taken
1890                  * if @wb is shutting down even when we're running off the
1891                  * rescuer as work_list needs to be drained.
1892                  */
1893                 do {
1894                         pages_written = wb_do_writeback(wb);
1895                         trace_writeback_pages_written(pages_written);
1896                 } while (!list_empty(&wb->work_list));
1897         } else {
1898                 /*
1899                  * bdi_wq can't get enough workers and we're running off
1900                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1901                  * enough for efficient IO.
1902                  */
1903                 pages_written = writeback_inodes_wb(wb, 1024,
1904                                                     WB_REASON_FORKER_THREAD);
1905                 trace_writeback_pages_written(pages_written);
1906         }
1907
1908         if (!list_empty(&wb->work_list))
1909                 wb_wakeup(wb);
1910         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1911                 wb_wakeup_delayed(wb);
1912
1913         current->flags &= ~PF_SWAPWRITE;
1914 }
1915
1916 /*
1917  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1918  * the whole world.
1919  */
1920 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1921 {
1922         struct backing_dev_info *bdi;
1923
1924         if (!nr_pages)
1925                 nr_pages = get_nr_dirty_pages();
1926
1927         rcu_read_lock();
1928         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1929                 struct bdi_writeback *wb;
1930
1931                 if (!bdi_has_dirty_io(bdi))
1932                         continue;
1933
1934                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1935                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1936                                            false, reason);
1937         }
1938         rcu_read_unlock();
1939 }
1940
1941 /*
1942  * Wake up bdi's periodically to make sure dirtytime inodes gets
1943  * written back periodically.  We deliberately do *not* check the
1944  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1945  * kernel to be constantly waking up once there are any dirtytime
1946  * inodes on the system.  So instead we define a separate delayed work
1947  * function which gets called much more rarely.  (By default, only
1948  * once every 12 hours.)
1949  *
1950  * If there is any other write activity going on in the file system,
1951  * this function won't be necessary.  But if the only thing that has
1952  * happened on the file system is a dirtytime inode caused by an atime
1953  * update, we need this infrastructure below to make sure that inode
1954  * eventually gets pushed out to disk.
1955  */
1956 static void wakeup_dirtytime_writeback(struct work_struct *w);
1957 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1958
1959 static void wakeup_dirtytime_writeback(struct work_struct *w)
1960 {
1961         struct backing_dev_info *bdi;
1962
1963         rcu_read_lock();
1964         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1965                 struct bdi_writeback *wb;
1966
1967                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1968                         if (!list_empty(&wb->b_dirty_time))
1969                                 wb_wakeup(wb);
1970         }
1971         rcu_read_unlock();
1972         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1973 }
1974
1975 static int __init start_dirtytime_writeback(void)
1976 {
1977         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1978         return 0;
1979 }
1980 __initcall(start_dirtytime_writeback);
1981
1982 int dirtytime_interval_handler(struct ctl_table *table, int write,
1983                                void __user *buffer, size_t *lenp, loff_t *ppos)
1984 {
1985         int ret;
1986
1987         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1988         if (ret == 0 && write)
1989                 mod_delayed_work(system_wq, &dirtytime_work, 0);
1990         return ret;
1991 }
1992
1993 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1994 {
1995         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1996                 struct dentry *dentry;
1997                 const char *name = "?";
1998
1999                 dentry = d_find_alias(inode);
2000                 if (dentry) {
2001                         spin_lock(&dentry->d_lock);
2002                         name = (const char *) dentry->d_name.name;
2003                 }
2004                 printk(KERN_DEBUG
2005                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2006                        current->comm, task_pid_nr(current), inode->i_ino,
2007                        name, inode->i_sb->s_id);
2008                 if (dentry) {
2009                         spin_unlock(&dentry->d_lock);
2010                         dput(dentry);
2011                 }
2012         }
2013 }
2014
2015 /**
2016  *      __mark_inode_dirty -    internal function
2017  *      @inode: inode to mark
2018  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2019  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
2020  *      mark_inode_dirty_sync.
2021  *
2022  * Put the inode on the super block's dirty list.
2023  *
2024  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2025  * dirty list only if it is hashed or if it refers to a blockdev.
2026  * If it was not hashed, it will never be added to the dirty list
2027  * even if it is later hashed, as it will have been marked dirty already.
