OSDN Git Service

Merge branch 'master' of /data/projets/git/linux/linux-2.4
[linux-kernel-docs/linux-2.4.36.git] / fs / jbd / transaction.c
1 /*
2  * linux/fs/transaction.c
3  * 
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.  
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/jbd.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/locks.h>
26 #include <linux/timer.h>
27 #include <linux/smp_lock.h>
28 #include <linux/mm.h>
29
30 extern spinlock_t journal_datalist_lock;
31
32 /*
33  * get_transaction: obtain a new transaction_t object.
34  *
35  * Simply allocate and initialise a new transaction.  Create it in
36  * RUNNING state and add it to the current journal (which should not
37  * have an existing running transaction: we only make a new transaction
38  * once we have started to commit the old one).
39  *
40  * Preconditions:
41  *      The journal MUST be locked.  We don't perform atomic mallocs on the
42  *      new transaction and we can't block without protecting against other
43  *      processes trying to touch the journal while it is in transition.
44  */
45
46 static transaction_t * get_transaction (journal_t * journal, int is_try)
47 {
48         transaction_t * transaction;
49
50         transaction = jbd_kmalloc (sizeof (transaction_t), GFP_NOFS);
51         if (!transaction)
52                 return NULL;
53         
54         memset (transaction, 0, sizeof (transaction_t));
55         
56         transaction->t_journal = journal;
57         transaction->t_state = T_RUNNING;
58         transaction->t_tid = journal->j_transaction_sequence++;
59         transaction->t_expires = jiffies + journal->j_commit_interval;
60         INIT_LIST_HEAD(&transaction->t_jcb);
61
62         if (journal->j_commit_interval) {
63                 /* Set up the commit timer for the new transaction. */
64                 J_ASSERT (!journal->j_commit_timer_active);
65                 journal->j_commit_timer_active = 1;
66                 journal->j_commit_timer->expires = transaction->t_expires;
67                 add_timer(journal->j_commit_timer);
68         }
69         
70         J_ASSERT (journal->j_running_transaction == NULL);
71         journal->j_running_transaction = transaction;
72
73         return transaction;
74 }
75
76 /*
77  * Handle management.
78  *
79  * A handle_t is an object which represents a single atomic update to a
80  * filesystem, and which tracks all of the modifications which form part
81  * of that one update.
82  */
83
84 /*
85  * start_this_handle: Given a handle, deal with any locking or stalling
86  * needed to make sure that there is enough journal space for the handle
87  * to begin.  Attach the handle to a transaction and set up the
88  * transaction's buffer credits.  
89  */
90
91 static int start_this_handle(journal_t *journal, handle_t *handle)
92 {
93         transaction_t *transaction;
94         int needed;
95         int nblocks = handle->h_buffer_credits;
96
97         if (nblocks > journal->j_max_transaction_buffers) {
98                 jbd_debug(1, "JBD: %s wants too many credits (%d > %d)\n",
99                        current->comm, nblocks,
100                        journal->j_max_transaction_buffers);
101                 return -ENOSPC;
102         }
103
104         jbd_debug(3, "New handle %p going live.\n", handle);
105
106 repeat:
107
108         lock_journal(journal);
109
110 repeat_locked:
111
112         if (is_journal_aborted(journal) ||
113             (journal->j_errno != 0 && !(journal->j_flags & JFS_ACK_ERR))) {
114                 unlock_journal(journal);
115                 return -EROFS; 
116         }
117
118         /* Wait on the journal's transaction barrier if necessary */
119         if (journal->j_barrier_count) {
120                 unlock_journal(journal);
121                 sleep_on(&journal->j_wait_transaction_locked);
122                 goto repeat;
123         }
124         
125         if (!journal->j_running_transaction)
126                 get_transaction(journal, 0);
127         /* @@@ Error? */
128         J_ASSERT(journal->j_running_transaction);
129         
130         transaction = journal->j_running_transaction;
131
132         /* If the current transaction is locked down for commit, wait
133          * for the lock to be released. */
134
135         if (transaction->t_state == T_LOCKED) {
136                 unlock_journal(journal);
137                 jbd_debug(3, "Handle %p stalling...\n", handle);
138                 sleep_on(&journal->j_wait_transaction_locked);
139                 goto repeat;
140         }
141         
142         /* If there is not enough space left in the log to write all
143          * potential buffers requested by this operation, we need to
144          * stall pending a log checkpoint to free some more log
145          * space. */
146
147         needed = transaction->t_outstanding_credits + nblocks;
148
149         if (needed > journal->j_max_transaction_buffers) {
150                 /* If the current transaction is already too large, then
151                  * start to commit it: we can then go back and attach
152                  * this handle to a new transaction. */
153                 
154                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
155                 log_start_commit(journal, transaction);
156                 unlock_journal(journal);
157                 sleep_on(&journal->j_wait_transaction_locked);
158                 lock_journal(journal);
159                 goto repeat_locked;
160         }
161
162         /* 
163          * The commit code assumes that it can get enough log space
164          * without forcing a checkpoint.  This is *critical* for
165          * correctness: a checkpoint of a buffer which is also
166          * associated with a committing transaction creates a deadlock,
167          * so commit simply cannot force through checkpoints.
168          *
169          * We must therefore ensure the necessary space in the journal
170          * *before* starting to dirty potentially checkpointed buffers
171          * in the new transaction. 
172          *
173          * The worst part is, any transaction currently committing can
174          * reduce the free space arbitrarily.  Be careful to account for
175          * those buffers when checkpointing.
176          */
177
178         /*
179          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
180          * a _lot_ of headroom: 1/4 of the journal plus the size of
181          * the committing transaction.  Really, we only need to give it
182          * committing_transaction->t_outstanding_credits plus "enough" for
183          * the log control blocks.
184          * Also, this test is inconsitent with the matching one in
185          * journal_extend().
186          */
187         needed = journal->j_max_transaction_buffers;
188         if (journal->j_committing_transaction) 
189                 needed += journal->j_committing_transaction->
190                                         t_outstanding_credits;
191         
192         if (log_space_left(journal) < needed) {
193                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
194                 log_wait_for_space(journal, needed);
195                 goto repeat_locked;
196         }
197
198         /* OK, account for the buffers that this operation expects to
199          * use and add the handle to the running transaction. */
200
201         handle->h_transaction = transaction;
202         transaction->t_outstanding_credits += nblocks;
203         transaction->t_updates++;
204         transaction->t_handle_count++;
205         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
206                   handle, nblocks, transaction->t_outstanding_credits,
207                   log_space_left(journal));
208
209         unlock_journal(journal);
210         
211         return 0;
212 }
213
214 /* Allocate a new handle.  This should probably be in a slab... */
215 static handle_t *new_handle(int nblocks)
216 {
217         handle_t *handle = jbd_kmalloc(sizeof (handle_t), GFP_NOFS);
218         if (!handle)
219                 return NULL;
220         memset(handle, 0, sizeof (handle_t));
221         handle->h_buffer_credits = nblocks;
222         handle->h_ref = 1;
223         INIT_LIST_HEAD(&handle->h_jcb);
224
225         return handle;
226 }
227
228 /**
229  * handle_t *journal_start() - Obtain a new handle.  
230  * @journal: Journal to start transaction on.
231  * @nblocks: number of block buffer we might modify
232  *
233  * We make sure that the transaction can guarantee at least nblocks of
234  * modified buffers in the log.  We block until the log can guarantee
235  * that much space.  
236  *
237  * This function is visible to journal users (like ext3fs), so is not
238  * called with the journal already locked.
239  *
240  * Return a pointer to a newly allocated handle, or NULL on failure
241  */
242 handle_t *journal_start(journal_t *journal, int nblocks)
243 {
244         handle_t *handle = journal_current_handle();
245         int err;
246         
247         if (!journal)
248                 return ERR_PTR(-EROFS);
249
250         if (handle) {
251                 J_ASSERT(handle->h_transaction->t_journal == journal);
252                 handle->h_ref++;
253                 return handle;
254         }
255
256         handle = new_handle(nblocks);
257         if (!handle)
258                 return ERR_PTR(-ENOMEM);
259
260         current->journal_info = handle;
261
262         err = start_this_handle(journal, handle);
263         if (err < 0) {
264                 kfree(handle);
265                 current->journal_info = NULL;
266                 return ERR_PTR(err);
267         }
268
269         return handle;
270 }
271
272 /*
273  * Return zero on success
274  */
275 static int try_start_this_handle(journal_t *journal, handle_t *handle)
276 {
277         transaction_t *transaction;
278         int needed;
279         int nblocks = handle->h_buffer_credits;
280         int ret = 0;
281
282         jbd_debug(3, "New handle %p maybe going live.\n", handle);
283
284         lock_journal(journal);
285
286         if (is_journal_aborted(journal) ||
287             (journal->j_errno != 0 && !(journal->j_flags & JFS_ACK_ERR))) {
288                 ret = -EROFS;
289                 goto fail_unlock;
290         }
291
292         if (journal->j_barrier_count)
293                 goto fail_unlock;
294
295         if (!journal->j_running_transaction && get_transaction(journal, 1) == 0)
296                 goto fail_unlock;
297         
298         transaction = journal->j_running_transaction;
299         if (transaction->t_state == T_LOCKED)
300                 goto fail_unlock;
301         
302         needed = transaction->t_outstanding_credits + nblocks;
303         /* We could run log_start_commit here */
304         if (needed > journal->j_max_transaction_buffers)
305                 goto fail_unlock;
306
307         needed = journal->j_max_transaction_buffers;
308         if (journal->j_committing_transaction) 
309                 needed += journal->j_committing_transaction->
310                                                 t_outstanding_credits;
311         
312         if (log_space_left(journal) < needed)
313                 goto fail_unlock;
314
315         handle->h_transaction = transaction;
316         transaction->t_outstanding_credits += nblocks;
317         transaction->t_updates++;
318         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
319                   handle, nblocks, transaction->t_outstanding_credits,
320                   log_space_left(journal));
321         unlock_journal(journal);
322         return 0;
323
324 fail_unlock:
325         unlock_journal(journal);
326         if (ret >= 0)
327                 ret = -1;
328         return ret;
329 }
330
331 /**
332  * handle_t *journal_try_start() - Don't block, but try and get a handle
333  * @journal: Journal to start transaction on.
