OSDN Git Service

fs: Enable bmap() function to properly return errors
[tomoyo/tomoyo-test1.git] / fs / jbd2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98
99 static void __journal_abort_soft (journal_t *journal, int errno);
100 static int jbd2_journal_create_slab(size_t slab_size);
101
102 #ifdef CONFIG_JBD2_DEBUG
103 void __jbd2_debug(int level, const char *file, const char *func,
104                   unsigned int line, const char *fmt, ...)
105 {
106         struct va_format vaf;
107         va_list args;
108
109         if (level > jbd2_journal_enable_debug)
110                 return;
111         va_start(args, fmt);
112         vaf.fmt = fmt;
113         vaf.va = &args;
114         printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
115         va_end(args);
116 }
117 EXPORT_SYMBOL(__jbd2_debug);
118 #endif
119
120 /* Checksumming functions */
121 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
122 {
123         if (!jbd2_journal_has_csum_v2or3_feature(j))
124                 return 1;
125
126         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
127 }
128
129 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
130 {
131         __u32 csum;
132         __be32 old_csum;
133
134         old_csum = sb->s_checksum;
135         sb->s_checksum = 0;
136         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
137         sb->s_checksum = old_csum;
138
139         return cpu_to_be32(csum);
140 }
141
142 /*
143  * Helper function used to manage commit timeouts
144  */
145
146 static void commit_timeout(struct timer_list *t)
147 {
148         journal_t *journal = from_timer(journal, t, j_commit_timer);
149
150         wake_up_process(journal->j_task);
151 }
152
153 /*
154  * kjournald2: The main thread function used to manage a logging device
155  * journal.
156  *
157  * This kernel thread is responsible for two things:
158  *
159  * 1) COMMIT:  Every so often we need to commit the current state of the
160  *    filesystem to disk.  The journal thread is responsible for writing
161  *    all of the metadata buffers to disk.
162  *
163  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
164  *    of the data in that part of the log has been rewritten elsewhere on
165  *    the disk.  Flushing these old buffers to reclaim space in the log is
166  *    known as checkpointing, and this thread is responsible for that job.
167  */
168
169 static int kjournald2(void *arg)
170 {
171         journal_t *journal = arg;
172         transaction_t *transaction;
173
174         /*
175          * Set up an interval timer which can be used to trigger a commit wakeup
176          * after the commit interval expires
177          */
178         timer_setup(&journal->j_commit_timer, commit_timeout, 0);
179
180         set_freezable();
181
182         /* Record that the journal thread is running */
183         journal->j_task = current;
184         wake_up(&journal->j_wait_done_commit);
185
186         /*
187          * Make sure that no allocations from this kernel thread will ever
188          * recurse to the fs layer because we are responsible for the
189          * transaction commit and any fs involvement might get stuck waiting for
190          * the trasn. commit.
191          */
192         memalloc_nofs_save();
193
194         /*
195          * And now, wait forever for commit wakeup events.
196          */
197         write_lock(&journal->j_state_lock);
198
199 loop:
200         if (journal->j_flags & JBD2_UNMOUNT)
201                 goto end_loop;
202
203         jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
204                 journal->j_commit_sequence, journal->j_commit_request);
205
206         if (journal->j_commit_sequence != journal->j_commit_request) {
207                 jbd_debug(1, "OK, requests differ\n");
208                 write_unlock(&journal->j_state_lock);
209                 del_timer_sync(&journal->j_commit_timer);
210                 jbd2_journal_commit_transaction(journal);
211                 write_lock(&journal->j_state_lock);
212                 goto loop;
213         }
214
215         wake_up(&journal->j_wait_done_commit);
216         if (freezing(current)) {
217                 /*
218                  * The simpler the better. Flushing journal isn't a
219                  * good idea, because that depends on threads that may
220                  * be already stopped.
221                  */
222                 jbd_debug(1, "Now suspending kjournald2\n");
223                 write_unlock(&journal->j_state_lock);
224                 try_to_freeze();
225                 write_lock(&journal->j_state_lock);
226         } else {
227                 /*
228                  * We assume on resume that commits are already there,
229                  * so we don't sleep
230                  */
231                 DEFINE_WAIT(wait);
232                 int should_sleep = 1;
233
234                 prepare_to_wait(&journal->j_wait_commit, &wait,
235                                 TASK_INTERRUPTIBLE);
236                 if (journal->j_commit_sequence != journal->j_commit_request)
237                         should_sleep = 0;
238                 transaction = journal->j_running_transaction;
239                 if (transaction && time_after_eq(jiffies,
240                                                 transaction->t_expires))
241                         should_sleep = 0;
242                 if (journal->j_flags & JBD2_UNMOUNT)
243                         should_sleep = 0;
244                 if (should_sleep) {
245                         write_unlock(&journal->j_state_lock);
246                         schedule();
247                         write_lock(&journal->j_state_lock);
248                 }
249                 finish_wait(&journal->j_wait_commit, &wait);
250         }
251
252         jbd_debug(1, "kjournald2 wakes\n");
253
254         /*
255          * Were we woken up by a commit wakeup event?
256          */
257         transaction = journal->j_running_transaction;
258         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
259                 journal->j_commit_request = transaction->t_tid;
260                 jbd_debug(1, "woke because of timeout\n");
261         }
262         goto loop;
263
264 end_loop:
265         del_timer_sync(&journal->j_commit_timer);
266         journal->j_task = NULL;
267         wake_up(&journal->j_wait_done_commit);
268         jbd_debug(1, "Journal thread exiting.\n");
269         write_unlock(&journal->j_state_lock);
270         return 0;
271 }
272
273 static int jbd2_journal_start_thread(journal_t *journal)
274 {
275         struct task_struct *t;
276
277         t = kthread_run(kjournald2, journal, "jbd2/%s",
278                         journal->j_devname);
279         if (IS_ERR(t))
280                 return PTR_ERR(t);
281
282         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
283         return 0;
284 }
285
286 static void journal_kill_thread(journal_t *journal)
287 {
288         write_lock(&journal->j_state_lock);
289         journal->j_flags |= JBD2_UNMOUNT;
290
291         while (journal->j_task) {
292                 write_unlock(&journal->j_state_lock);
293                 wake_up(&journal->j_wait_commit);
294                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
295                 write_lock(&journal->j_state_lock);
296         }
297         write_unlock(&journal->j_state_lock);
298 }
299
300 /*
301  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
302  *
303  * Writes a metadata buffer to a given disk block.  The actual IO is not
304  * performed but a new buffer_head is constructed which labels the data
305  * to be written with the correct destination disk block.
306  *
307  * Any magic-number escaping which needs to be done will cause a
308  * copy-out here.  If the buffer happens to start with the
309  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
310  * magic number is only written to the log for descripter blocks.  In
311  * this case, we copy the data and replace the first word with 0, and we
312  * return a result code which indicates that this buffer needs to be
313  * marked as an escaped buffer in the corresponding log descriptor
314  * block.  The missing word can then be restored when the block is read
315  * during recovery.
316  *
317  * If the source buffer has already been modified by a new transaction
318  * since we took the last commit snapshot, we use the frozen copy of
319  * that data for IO. If we end up using the existing buffer_head's data
320  * for the write, then we have to make sure nobody modifies it while the
321  * IO is in progress. do_get_write_access() handles this.
322  *
323  * The function returns a pointer to the buffer_head to be used for IO.
324  *
325  *
326  * Return value:
327  *  <0: Error
328  * >=0: Finished OK
329  *
330  * On success:
331  * Bit 0 set == escape performed on the data
332  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
333  */
334
335 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
336                                   struct journal_head  *jh_in,
337                                   struct buffer_head **bh_out,
338                                   sector_t blocknr)
339 {
340         int need_copy_out = 0;
341         int done_copy_out = 0;
342         int do_escape = 0;
343         char *mapped_data;
344         struct buffer_head *new_bh;
345         struct page *new_page;
346         unsigned int new_offset;
347         struct buffer_head *bh_in = jh2bh(jh_in);
348         journal_t *journal = transaction->t_journal;
349
350         /*
351          * The buffer really shouldn't be locked: only the current committing
352          * transaction is allowed to write it, so nobody else is allowed
353          * to do any IO.
354          *
355          * akpm: except if we're journalling data, and write() output is
356          * also part of a shared mapping, and another thread has
357          * decided to launch a writepage() against this buffer.
358          */
359         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
360
361         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
362
363         /* keep subsequent assertions sane */
364         atomic_set(&new_bh->b_count, 1);
365
366         spin_lock(&jh_in->b_state_lock);
367 repeat:
368         /*
369          * If a new transaction has already done a buffer copy-out, then
370          * we use that version of the data for the commit.
371          */
372         if (jh_in->b_frozen_data) {
373                 done_copy_out = 1;
374                 new_page = virt_to_page(jh_in->b_frozen_data);
375                 new_offset = offset_in_page(jh_in->b_frozen_data);
376         } else {
377                 new_page = jh2bh(jh_in)->b_page;
378                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
379         }
380
381         mapped_data = kmap_atomic(new_page);
382         /*
383          * Fire data frozen trigger if data already wasn't frozen.  Do this
384          * before checking for escaping, as the trigger may modify the magic
385          * offset.  If a copy-out happens afterwards, it will have the correct
386          * data in the buffer.
387          */
388         if (!done_copy_out)
389                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
390                                            jh_in->b_triggers);
391
392         /*
393          * Check for escaping
394          */
395         if (*((__be32 *)(mapped_data + new_offset)) ==
396                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
397                 need_copy_out = 1;
398                 do_escape = 1;
399         }
400         kunmap_atomic(mapped_data);
401
402         /*
403          * Do we need to do a data copy?
404          */
405         if (need_copy_out && !done_copy_out) {
406                 char *tmp;
407
408                 spin_unlock(&jh_in->b_state_lock);
409                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
410                 if (!tmp) {
411                         brelse(new_bh);
412                         return -ENOMEM;
413                 }
414                 spin_lock(&jh_in->b_state_lock);
415                 if (jh_in->b_frozen_data) {
416                         jbd2_free(tmp, bh_in->b_size);
417                         goto repeat;
418                 }
419
420                 jh_in->b_frozen_data = tmp;
421                 mapped_data = kmap_atomic(new_page);
422                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
423                 kunmap_atomic(mapped_data);
424
425                 new_page = virt_to_page(tmp);
426                 new_offset = offset_in_page(tmp);
427                 done_copy_out = 1;
428
429                 /*
430                  * This isn't strictly necessary, as we're using frozen
431                  * data for the escaping, but it keeps consistency with
432                  * b_frozen_data usage.