2028  *
2029  * In short, make sure you hash any inodes _before_ you start marking
2030  * them dirty.
2031  *
2032  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2033  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2034  * the kernel-internal blockdev inode represents the dirtying time of the
2035  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2036  * page->mapping->host, so the page-dirtying time is recorded in the internal
2037  * blockdev inode.
2038  */
2039 void __mark_inode_dirty(struct inode *inode, int flags)
2040 {
2041 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2042         struct super_block *sb = inode->i_sb;
2043         int dirtytime;
2044
2045         trace_writeback_mark_inode_dirty(inode, flags);
2046
2047         /*
2048          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2049          * dirty the inode itself
2050          */
2051         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2052                 trace_writeback_dirty_inode_start(inode, flags);
2053
2054                 if (sb->s_op->dirty_inode)
2055                         sb->s_op->dirty_inode(inode, flags);
2056
2057                 trace_writeback_dirty_inode(inode, flags);
2058         }
2059         if (flags & I_DIRTY_INODE)
2060                 flags &= ~I_DIRTY_TIME;
2061         dirtytime = flags & I_DIRTY_TIME;
2062
2063         /*
2064          * Paired with smp_mb() in __writeback_single_inode() for the
2065          * following lockless i_state test.  See there for details.
2066          */
2067         smp_mb();
2068
2069         if (((inode->i_state & flags) == flags) ||
2070             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2071                 return;
2072
2073         if (unlikely(block_dump > 1))
2074                 block_dump___mark_inode_dirty(inode);
2075
2076         spin_lock(&inode->i_lock);
2077         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2078                 goto out_unlock_inode;
2079         if ((inode->i_state & flags) != flags) {
2080                 const int was_dirty = inode->i_state & I_DIRTY;
2081
2082                 inode_attach_wb(inode, NULL);
2083
2084                 if (flags & I_DIRTY_INODE)
2085                         inode->i_state &= ~I_DIRTY_TIME;
2086                 inode->i_state |= flags;
2087
2088                 /*
2089                  * If the inode is being synced, just update its dirty state.
2090                  * The unlocker will place the inode on the appropriate
2091                  * superblock list, based upon its state.
2092                  */
2093                 if (inode->i_state & I_SYNC)
2094                         goto out_unlock_inode;
2095
2096                 /*
2097                  * Only add valid (hashed) inodes to the superblock's
2098                  * dirty list.  Add blockdev inodes as well.
2099                  */
2100                 if (!S_ISBLK(inode->i_mode)) {
2101                         if (inode_unhashed(inode))
2102                                 goto out_unlock_inode;
2103                 }
2104                 if (inode->i_state & I_FREEING)
2105                         goto out_unlock_inode;
2106
2107                 /*
2108                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2109                  * reposition it (that would break b_dirty time-ordering).
2110                  */
2111                 if (!was_dirty) {
2112                         struct bdi_writeback *wb;
2113                         struct list_head *dirty_list;
2114                         bool wakeup_bdi = false;
2115
2116                         wb = locked_inode_to_wb_and_lock_list(inode);
2117
2118                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2119                              !test_bit(WB_registered, &wb->state),
2120                              "bdi-%s not registered\n", wb->bdi->name);
2121
2122                         inode->dirtied_when = jiffies;
2123                         if (dirtytime)
2124                                 inode->dirtied_time_when = jiffies;
2125
2126                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2127                                 dirty_list = &wb->b_dirty;
2128                         else
2129                                 dirty_list = &wb->b_dirty_time;
2130
2131                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2132                                                                dirty_list);
2133
2134                         spin_unlock(&wb->list_lock);
2135                         trace_writeback_dirty_inode_enqueue(inode);
2136
2137                         /*
2138                          * If this is the first dirty inode for this bdi,
2139                          * we have to wake-up the corresponding bdi thread
2140                          * to make sure background write-back happens
2141                          * later.