334  * @nblocks: number of block buffer we might modify
335  * 
336  * Try to start a handle, but non-blockingly.  If we weren't able
337  * to, return an ERR_PTR value.
338  */
339 handle_t *journal_try_start(journal_t *journal, int nblocks)
340 {
341         handle_t *handle = journal_current_handle();
342         int err;
343         
344         if (!journal)
345                 return ERR_PTR(-EROFS);
346
347         if (handle) {
348                 jbd_debug(4, "h_ref %d -> %d\n",
349                                 handle->h_ref,
350                                 handle->h_ref + 1);
351                 J_ASSERT(handle->h_transaction->t_journal == journal);
352                 if (is_handle_aborted(handle))
353                         return ERR_PTR(-EIO);
354                 handle->h_ref++;
355                 return handle;
356         } else {
357                 jbd_debug(4, "no current transaction\n");
358         }
359         
360         if (is_journal_aborted(journal))
361                 return ERR_PTR(-EIO);
362
363         handle = new_handle(nblocks);
364         if (!handle)
365                 return ERR_PTR(-ENOMEM);
366
367         current->journal_info = handle;
368
369         err = try_start_this_handle(journal, handle);
370         if (err < 0) {
371                 kfree(handle);
372                 current->journal_info = NULL;
373                 return ERR_PTR(err);
374         }
375
376         return handle;
377 }
378
379 /**
380  * int journal_extend() - extend buffer credits.
381  * @handle:  handle to 'extend'
382  * @nblocks: nr blocks to try to extend by.
383  * 
384  * Some transactions, such as large extends and truncates, can be done
385  * atomically all at once or in several stages.  The operation requests
386  * a credit for a number of buffer modications in advance, but can
387  * extend its credit if it needs more.  
388  *
389  * journal_extend tries to give the running handle more buffer credits.
390  * It does not guarantee that allocation - this is a best-effort only.
391  * The calling process MUST be able to deal cleanly with a failure to
392  * extend here.
393  *
394  * Return 0 on success, non-zero on failure.
395  *
396  * return code < 0 implies an error
397  * return code > 0 implies normal transaction-full status.
398  */
399 int journal_extend (handle_t *handle, int nblocks)
400 {
401         transaction_t *transaction = handle->h_transaction;
402         journal_t *journal = transaction->t_journal;
403         int result;
404         int wanted;
405
406         lock_journal (journal);
407
408         result = -EIO;
409         if (is_handle_aborted(handle))
410                 goto error_out;
411
412         result = 1;
413                
414         /* Don't extend a locked-down transaction! */
415         if (handle->h_transaction->t_state != T_RUNNING) {
416                 jbd_debug(3, "denied handle %p %d blocks: "
417                           "transaction not running\n", handle, nblocks);
418                 goto error_out;
419         }
420         
421         wanted = transaction->t_outstanding_credits + nblocks;
422         
423         if (wanted > journal->j_max_transaction_buffers) {
424                 jbd_debug(3, "denied handle %p %d blocks: "
425                           "transaction too large\n", handle, nblocks);
426                 goto error_out;
427         }
428
429         if (wanted > log_space_left(journal)) {
430                 jbd_debug(3, "denied handle %p %d blocks: "
431                           "insufficient log space\n", handle, nblocks);
432                 goto error_out;
433         }
434         
435         handle->h_buffer_credits += nblocks;
436         transaction->t_outstanding_credits += nblocks;
437         result = 0;
438
439         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
440         
441 error_out:
442         unlock_journal (journal);
443         return result;
444 }
445
446
447 /**
448  * int journal_restart() - restart a handle .
449  * @handle:  handle to restart
450  * @nblocks: nr credits requested
451  * 
452  * Restart a handle for a multi-transaction filesystem
453  * operation.
454  *
455  * If the journal_extend() call above fails to grant new buffer credits
456  * to a running handle, a call to journal_restart will commit the
457  * handle's transaction so far and reattach the handle to a new
458  * transaction capabable of guaranteeing the requested number of
459  * credits.
460  */
461
462 int journal_restart(handle_t *handle, int nblocks)
463 {
464         transaction_t *transaction = handle->h_transaction;
465         journal_t *journal = transaction->t_journal;
466         int ret;
467
468         /* If we've had an abort of any type, don't even think about
469          * actually doing the restart! */
470         if (is_handle_aborted(handle))
471                 return 0;
472         
473         /* First unlink the handle from its current transaction, and
474          * start the commit on that. */
475         
476         J_ASSERT (transaction->t_updates > 0);
477         J_ASSERT (journal_current_handle() == handle);
478
479         transaction->t_outstanding_credits -= handle->h_buffer_credits;
480         transaction->t_updates--;
481
482         if (!transaction->t_updates)
483                 wake_up(&journal->j_wait_updates);
484
485         jbd_debug(2, "restarting handle %p\n", handle);
486         log_start_commit(journal, transaction);
487
488         handle->h_buffer_credits = nblocks;
489         ret = start_this_handle(journal, handle);
490         return ret;
491 }
492
493
494 /**
495  * void journal_lock_updates () - establish a transaction barrier.
496  * @journal:  Journal to establish a barrier on.
497  *
498  * This locks out any further updates from being started, and blocks
499  * until all existing updates have completed, returning only once the
500  * journal is in a quiescent state with no updates running.
501  *
502  * The journal lock should not be held on entry.
503  */
504 void journal_lock_updates (journal_t *journal)
505 {
506         lock_journal(journal);
507         ++journal->j_barrier_count;
508
509         /* Wait until there are no running updates */
510         while (1) {
511                 transaction_t *transaction = journal->j_running_transaction;
512                 if (!transaction)
513                         break;
514                 if (!transaction->t_updates)
515                         break;
516                 
517                 unlock_journal(journal);
518                 sleep_on(&journal->j_wait_updates);
519                 lock_journal(journal);
520         }
521
522         unlock_journal(journal);
523
524         /* We have now established a barrier against other normal
525          * updates, but we also need to barrier against other
526          * journal_lock_updates() calls to make sure that we serialise
527          * special journal-locked operations too. */
528         down(&journal->j_barrier);
529 }
530
531 /**
532  * void journal_unlock_updates (journal_t* journal) - release barrier
533  * @journal:  Journal to release the barrier on.
534  * 
535  * Release a transaction barrier obtained with journal_lock_updates().
536  *
537  * Should be called without the journal lock held.
538  */
539 void journal_unlock_updates (journal_t *journal)
540 {
541         lock_journal(journal);
542
543         J_ASSERT (journal->j_barrier_count != 0);
544         
545         up(&journal->j_barrier);
546         --journal->j_barrier_count;
547         wake_up(&journal->j_wait_transaction_locked);
548         unlock_journal(journal);
549 }
550
551 /*
552  * if the buffer is already part of the current transaction, then there
553  * is nothing we need to do.  if it is already part of a prior
554  * transaction which we are still committing to disk, then we need to
555  * make sure that we do not overwrite the old copy: we do copy-out to
556  * preserve the copy going to disk.  we also account the buffer against
557  * the handle's metadata buffer credits (unless the buffer is already
558  * part of the transaction, that is).
559  */
560 static int
561 do_get_write_access(handle_t *handle, struct journal_head *jh, int force_copy) 
562 {
563         struct buffer_head *bh;
564         transaction_t *transaction = handle->h_transaction;
565         journal_t *journal = transaction->t_journal;
566         int error;
567         char *frozen_buffer = NULL;
568         int need_copy = 0;
569         int locked;
570         
571         jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
572
573         JBUFFER_TRACE(jh, "entry");
574 repeat:
575         bh = jh2bh(jh);
576
577         /* @@@ Need to check for errors here at some point. */
578
579         /*
580          * AKPM: we have replaced all the lock_journal_bh_wait() stuff with a
581          * simple lock_journal().  This code here will care for locked buffers.
582          */
583         locked = test_and_set_bit(BH_Lock, &bh->b_state);
584         if (locked) {
585                 /* We can't reliably test the buffer state if we found
586                  * it already locked, so just wait for the lock and
587                  * retry. */
588                 unlock_journal(journal);
589                 __wait_on_buffer(bh);
590                 lock_journal(journal);
591                 goto repeat;
592         }
593         
594         /* We now hold the buffer lock so it is safe to query the buffer
595          * state.  Is the buffer dirty? 
596          * 
597          * If so, there are two possibilities.  The buffer may be
598          * non-journaled, and undergoing a quite legitimate writeback.
