OSDN Git Service

sparc32: fix struct ipc64_perm type definition
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits,
93                    atomic_read(&journal->j_reserved_credits));
94         atomic_set(&transaction->t_handle_count, 0);
95         INIT_LIST_HEAD(&transaction->t_inode_list);
96         INIT_LIST_HEAD(&transaction->t_private_list);
97
98         /* Set up the commit timer for the new transaction. */
99         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100         add_timer(&journal->j_commit_timer);
101
102         J_ASSERT(journal->j_running_transaction == NULL);
103         journal->j_running_transaction = transaction;
104         transaction->t_max_wait = 0;
105         transaction->t_start = jiffies;
106         transaction->t_requested = 0;
107
108         return transaction;
109 }
110
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130                                      unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133         if (jbd2_journal_enable_debug &&
134             time_after(transaction->t_start, ts)) {
135                 ts = jbd2_time_diff(ts, transaction->t_start);
136                 spin_lock(&transaction->t_handle_lock);
137                 if (ts > transaction->t_max_wait)
138                         transaction->t_max_wait = ts;
139                 spin_unlock(&transaction->t_handle_lock);
140         }
141 #endif
142 }
143
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150         __releases(journal->j_state_lock)
151 {
152         DEFINE_WAIT(wait);
153         int need_to_start;
154         tid_t tid = journal->j_running_transaction->t_tid;
155
156         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157                         TASK_UNINTERRUPTIBLE);
158         need_to_start = !tid_geq(journal->j_commit_request, tid);
159         read_unlock(&journal->j_state_lock);
160         if (need_to_start)
161                 jbd2_log_start_commit(journal, tid);
162         schedule();
163         finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168         atomic_sub(blocks, &journal->j_reserved_credits);
169         wake_up(&journal->j_wait_reserved);
170 }
171
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179                                    int rsv_blocks)
180 {
181         transaction_t *t = journal->j_running_transaction;
182         int needed;
183         int total = blocks + rsv_blocks;
184
185         /*
186          * If the current transaction is locked down for commit, wait
187          * for the lock to be released.
188          */
189         if (t->t_state == T_LOCKED) {
190                 wait_transaction_locked(journal);
191                 return 1;
192         }
193
194         /*
195          * If there is not enough space left in the log to write all
196          * potential buffers requested by this operation, we need to
197          * stall pending a log checkpoint to free some more log space.
198          */
199         needed = atomic_add_return(total, &t->t_outstanding_credits);
200         if (needed > journal->j_max_transaction_buffers) {
201                 /*
202                  * If the current transaction is already too large,
203                  * then start to commit it: we can then go back and
204                  * attach this handle to a new transaction.
205                  */
206                 atomic_sub(total, &t->t_outstanding_credits);
207
208                 /*
209                  * Is the number of reserved credits in the current transaction too
210                  * big to fit this handle? Wait until reserved credits are freed.
211                  */
212                 if (atomic_read(&journal->j_reserved_credits) + total >
213                     journal->j_max_transaction_buffers) {
214                         read_unlock(&journal->j_state_lock);
215                         wait_event(journal->j_wait_reserved,
216                                    atomic_read(&journal->j_reserved_credits) + total <=
217                                    journal->j_max_transaction_buffers);
218                         return 1;
219                 }
220
221                 wait_transaction_locked(journal);
222                 return 1;
223         }
224
225         /*
226          * The commit code assumes that it can get enough log space
227          * without forcing a checkpoint.  This is *critical* for
228          * correctness: a checkpoint of a buffer which is also
229          * associated with a committing transaction creates a deadlock,
230          * so commit simply cannot force through checkpoints.
231          *
232          * We must therefore ensure the necessary space in the journal
233          * *before* starting to dirty potentially checkpointed buffers
234          * in the new transaction.