433                  */
434                 jh_in->b_frozen_triggers = jh_in->b_triggers;
435         }
436
437         /*
438          * Did we need to do an escaping?  Now we've done all the
439          * copying, we can finally do so.
440          */
441         if (do_escape) {
442                 mapped_data = kmap_atomic(new_page);
443                 *((unsigned int *)(mapped_data + new_offset)) = 0;
444                 kunmap_atomic(mapped_data);
445         }
446
447         set_bh_page(new_bh, new_page, new_offset);
448         new_bh->b_size = bh_in->b_size;
449         new_bh->b_bdev = journal->j_dev;
450         new_bh->b_blocknr = blocknr;
451         new_bh->b_private = bh_in;
452         set_buffer_mapped(new_bh);
453         set_buffer_dirty(new_bh);
454
455         *bh_out = new_bh;
456
457         /*
458          * The to-be-written buffer needs to get moved to the io queue,
459          * and the original buffer whose contents we are shadowing or
460          * copying is moved to the transaction's shadow queue.
461          */
462         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
463         spin_lock(&journal->j_list_lock);
464         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
465         spin_unlock(&journal->j_list_lock);
466         set_buffer_shadow(bh_in);
467         spin_unlock(&jh_in->b_state_lock);
468
469         return do_escape | (done_copy_out << 1);
470 }
471
472 /*
473  * Allocation code for the journal file.  Manage the space left in the
474  * journal, so that we can begin checkpointing when appropriate.
475  */
476
477 /*
478  * Called with j_state_lock locked for writing.
479  * Returns true if a transaction commit was started.
480  */
481 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
482 {
483         /* Return if the txn has already requested to be committed */
484         if (journal->j_commit_request == target)
485                 return 0;
486
487         /*
488          * The only transaction we can possibly wait upon is the
489          * currently running transaction (if it exists).  Otherwise,
490          * the target tid must be an old one.
491          */
492         if (journal->j_running_transaction &&
493             journal->j_running_transaction->t_tid == target) {
494                 /*
495                  * We want a new commit: OK, mark the request and wakeup the
496                  * commit thread.  We do _not_ do the commit ourselves.
497                  */
498
499                 journal->j_commit_request = target;
500                 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
501                           journal->j_commit_request,
502                           journal->j_commit_sequence);
503                 journal->j_running_transaction->t_requested = jiffies;
504                 wake_up(&journal->j_wait_commit);
505                 return 1;
506         } else if (!tid_geq(journal->j_commit_request, target))
507                 /* This should never happen, but if it does, preserve
508                    the evidence before kjournald goes into a loop and
509                    increments j_commit_sequence beyond all recognition. */
510                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
511                           journal->j_commit_request,
512                           journal->j_commit_sequence,
513                           target, journal->j_running_transaction ?
514                           journal->j_running_transaction->t_tid : 0);
515         return 0;
516 }
517
518 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
519 {
520         int ret;
521
522         write_lock(&journal->j_state_lock);
523         ret = __jbd2_log_start_commit(journal, tid);
524         write_unlock(&journal->j_state_lock);
525         return ret;
526 }
527
528 /*
529  * Force and wait any uncommitted transactions.  We can only force the running
530  * transaction if we don't have an active handle, otherwise, we will deadlock.
531  * Returns: <0 in case of error,
532  *           0 if nothing to commit,
533  *           1 if transaction was successfully committed.
534  */
535 static int __jbd2_journal_force_commit(journal_t *journal)
536 {
537         transaction_t *transaction = NULL;
538         tid_t tid;
539         int need_to_start = 0, ret = 0;
540
541         read_lock(&journal->j_state_lock);
542         if (journal->j_running_transaction && !current->journal_info) {
543                 transaction = journal->j_running_transaction;
544                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
545                         need_to_start = 1;
546         } else if (journal->j_committing_transaction)
547                 transaction = journal->j_committing_transaction;
548
549         if (!transaction) {
550                 /* Nothing to commit */
551                 read_unlock(&journal->j_state_lock);
552                 return 0;
553         }
554         tid = transaction->t_tid;
555         read_unlock(&journal->j_state_lock);
556         if (need_to_start)
557                 jbd2_log_start_commit(journal, tid);
558         ret = jbd2_log_wait_commit(journal, tid);
559         if (!ret)
560                 ret = 1;
561
562         return ret;
563 }
564
565 /**
566  * Force and wait upon a commit if the calling process is not within
567  * transaction.  This is used for forcing out undo-protected data which contains
568  * bitmaps, when the fs is running out of space.
569  *
570  * @journal: journal to force
571  * Returns true if progress was made.
572  */
573 int jbd2_journal_force_commit_nested(journal_t *journal)
574 {
575         int ret;
576
577         ret = __jbd2_journal_force_commit(journal);
578         return ret > 0;
579 }
580
581 /**
582  * int journal_force_commit() - force any uncommitted transactions
583  * @journal: journal to force
584  *
585  * Caller want unconditional commit. We can only force the running transaction
586  * if we don't have an active handle, otherwise, we will deadlock.
587  */
588 int jbd2_journal_force_commit(journal_t *journal)
589 {
590         int ret;
591
592         J_ASSERT(!current->journal_info);
593         ret = __jbd2_journal_force_commit(journal);
594         if (ret > 0)
595                 ret = 0;
596         return ret;
597 }
598
599 /*
600  * Start a commit of the current running transaction (if any).  Returns true
601  * if a transaction is going to be committed (or is currently already
602  * committing), and fills its tid in at *ptid
603  */
604 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
605 {
606         int ret = 0;
607
608         write_lock(&journal->j_state_lock);
609         if (journal->j_running_transaction) {
610                 tid_t tid = journal->j_running_transaction->t_tid;
611
612                 __jbd2_log_start_commit(journal, tid);
613                 /* There's a running transaction and we've just made sure
614                  * it's commit has been scheduled. */
615                 if (ptid)
616                         *ptid = tid;
617                 ret = 1;
618         } else if (journal->j_committing_transaction) {
619                 /*
620                  * If commit has been started, then we have to wait for
621                  * completion of that transaction.
622                  */
623                 if (ptid)
624                         *ptid = journal->j_committing_transaction->t_tid;
625                 ret = 1;
626         }
627         write_unlock(&journal->j_state_lock);
628         return ret;
629 }
630
631 /*
632  * Return 1 if a given transaction has not yet sent barrier request
633  * connected with a transaction commit. If 0 is returned, transaction
634  * may or may not have sent the barrier. Used to avoid sending barrier
635  * twice in common cases.
636  */
637 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
638 {
639         int ret = 0;
640         transaction_t *commit_trans;
641
642         if (!(journal->j_flags & JBD2_BARRIER))
643                 return 0;
644         read_lock(&journal->j_state_lock);
645         /* Transaction already committed? */
646         if (tid_geq(journal->j_commit_sequence, tid))
647                 goto out;
648         commit_trans = journal->j_committing_transaction;
649         if (!commit_trans || commit_trans->t_tid != tid) {
650                 ret = 1;
651                 goto out;
652         }
653         /*
654          * Transaction is being committed and we already proceeded to
655          * submitting a flush to fs partition?
656          */
657         if (journal->j_fs_dev != journal->j_dev) {
658                 if (!commit_trans->t_need_data_flush ||
659                     commit_trans->t_state >= T_COMMIT_DFLUSH)
660                         goto out;
661         } else {
662                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
663                         goto out;
664         }
665         ret = 1;
666 out:
667         read_unlock(&journal->j_state_lock);
668         return ret;
669 }
670 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
671
672 /*
673  * Wait for a specified commit to complete.
674  * The caller may not hold the journal lock.
675  */
676 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
677 {
678         int err = 0;
679
680         read_lock(&journal->j_state_lock);
681 #ifdef CONFIG_PROVE_LOCKING
682         /*
683          * Some callers make sure transaction is already committing and in that
684          * case we cannot block on open handles anymore. So don't warn in that
685          * case.
686          */
687         if (tid_gt(tid, journal->j_commit_sequence) &&
688             (!journal->j_committing_transaction ||
689              journal->j_committing_transaction->t_tid != tid)) {
690                 read_unlock(&journal->j_state_lock);
691                 jbd2_might_wait_for_commit(journal);
692                 read_lock(&journal->j_state_lock);
693         }
694 #endif
695 #ifdef CONFIG_JBD2_DEBUG
696         if (!tid_geq(journal->j_commit_request, tid)) {
697                 printk(KERN_ERR
698                        "%s: error: j_commit_request=%u, tid=%u\n",
699                        __func__, journal->j_commit_request, tid);
700         }
701 #endif
702         while (tid_gt(tid, journal->j_commit_sequence)) {
703                 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
704                                   tid, journal->j_commit_sequence);
705                 read_unlock(&journal->j_state_lock);
706                 wake_up(&journal->j_wait_commit);
707                 wait_event(journal->j_wait_done_commit,
708                                 !tid_gt(tid, journal->j_commit_sequence));
709                 read_lock(&journal->j_state_lock);
710         }
711         read_unlock(&journal->j_state_lock);
712
713         if (unlikely(is_journal_aborted(journal)))
714                 err = -EIO;
715         return err;
716 }
717
718 /* Return 1 when transaction with given tid has already committed. */
719 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
720 {
721         int ret = 1;
722
723         read_lock(&journal->j_state_lock);
724         if (journal->j_running_transaction &&
725             journal->j_running_transaction->t_tid == tid)
726                 ret = 0;
727         if (journal->j_committing_transaction &&
728             journal->j_committing_transaction->t_tid == tid)
729                 ret = 0;
730         read_unlock(&journal->j_state_lock);
731         return ret;
732 }
733 EXPORT_SYMBOL(jbd2_transaction_committed);
734
735 /*
736  * When this function returns the transaction corresponding to tid
737  * will be completed.  If the transaction has currently running, start
738  * committing that transaction before waiting for it to complete.  If
739  * the transaction id is stale, it is by definition already completed,
740  * so just return SUCCESS.