599          * Otherwise, it is journaled, and we don't expect dirty buffers
600          * in that state (the buffers should be marked JBD_Dirty
601          * instead.)  So either the IO is being done under our own
602          * control and this is a bug, or it's a third party IO such as
603          * dump(8) (which may leave the buffer scheduled for read ---
604          * ie. locked but not dirty) or tune2fs (which may actually have
605          * the buffer dirtied, ugh.)  */
606
607         if (buffer_dirty(bh)) {
608                 spin_lock(&journal_datalist_lock);
609                 /* First question: is this buffer already part of the
610                  * current transaction or the existing committing
611                  * transaction? */
612                 if (jh->b_transaction) {
613                         J_ASSERT_JH(jh, jh->b_transaction == transaction || 
614                                     jh->b_transaction == journal->j_committing_transaction);
615                         if (jh->b_next_transaction)
616                                 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
617                         JBUFFER_TRACE(jh, "Unexpected dirty buffer");
618                         jbd_unexpected_dirty_buffer(jh);
619                 }
620                 spin_unlock(&journal_datalist_lock);
621         }
622
623         unlock_buffer(bh);
624
625         error = -EROFS;
626         if (is_handle_aborted(handle)) 
627                 goto out_unlocked;
628         error = 0;
629
630         spin_lock(&journal_datalist_lock);
631
632         /* The buffer is already part of this transaction if
633          * b_transaction or b_next_transaction points to it. */
634
635         if (jh->b_transaction == transaction ||
636             jh->b_next_transaction == transaction)
637                 goto done_locked;
638
639         /* If there is already a copy-out version of this buffer, then
640          * we don't need to make another one. */
641
642         if (jh->b_frozen_data) {
643                 JBUFFER_TRACE(jh, "has frozen data");
644                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
645                 jh->b_next_transaction = transaction;
646
647                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
648                 handle->h_buffer_credits--;
649                 goto done_locked;
650         }
651         
652         /* Is there data here we need to preserve? */
653
654         if (jh->b_transaction && jh->b_transaction != transaction) {
655                 JBUFFER_TRACE(jh, "owned by older transaction");
656                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
657                 J_ASSERT_JH(jh, jh->b_transaction ==
658                                         journal->j_committing_transaction);
659
660                 /* There is one case we have to be very careful about.
661                  * If the committing transaction is currently writing
662                  * this buffer out to disk and has NOT made a copy-out,
663                  * then we cannot modify the buffer contents at all
664                  * right now.  The essence of copy-out is that it is the
665                  * extra copy, not the primary copy, which gets
666                  * journaled.  If the primary copy is already going to
667                  * disk then we cannot do copy-out here. */
668
669                 if (jh->b_jlist == BJ_Shadow) {
670                         JBUFFER_TRACE(jh, "on shadow: sleep");
671                         spin_unlock(&journal_datalist_lock);
672                         unlock_journal(journal);
673                         /* commit wakes up all shadow buffers after IO */
674                         wait_event(jh2bh(jh)->b_wait,
675                                                 jh->b_jlist != BJ_Shadow);
676                         lock_journal(journal);
677                         goto repeat;
678                 }
679                         
680                 /* Only do the copy if the currently-owning transaction
681                  * still needs it.  If it is on the Forget list, the
682                  * committing transaction is past that stage.  The
683                  * buffer had better remain locked during the kmalloc,
684                  * but that should be true --- we hold the journal lock
685                  * still and the buffer is already on the BUF_JOURNAL
686                  * list so won't be flushed. 
687                  *
688                  * Subtle point, though: if this is a get_undo_access,
689                  * then we will be relying on the frozen_data to contain
690                  * the new value of the committed_data record after the
691                  * transaction, so we HAVE to force the frozen_data copy
692                  * in that case. */
693
694                 if (jh->b_jlist != BJ_Forget || force_copy) {
695                         JBUFFER_TRACE(jh, "generate frozen data");
696                         if (!frozen_buffer) {
697                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
698                                 spin_unlock(&journal_datalist_lock);
699                                 unlock_journal(journal);
700                                 frozen_buffer = jbd_kmalloc(jh2bh(jh)->b_size,
701                                                             GFP_NOFS);
702                                 lock_journal(journal);
703                                 if (!frozen_buffer) {
704                                         printk(KERN_EMERG
705                                                 "%s: OOM for frozen_buffer\n",
706                                                 __FUNCTION__);
707                                         JBUFFER_TRACE(jh, "oom!");
708                                         error = -ENOMEM;
709                                         spin_lock(&journal_datalist_lock);
710                                         goto done_locked;
711                                 }
712                                 goto repeat;
713                         }
714
715                         jh->b_frozen_data = frozen_buffer;
716                         frozen_buffer = NULL;
717                         need_copy = 1;
718                 }
719                 jh->b_next_transaction = transaction;
720         }
721
722         J_ASSERT(handle->h_buffer_credits > 0);
723         handle->h_buffer_credits--;
724
725         /* Finally, if the buffer is not journaled right now, we need to
726          * make sure it doesn't get written to disk before the caller
727          * actually commits the new data. */
728
729         if (!jh->b_transaction) {
730                 JBUFFER_TRACE(jh, "no transaction");
731                 J_ASSERT_JH(jh, !jh->b_next_transaction);
732                 jh->b_transaction = transaction;
733                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
734                 __journal_file_buffer(jh, transaction, BJ_Reserved);
735         }
736         
737 done_locked:
738         spin_unlock(&journal_datalist_lock);
739         if (need_copy) {
740                 struct page *page;
741                 int offset;
742                 char *source;
743
744                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
745                             "Possible IO failure.\n");
746                 page = jh2bh(jh)->b_page;
747                 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
748                 source = kmap(page);
749                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
750                 kunmap(page);
751         }
752         
753
754         /* If we are about to journal a buffer, then any revoke pending
755            on it is no longer valid. */
756         journal_cancel_revoke(handle, jh);
757
758 out_unlocked:
759         if (frozen_buffer)
760                 kfree(frozen_buffer);
761
762         JBUFFER_TRACE(jh, "exit");
763         return error;
764 }
765
766 /**
767  * int journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
768  * @handle: transaction to add buffer modifications to
769  * @bh:     bh to be used for metadata writes
770  *
771  * Returns an error code or 0 on success.
772  *
773  * In full data journalling mode the buffer may be of type BJ_AsyncData,
774  * because we're write()ing a buffer which is also part of a shared mapping.
775  */
776
777 int journal_get_write_access (handle_t *handle, struct buffer_head *bh) 
778 {
779         transaction_t *transaction = handle->h_transaction;
780         journal_t *journal = transaction->t_journal;
781         struct journal_head *jh = journal_add_journal_head(bh);
782         int rc;
783
784         /* We do not want to get caught playing with fields which the
785          * log thread also manipulates.  Make sure that the buffer
786          * completes any outstanding IO before proceeding. */
787         lock_journal(journal);
788         rc = do_get_write_access(handle, jh, 0);
789         journal_unlock_journal_head(jh);
790         unlock_journal(journal);
791         return rc;
792 }
793
794
795 /*
796  * When the user wants to journal a newly created buffer_head
797  * (ie. getblk() returned a new buffer and we are going to populate it
798  * manually rather than reading off disk), then we need to keep the
799  * buffer_head locked until it has been completely filled with new
800  * data.  In this case, we should be able to make the assertion that
801  * the bh is not already part of an existing transaction.  
802  * 
803  * The buffer should already be locked by the caller by this point.
804  * There is no lock ranking violation: it was a newly created,
805  * unlocked buffer beforehand. */
806
807 /**
808  * int journal_get_create_access () - notify intent to use newly created bh
809  * @handle: ransaction to new buffer to
810  * @bh: new buffer.
811  *
812  * Call this if you create a new bh.
813  */
814 int journal_get_create_access (handle_t *handle, struct buffer_head *bh) 
815 {
816         transaction_t *transaction = handle->h_transaction;
817         journal_t *journal = transaction->t_journal;
818         struct journal_head *jh = journal_add_journal_head(bh);
819         int err;
820         
821         jbd_debug(5, "journal_head %p\n", jh);
822         lock_journal(journal);
823         err = -EROFS;
824         if (is_handle_aborted(handle))
825                 goto out;
826         err = 0;
827         
828         JBUFFER_TRACE(jh, "entry");
829         /* The buffer may already belong to this transaction due to
830          * pre-zeroing in the filesystem's new_block code.  It may also
831          * be on the previous, committing transaction's lists, but it
832          * HAS to be in Forget state in that case: the transaction must
833          * have deleted the buffer for it to be reused here. */
834         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
835                          jh->b_transaction == NULL ||
836                          (jh->b_transaction == journal->j_committing_transaction &&
837                           jh->b_jlist == BJ_Forget)));
838
839         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
840         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
841
842         J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
843         handle->h_buffer_credits--;
844
845         spin_lock(&journal_datalist_lock);
846         if (jh->b_transaction == NULL) {
847                 jh->b_transaction = transaction;
848                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
849                 __journal_file_buffer(jh, transaction, BJ_Reserved);
850                 JBUFFER_TRACE(jh, "refile");
851                 refile_buffer(jh2bh(jh));
852         } else if (jh->b_transaction == journal->j_committing_transaction) {
853                 JBUFFER_TRACE(jh, "set next transaction");
854                 jh->b_next_transaction = transaction;
855         }
856         spin_unlock(&journal_datalist_lock);
857
858         /*
859          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
860          * blocks which contain freed but then revoked metadata.  We need
861          * to cancel the revoke in case we end up freeing it yet again
862          * and the reallocating as data - this would cause a second revoke,
863          * which hits an assertion error.
864          */
865         JBUFFER_TRACE(jh, "cancelling revoke");
866         journal_cancel_revoke(handle, jh);
867         journal_unlock_journal_head(jh);
868 out:
869         unlock_journal(journal);
870         return err;
871 }
872
873
874
875 /**
876  * int journal_get_undo_access() -  Notify intent to modify metadata with non-rewindable consequences
877  * @handle: transaction
878  * @bh: buffer to undo
879  * 
880  * Sometimes there is a need to distinguish between metadata which has
881  * been committed to disk and that which has not.  The ext3fs code uses
882  * this for freeing and allocating space, we have to make sure that we
883  * do not reuse freed space until the deallocation has been committed,
884  * since if we overwrote that space we would make the delete
885  * un-rewindable in case of a crash.
