OSDN Git Service

writeback: move last_active to bdi
[android-x86/kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         enum writeback_sync_modes sync_mode;
39         unsigned int for_kupdate:1;
40         unsigned int range_cyclic:1;
41         unsigned int for_background:1;
42
43         struct list_head list;          /* pending work list */
44         struct completion *done;        /* set if the caller waits */
45 };
46
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54
55 #define inode_to_bdi(inode)     ((inode)->i_mapping->backing_dev_info)
56
57 /*
58  * We don't actually have pdflush, but this one is exported though /proc...
59  */
60 int nr_pdflush_threads;
61
62 /**
63  * writeback_in_progress - determine whether there is writeback in progress
64  * @bdi: the device's backing_dev_info structure.
65  *
66  * Determine whether there is writeback waiting to be handled against a
67  * backing device.
68  */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71         return !list_empty(&bdi->work_list);
72 }
73
74 static void bdi_queue_work(struct backing_dev_info *bdi,
75                 struct wb_writeback_work *work)
76 {
77         trace_writeback_queue(bdi, work);
78
79         spin_lock(&bdi->wb_lock);
80         list_add_tail(&work->list, &bdi->work_list);
81         spin_unlock(&bdi->wb_lock);
82
83         /*
84          * If the default thread isn't there, make sure we add it. When
85          * it gets created and wakes up, we'll run this work.
86          */
87         if (unlikely(!bdi->wb.task)) {
88                 trace_writeback_nothread(bdi, work);
89                 wake_up_process(default_backing_dev_info.wb.task);
90         } else {
91                 struct bdi_writeback *wb = &bdi->wb;
92
93                 if (wb->task)
94                         wake_up_process(wb->task);
95         }
96 }
97
98 static void
99 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
100                 bool range_cyclic, bool for_background)
101 {
102         struct wb_writeback_work *work;
103
104         /*
105          * This is WB_SYNC_NONE writeback, so if allocation fails just
106          * wakeup the thread for old dirty data writeback
107          */
108         work = kzalloc(sizeof(*work), GFP_ATOMIC);
109         if (!work) {
110                 if (bdi->wb.task) {
111                         trace_writeback_nowork(bdi);
112                         wake_up_process(bdi->wb.task);
113                 }
114                 return;
115         }
116
117         work->sync_mode = WB_SYNC_NONE;
118         work->nr_pages  = nr_pages;
119         work->range_cyclic = range_cyclic;
120         work->for_background = for_background;
121
122         bdi_queue_work(bdi, work);
123 }
124
125 /**
126  * bdi_start_writeback - start writeback
127  * @bdi: the backing device to write from
128  * @nr_pages: the number of pages to write
129  *
130  * Description:
131  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
132  *   started when this function returns, we make no guarentees on
133  *   completion. Caller need not hold sb s_umount semaphore.
134  *
135  */
136 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
137 {
138         __bdi_start_writeback(bdi, nr_pages, true, false);
139 }
140
141 /**
142  * bdi_start_background_writeback - start background writeback
143  * @bdi: the backing device to write from
144  *
145  * Description:
146  *   This does WB_SYNC_NONE background writeback. The IO is only
147  *   started when this function returns, we make no guarentees on
148  *   completion. Caller need not hold sb s_umount semaphore.
149  */
150 void bdi_start_background_writeback(struct backing_dev_info *bdi)
151 {
152         __bdi_start_writeback(bdi, LONG_MAX, true, true);
153 }
154
155 /*
156  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
157  * furthest end of its superblock's dirty-inode list.
158  *
159  * Before stamping the inode's ->dirtied_when, we check to see whether it is
160  * already the most-recently-dirtied inode on the b_dirty list.  If that is
161  * the case then the inode must have been redirtied while it was being written
162  * out and we don't reset its dirtied_when.
163  */
164 static void redirty_tail(struct inode *inode)
165 {
166         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
167
168         if (!list_empty(&wb->b_dirty)) {
169                 struct inode *tail;
170
171                 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
172                 if (time_before(inode->dirtied_when, tail->dirtied_when))
173                         inode->dirtied_when = jiffies;
174         }
175         list_move(&inode->i_list, &wb->b_dirty);
176 }
177
178 /*
179  * requeue inode for re-scanning after bdi->b_io list is exhausted.
180  */
181 static void requeue_io(struct inode *inode)
182 {
183         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
184
185         list_move(&inode->i_list, &wb->b_more_io);
186 }
187
188 static void inode_sync_complete(struct inode *inode)
189 {
190         /*
191          * Prevent speculative execution through spin_unlock(&inode_lock);
192          */
193         smp_mb();
194         wake_up_bit(&inode->i_state, __I_SYNC);
195 }
196
197 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
198 {
199         bool ret = time_after(inode->dirtied_when, t);
200 #ifndef CONFIG_64BIT
201         /*
202          * For inodes being constantly redirtied, dirtied_when can get stuck.