235          */
236         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237                 atomic_sub(total, &t->t_outstanding_credits);
238                 read_unlock(&journal->j_state_lock);
239                 write_lock(&journal->j_state_lock);
240                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
241                         __jbd2_log_wait_for_space(journal);
242                 write_unlock(&journal->j_state_lock);
243                 return 1;
244         }
245
246         /* No reservation? We are done... */
247         if (!rsv_blocks)
248                 return 0;
249
250         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
251         /* We allow at most half of a transaction to be reserved */
252         if (needed > journal->j_max_transaction_buffers / 2) {
253                 sub_reserved_credits(journal, rsv_blocks);
254                 atomic_sub(total, &t->t_outstanding_credits);
255                 read_unlock(&journal->j_state_lock);
256                 wait_event(journal->j_wait_reserved,
257                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
258                          <= journal->j_max_transaction_buffers / 2);
259                 return 1;
260         }
261         return 0;
262 }
263
264 /*
265  * start_this_handle: Given a handle, deal with any locking or stalling
266  * needed to make sure that there is enough journal space for the handle
267  * to begin.  Attach the handle to a transaction and set up the
268  * transaction's buffer credits.
269  */
270
271 static int start_this_handle(journal_t *journal, handle_t *handle,
272                              gfp_t gfp_mask)
273 {
274         transaction_t   *transaction, *new_transaction = NULL;
275         int             blocks = handle->h_buffer_credits;
276         int             rsv_blocks = 0;
277         unsigned long ts = jiffies;
278
279         if (handle->h_rsv_handle)
280                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
281
282         /*
283          * Limit the number of reserved credits to 1/2 of maximum transaction
284          * size and limit the number of total credits to not exceed maximum
285          * transaction size per operation.
286          */
287         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
288             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
289                 printk(KERN_ERR "JBD2: %s wants too many credits "
290                        "credits:%d rsv_credits:%d max:%d\n",
291                        current->comm, blocks, rsv_blocks,
292                        journal->j_max_transaction_buffers);
293                 WARN_ON(1);
294                 return -ENOSPC;
295         }
296
297 alloc_transaction:
298         if (!journal->j_running_transaction) {
299                 /*
300                  * If __GFP_FS is not present, then we may be being called from
301                  * inside the fs writeback layer, so we MUST NOT fail.
302                  */
303                 if ((gfp_mask & __GFP_FS) == 0)
304                         gfp_mask |= __GFP_NOFAIL;
305                 new_transaction = kmem_cache_zalloc(transaction_cache,
306                                                     gfp_mask);
307                 if (!new_transaction)
308                         return -ENOMEM;
309         }
310
311         jbd_debug(3, "New handle %p going live.\n", handle);
312
313         /*
314          * We need to hold j_state_lock until t_updates has been incremented,
315          * for proper journal barrier handling
316          */
317 repeat:
318         read_lock(&journal->j_state_lock);
319         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
320         if (is_journal_aborted(journal) ||
321             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
322                 read_unlock(&journal->j_state_lock);
323                 jbd2_journal_free_transaction(new_transaction);
324                 return -EROFS;
325         }
326
327         /*
328          * Wait on the journal's transaction barrier if necessary. Specifically
329          * we allow reserved handles to proceed because otherwise commit could
330          * deadlock on page writeback not being able to complete.
331          */
332         if (!handle->h_reserved && journal->j_barrier_count) {
333                 read_unlock(&journal->j_state_lock);
334                 wait_event(journal->j_wait_transaction_locked,
335                                 journal->j_barrier_count == 0);
336                 goto repeat;
337         }
338
339         if (!journal->j_running_transaction) {
340                 read_unlock(&journal->j_state_lock);
341                 if (!new_transaction)
342                         goto alloc_transaction;
343                 write_lock(&journal->j_state_lock);
344                 if (!journal->j_running_transaction &&
345                     (handle->h_reserved || !journal->j_barrier_count)) {
346                         jbd2_get_transaction(journal, new_transaction);
347                         new_transaction = NULL;
348                 }
349                 write_unlock(&journal->j_state_lock);
350                 goto repeat;
351         }
352
353         transaction = journal->j_running_transaction;
354
355         if (!handle->h_reserved) {
356                 /* We may have dropped j_state_lock - restart in that case */
357                 if (add_transaction_credits(journal, blocks, rsv_blocks))
358                         goto repeat;
359         } else {
360                 /*
361                  * We have handle reserved so we are allowed to join T_LOCKED
362                  * transaction and we don't have to check for transaction size
363                  * and journal space.
364                  */
365                 sub_reserved_credits(journal, blocks);
366                 handle->h_reserved = 0;
367         }
368
369         /* OK, account for the buffers that this operation expects to
370          * use and add the handle to the running transaction. 
