OSDN Git Service

Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[uclinux-h8/linux.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level, const char *file, const char *func,
108                   unsigned int line, const char *fmt, ...)
109 {
110         struct va_format vaf;
111         va_list args;
112
113         if (level > jbd2_journal_enable_debug)
114                 return;
115         va_start(args, fmt);
116         vaf.fmt = fmt;
117         vaf.va = &args;
118         printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119         va_end(args);
120 }
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
123
124 /* Checksumming functions */
125 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126 {
127         if (!jbd2_journal_has_csum_v2or3(j))
128                 return 1;
129
130         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
131 }
132
133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134 {
135         __u32 csum;
136         __be32 old_csum;
137
138         old_csum = sb->s_checksum;
139         sb->s_checksum = 0;
140         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141         sb->s_checksum = old_csum;
142
143         return cpu_to_be32(csum);
144 }
145
146 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
147 {
148         if (!jbd2_journal_has_csum_v2or3(j))
149                 return 1;
150
151         return sb->s_checksum == jbd2_superblock_csum(j, sb);
152 }
153
154 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
155 {
156         if (!jbd2_journal_has_csum_v2or3(j))
157                 return;
158
159         sb->s_checksum = jbd2_superblock_csum(j, sb);
160 }
161
162 /*
163  * Helper function used to manage commit timeouts
164  */
165
166 static void commit_timeout(unsigned long __data)
167 {
168         struct task_struct * p = (struct task_struct *) __data;
169
170         wake_up_process(p);
171 }
172
173 /*
174  * kjournald2: The main thread function used to manage a logging device
175  * journal.
176  *
177  * This kernel thread is responsible for two things:
178  *
179  * 1) COMMIT:  Every so often we need to commit the current state of the
180  *    filesystem to disk.  The journal thread is responsible for writing
181  *    all of the metadata buffers to disk.
182  *
183  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184  *    of the data in that part of the log has been rewritten elsewhere on
185  *    the disk.  Flushing these old buffers to reclaim space in the log is
186  *    known as checkpointing, and this thread is responsible for that job.
187  */
188
189 static int kjournald2(void *arg)
190 {
191         journal_t *journal = arg;
192         transaction_t *transaction;
193
194         /*
195          * Set up an interval timer which can be used to trigger a commit wakeup
196          * after the commit interval expires
197          */
198         setup_timer(&journal->j_commit_timer, commit_timeout,
199                         (unsigned long)current);
200
201         set_freezable();
202
203         /* Record that the journal thread is running */
204         journal->j_task = current;
205         wake_up(&journal->j_wait_done_commit);
206
207         /*
208          * And now, wait forever for commit wakeup events.
209          */
210         write_lock(&journal->j_state_lock);
211
212 loop:
213         if (journal->j_flags & JBD2_UNMOUNT)
214                 goto end_loop;
215
216         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217                 journal->j_commit_sequence, journal->j_commit_request);
218
219         if (journal->j_commit_sequence != journal->j_commit_request) {
220                 jbd_debug(1, "OK, requests differ\n");
221                 write_unlock(&journal->j_state_lock);
222                 del_timer_sync(&journal->j_commit_timer);
223                 jbd2_journal_commit_transaction(journal);
224                 write_lock(&journal->j_state_lock);
225                 goto loop;
226         }
227
228         wake_up(&journal->j_wait_done_commit);
229         if (freezing(current)) {
230                 /*
231                  * The simpler the better. Flushing journal isn't a
232                  * good idea, because that depends on threads that may
233                  * be already stopped.
234                  */
235                 jbd_debug(1, "Now suspending kjournald2\n");
236                 write_unlock(&journal->j_state_lock);
237                 try_to_freeze();
238                 write_lock(&journal->j_state_lock);
239         } else {
240                 /*
241                  * We assume on resume that commits are already there,
242                  * so we don't sleep
243                  */
244                 DEFINE_WAIT(wait);
245                 int should_sleep = 1;
246
247                 prepare_to_wait(&journal->j_wait_commit, &wait,
248                                 TASK_INTERRUPTIBLE);
249                 if (journal->j_commit_sequence != journal->j_commit_request)
250                         should_sleep = 0;
251                 transaction = journal->j_running_transaction;
252                 if (transaction && time_after_eq(jiffies,
253                                                 transaction->t_expires))
254                         should_sleep = 0;
255                 if (journal->j_flags & JBD2_UNMOUNT)
256                         should_sleep = 0;
257                 if (should_sleep) {
258                         write_unlock(&journal->j_state_lock);
259                         schedule();
260                         write_lock(&journal->j_state_lock);
261                 }
262                 finish_wait(&journal->j_wait_commit, &wait);
263         }
264
265         jbd_debug(1, "kjournald2 wakes\n");
266
267         /*
268          * Were we woken up by a commit wakeup event?
269          */
270         transaction = journal->j_running_transaction;
271         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272                 journal->j_commit_request = transaction->t_tid;
273                 jbd_debug(1, "woke because of timeout\n");
274         }
275         goto loop;
276
277 end_loop:
278         write_unlock(&journal->j_state_lock);
279         del_timer_sync(&journal->j_commit_timer);
280         journal->j_task = NULL;
281         wake_up(&journal->j_wait_done_commit);
282         jbd_debug(1, "Journal thread exiting.\n");
283         return 0;
284 }
285
286 static int jbd2_journal_start_thread(journal_t *journal)
287 {
288         struct task_struct *t;
289
290         t = kthread_run(kjournald2, journal, "jbd2/%s",
291                         journal->j_devname);
292         if (IS_ERR(t))
293                 return PTR_ERR(t);
294
295         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296         return 0;
297 }
298
299 static void journal_kill_thread(journal_t *journal)
300 {
301         write_lock(&journal->j_state_lock);
302         journal->j_flags |= JBD2_UNMOUNT;
303
304         while (journal->j_task) {
305                 write_unlock(&journal->j_state_lock);
306                 wake_up(&journal->j_wait_commit);
307                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308                 write_lock(&journal->j_state_lock);
309         }
310         write_unlock(&journal->j_state_lock);
311 }
312
313 /*
314  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
315  *
316  * Writes a metadata buffer to a given disk block.  The actual IO is not
317  * performed but a new buffer_head is constructed which labels the data
318  * to be written with the correct destination disk block.
319  *
320  * Any magic-number escaping which needs to be done will cause a
321  * copy-out here.  If the buffer happens to start with the
322  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323  * magic number is only written to the log for descripter blocks.  In
324  * this case, we copy the data and replace the first word with 0, and we
325  * return a result code which indicates that this buffer needs to be
326  * marked as an escaped buffer in the corresponding log descriptor
327  * block.  The missing word can then be restored when the block is read
328  * during recovery.
329  *
330  * If the source buffer has already been modified by a new transaction
331  * since we took the last commit snapshot, we use the frozen copy of
332  * that data for IO. If we end up using the existing buffer_head's data
333  * for the write, then we have to make sure nobody modifies it while the
334  * IO is in progress. do_get_write_access() handles this.
335  *
336  * The function returns a pointer to the buffer_head to be used for IO.
337  * 
338  *
339  * Return value:
340  *  <0: Error
341  * >=0: Finished OK
342  *
343  * On success:
344  * Bit 0 set == escape performed on the data
345  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
346  */
347
348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349                                   struct journal_head  *jh_in,
350                                   struct buffer_head **bh_out,
351                                   sector_t blocknr)
352 {
353         int need_copy_out = 0;
354         int done_copy_out = 0;
355         int do_escape = 0;
356         char *mapped_data;
357         struct buffer_head *new_bh;
358         struct page *new_page;
359         unsigned int new_offset;
360         struct buffer_head *bh_in = jh2bh(jh_in);
361         journal_t *journal = transaction->t_journal;
362
363         /*
364          * The buffer really shouldn't be locked: only the current committing
365          * transaction is allowed to write it, so nobody else is allowed
366          * to do any IO.
367          *
368          * akpm: except if we're journalling data, and write() output is
369          * also part of a shared mapping, and another thread has
370          * decided to launch a writepage() against this buffer.
371          */
372         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
373
374         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
375
376         /* keep subsequent assertions sane */
377         atomic_set(&new_bh->b_count, 1);
378
379         jbd_lock_bh_state(bh_in);
380 repeat:
381         /*
382          * If a new transaction has already done a buffer copy-out, then
383          * we use that version of the data for the commit.
384          */
385         if (jh_in->b_frozen_data) {
386                 done_copy_out = 1;
387                 new_page = virt_to_page(jh_in->b_frozen_data);
388                 new_offset = offset_in_page(jh_in->b_frozen_data);
389         } else {
390                 new_page = jh2bh(jh_in)->b_page;
391                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
392         }
393
394         mapped_data = kmap_atomic(new_page);
395         /*
396          * Fire data frozen trigger if data already wasn't frozen.  Do this
397          * before checking for escaping, as the trigger may modify the magic
398          * offset.  If a copy-out happens afterwards, it will have the correct
399          * data in the buffer.
400          */
401         if (!done_copy_out)
402                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
403                                            jh_in->b_triggers);
404
405         /*
406          * Check for escaping
407          */
408         if (*((__be32 *)(mapped_data + new_offset)) ==
409                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
410                 need_copy_out = 1;
411                 do_escape = 1;
412         }
413         kunmap_atomic(mapped_data);
414
415         /*
416          * Do we need to do a data copy?
417          */
418         if (need_copy_out && !done_copy_out) {
419                 char *tmp;
420
421                 jbd_unlock_bh_state(bh_in);
422                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
423                 if (!tmp) {
424                         brelse(new_bh);
425                         return -ENOMEM;
426                 }
427                 jbd_lock_bh_state(bh_in);
428                 if (jh_in->b_frozen_data) {
429                         jbd2_free(tmp, bh_in->b_size);
430                         goto repeat;
431                 }
432
433                 jh_in->b_frozen_data = tmp;
434                 mapped_data = kmap_atomic(new_page);
435                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
436                 kunmap_atomic(mapped_data);
437
438                 new_page = virt_to_page(tmp);
439                 new_offset = offset_in_page(tmp);
440                 done_copy_out = 1;
441
442                 /*
443                  * This isn't strictly necessary, as we're using frozen
444                  * data for the escaping, but it keeps consistency with
445                  * b_frozen_data usage.