2142                          */
2143                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2144                                 wb_wakeup_delayed(wb);
2145                         return;
2146                 }
2147         }
2148 out_unlock_inode:
2149         spin_unlock(&inode->i_lock);
2150
2151 #undef I_DIRTY_INODE
2152 }
2153 EXPORT_SYMBOL(__mark_inode_dirty);
2154
2155 /*
2156  * The @s_sync_lock is used to serialise concurrent sync operations
2157  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2158  * Concurrent callers will block on the s_sync_lock rather than doing contending
2159  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2160  * has been issued up to the time this function is enter is guaranteed to be
2161  * completed by the time we have gained the lock and waited for all IO that is
2162  * in progress regardless of the order callers are granted the lock.
2163  */
2164 static void wait_sb_inodes(struct super_block *sb)
2165 {
2166         struct inode *inode, *old_inode = NULL;
2167
2168         /*
2169          * We need to be protected against the filesystem going from
2170          * r/o to r/w or vice versa.
2171          */
2172         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2173
2174         mutex_lock(&sb->s_sync_lock);
2175         spin_lock(&sb->s_inode_list_lock);
2176
2177         /*
2178          * Data integrity sync. Must wait for all pages under writeback,
2179          * because there may have been pages dirtied before our sync
2180          * call, but which had writeout started before we write it out.
2181          * In which case, the inode may not be on the dirty list, but
2182          * we still have to wait for that writeout.
2183          */
2184         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2185                 struct address_space *mapping = inode->i_mapping;
2186
2187                 spin_lock(&inode->i_lock);
2188                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2189                     (mapping->nrpages == 0)) {
2190                         spin_unlock(&inode->i_lock);
2191                         continue;
2192                 }
2193                 __iget(inode);
2194                 spin_unlock(&inode->i_lock);
2195                 spin_unlock(&sb->s_inode_list_lock);
2196
2197                 /*
2198                  * We hold a reference to 'inode' so it couldn't have been
2199                  * removed from s_inodes list while we dropped the
2200                  * s_inode_list_lock.  We cannot iput the inode now as we can
2201                  * be holding the last reference and we cannot iput it under
2202                  * s_inode_list_lock. So we keep the reference and iput it
2203                  * later.
2204                  */
2205                 iput(old_inode);
2206                 old_inode = inode;
2207
2208                 /*
2209                  * We keep the error status of individual mapping so that
2210                  * applications can catch the writeback error using fsync(2).
2211                  * See filemap_fdatawait_keep_errors() for details.
2212                  */
2213                 filemap_fdatawait_keep_errors(mapping);
2214
2215                 cond_resched();
2216
2217                 spin_lock(&sb->s_inode_list_lock);
2218         }
2219         spin_unlock(&sb->s_inode_list_lock);
2220         iput(old_inode);
2221         mutex_unlock(&sb->s_sync_lock);
2222 }
2223
2224 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2225                                      enum wb_reason reason, bool skip_if_busy)
2226 {
2227         DEFINE_WB_COMPLETION_ONSTACK(done);
2228         struct wb_writeback_work work = {
2229                 .sb                     = sb,
2230                 .sync_mode              = WB_SYNC_NONE,
2231                 .tagged_writepages      = 1,
2232                 .done                   = &done,
2233                 .nr_pages               = nr,
2234                 .reason                 = reason,
2235         };
2236         struct backing_dev_info *bdi = sb->s_bdi;
2237
2238         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2239                 return;
2240         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2241
2242         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2243         wb_wait_for_completion(bdi, &done);
2244 }
2245
2246 /**
2247  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2248  * @sb: the superblock
2249  * @nr: the number of pages to write
2250  * @reason: reason why some writeback work initiated
2251  *
2252  * Start writeback on some inodes on this super_block. No guarantees are made
2253  * on how many (if any) will be written, and this function does not wait
2254  * for IO completion of submitted IO.
2255  */
2256 void writeback_inodes_sb_nr(struct super_block *sb,
2257                             unsigned long nr,
2258                             enum wb_reason reason)
2259 {
2260         __writeback_inodes_sb_nr(sb, nr, reason, false);
2261 }
2262 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2263
2264 /**
2265  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2266  * @sb: the superblock
2267  * @reason: reason why some writeback work was initiated
2268  *
2269  * Start writeback on some inodes on this super_block. No guarantees are made
2270  * on how many (if any) will be written, and this function does not wait
2271  * for IO completion of submitted IO.
