OSDN Git Service

1c58859aa59245506b3cea0b5f955434f167a1f5
[tomoyo/tomoyo-test1.git] / fs / jbd2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98
99 static void __journal_abort_soft (journal_t *journal, int errno);
100 static int jbd2_journal_create_slab(size_t slab_size);
101
102 #ifdef CONFIG_JBD2_DEBUG
103 void __jbd2_debug(int level, const char *file, const char *func,
104                   unsigned int line, const char *fmt, ...)
105 {
106         struct va_format vaf;
107         va_list args;
108
109         if (level > jbd2_journal_enable_debug)
110                 return;
111         va_start(args, fmt);
112         vaf.fmt = fmt;
113         vaf.va = &args;
114         printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
115         va_end(args);
116 }
117 EXPORT_SYMBOL(__jbd2_debug);
118 #endif
119
120 /* Checksumming functions */
121 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
122 {
123         if (!jbd2_journal_has_csum_v2or3_feature(j))
124                 return 1;
125
126         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
127 }
128
129 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
130 {
131         __u32 csum;
132         __be32 old_csum;
133
134         old_csum = sb->s_checksum;
135         sb->s_checksum = 0;
136         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
137         sb->s_checksum = old_csum;
138
139         return cpu_to_be32(csum);
140 }
141
142 /*
143  * Helper function used to manage commit timeouts
144  */
145
146 static void commit_timeout(struct timer_list *t)
147 {
148         journal_t *journal = from_timer(journal, t, j_commit_timer);
149
150         wake_up_process(journal->j_task);
151 }
152
153 /*
154  * kjournald2: The main thread function used to manage a logging device
155  * journal.
156  *
157  * This kernel thread is responsible for two things:
158  *
159  * 1) COMMIT:  Every so often we need to commit the current state of the
160  *    filesystem to disk.  The journal thread is responsible for writing
161  *    all of the metadata buffers to disk.
162  *
163  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
164  *    of the data in that part of the log has been rewritten elsewhere on
165  *    the disk.  Flushing these old buffers to reclaim space in the log is
166  *    known as checkpointing, and this thread is responsible for that job.
167  */
168
169 static int kjournald2(void *arg)
170 {
171         journal_t *journal = arg;
172         transaction_t *transaction;
173
174         /*
175          * Set up an interval timer which can be used to trigger a commit wakeup
176          * after the commit interval expires
177          */
178         timer_setup(&journal->j_commit_timer, commit_timeout, 0);
179
180         set_freezable();
181
182         /* Record that the journal thread is running */
183         journal->j_task = current;
184         wake_up(&journal->j_wait_done_commit);
185
186         /*
187          * Make sure that no allocations from this kernel thread will ever
188          * recurse to the fs layer because we are responsible for the
189          * transaction commit and any fs involvement might get stuck waiting for
190          * the trasn. commit.
191          */
192         memalloc_nofs_save();
193
194         /*
195          * And now, wait forever for commit wakeup events.
196          */
197         write_lock(&journal->j_state_lock);
198
199 loop:
200         if (journal->j_flags & JBD2_UNMOUNT)
201                 goto end_loop;
202
203         jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
204                 journal->j_commit_sequence, journal->j_commit_request);
205
206         if (journal->j_commit_sequence != journal->j_commit_request) {
207                 jbd_debug(1, "OK, requests differ\n");
208                 write_unlock(&journal->j_state_lock);
209                 del_timer_sync(&journal->j_commit_timer);
210                 jbd2_journal_commit_transaction(journal);
211                 write_lock(&journal->j_state_lock);
212                 goto loop;
213         }
214
215         wake_up(&journal->j_wait_done_commit);
216         if (freezing(current)) {
217                 /*
218                  * The simpler the better. Flushing journal isn't a
219                  * good idea, because that depends on threads that may
220                  * be already stopped.
221                  */
222                 jbd_debug(1, "Now suspending kjournald2\n");
223                 write_unlock(&journal->j_state_lock);
224                 try_to_freeze();
225                 write_lock(&journal->j_state_lock);
226         } else {
227                 /*
228                  * We assume on resume that commits are already there,
229                  * so we don't sleep
230                  */
231                 DEFINE_WAIT(wait);
232                 int should_sleep = 1;
233
234                 prepare_to_wait(&journal->j_wait_commit, &wait,
235                                 TASK_INTERRUPTIBLE);
236                 if (journal->j_commit_sequence != journal->j_commit_request)
237                         should_sleep = 0;
238                 transaction = journal->j_running_transaction;
239                 if (transaction && time_after_eq(jiffies,
240                                                 transaction->t_expires))
241                         should_sleep = 0;
242                 if (journal->j_flags & JBD2_UNMOUNT)
243                         should_sleep = 0;
244                 if (should_sleep) {
245                         write_unlock(&journal->j_state_lock);
246                         schedule();
247                         write_lock(&journal->j_state_lock);
248                 }
249                 finish_wait(&journal->j_wait_commit, &wait);
250         }
251
252         jbd_debug(1, "kjournald2 wakes\n");
253
254         /*
255          * Were we woken up by a commit wakeup event?
256          */
257         transaction = journal->j_running_transaction;
258         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
259                 journal->j_commit_request = transaction->t_tid;
260                 jbd_debug(1, "woke because of timeout\n");
261         }
262         goto loop;
263
264 end_loop:
265         del_timer_sync(&journal->j_commit_timer);
266         journal->j_task = NULL;
267         wake_up(&journal->j_wait_done_commit);
268         jbd_debug(1, "Journal thread exiting.\n");
269         write_unlock(&journal->j_state_lock);
270         return 0;
271 }
272
273 static int jbd2_journal_start_thread(journal_t *journal)
274 {
275         struct task_struct *t;
276
277         t = kthread_run(kjournald2, journal, "jbd2/%s",
278                         journal->j_devname);
279         if (IS_ERR(t))
280                 return PTR_ERR(t);
281
282         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
283         return 0;
284 }
285
286 static void journal_kill_thread(journal_t *journal)
287 {
288         write_lock(&journal->j_state_lock);
289         journal->j_flags |= JBD2_UNMOUNT;
290
291         while (journal->j_task) {
292                 write_unlock(&journal->j_state_lock);
293                 wake_up(&journal->j_wait_commit);
294                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
295                 write_lock(&journal->j_state_lock);
296         }
297         write_unlock(&journal->j_state_lock);
298 }
299
300 /*
301  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
302  *
303  * Writes a metadata buffer to a given disk block.  The actual IO is not
304  * performed but a new buffer_head is constructed which labels the data
305  * to be written with the correct destination disk block.
306  *
307  * Any magic-number escaping which needs to be done will cause a
308  * copy-out here.  If the buffer happens to start with the
309  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
310  * magic number is only written to the log for descripter blocks.  In
311  * this case, we copy the data and replace the first word with 0, and we
312  * return a result code which indicates that this buffer needs to be
313  * marked as an escaped buffer in the corresponding log descriptor
314  * block.  The missing word can then be restored when the block is read
315  * during recovery.
316  *
317  * If the source buffer has already been modified by a new transaction
318  * since we took the last commit snapshot, we use the frozen copy of
319  * that data for IO. If we end up using the existing buffer_head's data
320  * for the write, then we have to make sure nobody modifies it while the
321  * IO is in progress. do_get_write_access() handles this.
322  *
323  * The function returns a pointer to the buffer_head to be used for IO.
324  *
325  *
326  * Return value:
327  *  <0: Error
328  * >=0: Finished OK
329  *
330  * On success:
331  * Bit 0 set == escape performed on the data
332  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
333  */
334
335 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
336                                   struct journal_head  *jh_in,
337                                   struct buffer_head **bh_out,
338                                   sector_t blocknr)
339 {
340         int need_copy_out = 0;
341         int done_copy_out = 0;
342         int do_escape = 0;
343         char *mapped_data;
344         struct buffer_head *new_bh;
345         struct page *new_page;
346         unsigned int new_offset;
347         struct buffer_head *bh_in = jh2bh(jh_in);
348         journal_t *journal = transaction->t_journal;
349
350         /*
351          * The buffer really shouldn't be locked: only the current committing
352          * transaction is allowed to write it, so nobody else is allowed
353          * to do any IO.
354          *
355          * akpm: except if we're journalling data, and write() output is
356          * also part of a shared mapping, and another thread has
357          * decided to launch a writepage() against this buffer.
358          */
359         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
360
361         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
362
363         /* keep subsequent assertions sane */
364         atomic_set(&new_bh->b_count, 1);
365
366         jbd_lock_bh_state(bh_in);
367 repeat:
368         /*
369          * If a new transaction has already done a buffer copy-out, then
370          * we use that version of the data for the commit.
371          */
372         if (jh_in->b_frozen_data) {
373                 done_copy_out = 1;
374                 new_page = virt_to_page(jh_in->b_frozen_data);
375                 new_offset = offset_in_page(jh_in->b_frozen_data);
376         } else {
377                 new_page = jh2bh(jh_in)->b_page;
378                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
379         }
380
381         mapped_data = kmap_atomic(new_page);
382         /*
383          * Fire data frozen trigger if data already wasn't frozen.  Do this
384          * before checking for escaping, as the trigger may modify the magic
385          * offset.  If a copy-out happens afterwards, it will have the correct
386          * data in the buffer.
387          */
388         if (!done_copy_out)
389                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
390                                            jh_in->b_triggers);
391
392         /*
393          * Check for escaping
394          */
395         if (*((__be32 *)(mapped_data + new_offset)) ==
396                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
397                 need_copy_out = 1;
398                 do_escape = 1;
399         }
400         kunmap_atomic(mapped_data);
401
402         /*
403          * Do we need to do a data copy?
404          */
405         if (need_copy_out && !done_copy_out) {
406                 char *tmp;
407
408                 jbd_unlock_bh_state(bh_in);
409                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
410                 if (!tmp) {
411                         brelse(new_bh);
412                         return -ENOMEM;
413                 }
414                 jbd_lock_bh_state(bh_in);
415                 if (jh_in->b_frozen_data) {
416                         jbd2_free(tmp, bh_in->b_size);
417                         goto repeat;
418                 }
419
420                 jh_in->b_frozen_data = tmp;
421                 mapped_data = kmap_atomic(new_page);
422                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
423                 kunmap_atomic(mapped_data);
424
425                 new_page = virt_to_page(tmp);
426                 new_offset = offset_in_page(tmp);
427                 done_copy_out = 1;
428
429                 /*
430                  * This isn't strictly necessary, as we're using frozen
431                  * data for the escaping, but it keeps consistency with
432                  * b_frozen_data usage.