446                  */
447                 jh_in->b_frozen_triggers = jh_in->b_triggers;
448         }
449
450         /*
451          * Did we need to do an escaping?  Now we've done all the
452          * copying, we can finally do so.
453          */
454         if (do_escape) {
455                 mapped_data = kmap_atomic(new_page);
456                 *((unsigned int *)(mapped_data + new_offset)) = 0;
457                 kunmap_atomic(mapped_data);
458         }
459
460         set_bh_page(new_bh, new_page, new_offset);
461         new_bh->b_size = bh_in->b_size;
462         new_bh->b_bdev = journal->j_dev;
463         new_bh->b_blocknr = blocknr;
464         new_bh->b_private = bh_in;
465         set_buffer_mapped(new_bh);
466         set_buffer_dirty(new_bh);
467
468         *bh_out = new_bh;
469
470         /*
471          * The to-be-written buffer needs to get moved to the io queue,
472          * and the original buffer whose contents we are shadowing or
473          * copying is moved to the transaction's shadow queue.
474          */
475         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
476         spin_lock(&journal->j_list_lock);
477         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
478         spin_unlock(&journal->j_list_lock);
479         set_buffer_shadow(bh_in);
480         jbd_unlock_bh_state(bh_in);
481
482         return do_escape | (done_copy_out << 1);
483 }
484
485 /*
486  * Allocation code for the journal file.  Manage the space left in the
487  * journal, so that we can begin checkpointing when appropriate.
488  */
489
490 /*
491  * Called with j_state_lock locked for writing.
492  * Returns true if a transaction commit was started.
493  */
494 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
495 {
496         /* Return if the txn has already requested to be committed */
497         if (journal->j_commit_request == target)
498                 return 0;
499
500         /*
501          * The only transaction we can possibly wait upon is the
502          * currently running transaction (if it exists).  Otherwise,
503          * the target tid must be an old one.
504          */
505         if (journal->j_running_transaction &&
506             journal->j_running_transaction->t_tid == target) {
507                 /*
508                  * We want a new commit: OK, mark the request and wakeup the
509                  * commit thread.  We do _not_ do the commit ourselves.
510                  */
511
512                 journal->j_commit_request = target;
513                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
514                           journal->j_commit_request,
515                           journal->j_commit_sequence);
516                 journal->j_running_transaction->t_requested = jiffies;
517                 wake_up(&journal->j_wait_commit);
518                 return 1;
519         } else if (!tid_geq(journal->j_commit_request, target))
520                 /* This should never happen, but if it does, preserve
521                    the evidence before kjournald goes into a loop and
522                    increments j_commit_sequence beyond all recognition. */
523                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
524                           journal->j_commit_request,
525                           journal->j_commit_sequence,
526                           target, journal->j_running_transaction ? 
527                           journal->j_running_transaction->t_tid : 0);
528         return 0;
529 }
530
531 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
532 {
533         int ret;
534
535         write_lock(&journal->j_state_lock);
536         ret = __jbd2_log_start_commit(journal, tid);
537         write_unlock(&journal->j_state_lock);
538         return ret;
539 }
540
541 /*
542  * Force and wait any uncommitted transactions.  We can only force the running
543  * transaction if we don't have an active handle, otherwise, we will deadlock.
544  * Returns: <0 in case of error,
545  *           0 if nothing to commit,
546  *           1 if transaction was successfully committed.
547  */
548 static int __jbd2_journal_force_commit(journal_t *journal)
549 {
550         transaction_t *transaction = NULL;
551         tid_t tid;
552         int need_to_start = 0, ret = 0;
553
554         read_lock(&journal->j_state_lock);
555         if (journal->j_running_transaction && !current->journal_info) {
556                 transaction = journal->j_running_transaction;
557                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
558                         need_to_start = 1;
559         } else if (journal->j_committing_transaction)
560                 transaction = journal->j_committing_transaction;
561
562         if (!transaction) {
563                 /* Nothing to commit */
564                 read_unlock(&journal->j_state_lock);
565                 return 0;
566         }
567         tid = transaction->t_tid;
568         read_unlock(&journal->j_state_lock);
569         if (need_to_start)
570                 jbd2_log_start_commit(journal, tid);
571         ret = jbd2_log_wait_commit(journal, tid);
572         if (!ret)
573                 ret = 1;
574
575         return ret;
576 }
577
578 /**
579  * Force and wait upon a commit if the calling process is not within
580  * transaction.  This is used for forcing out undo-protected data which contains
581  * bitmaps, when the fs is running out of space.
582  *
583  * @journal: journal to force
584  * Returns true if progress was made.
585  */
586 int jbd2_journal_force_commit_nested(journal_t *journal)
587 {
588         int ret;
589
590         ret = __jbd2_journal_force_commit(journal);
591         return ret > 0;
592 }
593
594 /**
595  * int journal_force_commit() - force any uncommitted transactions
596  * @journal: journal to force
597  *
598  * Caller want unconditional commit. We can only force the running transaction
599  * if we don't have an active handle, otherwise, we will deadlock.
600  */
601 int jbd2_journal_force_commit(journal_t *journal)
602 {
603         int ret;
604
605         J_ASSERT(!current->journal_info);
606         ret = __jbd2_journal_force_commit(journal);
607         if (ret > 0)
608                 ret = 0;
609         return ret;
610 }
611
612 /*
613  * Start a commit of the current running transaction (if any).  Returns true
614  * if a transaction is going to be committed (or is currently already
615  * committing), and fills its tid in at *ptid
616  */
617 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
618 {
619         int ret = 0;
620
621         write_lock(&journal->j_state_lock);
622         if (journal->j_running_transaction) {
623                 tid_t tid = journal->j_running_transaction->t_tid;
624
625                 __jbd2_log_start_commit(journal, tid);
626                 /* There's a running transaction and we've just made sure
627                  * it's commit has been scheduled. */
628                 if (ptid)
629                         *ptid = tid;
630                 ret = 1;
631         } else if (journal->j_committing_transaction) {
632                 /*
633                  * If commit has been started, then we have to wait for
634                  * completion of that transaction.
635                  */
636                 if (ptid)
637                         *ptid = journal->j_committing_transaction->t_tid;
638                 ret = 1;
639         }
640         write_unlock(&journal->j_state_lock);
641         return ret;
642 }
643
644 /*
645  * Return 1 if a given transaction has not yet sent barrier request
646  * connected with a transaction commit. If 0 is returned, transaction
647  * may or may not have sent the barrier. Used to avoid sending barrier
648  * twice in common cases.
649  */
650 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
651 {
652         int ret = 0;
653         transaction_t *commit_trans;
654
655         if (!(journal->j_flags & JBD2_BARRIER))
656                 return 0;
657         read_lock(&journal->j_state_lock);
658         /* Transaction already committed? */
659         if (tid_geq(journal->j_commit_sequence, tid))
660                 goto out;
661         commit_trans = journal->j_committing_transaction;
662         if (!commit_trans || commit_trans->t_tid != tid) {
663                 ret = 1;
664                 goto out;
665         }
666         /*
667          * Transaction is being committed and we already proceeded to
668          * submitting a flush to fs partition?
669          */
670         if (journal->j_fs_dev != journal->j_dev) {
671                 if (!commit_trans->t_need_data_flush ||
672                     commit_trans->t_state >= T_COMMIT_DFLUSH)
673                         goto out;
674         } else {
675                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
676                         goto out;
677         }
678         ret = 1;
679 out:
680         read_unlock(&journal->j_state_lock);
681         return ret;
682 }
683 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
684
685 /*
686  * Wait for a specified commit to complete.
687  * The caller may not hold the journal lock.
688  */
689 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
690 {
691         int err = 0;
692
693         read_lock(&journal->j_state_lock);
694 #ifdef CONFIG_JBD2_DEBUG
695         if (!tid_geq(journal->j_commit_request, tid)) {
696                 printk(KERN_ERR
697                        "%s: error: j_commit_request=%d, tid=%d\n",
698                        __func__, journal->j_commit_request, tid);
699         }
700 #endif
701         while (tid_gt(tid, journal->j_commit_sequence)) {
702                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
703                                   tid, journal->j_commit_sequence);
704                 read_unlock(&journal->j_state_lock);
705                 wake_up(&journal->j_wait_commit);
706                 wait_event(journal->j_wait_done_commit,
707                                 !tid_gt(tid, journal->j_commit_sequence));
708                 read_lock(&journal->j_state_lock);
709         }
710         read_unlock(&journal->j_state_lock);
711
712         if (unlikely(is_journal_aborted(journal)))
713                 err = -EIO;
714         return err;
715 }
716
717 /*
718  * When this function returns the transaction corresponding to tid
719  * will be completed.  If the transaction has currently running, start
720  * committing that transaction before waiting for it to complete.  If
721  * the transaction id is stale, it is by definition already completed,
722  * so just return SUCCESS.
723  */
724 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
725 {
726         int     need_to_wait = 1;
727
728         read_lock(&journal->j_state_lock);
729         if (journal->j_running_transaction &&
730             journal->j_running_transaction->t_tid == tid) {
731                 if (journal->j_commit_request != tid) {
732                         /* transaction not yet started, so request it */
733                         read_unlock(&journal->j_state_lock);
734                         jbd2_log_start_commit(journal, tid);
735                         goto wait_commit;
736                 }
737         } else if (!(journal->j_committing_transaction &&
738                      journal->j_committing_transaction->t_tid == tid))
739                 need_to_wait = 0;
740         read_unlock(&journal->j_state_lock);
741         if (!need_to_wait)
742                 return 0;
743 wait_commit:
744         return jbd2_log_wait_commit(journal, tid);
745 }
746 EXPORT_SYMBOL(jbd2_complete_transaction);
747
748 /*
749  * Log buffer allocation routines:
750  */
751
752 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
753 {
754         unsigned long blocknr;
755
756         write_lock(&journal->j_state_lock);
757         J_ASSERT(journal->j_free > 1);
758
759         blocknr = journal->j_head;
760         journal->j_head++;
761         journal->j_free--;
762         if (journal->j_head == journal->j_last)
763                 journal->j_head = journal->j_first;
764         write_unlock(&journal->j_state_lock);
765         return jbd2_journal_bmap(journal, blocknr, retp);
766 }
767
768 /*
769  * Conversion of logical to physical block numbers for the journal
770  *
771  * On external journals the journal blocks are identity-mapped, so
772  * this is a no-op.  If needed, we can use j_blk_offset - everything is
773  * ready.
