OSDN Git Service

Merge remote-tracking branch 'origin/upstream-f2fs-stable-linux-4.4.y' into android-4.4
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         enum wb_reason reason;          /* why was writeback initiated? */
57
58         struct list_head list;          /* pending work list */
59         struct wb_completion *done;     /* set if the caller waits */
60 };
61
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
70         struct wb_completion cmpl = {                                   \
71                 .cnt            = ATOMIC_INIT(1),                       \
72         }
73
74
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89         return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104         if (wb_has_dirty_io(wb)) {
105                 return false;
106         } else {
107                 set_bit(WB_has_dirty_io, &wb->state);
108                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109                 atomic_long_add(wb->avg_write_bandwidth,
110                                 &wb->bdi->tot_write_bandwidth);
111                 return true;
112         }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119                 clear_bit(WB_has_dirty_io, &wb->state);
120                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121                                         &wb->bdi->tot_write_bandwidth) < 0);
122         }
123 }
124
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136                                       struct bdi_writeback *wb,
137                                       struct list_head *head)
138 {
139         assert_spin_locked(&wb->list_lock);
140
141         list_move(&inode->i_io_list, head);
142
143         /* dirty_time doesn't count as dirty_io until expiration */
144         if (head != &wb->b_dirty_time)
145                 return wb_io_lists_populated(wb);
146
147         wb_io_lists_depopulated(wb);
148         return false;
149 }
150
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160                                      struct bdi_writeback *wb)
161 {
162         assert_spin_locked(&wb->list_lock);
163
164         list_del_init(&inode->i_io_list);
165         wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170         spin_lock_bh(&wb->work_lock);
171         if (test_bit(WB_registered, &wb->state))
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177                                   struct wb_writeback_work *work)
178 {
179         struct wb_completion *done = work->done;
180
181         if (work->auto_free)
182                 kfree(work);
183         if (done && atomic_dec_and_test(&done->cnt))
184                 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188                           struct wb_writeback_work *work)
189 {
190         trace_writeback_queue(wb, work);
191
192         if (work->done)
193                 atomic_inc(&work->done->cnt);
194
195         spin_lock_bh(&wb->work_lock);
196
197         if (test_bit(WB_registered, &wb->state)) {
198                 list_add_tail(&work->list, &wb->work_list);
199                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200         } else
201                 finish_writeback_work(wb, work);
202
203         spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218                                    struct wb_completion *done)
219 {
220         atomic_dec(&done->cnt);         /* put down the initial count */
221         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
231
232 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234                                         /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
236                                         /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238                                         /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245         struct backing_dev_info *bdi = inode_to_bdi(inode);
246         struct bdi_writeback *wb = NULL;
247
248         if (inode_cgwb_enabled(inode)) {
249                 struct cgroup_subsys_state *memcg_css;
250
251                 if (page) {
252                         memcg_css = mem_cgroup_css_from_page(page);
253                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254                 } else {
255                         /* must pin memcg_css, see wb_get_create() */
256                         memcg_css = task_get_css(current, memory_cgrp_id);
257                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258                         css_put(memcg_css);
259                 }
260         }
261
262         if (!wb)
263                 wb = &bdi->wb;
264
265         /*
266          * There may be multiple instances of this function racing to
267          * update the same inode.  Use cmpxchg() to tell the winner.
268          */
269         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270                 wb_put(wb);
271 }
272
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283         __releases(&inode->i_lock)
284         __acquires(&wb->list_lock)
285 {
286         while (true) {
287                 struct bdi_writeback *wb = inode_to_wb(inode);
288
289                 /*
290                  * inode_to_wb() association is protected by both
291                  * @inode->i_lock and @wb->list_lock but list_lock nests
292                  * outside i_lock.  Drop i_lock and verify that the
293                  * association hasn't changed after acquiring list_lock.
294                  */
295                 wb_get(wb);
296                 spin_unlock(&inode->i_lock);
297                 spin_lock(&wb->list_lock);
298
299                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300                 if (likely(wb == inode->i_wb)) {
301                         wb_put(wb);     /* @inode already has ref */
302                         return wb;
303                 }
304
305                 spin_unlock(&wb->list_lock);
306                 wb_put(wb);
307                 cpu_relax();
308                 spin_lock(&inode->i_lock);
309         }
310 }
311
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320         __acquires(&wb->list_lock)
321 {
322         spin_lock(&inode->i_lock);
323         return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327         struct inode            *inode;
328         struct bdi_writeback    *new_wb;
329
330         struct rcu_head         rcu_head;
331         struct work_struct      work;
332 };
333
334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336         down_write(&bdi->wb_switch_rwsem);
337 }
338
339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341         up_write(&bdi->wb_switch_rwsem);
342 }
343
344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346         struct inode_switch_wbs_context *isw =
347                 container_of(work, struct inode_switch_wbs_context, work);
348         struct inode *inode = isw->inode;
349         struct backing_dev_info *bdi = inode_to_bdi(inode);
350         struct address_space *mapping = inode->i_mapping;
351         struct bdi_writeback *old_wb = inode->i_wb;
352         struct bdi_writeback *new_wb = isw->new_wb;
353         struct radix_tree_iter iter;
354         bool switched = false;
355         void **slot;
356
357         /*
358          * If @inode switches cgwb membership while sync_inodes_sb() is
359          * being issued, sync_inodes_sb() might miss it.  Synchronize.
360          */
361         down_read(&bdi->wb_switch_rwsem);
362
363         /*
364          * By the time control reaches here, RCU grace period has passed
365          * since I_WB_SWITCH assertion and all wb stat update transactions
366          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367          * synchronizing against mapping->tree_lock.
368          *
369          * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
370          * gives us exclusion against all wb related operations on @inode
371          * including IO list manipulations and stat updates.
372          */
373         if (old_wb < new_wb) {
374                 spin_lock(&old_wb->list_lock);
375                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376         } else {
377                 spin_lock(&new_wb->list_lock);
378                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379         }
380         spin_lock(&inode->i_lock);
381         spin_lock_irq(&mapping->tree_lock);
382
383         /*
384          * Once I_FREEING is visible under i_lock, the eviction path owns
385          * the inode and we shouldn't modify ->i_io_list.
386          */
387         if (unlikely(inode->i_state & I_FREEING))
388                 goto skip_switch;
389
390         /*
391          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393          * pages actually under underwriteback.
394          */
395         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
396                                    PAGECACHE_TAG_DIRTY) {
397                 struct page *page = radix_tree_deref_slot_protected(slot,
398                                                         &mapping->tree_lock);
399                 if (likely(page) && PageDirty(page)) {
400                         __dec_wb_stat(old_wb, WB_RECLAIMABLE);
401                         __inc_wb_stat(new_wb, WB_RECLAIMABLE);
402                 }
403         }
404
405         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
406                                    PAGECACHE_TAG_WRITEBACK) {
407                 struct page *page = radix_tree_deref_slot_protected(slot,
408                                                         &mapping->tree_lock);
409                 if (likely(page)) {
410                         WARN_ON_ONCE(!PageWriteback(page));
411                         __dec_wb_stat(old_wb, WB_WRITEBACK);
412                         __inc_wb_stat(new_wb, WB_WRITEBACK);
413                 }
414         }
415
416         wb_get(new_wb);
417
418         /*
419          * Transfer to @new_wb's IO list if necessary.  The specific list
420          * @inode was on is ignored and the inode is put on ->b_dirty which
421          * is always correct including from ->b_dirty_time.  The transfer
422          * preserves @inode->dirtied_when ordering.
423          */
424         if (!list_empty(&inode->i_io_list)) {
425                 struct inode *pos;
426
427                 inode_io_list_del_locked(inode, old_wb);
428                 inode->i_wb = new_wb;
429                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
430                         if (time_after_eq(inode->dirtied_when,
431                                           pos->dirtied_when))
432                                 break;
433                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
434         } else {
435                 inode->i_wb = new_wb;
436         }
437
438         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439         inode->i_wb_frn_winner = 0;
440         inode->i_wb_frn_avg_time = 0;
441         inode->i_wb_frn_history = 0;
442         switched = true;
443 skip_switch:
444         /*
445          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446          * ensures that the new wb is visible if they see !I_WB_SWITCH.
447          */
448         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450         spin_unlock_irq(&mapping->tree_lock);
451         spin_unlock(&inode->i_lock);
452         spin_unlock(&new_wb->list_lock);
453         spin_unlock(&old_wb->list_lock);
454
455         up_read(&bdi->wb_switch_rwsem);
456
457         if (switched) {
458                 wb_wakeup(new_wb);
459                 wb_put(old_wb);
460         }
461         wb_put(new_wb);
462
463         iput(inode);
464         kfree(isw);
465
466         atomic_dec(&isw_nr_in_flight);
467 }
468
469 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
470 {
471         struct inode_switch_wbs_context *isw = container_of(rcu_head,
472                                 struct inode_switch_wbs_context, rcu_head);
473
474         /* needs to grab bh-unsafe locks, bounce to work item */
475         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
476         queue_work(isw_wq, &isw->work);
477 }
478
479 /**
480  * inode_switch_wbs - change the wb association of an inode
481  * @inode: target inode
482  * @new_wb_id: ID of the new wb
483  *
484  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
485  * switching is performed asynchronously and may fail silently.