433                  */
434                 jh_in->b_frozen_triggers = jh_in->b_triggers;
435         }
436
437         /*
438          * Did we need to do an escaping?  Now we've done all the
439          * copying, we can finally do so.
440          */
441         if (do_escape) {
442                 mapped_data = kmap_atomic(new_page);
443                 *((unsigned int *)(mapped_data + new_offset)) = 0;
444                 kunmap_atomic(mapped_data);
445         }
446
447         set_bh_page(new_bh, new_page, new_offset);
448         new_bh->b_size = bh_in->b_size;
449         new_bh->b_bdev = journal->j_dev;
450         new_bh->b_blocknr = blocknr;
451         new_bh->b_private = bh_in;
452         set_buffer_mapped(new_bh);
453         set_buffer_dirty(new_bh);
454
455         *bh_out = new_bh;
456
457         /*
458          * The to-be-written buffer needs to get moved to the io queue,
459          * and the original buffer whose contents we are shadowing or
460          * copying is moved to the transaction's shadow queue.
461          */
462         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
463         spin_lock(&journal->j_list_lock);
464         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
465         spin_unlock(&journal->j_list_lock);
466         set_buffer_shadow(bh_in);
467         jbd_unlock_bh_state(bh_in);
468
469         return do_escape | (done_copy_out << 1);
470 }
471
472 /*
473  * Allocation code for the journal file.  Manage the space left in the
474  * journal, so that we can begin checkpointing when appropriate.
475  */
476
477 /*
478  * Called with j_state_lock locked for writing.
479  * Returns true if a transaction commit was started.
480  */
481 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
482 {
483         /* Return if the txn has already requested to be committed */
484         if (journal->j_commit_request == target)
485                 return 0;
486
487         /*
488          * The only transaction we can possibly wait upon is the
489          * currently running transaction (if it exists).  Otherwise,
490          * the target tid must be an old one.
491          */
492         if (journal->j_running_transaction &&
493             journal->j_running_transaction->t_tid == target) {
494                 /*
495                  * We want a new commit: OK, mark the request and wakeup the
496                  * commit thread.  We do _not_ do the commit ourselves.
497                  */
498
499                 journal->j_commit_request = target;
500                 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
501                           journal->j_commit_request,
502                           journal->j_commit_sequence);
503                 journal->j_running_transaction->t_requested = jiffies;
504                 wake_up(&journal->j_wait_commit);
505                 return 1;
506         } else if (!tid_geq(journal->j_commit_request, target))
507                 /* This should never happen, but if it does, preserve
508                    the evidence before kjournald goes into a loop and
509                    increments j_commit_sequence beyond all recognition. */
510                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
511                           journal->j_commit_request,
512                           journal->j_commit_sequence,
513                           target, journal->j_running_transaction ?
514                           journal->j_running_transaction->t_tid : 0);
515         return 0;
516 }
517
518 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
519 {
520         int ret;
521
522         write_lock(&journal->j_state_lock);
523         ret = __jbd2_log_start_commit(journal, tid);
524         write_unlock(&journal->j_state_lock);
525         return ret;
526 }
527
528 /*
529  * Force and wait any uncommitted transactions.  We can only force the running
530  * transaction if we don't have an active handle, otherwise, we will deadlock.
531  * Returns: <0 in case of error,
532  *           0 if nothing to commit,
533  *           1 if transaction was successfully committed.
534  */
535 static int __jbd2_journal_force_commit(journal_t *journal)
536 {
537         transaction_t *transaction = NULL;
538         tid_t tid;
539         int need_to_start = 0, ret = 0;
540
541         read_lock(&journal->j_state_lock);
542         if (journal->j_running_transaction && !current->journal_info) {
543                 transaction = journal->j_running_transaction;
544                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
545                         need_to_start = 1;
546         } else if (journal->j_committing_transaction)
547                 transaction = journal->j_committing_transaction;
548
549         if (!transaction) {
550                 /* Nothing to commit */
551                 read_unlock(&journal->j_state_lock);
552                 return 0;
553         }
554         tid = transaction->t_tid;
555         read_unlock(&journal->j_state_lock);
556         if (need_to_start)
557                 jbd2_log_start_commit(journal, tid);
558         ret = jbd2_log_wait_commit(journal, tid);
559         if (!ret)
560                 ret = 1;
561
562         return ret;
563 }
564
565 /**
566  * Force and wait upon a commit if the calling process is not within
567  * transaction.  This is used for forcing out undo-protected data which contains
568  * bitmaps, when the fs is running out of space.
569  *
570  * @journal: journal to force
571  * Returns true if progress was made.
572  */
573 int jbd2_journal_force_commit_nested(journal_t *journal)
574 {
575         int ret;
576
577         ret = __jbd2_journal_force_commit(journal);
578         return ret > 0;
579 }
580
581 /**
582  * int journal_force_commit() - force any uncommitted transactions
583  * @journal: journal to force
584  *
585  * Caller want unconditional commit. We can only force the running transaction
586  * if we don't have an active handle, otherwise, we will deadlock.
587  */
588 int jbd2_journal_force_commit(journal_t *journal)
589 {
590         int ret;
591
592         J_ASSERT(!current->journal_info);
593         ret = __jbd2_journal_force_commit(journal);
594         if (ret > 0)
595                 ret = 0;
596         return ret;
597 }
598
599 /*
600  * Start a commit of the current running transaction (if any).  Returns true
601  * if a transaction is going to be committed (or is currently already
602  * committing), and fills its tid in at *ptid
603  */
604 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
605 {
606         int ret = 0;
607
608         write_lock(&journal->j_state_lock);
609         if (journal->j_running_transaction) {
610                 tid_t tid = journal->j_running_transaction->t_tid;
611
612                 __jbd2_log_start_commit(journal, tid);
613                 /* There's a running transaction and we've just made sure
614                  * it's commit has been scheduled. */
615                 if (ptid)
616                         *ptid = tid;
617                 ret = 1;
618         } else if (journal->j_committing_transaction) {
619                 /*
620                  * If commit has been started, then we have to wait for
621                  * completion of that transaction.
622                  */
623                 if (ptid)
624                         *ptid = journal->j_committing_transaction->t_tid;
625                 ret = 1;
626         }
627         write_unlock(&journal->j_state_lock);
628         return ret;
629 }
630
631 /*
632  * Return 1 if a given transaction has not yet sent barrier request
633  * connected with a transaction commit. If 0 is returned, transaction
634  * may or may not have sent the barrier. Used to avoid sending barrier
635  * twice in common cases.
636  */
637 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
638 {
639         int ret = 0;
640         transaction_t *commit_trans;
641
642         if (!(journal->j_flags & JBD2_BARRIER))
643                 return 0;
644         read_lock(&journal->j_state_lock);
645         /* Transaction already committed? */
646         if (tid_geq(journal->j_commit_sequence, tid))
647                 goto out;
648         commit_trans = journal->j_committing_transaction;
649         if (!commit_trans || commit_trans->t_tid != tid) {
650                 ret = 1;
651                 goto out;
652         }
653         /*
654          * Transaction is being committed and we already proceeded to
655          * submitting a flush to fs partition?
656          */
657         if (journal->j_fs_dev != journal->j_dev) {
658                 if (!commit_trans->t_need_data_flush ||
659                     commit_trans->t_state >= T_COMMIT_DFLUSH)
660                         goto out;
661         } else {
662                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
663                         goto out;
664         }
665         ret = 1;
666 out:
667         read_unlock(&journal->j_state_lock);
668         return ret;
669 }
670 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
671
672 /*
673  * Wait for a specified commit to complete.
674  * The caller may not hold the journal lock.
675  */
676 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
677 {
678         int err = 0;
679
680         read_lock(&journal->j_state_lock);
681 #ifdef CONFIG_PROVE_LOCKING
682         /*
683          * Some callers make sure transaction is already committing and in that
684          * case we cannot block on open handles anymore. So don't warn in that
685          * case.
686          */
687         if (tid_gt(tid, journal->j_commit_sequence) &&
688             (!journal->j_committing_transaction ||
689              journal->j_committing_transaction->t_tid != tid)) {
690                 read_unlock(&journal->j_state_lock);
691                 jbd2_might_wait_for_commit(journal);
692                 read_lock(&journal->j_state_lock);
693         }
694 #endif
695 #ifdef CONFIG_JBD2_DEBUG
696         if (!tid_geq(journal->j_commit_request, tid)) {
697                 printk(KERN_ERR
698                        "%s: error: j_commit_request=%u, tid=%u\n",
699                        __func__, journal->j_commit_request, tid);
700         }
701 #endif
702         while (tid_gt(tid, journal->j_commit_sequence)) {
703                 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
704                                   tid, journal->j_commit_sequence);
705                 read_unlock(&journal->j_state_lock);
706                 wake_up(&journal->j_wait_commit);
707                 wait_event(journal->j_wait_done_commit,
708                                 !tid_gt(tid, journal->j_commit_sequence));
709                 read_lock(&journal->j_state_lock);
710         }
711         read_unlock(&journal->j_state_lock);
712
713         if (unlikely(is_journal_aborted(journal)))
714                 err = -EIO;
715         return err;
716 }
717
718 /* Return 1 when transaction with given tid has already committed. */
719 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
720 {
721         int ret = 1;
722
723         read_lock(&journal->j_state_lock);
724         if (journal->j_running_transaction &&
725             journal->j_running_transaction->t_tid == tid)
726                 ret = 0;
727         if (journal->j_committing_transaction &&
728             journal->j_committing_transaction->t_tid == tid)
729                 ret = 0;
730         read_unlock(&journal->j_state_lock);
731         return ret;
732 }
733 EXPORT_SYMBOL(jbd2_transaction_committed);
734
735 /*
736  * When this function returns the transaction corresponding to tid
737  * will be completed.  If the transaction has currently running, start
738  * committing that transaction before waiting for it to complete.  If
739  * the transaction id is stale, it is by definition already completed,
740  * so just return SUCCESS.