371          */
372         update_t_max_wait(transaction, ts);
373         handle->h_transaction = transaction;
374         handle->h_requested_credits = blocks;
375         handle->h_start_jiffies = jiffies;
376         atomic_inc(&transaction->t_updates);
377         atomic_inc(&transaction->t_handle_count);
378         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
379                   handle, blocks,
380                   atomic_read(&transaction->t_outstanding_credits),
381                   jbd2_log_space_left(journal));
382         read_unlock(&journal->j_state_lock);
383         current->journal_info = handle;
384
385         lock_map_acquire(&handle->h_lockdep_map);
386         jbd2_journal_free_transaction(new_transaction);
387         return 0;
388 }
389
390 static struct lock_class_key jbd2_handle_key;
391
392 /* Allocate a new handle.  This should probably be in a slab... */
393 static handle_t *new_handle(int nblocks)
394 {
395         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
396         if (!handle)
397                 return NULL;
398         handle->h_buffer_credits = nblocks;
399         handle->h_ref = 1;
400
401         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
402                                                 &jbd2_handle_key, 0);
403
404         return handle;
405 }
406
407 /**
408  * handle_t *jbd2_journal_start() - Obtain a new handle.
409  * @journal: Journal to start transaction on.
410  * @nblocks: number of block buffer we might modify
411  *
412  * We make sure that the transaction can guarantee at least nblocks of
413  * modified buffers in the log.  We block until the log can guarantee
414  * that much space. Additionally, if rsv_blocks > 0, we also create another
415  * handle with rsv_blocks reserved blocks in the journal. This handle is
416  * is stored in h_rsv_handle. It is not attached to any particular transaction
417  * and thus doesn't block transaction commit. If the caller uses this reserved
418  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
419  * on the parent handle will dispose the reserved one. Reserved handle has to
420  * be converted to a normal handle using jbd2_journal_start_reserved() before
421  * it can be used.
422  *
423  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
424  * on failure.
425  */
426 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
427                               gfp_t gfp_mask, unsigned int type,
428                               unsigned int line_no)
429 {
430         handle_t *handle = journal_current_handle();
431         int err;
432
433         if (!journal)
434                 return ERR_PTR(-EROFS);
435
436         if (handle) {
437                 J_ASSERT(handle->h_transaction->t_journal == journal);
438                 handle->h_ref++;
439                 return handle;
440         }
441
442         handle = new_handle(nblocks);
443         if (!handle)
444                 return ERR_PTR(-ENOMEM);
445         if (rsv_blocks) {
446                 handle_t *rsv_handle;
447
448                 rsv_handle = new_handle(rsv_blocks);
449                 if (!rsv_handle) {
450                         jbd2_free_handle(handle);
451                         return ERR_PTR(-ENOMEM);
452                 }
453                 rsv_handle->h_reserved = 1;
454                 rsv_handle->h_journal = journal;
455                 handle->h_rsv_handle = rsv_handle;
456         }
457
458         err = start_this_handle(journal, handle, gfp_mask);
459         if (err < 0) {
460                 if (handle->h_rsv_handle)
461                         jbd2_free_handle(handle->h_rsv_handle);
462                 jbd2_free_handle(handle);
463                 return ERR_PTR(err);
464         }
465         handle->h_type = type;
466         handle->h_line_no = line_no;
467         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
468                                 handle->h_transaction->t_tid, type,
469                                 line_no, nblocks);
470         return handle;
471 }
472 EXPORT_SYMBOL(jbd2__journal_start);
473
474
475 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
476 {
477         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
478 }
479 EXPORT_SYMBOL(jbd2_journal_start);
480
481 void jbd2_journal_free_reserved(handle_t *handle)
482 {
483         journal_t *journal = handle->h_journal;
484
485         WARN_ON(!handle->h_reserved);
486         sub_reserved_credits(journal, handle->h_buffer_credits);
487         jbd2_free_handle(handle);
488 }
489 EXPORT_SYMBOL(jbd2_journal_free_reserved);
490
491 /**
492  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
493  * @handle: handle to start
494  *
495  * Start handle that has been previously reserved with jbd2_journal_reserve().
496  * This attaches @handle to the running transaction (or creates one if there's
497  * not transaction running). Unlike jbd2_journal_start() this function cannot
498  * block on journal commit, checkpointing, or similar stuff. It can block on
499  * memory allocation or frozen journal though.
500  *
501  * Return 0 on success, non-zero on error - handle is freed in that case.