486  */
487 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
488 {
489         struct backing_dev_info *bdi = inode_to_bdi(inode);
490         struct cgroup_subsys_state *memcg_css;
491         struct inode_switch_wbs_context *isw;
492
493         /* noop if seems to be already in progress */
494         if (inode->i_state & I_WB_SWITCH)
495                 return;
496
497         /*
498          * Avoid starting new switches while sync_inodes_sb() is in
499          * progress.  Otherwise, if the down_write protected issue path
500          * blocks heavily, we might end up starting a large number of
501          * switches which will block on the rwsem.
502          */
503         if (!down_read_trylock(&bdi->wb_switch_rwsem))
504                 return;
505
506         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
507         if (!isw)
508                 goto out_unlock;
509
510         /* find and pin the new wb */
511         rcu_read_lock();
512         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513         if (memcg_css)
514                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
515         rcu_read_unlock();
516         if (!isw->new_wb)
517                 goto out_free;
518
519         /* while holding I_WB_SWITCH, no one else can update the association */
520         spin_lock(&inode->i_lock);
521         if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
522             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
523             inode_to_wb(inode) == isw->new_wb) {
524                 spin_unlock(&inode->i_lock);
525                 goto out_free;
526         }
527         inode->i_state |= I_WB_SWITCH;
528         spin_unlock(&inode->i_lock);
529
530         ihold(inode);
531         isw->inode = inode;
532
533         /*
534          * In addition to synchronizing among switchers, I_WB_SWITCH tells
535          * the RCU protected stat update paths to grab the mapping's
536          * tree_lock so that stat transfer can synchronize against them.
537          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
538          */
539         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
540
541         atomic_inc(&isw_nr_in_flight);
542
543         goto out_unlock;
544
545 out_free:
546         if (isw->new_wb)
547                 wb_put(isw->new_wb);
548         kfree(isw);
549 out_unlock:
550         up_read(&bdi->wb_switch_rwsem);
551 }
552
553 /**
554  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
555  * @wbc: writeback_control of interest
556  * @inode: target inode
557  *
558  * @inode is locked and about to be written back under the control of @wbc.
559  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
560  * writeback completion, wbc_detach_inode() should be called.  This is used
561  * to track the cgroup writeback context.
562  */
563 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
564                                  struct inode *inode)
565 {
566         if (!inode_cgwb_enabled(inode)) {
567                 spin_unlock(&inode->i_lock);
568                 return;
569         }
570
571         wbc->wb = inode_to_wb(inode);
572         wbc->inode = inode;
573
574         wbc->wb_id = wbc->wb->memcg_css->id;
575         wbc->wb_lcand_id = inode->i_wb_frn_winner;
576         wbc->wb_tcand_id = 0;
577         wbc->wb_bytes = 0;
578         wbc->wb_lcand_bytes = 0;
579         wbc->wb_tcand_bytes = 0;
580
581         wb_get(wbc->wb);
582         spin_unlock(&inode->i_lock);
583
584         /*
585          * A dying wb indicates that the memcg-blkcg mapping has changed
586          * and a new wb is already serving the memcg.  Switch immediately.
587          */
588         if (unlikely(wb_dying(wbc->wb)))
589                 inode_switch_wbs(inode, wbc->wb_id);
590 }
591
592 /**
593  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
594  * @wbc: writeback_control of the just finished writeback
595  *
596  * To be called after a writeback attempt of an inode finishes and undoes
597  * wbc_attach_and_unlock_inode().  Can be called under any context.
598  *
599  * As concurrent write sharing of an inode is expected to be very rare and
600  * memcg only tracks page ownership on first-use basis severely confining
601  * the usefulness of such sharing, cgroup writeback tracks ownership
602  * per-inode.  While the support for concurrent write sharing of an inode
603  * is deemed unnecessary, an inode being written to by different cgroups at
604  * different points in time is a lot more common, and, more importantly,
605  * charging only by first-use can too readily lead to grossly incorrect
606  * behaviors (single foreign page can lead to gigabytes of writeback to be
607  * incorrectly attributed).
608  *
609  * To resolve this issue, cgroup writeback detects the majority dirtier of
610  * an inode and transfers the ownership to it.  To avoid unnnecessary
611  * oscillation, the detection mechanism keeps track of history and gives
612  * out the switch verdict only if the foreign usage pattern is stable over
613  * a certain amount of time and/or writeback attempts.
614  *
615  * On each writeback attempt, @wbc tries to detect the majority writer
616  * using Boyer-Moore majority vote algorithm.  In addition to the byte
617  * count from the majority voting, it also counts the bytes written for the
618  * current wb and the last round's winner wb (max of last round's current
619  * wb, the winner from two rounds ago, and the last round's majority
620  * candidate).  Keeping track of the historical winner helps the algorithm
621  * to semi-reliably detect the most active writer even when it's not the
622  * absolute majority.
623  *
624  * Once the winner of the round is determined, whether the winner is
625  * foreign or not and how much IO time the round consumed is recorded in
626  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
627  * over a certain threshold, the switch verdict is given.
628  */
629 void wbc_detach_inode(struct writeback_control *wbc)
630 {
631         struct bdi_writeback *wb = wbc->wb;
632         struct inode *inode = wbc->inode;
633         unsigned long avg_time, max_bytes, max_time;
634         u16 history;
635         int max_id;
636
637         if (!wb)
638                 return;
639
640         history = inode->i_wb_frn_history;
641         avg_time = inode->i_wb_frn_avg_time;
642
643         /* pick the winner of this round */
644         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
645             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
646                 max_id = wbc->wb_id;
647                 max_bytes = wbc->wb_bytes;
648         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
649                 max_id = wbc->wb_lcand_id;
650                 max_bytes = wbc->wb_lcand_bytes;
651         } else {
652                 max_id = wbc->wb_tcand_id;
653                 max_bytes = wbc->wb_tcand_bytes;
654         }
655
656         /*
657          * Calculate the amount of IO time the winner consumed and fold it
658          * into the running average kept per inode.  If the consumed IO
659          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
660          * deciding whether to switch or not.  This is to prevent one-off
661          * small dirtiers from skewing the verdict.
662          */
663         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
664                                 wb->avg_write_bandwidth);
665         if (avg_time)
666                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
667                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
668         else
669                 avg_time = max_time;    /* immediate catch up on first run */
670
671         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
672                 int slots;
673
674                 /*
675                  * The switch verdict is reached if foreign wb's consume
676                  * more than a certain proportion of IO time in a
677                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
678                  * history mask where each bit represents one sixteenth of
679                  * the period.  Determine the number of slots to shift into
680                  * history from @max_time.
681                  */
682                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
683                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
684                 history <<= slots;
685                 if (wbc->wb_id != max_id)
686                         history |= (1U << slots) - 1;
687
688                 /*
689                  * Switch if the current wb isn't the consistent winner.
690                  * If there are multiple closely competing dirtiers, the
691                  * inode may switch across them repeatedly over time, which
692                  * is okay.  The main goal is avoiding keeping an inode on
693                  * the wrong wb for an extended period of time.
694                  */
695                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
696                         inode_switch_wbs(inode, max_id);
697         }
698
699         /*
700          * Multiple instances of this function may race to update the
701          * following fields but we don't mind occassional inaccuracies.
702          */
703         inode->i_wb_frn_winner = max_id;
704         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
705         inode->i_wb_frn_history = history;
706
707         wb_put(wbc->wb);
708         wbc->wb = NULL;
709 }
710
711 /**
712  * wbc_account_io - account IO issued during writeback
713  * @wbc: writeback_control of the writeback in progress
714  * @page: page being written out
715  * @bytes: number of bytes being written out
716  *
717  * @bytes from @page are about to written out during the writeback
718  * controlled by @wbc.  Keep the book for foreign inode detection.  See
719  * wbc_detach_inode().
720  */
721 void wbc_account_io(struct writeback_control *wbc, struct page *page,
722                     size_t bytes)
723 {
724         int id;
725
726         /*
727          * pageout() path doesn't attach @wbc to the inode being written
728          * out.  This is intentional as we don't want the function to block
729          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
730          * regular writeback instead of writing things out itself.
731          */
732         if (!wbc->wb)
733                 return;
734
735         rcu_read_lock();
736         id = mem_cgroup_css_from_page(page)->id;
737         rcu_read_unlock();
738
739         if (id == wbc->wb_id) {
740                 wbc->wb_bytes += bytes;
741                 return;
742         }
743
744         if (id == wbc->wb_lcand_id)
745                 wbc->wb_lcand_bytes += bytes;
746
747         /* Boyer-Moore majority vote algorithm */
748         if (!wbc->wb_tcand_bytes)
749                 wbc->wb_tcand_id = id;
750         if (id == wbc->wb_tcand_id)
751                 wbc->wb_tcand_bytes += bytes;
752         else
753                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
754 }
755 EXPORT_SYMBOL_GPL(wbc_account_io);
756
757 /**
758  * inode_congested - test whether an inode is congested
759  * @inode: inode to test for congestion (may be NULL)
760  * @cong_bits: mask of WB_[a]sync_congested bits to test
761  *
762  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
763  * bits to test and the return value is the mask of set bits.