741  */
742 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
743 {
744         int     need_to_wait = 1;
745
746         read_lock(&journal->j_state_lock);
747         if (journal->j_running_transaction &&
748             journal->j_running_transaction->t_tid == tid) {
749                 if (journal->j_commit_request != tid) {
750                         /* transaction not yet started, so request it */
751                         read_unlock(&journal->j_state_lock);
752                         jbd2_log_start_commit(journal, tid);
753                         goto wait_commit;
754                 }
755         } else if (!(journal->j_committing_transaction &&
756                      journal->j_committing_transaction->t_tid == tid))
757                 need_to_wait = 0;
758         read_unlock(&journal->j_state_lock);
759         if (!need_to_wait)
760                 return 0;
761 wait_commit:
762         return jbd2_log_wait_commit(journal, tid);
763 }
764 EXPORT_SYMBOL(jbd2_complete_transaction);
765
766 /*
767  * Log buffer allocation routines:
768  */
769
770 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
771 {
772         unsigned long blocknr;
773
774         write_lock(&journal->j_state_lock);
775         J_ASSERT(journal->j_free > 1);
776
777         blocknr = journal->j_head;
778         journal->j_head++;
779         journal->j_free--;
780         if (journal->j_head == journal->j_last)
781                 journal->j_head = journal->j_first;
782         write_unlock(&journal->j_state_lock);
783         return jbd2_journal_bmap(journal, blocknr, retp);
784 }
785
786 /*
787  * Conversion of logical to physical block numbers for the journal
788  *
789  * On external journals the journal blocks are identity-mapped, so
790  * this is a no-op.  If needed, we can use j_blk_offset - everything is
791  * ready.
792  */
793 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
794                  unsigned long long *retp)
795 {
796         int err = 0;
797         unsigned long long ret;
798
799         if (journal->j_inode) {
800                 ret = bmap(journal->j_inode, blocknr);
801                 if (ret)
802                         *retp = ret;
803                 else {
804                         printk(KERN_ALERT "%s: journal block not found "
805                                         "at offset %lu on %s\n",
806                                __func__, blocknr, journal->j_devname);
807                         err = -EIO;
808                         __journal_abort_soft(journal, err);
809                 }
810         } else {
811                 *retp = blocknr; /* +journal->j_blk_offset */
812         }
813         return err;
814 }
815
816 /*
817  * We play buffer_head aliasing tricks to write data/metadata blocks to
818  * the journal without copying their contents, but for journal
819  * descriptor blocks we do need to generate bona fide buffers.
820  *
821  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
822  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
823  * But we don't bother doing that, so there will be coherency problems with
824  * mmaps of blockdevs which hold live JBD-controlled filesystems.
825  */
826 struct buffer_head *
827 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
828 {
829         journal_t *journal = transaction->t_journal;
830         struct buffer_head *bh;
831         unsigned long long blocknr;
832         journal_header_t *header;
833         int err;
834
835         err = jbd2_journal_next_log_block(journal, &blocknr);
836
837         if (err)
838                 return NULL;
839
840         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
841         if (!bh)
842                 return NULL;
843         lock_buffer(bh);
844         memset(bh->b_data, 0, journal->j_blocksize);
845         header = (journal_header_t *)bh->b_data;
846         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
847         header->h_blocktype = cpu_to_be32(type);
848         header->h_sequence = cpu_to_be32(transaction->t_tid);
849         set_buffer_uptodate(bh);
850         unlock_buffer(bh);
851         BUFFER_TRACE(bh, "return this buffer");
852         return bh;
853 }
854
855 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
856 {
857         struct jbd2_journal_block_tail *tail;
858         __u32 csum;
859
860         if (!jbd2_journal_has_csum_v2or3(j))
861                 return;
862
863         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
864                         sizeof(struct jbd2_journal_block_tail));
865         tail->t_checksum = 0;
866         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
867         tail->t_checksum = cpu_to_be32(csum);
868 }
869
870 /*
871  * Return tid of the oldest transaction in the journal and block in the journal
872  * where the transaction starts.
873  *
874  * If the journal is now empty, return which will be the next transaction ID
875  * we will write and where will that transaction start.
876  *
877  * The return value is 0 if journal tail cannot be pushed any further, 1 if
878  * it can.
879  */
880 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
881                               unsigned long *block)
882 {
883         transaction_t *transaction;
884         int ret;
885
886         read_lock(&journal->j_state_lock);
887         spin_lock(&journal->j_list_lock);
888         transaction = journal->j_checkpoint_transactions;
889         if (transaction) {
890                 *tid = transaction->t_tid;
891                 *block = transaction->t_log_start;
892         } else if ((transaction = journal->j_committing_transaction) != NULL) {
893                 *tid = transaction->t_tid;
894                 *block = transaction->t_log_start;
895         } else if ((transaction = journal->j_running_transaction) != NULL) {
896                 *tid = transaction->t_tid;
897                 *block = journal->j_head;
898         } else {
899                 *tid = journal->j_transaction_sequence;
900                 *block = journal->j_head;
901         }
902         ret = tid_gt(*tid, journal->j_tail_sequence);
903         spin_unlock(&journal->j_list_lock);
904         read_unlock(&journal->j_state_lock);
905
906         return ret;
907 }
908
909 /*
910  * Update information in journal structure and in on disk journal superblock
911  * about log tail. This function does not check whether information passed in
912  * really pushes log tail further. It's responsibility of the caller to make
913  * sure provided log tail information is valid (e.g. by holding
914  * j_checkpoint_mutex all the time between computing log tail and calling this
915  * function as is the case with jbd2_cleanup_journal_tail()).
916  *
917  * Requires j_checkpoint_mutex
918  */
919 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
920 {
921         unsigned long freed;
922         int ret;
923
924         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
925
926         /*
927          * We cannot afford for write to remain in drive's caches since as
928          * soon as we update j_tail, next transaction can start reusing journal
929          * space and if we lose sb update during power failure we'd replay
930          * old transaction with possibly newly overwritten data.
931          */
932         ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
933                                               REQ_SYNC | REQ_FUA);
934         if (ret)
935                 goto out;
936
937         write_lock(&journal->j_state_lock);
938         freed = block - journal->j_tail;
939         if (block < journal->j_tail)
940                 freed += journal->j_last - journal->j_first;
941
942         trace_jbd2_update_log_tail(journal, tid, block, freed);
943         jbd_debug(1,
944                   "Cleaning journal tail from %u to %u (offset %lu), "
945                   "freeing %lu\n",
946                   journal->j_tail_sequence, tid, block, freed);
947
948         journal->j_free += freed;
949         journal->j_tail_sequence = tid;
950         journal->j_tail = block;
951         write_unlock(&journal->j_state_lock);
952
953 out:
954         return ret;
955 }
956
957 /*
958  * This is a variation of __jbd2_update_log_tail which checks for validity of
959  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
960  * with other threads updating log tail.
961  */
962 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
963 {
964         mutex_lock_io(&journal->j_checkpoint_mutex);
965         if (tid_gt(tid, journal->j_tail_sequence))
966                 __jbd2_update_log_tail(journal, tid, block);
967         mutex_unlock(&journal->j_checkpoint_mutex);
968 }
969
970 struct jbd2_stats_proc_session {
971         journal_t *journal;
972         struct transaction_stats_s *stats;
973         int start;
974         int max;
975 };
976
977 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
978 {
979         return *pos ? NULL : SEQ_START_TOKEN;
980 }
981
982 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
983 {
984         return NULL;
985 }
986
987 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
988 {
989         struct jbd2_stats_proc_session *s = seq->private;
990
991         if (v != SEQ_START_TOKEN)
992                 return 0;
993         seq_printf(seq, "%lu transactions (%lu requested), "
994                    "each up to %u blocks\n",
995                    s->stats->ts_tid, s->stats->ts_requested,
996                    s->journal->j_max_transaction_buffers);
997         if (s->stats->ts_tid == 0)
998                 return 0;
999         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1000             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1001         seq_printf(seq, "  %ums request delay\n",
1002             (s->stats->ts_requested == 0) ? 0 :
1003             jiffies_to_msecs(s->stats->run.rs_request_delay /
1004                              s->stats->ts_requested));
1005         seq_printf(seq, "  %ums running transaction\n",
1006             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1007         seq_printf(seq, "  %ums transaction was being locked\n",
1008             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1009         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1010             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1011         seq_printf(seq, "  %ums logging transaction\n",
1012             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1013         seq_printf(seq, "  %lluus average transaction commit time\n",
1014                    div_u64(s->journal->j_average_commit_time, 1000));
1015         seq_printf(seq, "  %lu handles per transaction\n",
1016             s->stats->run.rs_handle_count / s->stats->ts_tid);
1017         seq_printf(seq, "  %lu blocks per transaction\n",
1018             s->stats->run.rs_blocks / s->stats->ts_tid);
1019         seq_printf(seq, "  %lu logged blocks per transaction\n",
1020             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1021         return 0;
1022 }
1023
1024 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1025 {
1026 }
1027
1028 static const struct seq_operations jbd2_seq_info_ops = {
1029         .start  = jbd2_seq_info_start,
1030         .next   = jbd2_seq_info_next,
1031         .stop   = jbd2_seq_info_stop,
1032         .show   = jbd2_seq_info_show,
1033 };
1034
1035 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1036 {
1037         journal_t *journal = PDE_DATA(inode);
1038         struct jbd2_stats_proc_session *s;
1039         int rc, size;
1040
1041         s = kmalloc(sizeof(*s), GFP_KERNEL);
1042         if (s == NULL)
1043                 return -ENOMEM;
1044         size = sizeof(struct transaction_stats_s);
1045         s->stats = kmalloc(size, GFP_KERNEL);
1046         if (s->stats == NULL) {
1047                 kfree(s);
1048                 return -ENOMEM;
1049         }
1050         spin_lock(&journal->j_history_lock);
1051         memcpy(s->stats, &journal->j_stats, size);
1052         s->journal = journal;
1053         spin_unlock(&journal->j_history_lock);
1054
1055         rc = seq_open(file, &jbd2_seq_info_ops);
1056         if (rc == 0) {
1057                 struct seq_file *m = file->private_data;
1058                 m->private = s;
1059         } else {
1060                 kfree(s->stats);
1061                 kfree(s);
1062         }
1063         return rc;
1064
1065 }
1066
1067 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1068 {
1069         struct seq_file *seq = file->private_data;
1070         struct jbd2_stats_proc_session *s = seq->private;
1071         kfree(s->stats);
1072         kfree(s);
1073         return seq_release(inode, file);
1074 }
1075
1076 static const struct file_operations jbd2_seq_info_fops = {
1077         .owner          = THIS_MODULE,
1078         .open           = jbd2_seq_info_open,