774  */
775 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
776                  unsigned long long *retp)
777 {
778         int err = 0;
779         unsigned long long ret;
780
781         if (journal->j_inode) {
782                 ret = bmap(journal->j_inode, blocknr);
783                 if (ret)
784                         *retp = ret;
785                 else {
786                         printk(KERN_ALERT "%s: journal block not found "
787                                         "at offset %lu on %s\n",
788                                __func__, blocknr, journal->j_devname);
789                         err = -EIO;
790                         __journal_abort_soft(journal, err);
791                 }
792         } else {
793                 *retp = blocknr; /* +journal->j_blk_offset */
794         }
795         return err;
796 }
797
798 /*
799  * We play buffer_head aliasing tricks to write data/metadata blocks to
800  * the journal without copying their contents, but for journal
801  * descriptor blocks we do need to generate bona fide buffers.
802  *
803  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
804  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
805  * But we don't bother doing that, so there will be coherency problems with
806  * mmaps of blockdevs which hold live JBD-controlled filesystems.
807  */
808 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
809 {
810         struct buffer_head *bh;
811         unsigned long long blocknr;
812         int err;
813
814         err = jbd2_journal_next_log_block(journal, &blocknr);
815
816         if (err)
817                 return NULL;
818
819         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
820         if (!bh)
821                 return NULL;
822         lock_buffer(bh);
823         memset(bh->b_data, 0, journal->j_blocksize);
824         set_buffer_uptodate(bh);
825         unlock_buffer(bh);
826         BUFFER_TRACE(bh, "return this buffer");
827         return bh;
828 }
829
830 /*
831  * Return tid of the oldest transaction in the journal and block in the journal
832  * where the transaction starts.
833  *
834  * If the journal is now empty, return which will be the next transaction ID
835  * we will write and where will that transaction start.
836  *
837  * The return value is 0 if journal tail cannot be pushed any further, 1 if
838  * it can.
839  */
840 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
841                               unsigned long *block)
842 {
843         transaction_t *transaction;
844         int ret;
845
846         read_lock(&journal->j_state_lock);
847         spin_lock(&journal->j_list_lock);
848         transaction = journal->j_checkpoint_transactions;
849         if (transaction) {
850                 *tid = transaction->t_tid;
851                 *block = transaction->t_log_start;
852         } else if ((transaction = journal->j_committing_transaction) != NULL) {
853                 *tid = transaction->t_tid;
854                 *block = transaction->t_log_start;
855         } else if ((transaction = journal->j_running_transaction) != NULL) {
856                 *tid = transaction->t_tid;
857                 *block = journal->j_head;
858         } else {
859                 *tid = journal->j_transaction_sequence;
860                 *block = journal->j_head;
861         }
862         ret = tid_gt(*tid, journal->j_tail_sequence);
863         spin_unlock(&journal->j_list_lock);
864         read_unlock(&journal->j_state_lock);
865
866         return ret;
867 }
868
869 /*
870  * Update information in journal structure and in on disk journal superblock
871  * about log tail. This function does not check whether information passed in
872  * really pushes log tail further. It's responsibility of the caller to make
873  * sure provided log tail information is valid (e.g. by holding
874  * j_checkpoint_mutex all the time between computing log tail and calling this
875  * function as is the case with jbd2_cleanup_journal_tail()).
876  *
877  * Requires j_checkpoint_mutex
878  */
879 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
880 {
881         unsigned long freed;
882         int ret;
883
884         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
885
886         /*
887          * We cannot afford for write to remain in drive's caches since as
888          * soon as we update j_tail, next transaction can start reusing journal
889          * space and if we lose sb update during power failure we'd replay
890          * old transaction with possibly newly overwritten data.
891          */
892         ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
893         if (ret)
894                 goto out;
895
896         write_lock(&journal->j_state_lock);
897         freed = block - journal->j_tail;
898         if (block < journal->j_tail)
899                 freed += journal->j_last - journal->j_first;
900
901         trace_jbd2_update_log_tail(journal, tid, block, freed);
902         jbd_debug(1,
903                   "Cleaning journal tail from %d to %d (offset %lu), "
904                   "freeing %lu\n",
905                   journal->j_tail_sequence, tid, block, freed);
906
907         journal->j_free += freed;
908         journal->j_tail_sequence = tid;
909         journal->j_tail = block;
910         write_unlock(&journal->j_state_lock);
911
912 out:
913         return ret;
914 }
915
916 /*
917  * This is a variaon of __jbd2_update_log_tail which checks for validity of
918  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
919  * with other threads updating log tail.
920  */
921 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
922 {
923         mutex_lock(&journal->j_checkpoint_mutex);
924         if (tid_gt(tid, journal->j_tail_sequence))
925                 __jbd2_update_log_tail(journal, tid, block);
926         mutex_unlock(&journal->j_checkpoint_mutex);
927 }
928
929 struct jbd2_stats_proc_session {
930         journal_t *journal;
931         struct transaction_stats_s *stats;
932         int start;
933         int max;
934 };
935
936 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
937 {
938         return *pos ? NULL : SEQ_START_TOKEN;
939 }
940
941 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
942 {
943         return NULL;
944 }
945
946 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
947 {
948         struct jbd2_stats_proc_session *s = seq->private;
949
950         if (v != SEQ_START_TOKEN)
951                 return 0;
952         seq_printf(seq, "%lu transactions (%lu requested), "
953                    "each up to %u blocks\n",
954                    s->stats->ts_tid, s->stats->ts_requested,
955                    s->journal->j_max_transaction_buffers);
956         if (s->stats->ts_tid == 0)
957                 return 0;
958         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
959             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
960         seq_printf(seq, "  %ums request delay\n",
961             (s->stats->ts_requested == 0) ? 0 :
962             jiffies_to_msecs(s->stats->run.rs_request_delay /
963                              s->stats->ts_requested));
964         seq_printf(seq, "  %ums running transaction\n",
965             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
966         seq_printf(seq, "  %ums transaction was being locked\n",
967             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
968         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
969             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
970         seq_printf(seq, "  %ums logging transaction\n",
971             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
972         seq_printf(seq, "  %lluus average transaction commit time\n",
973                    div_u64(s->journal->j_average_commit_time, 1000));
974         seq_printf(seq, "  %lu handles per transaction\n",
975             s->stats->run.rs_handle_count / s->stats->ts_tid);
976         seq_printf(seq, "  %lu blocks per transaction\n",
977             s->stats->run.rs_blocks / s->stats->ts_tid);
978         seq_printf(seq, "  %lu logged blocks per transaction\n",
979             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
980         return 0;
981 }
982
983 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
984 {
985 }
986
987 static const struct seq_operations jbd2_seq_info_ops = {
988         .start  = jbd2_seq_info_start,
989         .next   = jbd2_seq_info_next,
990         .stop   = jbd2_seq_info_stop,
991         .show   = jbd2_seq_info_show,
992 };
993
994 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
995 {
996         journal_t *journal = PDE_DATA(inode);
997         struct jbd2_stats_proc_session *s;
998         int rc, size;
999
1000         s = kmalloc(sizeof(*s), GFP_KERNEL);
1001         if (s == NULL)
1002                 return -ENOMEM;
1003         size = sizeof(struct transaction_stats_s);
1004         s->stats = kmalloc(size, GFP_KERNEL);
1005         if (s->stats == NULL) {
1006                 kfree(s);
1007                 return -ENOMEM;
1008         }
1009         spin_lock(&journal->j_history_lock);
1010         memcpy(s->stats, &journal->j_stats, size);
1011         s->journal = journal;
1012         spin_unlock(&journal->j_history_lock);
1013
1014         rc = seq_open(file, &jbd2_seq_info_ops);
1015         if (rc == 0) {
1016                 struct seq_file *m = file->private_data;
1017                 m->private = s;
1018         } else {
1019                 kfree(s->stats);
1020                 kfree(s);
1021         }
1022         return rc;
1023
1024 }
1025
1026 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1027 {
1028         struct seq_file *seq = file->private_data;
1029         struct jbd2_stats_proc_session *s = seq->private;
1030         kfree(s->stats);
1031         kfree(s);
1032         return seq_release(inode, file);
1033 }
1034
1035 static const struct file_operations jbd2_seq_info_fops = {
1036         .owner          = THIS_MODULE,
1037         .open           = jbd2_seq_info_open,
1038         .read           = seq_read,
1039         .llseek         = seq_lseek,
1040         .release        = jbd2_seq_info_release,
1041 };
1042
1043 static struct proc_dir_entry *proc_jbd2_stats;
1044
1045 static void jbd2_stats_proc_init(journal_t *journal)
1046 {
1047         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1048         if (journal->j_proc_entry) {
1049                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1050                                  &jbd2_seq_info_fops, journal);
1051         }
1052 }
1053
1054 static void jbd2_stats_proc_exit(journal_t *journal)
1055 {
1056         remove_proc_entry("info", journal->j_proc_entry);
1057         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1058 }
1059
1060 /*
1061  * Management for journal control blocks: functions to create and
1062  * destroy journal_t structures, and to initialise and read existing
1063  * journal blocks from disk.  */
1064
1065 /* First: create and setup a journal_t object in memory.  We initialise
1066  * very few fields yet: that has to wait until we have created the
1067  * journal structures from from scratch, or loaded them from disk. */
1068
1069 static journal_t * journal_init_common (void)
1070 {
1071         journal_t *journal;
1072         int err;
1073
1074         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1075         if (!journal)
1076                 return NULL;
1077
1078         init_waitqueue_head(&journal->j_wait_transaction_locked);
1079         init_waitqueue_head(&journal->j_wait_done_commit);
1080         init_waitqueue_head(&journal->j_wait_commit);
1081         init_waitqueue_head(&journal->j_wait_updates);
1082         init_waitqueue_head(&journal->j_wait_reserved);
1083         mutex_init(&journal->j_barrier);
1084         mutex_init(&journal->j_checkpoint_mutex);
1085         spin_lock_init(&journal->j_revoke_lock);
1086         spin_lock_init(&journal->j_list_lock);
1087         rwlock_init(&journal->j_state_lock);
1088
1089         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1090         journal->j_min_batch_time = 0;
1091         journal->j_max_batch_time = 15000; /* 15ms */
1092         atomic_set(&journal->j_reserved_credits, 0);
1093
1094         /* The journal is marked for error until we succeed with recovery! */
1095         journal->j_flags = JBD2_ABORT;
1096
1097         /* Set up a default-sized revoke table for the new mount. */
1098         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1099         if (err) {
1100                 kfree(journal);
1101                 return NULL;
1102         }
1103
1104         spin_lock_init(&journal->j_history_lock);
1105
1106         return journal;
1107 }
1108
1109 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1110  *
1111  * Create a journal structure assigned some fixed set of disk blocks to
1112  * the journal.  We don't actually touch those disk blocks yet, but we
1113  * need to set up all of the mapping information to tell the journaling
1114  * system where the journal blocks are.