764  *
765  * If cgroup writeback is enabled for @inode, the congestion state is
766  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
767  * associated with @inode is congested; otherwise, the root wb's congestion
768  * state is used.
769  *
770  * @inode is allowed to be NULL as this function is often called on
771  * mapping->host which is NULL for the swapper space.
772  */
773 int inode_congested(struct inode *inode, int cong_bits)
774 {
775         /*
776          * Once set, ->i_wb never becomes NULL while the inode is alive.
777          * Start transaction iff ->i_wb is visible.
778          */
779         if (inode && inode_to_wb_is_valid(inode)) {
780                 struct bdi_writeback *wb;
781                 struct wb_lock_cookie lock_cookie = {};
782                 bool congested;
783
784                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
785                 congested = wb_congested(wb, cong_bits);
786                 unlocked_inode_to_wb_end(inode, &lock_cookie);
787                 return congested;
788         }
789
790         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
791 }
792 EXPORT_SYMBOL_GPL(inode_congested);
793
794 /**
795  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
796  * @wb: target bdi_writeback to split @nr_pages to
797  * @nr_pages: number of pages to write for the whole bdi
798  *
799  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
800  * relation to the total write bandwidth of all wb's w/ dirty inodes on
801  * @wb->bdi.
802  */
803 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
804 {
805         unsigned long this_bw = wb->avg_write_bandwidth;
806         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
807
808         if (nr_pages == LONG_MAX)
809                 return LONG_MAX;
810
811         /*
812          * This may be called on clean wb's and proportional distribution
813          * may not make sense, just use the original @nr_pages in those
814          * cases.  In general, we wanna err on the side of writing more.
815          */
816         if (!tot_bw || this_bw >= tot_bw)
817                 return nr_pages;
818         else
819                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
820 }
821
822 /**
823  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
824  * @bdi: target backing_dev_info
825  * @base_work: wb_writeback_work to issue
826  * @skip_if_busy: skip wb's which already have writeback in progress
827  *
828  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
829  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
830  * distributed to the busy wbs according to each wb's proportion in the
831  * total active write bandwidth of @bdi.
832  */
833 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
834                                   struct wb_writeback_work *base_work,
835                                   bool skip_if_busy)
836 {
837         struct bdi_writeback *last_wb = NULL;
838         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
839                                               struct bdi_writeback, bdi_node);
840
841         might_sleep();
842 restart:
843         rcu_read_lock();
844         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
845                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
846                 struct wb_writeback_work fallback_work;
847                 struct wb_writeback_work *work;
848                 long nr_pages;
849
850                 if (last_wb) {
851                         wb_put(last_wb);
852                         last_wb = NULL;
853                 }
854
855                 /* SYNC_ALL writes out I_DIRTY_TIME too */
856                 if (!wb_has_dirty_io(wb) &&
857                     (base_work->sync_mode == WB_SYNC_NONE ||
858                      list_empty(&wb->b_dirty_time)))
859                         continue;
860                 if (skip_if_busy && writeback_in_progress(wb))
861                         continue;
862
863                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
864
865                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
866                 if (work) {
867                         *work = *base_work;
868                         work->nr_pages = nr_pages;
869                         work->auto_free = 1;
870                         wb_queue_work(wb, work);
871                         continue;
872                 }
873
874                 /* alloc failed, execute synchronously using on-stack fallback */
875                 work = &fallback_work;
876                 *work = *base_work;
877                 work->nr_pages = nr_pages;
878                 work->auto_free = 0;
879                 work->done = &fallback_work_done;
880
881                 wb_queue_work(wb, work);
882
883                 /*
884                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
885                  * continuing iteration from @wb after dropping and
886                  * regrabbing rcu read lock.
887                  */
888                 wb_get(wb);
889                 last_wb = wb;
890
891                 rcu_read_unlock();
892                 wb_wait_for_completion(bdi, &fallback_work_done);
893                 goto restart;
894         }
895         rcu_read_unlock();
896
897         if (last_wb)
898                 wb_put(last_wb);
899 }
900
901 /**
902  * cgroup_writeback_umount - flush inode wb switches for umount
903  *
904  * This function is called when a super_block is about to be destroyed and
905  * flushes in-flight inode wb switches.  An inode wb switch goes through
906  * RCU and then workqueue, so the two need to be flushed in order to ensure
907  * that all previously scheduled switches are finished.  As wb switches are
908  * rare occurrences and synchronize_rcu() can take a while, perform
909  * flushing iff wb switches are in flight.
910  */
911 void cgroup_writeback_umount(void)
912 {
913         if (atomic_read(&isw_nr_in_flight)) {
914                 /*
915                  * Use rcu_barrier() to wait for all pending callbacks to
916                  * ensure that all in-flight wb switches are in the workqueue.
917                  */
918                 rcu_barrier();
919                 flush_workqueue(isw_wq);
920         }
921 }
922
923 static int __init cgroup_writeback_init(void)
924 {
925         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
926         if (!isw_wq)
927                 return -ENOMEM;
928         return 0;
929 }
930 fs_initcall(cgroup_writeback_init);
931
932 #else   /* CONFIG_CGROUP_WRITEBACK */
933
934 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
935 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
936
937 static struct bdi_writeback *
938 locked_inode_to_wb_and_lock_list(struct inode *inode)
939         __releases(&inode->i_lock)
940         __acquires(&wb->list_lock)
941 {
942         struct bdi_writeback *wb = inode_to_wb(inode);
943
944         spin_unlock(&inode->i_lock);
945         spin_lock(&wb->list_lock);
946         return wb;
947 }
948
949 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
950         __acquires(&wb->list_lock)
951 {
952         struct bdi_writeback *wb = inode_to_wb(inode);
953
954         spin_lock(&wb->list_lock);
955         return wb;
956 }
957
958 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
959 {
960         return nr_pages;
961 }
962
963 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
964                                   struct wb_writeback_work *base_work,
965                                   bool skip_if_busy)
966 {
967         might_sleep();
968
969         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
970                 base_work->auto_free = 0;
971                 wb_queue_work(&bdi->wb, base_work);
972         }
973 }
974
975 #endif  /* CONFIG_CGROUP_WRITEBACK */
976
977 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
978                         bool range_cyclic, enum wb_reason reason)
979 {
980         struct wb_writeback_work *work;
981
982         if (!wb_has_dirty_io(wb))
983                 return;
984
985         /*
986          * This is WB_SYNC_NONE writeback, so if allocation fails just
987          * wakeup the thread for old dirty data writeback
988          */
989         work = kzalloc(sizeof(*work), GFP_ATOMIC);
990         if (!work) {
991                 trace_writeback_nowork(wb);
992                 wb_wakeup(wb);
993                 return;
994         }
995
996         work->sync_mode = WB_SYNC_NONE;
997         work->nr_pages  = nr_pages;
998         work->range_cyclic = range_cyclic;
999         work->reason    = reason;
1000         work->auto_free = 1;
1001
1002         wb_queue_work(wb, work);
1003 }
1004
1005 /**
1006  * wb_start_background_writeback - start background writeback
1007  * @wb: bdi_writback to write from
1008  *
1009  * Description:
1010  *   This makes sure WB_SYNC_NONE background writeback happens. When
1011  *   this function returns, it is only guaranteed that for given wb
1012  *   some IO is happening if we are over background dirty threshold.
1013  *   Caller need not hold sb s_umount semaphore.
1014  */
1015 void wb_start_background_writeback(struct bdi_writeback *wb)
1016 {
1017         /*
1018          * We just wake up the flusher thread. It will perform background
1019          * writeback as soon as there is no other work to do.
1020          */
1021         trace_writeback_wake_background(wb);
1022         wb_wakeup(wb);
1023 }
1024
1025 /*
1026  * Remove the inode from the writeback list it is on.
1027  */
1028 void inode_io_list_del(struct inode *inode)
1029 {
1030         struct bdi_writeback *wb;
1031
1032         wb = inode_to_wb_and_lock_list(inode);
1033         inode_io_list_del_locked(inode, wb);
1034         spin_unlock(&wb->list_lock);
1035 }
1036
1037 /*
1038  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1039  * furthest end of its superblock's dirty-inode list.
1040  *
1041  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1042  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1043  * the case then the inode must have been redirtied while it was being written
1044  * out and we don't reset its dirtied_when.
1045  */
1046 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1047 {
1048         if (!list_empty(&wb->b_dirty)) {
1049                 struct inode *tail;
1050
1051                 tail = wb_inode(wb->b_dirty.next);
1052                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1053                         inode->dirtied_when = jiffies;
1054         }
1055         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1056 }
1057
1058 /*
1059  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1060  */
1061 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1062 {
1063         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1064 }
1065
1066 static void inode_sync_complete(struct inode *inode)
1067 {
1068         inode->i_state &= ~I_SYNC;
1069         /* If inode is clean an unused, put it into LRU now... */
1070         inode_add_lru(inode);
1071         /* Waiters must see I_SYNC cleared before being woken up */
1072         smp_mb();
1073         wake_up_bit(&inode->i_state, __I_SYNC);
1074 }
1075
1076 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1077 {
1078         bool ret = time_after(inode->dirtied_when, t);
1079 #ifndef CONFIG_64BIT
1080         /*
1081          * For inodes being constantly redirtied, dirtied_when can get stuck.