203          * It _appears_ to be in the future, but is actually in distant past.
204          * This test is necessary to prevent such wrapped-around relative times
205          * from permanently stopping the whole bdi writeback.
206          */
207         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
208 #endif
209         return ret;
210 }
211
212 /*
213  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
214  */
215 static void move_expired_inodes(struct list_head *delaying_queue,
216                                struct list_head *dispatch_queue,
217                                 unsigned long *older_than_this)
218 {
219         LIST_HEAD(tmp);
220         struct list_head *pos, *node;
221         struct super_block *sb = NULL;
222         struct inode *inode;
223         int do_sb_sort = 0;
224
225         while (!list_empty(delaying_queue)) {
226                 inode = list_entry(delaying_queue->prev, struct inode, i_list);
227                 if (older_than_this &&
228                     inode_dirtied_after(inode, *older_than_this))
229                         break;
230                 if (sb && sb != inode->i_sb)
231                         do_sb_sort = 1;
232                 sb = inode->i_sb;
233                 list_move(&inode->i_list, &tmp);
234         }
235
236         /* just one sb in list, splice to dispatch_queue and we're done */
237         if (!do_sb_sort) {
238                 list_splice(&tmp, dispatch_queue);
239                 return;
240         }
241
242         /* Move inodes from one superblock together */
243         while (!list_empty(&tmp)) {
244                 inode = list_entry(tmp.prev, struct inode, i_list);
245                 sb = inode->i_sb;
246                 list_for_each_prev_safe(pos, node, &tmp) {
247                         inode = list_entry(pos, struct inode, i_list);
248                         if (inode->i_sb == sb)
249                                 list_move(&inode->i_list, dispatch_queue);
250                 }
251         }
252 }
253
254 /*
255  * Queue all expired dirty inodes for io, eldest first.
256  */
257 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
258 {
259         list_splice_init(&wb->b_more_io, wb->b_io.prev);
260         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
261 }
262
263 static int write_inode(struct inode *inode, struct writeback_control *wbc)
264 {
265         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
266                 return inode->i_sb->s_op->write_inode(inode, wbc);
267         return 0;
268 }
269
270 /*
271  * Wait for writeback on an inode to complete.
272  */
273 static void inode_wait_for_writeback(struct inode *inode)
274 {
275         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
276         wait_queue_head_t *wqh;
277
278         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
279          while (inode->i_state & I_SYNC) {
280                 spin_unlock(&inode_lock);
281                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
282                 spin_lock(&inode_lock);
283         }
284 }
285
286 /*
287  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
288  * caller has ref on the inode (either via __iget or via syscall against an fd)
289  * or the inode has I_WILL_FREE set (via generic_forget_inode)
290  *
291  * If `wait' is set, wait on the writeout.
292  *
293  * The whole writeout design is quite complex and fragile.  We want to avoid
294  * starvation of particular inodes when others are being redirtied, prevent
295  * livelocks, etc.
296  *
297  * Called under inode_lock.
298  */
299 static int
300 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
301 {
302         struct address_space *mapping = inode->i_mapping;
303         unsigned dirty;
304         int ret;
305
306         if (!atomic_read(&inode->i_count))
307                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
308         else
309                 WARN_ON(inode->i_state & I_WILL_FREE);
310
311         if (inode->i_state & I_SYNC) {
312                 /*
313                  * If this inode is locked for writeback and we are not doing
314                  * writeback-for-data-integrity, move it to b_more_io so that
315                  * writeback can proceed with the other inodes on s_io.
316                  *
317                  * We'll have another go at writing back this inode when we
318                  * completed a full scan of b_io.
319                  */
320                 if (wbc->sync_mode != WB_SYNC_ALL) {
321                         requeue_io(inode);
322                         return 0;
323                 }
324
325                 /*
326                  * It's a data-integrity sync.  We must wait.
327                  */
328                 inode_wait_for_writeback(inode);
329         }
330
331         BUG_ON(inode->i_state & I_SYNC);
332
333         /* Set I_SYNC, reset I_DIRTY_PAGES */
334         inode->i_state |= I_SYNC;
335         inode->i_state &= ~I_DIRTY_PAGES;
336         spin_unlock(&inode_lock);
337
338         ret = do_writepages(mapping, wbc);
339
340         /*
341          * Make sure to wait on the data before writing out the metadata.
342          * This is important for filesystems that modify metadata on data
343          * I/O completion.