741  */
742 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
743 {
744         int     need_to_wait = 1;
745
746         read_lock(&journal->j_state_lock);
747         if (journal->j_running_transaction &&
748             journal->j_running_transaction->t_tid == tid) {
749                 if (journal->j_commit_request != tid) {
750                         /* transaction not yet started, so request it */
751                         read_unlock(&journal->j_state_lock);
752                         jbd2_log_start_commit(journal, tid);
753                         goto wait_commit;
754                 }
755         } else if (!(journal->j_committing_transaction &&
756                      journal->j_committing_transaction->t_tid == tid))
757                 need_to_wait = 0;
758         read_unlock(&journal->j_state_lock);
759         if (!need_to_wait)
760                 return 0;
761 wait_commit:
762         return jbd2_log_wait_commit(journal, tid);
763 }
764 EXPORT_SYMBOL(jbd2_complete_transaction);
765
766 /*
767  * Log buffer allocation routines:
768  */
769
770 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
771 {
772         unsigned long blocknr;
773
774         write_lock(&journal->j_state_lock);
775         J_ASSERT(journal->j_free > 1);
776
777         blocknr = journal->j_head;
778         journal->j_head++;
779         journal->j_free--;
780         if (journal->j_head == journal->j_last)
781                 journal->j_head = journal->j_first;
782         write_unlock(&journal->j_state_lock);
783         return jbd2_journal_bmap(journal, blocknr, retp);
784 }
785
786 /*
787  * Conversion of logical to physical block numbers for the journal
788  *
789  * On external journals the journal blocks are identity-mapped, so
790  * this is a no-op.  If needed, we can use j_blk_offset - everything is
791  * ready.
792  */
793 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
794                  unsigned long long *retp)
795 {
796         int err = 0;
797         unsigned long long ret;
798         sector_t block = 0;
799
800         if (journal->j_inode) {
801                 block = blocknr;
802                 ret = bmap(journal->j_inode, &block);
803
804                 if (ret || !block) {
805                         printk(KERN_ALERT "%s: journal block not found "
806                                         "at offset %lu on %s\n",
807                                __func__, blocknr, journal->j_devname);
808                         err = -EIO;
809                         __journal_abort_soft(journal, err);
810
811                 } else {
812                         *retp = block;
813                 }
814
815         } else {
816                 *retp = blocknr; /* +journal->j_blk_offset */
817         }
818         return err;
819 }
820
821 /*
822  * We play buffer_head aliasing tricks to write data/metadata blocks to
823  * the journal without copying their contents, but for journal
824  * descriptor blocks we do need to generate bona fide buffers.
825  *
826  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
827  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
828  * But we don't bother doing that, so there will be coherency problems with
829  * mmaps of blockdevs which hold live JBD-controlled filesystems.
830  */
831 struct buffer_head *
832 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
833 {
834         journal_t *journal = transaction->t_journal;
835         struct buffer_head *bh;
836         unsigned long long blocknr;
837         journal_header_t *header;
838         int err;
839
840         err = jbd2_journal_next_log_block(journal, &blocknr);
841
842         if (err)
843                 return NULL;
844
845         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
846         if (!bh)
847                 return NULL;
848         atomic_dec(&transaction->t_outstanding_credits);
849         lock_buffer(bh);
850         memset(bh->b_data, 0, journal->j_blocksize);
851         header = (journal_header_t *)bh->b_data;
852         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
853         header->h_blocktype = cpu_to_be32(type);
854         header->h_sequence = cpu_to_be32(transaction->t_tid);
855         set_buffer_uptodate(bh);
856         unlock_buffer(bh);
857         BUFFER_TRACE(bh, "return this buffer");
858         return bh;
859 }
860
861 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
862 {
863         struct jbd2_journal_block_tail *tail;
864         __u32 csum;
865
866         if (!jbd2_journal_has_csum_v2or3(j))
867                 return;
868
869         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
870                         sizeof(struct jbd2_journal_block_tail));
871         tail->t_checksum = 0;
872         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
873         tail->t_checksum = cpu_to_be32(csum);
874 }
875
876 /*
877  * Return tid of the oldest transaction in the journal and block in the journal
878  * where the transaction starts.
879  *
880  * If the journal is now empty, return which will be the next transaction ID
881  * we will write and where will that transaction start.
882  *
883  * The return value is 0 if journal tail cannot be pushed any further, 1 if
884  * it can.
885  */
886 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
887                               unsigned long *block)
888 {
889         transaction_t *transaction;
890         int ret;
891
892         read_lock(&journal->j_state_lock);
893         spin_lock(&journal->j_list_lock);
894         transaction = journal->j_checkpoint_transactions;
895         if (transaction) {
896                 *tid = transaction->t_tid;
897                 *block = transaction->t_log_start;
898         } else if ((transaction = journal->j_committing_transaction) != NULL) {
899                 *tid = transaction->t_tid;
900                 *block = transaction->t_log_start;
901         } else if ((transaction = journal->j_running_transaction) != NULL) {
902                 *tid = transaction->t_tid;
903                 *block = journal->j_head;
904         } else {
905                 *tid = journal->j_transaction_sequence;
906                 *block = journal->j_head;
907         }
908         ret = tid_gt(*tid, journal->j_tail_sequence);
909         spin_unlock(&journal->j_list_lock);
910         read_unlock(&journal->j_state_lock);
911
912         return ret;
913 }
914
915 /*
916  * Update information in journal structure and in on disk journal superblock
917  * about log tail. This function does not check whether information passed in
918  * really pushes log tail further. It's responsibility of the caller to make
919  * sure provided log tail information is valid (e.g. by holding
920  * j_checkpoint_mutex all the time between computing log tail and calling this
921  * function as is the case with jbd2_cleanup_journal_tail()).
922  *
923  * Requires j_checkpoint_mutex
924  */
925 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
926 {
927         unsigned long freed;
928         int ret;
929
930         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
931
932         /*
933          * We cannot afford for write to remain in drive's caches since as
934          * soon as we update j_tail, next transaction can start reusing journal
935          * space and if we lose sb update during power failure we'd replay
936          * old transaction with possibly newly overwritten data.
937          */
938         ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
939                                               REQ_SYNC | REQ_FUA);
940         if (ret)
941                 goto out;
942
943         write_lock(&journal->j_state_lock);
944         freed = block - journal->j_tail;
945         if (block < journal->j_tail)
946                 freed += journal->j_last - journal->j_first;
947
948         trace_jbd2_update_log_tail(journal, tid, block, freed);
949         jbd_debug(1,
950                   "Cleaning journal tail from %u to %u (offset %lu), "
951                   "freeing %lu\n",
952                   journal->j_tail_sequence, tid, block, freed);
953
954         journal->j_free += freed;
955         journal->j_tail_sequence = tid;
956         journal->j_tail = block;
957         write_unlock(&journal->j_state_lock);
958
959 out:
960         return ret;
961 }
962
963 /*
964  * This is a variation of __jbd2_update_log_tail which checks for validity of
965  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
966  * with other threads updating log tail.
967  */
968 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
969 {
970         mutex_lock_io(&journal->j_checkpoint_mutex);
971         if (tid_gt(tid, journal->j_tail_sequence))
972                 __jbd2_update_log_tail(journal, tid, block);
973         mutex_unlock(&journal->j_checkpoint_mutex);
974 }
975
976 struct jbd2_stats_proc_session {
977         journal_t *journal;
978         struct transaction_stats_s *stats;
979         int start;
980         int max;
981 };
982
983 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
984 {
985         return *pos ? NULL : SEQ_START_TOKEN;
986 }
987
988 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
989 {
990         return NULL;
991 }
992
993 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
994 {
995         struct jbd2_stats_proc_session *s = seq->private;
996
997         if (v != SEQ_START_TOKEN)
998                 return 0;
999         seq_printf(seq, "%lu transactions (%lu requested), "
1000                    "each up to %u blocks\n",
1001                    s->stats->ts_tid, s->stats->ts_requested,
1002                    s->journal->j_max_transaction_buffers);
1003         if (s->stats->ts_tid == 0)
1004                 return 0;
1005         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1006             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1007         seq_printf(seq, "  %ums request delay\n",
1008             (s->stats->ts_requested == 0) ? 0 :
1009             jiffies_to_msecs(s->stats->run.rs_request_delay /
1010                              s->stats->ts_requested));
1011         seq_printf(seq, "  %ums running transaction\n",
1012             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1013         seq_printf(seq, "  %ums transaction was being locked\n",
1014             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1015         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1016             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1017         seq_printf(seq, "  %ums logging transaction\n",
1018             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1019         seq_printf(seq, "  %lluus average transaction commit time\n",
1020                    div_u64(s->journal->j_average_commit_time, 1000));
1021         seq_printf(seq, "  %lu handles per transaction\n",
1022             s->stats->run.rs_handle_count / s->stats->ts_tid);
1023         seq_printf(seq, "  %lu blocks per transaction\n",
1024             s->stats->run.rs_blocks / s->stats->ts_tid);
1025         seq_printf(seq, "  %lu logged blocks per transaction\n",
1026             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1027         return 0;
1028 }
1029
1030 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1031 {
1032 }
1033
1034 static const struct seq_operations jbd2_seq_info_ops = {
1035         .start  = jbd2_seq_info_start,
1036         .next   = jbd2_seq_info_next,
1037         .stop   = jbd2_seq_info_stop,
1038         .show   = jbd2_seq_info_show,
1039 };
1040
1041 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1042 {
1043         journal_t *journal = PDE_DATA(inode);
1044         struct jbd2_stats_proc_session *s;
1045         int rc, size;
1046
1047         s = kmalloc(sizeof(*s), GFP_KERNEL);
1048         if (s == NULL)
1049                 return -ENOMEM;
1050         size = sizeof(struct transaction_stats_s);
1051         s->stats = kmalloc(size, GFP_KERNEL);
1052         if (s->stats == NULL) {
1053                 kfree(s);
1054                 return -ENOMEM;
1055         }
1056         spin_lock(&journal->j_history_lock);
1057         memcpy(s->stats, &journal->j_stats, size);
1058         s->journal = journal;
1059         spin_unlock(&journal->j_history_lock);
1060
1061         rc = seq_open(file, &jbd2_seq_info_ops);
1062         if (rc == 0) {
1063                 struct seq_file *m = file->private_data;
1064                 m->private = s;
1065         } else {
1066                 kfree(s->stats);
1067                 kfree(s);
1068         }
1069         return rc;
1070
1071 }
1072
1073 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1074 {
1075         struct seq_file *seq = file->private_data;
1076         struct jbd2_stats_proc_session *s = seq->private;
1077         kfree(s->stats);
1078         kfree(s);
1079         return seq_release(inode, file);
1080 }
1081
1082 static const struct file_operations jbd2_seq_info_fops = {
1083         .owner          = THIS_MODULE,
1084         .open           = jbd2_seq_info_open,
1085         .read           = seq_read,
1086         .llseek         = seq_lseek,
1087         .release        = jbd2_seq_info_release,
1088 };
1089
1090 static struct proc_dir_entry *proc_jbd2_stats;
1091
1092 static void jbd2_stats_proc_init(journal_t *journal)
1093 {