1079         .read           = seq_read,
1080         .llseek         = seq_lseek,
1081         .release        = jbd2_seq_info_release,
1082 };
1083
1084 static struct proc_dir_entry *proc_jbd2_stats;
1085
1086 static void jbd2_stats_proc_init(journal_t *journal)
1087 {
1088         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1089         if (journal->j_proc_entry) {
1090                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1091                                  &jbd2_seq_info_fops, journal);
1092         }
1093 }
1094
1095 static void jbd2_stats_proc_exit(journal_t *journal)
1096 {
1097         remove_proc_entry("info", journal->j_proc_entry);
1098         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1099 }
1100
1101 /*
1102  * Management for journal control blocks: functions to create and
1103  * destroy journal_t structures, and to initialise and read existing
1104  * journal blocks from disk.  */
1105
1106 /* First: create and setup a journal_t object in memory.  We initialise
1107  * very few fields yet: that has to wait until we have created the
1108  * journal structures from from scratch, or loaded them from disk. */
1109
1110 static journal_t *journal_init_common(struct block_device *bdev,
1111                         struct block_device *fs_dev,
1112                         unsigned long long start, int len, int blocksize)
1113 {
1114         static struct lock_class_key jbd2_trans_commit_key;
1115         journal_t *journal;
1116         int err;
1117         struct buffer_head *bh;
1118         int n;
1119
1120         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1121         if (!journal)
1122                 return NULL;
1123
1124         init_waitqueue_head(&journal->j_wait_transaction_locked);
1125         init_waitqueue_head(&journal->j_wait_done_commit);
1126         init_waitqueue_head(&journal->j_wait_commit);
1127         init_waitqueue_head(&journal->j_wait_updates);
1128         init_waitqueue_head(&journal->j_wait_reserved);
1129         mutex_init(&journal->j_barrier);
1130         mutex_init(&journal->j_checkpoint_mutex);
1131         spin_lock_init(&journal->j_revoke_lock);
1132         spin_lock_init(&journal->j_list_lock);
1133         rwlock_init(&journal->j_state_lock);
1134
1135         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1136         journal->j_min_batch_time = 0;
1137         journal->j_max_batch_time = 15000; /* 15ms */
1138         atomic_set(&journal->j_reserved_credits, 0);
1139
1140         /* The journal is marked for error until we succeed with recovery! */
1141         journal->j_flags = JBD2_ABORT;
1142
1143         /* Set up a default-sized revoke table for the new mount. */
1144         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1145         if (err)
1146                 goto err_cleanup;
1147
1148         spin_lock_init(&journal->j_history_lock);
1149
1150         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1151                          &jbd2_trans_commit_key, 0);
1152
1153         /* journal descriptor can store up to n blocks -bzzz */
1154         journal->j_blocksize = blocksize;
1155         journal->j_dev = bdev;
1156         journal->j_fs_dev = fs_dev;
1157         journal->j_blk_offset = start;
1158         journal->j_maxlen = len;
1159         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1160         journal->j_wbufsize = n;
1161         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1162                                         GFP_KERNEL);
1163         if (!journal->j_wbuf)
1164                 goto err_cleanup;
1165
1166         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1167         if (!bh) {
1168                 pr_err("%s: Cannot get buffer for journal superblock\n",
1169                         __func__);
1170                 goto err_cleanup;
1171         }
1172         journal->j_sb_buffer = bh;
1173         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1174
1175         return journal;
1176
1177 err_cleanup:
1178         kfree(journal->j_wbuf);
1179         jbd2_journal_destroy_revoke(journal);
1180         kfree(journal);
1181         return NULL;
1182 }
1183
1184 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1185  *
1186  * Create a journal structure assigned some fixed set of disk blocks to
1187  * the journal.  We don't actually touch those disk blocks yet, but we
1188  * need to set up all of the mapping information to tell the journaling
1189  * system where the journal blocks are.
1190  *
1191  */
1192
1193 /**
1194  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1195  *  @bdev: Block device on which to create the journal
1196  *  @fs_dev: Device which hold journalled filesystem for this journal.
1197  *  @start: Block nr Start of journal.
1198  *  @len:  Length of the journal in blocks.
1199  *  @blocksize: blocksize of journalling device
1200  *
1201  *  Returns: a newly created journal_t *
1202  *
1203  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1204  *  range of blocks on an arbitrary block device.
1205  *
1206  */
1207 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1208                         struct block_device *fs_dev,
1209                         unsigned long long start, int len, int blocksize)
1210 {
1211         journal_t *journal;
1212
1213         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1214         if (!journal)
1215                 return NULL;
1216
1217         bdevname(journal->j_dev, journal->j_devname);
1218         strreplace(journal->j_devname, '/', '!');
1219         jbd2_stats_proc_init(journal);
1220
1221         return journal;
1222 }
1223
1224 /**
1225  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1226  *  @inode: An inode to create the journal in
1227  *
1228  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1229  * the journal.  The inode must exist already, must support bmap() and
1230  * must have all data blocks preallocated.
1231  */
1232 journal_t *jbd2_journal_init_inode(struct inode *inode)
1233 {
1234         journal_t *journal;
1235         char *p;
1236         unsigned long long blocknr;
1237
1238         blocknr = bmap(inode, 0);
1239         if (!blocknr) {
1240                 pr_err("%s: Cannot locate journal superblock\n",
1241                         __func__);
1242                 return NULL;
1243         }
1244
1245         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1246                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1247                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1248
1249         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1250                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1251                         inode->i_sb->s_blocksize);
1252         if (!journal)
1253                 return NULL;
1254
1255         journal->j_inode = inode;
1256         bdevname(journal->j_dev, journal->j_devname);
1257         p = strreplace(journal->j_devname, '/', '!');
1258         sprintf(p, "-%lu", journal->j_inode->i_ino);
1259         jbd2_stats_proc_init(journal);
1260
1261         return journal;
1262 }
1263
1264 /*
1265  * If the journal init or create aborts, we need to mark the journal
1266  * superblock as being NULL to prevent the journal destroy from writing
1267  * back a bogus superblock.
1268  */
1269 static void journal_fail_superblock (journal_t *journal)
1270 {
1271         struct buffer_head *bh = journal->j_sb_buffer;
1272         brelse(bh);
1273         journal->j_sb_buffer = NULL;
1274 }
1275
1276 /*
1277  * Given a journal_t structure, initialise the various fields for
1278  * startup of a new journaling session.  We use this both when creating
1279  * a journal, and after recovering an old journal to reset it for
1280  * subsequent use.
1281  */
1282
1283 static int journal_reset(journal_t *journal)
1284 {
1285         journal_superblock_t *sb = journal->j_superblock;
1286         unsigned long long first, last;
1287
1288         first = be32_to_cpu(sb->s_first);
1289         last = be32_to_cpu(sb->s_maxlen);
1290         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1291                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1292                        first, last);
1293                 journal_fail_superblock(journal);
1294                 return -EINVAL;
1295         }
1296
1297         journal->j_first = first;
1298         journal->j_last = last;
1299
1300         journal->j_head = first;
1301         journal->j_tail = first;
1302         journal->j_free = last - first;
1303
1304         journal->j_tail_sequence = journal->j_transaction_sequence;
1305         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1306         journal->j_commit_request = journal->j_commit_sequence;
1307
1308         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1309
1310         /*
1311          * As a special case, if the on-disk copy is already marked as needing
1312          * no recovery (s_start == 0), then we can safely defer the superblock
1313          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1314          * attempting a write to a potential-readonly device.
1315          */
1316         if (sb->s_start == 0) {
1317                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1318                         "(start %ld, seq %u, errno %d)\n",
1319                         journal->j_tail, journal->j_tail_sequence,
1320                         journal->j_errno);
1321                 journal->j_flags |= JBD2_FLUSHED;
1322         } else {
1323                 /* Lock here to make assertions happy... */
1324                 mutex_lock_io(&journal->j_checkpoint_mutex);
1325                 /*
1326                  * Update log tail information. We use REQ_FUA since new
1327                  * transaction will start reusing journal space and so we
1328                  * must make sure information about current log tail is on
1329                  * disk before that.
1330                  */
1331                 jbd2_journal_update_sb_log_tail(journal,
1332                                                 journal->j_tail_sequence,
1333                                                 journal->j_tail,
1334                                                 REQ_SYNC | REQ_FUA);
1335                 mutex_unlock(&journal->j_checkpoint_mutex);
1336         }
1337         return jbd2_journal_start_thread(journal);
1338 }
1339
1340 /*
1341  * This function expects that the caller will have locked the journal
1342  * buffer head, and will return with it unlocked
1343  */
1344 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1345 {
1346         struct buffer_head *bh = journal->j_sb_buffer;
1347         journal_superblock_t *sb = journal->j_superblock;
1348         int ret;
1349
1350         /* Buffer got discarded which means block device got invalidated */
1351         if (!buffer_mapped(bh))
1352                 return -EIO;
1353
1354         trace_jbd2_write_superblock(journal, write_flags);
1355         if (!(journal->j_flags & JBD2_BARRIER))
1356                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1357         if (buffer_write_io_error(bh)) {
1358                 /*
1359                  * Oh, dear.  A previous attempt to write the journal
1360                  * superblock failed.  This could happen because the
1361                  * USB device was yanked out.  Or it could happen to
1362                  * be a transient write error and maybe the block will
1363                  * be remapped.  Nothing we can do but to retry the
1364                  * write and hope for the best.
1365                  */
1366                 printk(KERN_ERR "JBD2: previous I/O error detected "
1367                        "for journal superblock update for %s.\n",
1368                        journal->j_devname);
1369                 clear_buffer_write_io_error(bh);
1370                 set_buffer_uptodate(bh);
1371         }
1372         if (jbd2_journal_has_csum_v2or3(journal))
1373                 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1374         get_bh(bh);
1375         bh->b_end_io = end_buffer_write_sync;
1376         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1377         wait_on_buffer(bh);
1378         if (buffer_write_io_error(bh)) {
1379                 clear_buffer_write_io_error(bh);
1380                 set_buffer_uptodate(bh);
1381                 ret = -EIO;
1382         }
1383         if (ret) {
1384                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1385                        "journal superblock for %s.\n", ret,
1386                        journal->j_devname);
1387                 jbd2_journal_abort(journal, ret);
1388         }
1389
1390         return ret;
1391 }
1392
1393 /**
1394  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1395  * @journal: The journal to update.