344          */
345         if (wbc->sync_mode == WB_SYNC_ALL) {
346                 int err = filemap_fdatawait(mapping);
347                 if (ret == 0)
348                         ret = err;
349         }
350
351         /*
352          * Some filesystems may redirty the inode during the writeback
353          * due to delalloc, clear dirty metadata flags right before
354          * write_inode()
355          */
356         spin_lock(&inode_lock);
357         dirty = inode->i_state & I_DIRTY;
358         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
359         spin_unlock(&inode_lock);
360         /* Don't write the inode if only I_DIRTY_PAGES was set */
361         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
362                 int err = write_inode(inode, wbc);
363                 if (ret == 0)
364                         ret = err;
365         }
366
367         spin_lock(&inode_lock);
368         inode->i_state &= ~I_SYNC;
369         if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
370                 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
371                         /*
372                          * More pages get dirtied by a fast dirtier.
373                          */
374                         goto select_queue;
375                 } else if (inode->i_state & I_DIRTY) {
376                         /*
377                          * At least XFS will redirty the inode during the
378                          * writeback (delalloc) and on io completion (isize).
379                          */
380                         redirty_tail(inode);
381                 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
382                         /*
383                          * We didn't write back all the pages.  nfs_writepages()
384                          * sometimes bales out without doing anything. Redirty
385                          * the inode; Move it from b_io onto b_more_io/b_dirty.
386                          */
387                         /*
388                          * akpm: if the caller was the kupdate function we put
389                          * this inode at the head of b_dirty so it gets first
390                          * consideration.  Otherwise, move it to the tail, for
391                          * the reasons described there.  I'm not really sure
392                          * how much sense this makes.  Presumably I had a good
393                          * reasons for doing it this way, and I'd rather not
394                          * muck with it at present.
395                          */
396                         if (wbc->for_kupdate) {
397                                 /*
398                                  * For the kupdate function we move the inode
399                                  * to b_more_io so it will get more writeout as
400                                  * soon as the queue becomes uncongested.
401                                  */
402                                 inode->i_state |= I_DIRTY_PAGES;
403 select_queue:
404                                 if (wbc->nr_to_write <= 0) {
405                                         /*
406                                          * slice used up: queue for next turn
407                                          */
408                                         requeue_io(inode);
409                                 } else {
410                                         /*
411                                          * somehow blocked: retry later
412                                          */
413                                         redirty_tail(inode);
414                                 }
415                         } else {
416                                 /*
417                                  * Otherwise fully redirty the inode so that
418                                  * other inodes on this superblock will get some
419                                  * writeout.  Otherwise heavy writing to one
420                                  * file would indefinitely suspend writeout of
421                                  * all the other files.
422                                  */
423                                 inode->i_state |= I_DIRTY_PAGES;
424                                 redirty_tail(inode);
425                         }
426                 } else if (atomic_read(&inode->i_count)) {
427                         /*
428                          * The inode is clean, inuse
429                          */
430                         list_move(&inode->i_list, &inode_in_use);
431                 } else {
432                         /*
433                          * The inode is clean, unused
434                          */
435                         list_move(&inode->i_list, &inode_unused);
436                 }
437         }
438         inode_sync_complete(inode);
439         return ret;
440 }
441
442 /*
443  * For background writeback the caller does not have the sb pinned
444  * before calling writeback. So make sure that we do pin it, so it doesn't
445  * go away while we are writing inodes from it.
446  */
447 static bool pin_sb_for_writeback(struct super_block *sb)
448 {
449         spin_lock(&sb_lock);
450         if (list_empty(&sb->s_instances)) {
451                 spin_unlock(&sb_lock);
452                 return false;
453         }
454
455         sb->s_count++;
456         spin_unlock(&sb_lock);
457
458         if (down_read_trylock(&sb->s_umount)) {
459                 if (sb->s_root)
460                         return true;
461                 up_read(&sb->s_umount);
462         }
463
464         put_super(sb);
465         return false;
466 }
467
468 /*
469  * Write a portion of b_io inodes which belong to @sb.
470  *
471  * If @only_this_sb is true, then find and write all such
472  * inodes. Otherwise write only ones which go sequentially
473  * in reverse order.
474  *
475  * Return 1, if the caller writeback routine should be
476  * interrupted. Otherwise return 0.
477  */
478 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
479                 struct writeback_control *wbc, bool only_this_sb)
480 {
481         while (!list_empty(&wb->b_io)) {
482                 long pages_skipped;
483                 struct inode *inode = list_entry(wb->b_io.prev,
484                                                  struct inode, i_list);
485
486                 if (inode->i_sb != sb) {
487                         if (only_this_sb) {
488                                 /*
489                                  * We only want to write back data for this
490                                  * superblock, move all inodes not belonging
491                                  * to it back onto the dirty list.