1115  *
1116  */
1117
1118 /**
1119  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1120  *  @bdev: Block device on which to create the journal
1121  *  @fs_dev: Device which hold journalled filesystem for this journal.
1122  *  @start: Block nr Start of journal.
1123  *  @len:  Length of the journal in blocks.
1124  *  @blocksize: blocksize of journalling device
1125  *
1126  *  Returns: a newly created journal_t *
1127  *
1128  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1129  *  range of blocks on an arbitrary block device.
1130  *
1131  */
1132 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1133                         struct block_device *fs_dev,
1134                         unsigned long long start, int len, int blocksize)
1135 {
1136         journal_t *journal = journal_init_common();
1137         struct buffer_head *bh;
1138         int n;
1139
1140         if (!journal)
1141                 return NULL;
1142
1143         /* journal descriptor can store up to n blocks -bzzz */
1144         journal->j_blocksize = blocksize;
1145         journal->j_dev = bdev;
1146         journal->j_fs_dev = fs_dev;
1147         journal->j_blk_offset = start;
1148         journal->j_maxlen = len;
1149         bdevname(journal->j_dev, journal->j_devname);
1150         strreplace(journal->j_devname, '/', '!');
1151         jbd2_stats_proc_init(journal);
1152         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1153         journal->j_wbufsize = n;
1154         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1155         if (!journal->j_wbuf) {
1156                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1157                         __func__);
1158                 goto out_err;
1159         }
1160
1161         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1162         if (!bh) {
1163                 printk(KERN_ERR
1164                        "%s: Cannot get buffer for journal superblock\n",
1165                        __func__);
1166                 goto out_err;
1167         }
1168         journal->j_sb_buffer = bh;
1169         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1170
1171         return journal;
1172 out_err:
1173         kfree(journal->j_wbuf);
1174         jbd2_stats_proc_exit(journal);
1175         kfree(journal);
1176         return NULL;
1177 }
1178
1179 /**
1180  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1181  *  @inode: An inode to create the journal in
1182  *
1183  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1184  * the journal.  The inode must exist already, must support bmap() and
1185  * must have all data blocks preallocated.
1186  */
1187 journal_t * jbd2_journal_init_inode (struct inode *inode)
1188 {
1189         struct buffer_head *bh;
1190         journal_t *journal = journal_init_common();
1191         char *p;
1192         int err;
1193         int n;
1194         unsigned long long blocknr;
1195
1196         if (!journal)
1197                 return NULL;
1198
1199         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1200         journal->j_inode = inode;
1201         bdevname(journal->j_dev, journal->j_devname);
1202         p = strreplace(journal->j_devname, '/', '!');
1203         sprintf(p, "-%lu", journal->j_inode->i_ino);
1204         jbd_debug(1,
1205                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1206                   journal, inode->i_sb->s_id, inode->i_ino,
1207                   (long long) inode->i_size,
1208                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1209
1210         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1211         journal->j_blocksize = inode->i_sb->s_blocksize;
1212         jbd2_stats_proc_init(journal);
1213
1214         /* journal descriptor can store up to n blocks -bzzz */
1215         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1216         journal->j_wbufsize = n;
1217         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1218         if (!journal->j_wbuf) {
1219                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1220                         __func__);
1221                 goto out_err;
1222         }
1223
1224         err = jbd2_journal_bmap(journal, 0, &blocknr);
1225         /* If that failed, give up */
1226         if (err) {
1227                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1228                        __func__);
1229                 goto out_err;
1230         }
1231
1232         bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1233         if (!bh) {
1234                 printk(KERN_ERR
1235                        "%s: Cannot get buffer for journal superblock\n",
1236                        __func__);
1237                 goto out_err;
1238         }
1239         journal->j_sb_buffer = bh;
1240         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1241
1242         return journal;
1243 out_err:
1244         kfree(journal->j_wbuf);
1245         jbd2_stats_proc_exit(journal);
1246         kfree(journal);
1247         return NULL;
1248 }
1249
1250 /*
1251  * If the journal init or create aborts, we need to mark the journal
1252  * superblock as being NULL to prevent the journal destroy from writing
1253  * back a bogus superblock.
1254  */
1255 static void journal_fail_superblock (journal_t *journal)
1256 {
1257         struct buffer_head *bh = journal->j_sb_buffer;
1258         brelse(bh);
1259         journal->j_sb_buffer = NULL;
1260 }
1261
1262 /*
1263  * Given a journal_t structure, initialise the various fields for
1264  * startup of a new journaling session.  We use this both when creating
1265  * a journal, and after recovering an old journal to reset it for
1266  * subsequent use.
1267  */
1268
1269 static int journal_reset(journal_t *journal)
1270 {
1271         journal_superblock_t *sb = journal->j_superblock;
1272         unsigned long long first, last;
1273
1274         first = be32_to_cpu(sb->s_first);
1275         last = be32_to_cpu(sb->s_maxlen);
1276         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1277                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1278                        first, last);
1279                 journal_fail_superblock(journal);
1280                 return -EINVAL;
1281         }
1282
1283         journal->j_first = first;
1284         journal->j_last = last;
1285
1286         journal->j_head = first;
1287         journal->j_tail = first;
1288         journal->j_free = last - first;
1289
1290         journal->j_tail_sequence = journal->j_transaction_sequence;
1291         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1292         journal->j_commit_request = journal->j_commit_sequence;
1293
1294         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1295
1296         /*
1297          * As a special case, if the on-disk copy is already marked as needing
1298          * no recovery (s_start == 0), then we can safely defer the superblock
1299          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1300          * attempting a write to a potential-readonly device.
1301          */
1302         if (sb->s_start == 0) {
1303                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1304                         "(start %ld, seq %d, errno %d)\n",
1305                         journal->j_tail, journal->j_tail_sequence,
1306                         journal->j_errno);
1307                 journal->j_flags |= JBD2_FLUSHED;
1308         } else {
1309                 /* Lock here to make assertions happy... */
1310                 mutex_lock(&journal->j_checkpoint_mutex);
1311                 /*
1312                  * Update log tail information. We use WRITE_FUA since new
1313                  * transaction will start reusing journal space and so we
1314                  * must make sure information about current log tail is on
1315                  * disk before that.
1316                  */
1317                 jbd2_journal_update_sb_log_tail(journal,
1318                                                 journal->j_tail_sequence,
1319                                                 journal->j_tail,
1320                                                 WRITE_FUA);
1321                 mutex_unlock(&journal->j_checkpoint_mutex);
1322         }
1323         return jbd2_journal_start_thread(journal);
1324 }
1325
1326 static int jbd2_write_superblock(journal_t *journal, int write_op)
1327 {
1328         struct buffer_head *bh = journal->j_sb_buffer;
1329         journal_superblock_t *sb = journal->j_superblock;
1330         int ret;
1331
1332         trace_jbd2_write_superblock(journal, write_op);
1333         if (!(journal->j_flags & JBD2_BARRIER))
1334                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1335         lock_buffer(bh);
1336         if (buffer_write_io_error(bh)) {
1337                 /*
1338                  * Oh, dear.  A previous attempt to write the journal
1339                  * superblock failed.  This could happen because the
1340                  * USB device was yanked out.  Or it could happen to
1341                  * be a transient write error and maybe the block will
1342                  * be remapped.  Nothing we can do but to retry the
1343                  * write and hope for the best.
1344                  */
1345                 printk(KERN_ERR "JBD2: previous I/O error detected "
1346                        "for journal superblock update for %s.\n",
1347                        journal->j_devname);
1348                 clear_buffer_write_io_error(bh);
1349                 set_buffer_uptodate(bh);
1350         }
1351         jbd2_superblock_csum_set(journal, sb);
1352         get_bh(bh);
1353         bh->b_end_io = end_buffer_write_sync;
1354         ret = submit_bh(write_op, bh);
1355         wait_on_buffer(bh);
1356         if (buffer_write_io_error(bh)) {
1357                 clear_buffer_write_io_error(bh);
1358                 set_buffer_uptodate(bh);
1359                 ret = -EIO;
1360         }
1361         if (ret) {
1362                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1363                        "journal superblock for %s.\n", ret,
1364                        journal->j_devname);
1365                 jbd2_journal_abort(journal, ret);
1366         }
1367
1368         return ret;
1369 }
1370
1371 /**
1372  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1373  * @journal: The journal to update.
1374  * @tail_tid: TID of the new transaction at the tail of the log
1375  * @tail_block: The first block of the transaction at the tail of the log
1376  * @write_op: With which operation should we write the journal sb
1377  *
1378  * Update a journal's superblock information about log tail and write it to
1379  * disk, waiting for the IO to complete.