886  * 
887  * To deal with that, journal_get_undo_access requests write access to a
888  * buffer for parts of non-rewindable operations such as delete
889  * operations on the bitmaps.  The journaling code must keep a copy of
890  * the buffer's contents prior to the undo_access call until such time
891  * as we know that the buffer has definitely been committed to disk.
892  * 
893  * We never need to know which transaction the committed data is part
894  * of, buffers touched here are guaranteed to be dirtied later and so
895  * will be committed to a new transaction in due course, at which point
896  * we can discard the old committed data pointer.
897  *
898  * Returns error number or 0 on success.  
899  */
900 int journal_get_undo_access (handle_t *handle, struct buffer_head *bh)
901 {
902         journal_t *journal = handle->h_transaction->t_journal;
903         int err;
904         struct journal_head *jh = journal_add_journal_head(bh);
905
906         JBUFFER_TRACE(jh, "entry");
907         lock_journal(journal);
908
909         /* Do this first --- it can drop the journal lock, so we want to
910          * make sure that obtaining the committed_data is done
911          * atomically wrt. completion of any outstanding commits. */
912         err = do_get_write_access (handle, jh, 1);
913         if (err)
914                 goto out;
915         
916         if (!jh->b_committed_data) {
917                 /* Copy out the current buffer contents into the
918                  * preserved, committed copy. */
919                 JBUFFER_TRACE(jh, "generate b_committed data");
920                 jh->b_committed_data = jbd_kmalloc(jh2bh(jh)->b_size, 
921                                                    GFP_NOFS);
922                 if (!jh->b_committed_data) {
923                         printk(KERN_EMERG "%s: No memory for committed data!\n",
924                                 __FUNCTION__);
925                         err = -ENOMEM;
926                         goto out;
927                 }
928                 
929                 memcpy (jh->b_committed_data, jh2bh(jh)->b_data,
930                                 jh2bh(jh)->b_size);
931         }
932
933 out:
934         if (!err)
935                 J_ASSERT_JH(jh, jh->b_committed_data);
936         journal_unlock_journal_head(jh);
937         unlock_journal(journal);
938         return err;
939 }
940
941 /** 
942  * int journal_dirty_data() -  mark a buffer as containing dirty data which needs to be flushed before we can commit the current transaction.  
943  * @handle: transaction
944  * @bh: bufferhead to mark
945  * @async: flag
946  * 
947  * The buffer is placed on the transaction's data list and is marked as
948  * belonging to the transaction.
949  *
950  * If `async' is set then the writebask will be initiated by the caller
951  * using submit_bh -> end_buffer_io_async.  We put the buffer onto
952  * t_async_datalist.
953  * 
954  * Returns error number or 0 on success.  
955  */
956 int journal_dirty_data (handle_t *handle, struct buffer_head *bh, int async)
957 {
958 /*
959  * journal_dirty_data() can be called via page_launder->ext3_writepage
960  * by kswapd.  So it cannot block.  Happily, there's nothing here
961  * which needs lock_journal if `async' is set.
962  *
963  * When the buffer is on the current transaction we freely move it
964  * between BJ_AsyncData and BJ_SyncData according to who tried to
965  * change its state last.
966  */
967         journal_t *journal = handle->h_transaction->t_journal;
968         int need_brelse = 0;
969         int wanted_jlist = async ? BJ_AsyncData : BJ_SyncData;
970         struct journal_head *jh;
971
972         if (is_handle_aborted(handle))
973                 return 0;
974         
975         jh = journal_add_journal_head(bh);
976         JBUFFER_TRACE(jh, "entry");
977
978         /*
979          * The buffer could *already* be dirty.  Writeout can start
980          * at any time.
981          */
982         jbd_debug(4, "jh: %p, tid:%d\n", jh, handle->h_transaction->t_tid);
983
984         /*
985          * What if the buffer is already part of a running transaction?
986          * 
987          * There are two cases:
988          * 1) It is part of the current running transaction.  Refile it,
989          *    just in case we have allocated it as metadata, deallocated
990          *    it, then reallocated it as data. 
991          * 2) It is part of the previous, still-committing transaction.
992          *    If all we want to do is to guarantee that the buffer will be
993          *    written to disk before this new transaction commits, then
994          *    being sure that the *previous* transaction has this same 
995          *    property is sufficient for us!  Just leave it on its old
996          *    transaction.
997          *
998          * In case (2), the buffer must not already exist as metadata
999          * --- that would violate write ordering (a transaction is free
1000          * to write its data at any point, even before the previous
1001          * committing transaction has committed).  The caller must
1002          * never, ever allow this to happen: there's nothing we can do
1003          * about it in this layer.
1004          */
1005         spin_lock(&journal_datalist_lock);
1006         if (jh->b_transaction) {
1007                 JBUFFER_TRACE(jh, "has transaction");
1008                 if (jh->b_transaction != handle->h_transaction) {
1009                         JBUFFER_TRACE(jh, "belongs to older transaction");
1010                         J_ASSERT_JH(jh, jh->b_transaction ==
1011                                         journal->j_committing_transaction);
1012
1013                         /* @@@ IS THIS TRUE  ? */
1014                         /*
1015                          * Not any more.  Scenario: someone does a write()
1016                          * in data=journal mode.  The buffer's transaction has
1017                          * moved into commit.  Then someone does another
1018                          * write() to the file.  We do the frozen data copyout
1019                          * and set b_next_transaction to point to j_running_t.
1020                          * And while we're in that state, someone does a
1021                          * writepage() in an attempt to pageout the same area
1022                          * of the file via a shared mapping.  At present that
1023                          * calls journal_dirty_data(), and we get right here.
1024                          * It may be too late to journal the data.  Simply
1025                          * falling through to the next test will suffice: the
1026                          * data will be dirty and wil be checkpointed.  The
1027                          * ordering comments in the next comment block still
1028                          * apply.
1029                          */
1030                         //J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1031
1032                         /*
1033                          * If we're journalling data, and this buffer was
1034                          * subject to a write(), it could be metadata, forget
1035                          * or shadow against the committing transaction.  Now,
1036                          * someone has dirtied the same darn page via a mapping
1037                          * and it is being writepage()'d.
1038                          * We *could* just steal the page from commit, with some
1039                          * fancy locking there.  Instead, we just skip it -
1040                          * don't tie the page's buffers to the new transaction
1041                          * at all.
1042                          * Implication: if we crash before the writepage() data
1043                          * is written into the filesystem, recovery will replay
1044                          * the write() data.
1045                          */
1046                         if (jh->b_jlist != BJ_None &&
1047                                         jh->b_jlist != BJ_SyncData &&
1048                                         jh->b_jlist != BJ_AsyncData) {
1049                                 JBUFFER_TRACE(jh, "Not stealing");
1050                                 goto no_journal;
1051                         }
1052
1053                         /*
1054                          * This buffer may be undergoing writeout in commit.  We
1055                          * can't return from here and let the caller dirty it
1056                          * again because that can cause the write-out loop in
1057                          * commit to never terminate.
1058                          */
1059                         if (!async && buffer_dirty(bh)) {
1060                                 atomic_inc(&bh->b_count);
1061                                 spin_unlock(&journal_datalist_lock);
1062                                 need_brelse = 1;
1063                                 ll_rw_block(WRITE, 1, &bh);
1064                                 wait_on_buffer(bh);
1065                                 spin_lock(&journal_datalist_lock);
1066                                 /* The buffer may become locked again at any
1067                                    time if it is redirtied */
1068                         }
1069
1070                         /* journal_clean_data_list() may have got there first */
1071                         if (jh->b_transaction != NULL) {
1072                                 JBUFFER_TRACE(jh, "unfile from commit");
1073                                 __journal_unfile_buffer(jh);
1074                                 jh->b_transaction = NULL;
1075                         }
1076                         /* The buffer will be refiled below */
1077
1078                 }
1079                 /*
1080                  * Special case --- the buffer might actually have been
1081                  * allocated and then immediately deallocated in the previous,
1082                  * committing transaction, so might still be left on that
1083                  * transaction's metadata lists.
1084                  */
1085                 if (jh->b_jlist != wanted_jlist) {
1086                         JBUFFER_TRACE(jh, "not on correct data list: unfile");
1087                         J_ASSERT_JH(jh, jh->b_jlist != BJ_Shadow);
1088                         __journal_unfile_buffer(jh);
1089                         jh->b_transaction = NULL;
1090                         JBUFFER_TRACE(jh, "file as data");
1091                         __journal_file_buffer(jh, handle->h_transaction,
1092                                                 wanted_jlist);
1093                 }
1094         } else {
1095                 JBUFFER_TRACE(jh, "not on a transaction");
1096                 __journal_file_buffer(jh, handle->h_transaction, wanted_jlist);
1097         }
1098 no_journal:
1099         spin_unlock(&journal_datalist_lock);
1100         if (need_brelse) {
1101                 BUFFER_TRACE(bh, "brelse");
1102                 __brelse(bh);
1103         }
1104         JBUFFER_TRACE(jh, "exit");
1105         journal_unlock_journal_head(jh);
1106         return 0;
1107 }
1108
1109 /** 
1110  * int journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1111  * @handle: transaction to add buffer to.
1112  * @bh: buffer to mark 
1113  * 
1114  * mark dirty metadata which needs to be journaled as part of the current transaction.
1115  *
1116  * The buffer is placed on the transaction's metadata list and is marked
1117  * as belonging to the transaction.  
1118  *
1119  * Returns error number or 0 on success.  
1120  */
1121 int journal_dirty_metadata (handle_t *handle, struct buffer_head *bh)
1122 {
1123 /*
1124  * Special care needs to be taken if the buffer already belongs to the
1125  * current committing transaction (in which case we should have frozen
1126  * data present for that commit).  In that case, we don't relink the
1127  * buffer: that only gets done when the old transaction finally
1128  * completes its commit.