492                                  */
493                                 redirty_tail(inode);
494                                 continue;
495                         }
496
497                         /*
498                          * The inode belongs to a different superblock.
499                          * Bounce back to the caller to unpin this and
500                          * pin the next superblock.
501                          */
502                         return 0;
503                 }
504
505                 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
506                         requeue_io(inode);
507                         continue;
508                 }
509                 /*
510                  * Was this inode dirtied after sync_sb_inodes was called?
511                  * This keeps sync from extra jobs and livelock.
512                  */
513                 if (inode_dirtied_after(inode, wbc->wb_start))
514                         return 1;
515
516                 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
517                 __iget(inode);
518                 pages_skipped = wbc->pages_skipped;
519                 writeback_single_inode(inode, wbc);
520                 if (wbc->pages_skipped != pages_skipped) {
521                         /*
522                          * writeback is not making progress due to locked
523                          * buffers.  Skip this inode for now.
524                          */
525                         redirty_tail(inode);
526                 }
527                 spin_unlock(&inode_lock);
528                 iput(inode);
529                 cond_resched();
530                 spin_lock(&inode_lock);
531                 if (wbc->nr_to_write <= 0) {
532                         wbc->more_io = 1;
533                         return 1;
534                 }
535                 if (!list_empty(&wb->b_more_io))
536                         wbc->more_io = 1;
537         }
538         /* b_io is empty */
539         return 1;
540 }
541
542 void writeback_inodes_wb(struct bdi_writeback *wb,
543                 struct writeback_control *wbc)
544 {
545         int ret = 0;
546
547         wbc->wb_start = jiffies; /* livelock avoidance */
548         spin_lock(&inode_lock);
549         if (!wbc->for_kupdate || list_empty(&wb->b_io))
550                 queue_io(wb, wbc->older_than_this);
551
552         while (!list_empty(&wb->b_io)) {
553                 struct inode *inode = list_entry(wb->b_io.prev,
554                                                  struct inode, i_list);
555                 struct super_block *sb = inode->i_sb;
556
557                 if (!pin_sb_for_writeback(sb)) {
558                         requeue_io(inode);
559                         continue;
560                 }
561                 ret = writeback_sb_inodes(sb, wb, wbc, false);
562                 drop_super(sb);
563
564                 if (ret)
565                         break;
566         }
567         spin_unlock(&inode_lock);
568         /* Leave any unwritten inodes on b_io */
569 }
570
571 static void __writeback_inodes_sb(struct super_block *sb,
572                 struct bdi_writeback *wb, struct writeback_control *wbc)
573 {
574         WARN_ON(!rwsem_is_locked(&sb->s_umount));
575
576         wbc->wb_start = jiffies; /* livelock avoidance */
577         spin_lock(&inode_lock);
578         if (!wbc->for_kupdate || list_empty(&wb->b_io))
579                 queue_io(wb, wbc->older_than_this);
580         writeback_sb_inodes(sb, wb, wbc, true);
581         spin_unlock(&inode_lock);
582 }
583
584 /*
585  * The maximum number of pages to writeout in a single bdi flush/kupdate
586  * operation.  We do this so we don't hold I_SYNC against an inode for
587  * enormous amounts of time, which would block a userspace task which has
588  * been forced to throttle against that inode.  Also, the code reevaluates
589  * the dirty each time it has written this many pages.
590  */
591 #define MAX_WRITEBACK_PAGES     1024
592
593 static inline bool over_bground_thresh(void)
594 {
595         unsigned long background_thresh, dirty_thresh;
596
597         get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
598
599         return (global_page_state(NR_FILE_DIRTY) +
600                 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
601 }
602
603 /*
604  * Explicit flushing or periodic writeback of "old" data.
605  *
606  * Define "old": the first time one of an inode's pages is dirtied, we mark the
607  * dirtying-time in the inode's address_space.  So this periodic writeback code
608  * just walks the superblock inode list, writing back any inodes which are
609  * older than a specific point in time.
610  *
611  * Try to run once per dirty_writeback_interval.  But if a writeback event
612  * takes longer than a dirty_writeback_interval interval, then leave a
613  * one-second gap.
614  *
615  * older_than_this takes precedence over nr_to_write.  So we'll only write back
616  * all dirty pages if they are all attached to "old" mappings.