1082          * It _appears_ to be in the future, but is actually in distant past.
1083          * This test is necessary to prevent such wrapped-around relative times
1084          * from permanently stopping the whole bdi writeback.
1085          */
1086         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1087 #endif
1088         return ret;
1089 }
1090
1091 #define EXPIRE_DIRTY_ATIME 0x0001
1092
1093 /*
1094  * Move expired (dirtied before work->older_than_this) dirty inodes from
1095  * @delaying_queue to @dispatch_queue.
1096  */
1097 static int move_expired_inodes(struct list_head *delaying_queue,
1098                                struct list_head *dispatch_queue,
1099                                int flags,
1100                                struct wb_writeback_work *work)
1101 {
1102         unsigned long *older_than_this = NULL;
1103         unsigned long expire_time;
1104         LIST_HEAD(tmp);
1105         struct list_head *pos, *node;
1106         struct super_block *sb = NULL;
1107         struct inode *inode;
1108         int do_sb_sort = 0;
1109         int moved = 0;
1110
1111         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1112                 older_than_this = work->older_than_this;
1113         else if (!work->for_sync) {
1114                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1115                 older_than_this = &expire_time;
1116         }
1117         while (!list_empty(delaying_queue)) {
1118                 inode = wb_inode(delaying_queue->prev);
1119                 if (older_than_this &&
1120                     inode_dirtied_after(inode, *older_than_this))
1121                         break;
1122                 list_move(&inode->i_io_list, &tmp);
1123                 moved++;
1124                 if (flags & EXPIRE_DIRTY_ATIME)
1125                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1126                 if (sb_is_blkdev_sb(inode->i_sb))
1127                         continue;
1128                 if (sb && sb != inode->i_sb)
1129                         do_sb_sort = 1;
1130                 sb = inode->i_sb;
1131         }
1132
1133         /* just one sb in list, splice to dispatch_queue and we're done */
1134         if (!do_sb_sort) {
1135                 list_splice(&tmp, dispatch_queue);
1136                 goto out;
1137         }
1138
1139         /* Move inodes from one superblock together */
1140         while (!list_empty(&tmp)) {
1141                 sb = wb_inode(tmp.prev)->i_sb;
1142                 list_for_each_prev_safe(pos, node, &tmp) {
1143                         inode = wb_inode(pos);
1144                         if (inode->i_sb == sb)
1145                                 list_move(&inode->i_io_list, dispatch_queue);
1146                 }
1147         }
1148 out:
1149         return moved;
1150 }
1151
1152 /*
1153  * Queue all expired dirty inodes for io, eldest first.
1154  * Before
1155  *         newly dirtied     b_dirty    b_io    b_more_io
1156  *         =============>    gf         edc     BA
1157  * After
1158  *         newly dirtied     b_dirty    b_io    b_more_io
1159  *         =============>    g          fBAedc
1160  *                                           |
1161  *                                           +--> dequeue for IO
1162  */
1163 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1164 {
1165         int moved;
1166
1167         assert_spin_locked(&wb->list_lock);
1168         list_splice_init(&wb->b_more_io, &wb->b_io);
1169         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1170         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1171                                      EXPIRE_DIRTY_ATIME, work);
1172         if (moved)
1173                 wb_io_lists_populated(wb);
1174         trace_writeback_queue_io(wb, work, moved);
1175 }
1176
1177 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1178 {
1179         int ret;
1180
1181         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1182                 trace_writeback_write_inode_start(inode, wbc);
1183                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1184                 trace_writeback_write_inode(inode, wbc);
1185                 return ret;
1186         }
1187         return 0;
1188 }
1189
1190 /*
1191  * Wait for writeback on an inode to complete. Called with i_lock held.
1192  * Caller must make sure inode cannot go away when we drop i_lock.
1193  */
1194 static void __inode_wait_for_writeback(struct inode *inode)
1195         __releases(inode->i_lock)
1196         __acquires(inode->i_lock)
1197 {
1198         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1199         wait_queue_head_t *wqh;
1200
1201         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1202         while (inode->i_state & I_SYNC) {
1203                 spin_unlock(&inode->i_lock);
1204                 __wait_on_bit(wqh, &wq, bit_wait,
1205                               TASK_UNINTERRUPTIBLE);
1206                 spin_lock(&inode->i_lock);
1207         }
1208 }
1209
1210 /*
1211  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1212  */
1213 void inode_wait_for_writeback(struct inode *inode)
1214 {
1215         spin_lock(&inode->i_lock);
1216         __inode_wait_for_writeback(inode);
1217         spin_unlock(&inode->i_lock);
1218 }
1219
1220 /*
1221  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1222  * held and drops it. It is aimed for callers not holding any inode reference
1223  * so once i_lock is dropped, inode can go away.
1224  */
1225 static void inode_sleep_on_writeback(struct inode *inode)
1226         __releases(inode->i_lock)
1227 {
1228         DEFINE_WAIT(wait);
1229         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1230         int sleep;
1231
1232         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1233         sleep = inode->i_state & I_SYNC;
1234         spin_unlock(&inode->i_lock);
1235         if (sleep)
1236                 schedule();
1237         finish_wait(wqh, &wait);
1238 }
1239
1240 /*
1241  * Find proper writeback list for the inode depending on its current state and
1242  * possibly also change of its state while we were doing writeback.  Here we
1243  * handle things such as livelock prevention or fairness of writeback among
1244  * inodes. This function can be called only by flusher thread - noone else
1245  * processes all inodes in writeback lists and requeueing inodes behind flusher
1246  * thread's back can have unexpected consequences.
1247  */
1248 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1249                           struct writeback_control *wbc)
1250 {
1251         if (inode->i_state & I_FREEING)
1252                 return;
1253
1254         /*
1255          * Sync livelock prevention. Each inode is tagged and synced in one
1256          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1257          * the dirty time to prevent enqueue and sync it again.
1258          */
1259         if ((inode->i_state & I_DIRTY) &&
1260             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1261                 inode->dirtied_when = jiffies;
1262
1263         if (wbc->pages_skipped) {
1264                 /*
1265                  * writeback is not making progress due to locked
1266                  * buffers. Skip this inode for now.
1267                  */
1268                 redirty_tail(inode, wb);
1269                 return;
1270         }
1271
1272         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1273                 /*
1274                  * We didn't write back all the pages.  nfs_writepages()
1275                  * sometimes bales out without doing anything.
1276                  */
1277                 if (wbc->nr_to_write <= 0) {
1278                         /* Slice used up. Queue for next turn. */
1279                         requeue_io(inode, wb);
1280                 } else {
1281                         /*
1282                          * Writeback blocked by something other than
1283                          * congestion. Delay the inode for some time to
1284                          * avoid spinning on the CPU (100% iowait)
1285                          * retrying writeback of the dirty page/inode
1286                          * that cannot be performed immediately.
1287                          */
1288                         redirty_tail(inode, wb);
1289                 }
1290         } else if (inode->i_state & I_DIRTY) {
1291                 /*
1292                  * Filesystems can dirty the inode during writeback operations,
1293                  * such as delayed allocation during submission or metadata
1294                  * updates after data IO completion.
1295                  */
1296                 redirty_tail(inode, wb);
1297         } else if (inode->i_state & I_DIRTY_TIME) {
1298                 inode->dirtied_when = jiffies;
1299                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1300         } else {
1301                 /* The inode is clean. Remove from writeback lists. */
1302                 inode_io_list_del_locked(inode, wb);
1303         }
1304 }
1305
1306 /*
1307  * Write out an inode and its dirty pages. Do not update the writeback list
1308  * linkage. That is left to the caller. The caller is also responsible for
1309  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1310  */
1311 static int
1312 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1313 {
1314         struct address_space *mapping = inode->i_mapping;
1315         long nr_to_write = wbc->nr_to_write;
1316         unsigned dirty;
1317         int ret;
1318
1319         WARN_ON(!(inode->i_state & I_SYNC));
1320
1321         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1322
1323         ret = do_writepages(mapping, wbc);
1324
1325         /*
1326          * Make sure to wait on the data before writing out the metadata.
1327          * This is important for filesystems that modify metadata on data
1328          * I/O completion. We don't do it for sync(2) writeback because it has a
1329          * separate, external IO completion path and ->sync_fs for guaranteeing
1330          * inode metadata is written back correctly.
1331          */
1332         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1333                 int err = filemap_fdatawait(mapping);
1334                 if (ret == 0)
1335                         ret = err;
1336         }
1337
1338         /*
1339          * Some filesystems may redirty the inode during the writeback
1340          * due to delalloc, clear dirty metadata flags right before
1341          * write_inode()
1342          */
1343         spin_lock(&inode->i_lock);
1344
1345         dirty = inode->i_state & I_DIRTY;
1346         if (inode->i_state & I_DIRTY_TIME) {
1347                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1348                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1349                     unlikely(time_after(jiffies,
1350                                         (inode->dirtied_time_when +
1351                                          dirtytime_expire_interval * HZ)))) {
1352                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1353                         trace_writeback_lazytime(inode);
1354                 }
1355         } else
1356                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1357         inode->i_state &= ~dirty;
1358
1359         /*
1360          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1361          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1362          * either they see the I_DIRTY bits cleared or we see the dirtied
1363          * inode.