1129  * 
1130  */
1131         transaction_t *transaction = handle->h_transaction;
1132         journal_t *journal = transaction->t_journal;
1133         struct journal_head *jh = bh2jh(bh);
1134
1135         jbd_debug(5, "journal_head %p\n", jh);
1136         JBUFFER_TRACE(jh, "entry");
1137         lock_journal(journal);
1138         if (is_handle_aborted(handle))
1139                 goto out_unlock;
1140         
1141         spin_lock(&journal_datalist_lock);
1142         set_bit(BH_JBDDirty, &bh->b_state);
1143
1144         J_ASSERT_JH(jh, jh->b_transaction != NULL);
1145         
1146         /* 
1147          * Metadata already on the current transaction list doesn't
1148          * need to be filed.  Metadata on another transaction's list must
1149          * be committing, and will be refiled once the commit completes:
1150          * leave it alone for now. 
1151          */
1152
1153         if (jh->b_transaction != transaction) {
1154                 JBUFFER_TRACE(jh, "already on other transaction");
1155                 J_ASSERT_JH(jh, jh->b_transaction ==
1156                                         journal->j_committing_transaction);
1157                 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1158                 /* And this case is illegal: we can't reuse another
1159                  * transaction's data buffer, ever. */
1160                 /* FIXME: writepage() should be journalled */
1161                 J_ASSERT_JH(jh, jh->b_jlist != BJ_SyncData);
1162                 goto done_locked;
1163         }
1164
1165         /* That test should have eliminated the following case: */
1166         J_ASSERT_JH(jh, jh->b_frozen_data == 0);
1167
1168         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1169         __journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1170
1171 done_locked:
1172         spin_unlock(&journal_datalist_lock);
1173         JBUFFER_TRACE(jh, "exit");
1174 out_unlock:
1175         unlock_journal(journal);
1176         return 0;
1177 }
1178
1179 #if 0
1180 /* 
1181  * journal_release_buffer: undo a get_write_access without any buffer
1182  * updates, if the update decided in the end that it didn't need access.
1183  *
1184  * journal_get_write_access() can block, so it is quite possible for a
1185  * journaling component to decide after the write access is returned
1186  * that global state has changed and the update is no longer required.  */
1187
1188 void journal_release_buffer (handle_t *handle, struct buffer_head *bh)
1189 {
1190         transaction_t *transaction = handle->h_transaction;
1191         journal_t *journal = transaction->t_journal;
1192         struct journal_head *jh = bh2jh(bh);
1193
1194         lock_journal(journal);
1195         JBUFFER_TRACE(jh, "entry");
1196
1197         /* If the buffer is reserved but not modified by this
1198          * transaction, then it is safe to release it.  In all other
1199          * cases, just leave the buffer as it is. */
1200
1201         spin_lock(&journal_datalist_lock);
1202         if (jh->b_jlist == BJ_Reserved && jh->b_transaction == transaction &&
1203             !buffer_jdirty(jh2bh(jh))) {
1204                 JBUFFER_TRACE(jh, "unused: refiling it");
1205                 handle->h_buffer_credits++;
1206                 __journal_refile_buffer(jh);
1207         }
1208         spin_unlock(&journal_datalist_lock);
1209
1210         JBUFFER_TRACE(jh, "exit");
1211         unlock_journal(journal);
1212 }
1213 #endif
1214
1215 /** 
1216  * void journal_forget() - bforget() for potentially-journaled buffers.
1217  * @handle: transaction handle
1218  * @bh:     bh to 'forget'
1219  *
1220  * We can only do the bforget if there are no commits pending against the
1221  * buffer.  If the buffer is dirty in the current running transaction we
1222  * can safely unlink it. 
1223  *
1224  * bh may not be a journalled buffer at all - it may be a non-JBD
1225  * buffer which came off the hashtable.  Check for this.
1226  *
1227  * Decrements bh->b_count by one.
1228  * 
1229  * Allow this call even if the handle has aborted --- it may be part of
1230  * the caller's cleanup after an abort.
1231  */
1232 void journal_forget (handle_t *handle, struct buffer_head *bh)
1233 {
1234         transaction_t *transaction = handle->h_transaction;
1235         journal_t *journal = transaction->t_journal;
1236         struct journal_head *jh;
1237
1238         BUFFER_TRACE(bh, "entry");
1239
1240         lock_journal(journal);
1241         spin_lock(&journal_datalist_lock);
1242
1243         if (!buffer_jbd(bh))
1244                 goto not_jbd;
1245         jh = bh2jh(bh);
1246
1247         if (jh->b_transaction == handle->h_transaction) {
1248                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1249
1250                 /* If we are forgetting a buffer which is already part
1251                  * of this transaction, then we can just drop it from
1252                  * the transaction immediately. */
1253                 clear_bit(BH_Dirty, &bh->b_state);
1254                 clear_bit(BH_JBDDirty, &bh->b_state);
1255
1256                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1257                 J_ASSERT_JH(jh, !jh->b_committed_data);
1258
1259                 __journal_unfile_buffer(jh);
1260                 jh->b_transaction = 0;
1261
1262                 /* 
1263                  * We are no longer going to journal this buffer.
1264                  * However, the commit of this transaction is still
1265                  * important to the buffer: the delete that we are now
1266                  * processing might obsolete an old log entry, so by
1267                  * committing, we can satisfy the buffer's checkpoint.
1268                  *
1269                  * So, if we have a checkpoint on the buffer, we should
1270                  * now refile the buffer on our BJ_Forget list so that
1271                  * we know to remove the checkpoint after we commit. 
1272                  */
1273
1274                 if (jh->b_cp_transaction) {
1275                         __journal_file_buffer(jh, transaction, BJ_Forget);
1276                 } else {
1277                         __journal_remove_journal_head(bh);
1278                         __brelse(bh);
1279                         if (!buffer_jbd(bh)) {
1280                                 spin_unlock(&journal_datalist_lock);
1281                                 unlock_journal(journal);
1282                                 __bforget(bh);
1283                                 return;
1284                         }
1285                 }
1286                 
1287         } else if (jh->b_transaction) {
1288                 J_ASSERT_JH(jh, (jh->b_transaction == 
1289                                  journal->j_committing_transaction));
1290                 /* However, if the buffer is still owned by a prior
1291                  * (committing) transaction, we can't drop it yet... */
1292                 JBUFFER_TRACE(jh, "belongs to older transaction");
1293                 /* ... but we CAN drop it from the new transaction if we
1294                  * have also modified it since the original commit. */
1295
1296                 if (jh->b_next_transaction) {
1297                         J_ASSERT(jh->b_next_transaction == transaction);
1298                         jh->b_next_transaction = NULL;
1299                 }
1300         }
1301
1302 not_jbd:
1303         spin_unlock(&journal_datalist_lock);
1304         unlock_journal(journal);
1305         __brelse(bh);
1306         return;
1307 }
1308
1309 #if 0   /* Unused */
1310 /*
1311  * journal_sync_buffer: flush a potentially-journaled buffer to disk.
1312  *
1313  * Used for O_SYNC filesystem operations.  If the buffer is journaled,
1314  * we need to complete the O_SYNC by waiting for the transaction to
1315  * complete.  It is an error to call journal_sync_buffer before
1316  * journal_stop!
1317  */
1318
1319 void journal_sync_buffer(struct buffer_head *bh)
1320 {
1321         transaction_t *transaction;
1322         journal_t *journal;
1323         long sequence;
1324         struct journal_head *jh;
1325
1326         /* If the buffer isn't journaled, this is easy: just sync it to
1327          * disk.  */
1328         BUFFER_TRACE(bh, "entry");
1329
1330         spin_lock(&journal_datalist_lock);
1331         if (!buffer_jbd(bh)) {
1332                 spin_unlock(&journal_datalist_lock);
1333                 return;
1334         }
1335         jh = bh2jh(bh);
1336         if (jh->b_transaction == NULL) {
1337                 /* If the buffer has already been journaled, then this
1338                  * is a noop. */
1339                 if (jh->b_cp_transaction == NULL) {
1340                         spin_unlock(&journal_datalist_lock);
1341                         return;
1342                 }
1343                 atomic_inc(&bh->b_count);
1344                 spin_unlock(&journal_datalist_lock);
1345                 ll_rw_block (WRITE, 1, &bh);
1346                 wait_on_buffer(bh);
1347                 __brelse(bh);
1348                 goto out;
1349         }
1350         
1351         /* Otherwise, just wait until the transaction is synced to disk. */
1352         transaction = jh->b_transaction;
1353         journal = transaction->t_journal;
1354         sequence = transaction->t_tid;
1355         spin_unlock(&journal_datalist_lock);
1356
1357         jbd_debug(2, "requesting commit for jh %p\n", jh);
1358         log_start_commit (journal, transaction);
1359         
1360         while (tid_gt(sequence, journal->j_commit_sequence)) {
1361                 wake_up(&journal->j_wait_done_commit);
1362                 sleep_on(&journal->j_wait_done_commit);
1363         }
1364         JBUFFER_TRACE(jh, "exit");
1365 out:
1366         return;
1367 }
1368 #endif
1369
1370 /*
1371  * Register a callback function for this handle.  The function will be
1372  * called when the transaction that this handle is part of has been
1373  * committed to disk with the original callback data struct and the
1374  * error status of the journal as parameters.  There is no guarantee of
1375  * ordering between handles within a single transaction, nor between
1376  * callbacks registered on the same handle.
1377  *
1378  * The caller is responsible for allocating the journal_callback struct.
1379  * This is to allow the caller to add as much extra data to the callback
1380  * as needed, but reduce the overhead of multiple allocations.  The caller
1381  * allocated struct must start with a struct journal_callback at offset 0,
1382  * and has the caller-specific data afterwards.