1380  */
1381 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1382                                      unsigned long tail_block, int write_op)
1383 {
1384         journal_superblock_t *sb = journal->j_superblock;
1385         int ret;
1386
1387         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1388         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1389                   tail_block, tail_tid);
1390
1391         sb->s_sequence = cpu_to_be32(tail_tid);
1392         sb->s_start    = cpu_to_be32(tail_block);
1393
1394         ret = jbd2_write_superblock(journal, write_op);
1395         if (ret)
1396                 goto out;
1397
1398         /* Log is no longer empty */
1399         write_lock(&journal->j_state_lock);
1400         WARN_ON(!sb->s_sequence);
1401         journal->j_flags &= ~JBD2_FLUSHED;
1402         write_unlock(&journal->j_state_lock);
1403
1404 out:
1405         return ret;
1406 }
1407
1408 /**
1409  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1410  * @journal: The journal to update.
1411  *
1412  * Update a journal's dynamic superblock fields to show that journal is empty.
1413  * Write updated superblock to disk waiting for IO to complete.
1414  */
1415 static void jbd2_mark_journal_empty(journal_t *journal)
1416 {
1417         journal_superblock_t *sb = journal->j_superblock;
1418
1419         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1420         read_lock(&journal->j_state_lock);
1421         /* Is it already empty? */
1422         if (sb->s_start == 0) {
1423                 read_unlock(&journal->j_state_lock);
1424                 return;
1425         }
1426         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1427                   journal->j_tail_sequence);
1428
1429         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1430         sb->s_start    = cpu_to_be32(0);
1431         read_unlock(&journal->j_state_lock);
1432
1433         jbd2_write_superblock(journal, WRITE_FUA);
1434
1435         /* Log is no longer empty */
1436         write_lock(&journal->j_state_lock);
1437         journal->j_flags |= JBD2_FLUSHED;
1438         write_unlock(&journal->j_state_lock);
1439 }
1440
1441
1442 /**
1443  * jbd2_journal_update_sb_errno() - Update error in the journal.
1444  * @journal: The journal to update.
1445  *
1446  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1447  * to complete.
1448  */
1449 void jbd2_journal_update_sb_errno(journal_t *journal)
1450 {
1451         journal_superblock_t *sb = journal->j_superblock;
1452
1453         read_lock(&journal->j_state_lock);
1454         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1455                   journal->j_errno);
1456         sb->s_errno    = cpu_to_be32(journal->j_errno);
1457         read_unlock(&journal->j_state_lock);
1458
1459         jbd2_write_superblock(journal, WRITE_SYNC);
1460 }
1461 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1462
1463 /*
1464  * Read the superblock for a given journal, performing initial
1465  * validation of the format.
1466  */
1467 static int journal_get_superblock(journal_t *journal)
1468 {
1469         struct buffer_head *bh;
1470         journal_superblock_t *sb;
1471         int err = -EIO;
1472
1473         bh = journal->j_sb_buffer;
1474
1475         J_ASSERT(bh != NULL);
1476         if (!buffer_uptodate(bh)) {
1477                 ll_rw_block(READ, 1, &bh);
1478                 wait_on_buffer(bh);
1479                 if (!buffer_uptodate(bh)) {
1480                         printk(KERN_ERR
1481                                 "JBD2: IO error reading journal superblock\n");
1482                         goto out;
1483                 }
1484         }
1485
1486         if (buffer_verified(bh))
1487                 return 0;
1488
1489         sb = journal->j_superblock;
1490
1491         err = -EINVAL;
1492
1493         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1494             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1495                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1496                 goto out;
1497         }
1498
1499         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1500         case JBD2_SUPERBLOCK_V1:
1501                 journal->j_format_version = 1;
1502                 break;
1503         case JBD2_SUPERBLOCK_V2:
1504                 journal->j_format_version = 2;
1505                 break;
1506         default:
1507                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1508                 goto out;
1509         }
1510
1511         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1512                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1513         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1514                 printk(KERN_WARNING "JBD2: journal file too short\n");
1515                 goto out;
1516         }
1517
1518         if (be32_to_cpu(sb->s_first) == 0 ||
1519             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1520                 printk(KERN_WARNING
1521                         "JBD2: Invalid start block of journal: %u\n",
1522                         be32_to_cpu(sb->s_first));
1523                 goto out;
1524         }
1525
1526         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2) &&
1527             JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1528                 /* Can't have checksum v2 and v3 at the same time! */
1529                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1530                        "at the same time!\n");
1531                 goto out;
1532         }
1533
1534         if (jbd2_journal_has_csum_v2or3(journal) &&
1535             JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM)) {
1536                 /* Can't have checksum v1 and v2 on at the same time! */
1537                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1538                        "at the same time!\n");
1539                 goto out;
1540         }
1541
1542         if (!jbd2_verify_csum_type(journal, sb)) {
1543                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1544                 goto out;
1545         }
1546
1547         /* Load the checksum driver */
1548         if (jbd2_journal_has_csum_v2or3(journal)) {
1549                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1550                 if (IS_ERR(journal->j_chksum_driver)) {
1551                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1552                         err = PTR_ERR(journal->j_chksum_driver);
1553                         journal->j_chksum_driver = NULL;
1554                         goto out;
1555                 }
1556         }
1557
1558         /* Check superblock checksum */
1559         if (!jbd2_superblock_csum_verify(journal, sb)) {
1560                 printk(KERN_ERR "JBD2: journal checksum error\n");
1561                 goto out;
1562         }
1563
1564         /* Precompute checksum seed for all metadata */
1565         if (jbd2_journal_has_csum_v2or3(journal))
1566                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1567                                                    sizeof(sb->s_uuid));
1568
1569         set_buffer_verified(bh);
1570
1571         return 0;
1572
1573 out:
1574         journal_fail_superblock(journal);
1575         return err;
1576 }
1577
1578 /*
1579  * Load the on-disk journal superblock and read the key fields into the
1580  * journal_t.
1581  */
1582
1583 static int load_superblock(journal_t *journal)
1584 {
1585         int err;
1586         journal_superblock_t *sb;
1587
1588         err = journal_get_superblock(journal);
1589         if (err)
1590                 return err;
1591
1592         sb = journal->j_superblock;
1593
1594         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1595         journal->j_tail = be32_to_cpu(sb->s_start);
1596         journal->j_first = be32_to_cpu(sb->s_first);
1597         journal->j_last = be32_to_cpu(sb->s_maxlen);
1598         journal->j_errno = be32_to_cpu(sb->s_errno);
1599
1600         return 0;
1601 }
1602
1603
1604 /**
1605  * int jbd2_journal_load() - Read journal from disk.
1606  * @journal: Journal to act on.
1607  *
1608  * Given a journal_t structure which tells us which disk blocks contain
1609  * a journal, read the journal from disk to initialise the in-memory
1610  * structures.
1611  */
1612 int jbd2_journal_load(journal_t *journal)
1613 {
1614         int err;
1615         journal_superblock_t *sb;
1616
1617         err = load_superblock(journal);
1618         if (err)
1619                 return err;
1620
1621         sb = journal->j_superblock;
1622         /* If this is a V2 superblock, then we have to check the
1623          * features flags on it. */
1624
1625         if (journal->j_format_version >= 2) {
1626                 if ((sb->s_feature_ro_compat &
1627                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1628                     (sb->s_feature_incompat &
1629                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1630                         printk(KERN_WARNING
1631                                 "JBD2: Unrecognised features on journal\n");
1632                         return -EINVAL;
1633                 }
1634         }
1635
1636         /*
1637          * Create a slab for this blocksize
1638          */
1639         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1640         if (err)
1641                 return err;
1642
1643         /* Let the recovery code check whether it needs to recover any
1644          * data from the journal. */
1645         if (jbd2_journal_recover(journal))
1646                 goto recovery_error;
1647
1648         if (journal->j_failed_commit) {
1649                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1650                        "is corrupt.\n", journal->j_failed_commit,
1651                        journal->j_devname);
1652                 return -EIO;
1653         }
1654
1655         /* OK, we've finished with the dynamic journal bits:
1656          * reinitialise the dynamic contents of the superblock in memory
1657          * and reset them on disk. */
1658         if (journal_reset(journal))
1659                 goto recovery_error;
1660
1661         journal->j_flags &= ~JBD2_ABORT;
1662         journal->j_flags |= JBD2_LOADED;
1663         return 0;
1664
1665 recovery_error:
1666         printk(KERN_WARNING "JBD2: recovery failed\n");
1667         return -EIO;
1668 }
1669
1670 /**
1671  * void jbd2_journal_destroy() - Release a journal_t structure.
1672  * @journal: Journal to act on.
1673  *
1674  * Release a journal_t structure once it is no longer in use by the
1675  * journaled object.
1676  * Return <0 if we couldn't clean up the journal.
1677  */
1678 int jbd2_journal_destroy(journal_t *journal)
1679 {
1680         int err = 0;
1681
1682         /* Wait for the commit thread to wake up and die. */
1683         journal_kill_thread(journal);
1684
1685         /* Force a final log commit */
1686         if (journal->j_running_transaction)
1687                 jbd2_journal_commit_transaction(journal);
1688
1689         /* Force any old transactions to disk */
1690
1691         /* Totally anal locking here... */
1692         spin_lock(&journal->j_list_lock);
1693         while (journal->j_checkpoint_transactions != NULL) {
1694                 spin_unlock(&journal->j_list_lock);
1695                 mutex_lock(&journal->j_checkpoint_mutex);
1696                 jbd2_log_do_checkpoint(journal);
1697                 mutex_unlock(&journal->j_checkpoint_mutex);
1698                 spin_lock(&journal->j_list_lock);
1699         }
1700
1701         J_ASSERT(journal->j_running_transaction == NULL);
1702         J_ASSERT(journal->j_committing_transaction == NULL);
1703         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1704         spin_unlock(&journal->j_list_lock);
1705
1706         if (journal->j_sb_buffer) {
1707                 if (!is_journal_aborted(journal)) {
1708                         mutex_lock(&journal->j_checkpoint_mutex);
1709                         jbd2_mark_journal_empty(journal);
1710                         mutex_unlock(&journal->j_checkpoint_mutex);
1711                 } else
1712                         err = -EIO;
1713                 brelse(journal->j_sb_buffer);
1714         }
1715
1716         if (journal->j_proc_entry)
1717                 jbd2_stats_proc_exit(journal);
1718         iput(journal->j_inode);
1719         if (journal->j_revoke)
1720                 jbd2_journal_destroy_revoke(journal);
1721         if (journal->j_chksum_driver)
1722                 crypto_free_shash(journal->j_chksum_driver);
1723         kfree(journal->j_wbuf);
1724         kfree(journal);
1725
1726         return err;
1727 }
1728
1729
1730 /**
1731  *int jbd2_journal_check_used_features () - Check if features specified are used.