1094         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1095         if (journal->j_proc_entry) {
1096                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1097                                  &jbd2_seq_info_fops, journal);
1098         }
1099 }
1100
1101 static void jbd2_stats_proc_exit(journal_t *journal)
1102 {
1103         remove_proc_entry("info", journal->j_proc_entry);
1104         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1105 }
1106
1107 /* Minimum size of descriptor tag */
1108 static int jbd2_min_tag_size(void)
1109 {
1110         /*
1111          * Tag with 32-bit block numbers does not use last four bytes of the
1112          * structure
1113          */
1114         return sizeof(journal_block_tag_t) - 4;
1115 }
1116
1117 /*
1118  * Management for journal control blocks: functions to create and
1119  * destroy journal_t structures, and to initialise and read existing
1120  * journal blocks from disk.  */
1121
1122 /* First: create and setup a journal_t object in memory.  We initialise
1123  * very few fields yet: that has to wait until we have created the
1124  * journal structures from from scratch, or loaded them from disk. */
1125
1126 static journal_t *journal_init_common(struct block_device *bdev,
1127                         struct block_device *fs_dev,
1128                         unsigned long long start, int len, int blocksize)
1129 {
1130         static struct lock_class_key jbd2_trans_commit_key;
1131         journal_t *journal;
1132         int err;
1133         struct buffer_head *bh;
1134         int n;
1135
1136         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1137         if (!journal)
1138                 return NULL;
1139
1140         init_waitqueue_head(&journal->j_wait_transaction_locked);
1141         init_waitqueue_head(&journal->j_wait_done_commit);
1142         init_waitqueue_head(&journal->j_wait_commit);
1143         init_waitqueue_head(&journal->j_wait_updates);
1144         init_waitqueue_head(&journal->j_wait_reserved);
1145         mutex_init(&journal->j_barrier);
1146         mutex_init(&journal->j_checkpoint_mutex);
1147         spin_lock_init(&journal->j_revoke_lock);
1148         spin_lock_init(&journal->j_list_lock);
1149         rwlock_init(&journal->j_state_lock);
1150
1151         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1152         journal->j_min_batch_time = 0;
1153         journal->j_max_batch_time = 15000; /* 15ms */
1154         atomic_set(&journal->j_reserved_credits, 0);
1155
1156         /* The journal is marked for error until we succeed with recovery! */
1157         journal->j_flags = JBD2_ABORT;
1158
1159         /* Set up a default-sized revoke table for the new mount. */
1160         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1161         if (err)
1162                 goto err_cleanup;
1163
1164         spin_lock_init(&journal->j_history_lock);
1165
1166         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1167                          &jbd2_trans_commit_key, 0);
1168
1169         /* journal descriptor can store up to n blocks -bzzz */
1170         journal->j_blocksize = blocksize;
1171         journal->j_dev = bdev;
1172         journal->j_fs_dev = fs_dev;
1173         journal->j_blk_offset = start;
1174         journal->j_maxlen = len;
1175         /* We need enough buffers to write out full descriptor block. */
1176         n = journal->j_blocksize / jbd2_min_tag_size();
1177         journal->j_wbufsize = n;
1178         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1179                                         GFP_KERNEL);
1180         if (!journal->j_wbuf)
1181                 goto err_cleanup;
1182
1183         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1184         if (!bh) {
1185                 pr_err("%s: Cannot get buffer for journal superblock\n",
1186                         __func__);
1187                 goto err_cleanup;
1188         }
1189         journal->j_sb_buffer = bh;
1190         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1191
1192         return journal;
1193
1194 err_cleanup:
1195         kfree(journal->j_wbuf);
1196         jbd2_journal_destroy_revoke(journal);
1197         kfree(journal);
1198         return NULL;
1199 }
1200
1201 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1202  *
1203  * Create a journal structure assigned some fixed set of disk blocks to
1204  * the journal.  We don't actually touch those disk blocks yet, but we
1205  * need to set up all of the mapping information to tell the journaling
1206  * system where the journal blocks are.
1207  *
1208  */
1209
1210 /**
1211  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1212  *  @bdev: Block device on which to create the journal
1213  *  @fs_dev: Device which hold journalled filesystem for this journal.
1214  *  @start: Block nr Start of journal.
1215  *  @len:  Length of the journal in blocks.
1216  *  @blocksize: blocksize of journalling device
1217  *
1218  *  Returns: a newly created journal_t *
1219  *
1220  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1221  *  range of blocks on an arbitrary block device.
1222  *
1223  */
1224 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1225                         struct block_device *fs_dev,
1226                         unsigned long long start, int len, int blocksize)
1227 {
1228         journal_t *journal;
1229
1230         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1231         if (!journal)
1232                 return NULL;
1233
1234         bdevname(journal->j_dev, journal->j_devname);
1235         strreplace(journal->j_devname, '/', '!');
1236         jbd2_stats_proc_init(journal);
1237
1238         return journal;
1239 }
1240
1241 /**
1242  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1243  *  @inode: An inode to create the journal in
1244  *
1245  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1246  * the journal.  The inode must exist already, must support bmap() and
1247  * must have all data blocks preallocated.
1248  */
1249 journal_t *jbd2_journal_init_inode(struct inode *inode)
1250 {
1251         journal_t *journal;
1252         sector_t blocknr;
1253         char *p;
1254         int err = 0;
1255
1256         blocknr = 0;
1257         err = bmap(inode, &blocknr);
1258
1259         if (err || !blocknr) {
1260                 pr_err("%s: Cannot locate journal superblock\n",
1261                         __func__);
1262                 return NULL;
1263         }
1264
1265         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1266                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1267                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1268
1269         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1270                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1271                         inode->i_sb->s_blocksize);
1272         if (!journal)
1273                 return NULL;
1274
1275         journal->j_inode = inode;
1276         bdevname(journal->j_dev, journal->j_devname);
1277         p = strreplace(journal->j_devname, '/', '!');
1278         sprintf(p, "-%lu", journal->j_inode->i_ino);
1279         jbd2_stats_proc_init(journal);
1280
1281         return journal;
1282 }
1283
1284 /*
1285  * If the journal init or create aborts, we need to mark the journal
1286  * superblock as being NULL to prevent the journal destroy from writing
1287  * back a bogus superblock.
1288  */
1289 static void journal_fail_superblock (journal_t *journal)
1290 {
1291         struct buffer_head *bh = journal->j_sb_buffer;
1292         brelse(bh);
1293         journal->j_sb_buffer = NULL;
1294 }
1295
1296 /*
1297  * Given a journal_t structure, initialise the various fields for
1298  * startup of a new journaling session.  We use this both when creating
1299  * a journal, and after recovering an old journal to reset it for
1300  * subsequent use.
1301  */
1302
1303 static int journal_reset(journal_t *journal)
1304 {
1305         journal_superblock_t *sb = journal->j_superblock;
1306         unsigned long long first, last;
1307
1308         first = be32_to_cpu(sb->s_first);
1309         last = be32_to_cpu(sb->s_maxlen);
1310         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1311                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1312                        first, last);
1313                 journal_fail_superblock(journal);
1314                 return -EINVAL;
1315         }
1316
1317         journal->j_first = first;
1318         journal->j_last = last;
1319
1320         journal->j_head = first;
1321         journal->j_tail = first;
1322         journal->j_free = last - first;
1323
1324         journal->j_tail_sequence = journal->j_transaction_sequence;
1325         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1326         journal->j_commit_request = journal->j_commit_sequence;
1327
1328         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1329
1330         /*
1331          * As a special case, if the on-disk copy is already marked as needing
1332          * no recovery (s_start == 0), then we can safely defer the superblock
1333          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1334          * attempting a write to a potential-readonly device.
1335          */
1336         if (sb->s_start == 0) {
1337                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1338                         "(start %ld, seq %u, errno %d)\n",
1339                         journal->j_tail, journal->j_tail_sequence,
1340                         journal->j_errno);
1341                 journal->j_flags |= JBD2_FLUSHED;
1342         } else {
1343                 /* Lock here to make assertions happy... */
1344                 mutex_lock_io(&journal->j_checkpoint_mutex);
1345                 /*
1346                  * Update log tail information. We use REQ_FUA since new
1347                  * transaction will start reusing journal space and so we
1348                  * must make sure information about current log tail is on
1349                  * disk before that.
1350                  */
1351                 jbd2_journal_update_sb_log_tail(journal,
1352                                                 journal->j_tail_sequence,
1353                                                 journal->j_tail,
1354                                                 REQ_SYNC | REQ_FUA);
1355                 mutex_unlock(&journal->j_checkpoint_mutex);
1356         }
1357         return jbd2_journal_start_thread(journal);
1358 }
1359
1360 /*
1361  * This function expects that the caller will have locked the journal
1362  * buffer head, and will return with it unlocked
1363  */
1364 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1365 {
1366         struct buffer_head *bh = journal->j_sb_buffer;
1367         journal_superblock_t *sb = journal->j_superblock;
1368         int ret;
1369
1370         /* Buffer got discarded which means block device got invalidated */
1371         if (!buffer_mapped(bh))
1372                 return -EIO;
1373
1374         trace_jbd2_write_superblock(journal, write_flags);
1375         if (!(journal->j_flags & JBD2_BARRIER))
1376                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1377         if (buffer_write_io_error(bh)) {
1378                 /*
1379                  * Oh, dear.  A previous attempt to write the journal
1380                  * superblock failed.  This could happen because the
1381                  * USB device was yanked out.  Or it could happen to
1382                  * be a transient write error and maybe the block will
1383                  * be remapped.  Nothing we can do but to retry the
1384                  * write and hope for the best.
1385                  */
1386                 printk(KERN_ERR "JBD2: previous I/O error detected "
1387                        "for journal superblock update for %s.\n",
1388                        journal->j_devname);
1389                 clear_buffer_write_io_error(bh);
1390                 set_buffer_uptodate(bh);
1391         }
1392         if (jbd2_journal_has_csum_v2or3(journal))
1393                 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1394         get_bh(bh);
1395         bh->b_end_io = end_buffer_write_sync;
1396         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1397         wait_on_buffer(bh);
1398         if (buffer_write_io_error(bh)) {
1399                 clear_buffer_write_io_error(bh);
1400                 set_buffer_uptodate(bh);
1401                 ret = -EIO;
1402         }
1403         if (ret) {
1404                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1405                        "journal superblock for %s.\n", ret,
1406                        journal->j_devname);
1407                 jbd2_journal_abort(journal, ret);
1408         }
1409
1410         return ret;
1411 }
1412
1413 /**
1414  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1415  * @journal: The journal to update.
1416  * @tail_tid: TID of the new transaction at the tail of the log
1417  * @tail_block: The first block of the transaction at the tail of the log
1418  * @write_op: With which operation should we write the journal sb
1419  *
1420  * Update a journal's superblock information about log tail and write it to
1421  * disk, waiting for the IO to complete.