1383  */
1384 void journal_callback_set(handle_t *handle,
1385                           void (*func)(struct journal_callback *jcb, int error),
1386                           struct journal_callback *jcb)
1387 {
1388         list_add_tail(&jcb->jcb_list, &handle->h_jcb);
1389         jcb->jcb_func = func;
1390 }
1391
1392 /**
1393  * int journal_stop() - complete a transaction
1394  * @handle: tranaction to complete.
1395  * 
1396  * All done for a particular handle.
1397  *
1398  * There is not much action needed here.  We just return any remaining
1399  * buffer credits to the transaction and remove the handle.  The only
1400  * complication is that we need to start a commit operation if the
1401  * filesystem is marked for synchronous update.
1402  *
1403  * journal_stop itself will not usually return an error, but it may
1404  * do so in unusual circumstances.  In particular, expect it to 
1405  * return -EIO if a journal_abort has been executed since the
1406  * transaction began.
1407  */
1408 int journal_stop(handle_t *handle)
1409 {
1410         transaction_t *transaction = handle->h_transaction;
1411         journal_t *journal = transaction->t_journal;
1412         int old_handle_count, err;
1413         
1414         if (!handle)
1415                 return 0;
1416
1417         J_ASSERT (transaction->t_updates > 0);
1418         J_ASSERT (journal_current_handle() == handle);
1419         
1420         if (is_handle_aborted(handle))
1421                 err = -EIO;
1422         else
1423                 err = 0;
1424         
1425         if (--handle->h_ref > 0) {
1426                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1427                           handle->h_ref);
1428                 return err;
1429         }
1430
1431         jbd_debug(4, "Handle %p going down\n", handle);
1432
1433         /*
1434          * Implement synchronous transaction batching.  If the handle
1435          * was synchronous, don't force a commit immediately.  Let's
1436          * yield and let another thread piggyback onto this transaction.
1437          * Keep doing that while new threads continue to arrive.
1438          * It doesn't cost much - we're about to run a commit and sleep
1439          * on IO anyway.  Speeds up many-threaded, many-dir operations
1440          * by 30x or more...
1441          */
1442         if (handle->h_sync) {
1443                 do {
1444                         old_handle_count = transaction->t_handle_count;
1445                         yield();
1446                 } while (old_handle_count != transaction->t_handle_count);
1447         }
1448
1449         current->journal_info = NULL;
1450         transaction->t_outstanding_credits -= handle->h_buffer_credits;
1451         transaction->t_updates--;
1452         if (!transaction->t_updates) {
1453                 wake_up(&journal->j_wait_updates);
1454                 if (journal->j_barrier_count)
1455                         wake_up(&journal->j_wait_transaction_locked);
1456         }
1457
1458         /* Move callbacks from the handle to the transaction. */
1459         list_splice(&handle->h_jcb, &transaction->t_jcb);
1460
1461         /*
1462          * If the handle is marked SYNC, we need to set another commit
1463          * going!  We also want to force a commit if the current
1464          * transaction is occupying too much of the log, or if the
1465          * transaction is too old now.
1466          */
1467         if (handle->h_sync ||
1468                         transaction->t_outstanding_credits >
1469                                 journal->j_max_transaction_buffers ||
1470                         (journal->j_commit_interval &&
1471                          time_after_eq(jiffies, transaction->t_expires))) {
1472                 /* Do this even for aborted journals: an abort still
1473                  * completes the commit thread, it just doesn't write
1474                  * anything to disk. */
1475                 tid_t tid = transaction->t_tid;
1476                 
1477                 jbd_debug(2, "transaction too old, requesting commit for "
1478                                         "handle %p\n", handle);
1479                 /* This is non-blocking */
1480                 log_start_commit(journal, transaction);
1481                 
1482                 /*
1483                  * Special case: JFS_SYNC synchronous updates require us
1484                  * to wait for the commit to complete.  
1485                  */
1486                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1487                         log_wait_commit(journal, tid);
1488         }
1489         kfree(handle);
1490         return err;
1491 }
1492
1493 /**int journal_force_commit() - force any uncommitted transactions
1494  * @journal: journal to force
1495  *
1496  * For synchronous operations: force any uncommitted transactions
1497  * to disk.  May seem kludgy, but it reuses all the handle batching
1498  * code in a very simple manner.
1499  */
1500 int journal_force_commit(journal_t *journal)
1501 {
1502         handle_t *handle;
1503         int ret = 0;
1504
1505         lock_kernel();
1506         handle = journal_start(journal, 1);
1507         if (IS_ERR(handle)) {
1508                 ret = PTR_ERR(handle);
1509                 goto out;
1510         }
1511         handle->h_sync = 1;
1512         journal_stop(handle);
1513 out:
1514         unlock_kernel();
1515         return ret;
1516 }
1517
1518 /*
1519  *
1520  * List management code snippets: various functions for manipulating the
1521  * transaction buffer lists.
1522  *
1523  */
1524
1525 /*
1526  * Append a buffer to a transaction list, given the transaction's list head
1527  * pointer.
1528  * journal_datalist_lock is held.
1529  */
1530
1531 static inline void 
1532 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1533 {
1534         if (!*list) {
1535                 jh->b_tnext = jh->b_tprev = jh;
1536                 *list = jh;
1537         } else {
1538                 /* Insert at the tail of the list to preserve order */
1539                 struct journal_head *first = *list, *last = first->b_tprev;
1540                 jh->b_tprev = last;
1541                 jh->b_tnext = first;
1542                 last->b_tnext = first->b_tprev = jh;
1543         }
1544 }
1545
1546 /* 
1547  * Remove a buffer from a transaction list, given the transaction's list
1548  * head pointer.
1549  *
1550  * Called with journal_datalist_lock held, and the journal may not
1551  * be locked.
1552  */
1553
1554 static inline void
1555 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1556 {
1557         if (*list == jh) {
1558                 *list = jh->b_tnext;
1559                 if (*list == jh)
1560                         *list = 0;
1561         }
1562         jh->b_tprev->b_tnext = jh->b_tnext;
1563         jh->b_tnext->b_tprev = jh->b_tprev;
1564 }
1565
1566 /* 
1567  * Remove a buffer from the appropriate transaction list.
1568  *
1569  * Note that this function can *change* the value of
1570  * bh->b_transaction->t_sync_datalist, t_async_datalist, t_buffers, t_forget,
1571  * t_iobuf_list, t_shadow_list, t_log_list or t_reserved_list.  If the caller
1572  * is holding onto a copy of one of thee pointers, it could go bad.
1573  * Generally the caller needs to re-read the pointer from the transaction_t.
1574  *
1575  * If bh->b_jlist is BJ_SyncData or BJ_AsyncData then we may have been called
1576  * via journal_try_to_free_buffer() or journal_clean_data_list().  In that
1577  * case, journal_datalist_lock will be held, and the journal may not be locked.
1578  */
1579 void __journal_unfile_buffer(struct journal_head *jh)
1580 {
1581         struct journal_head **list = 0;
1582         transaction_t * transaction;
1583
1584         assert_spin_locked(&journal_datalist_lock);
1585         transaction = jh->b_transaction;
1586
1587         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1588
1589         if (jh->b_jlist != BJ_None)
1590                 J_ASSERT_JH(jh, transaction != 0);
1591
1592         switch (jh->b_jlist) {
1593         case BJ_None:
1594                 return;
1595         case BJ_SyncData:
1596                 list = &transaction->t_sync_datalist;
1597                 break;
1598         case BJ_AsyncData:
1599                 list = &transaction->t_async_datalist;
1600                 break;
1601         case BJ_Metadata:
1602                 transaction->t_nr_buffers--;
1603                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1604                 list = &transaction->t_buffers;
1605                 break;
1606         case BJ_Forget:
1607                 list = &transaction->t_forget;
1608                 break;
1609         case BJ_IO:
1610                 list = &transaction->t_iobuf_list;
1611                 break;
1612         case BJ_Shadow:
1613                 list = &transaction->t_shadow_list;
1614                 break;
1615         case BJ_LogCtl:
1616                 list = &transaction->t_log_list;
1617                 break;
1618         case BJ_Reserved:
1619                 list = &transaction->t_reserved_list;
1620                 break;
1621         }
1622         
1623         __blist_del_buffer(list, jh);
1624         jh->b_jlist = BJ_None;
1625         if (test_and_clear_bit(BH_JBDDirty, &jh2bh(jh)->b_state)) {
1626                 set_bit(BH_Dirty, &jh2bh(jh)->b_state);
1627         }
1628 }
1629
1630 void journal_unfile_buffer(struct journal_head *jh)
1631 {
1632         spin_lock(&journal_datalist_lock);
1633         __journal_unfile_buffer(jh);
1634         spin_unlock(&journal_datalist_lock);
1635 }
1636
1637 /*
1638  * Called from journal_try_to_free_buffers().  The journal is not
1639  * locked. lru_list_lock is not held.
1640  *
1641  * Here we see why journal_datalist_lock is global and not per-journal.
1642  * We cannot get back to this buffer's journal pointer without locking
1643  * out journal_clean_data_list() in some manner.
1644  *
1645  * One could use journal_datalist_lock to get unracy access to a
1646  * per-journal lock.
1647  *
1648  * Called with journal_datalist_lock held.
1649  *
1650  * Returns non-zero iff we were able to free the journal_head.