1364          *
1365          * I_DIRTY_PAGES is always cleared together above even if @mapping
1366          * still has dirty pages.  The flag is reinstated after smp_mb() if
1367          * necessary.  This guarantees that either __mark_inode_dirty()
1368          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1369          */
1370         smp_mb();
1371
1372         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1373                 inode->i_state |= I_DIRTY_PAGES;
1374
1375         spin_unlock(&inode->i_lock);
1376
1377         if (dirty & I_DIRTY_TIME)
1378                 mark_inode_dirty_sync(inode);
1379         /* Don't write the inode if only I_DIRTY_PAGES was set */
1380         if (dirty & ~I_DIRTY_PAGES) {
1381                 int err = write_inode(inode, wbc);
1382                 if (ret == 0)
1383                         ret = err;
1384         }
1385         trace_writeback_single_inode(inode, wbc, nr_to_write);
1386         return ret;
1387 }
1388
1389 /*
1390  * Write out an inode's dirty pages. Either the caller has an active reference
1391  * on the inode or the inode has I_WILL_FREE set.
1392  *
1393  * This function is designed to be called for writing back one inode which
1394  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1395  * and does more profound writeback list handling in writeback_sb_inodes().
1396  */
1397 static int writeback_single_inode(struct inode *inode,
1398                                   struct writeback_control *wbc)
1399 {
1400         struct bdi_writeback *wb;
1401         int ret = 0;
1402
1403         spin_lock(&inode->i_lock);
1404         if (!atomic_read(&inode->i_count))
1405                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1406         else
1407                 WARN_ON(inode->i_state & I_WILL_FREE);
1408
1409         if (inode->i_state & I_SYNC) {
1410                 if (wbc->sync_mode != WB_SYNC_ALL)
1411                         goto out;
1412                 /*
1413                  * It's a data-integrity sync. We must wait. Since callers hold
1414                  * inode reference or inode has I_WILL_FREE set, it cannot go
1415                  * away under us.
1416                  */
1417                 __inode_wait_for_writeback(inode);
1418         }
1419         WARN_ON(inode->i_state & I_SYNC);
1420         /*
1421          * Skip inode if it is clean and we have no outstanding writeback in
1422          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1423          * function since flusher thread may be doing for example sync in
1424          * parallel and if we move the inode, it could get skipped. So here we
1425          * make sure inode is on some writeback list and leave it there unless
1426          * we have completely cleaned the inode.
1427          */
1428         if (!(inode->i_state & I_DIRTY_ALL) &&
1429             (wbc->sync_mode != WB_SYNC_ALL ||
1430              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1431                 goto out;
1432         inode->i_state |= I_SYNC;
1433         wbc_attach_and_unlock_inode(wbc, inode);
1434
1435         ret = __writeback_single_inode(inode, wbc);
1436
1437         wbc_detach_inode(wbc);
1438
1439         wb = inode_to_wb_and_lock_list(inode);
1440         spin_lock(&inode->i_lock);
1441         /*
1442          * If inode is clean, remove it from writeback lists. Otherwise don't
1443          * touch it. See comment above for explanation.
1444          */
1445         if (!(inode->i_state & I_DIRTY_ALL))
1446                 inode_io_list_del_locked(inode, wb);
1447         spin_unlock(&wb->list_lock);
1448         inode_sync_complete(inode);
1449 out:
1450         spin_unlock(&inode->i_lock);
1451         return ret;
1452 }
1453
1454 static long writeback_chunk_size(struct bdi_writeback *wb,
1455                                  struct wb_writeback_work *work)
1456 {
1457         long pages;
1458
1459         /*
1460          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1461          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1462          * here avoids calling into writeback_inodes_wb() more than once.
1463          *
1464          * The intended call sequence for WB_SYNC_ALL writeback is:
1465          *
1466          *      wb_writeback()
1467          *          writeback_sb_inodes()       <== called only once
1468          *              write_cache_pages()     <== called once for each inode
1469          *                   (quickly) tag currently dirty pages
1470          *                   (maybe slowly) sync all tagged pages
1471          */
1472         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1473                 pages = LONG_MAX;
1474         else {
1475                 pages = min(wb->avg_write_bandwidth / 2,
1476                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1477                 pages = min(pages, work->nr_pages);
1478                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1479                                    MIN_WRITEBACK_PAGES);
1480         }
1481
1482         return pages;
1483 }
1484
1485 /*
1486  * Write a portion of b_io inodes which belong to @sb.
1487  *
1488  * Return the number of pages and/or inodes written.
1489  *
1490  * NOTE! This is called with wb->list_lock held, and will
1491  * unlock and relock that for each inode it ends up doing
1492  * IO for.
1493  */
1494 static long writeback_sb_inodes(struct super_block *sb,
1495                                 struct bdi_writeback *wb,
1496                                 struct wb_writeback_work *work)
1497 {
1498         struct writeback_control wbc = {
1499                 .sync_mode              = work->sync_mode,
1500                 .tagged_writepages      = work->tagged_writepages,
1501                 .for_kupdate            = work->for_kupdate,
1502                 .for_background         = work->for_background,
1503                 .for_sync               = work->for_sync,
1504                 .range_cyclic           = work->range_cyclic,
1505                 .range_start            = 0,
1506                 .range_end              = LLONG_MAX,
1507         };
1508         unsigned long start_time = jiffies;
1509         long write_chunk;
1510         long wrote = 0;  /* count both pages and inodes */
1511
1512         while (!list_empty(&wb->b_io)) {
1513                 struct inode *inode = wb_inode(wb->b_io.prev);
1514                 struct bdi_writeback *tmp_wb;
1515
1516                 if (inode->i_sb != sb) {
1517                         if (work->sb) {
1518                                 /*
1519                                  * We only want to write back data for this
1520                                  * superblock, move all inodes not belonging
1521                                  * to it back onto the dirty list.
1522                                  */
1523                                 redirty_tail(inode, wb);
1524                                 continue;
1525                         }
1526
1527                         /*
1528                          * The inode belongs to a different superblock.
1529                          * Bounce back to the caller to unpin this and
1530                          * pin the next superblock.
1531                          */
1532                         break;
1533                 }
1534
1535                 /*
1536                  * Don't bother with new inodes or inodes being freed, first
1537                  * kind does not need periodic writeout yet, and for the latter
1538                  * kind writeout is handled by the freer.
1539                  */
1540                 spin_lock(&inode->i_lock);
1541                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1542                         spin_unlock(&inode->i_lock);
1543                         redirty_tail(inode, wb);
1544                         continue;
1545                 }
1546                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1547                         /*
1548                          * If this inode is locked for writeback and we are not
1549                          * doing writeback-for-data-integrity, move it to
1550                          * b_more_io so that writeback can proceed with the
1551                          * other inodes on s_io.
1552                          *
1553                          * We'll have another go at writing back this inode
1554                          * when we completed a full scan of b_io.
1555                          */
1556                         spin_unlock(&inode->i_lock);
1557                         requeue_io(inode, wb);
1558                         trace_writeback_sb_inodes_requeue(inode);
1559                         continue;
1560                 }
1561                 spin_unlock(&wb->list_lock);
1562
1563                 /*
1564                  * We already requeued the inode if it had I_SYNC set and we
1565                  * are doing WB_SYNC_NONE writeback. So this catches only the
1566                  * WB_SYNC_ALL case.
1567                  */
1568                 if (inode->i_state & I_SYNC) {
1569                         /* Wait for I_SYNC. This function drops i_lock... */
1570                         inode_sleep_on_writeback(inode);
1571                         /* Inode may be gone, start again */
1572                         spin_lock(&wb->list_lock);
1573                         continue;
1574                 }
1575                 inode->i_state |= I_SYNC;
1576                 wbc_attach_and_unlock_inode(&wbc, inode);
1577
1578                 write_chunk = writeback_chunk_size(wb, work);
1579                 wbc.nr_to_write = write_chunk;
1580                 wbc.pages_skipped = 0;
1581
1582                 /*
1583                  * We use I_SYNC to pin the inode in memory. While it is set
1584                  * evict_inode() will wait so the inode cannot be freed.
1585                  */
1586                 __writeback_single_inode(inode, &wbc);
1587
1588                 wbc_detach_inode(&wbc);
1589                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1590                 wrote += write_chunk - wbc.nr_to_write;
1591
1592                 if (need_resched()) {
1593                         /*
1594                          * We're trying to balance between building up a nice
1595                          * long list of IOs to improve our merge rate, and
1596                          * getting those IOs out quickly for anyone throttling
1597                          * in balance_dirty_pages().  cond_resched() doesn't
1598                          * unplug, so get our IOs out the door before we
1599                          * give up the CPU.
1600                          */
1601                         blk_flush_plug(current);
1602                         cond_resched();
1603                 }
1604
1605                 /*
1606                  * Requeue @inode if still dirty.  Be careful as @inode may
1607                  * have been switched to another wb in the meantime.