502  */
503 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
504                                 unsigned int line_no)
505 {
506         journal_t *journal = handle->h_journal;
507         int ret = -EIO;
508
509         if (WARN_ON(!handle->h_reserved)) {
510                 /* Someone passed in normal handle? Just stop it. */
511                 jbd2_journal_stop(handle);
512                 return ret;
513         }
514         /*
515          * Usefulness of mixing of reserved and unreserved handles is
516          * questionable. So far nobody seems to need it so just error out.
517          */
518         if (WARN_ON(current->journal_info)) {
519                 jbd2_journal_free_reserved(handle);
520                 return ret;
521         }
522
523         handle->h_journal = NULL;
524         /*
525          * GFP_NOFS is here because callers are likely from writeback or
526          * similarly constrained call sites
527          */
528         ret = start_this_handle(journal, handle, GFP_NOFS);
529         if (ret < 0) {
530                 handle->h_journal = journal;
531                 jbd2_journal_free_reserved(handle);
532                 return ret;
533         }
534         handle->h_type = type;
535         handle->h_line_no = line_no;
536         return 0;
537 }
538 EXPORT_SYMBOL(jbd2_journal_start_reserved);
539
540 /**
541  * int jbd2_journal_extend() - extend buffer credits.
542  * @handle:  handle to 'extend'
543  * @nblocks: nr blocks to try to extend by.
544  *
545  * Some transactions, such as large extends and truncates, can be done
546  * atomically all at once or in several stages.  The operation requests
547  * a credit for a number of buffer modications in advance, but can
548  * extend its credit if it needs more.
549  *
550  * jbd2_journal_extend tries to give the running handle more buffer credits.
551  * It does not guarantee that allocation - this is a best-effort only.
552  * The calling process MUST be able to deal cleanly with a failure to
553  * extend here.
554  *
555  * Return 0 on success, non-zero on failure.
556  *
557  * return code < 0 implies an error
558  * return code > 0 implies normal transaction-full status.
559  */
560 int jbd2_journal_extend(handle_t *handle, int nblocks)
561 {
562         transaction_t *transaction = handle->h_transaction;
563         journal_t *journal;
564         int result;
565         int wanted;
566
567         if (is_handle_aborted(handle))
568                 return -EROFS;
569         journal = transaction->t_journal;
570
571         result = 1;
572
573         read_lock(&journal->j_state_lock);
574
575         /* Don't extend a locked-down transaction! */
576         if (transaction->t_state != T_RUNNING) {
577                 jbd_debug(3, "denied handle %p %d blocks: "
578                           "transaction not running\n", handle, nblocks);
579                 goto error_out;
580         }
581
582         spin_lock(&transaction->t_handle_lock);
583         wanted = atomic_add_return(nblocks,
584                                    &transaction->t_outstanding_credits);
585
586         if (wanted > journal->j_max_transaction_buffers) {
587                 jbd_debug(3, "denied handle %p %d blocks: "
588                           "transaction too large\n", handle, nblocks);
589                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
590                 goto unlock;
591         }
592
593         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
594             jbd2_log_space_left(journal)) {
595                 jbd_debug(3, "denied handle %p %d blocks: "
596                           "insufficient log space\n", handle, nblocks);
597                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
598                 goto unlock;
599         }
600
601         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
602                                  transaction->t_tid,
603                                  handle->h_type, handle->h_line_no,
604                                  handle->h_buffer_credits,
605                                  nblocks);
606
607         handle->h_buffer_credits += nblocks;
608         handle->h_requested_credits += nblocks;
609         result = 0;
610
611         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
612 unlock:
613         spin_unlock(&transaction->t_handle_lock);
614 error_out:
615         read_unlock(&journal->j_state_lock);
616         return result;
617 }
618
619
620 /**
621  * int jbd2_journal_restart() - restart a handle .
622  * @handle:  handle to restart
623  * @nblocks: nr credits requested
624  *
625  * Restart a handle for a multi-transaction filesystem
626  * operation.
627  *
628  * If the jbd2_journal_extend() call above fails to grant new buffer credits
629  * to a running handle, a call to jbd2_journal_restart will commit the
630  * handle's transaction so far and reattach the handle to a new
631  * transaction capabable of guaranteeing the requested number of
632  * credits. We preserve reserved handle if there's any attached to the
633  * passed in handle.