1651  */
1652 static int __journal_try_to_free_buffer(struct buffer_head *bh,
1653                                         int *locked_or_dirty)
1654 {
1655         struct journal_head *jh;
1656
1657         assert_spin_locked(&journal_datalist_lock);
1658
1659         jh = bh2jh(bh);
1660
1661         if (buffer_locked(bh) || buffer_dirty(bh)) {
1662                 *locked_or_dirty = 1;
1663                 goto out;
1664         }
1665
1666         if (!buffer_uptodate(bh))
1667                 goto out;
1668
1669         if (jh->b_next_transaction != 0)
1670                 goto out;
1671
1672         if (jh->b_transaction != 0 && jh->b_cp_transaction == 0) {
1673                 if (jh->b_jlist == BJ_SyncData || jh->b_jlist==BJ_AsyncData) {
1674                         /* A written-back ordered data buffer */
1675                         JBUFFER_TRACE(jh, "release data");
1676                         __journal_unfile_buffer(jh);
1677                         jh->b_transaction = 0;
1678                         __journal_remove_journal_head(bh);
1679                         __brelse(bh);
1680                 }
1681         }
1682         else if (jh->b_cp_transaction != 0 && jh->b_transaction == 0) {
1683                 /* written-back checkpointed metadata buffer */
1684                 if (jh->b_jlist == BJ_None) {
1685                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1686                         __journal_remove_checkpoint(jh);
1687                         __journal_remove_journal_head(bh);
1688                         __brelse(bh);
1689                 }
1690         }
1691         return !buffer_jbd(bh);
1692
1693 out:
1694         return 0;
1695 }
1696
1697 void debug_page(struct page *p)
1698 {
1699         struct buffer_head *bh;
1700
1701         bh = p->buffers;
1702
1703         printk(KERN_ERR "%s: page index:%lu count:%d flags:%lx\n", __FUNCTION__,
1704                  p->index, atomic_read(&p->count), p->flags);
1705
1706         while (bh) {
1707                 printk(KERN_ERR "%s: bh b_next:%p blocknr:%lu b_list:%u state:%lx\n",
1708                         __FUNCTION__, bh->b_next, bh->b_blocknr, bh->b_list,
1709                                 bh->b_state);
1710                 bh = bh->b_this_page;
1711         } 
1712 }
1713
1714
1715 /** 
1716  * int journal_try_to_free_buffers() - try to free page buffers.
1717  * @journal: journal for operation
1718  * @page: to try and free
1719  * @gfp_mask: 'IO' mode for try_to_free_buffers()
1720  *
1721  * 
1722  * For all the buffers on this page,
1723  * if they are fully written out ordered data, move them onto BUF_CLEAN
1724  * so try_to_free_buffers() can reap them.
1725  * 
1726  * This function returns non-zero if we wish try_to_free_buffers()
1727  * to be called. We do this if the page is releasable by try_to_free_buffers().
1728  * We also do it if the page has locked or dirty buffers and the caller wants
1729  * us to perform sync or async writeout.
1730  */
1731 int journal_try_to_free_buffers(journal_t *journal, 
1732                                 struct page *page, int gfp_mask)
1733 {
1734 /*
1735  * journal_try_to_free_buffers().  For all the buffers on this page,
1736  * if they are fully written out ordered data, move them onto BUF_CLEAN
1737  * so try_to_free_buffers() can reap them.  Called with lru_list_lock
1738  * not held.  Does its own locking.
1739  *
1740  * This complicates JBD locking somewhat.  We aren't protected by the
1741  * BKL here.  We wish to remove the buffer from its committing or
1742  * running transaction's ->t_datalist via __journal_unfile_buffer.
1743  *
1744  * This may *change* the value of transaction_t->t_datalist, so anyone
1745  * who looks at t_datalist needs to lock against this function.
1746  *
1747  * Even worse, someone may be doing a journal_dirty_data on this
1748  * buffer.  So we need to lock against that.  journal_dirty_data()
1749  * will come out of the lock with the buffer dirty, which makes it
1750  * ineligible for release here.
1751  *
1752  * Who else is affected by this?  hmm...  Really the only contender
1753  * is do_get_write_access() - it could be looking at the buffer while
1754  * journal_try_to_free_buffer() is changing its state.  But that
1755  * cannot happen because we never reallocate freed data as metadata
1756  * while the data is part of a transaction.  Yes?
1757  *
1758  */
1759         struct buffer_head *bh;
1760         struct buffer_head *tmp;
1761         int locked_or_dirty = 0;
1762         int call_ttfb = 1;
1763
1764         J_ASSERT(PageLocked(page));
1765
1766         bh = page->buffers;
1767         tmp = bh;
1768         spin_lock(&journal_datalist_lock);
1769         do {
1770                 struct buffer_head *p = tmp;
1771
1772                 if (unlikely(!tmp)) {
1773                         debug_page(page);
1774                         BUG();
1775                 }
1776                         
1777                 tmp = tmp->b_this_page;
1778                 if (buffer_jbd(p))
1779                         if (!__journal_try_to_free_buffer(p, &locked_or_dirty))
1780                                 call_ttfb = 0;
1781         } while (tmp != bh);
1782         spin_unlock(&journal_datalist_lock);
1783
1784         if (!(gfp_mask & (__GFP_IO|__GFP_WAIT)))
1785                 goto out;
1786         if (!locked_or_dirty)
1787                 goto out;
1788         /*
1789          * The VM wants us to do writeout, or to block on IO, or both.
1790          * So we allow try_to_free_buffers to be called even if the page
1791          * still has journalled buffers.
1792          */
1793         call_ttfb = 1;
1794 out:
1795         return call_ttfb;
1796 }
1797
1798 /*
1799  * This buffer is no longer needed.  If it is on an older transaction's
1800  * checkpoint list we need to record it on this transaction's forget list
1801  * to pin this buffer (and hence its checkpointing transaction) down until
1802  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1803  * release it.
1804  * Returns non-zero if JBD no longer has an interest in the buffer.
1805  */
1806 static int dispose_buffer(struct journal_head *jh,
1807                 transaction_t *transaction)
1808 {
1809         int may_free = 1;
1810         struct buffer_head *bh = jh2bh(jh);
1811
1812         spin_lock(&journal_datalist_lock);
1813         __journal_unfile_buffer(jh);
1814         jh->b_transaction = 0;
1815
1816         if (jh->b_cp_transaction) {
1817                 JBUFFER_TRACE(jh, "on running+cp transaction");
1818                 __journal_file_buffer(jh, transaction, BJ_Forget);
1819                 clear_bit(BH_JBDDirty, &bh->b_state);
1820                 may_free = 0;
1821         } else {
1822                 JBUFFER_TRACE(jh, "on running transaction");
1823                 __journal_remove_journal_head(bh);
1824                 __brelse(bh);
1825         }
1826         spin_unlock(&journal_datalist_lock);
1827         return may_free;
1828 }
1829
1830 /*
1831  * journal_flushpage 
1832  *
1833  * This code is tricky.  It has a number of cases to deal with.
1834  *
1835  * There are two invariants which this code relies on:
1836  *
1837  * i_size must be updated on disk before we start calling flushpage on the
1838  * data.
1839  * 
1840  *  This is done in ext3 by defining an ext3_setattr method which
1841  *  updates i_size before truncate gets going.  By maintaining this
1842  *  invariant, we can be sure that it is safe to throw away any buffers
1843  *  attached to the current transaction: once the transaction commits,
1844  *  we know that the data will not be needed.
1845  * 
1846  *  Note however that we can *not* throw away data belonging to the
1847  *  previous, committing transaction!  
1848  *
1849  * Any disk blocks which *are* part of the previous, committing
1850  * transaction (and which therefore cannot be discarded immediately) are
1851  * not going to be reused in the new running transaction
1852  *
1853  *  The bitmap committed_data images guarantee this: any block which is
1854  *  allocated in one transaction and removed in the next will be marked
1855  *  as in-use in the committed_data bitmap, so cannot be reused until
1856  *  the next transaction to delete the block commits.  This means that
1857  *  leaving committing buffers dirty is quite safe: the disk blocks
1858  *  cannot be reallocated to a different file and so buffer aliasing is
1859  *  not possible.
1860  *
1861  *
1862  * The above applies mainly to ordered data mode.  In writeback mode we
1863  * don't make guarantees about the order in which data hits disk --- in
1864  * particular we don't guarantee that new dirty data is flushed before
1865  * transaction commit --- so it is always safe just to discard data
1866  * immediately in that mode.  --sct 
1867  */
1868
1869 /*
1870  * The journal_unmap_buffer helper function returns zero if the buffer
1871  * concerned remains pinned as an anonymous buffer belonging to an older
1872  * transaction.
1873  *
1874  * We're outside-transaction here.  Either or both of j_running_transaction
1875  * and j_committing_transaction may be NULL.