1608                  */
1609                 tmp_wb = inode_to_wb_and_lock_list(inode);
1610                 spin_lock(&inode->i_lock);
1611                 if (!(inode->i_state & I_DIRTY_ALL))
1612                         wrote++;
1613                 requeue_inode(inode, tmp_wb, &wbc);
1614                 inode_sync_complete(inode);
1615                 spin_unlock(&inode->i_lock);
1616
1617                 if (unlikely(tmp_wb != wb)) {
1618                         spin_unlock(&tmp_wb->list_lock);
1619                         spin_lock(&wb->list_lock);
1620                 }
1621
1622                 /*
1623                  * bail out to wb_writeback() often enough to check
1624                  * background threshold and other termination conditions.
1625                  */
1626                 if (wrote) {
1627                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1628                                 break;
1629                         if (work->nr_pages <= 0)
1630                                 break;
1631                 }
1632         }
1633         return wrote;
1634 }
1635
1636 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1637                                   struct wb_writeback_work *work)
1638 {
1639         unsigned long start_time = jiffies;
1640         long wrote = 0;
1641
1642         while (!list_empty(&wb->b_io)) {
1643                 struct inode *inode = wb_inode(wb->b_io.prev);
1644                 struct super_block *sb = inode->i_sb;
1645
1646                 if (!trylock_super(sb)) {
1647                         /*
1648                          * trylock_super() may fail consistently due to
1649                          * s_umount being grabbed by someone else. Don't use
1650                          * requeue_io() to avoid busy retrying the inode/sb.
1651                          */
1652                         redirty_tail(inode, wb);
1653                         continue;
1654                 }
1655                 wrote += writeback_sb_inodes(sb, wb, work);
1656                 up_read(&sb->s_umount);
1657
1658                 /* refer to the same tests at the end of writeback_sb_inodes */
1659                 if (wrote) {
1660                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1661                                 break;
1662                         if (work->nr_pages <= 0)
1663                                 break;
1664                 }
1665         }
1666         /* Leave any unwritten inodes on b_io */
1667         return wrote;
1668 }
1669
1670 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1671                                 enum wb_reason reason)
1672 {
1673         struct wb_writeback_work work = {
1674                 .nr_pages       = nr_pages,
1675                 .sync_mode      = WB_SYNC_NONE,
1676                 .range_cyclic   = 1,
1677                 .reason         = reason,
1678         };
1679         struct blk_plug plug;
1680
1681         blk_start_plug(&plug);
1682         spin_lock(&wb->list_lock);
1683         if (list_empty(&wb->b_io))
1684                 queue_io(wb, &work);
1685         __writeback_inodes_wb(wb, &work);
1686         spin_unlock(&wb->list_lock);
1687         blk_finish_plug(&plug);
1688
1689         return nr_pages - work.nr_pages;
1690 }
1691
1692 /*
1693  * Explicit flushing or periodic writeback of "old" data.
1694  *
1695  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1696  * dirtying-time in the inode's address_space.  So this periodic writeback code
1697  * just walks the superblock inode list, writing back any inodes which are
1698  * older than a specific point in time.
1699  *
1700  * Try to run once per dirty_writeback_interval.  But if a writeback event
1701  * takes longer than a dirty_writeback_interval interval, then leave a
1702  * one-second gap.
1703  *
1704  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1705  * all dirty pages if they are all attached to "old" mappings.
1706  */
1707 static long wb_writeback(struct bdi_writeback *wb,
1708                          struct wb_writeback_work *work)
1709 {
1710         unsigned long wb_start = jiffies;
1711         long nr_pages = work->nr_pages;
1712         unsigned long oldest_jif;
1713         struct inode *inode;
1714         long progress;
1715         struct blk_plug plug;
1716
1717         oldest_jif = jiffies;
1718         work->older_than_this = &oldest_jif;
1719
1720         blk_start_plug(&plug);
1721         spin_lock(&wb->list_lock);
1722         for (;;) {
1723                 /*
1724                  * Stop writeback when nr_pages has been consumed
1725                  */
1726                 if (work->nr_pages <= 0)
1727                         break;
1728
1729                 /*
1730                  * Background writeout and kupdate-style writeback may
1731                  * run forever. Stop them if there is other work to do
1732                  * so that e.g. sync can proceed. They'll be restarted
1733                  * after the other works are all done.
1734                  */
1735                 if ((work->for_background || work->for_kupdate) &&
1736                     !list_empty(&wb->work_list))
1737                         break;
1738
1739                 /*
1740                  * For background writeout, stop when we are below the
1741                  * background dirty threshold
1742                  */
1743                 if (work->for_background && !wb_over_bg_thresh(wb))
1744                         break;
1745
1746                 /*
1747                  * Kupdate and background works are special and we want to
1748                  * include all inodes that need writing. Livelock avoidance is
1749                  * handled by these works yielding to any other work so we are
1750                  * safe.
1751                  */
1752                 if (work->for_kupdate) {
1753                         oldest_jif = jiffies -
1754                                 msecs_to_jiffies(dirty_expire_interval * 10);
1755                 } else if (work->for_background)
1756                         oldest_jif = jiffies;
1757
1758                 trace_writeback_start(wb, work);
1759                 if (list_empty(&wb->b_io))
1760                         queue_io(wb, work);
1761                 if (work->sb)
1762                         progress = writeback_sb_inodes(work->sb, wb, work);
1763                 else
1764                         progress = __writeback_inodes_wb(wb, work);
1765                 trace_writeback_written(wb, work);
1766
1767                 wb_update_bandwidth(wb, wb_start);
1768
1769                 /*
1770                  * Did we write something? Try for more
1771                  *
1772                  * Dirty inodes are moved to b_io for writeback in batches.
1773                  * The completion of the current batch does not necessarily
1774                  * mean the overall work is done. So we keep looping as long
1775                  * as made some progress on cleaning pages or inodes.
1776                  */
1777                 if (progress)
1778                         continue;
1779                 /*
1780                  * No more inodes for IO, bail
1781                  */
1782                 if (list_empty(&wb->b_more_io))
1783                         break;
1784                 /*
1785                  * Nothing written. Wait for some inode to
1786                  * become available for writeback. Otherwise
1787                  * we'll just busyloop.
1788                  */
1789                 if (!list_empty(&wb->b_more_io))  {
1790                         trace_writeback_wait(wb, work);
1791                         inode = wb_inode(wb->b_more_io.prev);
1792                         spin_lock(&inode->i_lock);
1793                         spin_unlock(&wb->list_lock);
1794                         /* This function drops i_lock... */
1795                         inode_sleep_on_writeback(inode);
1796                         spin_lock(&wb->list_lock);
1797                 }
1798         }
1799         spin_unlock(&wb->list_lock);
1800         blk_finish_plug(&plug);
1801
1802         return nr_pages - work->nr_pages;
1803 }
1804
1805 /*
1806  * Return the next wb_writeback_work struct that hasn't been processed yet.
1807  */
1808 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1809 {
1810         struct wb_writeback_work *work = NULL;
1811
1812         spin_lock_bh(&wb->work_lock);
1813         if (!list_empty(&wb->work_list)) {
1814                 work = list_entry(wb->work_list.next,
1815                                   struct wb_writeback_work, list);
1816                 list_del_init(&work->list);
1817         }
1818         spin_unlock_bh(&wb->work_lock);
1819         return work;
1820 }
1821
1822 /*
1823  * Add in the number of potentially dirty inodes, because each inode
1824  * write can dirty pagecache in the underlying blockdev.
1825  */
1826 static unsigned long get_nr_dirty_pages(void)
1827 {
1828         return global_page_state(NR_FILE_DIRTY) +
1829                 global_page_state(NR_UNSTABLE_NFS) +
1830                 get_nr_dirty_inodes();
1831 }
1832
1833 static long wb_check_background_flush(struct bdi_writeback *wb)
1834 {
1835         if (wb_over_bg_thresh(wb)) {
1836
1837                 struct wb_writeback_work work = {
1838                         .nr_pages       = LONG_MAX,
1839                         .sync_mode      = WB_SYNC_NONE,
1840                         .for_background = 1,
1841                         .range_cyclic   = 1,
1842                         .reason         = WB_REASON_BACKGROUND,
1843                 };
1844
1845                 return wb_writeback(wb, &work);
1846         }
1847
1848         return 0;
1849 }
1850
1851 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1852 {
1853         unsigned long expired;
1854         long nr_pages;
1855
1856         /*
1857          * When set to zero, disable periodic writeback
1858          */
1859         if (!dirty_writeback_interval)
1860                 return 0;
1861
1862         expired = wb->last_old_flush +
1863                         msecs_to_jiffies(dirty_writeback_interval * 10);
1864         if (time_before(jiffies, expired))
1865                 return 0;
1866
1867         wb->last_old_flush = jiffies;
1868         nr_pages = get_nr_dirty_pages();
1869
1870         if (nr_pages) {
1871                 struct wb_writeback_work work = {
1872                         .nr_pages       = nr_pages,
1873                         .sync_mode      = WB_SYNC_NONE,
1874                         .for_kupdate    = 1,
1875                         .range_cyclic   = 1,
1876                         .reason         = WB_REASON_PERIODIC,
1877                 };
1878
1879                 return wb_writeback(wb, &work);
1880         }
1881
1882         return 0;
1883 }
1884
1885 /*
1886  * Retrieve work items and do the writeback they describe
1887  */
1888 static long wb_do_writeback(struct bdi_writeback *wb)
1889 {
1890         struct wb_writeback_work *work;
1891         long wrote = 0;
1892
1893         set_bit(WB_writeback_running, &wb->state);
1894         while ((work = get_next_work_item(wb)) != NULL) {
1895                 trace_writeback_exec(wb, work);
1896                 wrote += wb_writeback(wb, work);
1897                 finish_writeback_work(wb, work);
1898         }
1899
1900         /*
1901          * Check for periodic writeback, kupdated() style
1902          */
1903         wrote += wb_check_old_data_flush(wb);
1904         wrote += wb_check_background_flush(wb);
1905         clear_bit(WB_writeback_running, &wb->state);
1906
1907         return wrote;
1908 }
1909
1910 /*
1911  * Handle writeback of dirty data for the device backed by this bdi. Also
1912  * reschedules periodically and does kupdated style flushing.