1732  * @journal: Journal to check.
1733  * @compat: bitmask of compatible features
1734  * @ro: bitmask of features that force read-only mount
1735  * @incompat: bitmask of incompatible features
1736  *
1737  * Check whether the journal uses all of a given set of
1738  * features.  Return true (non-zero) if it does.
1739  **/
1740
1741 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1742                                  unsigned long ro, unsigned long incompat)
1743 {
1744         journal_superblock_t *sb;
1745
1746         if (!compat && !ro && !incompat)
1747                 return 1;
1748         /* Load journal superblock if it is not loaded yet. */
1749         if (journal->j_format_version == 0 &&
1750             journal_get_superblock(journal) != 0)
1751                 return 0;
1752         if (journal->j_format_version == 1)
1753                 return 0;
1754
1755         sb = journal->j_superblock;
1756
1757         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1758             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1759             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1760                 return 1;
1761
1762         return 0;
1763 }
1764
1765 /**
1766  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1767  * @journal: Journal to check.
1768  * @compat: bitmask of compatible features
1769  * @ro: bitmask of features that force read-only mount
1770  * @incompat: bitmask of incompatible features
1771  *
1772  * Check whether the journaling code supports the use of
1773  * all of a given set of features on this journal.  Return true
1774  * (non-zero) if it can. */
1775
1776 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1777                                       unsigned long ro, unsigned long incompat)
1778 {
1779         if (!compat && !ro && !incompat)
1780                 return 1;
1781
1782         /* We can support any known requested features iff the
1783          * superblock is in version 2.  Otherwise we fail to support any
1784          * extended sb features. */
1785
1786         if (journal->j_format_version != 2)
1787                 return 0;
1788
1789         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1790             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1791             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1792                 return 1;
1793
1794         return 0;
1795 }
1796
1797 /**
1798  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1799  * @journal: Journal to act on.
1800  * @compat: bitmask of compatible features
1801  * @ro: bitmask of features that force read-only mount
1802  * @incompat: bitmask of incompatible features
1803  *
1804  * Mark a given journal feature as present on the
1805  * superblock.  Returns true if the requested features could be set.
1806  *
1807  */
1808
1809 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1810                           unsigned long ro, unsigned long incompat)
1811 {
1812 #define INCOMPAT_FEATURE_ON(f) \
1813                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1814 #define COMPAT_FEATURE_ON(f) \
1815                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1816         journal_superblock_t *sb;
1817
1818         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1819                 return 1;
1820
1821         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1822                 return 0;
1823
1824         /* If enabling v2 checksums, turn on v3 instead */
1825         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1826                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1827                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1828         }
1829
1830         /* Asking for checksumming v3 and v1?  Only give them v3. */
1831         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1832             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1833                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1834
1835         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1836                   compat, ro, incompat);
1837
1838         sb = journal->j_superblock;
1839
1840         /* If enabling v3 checksums, update superblock */
1841         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1842                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1843                 sb->s_feature_compat &=
1844                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1845
1846                 /* Load the checksum driver */
1847                 if (journal->j_chksum_driver == NULL) {
1848                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1849                                                                       0, 0);
1850                         if (IS_ERR(journal->j_chksum_driver)) {
1851                                 printk(KERN_ERR "JBD2: Cannot load crc32c "
1852                                        "driver.\n");
1853                                 journal->j_chksum_driver = NULL;
1854                                 return 0;
1855                         }
1856
1857                         /* Precompute checksum seed for all metadata */
1858                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1859                                                            sb->s_uuid,
1860                                                            sizeof(sb->s_uuid));
1861                 }
1862         }
1863
1864         /* If enabling v1 checksums, downgrade superblock */
1865         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1866                 sb->s_feature_incompat &=
1867                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1868                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1869
1870         sb->s_feature_compat    |= cpu_to_be32(compat);
1871         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1872         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1873
1874         return 1;
1875 #undef COMPAT_FEATURE_ON
1876 #undef INCOMPAT_FEATURE_ON
1877 }
1878
1879 /*
1880  * jbd2_journal_clear_features () - Clear a given journal feature in the
1881  *                                  superblock
1882  * @journal: Journal to act on.
1883  * @compat: bitmask of compatible features
1884  * @ro: bitmask of features that force read-only mount
1885  * @incompat: bitmask of incompatible features
1886  *
1887  * Clear a given journal feature as present on the
1888  * superblock.
1889  */
1890 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1891                                 unsigned long ro, unsigned long incompat)
1892 {
1893         journal_superblock_t *sb;
1894
1895         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1896                   compat, ro, incompat);
1897
1898         sb = journal->j_superblock;
1899
1900         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1901         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1902         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1903 }
1904 EXPORT_SYMBOL(jbd2_journal_clear_features);
1905
1906 /**
1907  * int jbd2_journal_flush () - Flush journal
1908  * @journal: Journal to act on.
1909  *
1910  * Flush all data for a given journal to disk and empty the journal.
1911  * Filesystems can use this when remounting readonly to ensure that
1912  * recovery does not need to happen on remount.
1913  */
1914
1915 int jbd2_journal_flush(journal_t *journal)
1916 {
1917         int err = 0;
1918         transaction_t *transaction = NULL;
1919
1920         write_lock(&journal->j_state_lock);
1921
1922         /* Force everything buffered to the log... */
1923         if (journal->j_running_transaction) {
1924                 transaction = journal->j_running_transaction;
1925                 __jbd2_log_start_commit(journal, transaction->t_tid);
1926         } else if (journal->j_committing_transaction)
1927                 transaction = journal->j_committing_transaction;
1928
1929         /* Wait for the log commit to complete... */
1930         if (transaction) {
1931                 tid_t tid = transaction->t_tid;
1932
1933                 write_unlock(&journal->j_state_lock);
1934                 jbd2_log_wait_commit(journal, tid);
1935         } else {
1936                 write_unlock(&journal->j_state_lock);
1937         }
1938
1939         /* ...and flush everything in the log out to disk. */
1940         spin_lock(&journal->j_list_lock);
1941         while (!err && journal->j_checkpoint_transactions != NULL) {
1942                 spin_unlock(&journal->j_list_lock);
1943                 mutex_lock(&journal->j_checkpoint_mutex);
1944                 err = jbd2_log_do_checkpoint(journal);
1945                 mutex_unlock(&journal->j_checkpoint_mutex);
1946                 spin_lock(&journal->j_list_lock);
1947         }
1948         spin_unlock(&journal->j_list_lock);
1949
1950         if (is_journal_aborted(journal))
1951                 return -EIO;
1952
1953         mutex_lock(&journal->j_checkpoint_mutex);
1954         if (!err) {
1955                 err = jbd2_cleanup_journal_tail(journal);
1956                 if (err < 0) {
1957                         mutex_unlock(&journal->j_checkpoint_mutex);
1958                         goto out;
1959                 }
1960                 err = 0;
1961         }
1962
1963         /* Finally, mark the journal as really needing no recovery.
1964          * This sets s_start==0 in the underlying superblock, which is
1965          * the magic code for a fully-recovered superblock.  Any future
1966          * commits of data to the journal will restore the current
1967          * s_start value. */
1968         jbd2_mark_journal_empty(journal);
1969         mutex_unlock(&journal->j_checkpoint_mutex);
1970         write_lock(&journal->j_state_lock);
1971         J_ASSERT(!journal->j_running_transaction);
1972         J_ASSERT(!journal->j_committing_transaction);
1973         J_ASSERT(!journal->j_checkpoint_transactions);
1974         J_ASSERT(journal->j_head == journal->j_tail);
1975         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1976         write_unlock(&journal->j_state_lock);
1977 out:
1978         return err;
1979 }
1980
1981 /**
1982  * int jbd2_journal_wipe() - Wipe journal contents
1983  * @journal: Journal to act on.
1984  * @write: flag (see below)
1985  *
1986  * Wipe out all of the contents of a journal, safely.  This will produce
1987  * a warning if the journal contains any valid recovery information.
1988  * Must be called between journal_init_*() and jbd2_journal_load().
1989  *
1990  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1991  * we merely suppress recovery.
1992  */
1993
1994 int jbd2_journal_wipe(journal_t *journal, int write)
1995 {
1996         int err = 0;
1997
1998         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1999
2000         err = load_superblock(journal);
2001         if (err)
2002                 return err;
2003
2004         if (!journal->j_tail)
2005                 goto no_recovery;
2006
2007         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2008                 write ? "Clearing" : "Ignoring");
2009
2010         err = jbd2_journal_skip_recovery(journal);
2011         if (write) {
2012                 /* Lock to make assertions happy... */
2013                 mutex_lock(&journal->j_checkpoint_mutex);
2014                 jbd2_mark_journal_empty(journal);
2015                 mutex_unlock(&journal->j_checkpoint_mutex);
2016         }
2017
2018  no_recovery:
2019         return err;
2020 }
2021
2022 /*
2023  * Journal abort has very specific semantics, which we describe
2024  * for journal abort.
2025  *
2026  * Two internal functions, which provide abort to the jbd layer
2027  * itself are here.
2028  */
2029
2030 /*
2031  * Quick version for internal journal use (doesn't lock the journal).
2032  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2033  * and don't attempt to make any other journal updates.