2272  */
2273 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2274 {
2275         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2276 }
2277 EXPORT_SYMBOL(writeback_inodes_sb);
2278
2279 /**
2280  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2281  * @sb: the superblock
2282  * @nr: the number of pages to write
2283  * @reason: the reason of writeback
2284  *
2285  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2286  * Returns 1 if writeback was started, 0 if not.
2287  */
2288 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2289                                    enum wb_reason reason)
2290 {
2291         if (!down_read_trylock(&sb->s_umount))
2292                 return false;
2293
2294         __writeback_inodes_sb_nr(sb, nr, reason, true);
2295         up_read(&sb->s_umount);
2296         return true;
2297 }
2298 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2299
2300 /**
2301  * try_to_writeback_inodes_sb - try to start writeback if none underway
2302  * @sb: the superblock
2303  * @reason: reason why some writeback work was initiated
2304  *
2305  * Implement by try_to_writeback_inodes_sb_nr()
2306  * Returns 1 if writeback was started, 0 if not.
2307  */
2308 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2309 {
2310         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2311 }
2312 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2313
2314 /**
2315  * sync_inodes_sb       -       sync sb inode pages
2316  * @sb: the superblock
2317  *
2318  * This function writes and waits on any dirty inode belonging to this
2319  * super_block.
2320  */
2321 void sync_inodes_sb(struct super_block *sb)
2322 {
2323         DEFINE_WB_COMPLETION_ONSTACK(done);
2324         struct wb_writeback_work work = {
2325                 .sb             = sb,
2326                 .sync_mode      = WB_SYNC_ALL,
2327                 .nr_pages       = LONG_MAX,
2328                 .range_cyclic   = 0,
2329                 .done           = &done,
2330                 .reason         = WB_REASON_SYNC,
2331                 .for_sync       = 1,
2332         };
2333         struct backing_dev_info *bdi = sb->s_bdi;
2334
2335         /*
2336          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2337          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2338          * bdi_has_dirty() need to be written out too.
2339          */
2340         if (bdi == &noop_backing_dev_info)
2341                 return;
2342         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2343
2344         bdi_split_work_to_wbs(bdi, &work, false);
2345         wb_wait_for_completion(bdi, &done);
2346
2347         wait_sb_inodes(sb);
2348 }
2349 EXPORT_SYMBOL(sync_inodes_sb);
2350
2351 /**
2352  * write_inode_now      -       write an inode to disk
2353  * @inode: inode to write to disk
2354  * @sync: whether the write should be synchronous or not
2355  *
2356  * This function commits an inode to disk immediately if it is dirty. This is
2357  * primarily needed by knfsd.
2358  *
2359  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2360  */
2361 int write_inode_now(struct inode *inode, int sync)
2362 {
2363         struct writeback_control wbc = {
2364                 .nr_to_write = LONG_MAX,
2365                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2366                 .range_start = 0,
2367                 .range_end = LLONG_MAX,
2368         };
2369
2370         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2371                 wbc.nr_to_write = 0;
2372
2373         might_sleep();
2374         return writeback_single_inode(inode, &wbc);
2375 }
2376 EXPORT_SYMBOL(write_inode_now);
2377
2378 /**
2379  * sync_inode - write an inode and its pages to disk.
2380  * @inode: the inode to sync
2381  * @wbc: controls the writeback mode
2382  *
2383  * sync_inode() will write an inode and its pages to disk.  It will also
2384  * correctly update the inode on its superblock's dirty inode lists and will
2385  * update inode->i_state.
2386  *
2387  * The caller must have a ref on the inode.
2388  */
2389 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2390 {
2391         return writeback_single_inode(inode, wbc);
2392 }
2393 EXPORT_SYMBOL(sync_inode);
2394
2395 /**
2396  * sync_inode_metadata - write an inode to disk
2397  * @inode: the inode to sync
2398  * @wait: wait for I/O to complete.
2399  *
2400  * Write an inode to disk and adjust its dirty state after completion.
2401  *
2402  * Note: only writes the actual inode, no associated data or other metadata.
2403  */
2404 int sync_inode_metadata(struct inode *inode, int wait)
2405 {
2406         struct writeback_control wbc = {
2407                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2408                 .nr_to_write = 0, /* metadata-only */
2409         };
2410
2411         return sync_inode(inode, &wbc);
2412 }
2413 EXPORT_SYMBOL(sync_inode_metadata);