634  */
635 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
636 {
637         transaction_t *transaction = handle->h_transaction;
638         journal_t *journal;
639         tid_t           tid;
640         int             need_to_start, ret;
641
642         /* If we've had an abort of any type, don't even think about
643          * actually doing the restart! */
644         if (is_handle_aborted(handle))
645                 return 0;
646         journal = transaction->t_journal;
647
648         /*
649          * First unlink the handle from its current transaction, and start the
650          * commit on that.
651          */
652         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
653         J_ASSERT(journal_current_handle() == handle);
654
655         read_lock(&journal->j_state_lock);
656         spin_lock(&transaction->t_handle_lock);
657         atomic_sub(handle->h_buffer_credits,
658                    &transaction->t_outstanding_credits);
659         if (handle->h_rsv_handle) {
660                 sub_reserved_credits(journal,
661                                      handle->h_rsv_handle->h_buffer_credits);
662         }
663         if (atomic_dec_and_test(&transaction->t_updates))
664                 wake_up(&journal->j_wait_updates);
665         tid = transaction->t_tid;
666         spin_unlock(&transaction->t_handle_lock);
667         handle->h_transaction = NULL;
668         current->journal_info = NULL;
669
670         jbd_debug(2, "restarting handle %p\n", handle);
671         need_to_start = !tid_geq(journal->j_commit_request, tid);
672         read_unlock(&journal->j_state_lock);
673         if (need_to_start)
674                 jbd2_log_start_commit(journal, tid);
675
676         lock_map_release(&handle->h_lockdep_map);
677         handle->h_buffer_credits = nblocks;
678         ret = start_this_handle(journal, handle, gfp_mask);
679         return ret;
680 }
681 EXPORT_SYMBOL(jbd2__journal_restart);
682
683
684 int jbd2_journal_restart(handle_t *handle, int nblocks)
685 {
686         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
687 }
688 EXPORT_SYMBOL(jbd2_journal_restart);
689
690 /**
691  * void jbd2_journal_lock_updates () - establish a transaction barrier.
692  * @journal:  Journal to establish a barrier on.
693  *
694  * This locks out any further updates from being started, and blocks
695  * until all existing updates have completed, returning only once the
696  * journal is in a quiescent state with no updates running.
697  *
698  * The journal lock should not be held on entry.
699  */
700 void jbd2_journal_lock_updates(journal_t *journal)
701 {
702         DEFINE_WAIT(wait);
703
704         write_lock(&journal->j_state_lock);
705         ++journal->j_barrier_count;
706
707         /* Wait until there are no reserved handles */
708         if (atomic_read(&journal->j_reserved_credits)) {
709                 write_unlock(&journal->j_state_lock);
710                 wait_event(journal->j_wait_reserved,
711                            atomic_read(&journal->j_reserved_credits) == 0);
712                 write_lock(&journal->j_state_lock);
713         }
714
715         /* Wait until there are no running updates */
716         while (1) {
717                 transaction_t *transaction = journal->j_running_transaction;
718
719                 if (!transaction)
720                         break;
721
722                 spin_lock(&transaction->t_handle_lock);
723                 prepare_to_wait(&journal->j_wait_updates, &wait,
724                                 TASK_UNINTERRUPTIBLE);
725                 if (!atomic_read(&transaction->t_updates)) {
726                         spin_unlock(&transaction->t_handle_lock);
727                         finish_wait(&journal->j_wait_updates, &wait);
728                         break;
729                 }
730                 spin_unlock(&transaction->t_handle_lock);
731                 write_unlock(&journal->j_state_lock);
732                 schedule();
733                 finish_wait(&journal->j_wait_updates, &wait);
734                 write_lock(&journal->j_state_lock);
735         }
736         write_unlock(&journal->j_state_lock);
737
738         /*
739          * We have now established a barrier against other normal updates, but
740          * we also need to barrier against other jbd2_journal_lock_updates() calls
741          * to make sure that we serialise special journal-locked operations
742          * too.
743          */
744         mutex_lock(&journal->j_barrier);
745 }
746
747 /**
748  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
749  * @journal:  Journal to release the barrier on.
750  *
751  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
752  *
753  * Should be called without the journal lock held.