1422  */
1423 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1424                                      unsigned long tail_block, int write_op)
1425 {
1426         journal_superblock_t *sb = journal->j_superblock;
1427         int ret;
1428
1429         if (is_journal_aborted(journal))
1430                 return -EIO;
1431
1432         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1433         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1434                   tail_block, tail_tid);
1435
1436         lock_buffer(journal->j_sb_buffer);
1437         sb->s_sequence = cpu_to_be32(tail_tid);
1438         sb->s_start    = cpu_to_be32(tail_block);
1439
1440         ret = jbd2_write_superblock(journal, write_op);
1441         if (ret)
1442                 goto out;
1443
1444         /* Log is no longer empty */
1445         write_lock(&journal->j_state_lock);
1446         WARN_ON(!sb->s_sequence);
1447         journal->j_flags &= ~JBD2_FLUSHED;
1448         write_unlock(&journal->j_state_lock);
1449
1450 out:
1451         return ret;
1452 }
1453
1454 /**
1455  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1456  * @journal: The journal to update.
1457  * @write_op: With which operation should we write the journal sb
1458  *
1459  * Update a journal's dynamic superblock fields to show that journal is empty.
1460  * Write updated superblock to disk waiting for IO to complete.
1461  */
1462 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1463 {
1464         journal_superblock_t *sb = journal->j_superblock;
1465
1466         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1467         lock_buffer(journal->j_sb_buffer);
1468         if (sb->s_start == 0) {         /* Is it already empty? */
1469                 unlock_buffer(journal->j_sb_buffer);
1470                 return;
1471         }
1472
1473         jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1474                   journal->j_tail_sequence);
1475
1476         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1477         sb->s_start    = cpu_to_be32(0);
1478
1479         jbd2_write_superblock(journal, write_op);
1480
1481         /* Log is no longer empty */
1482         write_lock(&journal->j_state_lock);
1483         journal->j_flags |= JBD2_FLUSHED;
1484         write_unlock(&journal->j_state_lock);
1485 }
1486
1487
1488 /**
1489  * jbd2_journal_update_sb_errno() - Update error in the journal.
1490  * @journal: The journal to update.
1491  *
1492  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1493  * to complete.
1494  */
1495 void jbd2_journal_update_sb_errno(journal_t *journal)
1496 {
1497         journal_superblock_t *sb = journal->j_superblock;
1498         int errcode;
1499
1500         lock_buffer(journal->j_sb_buffer);
1501         errcode = journal->j_errno;
1502         if (errcode == -ESHUTDOWN)
1503                 errcode = 0;
1504         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1505         sb->s_errno    = cpu_to_be32(errcode);
1506
1507         jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1508 }
1509 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1510
1511 static int journal_revoke_records_per_block(journal_t *journal)
1512 {
1513         int record_size;
1514         int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1515
1516         if (jbd2_has_feature_64bit(journal))
1517                 record_size = 8;
1518         else
1519                 record_size = 4;
1520
1521         if (jbd2_journal_has_csum_v2or3(journal))
1522                 space -= sizeof(struct jbd2_journal_block_tail);
1523         return space / record_size;
1524 }
1525
1526 /*
1527  * Read the superblock for a given journal, performing initial
1528  * validation of the format.
1529  */
1530 static int journal_get_superblock(journal_t *journal)
1531 {
1532         struct buffer_head *bh;
1533         journal_superblock_t *sb;
1534         int err = -EIO;
1535
1536         bh = journal->j_sb_buffer;
1537
1538         J_ASSERT(bh != NULL);
1539         if (!buffer_uptodate(bh)) {
1540                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1541                 wait_on_buffer(bh);
1542                 if (!buffer_uptodate(bh)) {
1543                         printk(KERN_ERR
1544                                 "JBD2: IO error reading journal superblock\n");
1545                         goto out;
1546                 }
1547         }
1548
1549         if (buffer_verified(bh))
1550                 return 0;
1551
1552         sb = journal->j_superblock;
1553
1554         err = -EINVAL;
1555
1556         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1557             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1558                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1559                 goto out;
1560         }
1561
1562         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1563         case JBD2_SUPERBLOCK_V1:
1564                 journal->j_format_version = 1;
1565                 break;
1566         case JBD2_SUPERBLOCK_V2:
1567                 journal->j_format_version = 2;
1568                 break;
1569         default:
1570                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1571                 goto out;
1572         }
1573
1574         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1575                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1576         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1577                 printk(KERN_WARNING "JBD2: journal file too short\n");
1578                 goto out;
1579         }
1580
1581         if (be32_to_cpu(sb->s_first) == 0 ||
1582             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1583                 printk(KERN_WARNING
1584                         "JBD2: Invalid start block of journal: %u\n",
1585                         be32_to_cpu(sb->s_first));
1586                 goto out;
1587         }
1588
1589         if (jbd2_has_feature_csum2(journal) &&
1590             jbd2_has_feature_csum3(journal)) {
1591                 /* Can't have checksum v2 and v3 at the same time! */
1592                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1593                        "at the same time!\n");
1594                 goto out;
1595         }
1596
1597         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1598             jbd2_has_feature_checksum(journal)) {
1599                 /* Can't have checksum v1 and v2 on at the same time! */
1600                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1601                        "at the same time!\n");
1602                 goto out;
1603         }
1604
1605         if (!jbd2_verify_csum_type(journal, sb)) {
1606                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1607                 goto out;
1608         }
1609
1610         /* Load the checksum driver */
1611         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1612                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1613                 if (IS_ERR(journal->j_chksum_driver)) {
1614                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1615                         err = PTR_ERR(journal->j_chksum_driver);
1616                         journal->j_chksum_driver = NULL;
1617                         goto out;
1618                 }
1619         }
1620
1621         if (jbd2_journal_has_csum_v2or3(journal)) {
1622                 /* Check superblock checksum */
1623                 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1624                         printk(KERN_ERR "JBD2: journal checksum error\n");
1625                         err = -EFSBADCRC;
1626                         goto out;
1627                 }
1628
1629                 /* Precompute checksum seed for all metadata */
1630                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1631                                                    sizeof(sb->s_uuid));
1632         }
1633
1634         journal->j_revoke_records_per_block =
1635                                 journal_revoke_records_per_block(journal);
1636         set_buffer_verified(bh);
1637
1638         return 0;
1639
1640 out:
1641         journal_fail_superblock(journal);
1642         return err;
1643 }
1644
1645 /*
1646  * Load the on-disk journal superblock and read the key fields into the
1647  * journal_t.
1648  */
1649
1650 static int load_superblock(journal_t *journal)
1651 {
1652         int err;
1653         journal_superblock_t *sb;
1654
1655         err = journal_get_superblock(journal);
1656         if (err)
1657                 return err;
1658
1659         sb = journal->j_superblock;
1660
1661         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1662         journal->j_tail = be32_to_cpu(sb->s_start);
1663         journal->j_first = be32_to_cpu(sb->s_first);
1664         journal->j_last = be32_to_cpu(sb->s_maxlen);
1665         journal->j_errno = be32_to_cpu(sb->s_errno);
1666
1667         return 0;
1668 }
1669
1670
1671 /**
1672  * int jbd2_journal_load() - Read journal from disk.
1673  * @journal: Journal to act on.
1674  *
1675  * Given a journal_t structure which tells us which disk blocks contain
1676  * a journal, read the journal from disk to initialise the in-memory
1677  * structures.
1678  */
1679 int jbd2_journal_load(journal_t *journal)
1680 {
1681         int err;
1682         journal_superblock_t *sb;
1683
1684         err = load_superblock(journal);
1685         if (err)
1686                 return err;
1687
1688         sb = journal->j_superblock;
1689         /* If this is a V2 superblock, then we have to check the
1690          * features flags on it. */
1691
1692         if (journal->j_format_version >= 2) {
1693                 if ((sb->s_feature_ro_compat &
1694                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1695                     (sb->s_feature_incompat &
1696                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1697                         printk(KERN_WARNING
1698                                 "JBD2: Unrecognised features on journal\n");
1699                         return -EINVAL;
1700                 }
1701         }
1702
1703         /*
1704          * Create a slab for this blocksize
1705          */
1706         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1707         if (err)
1708                 return err;
1709
1710         /* Let the recovery code check whether it needs to recover any
1711          * data from the journal. */
1712         if (jbd2_journal_recover(journal))
1713                 goto recovery_error;
1714
1715         if (journal->j_failed_commit) {
1716                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1717                        "is corrupt.\n", journal->j_failed_commit,
1718                        journal->j_devname);
1719                 return -EFSCORRUPTED;
1720         }
1721
1722         /* OK, we've finished with the dynamic journal bits:
1723          * reinitialise the dynamic contents of the superblock in memory
1724          * and reset them on disk. */
1725         if (journal_reset(journal))
1726                 goto recovery_error;
1727
1728         journal->j_flags &= ~JBD2_ABORT;
1729         journal->j_flags |= JBD2_LOADED;
1730         return 0;
1731
1732 recovery_error:
1733         printk(KERN_WARNING "JBD2: recovery failed\n");
1734         return -EIO;
1735 }
1736
1737 /**
1738  * void jbd2_journal_destroy() - Release a journal_t structure.
1739  * @journal: Journal to act on.
1740  *
1741  * Release a journal_t structure once it is no longer in use by the
1742  * journaled object.
1743  * Return <0 if we couldn't clean up the journal.