1396  * @tail_tid: TID of the new transaction at the tail of the log
1397  * @tail_block: The first block of the transaction at the tail of the log
1398  * @write_op: With which operation should we write the journal sb
1399  *
1400  * Update a journal's superblock information about log tail and write it to
1401  * disk, waiting for the IO to complete.
1402  */
1403 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1404                                      unsigned long tail_block, int write_op)
1405 {
1406         journal_superblock_t *sb = journal->j_superblock;
1407         int ret;
1408
1409         if (is_journal_aborted(journal))
1410                 return -EIO;
1411
1412         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1413         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1414                   tail_block, tail_tid);
1415
1416         lock_buffer(journal->j_sb_buffer);
1417         sb->s_sequence = cpu_to_be32(tail_tid);
1418         sb->s_start    = cpu_to_be32(tail_block);
1419
1420         ret = jbd2_write_superblock(journal, write_op);
1421         if (ret)
1422                 goto out;
1423
1424         /* Log is no longer empty */
1425         write_lock(&journal->j_state_lock);
1426         WARN_ON(!sb->s_sequence);
1427         journal->j_flags &= ~JBD2_FLUSHED;
1428         write_unlock(&journal->j_state_lock);
1429
1430 out:
1431         return ret;
1432 }
1433
1434 /**
1435  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1436  * @journal: The journal to update.
1437  * @write_op: With which operation should we write the journal sb
1438  *
1439  * Update a journal's dynamic superblock fields to show that journal is empty.
1440  * Write updated superblock to disk waiting for IO to complete.
1441  */
1442 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1443 {
1444         journal_superblock_t *sb = journal->j_superblock;
1445
1446         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1447         lock_buffer(journal->j_sb_buffer);
1448         if (sb->s_start == 0) {         /* Is it already empty? */
1449                 unlock_buffer(journal->j_sb_buffer);
1450                 return;
1451         }
1452
1453         jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1454                   journal->j_tail_sequence);
1455
1456         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1457         sb->s_start    = cpu_to_be32(0);
1458
1459         jbd2_write_superblock(journal, write_op);
1460
1461         /* Log is no longer empty */
1462         write_lock(&journal->j_state_lock);
1463         journal->j_flags |= JBD2_FLUSHED;
1464         write_unlock(&journal->j_state_lock);
1465 }
1466
1467
1468 /**
1469  * jbd2_journal_update_sb_errno() - Update error in the journal.
1470  * @journal: The journal to update.
1471  *
1472  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1473  * to complete.
1474  */
1475 void jbd2_journal_update_sb_errno(journal_t *journal)
1476 {
1477         journal_superblock_t *sb = journal->j_superblock;
1478         int errcode;
1479
1480         lock_buffer(journal->j_sb_buffer);
1481         errcode = journal->j_errno;
1482         if (errcode == -ESHUTDOWN)
1483                 errcode = 0;
1484         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1485         sb->s_errno    = cpu_to_be32(errcode);
1486
1487         jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1488 }
1489 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1490
1491 /*
1492  * Read the superblock for a given journal, performing initial
1493  * validation of the format.
1494  */
1495 static int journal_get_superblock(journal_t *journal)
1496 {
1497         struct buffer_head *bh;
1498         journal_superblock_t *sb;
1499         int err = -EIO;
1500
1501         bh = journal->j_sb_buffer;
1502
1503         J_ASSERT(bh != NULL);
1504         if (!buffer_uptodate(bh)) {
1505                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1506                 wait_on_buffer(bh);
1507                 if (!buffer_uptodate(bh)) {
1508                         printk(KERN_ERR
1509                                 "JBD2: IO error reading journal superblock\n");
1510                         goto out;
1511                 }
1512         }
1513
1514         if (buffer_verified(bh))
1515                 return 0;
1516
1517         sb = journal->j_superblock;
1518
1519         err = -EINVAL;
1520
1521         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1522             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1523                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1524                 goto out;
1525         }
1526
1527         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1528         case JBD2_SUPERBLOCK_V1:
1529                 journal->j_format_version = 1;
1530                 break;
1531         case JBD2_SUPERBLOCK_V2:
1532                 journal->j_format_version = 2;
1533                 break;
1534         default:
1535                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1536                 goto out;
1537         }
1538
1539         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1540                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1541         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1542                 printk(KERN_WARNING "JBD2: journal file too short\n");
1543                 goto out;
1544         }
1545
1546         if (be32_to_cpu(sb->s_first) == 0 ||
1547             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1548                 printk(KERN_WARNING
1549                         "JBD2: Invalid start block of journal: %u\n",
1550                         be32_to_cpu(sb->s_first));
1551                 goto out;
1552         }
1553
1554         if (jbd2_has_feature_csum2(journal) &&
1555             jbd2_has_feature_csum3(journal)) {
1556                 /* Can't have checksum v2 and v3 at the same time! */
1557                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1558                        "at the same time!\n");
1559                 goto out;
1560         }
1561
1562         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1563             jbd2_has_feature_checksum(journal)) {
1564                 /* Can't have checksum v1 and v2 on at the same time! */
1565                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1566                        "at the same time!\n");
1567                 goto out;
1568         }
1569
1570         if (!jbd2_verify_csum_type(journal, sb)) {
1571                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1572                 goto out;
1573         }
1574
1575         /* Load the checksum driver */
1576         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1577                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1578                 if (IS_ERR(journal->j_chksum_driver)) {
1579                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1580                         err = PTR_ERR(journal->j_chksum_driver);
1581                         journal->j_chksum_driver = NULL;
1582                         goto out;
1583                 }
1584         }
1585
1586         if (jbd2_journal_has_csum_v2or3(journal)) {
1587                 /* Check superblock checksum */
1588                 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1589                         printk(KERN_ERR "JBD2: journal checksum error\n");
1590                         err = -EFSBADCRC;
1591                         goto out;
1592                 }
1593
1594                 /* Precompute checksum seed for all metadata */
1595                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1596                                                    sizeof(sb->s_uuid));
1597         }
1598
1599         set_buffer_verified(bh);
1600
1601         return 0;
1602
1603 out:
1604         journal_fail_superblock(journal);
1605         return err;
1606 }
1607
1608 /*
1609  * Load the on-disk journal superblock and read the key fields into the
1610  * journal_t.
1611  */
1612
1613 static int load_superblock(journal_t *journal)
1614 {
1615         int err;
1616         journal_superblock_t *sb;
1617
1618         err = journal_get_superblock(journal);
1619         if (err)
1620                 return err;
1621
1622         sb = journal->j_superblock;
1623
1624         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1625         journal->j_tail = be32_to_cpu(sb->s_start);
1626         journal->j_first = be32_to_cpu(sb->s_first);
1627         journal->j_last = be32_to_cpu(sb->s_maxlen);
1628         journal->j_errno = be32_to_cpu(sb->s_errno);
1629
1630         return 0;
1631 }
1632
1633
1634 /**
1635  * int jbd2_journal_load() - Read journal from disk.
1636  * @journal: Journal to act on.
1637  *
1638  * Given a journal_t structure which tells us which disk blocks contain
1639  * a journal, read the journal from disk to initialise the in-memory
1640  * structures.
1641  */
1642 int jbd2_journal_load(journal_t *journal)
1643 {
1644         int err;
1645         journal_superblock_t *sb;
1646
1647         err = load_superblock(journal);
1648         if (err)
1649                 return err;
1650
1651         sb = journal->j_superblock;
1652         /* If this is a V2 superblock, then we have to check the
1653          * features flags on it. */
1654
1655         if (journal->j_format_version >= 2) {
1656                 if ((sb->s_feature_ro_compat &
1657                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1658                     (sb->s_feature_incompat &
1659                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1660                         printk(KERN_WARNING
1661                                 "JBD2: Unrecognised features on journal\n");
1662                         return -EINVAL;
1663                 }
1664         }
1665
1666         /*
1667          * Create a slab for this blocksize
1668          */
1669         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1670         if (err)
1671                 return err;
1672
1673         /* Let the recovery code check whether it needs to recover any
1674          * data from the journal. */
1675         if (jbd2_journal_recover(journal))
1676                 goto recovery_error;
1677
1678         if (journal->j_failed_commit) {
1679                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1680                        "is corrupt.\n", journal->j_failed_commit,
1681                        journal->j_devname);
1682                 return -EFSCORRUPTED;
1683         }
1684
1685         /* OK, we've finished with the dynamic journal bits:
1686          * reinitialise the dynamic contents of the superblock in memory
1687          * and reset them on disk. */
1688         if (journal_reset(journal))
1689                 goto recovery_error;
1690
1691         journal->j_flags &= ~JBD2_ABORT;
1692         journal->j_flags |= JBD2_LOADED;
1693         return 0;
1694
1695 recovery_error:
1696         printk(KERN_WARNING "JBD2: recovery failed\n");
1697         return -EIO;
1698 }
1699
1700 /**
1701  * void jbd2_journal_destroy() - Release a journal_t structure.
1702  * @journal: Journal to act on.
1703  *
1704  * Release a journal_t structure once it is no longer in use by the
1705  * journaled object.
1706  * Return <0 if we couldn't clean up the journal.
1707  */
1708 int jbd2_journal_destroy(journal_t *journal)
1709 {
1710         int err = 0;
1711
1712         /* Wait for the commit thread to wake up and die. */
1713         journal_kill_thread(journal);
1714
1715         /* Force a final log commit */
1716         if (journal->j_running_transaction)
1717                 jbd2_journal_commit_transaction(journal);
1718
1719         /* Force any old transactions to disk */
1720
1721         /* Totally anal locking here... */
1722         spin_lock(&journal->j_list_lock);
1723         while (journal->j_checkpoint_transactions != NULL) {
1724                 spin_unlock(&journal->j_list_lock);
1725                 mutex_lock_io(&journal->j_checkpoint_mutex);
1726                 err = jbd2_log_do_checkpoint(journal);
1727                 mutex_unlock(&journal->j_checkpoint_mutex);
1728                 /*
1729                  * If checkpointing failed, just free the buffers to avoid
1730                  * looping forever
1731                  */
1732                 if (err) {
1733                         jbd2_journal_destroy_checkpoint(journal);
1734                         spin_lock(&journal->j_list_lock);
1735                         break;
1736                 }
1737                 spin_lock(&journal->j_list_lock);
1738         }
1739
1740         J_ASSERT(journal->j_running_transaction == NULL);
1741         J_ASSERT(journal->j_committing_transaction == NULL);
1742         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1743         spin_unlock(&journal->j_list_lock);
1744
1745         if (journal->j_sb_buffer) {
1746                 if (!is_journal_aborted(journal)) {
1747                         mutex_lock_io(&journal->j_checkpoint_mutex);
1748
1749                         write_lock(&journal->j_state_lock);
1750                         journal->j_tail_sequence =
1751                                 ++journal->j_transaction_sequence;
1752                         write_unlock(&journal->j_state_lock);
1753
1754                         jbd2_mark_journal_empty(journal,
1755                                         REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1756                         mutex_unlock(&journal->j_checkpoint_mutex);
1757                 } else
1758                         err = -EIO;
1759                 brelse(journal->j_sb_buffer);
1760         }
1761
1762         if (journal->j_proc_entry)
1763                 jbd2_stats_proc_exit(journal);
1764         iput(journal->j_inode);
1765         if (journal->j_revoke)
1766                 jbd2_journal_destroy_revoke(journal);
1767         if (journal->j_chksum_driver)
1768                 crypto_free_shash(journal->j_chksum_driver);
1769         kfree(journal->j_wbuf);
1770         kfree(journal);
1771
1772         return err;
1773 }
1774
1775
1776 /**
1777  *int jbd2_journal_check_used_features () - Check if features specified are used.