2034  */
2035 void __jbd2_journal_abort_hard(journal_t *journal)
2036 {
2037         transaction_t *transaction;
2038
2039         if (journal->j_flags & JBD2_ABORT)
2040                 return;
2041
2042         printk(KERN_ERR "Aborting journal on device %s.\n",
2043                journal->j_devname);
2044
2045         write_lock(&journal->j_state_lock);
2046         journal->j_flags |= JBD2_ABORT;
2047         transaction = journal->j_running_transaction;
2048         if (transaction)
2049                 __jbd2_log_start_commit(journal, transaction->t_tid);
2050         write_unlock(&journal->j_state_lock);
2051 }
2052
2053 /* Soft abort: record the abort error status in the journal superblock,
2054  * but don't do any other IO. */
2055 static void __journal_abort_soft (journal_t *journal, int errno)
2056 {
2057         if (journal->j_flags & JBD2_ABORT)
2058                 return;
2059
2060         if (!journal->j_errno)
2061                 journal->j_errno = errno;
2062
2063         __jbd2_journal_abort_hard(journal);
2064
2065         if (errno)
2066                 jbd2_journal_update_sb_errno(journal);
2067 }
2068
2069 /**
2070  * void jbd2_journal_abort () - Shutdown the journal immediately.
2071  * @journal: the journal to shutdown.
2072  * @errno:   an error number to record in the journal indicating
2073  *           the reason for the shutdown.
2074  *
2075  * Perform a complete, immediate shutdown of the ENTIRE
2076  * journal (not of a single transaction).  This operation cannot be
2077  * undone without closing and reopening the journal.
2078  *
2079  * The jbd2_journal_abort function is intended to support higher level error
2080  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2081  * mode.
2082  *
2083  * Journal abort has very specific semantics.  Any existing dirty,
2084  * unjournaled buffers in the main filesystem will still be written to
2085  * disk by bdflush, but the journaling mechanism will be suspended
2086  * immediately and no further transaction commits will be honoured.
2087  *
2088  * Any dirty, journaled buffers will be written back to disk without
2089  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2090  * filesystem, but we _do_ attempt to leave as much data as possible
2091  * behind for fsck to use for cleanup.
2092  *
2093  * Any attempt to get a new transaction handle on a journal which is in
2094  * ABORT state will just result in an -EROFS error return.  A
2095  * jbd2_journal_stop on an existing handle will return -EIO if we have
2096  * entered abort state during the update.
2097  *
2098  * Recursive transactions are not disturbed by journal abort until the
2099  * final jbd2_journal_stop, which will receive the -EIO error.
2100  *
2101  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2102  * which will be recorded (if possible) in the journal superblock.  This
2103  * allows a client to record failure conditions in the middle of a
2104  * transaction without having to complete the transaction to record the
2105  * failure to disk.  ext3_error, for example, now uses this
2106  * functionality.
2107  *
2108  * Errors which originate from within the journaling layer will NOT
2109  * supply an errno; a null errno implies that absolutely no further
2110  * writes are done to the journal (unless there are any already in
2111  * progress).
2112  *
2113  */
2114
2115 void jbd2_journal_abort(journal_t *journal, int errno)
2116 {
2117         __journal_abort_soft(journal, errno);
2118 }
2119
2120 /**
2121  * int jbd2_journal_errno () - returns the journal's error state.
2122  * @journal: journal to examine.
2123  *
2124  * This is the errno number set with jbd2_journal_abort(), the last
2125  * time the journal was mounted - if the journal was stopped
2126  * without calling abort this will be 0.
2127  *
2128  * If the journal has been aborted on this mount time -EROFS will
2129  * be returned.
2130  */
2131 int jbd2_journal_errno(journal_t *journal)
2132 {
2133         int err;
2134
2135         read_lock(&journal->j_state_lock);
2136         if (journal->j_flags & JBD2_ABORT)
2137                 err = -EROFS;
2138         else
2139                 err = journal->j_errno;
2140         read_unlock(&journal->j_state_lock);
2141         return err;
2142 }
2143
2144 /**
2145  * int jbd2_journal_clear_err () - clears the journal's error state
2146  * @journal: journal to act on.
2147  *
2148  * An error must be cleared or acked to take a FS out of readonly
2149  * mode.
2150  */
2151 int jbd2_journal_clear_err(journal_t *journal)
2152 {
2153         int err = 0;
2154
2155         write_lock(&journal->j_state_lock);
2156         if (journal->j_flags & JBD2_ABORT)
2157                 err = -EROFS;
2158         else
2159                 journal->j_errno = 0;
2160         write_unlock(&journal->j_state_lock);
2161         return err;
2162 }
2163
2164 /**
2165  * void jbd2_journal_ack_err() - Ack journal err.
2166  * @journal: journal to act on.
2167  *
2168  * An error must be cleared or acked to take a FS out of readonly
2169  * mode.
2170  */
2171 void jbd2_journal_ack_err(journal_t *journal)
2172 {
2173         write_lock(&journal->j_state_lock);
2174         if (journal->j_errno)
2175                 journal->j_flags |= JBD2_ACK_ERR;
2176         write_unlock(&journal->j_state_lock);
2177 }
2178
2179 int jbd2_journal_blocks_per_page(struct inode *inode)
2180 {
2181         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2182 }
2183
2184 /*
2185  * helper functions to deal with 32 or 64bit block numbers.
2186  */
2187 size_t journal_tag_bytes(journal_t *journal)
2188 {
2189         size_t sz;
2190
2191         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V3))
2192                 return sizeof(journal_block_tag3_t);
2193
2194         sz = sizeof(journal_block_tag_t);
2195
2196         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2197                 sz += sizeof(__u16);
2198
2199         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2200                 return sz;
2201         else
2202                 return sz - sizeof(__u32);
2203 }
2204
2205 /*
2206  * JBD memory management
2207  *
2208  * These functions are used to allocate block-sized chunks of memory
2209  * used for making copies of buffer_head data.  Very often it will be
2210  * page-sized chunks of data, but sometimes it will be in
2211  * sub-page-size chunks.  (For example, 16k pages on Power systems
2212  * with a 4k block file system.)  For blocks smaller than a page, we
2213  * use a SLAB allocator.  There are slab caches for each block size,
2214  * which are allocated at mount time, if necessary, and we only free
2215  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2216  * this reason we don't need to a mutex to protect access to
2217  * jbd2_slab[] allocating or releasing memory; only in
2218  * jbd2_journal_create_slab().
2219  */
2220 #define JBD2_MAX_SLABS 8
2221 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2222
2223 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2224         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2225         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2226 };
2227
2228
2229 static void jbd2_journal_destroy_slabs(void)
2230 {
2231         int i;
2232
2233         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2234                 if (jbd2_slab[i])
2235                         kmem_cache_destroy(jbd2_slab[i]);
2236                 jbd2_slab[i] = NULL;
2237         }
2238 }
2239
2240 static int jbd2_journal_create_slab(size_t size)
2241 {
2242         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2243         int i = order_base_2(size) - 10;
2244         size_t slab_size;
2245
2246         if (size == PAGE_SIZE)
2247                 return 0;
2248
2249         if (i >= JBD2_MAX_SLABS)
2250                 return -EINVAL;
2251
2252         if (unlikely(i < 0))
2253                 i = 0;
2254         mutex_lock(&jbd2_slab_create_mutex);
2255         if (jbd2_slab[i]) {
2256                 mutex_unlock(&jbd2_slab_create_mutex);
2257                 return 0;       /* Already created */
2258         }
2259
2260         slab_size = 1 << (i+10);
2261         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2262                                          slab_size, 0, NULL);
2263         mutex_unlock(&jbd2_slab_create_mutex);
2264         if (!jbd2_slab[i]) {
2265                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2266                 return -ENOMEM;
2267         }
2268         return 0;
2269 }
2270
2271 static struct kmem_cache *get_slab(size_t size)
2272 {
2273         int i = order_base_2(size) - 10;
2274
2275         BUG_ON(i >= JBD2_MAX_SLABS);
2276         if (unlikely(i < 0))
2277                 i = 0;
2278         BUG_ON(jbd2_slab[i] == NULL);
2279         return jbd2_slab[i];
2280 }
2281
2282 void *jbd2_alloc(size_t size, gfp_t flags)
2283 {
2284         void *ptr;
2285
2286         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2287
2288         flags |= __GFP_REPEAT;
2289         if (size == PAGE_SIZE)
2290                 ptr = (void *)__get_free_pages(flags, 0);
2291         else if (size > PAGE_SIZE) {
2292                 int order = get_order(size);
2293
2294                 if (order < 3)
2295                         ptr = (void *)__get_free_pages(flags, order);
2296                 else
2297                         ptr = vmalloc(size);
2298         } else
2299                 ptr = kmem_cache_alloc(get_slab(size), flags);
2300
2301         /* Check alignment; SLUB has gotten this wrong in the past,
2302          * and this can lead to user data corruption! */
2303         BUG_ON(((unsigned long) ptr) & (size-1));
2304
2305         return ptr;
2306 }
2307
2308 void jbd2_free(void *ptr, size_t size)
2309 {
2310         if (size == PAGE_SIZE) {
2311                 free_pages((unsigned long)ptr, 0);
2312                 return;
2313         }
2314         if (size > PAGE_SIZE) {
2315                 int order = get_order(size);
2316
2317                 if (order < 3)
2318                         free_pages((unsigned long)ptr, order);
2319                 else
2320                         vfree(ptr);
2321                 return;
2322         }
2323         kmem_cache_free(get_slab(size), ptr);
2324 };
2325
2326 /*
2327  * Journal_head storage management
2328  */
2329 static struct kmem_cache *jbd2_journal_head_cache;
2330 #ifdef CONFIG_JBD2_DEBUG
2331 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2332 #endif
2333
2334 static int jbd2_journal_init_journal_head_cache(void)
2335 {
2336         int retval;
2337
2338         J_ASSERT(jbd2_journal_head_cache == NULL);
2339         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2340                                 sizeof(struct journal_head),
2341                                 0,              /* offset */
2342                                 SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2343                                 NULL);          /* ctor */
2344         retval = 0;
2345         if (!jbd2_journal_head_cache) {
2346                 retval = -ENOMEM;
2347                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2348         }
2349         return retval;
2350 }
2351
2352 static void jbd2_journal_destroy_journal_head_cache(void)
2353 {
2354         if (jbd2_journal_head_cache) {
2355                 kmem_cache_destroy(jbd2_journal_head_cache);
2356                 jbd2_journal_head_cache = NULL;
2357         }
2358 }
2359
2360 /*
2361  * journal_head splicing and dicing
2362  */
2363 static struct journal_head *journal_alloc_journal_head(void)
2364 {
2365         struct journal_head *ret;
2366
2367 #ifdef CONFIG_JBD2_DEBUG
2368         atomic_inc(&nr_journal_heads);
2369 #endif
2370         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2371         if (!ret) {
2372                 jbd_debug(1, "out of memory for journal_head\n");
2373                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2374                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2375                                 GFP_NOFS | __GFP_NOFAIL);
2376         }
2377         return ret;
2378 }
2379
2380 static void journal_free_journal_head(struct journal_head *jh)
2381 {
2382 #ifdef CONFIG_JBD2_DEBUG
2383         atomic_dec(&nr_journal_heads);
2384         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2385 #endif
2386         kmem_cache_free(jbd2_journal_head_cache, jh);
2387 }
2388
2389 /*
2390  * A journal_head is attached to a buffer_head whenever JBD has an
2391  * interest in the buffer.