1913  */
1914 void wb_workfn(struct work_struct *work)
1915 {
1916         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1917                                                 struct bdi_writeback, dwork);
1918         long pages_written;
1919
1920         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1921         current->flags |= PF_SWAPWRITE;
1922
1923         if (likely(!current_is_workqueue_rescuer() ||
1924                    !test_bit(WB_registered, &wb->state))) {
1925                 /*
1926                  * The normal path.  Keep writing back @wb until its
1927                  * work_list is empty.  Note that this path is also taken
1928                  * if @wb is shutting down even when we're running off the
1929                  * rescuer as work_list needs to be drained.
1930                  */
1931                 do {
1932                         pages_written = wb_do_writeback(wb);
1933                         trace_writeback_pages_written(pages_written);
1934                 } while (!list_empty(&wb->work_list));
1935         } else {
1936                 /*
1937                  * bdi_wq can't get enough workers and we're running off
1938                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1939                  * enough for efficient IO.
1940                  */
1941                 pages_written = writeback_inodes_wb(wb, 1024,
1942                                                     WB_REASON_FORKER_THREAD);
1943                 trace_writeback_pages_written(pages_written);
1944         }
1945
1946         if (!list_empty(&wb->work_list))
1947                 wb_wakeup(wb);
1948         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1949                 wb_wakeup_delayed(wb);
1950
1951         current->flags &= ~PF_SWAPWRITE;
1952 }
1953
1954 /*
1955  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1956  * the whole world.
1957  */
1958 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1959 {
1960         struct backing_dev_info *bdi;
1961
1962         if (!nr_pages)
1963                 nr_pages = get_nr_dirty_pages();
1964
1965         rcu_read_lock();
1966         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1967                 struct bdi_writeback *wb;
1968
1969                 if (!bdi_has_dirty_io(bdi))
1970                         continue;
1971
1972                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1973                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1974                                            false, reason);
1975         }
1976         rcu_read_unlock();
1977 }
1978
1979 /*
1980  * Wake up bdi's periodically to make sure dirtytime inodes gets
1981  * written back periodically.  We deliberately do *not* check the
1982  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1983  * kernel to be constantly waking up once there are any dirtytime
1984  * inodes on the system.  So instead we define a separate delayed work
1985  * function which gets called much more rarely.  (By default, only
1986  * once every 12 hours.)
1987  *
1988  * If there is any other write activity going on in the file system,
1989  * this function won't be necessary.  But if the only thing that has
1990  * happened on the file system is a dirtytime inode caused by an atime
1991  * update, we need this infrastructure below to make sure that inode
1992  * eventually gets pushed out to disk.
1993  */
1994 static void wakeup_dirtytime_writeback(struct work_struct *w);
1995 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1996
1997 static void wakeup_dirtytime_writeback(struct work_struct *w)
1998 {
1999         struct backing_dev_info *bdi;
2000
2001         rcu_read_lock();
2002         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2003                 struct bdi_writeback *wb;
2004
2005                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2006                         if (!list_empty(&wb->b_dirty_time))
2007                                 wb_wakeup(wb);
2008         }
2009         rcu_read_unlock();
2010         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2011 }
2012
2013 static int __init start_dirtytime_writeback(void)
2014 {
2015         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2016         return 0;
2017 }
2018 __initcall(start_dirtytime_writeback);
2019
2020 int dirtytime_interval_handler(struct ctl_table *table, int write,
2021                                void __user *buffer, size_t *lenp, loff_t *ppos)
2022 {
2023         int ret;
2024
2025         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2026         if (ret == 0 && write)
2027                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2028         return ret;
2029 }
2030
2031 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2032 {
2033         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2034                 struct dentry *dentry;
2035                 const char *name = "?";
2036
2037                 dentry = d_find_alias(inode);
2038                 if (dentry) {
2039                         spin_lock(&dentry->d_lock);
2040                         name = (const char *) dentry->d_name.name;
2041                 }
2042                 printk(KERN_DEBUG
2043                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2044                        current->comm, task_pid_nr(current), inode->i_ino,
2045                        name, inode->i_sb->s_id);
2046                 if (dentry) {
2047                         spin_unlock(&dentry->d_lock);
2048                         dput(dentry);
2049                 }
2050         }
2051 }
2052
2053 /**
2054  *      __mark_inode_dirty -    internal function
2055  *      @inode: inode to mark
2056  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2057  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
2058  *      mark_inode_dirty_sync.
2059  *
2060  * Put the inode on the super block's dirty list.
2061  *
2062  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2063  * dirty list only if it is hashed or if it refers to a blockdev.
2064  * If it was not hashed, it will never be added to the dirty list
2065  * even if it is later hashed, as it will have been marked dirty already.
2066  *
2067  * In short, make sure you hash any inodes _before_ you start marking
2068  * them dirty.
2069  *
2070  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2071  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2072  * the kernel-internal blockdev inode represents the dirtying time of the
2073  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2074  * page->mapping->host, so the page-dirtying time is recorded in the internal
2075  * blockdev inode.
2076  */
2077 void __mark_inode_dirty(struct inode *inode, int flags)
2078 {
2079 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2080         struct super_block *sb = inode->i_sb;
2081         int dirtytime;
2082
2083         trace_writeback_mark_inode_dirty(inode, flags);
2084
2085         /*
2086          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2087          * dirty the inode itself
2088          */
2089         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2090                 trace_writeback_dirty_inode_start(inode, flags);
2091
2092                 if (sb->s_op->dirty_inode)
2093                         sb->s_op->dirty_inode(inode, flags);
2094
2095                 trace_writeback_dirty_inode(inode, flags);
2096         }
2097         if (flags & I_DIRTY_INODE)
2098                 flags &= ~I_DIRTY_TIME;
2099         dirtytime = flags & I_DIRTY_TIME;
2100
2101         /*
2102          * Paired with smp_mb() in __writeback_single_inode() for the
2103          * following lockless i_state test.  See there for details.
2104          */
2105         smp_mb();
2106
2107         if (((inode->i_state & flags) == flags) ||
2108             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2109                 return;
2110
2111         if (unlikely(block_dump > 1))
2112                 block_dump___mark_inode_dirty(inode);
2113
2114         spin_lock(&inode->i_lock);
2115         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2116                 goto out_unlock_inode;
2117         if ((inode->i_state & flags) != flags) {
2118                 const int was_dirty = inode->i_state & I_DIRTY;
2119
2120                 inode_attach_wb(inode, NULL);
2121
2122                 if (flags & I_DIRTY_INODE)
2123                         inode->i_state &= ~I_DIRTY_TIME;
2124                 inode->i_state |= flags;
2125
2126                 /*
2127                  * If the inode is being synced, just update its dirty state.
2128                  * The unlocker will place the inode on the appropriate
2129                  * superblock list, based upon its state.
2130                  */
2131                 if (inode->i_state & I_SYNC)
2132                         goto out_unlock_inode;
2133
2134                 /*
2135                  * Only add valid (hashed) inodes to the superblock's
2136                  * dirty list.  Add blockdev inodes as well.
2137                  */
2138                 if (!S_ISBLK(inode->i_mode)) {
2139                         if (inode_unhashed(inode))
2140                                 goto out_unlock_inode;
2141                 }
2142                 if (inode->i_state & I_FREEING)
2143                         goto out_unlock_inode;
2144
2145                 /*
2146                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2147                  * reposition it (that would break b_dirty time-ordering).
2148                  */
2149                 if (!was_dirty) {
2150                         struct bdi_writeback *wb;
2151                         struct list_head *dirty_list;
2152                         bool wakeup_bdi = false;
2153
2154                         wb = locked_inode_to_wb_and_lock_list(inode);
2155
2156                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2157                              !test_bit(WB_registered, &wb->state),
2158                              "bdi-%s not registered\n", wb->bdi->name);
2159
2160                         inode->dirtied_when = jiffies;
2161                         if (dirtytime)
2162                                 inode->dirtied_time_when = jiffies;
2163
2164                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2165                                 dirty_list = &wb->b_dirty;
2166                         else
2167                                 dirty_list = &wb->b_dirty_time;
2168
2169                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2170                                                                dirty_list);
2171
2172                         spin_unlock(&wb->list_lock);
2173                         trace_writeback_dirty_inode_enqueue(inode);
2174
2175                         /*
2176                          * If this is the first dirty inode for this bdi,
2177                          * we have to wake-up the corresponding bdi thread
2178                          * to make sure background write-back happens
2179                          * later.