617  */
618 static long wb_writeback(struct bdi_writeback *wb,
619                          struct wb_writeback_work *work)
620 {
621         struct writeback_control wbc = {
622                 .sync_mode              = work->sync_mode,
623                 .older_than_this        = NULL,
624                 .for_kupdate            = work->for_kupdate,
625                 .for_background         = work->for_background,
626                 .range_cyclic           = work->range_cyclic,
627         };
628         unsigned long oldest_jif;
629         long wrote = 0;
630         struct inode *inode;
631
632         if (wbc.for_kupdate) {
633                 wbc.older_than_this = &oldest_jif;
634                 oldest_jif = jiffies -
635                                 msecs_to_jiffies(dirty_expire_interval * 10);
636         }
637         if (!wbc.range_cyclic) {
638                 wbc.range_start = 0;
639                 wbc.range_end = LLONG_MAX;
640         }
641
642         for (;;) {
643                 /*
644                  * Stop writeback when nr_pages has been consumed
645                  */
646                 if (work->nr_pages <= 0)
647                         break;
648
649                 /*
650                  * For background writeout, stop when we are below the
651                  * background dirty threshold
652                  */
653                 if (work->for_background && !over_bground_thresh())
654                         break;
655
656                 wbc.more_io = 0;
657                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
658                 wbc.pages_skipped = 0;
659
660                 trace_wbc_writeback_start(&wbc, wb->bdi);
661                 if (work->sb)
662                         __writeback_inodes_sb(work->sb, wb, &wbc);
663                 else
664                         writeback_inodes_wb(wb, &wbc);
665                 trace_wbc_writeback_written(&wbc, wb->bdi);
666
667                 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
668                 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
669
670                 /*
671                  * If we consumed everything, see if we have more
672                  */
673                 if (wbc.nr_to_write <= 0)
674                         continue;
675                 /*
676                  * Didn't write everything and we don't have more IO, bail
677                  */
678                 if (!wbc.more_io)
679                         break;
680                 /*
681                  * Did we write something? Try for more
682                  */
683                 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
684                         continue;
685                 /*
686                  * Nothing written. Wait for some inode to
687                  * become available for writeback. Otherwise
688                  * we'll just busyloop.
689                  */
690                 spin_lock(&inode_lock);
691                 if (!list_empty(&wb->b_more_io))  {
692                         inode = list_entry(wb->b_more_io.prev,
693                                                 struct inode, i_list);
694                         trace_wbc_writeback_wait(&wbc, wb->bdi);
695                         inode_wait_for_writeback(inode);
696                 }
697                 spin_unlock(&inode_lock);
698         }
699
700         return wrote;
701 }
702
703 /*
704  * Return the next wb_writeback_work struct that hasn't been processed yet.
705  */
706 static struct wb_writeback_work *
707 get_next_work_item(struct backing_dev_info *bdi)
708 {
709         struct wb_writeback_work *work = NULL;
710
711         spin_lock(&bdi->wb_lock);
712         if (!list_empty(&bdi->work_list)) {
713                 work = list_entry(bdi->work_list.next,
714                                   struct wb_writeback_work, list);
715                 list_del_init(&work->list);
716         }
717         spin_unlock(&bdi->wb_lock);
718         return work;
719 }
720
721 static long wb_check_old_data_flush(struct bdi_writeback *wb)
722 {
723         unsigned long expired;
724         long nr_pages;
725
726         /*
727          * When set to zero, disable periodic writeback
728          */
729         if (!dirty_writeback_interval)
730                 return 0;
731
732         expired = wb->last_old_flush +
733                         msecs_to_jiffies(dirty_writeback_interval * 10);
734         if (time_before(jiffies, expired))
735                 return 0;
736
737         wb->last_old_flush = jiffies;
738         nr_pages = global_page_state(NR_FILE_DIRTY) +
739                         global_page_state(NR_UNSTABLE_NFS) +
740                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
741
742         if (nr_pages) {
743                 struct wb_writeback_work work = {
744                         .nr_pages       = nr_pages,
745                         .sync_mode      = WB_SYNC_NONE,
746                         .for_kupdate    = 1,
747                         .range_cyclic   = 1,
748                 };
749
750                 return wb_writeback(wb, &work);
751         }
752
753         return 0;
754 }
755
756 /*
757  * Retrieve work items and do the writeback they describe
758  */
759 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
760 {
761         struct backing_dev_info *bdi = wb->bdi;
762         struct wb_writeback_work *work;
763         long wrote = 0;
764
765         while ((work = get_next_work_item(bdi)) != NULL) {
766                 /*
767                  * Override sync mode, in case we must wait for completion
768                  * because this thread is exiting now.
769                  */
770                 if (force_wait)
771                         work->sync_mode = WB_SYNC_ALL;
772
773                 trace_writeback_exec(bdi, work);
774
775                 wrote += wb_writeback(wb, work);
776
777                 /*
778                  * Notify the caller of completion if this is a synchronous
779                  * work item, otherwise just free it.