2392  *
2393  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2394  * is set.  This bit is tested in core kernel code where we need to take
2395  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2396  * there.
2397  *
2398  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2399  *
2400  * When a buffer has its BH_JBD bit set it is immune from being released by
2401  * core kernel code, mainly via ->b_count.
2402  *
2403  * A journal_head is detached from its buffer_head when the journal_head's
2404  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2405  * transaction (b_cp_transaction) hold their references to b_jcount.
2406  *
2407  * Various places in the kernel want to attach a journal_head to a buffer_head
2408  * _before_ attaching the journal_head to a transaction.  To protect the
2409  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2410  * journal_head's b_jcount refcount by one.  The caller must call
2411  * jbd2_journal_put_journal_head() to undo this.
2412  *
2413  * So the typical usage would be:
2414  *
2415  *      (Attach a journal_head if needed.  Increments b_jcount)
2416  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2417  *      ...
2418  *      (Get another reference for transaction)
2419  *      jbd2_journal_grab_journal_head(bh);
2420  *      jh->b_transaction = xxx;
2421  *      (Put original reference)
2422  *      jbd2_journal_put_journal_head(jh);
2423  */
2424
2425 /*
2426  * Give a buffer_head a journal_head.
2427  *
2428  * May sleep.
2429  */
2430 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2431 {
2432         struct journal_head *jh;
2433         struct journal_head *new_jh = NULL;
2434
2435 repeat:
2436         if (!buffer_jbd(bh))
2437                 new_jh = journal_alloc_journal_head();
2438
2439         jbd_lock_bh_journal_head(bh);
2440         if (buffer_jbd(bh)) {
2441                 jh = bh2jh(bh);
2442         } else {
2443                 J_ASSERT_BH(bh,
2444                         (atomic_read(&bh->b_count) > 0) ||
2445                         (bh->b_page && bh->b_page->mapping));
2446
2447                 if (!new_jh) {
2448                         jbd_unlock_bh_journal_head(bh);
2449                         goto repeat;
2450                 }
2451
2452                 jh = new_jh;
2453                 new_jh = NULL;          /* We consumed it */
2454                 set_buffer_jbd(bh);
2455                 bh->b_private = jh;
2456                 jh->b_bh = bh;
2457                 get_bh(bh);
2458                 BUFFER_TRACE(bh, "added journal_head");
2459         }
2460         jh->b_jcount++;
2461         jbd_unlock_bh_journal_head(bh);
2462         if (new_jh)
2463                 journal_free_journal_head(new_jh);
2464         return bh->b_private;
2465 }
2466
2467 /*
2468  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2469  * having a journal_head, return NULL
2470  */
2471 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2472 {
2473         struct journal_head *jh = NULL;
2474
2475         jbd_lock_bh_journal_head(bh);
2476         if (buffer_jbd(bh)) {
2477                 jh = bh2jh(bh);
2478                 jh->b_jcount++;
2479         }
2480         jbd_unlock_bh_journal_head(bh);
2481         return jh;
2482 }
2483
2484 static void __journal_remove_journal_head(struct buffer_head *bh)
2485 {
2486         struct journal_head *jh = bh2jh(bh);
2487
2488         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2489         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2490         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2491         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2492         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2493         J_ASSERT_BH(bh, buffer_jbd(bh));
2494         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2495         BUFFER_TRACE(bh, "remove journal_head");
2496         if (jh->b_frozen_data) {
2497                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2498                 jbd2_free(jh->b_frozen_data, bh->b_size);
2499         }
2500         if (jh->b_committed_data) {
2501                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2502                 jbd2_free(jh->b_committed_data, bh->b_size);
2503         }
2504         bh->b_private = NULL;
2505         jh->b_bh = NULL;        /* debug, really */
2506         clear_buffer_jbd(bh);
2507         journal_free_journal_head(jh);
2508 }
2509
2510 /*
2511  * Drop a reference on the passed journal_head.  If it fell to zero then
2512  * release the journal_head from the buffer_head.
2513  */
2514 void jbd2_journal_put_journal_head(struct journal_head *jh)
2515 {
2516         struct buffer_head *bh = jh2bh(jh);
2517
2518         jbd_lock_bh_journal_head(bh);
2519         J_ASSERT_JH(jh, jh->b_jcount > 0);
2520         --jh->b_jcount;
2521         if (!jh->b_jcount) {
2522                 __journal_remove_journal_head(bh);
2523                 jbd_unlock_bh_journal_head(bh);
2524                 __brelse(bh);
2525         } else
2526                 jbd_unlock_bh_journal_head(bh);
2527 }
2528
2529 /*
2530  * Initialize jbd inode head
2531  */
2532 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2533 {
2534         jinode->i_transaction = NULL;
2535         jinode->i_next_transaction = NULL;
2536         jinode->i_vfs_inode = inode;
2537         jinode->i_flags = 0;
2538         INIT_LIST_HEAD(&jinode->i_list);
2539 }
2540
2541 /*
2542  * Function to be called before we start removing inode from memory (i.e.,
2543  * clear_inode() is a fine place to be called from). It removes inode from
2544  * transaction's lists.
2545  */
2546 void jbd2_journal_release_jbd_inode(journal_t *journal,
2547                                     struct jbd2_inode *jinode)
2548 {
2549         if (!journal)
2550                 return;
2551 restart:
2552         spin_lock(&journal->j_list_lock);
2553         /* Is commit writing out inode - we have to wait */
2554         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2555                 wait_queue_head_t *wq;
2556                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2557                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2558                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2559                 spin_unlock(&journal->j_list_lock);
2560                 schedule();
2561                 finish_wait(wq, &wait.wait);
2562                 goto restart;
2563         }
2564
2565         if (jinode->i_transaction) {
2566                 list_del(&jinode->i_list);
2567                 jinode->i_transaction = NULL;
2568         }
2569         spin_unlock(&journal->j_list_lock);
2570 }
2571
2572
2573 #ifdef CONFIG_PROC_FS
2574
2575 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2576
2577 static void __init jbd2_create_jbd_stats_proc_entry(void)
2578 {
2579         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2580 }
2581
2582 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2583 {
2584         if (proc_jbd2_stats)
2585                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2586 }
2587
2588 #else
2589
2590 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2591 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2592
2593 #endif
2594
2595 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2596
2597 static int __init jbd2_journal_init_handle_cache(void)
2598 {
2599         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2600         if (jbd2_handle_cache == NULL) {
2601                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2602                 return -ENOMEM;
2603         }
2604         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2605         if (jbd2_inode_cache == NULL) {
2606                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2607                 kmem_cache_destroy(jbd2_handle_cache);
2608                 return -ENOMEM;
2609         }
2610         return 0;
2611 }
2612
2613 static void jbd2_journal_destroy_handle_cache(void)
2614 {
2615         if (jbd2_handle_cache)
2616                 kmem_cache_destroy(jbd2_handle_cache);
2617         if (jbd2_inode_cache)
2618                 kmem_cache_destroy(jbd2_inode_cache);
2619
2620 }
2621
2622 /*
2623  * Module startup and shutdown
2624  */
2625
2626 static int __init journal_init_caches(void)
2627 {
2628         int ret;
2629
2630         ret = jbd2_journal_init_revoke_caches();
2631         if (ret == 0)
2632                 ret = jbd2_journal_init_journal_head_cache();
2633         if (ret == 0)
2634                 ret = jbd2_journal_init_handle_cache();
2635         if (ret == 0)
2636                 ret = jbd2_journal_init_transaction_cache();
2637         return ret;
2638 }
2639
2640 static void jbd2_journal_destroy_caches(void)
2641 {
2642         jbd2_journal_destroy_revoke_caches();
2643         jbd2_journal_destroy_journal_head_cache();
2644         jbd2_journal_destroy_handle_cache();
2645         jbd2_journal_destroy_transaction_cache();
2646         jbd2_journal_destroy_slabs();
2647 }
2648
2649 static int __init journal_init(void)
2650 {
2651         int ret;
2652
2653         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2654
2655         ret = journal_init_caches();
2656         if (ret == 0) {
2657                 jbd2_create_jbd_stats_proc_entry();
2658         } else {
2659                 jbd2_journal_destroy_caches();
2660         }
2661         return ret;
2662 }
2663
2664 static void __exit journal_exit(void)
2665 {
2666 #ifdef CONFIG_JBD2_DEBUG
2667         int n = atomic_read(&nr_journal_heads);
2668         if (n)
2669                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2670 #endif
2671         jbd2_remove_jbd_stats_proc_entry();
2672         jbd2_journal_destroy_caches();
2673 }
2674
2675 MODULE_LICENSE("GPL");
2676 module_init(journal_init);
2677 module_exit(journal_exit);
2678