2180                          */
2181                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2182                                 wb_wakeup_delayed(wb);
2183                         return;
2184                 }
2185         }
2186 out_unlock_inode:
2187         spin_unlock(&inode->i_lock);
2188
2189 #undef I_DIRTY_INODE
2190 }
2191 EXPORT_SYMBOL(__mark_inode_dirty);
2192
2193 /*
2194  * The @s_sync_lock is used to serialise concurrent sync operations
2195  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2196  * Concurrent callers will block on the s_sync_lock rather than doing contending
2197  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2198  * has been issued up to the time this function is enter is guaranteed to be
2199  * completed by the time we have gained the lock and waited for all IO that is
2200  * in progress regardless of the order callers are granted the lock.
2201  */
2202 static void wait_sb_inodes(struct super_block *sb)
2203 {
2204         struct inode *inode, *old_inode = NULL;
2205
2206         /*
2207          * We need to be protected against the filesystem going from
2208          * r/o to r/w or vice versa.
2209          */
2210         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2211
2212         mutex_lock(&sb->s_sync_lock);
2213         spin_lock(&sb->s_inode_list_lock);
2214
2215         /*
2216          * Data integrity sync. Must wait for all pages under writeback,
2217          * because there may have been pages dirtied before our sync
2218          * call, but which had writeout started before we write it out.
2219          * In which case, the inode may not be on the dirty list, but
2220          * we still have to wait for that writeout.
2221          */
2222         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2223                 struct address_space *mapping = inode->i_mapping;
2224
2225                 spin_lock(&inode->i_lock);
2226                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2227                     (mapping->nrpages == 0)) {
2228                         spin_unlock(&inode->i_lock);
2229                         continue;
2230                 }
2231                 __iget(inode);
2232                 spin_unlock(&inode->i_lock);
2233                 spin_unlock(&sb->s_inode_list_lock);
2234
2235                 /*
2236                  * We hold a reference to 'inode' so it couldn't have been
2237                  * removed from s_inodes list while we dropped the
2238                  * s_inode_list_lock.  We cannot iput the inode now as we can
2239                  * be holding the last reference and we cannot iput it under
2240                  * s_inode_list_lock. So we keep the reference and iput it
2241                  * later.
2242                  */
2243                 iput(old_inode);
2244                 old_inode = inode;
2245
2246                 /*
2247                  * We keep the error status of individual mapping so that
2248                  * applications can catch the writeback error using fsync(2).
2249                  * See filemap_fdatawait_keep_errors() for details.
2250                  */
2251                 filemap_fdatawait_keep_errors(mapping);
2252
2253                 cond_resched();
2254
2255                 spin_lock(&sb->s_inode_list_lock);
2256         }
2257         spin_unlock(&sb->s_inode_list_lock);
2258         iput(old_inode);
2259         mutex_unlock(&sb->s_sync_lock);
2260 }
2261
2262 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2263                                      enum wb_reason reason, bool skip_if_busy)
2264 {
2265         DEFINE_WB_COMPLETION_ONSTACK(done);
2266         struct wb_writeback_work work = {
2267                 .sb                     = sb,
2268                 .sync_mode              = WB_SYNC_NONE,
2269                 .tagged_writepages      = 1,
2270                 .done                   = &done,
2271                 .nr_pages               = nr,
2272                 .reason                 = reason,
2273         };
2274         struct backing_dev_info *bdi = sb->s_bdi;
2275
2276         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2277                 return;
2278         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2279
2280         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2281         wb_wait_for_completion(bdi, &done);
2282 }
2283
2284 /**
2285  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2286  * @sb: the superblock
2287  * @nr: the number of pages to write
2288  * @reason: reason why some writeback work initiated
2289  *
2290  * Start writeback on some inodes on this super_block. No guarantees are made
2291  * on how many (if any) will be written, and this function does not wait
2292  * for IO completion of submitted IO.
2293  */
2294 void writeback_inodes_sb_nr(struct super_block *sb,
2295                             unsigned long nr,
2296                             enum wb_reason reason)
2297 {
2298         __writeback_inodes_sb_nr(sb, nr, reason, false);
2299 }
2300 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2301
2302 /**
2303  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2304  * @sb: the superblock
2305  * @reason: reason why some writeback work was initiated
2306  *
2307  * Start writeback on some inodes on this super_block. No guarantees are made
2308  * on how many (if any) will be written, and this function does not wait
2309  * for IO completion of submitted IO.
2310  */
2311 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2312 {
2313         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2314 }
2315 EXPORT_SYMBOL(writeback_inodes_sb);
2316
2317 /**
2318  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2319  * @sb: the superblock
2320  * @nr: the number of pages to write
2321  * @reason: the reason of writeback
2322  *
2323  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2324  * Returns 1 if writeback was started, 0 if not.
2325  */
2326 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2327                                    enum wb_reason reason)
2328 {
2329         if (!down_read_trylock(&sb->s_umount))
2330                 return false;
2331
2332         __writeback_inodes_sb_nr(sb, nr, reason, true);
2333         up_read(&sb->s_umount);
2334         return true;
2335 }
2336 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2337
2338 /**
2339  * try_to_writeback_inodes_sb - try to start writeback if none underway
2340  * @sb: the superblock
2341  * @reason: reason why some writeback work was initiated
2342  *
2343  * Implement by try_to_writeback_inodes_sb_nr()
2344  * Returns 1 if writeback was started, 0 if not.
2345  */
2346 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2347 {
2348         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2349 }
2350 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2351
2352 /**
2353  * sync_inodes_sb       -       sync sb inode pages
2354  * @sb: the superblock
2355  *
2356  * This function writes and waits on any dirty inode belonging to this
2357  * super_block.
2358  */
2359 void sync_inodes_sb(struct super_block *sb)
2360 {
2361         DEFINE_WB_COMPLETION_ONSTACK(done);
2362         struct wb_writeback_work work = {
2363                 .sb             = sb,
2364                 .sync_mode      = WB_SYNC_ALL,
2365                 .nr_pages       = LONG_MAX,
2366                 .range_cyclic   = 0,
2367                 .done           = &done,
2368                 .reason         = WB_REASON_SYNC,
2369                 .for_sync       = 1,
2370         };
2371         struct backing_dev_info *bdi = sb->s_bdi;
2372
2373         /*
2374          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2375          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2376          * bdi_has_dirty() need to be written out too.
2377          */
2378         if (bdi == &noop_backing_dev_info)
2379                 return;
2380         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2381
2382         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2383         bdi_down_write_wb_switch_rwsem(bdi);
2384         bdi_split_work_to_wbs(bdi, &work, false);
2385         wb_wait_for_completion(bdi, &done);
2386         bdi_up_write_wb_switch_rwsem(bdi);
2387
2388         wait_sb_inodes(sb);
2389 }
2390 EXPORT_SYMBOL(sync_inodes_sb);
2391
2392 /**
2393  * write_inode_now      -       write an inode to disk
2394  * @inode: inode to write to disk
2395  * @sync: whether the write should be synchronous or not
2396  *
2397  * This function commits an inode to disk immediately if it is dirty. This is
2398  * primarily needed by knfsd.
2399  *
2400  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2401  */
2402 int write_inode_now(struct inode *inode, int sync)
2403 {
2404         struct writeback_control wbc = {
2405                 .nr_to_write = LONG_MAX,
2406                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2407                 .range_start = 0,
2408                 .range_end = LLONG_MAX,
2409         };
2410
2411         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2412                 wbc.nr_to_write = 0;
2413
2414         might_sleep();
2415         return writeback_single_inode(inode, &wbc);
2416 }
2417 EXPORT_SYMBOL(write_inode_now);
2418
2419 /**
2420  * sync_inode - write an inode and its pages to disk.
2421  * @inode: the inode to sync
2422  * @wbc: controls the writeback mode
2423  *
2424  * sync_inode() will write an inode and its pages to disk.  It will also
2425  * correctly update the inode on its superblock's dirty inode lists and will
2426  * update inode->i_state.
2427  *
2428  * The caller must have a ref on the inode.
2429  */
2430 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2431 {
2432         return writeback_single_inode(inode, wbc);
2433 }
2434 EXPORT_SYMBOL(sync_inode);
2435
2436 /**
2437  * sync_inode_metadata - write an inode to disk
2438  * @inode: the inode to sync
2439  * @wait: wait for I/O to complete.
2440  *
2441  * Write an inode to disk and adjust its dirty state after completion.
2442  *
2443  * Note: only writes the actual inode, no associated data or other metadata.
2444  */
2445 int sync_inode_metadata(struct inode *inode, int wait)
2446 {
2447         struct writeback_control wbc = {
2448                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2449                 .nr_to_write = 0, /* metadata-only */
2450         };
2451
2452         return sync_inode(inode, &wbc);
2453 }
2454 EXPORT_SYMBOL(sync_inode_metadata);