780                  */
781                 if (work->done)
782                         complete(work->done);
783                 else
784                         kfree(work);
785         }
786
787         /*
788          * Check for periodic writeback, kupdated() style
789          */
790         wrote += wb_check_old_data_flush(wb);
791
792         return wrote;
793 }
794
795 /*
796  * Handle writeback of dirty data for the device backed by this bdi. Also
797  * wakes up periodically and does kupdated style flushing.
798  */
799 int bdi_writeback_thread(void *data)
800 {
801         struct bdi_writeback *wb = data;
802         struct backing_dev_info *bdi = wb->bdi;
803         unsigned long wait_jiffies = -1UL;
804         long pages_written;
805
806         current->flags |= PF_FLUSHER | PF_SWAPWRITE;
807         set_freezable();
808         wb->last_active = jiffies;
809
810         /*
811          * Our parent may run at a different priority, just set us to normal
812          */
813         set_user_nice(current, 0);
814
815         /*
816          * Clear pending bit and wakeup anybody waiting to tear us down
817          */
818         clear_bit(BDI_pending, &bdi->state);
819         smp_mb__after_clear_bit();
820         wake_up_bit(&bdi->state, BDI_pending);
821
822         trace_writeback_thread_start(bdi);
823
824         while (!kthread_should_stop()) {
825                 pages_written = wb_do_writeback(wb, 0);
826
827                 trace_writeback_pages_written(pages_written);
828
829                 if (pages_written)
830                         wb->last_active = jiffies;
831                 else if (wait_jiffies != -1UL) {
832                         unsigned long max_idle;
833
834                         /*
835                          * Longest period of inactivity that we tolerate. If we
836                          * see dirty data again later, the thread will get
837                          * recreated automatically.
838                          */
839                         max_idle = max(5UL * 60 * HZ, wait_jiffies);
840                         if (time_after(jiffies, max_idle + wb->last_active))
841                                 break;
842                 }
843
844                 set_current_state(TASK_INTERRUPTIBLE);
845                 if (!list_empty(&bdi->work_list)) {
846                         __set_current_state(TASK_RUNNING);
847                         continue;
848                 }
849
850                 if (dirty_writeback_interval) {
851                         wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
852                         schedule_timeout(wait_jiffies);
853                 } else
854                         schedule();
855
856                 try_to_freeze();
857         }
858
859         wb->task = NULL;
860
861         /*
862          * Flush any work that raced with us exiting. No new work
863          * will be added, since this bdi isn't discoverable anymore.
864          */
865         if (!list_empty(&bdi->work_list))
866                 wb_do_writeback(wb, 1);
867
868         trace_writeback_thread_stop(bdi);
869         return 0;
870 }
871
872
873 /*
874  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
875  * the whole world.
876  */
877 void wakeup_flusher_threads(long nr_pages)
878 {
879         struct backing_dev_info *bdi;
880
881         if (!nr_pages) {
882                 nr_pages = global_page_state(NR_FILE_DIRTY) +
883                                 global_page_state(NR_UNSTABLE_NFS);
884         }
885
886         rcu_read_lock();
887         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
888                 if (!bdi_has_dirty_io(bdi))
889                         continue;
890                 __bdi_start_writeback(bdi, nr_pages, false, false);
891         }
892         rcu_read_unlock();
893 }
894
895 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
896 {
897         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
898                 struct dentry *dentry;
899                 const char *name = "?";
900
901                 dentry = d_find_alias(inode);
902                 if (dentry) {
903                         spin_lock(&dentry->d_lock);
904                         name = (const char *) dentry->d_name.name;
905                 }
906                 printk(KERN_DEBUG
907                        "%s(%d): dirtied inode %lu (%s) on %s\n",
908                        current->comm, task_pid_nr(current), inode->i_ino,
909                        name, inode->i_sb->s_id);
910                 if (dentry) {
911                         spin_unlock(&dentry->d_lock);
912                         dput(dentry);
913                 }
914         }
915 }
916
917 /**
918  *      __mark_inode_dirty -    internal function
919  *      @inode: inode to mark
920  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
921  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
922  *      mark_inode_dirty_sync.
923  *
924  * Put the inode on the super block's dirty list.
925  *
926  * CAREFUL! We mark it dirty unconditionally, but move it onto the
927  * dirty list only if it is hashed or if it refers to a blockdev.
928  * If it was not hashed, it will never be added to the dirty list
929  * even if it is later hashed, as it will have been marked dirty already.