1876  */
1877 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1878 {
1879         transaction_t *transaction;
1880         struct journal_head *jh;
1881         int may_free = 1;
1882
1883         BUFFER_TRACE(bh, "entry");
1884
1885         if (!buffer_mapped(bh))
1886                 return 1;
1887
1888         /* It is safe to proceed here without the
1889          * journal_datalist_spinlock because the buffers cannot be
1890          * stolen by try_to_free_buffers as long as we are holding the
1891          * page lock. --sct */
1892
1893         if (!buffer_jbd(bh))
1894                 goto zap_buffer;
1895
1896         jh = bh2jh(bh);
1897         transaction = jh->b_transaction;
1898         if (transaction == NULL) {
1899                 /* First case: not on any transaction.  If it
1900                  * has no checkpoint link, then we can zap it:
1901                  * it's a writeback-mode buffer so we don't care
1902                  * if it hits disk safely. */
1903                 if (!jh->b_cp_transaction) {
1904                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1905                         goto zap_buffer;
1906                 }
1907                 
1908                 if (!buffer_dirty(bh)) {
1909                         /* bdflush has written it.  We can drop it now */
1910                         goto zap_buffer;
1911                 }
1912
1913                 /* OK, it must be in the journal but still not
1914                  * written fully to disk: it's metadata or
1915                  * journaled data... */
1916
1917                 if (journal->j_running_transaction) {
1918                         /* ... and once the current transaction has
1919                          * committed, the buffer won't be needed any
1920                          * longer. */
1921                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1922                         return dispose_buffer(jh,
1923                                         journal->j_running_transaction);
1924                 } else {
1925                         /* There is no currently-running transaction. So the
1926                          * orphan record which we wrote for this file must have
1927                          * passed into commit.  We must attach this buffer to
1928                          * the committing transaction, if it exists. */
1929                         if (journal->j_committing_transaction) {
1930                                 JBUFFER_TRACE(jh, "give to committing trans");
1931                                 return dispose_buffer(jh,
1932                                         journal->j_committing_transaction);
1933                         } else {
1934                                 /* The orphan record's transaction has
1935                                  * committed.  We can cleanse this buffer */
1936                                 clear_bit(BH_JBDDirty, &bh->b_state);
1937                                 goto zap_buffer;
1938                         }
1939                 }
1940         } else if (transaction == journal->j_committing_transaction) {
1941                 /* If it is committing, we simply cannot touch it.  We
1942                  * can remove it's next_transaction pointer from the
1943                  * running transaction if that is set, but nothing
1944                  * else. */
1945                 JBUFFER_TRACE(jh, "on committing transaction");
1946                 set_bit(BH_Freed, &bh->b_state);
1947                 if (jh->b_next_transaction) {
1948                         J_ASSERT(jh->b_next_transaction ==
1949                                         journal->j_running_transaction);
1950                         jh->b_next_transaction = NULL;
1951                 }
1952                 return 0;
1953         } else {
1954                 /* Good, the buffer belongs to the running transaction.
1955                  * We are writing our own transaction's data, not any
1956                  * previous one's, so it is safe to throw it away
1957                  * (remember that we expect the filesystem to have set
1958                  * i_size already for this truncate so recovery will not
1959                  * expose the disk blocks we are discarding here.) */
1960                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1961                 may_free = dispose_buffer(jh, transaction);
1962         }
1963
1964 zap_buffer:     
1965         if (buffer_dirty(bh))
1966                 mark_buffer_clean(bh);
1967         J_ASSERT_BH(bh, !buffer_jdirty(bh));
1968         clear_bit(BH_Uptodate, &bh->b_state);
1969         clear_bit(BH_Mapped, &bh->b_state);
1970         clear_bit(BH_Req, &bh->b_state);
1971         clear_bit(BH_New, &bh->b_state);
1972         return may_free;
1973 }
1974
1975 /** 
1976  * int journal_flushpage() 
1977  * @journal: journal to use for flush... 
1978  * @page:    page to flush
1979  * @offset:  length of page to flush.
1980  *
1981  * Reap page buffers containing data after offset in page.
1982  *
1983  * Return non-zero if the page's buffers were successfully reaped.
1984  */
1985 int journal_flushpage(journal_t *journal, 
1986                       struct page *page, 
1987                       unsigned long offset)
1988 {
1989         struct buffer_head *head, *bh, *next;
1990         unsigned int curr_off = 0;
1991         int may_free = 1;
1992                 
1993         if (!PageLocked(page))
1994                 BUG();
1995         if (!page->buffers)
1996                 return 1;
1997
1998         /* We will potentially be playing with lists other than just the
1999          * data lists (especially for journaled data mode), so be
2000          * cautious in our locking. */
2001         lock_journal(journal);
2002
2003         head = bh = page->buffers;
2004         do {
2005                 unsigned int next_off = curr_off + bh->b_size;
2006                 next = bh->b_this_page;
2007
2008                 /* AKPM: doing lock_buffer here may be overly paranoid */
2009                 if (offset <= curr_off) {
2010                         /* This block is wholly outside the truncation point */
2011                         lock_buffer(bh);
2012                         may_free &= journal_unmap_buffer(journal, bh);
2013                         unlock_buffer(bh);
2014                 }
2015                 curr_off = next_off;
2016                 bh = next;
2017
2018         } while (bh != head);
2019
2020         unlock_journal(journal);
2021
2022         if (!offset) {
2023                 if (!may_free || !try_to_free_buffers(page, 0))
2024                         return 0;
2025                 J_ASSERT(page->buffers == NULL);
2026         }
2027         return 1;
2028 }
2029
2030 /* 
2031  * File a buffer on the given transaction list. 
2032  */
2033 void __journal_file_buffer(struct journal_head *jh,
2034                         transaction_t *transaction, int jlist)
2035 {
2036         struct journal_head **list = 0;
2037         int was_dirty = 0;
2038
2039         assert_spin_locked(&journal_datalist_lock);
2040         
2041         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2042         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2043                                 jh->b_transaction == 0);
2044
2045         if (jh->b_transaction && jh->b_jlist == jlist)
2046                 return;
2047         
2048         /* The following list of buffer states needs to be consistent
2049          * with __jbd_unexpected_dirty_buffer()'s handling of dirty
2050          * state. */
2051
2052         if (jlist == BJ_Metadata || jlist == BJ_Reserved || 
2053             jlist == BJ_Shadow || jlist == BJ_Forget) {
2054                 if (atomic_set_buffer_clean(jh2bh(jh)) ||
2055                     test_and_clear_bit(BH_JBDDirty, &jh2bh(jh)->b_state))
2056                         was_dirty = 1;
2057         }
2058
2059         if (jh->b_transaction)
2060                 __journal_unfile_buffer(jh);
2061         else
2062                 jh->b_transaction = transaction;
2063
2064         switch (jlist) {
2065         case BJ_None:
2066                 J_ASSERT_JH(jh, !jh->b_committed_data);
2067                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2068                 return;
2069         case BJ_SyncData:
2070                 list = &transaction->t_sync_datalist;
2071                 break;
2072         case BJ_AsyncData:
2073                 list = &transaction->t_async_datalist;
2074                 break;
2075         case BJ_Metadata:
2076                 transaction->t_nr_buffers++;
2077                 list = &transaction->t_buffers;
2078                 break;
2079         case BJ_Forget:
2080                 list = &transaction->t_forget;
2081                 break;
2082         case BJ_IO:
2083                 list = &transaction->t_iobuf_list;
2084                 break;
2085         case BJ_Shadow:
2086                 list = &transaction->t_shadow_list;
2087                 break;
2088         case BJ_LogCtl:
2089                 list = &transaction->t_log_list;
2090                 break;
2091         case BJ_Reserved:
2092                 list = &transaction->t_reserved_list;
2093                 break;
2094         }
2095
2096         __blist_add_buffer(list, jh);
2097         jh->b_jlist = jlist;
2098
2099         if (was_dirty)
2100                 set_bit(BH_JBDDirty, &jh2bh(jh)->b_state);
2101 }
2102
2103 void journal_file_buffer(struct journal_head *jh,
2104                                 transaction_t *transaction, int jlist)
2105 {
2106         spin_lock(&journal_datalist_lock);
2107         __journal_file_buffer(jh, transaction, jlist);
2108         spin_unlock(&journal_datalist_lock);
2109 }
2110
2111 static void jbd_refile_buffer(struct buffer_head *bh)
2112 {
2113         if (buffer_dirty(bh) && (bh->b_list != BUF_DIRTY))
2114                 set_buffer_flushtime(bh);
2115         refile_buffer(bh);
2116 }
2117
2118 /* 
2119  * Remove a buffer from its current buffer list in preparation for
2120  * dropping it from its current transaction entirely.  If the buffer has
2121  * already started to be used by a subsequent transaction, refile the
2122  * buffer on that transaction's metadata list.
2123  */
2124
2125 void __journal_refile_buffer(struct journal_head *jh)
2126 {
2127         int was_dirty = 0;
2128
2129         assert_spin_locked(&journal_datalist_lock);
2130         /* If the buffer is now unused, just drop it. */
2131         if (jh->b_next_transaction == NULL) {
2132                 __journal_unfile_buffer(jh);
2133                 jh->b_transaction = NULL;
2134                 /* Onto BUF_DIRTY for writeback */
2135                 jbd_refile_buffer(jh2bh(jh));
2136                 return;
2137         }
2138         
2139         /* It has been modified by a later transaction: add it to the
2140          * new transaction's metadata list. */
2141
2142         if (test_and_clear_bit(BH_JBDDirty, &jh2bh(jh)->b_state))
2143                         was_dirty = 1;
2144
2145         __journal_unfile_buffer(jh);
2146         jh->b_transaction = jh->b_next_transaction;
2147         jh->b_next_transaction = NULL;
2148         __journal_file_buffer(jh, jh->b_transaction, BJ_Metadata);
2149         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2150
2151         if (was_dirty)
2152                 set_bit(BH_JBDDirty, &jh2bh(jh)->b_state);
2153
2154 }
2155
2156 /*
2157  * For the unlocked version of this call, also make sure that any
2158  * hanging journal_head is cleaned up if necessary.
2159  *
2160  * __journal_refile_buffer is usually called as part of a single locked
2161  * operation on a buffer_head, in which the caller is probably going to
2162  * be hooking the journal_head onto other lists.  In that case it is up
2163  * to the caller to remove the journal_head if necessary.  For the
2164  * unlocked journal_refile_buffer call, the caller isn't going to be
2165  * doing anything else to the buffer so we need to do the cleanup
2166  * ourselves to avoid a jh leak. 
2167  *
2168  * *** The journal_head may be freed by this call! ***
2169  */
2170 void journal_refile_buffer(struct journal_head *jh)
2171 {
2172         struct buffer_head *bh;
2173
2174         spin_lock(&journal_datalist_lock);
2175         bh = jh2bh(jh);
2176
2177         __journal_refile_buffer(jh);
2178         __journal_remove_journal_head(bh);
2179
2180         spin_unlock(&journal_datalist_lock);
2181         __brelse(bh);
2182 }