1778  * @journal: Journal to check.
1779  * @compat: bitmask of compatible features
1780  * @ro: bitmask of features that force read-only mount
1781  * @incompat: bitmask of incompatible features
1782  *
1783  * Check whether the journal uses all of a given set of
1784  * features.  Return true (non-zero) if it does.
1785  **/
1786
1787 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1788                                  unsigned long ro, unsigned long incompat)
1789 {
1790         journal_superblock_t *sb;
1791
1792         if (!compat && !ro && !incompat)
1793                 return 1;
1794         /* Load journal superblock if it is not loaded yet. */
1795         if (journal->j_format_version == 0 &&
1796             journal_get_superblock(journal) != 0)
1797                 return 0;
1798         if (journal->j_format_version == 1)
1799                 return 0;
1800
1801         sb = journal->j_superblock;
1802
1803         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1804             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1805             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1806                 return 1;
1807
1808         return 0;
1809 }
1810
1811 /**
1812  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1813  * @journal: Journal to check.
1814  * @compat: bitmask of compatible features
1815  * @ro: bitmask of features that force read-only mount
1816  * @incompat: bitmask of incompatible features
1817  *
1818  * Check whether the journaling code supports the use of
1819  * all of a given set of features on this journal.  Return true
1820  * (non-zero) if it can. */
1821
1822 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1823                                       unsigned long ro, unsigned long incompat)
1824 {
1825         if (!compat && !ro && !incompat)
1826                 return 1;
1827
1828         /* We can support any known requested features iff the
1829          * superblock is in version 2.  Otherwise we fail to support any
1830          * extended sb features. */
1831
1832         if (journal->j_format_version != 2)
1833                 return 0;
1834
1835         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1836             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1837             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1838                 return 1;
1839
1840         return 0;
1841 }
1842
1843 /**
1844  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1845  * @journal: Journal to act on.
1846  * @compat: bitmask of compatible features
1847  * @ro: bitmask of features that force read-only mount
1848  * @incompat: bitmask of incompatible features
1849  *
1850  * Mark a given journal feature as present on the
1851  * superblock.  Returns true if the requested features could be set.
1852  *
1853  */
1854
1855 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1856                           unsigned long ro, unsigned long incompat)
1857 {
1858 #define INCOMPAT_FEATURE_ON(f) \
1859                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1860 #define COMPAT_FEATURE_ON(f) \
1861                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1862         journal_superblock_t *sb;
1863
1864         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1865                 return 1;
1866
1867         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1868                 return 0;
1869
1870         /* If enabling v2 checksums, turn on v3 instead */
1871         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1872                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1873                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1874         }
1875
1876         /* Asking for checksumming v3 and v1?  Only give them v3. */
1877         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1878             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1879                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1880
1881         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1882                   compat, ro, incompat);
1883
1884         sb = journal->j_superblock;
1885
1886         /* Load the checksum driver if necessary */
1887         if ((journal->j_chksum_driver == NULL) &&
1888             INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1889                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1890                 if (IS_ERR(journal->j_chksum_driver)) {
1891                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1892                         journal->j_chksum_driver = NULL;
1893                         return 0;
1894                 }
1895                 /* Precompute checksum seed for all metadata */
1896                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1897                                                    sizeof(sb->s_uuid));
1898         }
1899
1900         lock_buffer(journal->j_sb_buffer);
1901
1902         /* If enabling v3 checksums, update superblock */
1903         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1904                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1905                 sb->s_feature_compat &=
1906                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1907         }
1908
1909         /* If enabling v1 checksums, downgrade superblock */
1910         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1911                 sb->s_feature_incompat &=
1912                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1913                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1914
1915         sb->s_feature_compat    |= cpu_to_be32(compat);
1916         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1917         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1918         unlock_buffer(journal->j_sb_buffer);
1919
1920         return 1;
1921 #undef COMPAT_FEATURE_ON
1922 #undef INCOMPAT_FEATURE_ON
1923 }
1924
1925 /*
1926  * jbd2_journal_clear_features () - Clear a given journal feature in the
1927  *                                  superblock
1928  * @journal: Journal to act on.
1929  * @compat: bitmask of compatible features
1930  * @ro: bitmask of features that force read-only mount
1931  * @incompat: bitmask of incompatible features
1932  *
1933  * Clear a given journal feature as present on the
1934  * superblock.
1935  */
1936 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1937                                 unsigned long ro, unsigned long incompat)
1938 {
1939         journal_superblock_t *sb;
1940
1941         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1942                   compat, ro, incompat);
1943
1944         sb = journal->j_superblock;
1945
1946         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1947         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1948         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1949 }
1950 EXPORT_SYMBOL(jbd2_journal_clear_features);
1951
1952 /**
1953  * int jbd2_journal_flush () - Flush journal
1954  * @journal: Journal to act on.
1955  *
1956  * Flush all data for a given journal to disk and empty the journal.
1957  * Filesystems can use this when remounting readonly to ensure that
1958  * recovery does not need to happen on remount.
1959  */
1960
1961 int jbd2_journal_flush(journal_t *journal)
1962 {
1963         int err = 0;
1964         transaction_t *transaction = NULL;
1965
1966         write_lock(&journal->j_state_lock);
1967
1968         /* Force everything buffered to the log... */
1969         if (journal->j_running_transaction) {
1970                 transaction = journal->j_running_transaction;
1971                 __jbd2_log_start_commit(journal, transaction->t_tid);
1972         } else if (journal->j_committing_transaction)
1973                 transaction = journal->j_committing_transaction;
1974
1975         /* Wait for the log commit to complete... */
1976         if (transaction) {
1977                 tid_t tid = transaction->t_tid;
1978
1979                 write_unlock(&journal->j_state_lock);
1980                 jbd2_log_wait_commit(journal, tid);
1981         } else {
1982                 write_unlock(&journal->j_state_lock);
1983         }
1984
1985         /* ...and flush everything in the log out to disk. */
1986         spin_lock(&journal->j_list_lock);
1987         while (!err && journal->j_checkpoint_transactions != NULL) {
1988                 spin_unlock(&journal->j_list_lock);
1989                 mutex_lock_io(&journal->j_checkpoint_mutex);
1990                 err = jbd2_log_do_checkpoint(journal);
1991                 mutex_unlock(&journal->j_checkpoint_mutex);
1992                 spin_lock(&journal->j_list_lock);
1993         }
1994         spin_unlock(&journal->j_list_lock);
1995
1996         if (is_journal_aborted(journal))
1997                 return -EIO;
1998
1999         mutex_lock_io(&journal->j_checkpoint_mutex);
2000         if (!err) {
2001                 err = jbd2_cleanup_journal_tail(journal);
2002                 if (err < 0) {
2003                         mutex_unlock(&journal->j_checkpoint_mutex);
2004                         goto out;
2005                 }
2006                 err = 0;
2007         }
2008
2009         /* Finally, mark the journal as really needing no recovery.
2010          * This sets s_start==0 in the underlying superblock, which is
2011          * the magic code for a fully-recovered superblock.  Any future
2012          * commits of data to the journal will restore the current
2013          * s_start value. */
2014         jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2015         mutex_unlock(&journal->j_checkpoint_mutex);
2016         write_lock(&journal->j_state_lock);
2017         J_ASSERT(!journal->j_running_transaction);
2018         J_ASSERT(!journal->j_committing_transaction);
2019         J_ASSERT(!journal->j_checkpoint_transactions);
2020         J_ASSERT(journal->j_head == journal->j_tail);
2021         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2022         write_unlock(&journal->j_state_lock);
2023 out:
2024         return err;
2025 }
2026
2027 /**
2028  * int jbd2_journal_wipe() - Wipe journal contents
2029  * @journal: Journal to act on.
2030  * @write: flag (see below)
2031  *
2032  * Wipe out all of the contents of a journal, safely.  This will produce
2033  * a warning if the journal contains any valid recovery information.
2034  * Must be called between journal_init_*() and jbd2_journal_load().
2035  *
2036  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2037  * we merely suppress recovery.
2038  */
2039
2040 int jbd2_journal_wipe(journal_t *journal, int write)
2041 {
2042         int err = 0;
2043
2044         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2045
2046         err = load_superblock(journal);
2047         if (err)
2048                 return err;
2049
2050         if (!journal->j_tail)
2051                 goto no_recovery;
2052
2053         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2054                 write ? "Clearing" : "Ignoring");
2055
2056         err = jbd2_journal_skip_recovery(journal);
2057         if (write) {
2058                 /* Lock to make assertions happy... */
2059                 mutex_lock_io(&journal->j_checkpoint_mutex);
2060                 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2061                 mutex_unlock(&journal->j_checkpoint_mutex);
2062         }
2063
2064  no_recovery:
2065         return err;
2066 }
2067
2068 /*
2069  * Journal abort has very specific semantics, which we describe
2070  * for journal abort.
2071  *
2072  * Two internal functions, which provide abort to the jbd layer
2073  * itself are here.
2074  */
2075
2076 /*
2077  * Quick version for internal journal use (doesn't lock the journal).
2078  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2079  * and don't attempt to make any other journal updates.