930  *
931  * In short, make sure you hash any inodes _before_ you start marking
932  * them dirty.
933  *
934  * This function *must* be atomic for the I_DIRTY_PAGES case -
935  * set_page_dirty() is called under spinlock in several places.
936  *
937  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
938  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
939  * the kernel-internal blockdev inode represents the dirtying time of the
940  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
941  * page->mapping->host, so the page-dirtying time is recorded in the internal
942  * blockdev inode.
943  */
944 void __mark_inode_dirty(struct inode *inode, int flags)
945 {
946         struct super_block *sb = inode->i_sb;
947
948         /*
949          * Don't do this for I_DIRTY_PAGES - that doesn't actually
950          * dirty the inode itself
951          */
952         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
953                 if (sb->s_op->dirty_inode)
954                         sb->s_op->dirty_inode(inode);
955         }
956
957         /*
958          * make sure that changes are seen by all cpus before we test i_state
959          * -- mikulas
960          */
961         smp_mb();
962
963         /* avoid the locking if we can */
964         if ((inode->i_state & flags) == flags)
965                 return;
966
967         if (unlikely(block_dump))
968                 block_dump___mark_inode_dirty(inode);
969
970         spin_lock(&inode_lock);
971         if ((inode->i_state & flags) != flags) {
972                 const int was_dirty = inode->i_state & I_DIRTY;
973
974                 inode->i_state |= flags;
975
976                 /*
977                  * If the inode is being synced, just update its dirty state.
978                  * The unlocker will place the inode on the appropriate
979                  * superblock list, based upon its state.
980                  */
981                 if (inode->i_state & I_SYNC)
982                         goto out;
983
984                 /*
985                  * Only add valid (hashed) inodes to the superblock's
986                  * dirty list.  Add blockdev inodes as well.
987                  */
988                 if (!S_ISBLK(inode->i_mode)) {
989                         if (hlist_unhashed(&inode->i_hash))
990                                 goto out;
991                 }
992                 if (inode->i_state & (I_FREEING|I_CLEAR))
993                         goto out;
994
995                 /*
996                  * If the inode was already on b_dirty/b_io/b_more_io, don't
997                  * reposition it (that would break b_dirty time-ordering).
998                  */
999                 if (!was_dirty) {
1000                         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1001                         struct backing_dev_info *bdi = wb->bdi;
1002
1003                         if (bdi_cap_writeback_dirty(bdi) &&
1004                             !test_bit(BDI_registered, &bdi->state)) {
1005                                 WARN_ON(1);
1006                                 printk(KERN_ERR "bdi-%s not registered\n",
1007                                                                 bdi->name);
1008                         }
1009
1010                         inode->dirtied_when = jiffies;
1011                         list_move(&inode->i_list, &wb->b_dirty);
1012                 }
1013         }
1014 out:
1015         spin_unlock(&inode_lock);
1016 }
1017 EXPORT_SYMBOL(__mark_inode_dirty);
1018
1019 /*
1020  * Write out a superblock's list of dirty inodes.  A wait will be performed
1021  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1022  *
1023  * If older_than_this is non-NULL, then only write out inodes which
1024  * had their first dirtying at a time earlier than *older_than_this.
1025  *
1026  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1027  * This function assumes that the blockdev superblock's inodes are backed by
1028  * a variety of queues, so all inodes are searched.  For other superblocks,
1029  * assume that all inodes are backed by the same queue.
1030  *
1031  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1032  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1033  * on the writer throttling path, and we get decent balancing between many
1034  * throttled threads: we don't want them all piling up on inode_sync_wait.
1035  */
1036 static void wait_sb_inodes(struct super_block *sb)
1037 {
1038         struct inode *inode, *old_inode = NULL;
1039
1040         /*
1041          * We need to be protected against the filesystem going from
1042          * r/o to r/w or vice versa.
1043          */
1044         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1045
1046         spin_lock(&inode_lock);
1047
1048         /*
1049          * Data integrity sync. Must wait for all pages under writeback,
1050          * because there may have been pages dirtied before our sync
1051          * call, but which had writeout started before we write it out.
1052          * In which case, the inode may not be on the dirty list, but
1053          * we still have to wait for that writeout.
1054          */
1055         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1056                 struct address_space *mapping;
1057
1058                 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1059                         continue;
1060                 mapping = inode->i_mapping;
1061                 if (mapping->nrpages == 0)
1062                         continue;
1063                 __iget(inode);
1064                 spin_unlock(&inode_lock);
1065                 /*
1066                  * We hold a reference to 'inode' so it couldn't have
1067                  * been removed from s_inodes list while we dropped the
1068                  * inode_lock.  We cannot iput the inode now as we can
1069                  * be holding the last reference and we cannot iput it
1070                  * under inode_lock. So we keep the reference and iput
1071                  * it later.