1744  */
1745 int jbd2_journal_destroy(journal_t *journal)
1746 {
1747         int err = 0;
1748
1749         /* Wait for the commit thread to wake up and die. */
1750         journal_kill_thread(journal);
1751
1752         /* Force a final log commit */
1753         if (journal->j_running_transaction)
1754                 jbd2_journal_commit_transaction(journal);
1755
1756         /* Force any old transactions to disk */
1757
1758         /* Totally anal locking here... */
1759         spin_lock(&journal->j_list_lock);
1760         while (journal->j_checkpoint_transactions != NULL) {
1761                 spin_unlock(&journal->j_list_lock);
1762                 mutex_lock_io(&journal->j_checkpoint_mutex);
1763                 err = jbd2_log_do_checkpoint(journal);
1764                 mutex_unlock(&journal->j_checkpoint_mutex);
1765                 /*
1766                  * If checkpointing failed, just free the buffers to avoid
1767                  * looping forever
1768                  */
1769                 if (err) {
1770                         jbd2_journal_destroy_checkpoint(journal);
1771                         spin_lock(&journal->j_list_lock);
1772                         break;
1773                 }
1774                 spin_lock(&journal->j_list_lock);
1775         }
1776
1777         J_ASSERT(journal->j_running_transaction == NULL);
1778         J_ASSERT(journal->j_committing_transaction == NULL);
1779         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1780         spin_unlock(&journal->j_list_lock);
1781
1782         if (journal->j_sb_buffer) {
1783                 if (!is_journal_aborted(journal)) {
1784                         mutex_lock_io(&journal->j_checkpoint_mutex);
1785
1786                         write_lock(&journal->j_state_lock);
1787                         journal->j_tail_sequence =
1788                                 ++journal->j_transaction_sequence;
1789                         write_unlock(&journal->j_state_lock);
1790
1791                         jbd2_mark_journal_empty(journal,
1792                                         REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1793                         mutex_unlock(&journal->j_checkpoint_mutex);
1794                 } else
1795                         err = -EIO;
1796                 brelse(journal->j_sb_buffer);
1797         }
1798
1799         if (journal->j_proc_entry)
1800                 jbd2_stats_proc_exit(journal);
1801         iput(journal->j_inode);
1802         if (journal->j_revoke)
1803                 jbd2_journal_destroy_revoke(journal);
1804         if (journal->j_chksum_driver)
1805                 crypto_free_shash(journal->j_chksum_driver);
1806         kfree(journal->j_wbuf);
1807         kfree(journal);
1808
1809         return err;
1810 }
1811
1812
1813 /**
1814  *int jbd2_journal_check_used_features () - Check if features specified are used.
1815  * @journal: Journal to check.
1816  * @compat: bitmask of compatible features
1817  * @ro: bitmask of features that force read-only mount
1818  * @incompat: bitmask of incompatible features
1819  *
1820  * Check whether the journal uses all of a given set of
1821  * features.  Return true (non-zero) if it does.
1822  **/
1823
1824 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1825                                  unsigned long ro, unsigned long incompat)
1826 {
1827         journal_superblock_t *sb;
1828
1829         if (!compat && !ro && !incompat)
1830                 return 1;
1831         /* Load journal superblock if it is not loaded yet. */
1832         if (journal->j_format_version == 0 &&
1833             journal_get_superblock(journal) != 0)
1834                 return 0;
1835         if (journal->j_format_version == 1)
1836                 return 0;
1837
1838         sb = journal->j_superblock;
1839
1840         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1841             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1842             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1843                 return 1;
1844
1845         return 0;
1846 }
1847
1848 /**
1849  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1850  * @journal: Journal to check.
1851  * @compat: bitmask of compatible features
1852  * @ro: bitmask of features that force read-only mount
1853  * @incompat: bitmask of incompatible features
1854  *
1855  * Check whether the journaling code supports the use of
1856  * all of a given set of features on this journal.  Return true
1857  * (non-zero) if it can. */
1858
1859 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1860                                       unsigned long ro, unsigned long incompat)
1861 {
1862         if (!compat && !ro && !incompat)
1863                 return 1;
1864
1865         /* We can support any known requested features iff the
1866          * superblock is in version 2.  Otherwise we fail to support any
1867          * extended sb features. */
1868
1869         if (journal->j_format_version != 2)
1870                 return 0;
1871
1872         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1873             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1874             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1875                 return 1;
1876
1877         return 0;
1878 }
1879
1880 /**
1881  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1882  * @journal: Journal to act on.
1883  * @compat: bitmask of compatible features
1884  * @ro: bitmask of features that force read-only mount
1885  * @incompat: bitmask of incompatible features
1886  *
1887  * Mark a given journal feature as present on the
1888  * superblock.  Returns true if the requested features could be set.
1889  *
1890  */
1891
1892 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1893                           unsigned long ro, unsigned long incompat)
1894 {
1895 #define INCOMPAT_FEATURE_ON(f) \
1896                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1897 #define COMPAT_FEATURE_ON(f) \
1898                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1899         journal_superblock_t *sb;
1900
1901         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1902                 return 1;
1903
1904         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1905                 return 0;
1906
1907         /* If enabling v2 checksums, turn on v3 instead */
1908         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1909                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1910                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1911         }
1912
1913         /* Asking for checksumming v3 and v1?  Only give them v3. */
1914         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1915             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1916                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1917
1918         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1919                   compat, ro, incompat);
1920
1921         sb = journal->j_superblock;
1922
1923         /* Load the checksum driver if necessary */
1924         if ((journal->j_chksum_driver == NULL) &&
1925             INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1926                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1927                 if (IS_ERR(journal->j_chksum_driver)) {
1928                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1929                         journal->j_chksum_driver = NULL;
1930                         return 0;
1931                 }
1932                 /* Precompute checksum seed for all metadata */
1933                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1934                                                    sizeof(sb->s_uuid));
1935         }
1936
1937         lock_buffer(journal->j_sb_buffer);
1938
1939         /* If enabling v3 checksums, update superblock */
1940         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1941                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1942                 sb->s_feature_compat &=
1943                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1944         }
1945
1946         /* If enabling v1 checksums, downgrade superblock */
1947         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1948                 sb->s_feature_incompat &=
1949                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1950                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1951
1952         sb->s_feature_compat    |= cpu_to_be32(compat);
1953         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1954         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1955         unlock_buffer(journal->j_sb_buffer);
1956         journal->j_revoke_records_per_block =
1957                                 journal_revoke_records_per_block(journal);
1958
1959         return 1;
1960 #undef COMPAT_FEATURE_ON
1961 #undef INCOMPAT_FEATURE_ON
1962 }
1963
1964 /*
1965  * jbd2_journal_clear_features () - Clear a given journal feature in the
1966  *                                  superblock
1967  * @journal: Journal to act on.
1968  * @compat: bitmask of compatible features
1969  * @ro: bitmask of features that force read-only mount
1970  * @incompat: bitmask of incompatible features
1971  *
1972  * Clear a given journal feature as present on the
1973  * superblock.
1974  */
1975 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1976                                 unsigned long ro, unsigned long incompat)
1977 {
1978         journal_superblock_t *sb;
1979
1980         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1981                   compat, ro, incompat);
1982
1983         sb = journal->j_superblock;
1984
1985         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1986         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1987         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1988         journal->j_revoke_records_per_block =
1989                                 journal_revoke_records_per_block(journal);
1990 }
1991 EXPORT_SYMBOL(jbd2_journal_clear_features);
1992
1993 /**
1994  * int jbd2_journal_flush () - Flush journal
1995  * @journal: Journal to act on.
1996  *
1997  * Flush all data for a given journal to disk and empty the journal.
1998  * Filesystems can use this when remounting readonly to ensure that
1999  * recovery does not need to happen on remount.
2000  */
2001
2002 int jbd2_journal_flush(journal_t *journal)
2003 {
2004         int err = 0;
2005         transaction_t *transaction = NULL;
2006
2007         write_lock(&journal->j_state_lock);
2008
2009         /* Force everything buffered to the log... */
2010         if (journal->j_running_transaction) {
2011                 transaction = journal->j_running_transaction;
2012                 __jbd2_log_start_commit(journal, transaction->t_tid);
2013         } else if (journal->j_committing_transaction)
2014                 transaction = journal->j_committing_transaction;
2015
2016         /* Wait for the log commit to complete... */
2017         if (transaction) {
2018                 tid_t tid = transaction->t_tid;
2019
2020                 write_unlock(&journal->j_state_lock);
2021                 jbd2_log_wait_commit(journal, tid);
2022         } else {
2023                 write_unlock(&journal->j_state_lock);
2024         }
2025
2026         /* ...and flush everything in the log out to disk. */
2027         spin_lock(&journal->j_list_lock);
2028         while (!err && journal->j_checkpoint_transactions != NULL) {
2029                 spin_unlock(&journal->j_list_lock);
2030                 mutex_lock_io(&journal->j_checkpoint_mutex);
2031                 err = jbd2_log_do_checkpoint(journal);
2032                 mutex_unlock(&journal->j_checkpoint_mutex);
2033                 spin_lock(&journal->j_list_lock);
2034         }
2035         spin_unlock(&journal->j_list_lock);
2036
2037         if (is_journal_aborted(journal))
2038                 return -EIO;
2039
2040         mutex_lock_io(&journal->j_checkpoint_mutex);
2041         if (!err) {
2042                 err = jbd2_cleanup_journal_tail(journal);
2043                 if (err < 0) {
2044                         mutex_unlock(&journal->j_checkpoint_mutex);
2045                         goto out;
2046                 }
2047                 err = 0;
2048         }
2049
2050         /* Finally, mark the journal as really needing no recovery.
2051          * This sets s_start==0 in the underlying superblock, which is
2052          * the magic code for a fully-recovered superblock.  Any future
2053          * commits of data to the journal will restore the current
2054          * s_start value. */
2055         jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2056         mutex_unlock(&journal->j_checkpoint_mutex);
2057         write_lock(&journal->j_state_lock);
2058         J_ASSERT(!journal->j_running_transaction);
2059         J_ASSERT(!journal->j_committing_transaction);
2060         J_ASSERT(!journal->j_checkpoint_transactions);
2061         J_ASSERT(journal->j_head == journal->j_tail);
2062         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2063         write_unlock(&journal->j_state_lock);
2064 out:
2065         return err;
2066 }
2067
2068 /**
2069  * int jbd2_journal_wipe() - Wipe journal contents
2070  * @journal: Journal to act on.
2071  * @write: flag (see below)
2072  *
2073  * Wipe out all of the contents of a journal, safely.  This will produce
2074  * a warning if the journal contains any valid recovery information.
2075  * Must be called between journal_init_*() and jbd2_journal_load().
2076  *
2077  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2078  * we merely suppress recovery.
2079  */
2080
2081 int jbd2_journal_wipe(journal_t *journal, int write)
2082 {
2083         int err = 0;
2084
2085         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2086
2087         err = load_superblock(journal);
2088         if (err)
2089                 return err;
2090
2091         if (!journal->j_tail)
2092                 goto no_recovery;
2093
2094         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2095                 write ? "Clearing" : "Ignoring");
2096
2097         err = jbd2_journal_skip_recovery(journal);
2098         if (write) {
2099                 /* Lock to make assertions happy... */
2100                 mutex_lock_io(&journal->j_checkpoint_mutex);
2101                 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2102                 mutex_unlock(&journal->j_checkpoint_mutex);
2103         }
2104
2105  no_recovery:
2106         return err;
2107 }
2108
2109 /*
2110  * Journal abort has very specific semantics, which we describe
2111  * for journal abort.
2112  *
2113  * Two internal functions, which provide abort to the jbd layer
2114  * itself are here.
2115  */
2116
2117 /*
2118  * Quick version for internal journal use (doesn't lock the journal).