2080  */
2081 void __jbd2_journal_abort_hard(journal_t *journal)
2082 {
2083         transaction_t *transaction;
2084
2085         if (journal->j_flags & JBD2_ABORT)
2086                 return;
2087
2088         printk(KERN_ERR "Aborting journal on device %s.\n",
2089                journal->j_devname);
2090
2091         write_lock(&journal->j_state_lock);
2092         journal->j_flags |= JBD2_ABORT;
2093         transaction = journal->j_running_transaction;
2094         if (transaction)
2095                 __jbd2_log_start_commit(journal, transaction->t_tid);
2096         write_unlock(&journal->j_state_lock);
2097 }
2098
2099 /* Soft abort: record the abort error status in the journal superblock,
2100  * but don't do any other IO. */
2101 static void __journal_abort_soft (journal_t *journal, int errno)
2102 {
2103         int old_errno;
2104
2105         write_lock(&journal->j_state_lock);
2106         old_errno = journal->j_errno;
2107         if (!journal->j_errno || errno == -ESHUTDOWN)
2108                 journal->j_errno = errno;
2109
2110         if (journal->j_flags & JBD2_ABORT) {
2111                 write_unlock(&journal->j_state_lock);
2112                 if (!old_errno && old_errno != -ESHUTDOWN &&
2113                     errno == -ESHUTDOWN)
2114                         jbd2_journal_update_sb_errno(journal);
2115                 return;
2116         }
2117         write_unlock(&journal->j_state_lock);
2118
2119         __jbd2_journal_abort_hard(journal);
2120
2121         if (errno) {
2122                 jbd2_journal_update_sb_errno(journal);
2123                 write_lock(&journal->j_state_lock);
2124                 journal->j_flags |= JBD2_REC_ERR;
2125                 write_unlock(&journal->j_state_lock);
2126         }
2127 }
2128
2129 /**
2130  * void jbd2_journal_abort () - Shutdown the journal immediately.
2131  * @journal: the journal to shutdown.
2132  * @errno:   an error number to record in the journal indicating
2133  *           the reason for the shutdown.
2134  *
2135  * Perform a complete, immediate shutdown of the ENTIRE
2136  * journal (not of a single transaction).  This operation cannot be
2137  * undone without closing and reopening the journal.
2138  *
2139  * The jbd2_journal_abort function is intended to support higher level error
2140  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2141  * mode.
2142  *
2143  * Journal abort has very specific semantics.  Any existing dirty,
2144  * unjournaled buffers in the main filesystem will still be written to
2145  * disk by bdflush, but the journaling mechanism will be suspended
2146  * immediately and no further transaction commits will be honoured.
2147  *
2148  * Any dirty, journaled buffers will be written back to disk without
2149  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2150  * filesystem, but we _do_ attempt to leave as much data as possible
2151  * behind for fsck to use for cleanup.
2152  *
2153  * Any attempt to get a new transaction handle on a journal which is in
2154  * ABORT state will just result in an -EROFS error return.  A
2155  * jbd2_journal_stop on an existing handle will return -EIO if we have
2156  * entered abort state during the update.
2157  *
2158  * Recursive transactions are not disturbed by journal abort until the
2159  * final jbd2_journal_stop, which will receive the -EIO error.
2160  *
2161  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2162  * which will be recorded (if possible) in the journal superblock.  This
2163  * allows a client to record failure conditions in the middle of a
2164  * transaction without having to complete the transaction to record the
2165  * failure to disk.  ext3_error, for example, now uses this
2166  * functionality.
2167  *
2168  * Errors which originate from within the journaling layer will NOT
2169  * supply an errno; a null errno implies that absolutely no further
2170  * writes are done to the journal (unless there are any already in
2171  * progress).
2172  *
2173  */
2174
2175 void jbd2_journal_abort(journal_t *journal, int errno)
2176 {
2177         __journal_abort_soft(journal, errno);
2178 }
2179
2180 /**
2181  * int jbd2_journal_errno () - returns the journal's error state.
2182  * @journal: journal to examine.
2183  *
2184  * This is the errno number set with jbd2_journal_abort(), the last
2185  * time the journal was mounted - if the journal was stopped
2186  * without calling abort this will be 0.
2187  *
2188  * If the journal has been aborted on this mount time -EROFS will
2189  * be returned.
2190  */
2191 int jbd2_journal_errno(journal_t *journal)
2192 {
2193         int err;
2194
2195         read_lock(&journal->j_state_lock);
2196         if (journal->j_flags & JBD2_ABORT)
2197                 err = -EROFS;
2198         else
2199                 err = journal->j_errno;
2200         read_unlock(&journal->j_state_lock);
2201         return err;
2202 }
2203
2204 /**
2205  * int jbd2_journal_clear_err () - clears the journal's error state
2206  * @journal: journal to act on.
2207  *
2208  * An error must be cleared or acked to take a FS out of readonly
2209  * mode.
2210  */
2211 int jbd2_journal_clear_err(journal_t *journal)
2212 {
2213         int err = 0;
2214
2215         write_lock(&journal->j_state_lock);
2216         if (journal->j_flags & JBD2_ABORT)
2217                 err = -EROFS;
2218         else
2219                 journal->j_errno = 0;
2220         write_unlock(&journal->j_state_lock);
2221         return err;
2222 }
2223
2224 /**
2225  * void jbd2_journal_ack_err() - Ack journal err.
2226  * @journal: journal to act on.
2227  *
2228  * An error must be cleared or acked to take a FS out of readonly
2229  * mode.
2230  */
2231 void jbd2_journal_ack_err(journal_t *journal)
2232 {
2233         write_lock(&journal->j_state_lock);
2234         if (journal->j_errno)
2235                 journal->j_flags |= JBD2_ACK_ERR;
2236         write_unlock(&journal->j_state_lock);
2237 }
2238
2239 int jbd2_journal_blocks_per_page(struct inode *inode)
2240 {
2241         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2242 }
2243
2244 /*
2245  * helper functions to deal with 32 or 64bit block numbers.
2246  */
2247 size_t journal_tag_bytes(journal_t *journal)
2248 {
2249         size_t sz;
2250
2251         if (jbd2_has_feature_csum3(journal))
2252                 return sizeof(journal_block_tag3_t);
2253
2254         sz = sizeof(journal_block_tag_t);
2255
2256         if (jbd2_has_feature_csum2(journal))
2257                 sz += sizeof(__u16);
2258
2259         if (jbd2_has_feature_64bit(journal))
2260                 return sz;
2261         else
2262                 return sz - sizeof(__u32);
2263 }
2264
2265 /*
2266  * JBD memory management
2267  *
2268  * These functions are used to allocate block-sized chunks of memory
2269  * used for making copies of buffer_head data.  Very often it will be
2270  * page-sized chunks of data, but sometimes it will be in
2271  * sub-page-size chunks.  (For example, 16k pages on Power systems
2272  * with a 4k block file system.)  For blocks smaller than a page, we
2273  * use a SLAB allocator.  There are slab caches for each block size,
2274  * which are allocated at mount time, if necessary, and we only free
2275  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2276  * this reason we don't need to a mutex to protect access to
2277  * jbd2_slab[] allocating or releasing memory; only in
2278  * jbd2_journal_create_slab().
2279  */
2280 #define JBD2_MAX_SLABS 8
2281 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2282
2283 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2284         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2285         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2286 };
2287
2288
2289 static void jbd2_journal_destroy_slabs(void)
2290 {
2291         int i;
2292
2293         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2294                 kmem_cache_destroy(jbd2_slab[i]);
2295                 jbd2_slab[i] = NULL;
2296         }
2297 }
2298
2299 static int jbd2_journal_create_slab(size_t size)
2300 {
2301         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2302         int i = order_base_2(size) - 10;
2303         size_t slab_size;
2304
2305         if (size == PAGE_SIZE)
2306                 return 0;
2307
2308         if (i >= JBD2_MAX_SLABS)
2309                 return -EINVAL;
2310
2311         if (unlikely(i < 0))
2312                 i = 0;
2313         mutex_lock(&jbd2_slab_create_mutex);
2314         if (jbd2_slab[i]) {
2315                 mutex_unlock(&jbd2_slab_create_mutex);
2316                 return 0;       /* Already created */
2317         }
2318
2319         slab_size = 1 << (i+10);
2320         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2321                                          slab_size, 0, NULL);
2322         mutex_unlock(&jbd2_slab_create_mutex);
2323         if (!jbd2_slab[i]) {
2324                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2325                 return -ENOMEM;
2326         }
2327         return 0;
2328 }
2329
2330 static struct kmem_cache *get_slab(size_t size)
2331 {
2332         int i = order_base_2(size) - 10;
2333
2334         BUG_ON(i >= JBD2_MAX_SLABS);
2335         if (unlikely(i < 0))
2336                 i = 0;
2337         BUG_ON(jbd2_slab[i] == NULL);
2338         return jbd2_slab[i];
2339 }
2340
2341 void *jbd2_alloc(size_t size, gfp_t flags)
2342 {
2343         void *ptr;
2344
2345         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2346
2347         if (size < PAGE_SIZE)
2348                 ptr = kmem_cache_alloc(get_slab(size), flags);
2349         else
2350                 ptr = (void *)__get_free_pages(flags, get_order(size));
2351
2352         /* Check alignment; SLUB has gotten this wrong in the past,
2353          * and this can lead to user data corruption! */
2354         BUG_ON(((unsigned long) ptr) & (size-1));
2355
2356         return ptr;
2357 }
2358
2359 void jbd2_free(void *ptr, size_t size)
2360 {
2361         if (size < PAGE_SIZE)
2362                 kmem_cache_free(get_slab(size), ptr);
2363         else
2364                 free_pages((unsigned long)ptr, get_order(size));
2365 };
2366
2367 /*
2368  * Journal_head storage management
2369  */
2370 static struct kmem_cache *jbd2_journal_head_cache;
2371 #ifdef CONFIG_JBD2_DEBUG
2372 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2373 #endif
2374
2375 static int __init jbd2_journal_init_journal_head_cache(void)
2376 {
2377         J_ASSERT(!jbd2_journal_head_cache);
2378         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2379                                 sizeof(struct journal_head),
2380                                 0,              /* offset */
2381                                 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2382                                 NULL);          /* ctor */
2383         if (!jbd2_journal_head_cache) {
2384                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2385                 return -ENOMEM;
2386         }
2387         return 0;
2388 }
2389
2390 static void jbd2_journal_destroy_journal_head_cache(void)
2391 {
2392         kmem_cache_destroy(jbd2_journal_head_cache);
2393         jbd2_journal_head_cache = NULL;
2394 }
2395
2396 /*
2397  * journal_head splicing and dicing
2398  */
2399 static struct journal_head *journal_alloc_journal_head(void)
2400 {
2401         struct journal_head *ret;
2402
2403 #ifdef CONFIG_JBD2_DEBUG
2404         atomic_inc(&nr_journal_heads);
2405 #endif
2406         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2407         if (!ret) {
2408                 jbd_debug(1, "out of memory for journal_head\n");
2409                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2410                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2411                                 GFP_NOFS | __GFP_NOFAIL);
2412         }
2413         return ret;
2414 }
2415
2416 static void journal_free_journal_head(struct journal_head *jh)
2417 {
2418 #ifdef CONFIG_JBD2_DEBUG
2419         atomic_dec(&nr_journal_heads);
2420         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2421 #endif
2422         kmem_cache_free(jbd2_journal_head_cache, jh);
2423 }
2424
2425 /*
2426  * A journal_head is attached to a buffer_head whenever JBD has an
2427  * interest in the buffer.