1072                  */
1073                 iput(old_inode);
1074                 old_inode = inode;
1075
1076                 filemap_fdatawait(mapping);
1077
1078                 cond_resched();
1079
1080                 spin_lock(&inode_lock);
1081         }
1082         spin_unlock(&inode_lock);
1083         iput(old_inode);
1084 }
1085
1086 /**
1087  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1088  * @sb: the superblock
1089  *
1090  * Start writeback on some inodes on this super_block. No guarantees are made
1091  * on how many (if any) will be written, and this function does not wait
1092  * for IO completion of submitted IO. The number of pages submitted is
1093  * returned.
1094  */
1095 void writeback_inodes_sb(struct super_block *sb)
1096 {
1097         unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1098         unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1099         DECLARE_COMPLETION_ONSTACK(done);
1100         struct wb_writeback_work work = {
1101                 .sb             = sb,
1102                 .sync_mode      = WB_SYNC_NONE,
1103                 .done           = &done,
1104         };
1105
1106         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1107
1108         work.nr_pages = nr_dirty + nr_unstable +
1109                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1110
1111         bdi_queue_work(sb->s_bdi, &work);
1112         wait_for_completion(&done);
1113 }
1114 EXPORT_SYMBOL(writeback_inodes_sb);
1115
1116 /**
1117  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1118  * @sb: the superblock
1119  *
1120  * Invoke writeback_inodes_sb if no writeback is currently underway.
1121  * Returns 1 if writeback was started, 0 if not.
1122  */
1123 int writeback_inodes_sb_if_idle(struct super_block *sb)
1124 {
1125         if (!writeback_in_progress(sb->s_bdi)) {
1126                 down_read(&sb->s_umount);
1127                 writeback_inodes_sb(sb);
1128                 up_read(&sb->s_umount);
1129                 return 1;
1130         } else
1131                 return 0;
1132 }
1133 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1134
1135 /**
1136  * sync_inodes_sb       -       sync sb inode pages
1137  * @sb: the superblock
1138  *
1139  * This function writes and waits on any dirty inode belonging to this
1140  * super_block. The number of pages synced is returned.
1141  */
1142 void sync_inodes_sb(struct super_block *sb)
1143 {
1144         DECLARE_COMPLETION_ONSTACK(done);
1145         struct wb_writeback_work work = {
1146                 .sb             = sb,
1147                 .sync_mode      = WB_SYNC_ALL,
1148                 .nr_pages       = LONG_MAX,
1149                 .range_cyclic   = 0,
1150                 .done           = &done,
1151         };
1152
1153         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1154
1155         bdi_queue_work(sb->s_bdi, &work);
1156         wait_for_completion(&done);
1157
1158         wait_sb_inodes(sb);
1159 }
1160 EXPORT_SYMBOL(sync_inodes_sb);
1161
1162 /**
1163  * write_inode_now      -       write an inode to disk
1164  * @inode: inode to write to disk
1165  * @sync: whether the write should be synchronous or not
1166  *
1167  * This function commits an inode to disk immediately if it is dirty. This is
1168  * primarily needed by knfsd.
1169  *
1170  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1171  */
1172 int write_inode_now(struct inode *inode, int sync)
1173 {
1174         int ret;
1175         struct writeback_control wbc = {
1176                 .nr_to_write = LONG_MAX,
1177                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1178                 .range_start = 0,
1179                 .range_end = LLONG_MAX,
1180         };
1181
1182         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1183                 wbc.nr_to_write = 0;
1184
1185         might_sleep();
1186         spin_lock(&inode_lock);
1187         ret = writeback_single_inode(inode, &wbc);
1188         spin_unlock(&inode_lock);
1189         if (sync)
1190                 inode_sync_wait(inode);
1191         return ret;
1192 }
1193 EXPORT_SYMBOL(write_inode_now);
1194
1195 /**
1196  * sync_inode - write an inode and its pages to disk.
1197  * @inode: the inode to sync
1198  * @wbc: controls the writeback mode
1199  *
1200  * sync_inode() will write an inode and its pages to disk.  It will also
1201  * correctly update the inode on its superblock's dirty inode lists and will
1202  * update inode->i_state.
1203  *
1204  * The caller must have a ref on the inode.
1205  */
1206 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1207 {
1208         int ret;
1209
1210         spin_lock(&inode_lock);
1211         ret = writeback_single_inode(inode, wbc);
1212         spin_unlock(&inode_lock);
1213         return ret;
1214 }
1215 EXPORT_SYMBOL(sync_inode);