2119  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2120  * and don't attempt to make any other journal updates.
2121  */
2122 void __jbd2_journal_abort_hard(journal_t *journal)
2123 {
2124         transaction_t *transaction;
2125
2126         if (journal->j_flags & JBD2_ABORT)
2127                 return;
2128
2129         printk(KERN_ERR "Aborting journal on device %s.\n",
2130                journal->j_devname);
2131
2132         write_lock(&journal->j_state_lock);
2133         journal->j_flags |= JBD2_ABORT;
2134         transaction = journal->j_running_transaction;
2135         if (transaction)
2136                 __jbd2_log_start_commit(journal, transaction->t_tid);
2137         write_unlock(&journal->j_state_lock);
2138 }
2139
2140 /* Soft abort: record the abort error status in the journal superblock,
2141  * but don't do any other IO. */
2142 static void __journal_abort_soft (journal_t *journal, int errno)
2143 {
2144         int old_errno;
2145
2146         write_lock(&journal->j_state_lock);
2147         old_errno = journal->j_errno;
2148         if (!journal->j_errno || errno == -ESHUTDOWN)
2149                 journal->j_errno = errno;
2150
2151         if (journal->j_flags & JBD2_ABORT) {
2152                 write_unlock(&journal->j_state_lock);
2153                 if (!old_errno && old_errno != -ESHUTDOWN &&
2154                     errno == -ESHUTDOWN)
2155                         jbd2_journal_update_sb_errno(journal);
2156                 return;
2157         }
2158         write_unlock(&journal->j_state_lock);
2159
2160         __jbd2_journal_abort_hard(journal);
2161
2162         if (errno) {
2163                 jbd2_journal_update_sb_errno(journal);
2164                 write_lock(&journal->j_state_lock);
2165                 journal->j_flags |= JBD2_REC_ERR;
2166                 write_unlock(&journal->j_state_lock);
2167         }
2168 }
2169
2170 /**
2171  * void jbd2_journal_abort () - Shutdown the journal immediately.
2172  * @journal: the journal to shutdown.
2173  * @errno:   an error number to record in the journal indicating
2174  *           the reason for the shutdown.
2175  *
2176  * Perform a complete, immediate shutdown of the ENTIRE
2177  * journal (not of a single transaction).  This operation cannot be
2178  * undone without closing and reopening the journal.
2179  *
2180  * The jbd2_journal_abort function is intended to support higher level error
2181  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2182  * mode.
2183  *
2184  * Journal abort has very specific semantics.  Any existing dirty,
2185  * unjournaled buffers in the main filesystem will still be written to
2186  * disk by bdflush, but the journaling mechanism will be suspended
2187  * immediately and no further transaction commits will be honoured.
2188  *
2189  * Any dirty, journaled buffers will be written back to disk without
2190  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2191  * filesystem, but we _do_ attempt to leave as much data as possible
2192  * behind for fsck to use for cleanup.
2193  *
2194  * Any attempt to get a new transaction handle on a journal which is in
2195  * ABORT state will just result in an -EROFS error return.  A
2196  * jbd2_journal_stop on an existing handle will return -EIO if we have
2197  * entered abort state during the update.
2198  *
2199  * Recursive transactions are not disturbed by journal abort until the
2200  * final jbd2_journal_stop, which will receive the -EIO error.
2201  *
2202  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2203  * which will be recorded (if possible) in the journal superblock.  This
2204  * allows a client to record failure conditions in the middle of a
2205  * transaction without having to complete the transaction to record the
2206  * failure to disk.  ext3_error, for example, now uses this
2207  * functionality.
2208  *
2209  * Errors which originate from within the journaling layer will NOT
2210  * supply an errno; a null errno implies that absolutely no further
2211  * writes are done to the journal (unless there are any already in
2212  * progress).
2213  *
2214  */
2215
2216 void jbd2_journal_abort(journal_t *journal, int errno)
2217 {
2218         __journal_abort_soft(journal, errno);
2219 }
2220
2221 /**
2222  * int jbd2_journal_errno () - returns the journal's error state.
2223  * @journal: journal to examine.
2224  *
2225  * This is the errno number set with jbd2_journal_abort(), the last
2226  * time the journal was mounted - if the journal was stopped
2227  * without calling abort this will be 0.
2228  *
2229  * If the journal has been aborted on this mount time -EROFS will
2230  * be returned.
2231  */
2232 int jbd2_journal_errno(journal_t *journal)
2233 {
2234         int err;
2235
2236         read_lock(&journal->j_state_lock);
2237         if (journal->j_flags & JBD2_ABORT)
2238                 err = -EROFS;
2239         else
2240                 err = journal->j_errno;
2241         read_unlock(&journal->j_state_lock);
2242         return err;
2243 }
2244
2245 /**
2246  * int jbd2_journal_clear_err () - clears the journal's error state
2247  * @journal: journal to act on.
2248  *
2249  * An error must be cleared or acked to take a FS out of readonly
2250  * mode.
2251  */
2252 int jbd2_journal_clear_err(journal_t *journal)
2253 {
2254         int err = 0;
2255
2256         write_lock(&journal->j_state_lock);
2257         if (journal->j_flags & JBD2_ABORT)
2258                 err = -EROFS;
2259         else
2260                 journal->j_errno = 0;
2261         write_unlock(&journal->j_state_lock);
2262         return err;
2263 }
2264
2265 /**
2266  * void jbd2_journal_ack_err() - Ack journal err.
2267  * @journal: journal to act on.
2268  *
2269  * An error must be cleared or acked to take a FS out of readonly
2270  * mode.
2271  */
2272 void jbd2_journal_ack_err(journal_t *journal)
2273 {
2274         write_lock(&journal->j_state_lock);
2275         if (journal->j_errno)
2276                 journal->j_flags |= JBD2_ACK_ERR;
2277         write_unlock(&journal->j_state_lock);
2278 }
2279
2280 int jbd2_journal_blocks_per_page(struct inode *inode)
2281 {
2282         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2283 }
2284
2285 /*
2286  * helper functions to deal with 32 or 64bit block numbers.
2287  */
2288 size_t journal_tag_bytes(journal_t *journal)
2289 {
2290         size_t sz;
2291
2292         if (jbd2_has_feature_csum3(journal))
2293                 return sizeof(journal_block_tag3_t);
2294
2295         sz = sizeof(journal_block_tag_t);
2296
2297         if (jbd2_has_feature_csum2(journal))
2298                 sz += sizeof(__u16);
2299
2300         if (jbd2_has_feature_64bit(journal))
2301                 return sz;
2302         else
2303                 return sz - sizeof(__u32);
2304 }
2305
2306 /*
2307  * JBD memory management
2308  *
2309  * These functions are used to allocate block-sized chunks of memory
2310  * used for making copies of buffer_head data.  Very often it will be
2311  * page-sized chunks of data, but sometimes it will be in
2312  * sub-page-size chunks.  (For example, 16k pages on Power systems
2313  * with a 4k block file system.)  For blocks smaller than a page, we
2314  * use a SLAB allocator.  There are slab caches for each block size,
2315  * which are allocated at mount time, if necessary, and we only free
2316  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2317  * this reason we don't need to a mutex to protect access to
2318  * jbd2_slab[] allocating or releasing memory; only in
2319  * jbd2_journal_create_slab().
2320  */
2321 #define JBD2_MAX_SLABS 8
2322 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2323
2324 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2325         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2326         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2327 };
2328
2329
2330 static void jbd2_journal_destroy_slabs(void)
2331 {
2332         int i;
2333
2334         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2335                 kmem_cache_destroy(jbd2_slab[i]);
2336                 jbd2_slab[i] = NULL;
2337         }
2338 }
2339
2340 static int jbd2_journal_create_slab(size_t size)
2341 {
2342         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2343         int i = order_base_2(size) - 10;
2344         size_t slab_size;
2345
2346         if (size == PAGE_SIZE)
2347                 return 0;
2348
2349         if (i >= JBD2_MAX_SLABS)
2350                 return -EINVAL;
2351
2352         if (unlikely(i < 0))
2353                 i = 0;
2354         mutex_lock(&jbd2_slab_create_mutex);
2355         if (jbd2_slab[i]) {
2356                 mutex_unlock(&jbd2_slab_create_mutex);
2357                 return 0;       /* Already created */
2358         }
2359
2360         slab_size = 1 << (i+10);
2361         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2362                                          slab_size, 0, NULL);
2363         mutex_unlock(&jbd2_slab_create_mutex);
2364         if (!jbd2_slab[i]) {
2365                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2366                 return -ENOMEM;
2367         }
2368         return 0;
2369 }
2370
2371 static struct kmem_cache *get_slab(size_t size)
2372 {
2373         int i = order_base_2(size) - 10;
2374
2375         BUG_ON(i >= JBD2_MAX_SLABS);
2376         if (unlikely(i < 0))
2377                 i = 0;
2378         BUG_ON(jbd2_slab[i] == NULL);
2379         return jbd2_slab[i];
2380 }
2381
2382 void *jbd2_alloc(size_t size, gfp_t flags)
2383 {
2384         void *ptr;
2385
2386         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2387
2388         if (size < PAGE_SIZE)
2389                 ptr = kmem_cache_alloc(get_slab(size), flags);
2390         else
2391                 ptr = (void *)__get_free_pages(flags, get_order(size));
2392
2393         /* Check alignment; SLUB has gotten this wrong in the past,
2394          * and this can lead to user data corruption! */
2395         BUG_ON(((unsigned long) ptr) & (size-1));
2396
2397         return ptr;
2398 }
2399
2400 void jbd2_free(void *ptr, size_t size)
2401 {
2402         if (size < PAGE_SIZE)
2403                 kmem_cache_free(get_slab(size), ptr);
2404         else
2405                 free_pages((unsigned long)ptr, get_order(size));
2406 };
2407
2408 /*
2409  * Journal_head storage management
2410  */
2411 static struct kmem_cache *jbd2_journal_head_cache;
2412 #ifdef CONFIG_JBD2_DEBUG
2413 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2414 #endif
2415
2416 static int __init jbd2_journal_init_journal_head_cache(void)
2417 {
2418         J_ASSERT(!jbd2_journal_head_cache);
2419         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2420                                 sizeof(struct journal_head),
2421                                 0,              /* offset */
2422                                 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2423                                 NULL);          /* ctor */
2424         if (!jbd2_journal_head_cache) {
2425                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2426                 return -ENOMEM;
2427         }
2428         return 0;
2429 }
2430
2431 static void jbd2_journal_destroy_journal_head_cache(void)
2432 {
2433         kmem_cache_destroy(jbd2_journal_head_cache);
2434         jbd2_journal_head_cache = NULL;
2435 }
2436
2437 /*
2438  * journal_head splicing and dicing
2439  */
2440 static struct journal_head *journal_alloc_journal_head(void)
2441 {
2442         struct journal_head *ret;
2443
2444 #ifdef CONFIG_JBD2_DEBUG
2445         atomic_inc(&nr_journal_heads);
2446 #endif
2447         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2448         if (!ret) {
2449                 jbd_debug(1, "out of memory for journal_head\n");
2450                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2451                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2452                                 GFP_NOFS | __GFP_NOFAIL);
2453         }
2454         if (ret)
2455                 spin_lock_init(&ret->b_state_lock);
2456         return ret;
2457 }
2458
2459 static void journal_free_journal_head(struct journal_head *jh)
2460 {
2461 #ifdef CONFIG_JBD2_DEBUG
2462         atomic_dec(&nr_journal_heads);
2463         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2464 #endif
2465         kmem_cache_free(jbd2_journal_head_cache, jh);
2466 }
2467
2468 /*
2469  * A journal_head is attached to a buffer_head whenever JBD has an
2470  * interest in the buffer.