2428  *
2429  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2430  * is set.  This bit is tested in core kernel code where we need to take
2431  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2432  * there.
2433  *
2434  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2435  *
2436  * When a buffer has its BH_JBD bit set it is immune from being released by
2437  * core kernel code, mainly via ->b_count.
2438  *
2439  * A journal_head is detached from its buffer_head when the journal_head's
2440  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2441  * transaction (b_cp_transaction) hold their references to b_jcount.
2442  *
2443  * Various places in the kernel want to attach a journal_head to a buffer_head
2444  * _before_ attaching the journal_head to a transaction.  To protect the
2445  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2446  * journal_head's b_jcount refcount by one.  The caller must call
2447  * jbd2_journal_put_journal_head() to undo this.
2448  *
2449  * So the typical usage would be:
2450  *
2451  *      (Attach a journal_head if needed.  Increments b_jcount)
2452  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2453  *      ...
2454  *      (Get another reference for transaction)
2455  *      jbd2_journal_grab_journal_head(bh);
2456  *      jh->b_transaction = xxx;
2457  *      (Put original reference)
2458  *      jbd2_journal_put_journal_head(jh);
2459  */
2460
2461 /*
2462  * Give a buffer_head a journal_head.
2463  *
2464  * May sleep.
2465  */
2466 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2467 {
2468         struct journal_head *jh;
2469         struct journal_head *new_jh = NULL;
2470
2471 repeat:
2472         if (!buffer_jbd(bh))
2473                 new_jh = journal_alloc_journal_head();
2474
2475         jbd_lock_bh_journal_head(bh);
2476         if (buffer_jbd(bh)) {
2477                 jh = bh2jh(bh);
2478         } else {
2479                 J_ASSERT_BH(bh,
2480                         (atomic_read(&bh->b_count) > 0) ||
2481                         (bh->b_page && bh->b_page->mapping));
2482
2483                 if (!new_jh) {
2484                         jbd_unlock_bh_journal_head(bh);
2485                         goto repeat;
2486                 }
2487
2488                 jh = new_jh;
2489                 new_jh = NULL;          /* We consumed it */
2490                 set_buffer_jbd(bh);
2491                 bh->b_private = jh;
2492                 jh->b_bh = bh;
2493                 get_bh(bh);
2494                 BUFFER_TRACE(bh, "added journal_head");
2495         }
2496         jh->b_jcount++;
2497         jbd_unlock_bh_journal_head(bh);
2498         if (new_jh)
2499                 journal_free_journal_head(new_jh);
2500         return bh->b_private;
2501 }
2502
2503 /*
2504  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2505  * having a journal_head, return NULL
2506  */
2507 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2508 {
2509         struct journal_head *jh = NULL;
2510
2511         jbd_lock_bh_journal_head(bh);
2512         if (buffer_jbd(bh)) {
2513                 jh = bh2jh(bh);
2514                 jh->b_jcount++;
2515         }
2516         jbd_unlock_bh_journal_head(bh);
2517         return jh;
2518 }
2519
2520 static void __journal_remove_journal_head(struct buffer_head *bh)
2521 {
2522         struct journal_head *jh = bh2jh(bh);
2523
2524         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2525         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2526         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2527         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2528         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2529         J_ASSERT_BH(bh, buffer_jbd(bh));
2530         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2531         BUFFER_TRACE(bh, "remove journal_head");
2532         if (jh->b_frozen_data) {
2533                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2534                 jbd2_free(jh->b_frozen_data, bh->b_size);
2535         }
2536         if (jh->b_committed_data) {
2537                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2538                 jbd2_free(jh->b_committed_data, bh->b_size);
2539         }
2540         bh->b_private = NULL;
2541         jh->b_bh = NULL;        /* debug, really */
2542         clear_buffer_jbd(bh);
2543         journal_free_journal_head(jh);
2544 }
2545
2546 /*
2547  * Drop a reference on the passed journal_head.  If it fell to zero then
2548  * release the journal_head from the buffer_head.
2549  */
2550 void jbd2_journal_put_journal_head(struct journal_head *jh)
2551 {
2552         struct buffer_head *bh = jh2bh(jh);
2553
2554         jbd_lock_bh_journal_head(bh);
2555         J_ASSERT_JH(jh, jh->b_jcount > 0);
2556         --jh->b_jcount;
2557         if (!jh->b_jcount) {
2558                 __journal_remove_journal_head(bh);
2559                 jbd_unlock_bh_journal_head(bh);
2560                 __brelse(bh);
2561         } else
2562                 jbd_unlock_bh_journal_head(bh);
2563 }
2564
2565 /*
2566  * Initialize jbd inode head
2567  */
2568 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2569 {
2570         jinode->i_transaction = NULL;
2571         jinode->i_next_transaction = NULL;
2572         jinode->i_vfs_inode = inode;
2573         jinode->i_flags = 0;
2574         jinode->i_dirty_start = 0;
2575         jinode->i_dirty_end = 0;
2576         INIT_LIST_HEAD(&jinode->i_list);
2577 }
2578
2579 /*
2580  * Function to be called before we start removing inode from memory (i.e.,
2581  * clear_inode() is a fine place to be called from). It removes inode from
2582  * transaction's lists.
2583  */
2584 void jbd2_journal_release_jbd_inode(journal_t *journal,
2585                                     struct jbd2_inode *jinode)
2586 {
2587         if (!journal)
2588                 return;
2589 restart:
2590         spin_lock(&journal->j_list_lock);
2591         /* Is commit writing out inode - we have to wait */
2592         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2593                 wait_queue_head_t *wq;
2594                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2595                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2596                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2597                 spin_unlock(&journal->j_list_lock);
2598                 schedule();
2599                 finish_wait(wq, &wait.wq_entry);
2600                 goto restart;
2601         }
2602
2603         if (jinode->i_transaction) {
2604                 list_del(&jinode->i_list);
2605                 jinode->i_transaction = NULL;
2606         }
2607         spin_unlock(&journal->j_list_lock);
2608 }
2609
2610
2611 #ifdef CONFIG_PROC_FS
2612
2613 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2614
2615 static void __init jbd2_create_jbd_stats_proc_entry(void)
2616 {
2617         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2618 }
2619
2620 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2621 {
2622         if (proc_jbd2_stats)
2623                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2624 }
2625
2626 #else
2627
2628 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2629 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2630
2631 #endif
2632
2633 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2634
2635 static int __init jbd2_journal_init_inode_cache(void)
2636 {
2637         J_ASSERT(!jbd2_inode_cache);
2638         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2639         if (!jbd2_inode_cache) {
2640                 pr_emerg("JBD2: failed to create inode cache\n");
2641                 return -ENOMEM;
2642         }
2643         return 0;
2644 }
2645
2646 static int __init jbd2_journal_init_handle_cache(void)
2647 {
2648         J_ASSERT(!jbd2_handle_cache);
2649         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2650         if (!jbd2_handle_cache) {
2651                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2652                 return -ENOMEM;
2653         }
2654         return 0;
2655 }
2656
2657 static void jbd2_journal_destroy_inode_cache(void)
2658 {
2659         kmem_cache_destroy(jbd2_inode_cache);
2660         jbd2_inode_cache = NULL;
2661 }
2662
2663 static void jbd2_journal_destroy_handle_cache(void)
2664 {
2665         kmem_cache_destroy(jbd2_handle_cache);
2666         jbd2_handle_cache = NULL;
2667 }
2668
2669 /*
2670  * Module startup and shutdown
2671  */
2672
2673 static int __init journal_init_caches(void)
2674 {
2675         int ret;
2676
2677         ret = jbd2_journal_init_revoke_record_cache();
2678         if (ret == 0)
2679                 ret = jbd2_journal_init_revoke_table_cache();
2680         if (ret == 0)
2681                 ret = jbd2_journal_init_journal_head_cache();
2682         if (ret == 0)
2683                 ret = jbd2_journal_init_handle_cache();
2684         if (ret == 0)
2685                 ret = jbd2_journal_init_inode_cache();
2686         if (ret == 0)
2687                 ret = jbd2_journal_init_transaction_cache();
2688         return ret;
2689 }
2690
2691 static void jbd2_journal_destroy_caches(void)
2692 {
2693         jbd2_journal_destroy_revoke_record_cache();
2694         jbd2_journal_destroy_revoke_table_cache();
2695         jbd2_journal_destroy_journal_head_cache();
2696         jbd2_journal_destroy_handle_cache();
2697         jbd2_journal_destroy_inode_cache();
2698         jbd2_journal_destroy_transaction_cache();
2699         jbd2_journal_destroy_slabs();
2700 }
2701
2702 static int __init journal_init(void)
2703 {
2704         int ret;
2705
2706         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2707
2708         ret = journal_init_caches();
2709         if (ret == 0) {
2710                 jbd2_create_jbd_stats_proc_entry();
2711         } else {
2712                 jbd2_journal_destroy_caches();
2713         }
2714         return ret;
2715 }
2716
2717 static void __exit journal_exit(void)
2718 {
2719 #ifdef CONFIG_JBD2_DEBUG
2720         int n = atomic_read(&nr_journal_heads);
2721         if (n)
2722                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2723 #endif
2724         jbd2_remove_jbd_stats_proc_entry();
2725         jbd2_journal_destroy_caches();
2726 }
2727
2728 MODULE_LICENSE("GPL");
2729 module_init(journal_init);
2730 module_exit(journal_exit);
2731