2471  *
2472  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2473  * is set.  This bit is tested in core kernel code where we need to take
2474  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2475  * there.
2476  *
2477  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2478  *
2479  * When a buffer has its BH_JBD bit set it is immune from being released by
2480  * core kernel code, mainly via ->b_count.
2481  *
2482  * A journal_head is detached from its buffer_head when the journal_head's
2483  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2484  * transaction (b_cp_transaction) hold their references to b_jcount.
2485  *
2486  * Various places in the kernel want to attach a journal_head to a buffer_head
2487  * _before_ attaching the journal_head to a transaction.  To protect the
2488  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2489  * journal_head's b_jcount refcount by one.  The caller must call
2490  * jbd2_journal_put_journal_head() to undo this.
2491  *
2492  * So the typical usage would be:
2493  *
2494  *      (Attach a journal_head if needed.  Increments b_jcount)
2495  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2496  *      ...
2497  *      (Get another reference for transaction)
2498  *      jbd2_journal_grab_journal_head(bh);
2499  *      jh->b_transaction = xxx;
2500  *      (Put original reference)
2501  *      jbd2_journal_put_journal_head(jh);
2502  */
2503
2504 /*
2505  * Give a buffer_head a journal_head.
2506  *
2507  * May sleep.
2508  */
2509 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2510 {
2511         struct journal_head *jh;
2512         struct journal_head *new_jh = NULL;
2513
2514 repeat:
2515         if (!buffer_jbd(bh))
2516                 new_jh = journal_alloc_journal_head();
2517
2518         jbd_lock_bh_journal_head(bh);
2519         if (buffer_jbd(bh)) {
2520                 jh = bh2jh(bh);
2521         } else {
2522                 J_ASSERT_BH(bh,
2523                         (atomic_read(&bh->b_count) > 0) ||
2524                         (bh->b_page && bh->b_page->mapping));
2525
2526                 if (!new_jh) {
2527                         jbd_unlock_bh_journal_head(bh);
2528                         goto repeat;
2529                 }
2530
2531                 jh = new_jh;
2532                 new_jh = NULL;          /* We consumed it */
2533                 set_buffer_jbd(bh);
2534                 bh->b_private = jh;
2535                 jh->b_bh = bh;
2536                 get_bh(bh);
2537                 BUFFER_TRACE(bh, "added journal_head");
2538         }
2539         jh->b_jcount++;
2540         jbd_unlock_bh_journal_head(bh);
2541         if (new_jh)
2542                 journal_free_journal_head(new_jh);
2543         return bh->b_private;
2544 }
2545
2546 /*
2547  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2548  * having a journal_head, return NULL
2549  */
2550 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2551 {
2552         struct journal_head *jh = NULL;
2553
2554         jbd_lock_bh_journal_head(bh);
2555         if (buffer_jbd(bh)) {
2556                 jh = bh2jh(bh);
2557                 jh->b_jcount++;
2558         }
2559         jbd_unlock_bh_journal_head(bh);
2560         return jh;
2561 }
2562
2563 static void __journal_remove_journal_head(struct buffer_head *bh)
2564 {
2565         struct journal_head *jh = bh2jh(bh);
2566
2567         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2568         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2569         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2570         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2571         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2572         J_ASSERT_BH(bh, buffer_jbd(bh));
2573         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2574         BUFFER_TRACE(bh, "remove journal_head");
2575
2576         /* Unlink before dropping the lock */
2577         bh->b_private = NULL;
2578         jh->b_bh = NULL;        /* debug, really */
2579         clear_buffer_jbd(bh);
2580 }
2581
2582 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2583 {
2584         if (jh->b_frozen_data) {
2585                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2586                 jbd2_free(jh->b_frozen_data, b_size);
2587         }
2588         if (jh->b_committed_data) {
2589                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2590                 jbd2_free(jh->b_committed_data, b_size);
2591         }
2592         journal_free_journal_head(jh);
2593 }
2594
2595 /*
2596  * Drop a reference on the passed journal_head.  If it fell to zero then
2597  * release the journal_head from the buffer_head.
2598  */
2599 void jbd2_journal_put_journal_head(struct journal_head *jh)
2600 {
2601         struct buffer_head *bh = jh2bh(jh);
2602
2603         jbd_lock_bh_journal_head(bh);
2604         J_ASSERT_JH(jh, jh->b_jcount > 0);
2605         --jh->b_jcount;
2606         if (!jh->b_jcount) {
2607                 __journal_remove_journal_head(bh);
2608                 jbd_unlock_bh_journal_head(bh);
2609                 journal_release_journal_head(jh, bh->b_size);
2610                 __brelse(bh);
2611         } else {
2612                 jbd_unlock_bh_journal_head(bh);
2613         }
2614 }
2615
2616 /*
2617  * Initialize jbd inode head
2618  */
2619 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2620 {
2621         jinode->i_transaction = NULL;
2622         jinode->i_next_transaction = NULL;
2623         jinode->i_vfs_inode = inode;
2624         jinode->i_flags = 0;
2625         jinode->i_dirty_start = 0;
2626         jinode->i_dirty_end = 0;
2627         INIT_LIST_HEAD(&jinode->i_list);
2628 }
2629
2630 /*
2631  * Function to be called before we start removing inode from memory (i.e.,
2632  * clear_inode() is a fine place to be called from). It removes inode from
2633  * transaction's lists.
2634  */
2635 void jbd2_journal_release_jbd_inode(journal_t *journal,
2636                                     struct jbd2_inode *jinode)
2637 {
2638         if (!journal)
2639                 return;
2640 restart:
2641         spin_lock(&journal->j_list_lock);
2642         /* Is commit writing out inode - we have to wait */
2643         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2644                 wait_queue_head_t *wq;
2645                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2646                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2647                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2648                 spin_unlock(&journal->j_list_lock);
2649                 schedule();
2650                 finish_wait(wq, &wait.wq_entry);
2651                 goto restart;
2652         }
2653
2654         if (jinode->i_transaction) {
2655                 list_del(&jinode->i_list);
2656                 jinode->i_transaction = NULL;
2657         }
2658         spin_unlock(&journal->j_list_lock);
2659 }
2660
2661
2662 #ifdef CONFIG_PROC_FS
2663
2664 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2665
2666 static void __init jbd2_create_jbd_stats_proc_entry(void)
2667 {
2668         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2669 }
2670
2671 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2672 {
2673         if (proc_jbd2_stats)
2674                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2675 }
2676
2677 #else
2678
2679 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2680 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2681
2682 #endif
2683
2684 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2685
2686 static int __init jbd2_journal_init_inode_cache(void)
2687 {
2688         J_ASSERT(!jbd2_inode_cache);
2689         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2690         if (!jbd2_inode_cache) {
2691                 pr_emerg("JBD2: failed to create inode cache\n");
2692                 return -ENOMEM;
2693         }
2694         return 0;
2695 }
2696
2697 static int __init jbd2_journal_init_handle_cache(void)
2698 {
2699         J_ASSERT(!jbd2_handle_cache);
2700         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2701         if (!jbd2_handle_cache) {
2702                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2703                 return -ENOMEM;
2704         }
2705         return 0;
2706 }
2707
2708 static void jbd2_journal_destroy_inode_cache(void)
2709 {
2710         kmem_cache_destroy(jbd2_inode_cache);
2711         jbd2_inode_cache = NULL;
2712 }
2713
2714 static void jbd2_journal_destroy_handle_cache(void)
2715 {
2716         kmem_cache_destroy(jbd2_handle_cache);
2717         jbd2_handle_cache = NULL;
2718 }
2719
2720 /*
2721  * Module startup and shutdown
2722  */
2723
2724 static int __init journal_init_caches(void)
2725 {
2726         int ret;
2727
2728         ret = jbd2_journal_init_revoke_record_cache();
2729         if (ret == 0)
2730                 ret = jbd2_journal_init_revoke_table_cache();
2731         if (ret == 0)
2732                 ret = jbd2_journal_init_journal_head_cache();
2733         if (ret == 0)
2734                 ret = jbd2_journal_init_handle_cache();
2735         if (ret == 0)
2736                 ret = jbd2_journal_init_inode_cache();
2737         if (ret == 0)
2738                 ret = jbd2_journal_init_transaction_cache();
2739         return ret;
2740 }
2741
2742 static void jbd2_journal_destroy_caches(void)
2743 {
2744         jbd2_journal_destroy_revoke_record_cache();
2745         jbd2_journal_destroy_revoke_table_cache();
2746         jbd2_journal_destroy_journal_head_cache();
2747         jbd2_journal_destroy_handle_cache();
2748         jbd2_journal_destroy_inode_cache();
2749         jbd2_journal_destroy_transaction_cache();
2750         jbd2_journal_destroy_slabs();
2751 }
2752
2753 static int __init journal_init(void)
2754 {
2755         int ret;
2756
2757         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2758
2759         ret = journal_init_caches();
2760         if (ret == 0) {
2761                 jbd2_create_jbd_stats_proc_entry();
2762         } else {
2763                 jbd2_journal_destroy_caches();
2764         }
2765         return ret;
2766 }
2767
2768 static void __exit journal_exit(void)
2769 {
2770 #ifdef CONFIG_JBD2_DEBUG
2771         int n = atomic_read(&nr_journal_heads);
2772         if (n)
2773                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2774 #endif
2775         jbd2_remove_jbd_stats_proc_entry();
2776         jbd2_journal_destroy_caches();
2777 }
2778
2779 MODULE_LICENSE("GPL");
2780 module_init(journal_init);
2781 module_exit(journal_exit);
2782