754  */
755 void jbd2_journal_unlock_updates (journal_t *journal)
756 {
757         J_ASSERT(journal->j_barrier_count != 0);
758
759         mutex_unlock(&journal->j_barrier);
760         write_lock(&journal->j_state_lock);
761         --journal->j_barrier_count;
762         write_unlock(&journal->j_state_lock);
763         wake_up(&journal->j_wait_transaction_locked);
764 }
765
766 static void warn_dirty_buffer(struct buffer_head *bh)
767 {
768         char b[BDEVNAME_SIZE];
769
770         printk(KERN_WARNING
771                "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
772                "There's a risk of filesystem corruption in case of system "
773                "crash.\n",
774                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
775 }
776
777 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
778 static void jbd2_freeze_jh_data(struct journal_head *jh)
779 {
780         struct page *page;
781         int offset;
782         char *source;
783         struct buffer_head *bh = jh2bh(jh);
784
785         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
786         page = bh->b_page;
787         offset = offset_in_page(bh->b_data);
788         source = kmap_atomic(page);
789         /* Fire data frozen trigger just before we copy the data */
790         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
791         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
792         kunmap_atomic(source);
793
794         /*
795          * Now that the frozen data is saved off, we need to store any matching
796          * triggers.
797          */
798         jh->b_frozen_triggers = jh->b_triggers;
799 }
800
801 /*
802  * If the buffer is already part of the current transaction, then there
803  * is nothing we need to do.  If it is already part of a prior
804  * transaction which we are still committing to disk, then we need to
805  * make sure that we do not overwrite the old copy: we do copy-out to
806  * preserve the copy going to disk.  We also account the buffer against
807  * the handle's metadata buffer credits (unless the buffer is already
808  * part of the transaction, that is).
809  *
810  */
811 static int
812 do_get_write_access(handle_t *handle, struct journal_head *jh,
813                         int force_copy)
814 {
815         struct buffer_head *bh;
816         transaction_t *transaction = handle->h_transaction;
817         journal_t *journal;
818         int error;
819         char *frozen_buffer = NULL;
820         unsigned long start_lock, time_lock;
821
822         if (is_handle_aborted(handle))
823                 return -EROFS;
824         journal = transaction->t_journal;
825
826         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
827
828         JBUFFER_TRACE(jh, "entry");
829 repeat:
830         bh = jh2bh(jh);
831
832         /* @@@ Need to check for errors here at some point. */
833
834         start_lock = jiffies;
835         lock_buffer(bh);
836         jbd_lock_bh_state(bh);
837
838         /* If it takes too long to lock the buffer, trace it */
839         time_lock = jbd2_time_diff(start_lock, jiffies);
840         if (time_lock > HZ/10)
841                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
842                         jiffies_to_msecs(time_lock));
843
844         /* We now hold the buffer lock so it is safe to query the buffer
845          * state.  Is the buffer dirty?
846          *
847          * If so, there are two possibilities.  The buffer may be
848          * non-journaled, and undergoing a quite legitimate writeback.
849          * Otherwise, it is journaled, and we don't expect dirty buffers
850          * in that state (the buffers should be marked JBD_Dirty
851          * instead.)  So either the IO is being done under our own
852          * control and this is a bug, or it's a third party IO such as
853          * dump(8) (which may leave the buffer scheduled for read ---
854          * ie. locked but not dirty) or tune2fs (which may actually have
855          * the buffer dirtied, ugh.)  */
856
857         if (buffer_dirty(bh)) {
858                 /*
859                  * First question: is this buffer already part of the current
860                  * transaction or the existing committing transaction?
861                  */
862                 if (jh->b_transaction) {
863                         J_ASSERT_JH(jh,
864                                 jh->b_transaction == transaction ||
865                                 jh->b_transaction ==
866                                         journal->j_committing_transaction);
867                         if (jh->b_next_transaction)
868                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
869                                                         transaction);
870                         warn_dirty_buffer(bh);
871                 }
872                 /*
873                  * In any case we need to clean the dirty flag and we must
874                  * do it under the buffer lock to be sure we don't race
875                  * with running write-out.
876                  */
877                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
878                 clear_buffer_dirty(bh);
879                 set_buffer_jbddirty(bh);
880         }
881
882         unlock_buffer(bh);
883
884         error = -EROFS;
885         if (is_handle_aborted(handle)) {
886                 jbd_unlock_bh_state(bh);
887                 goto out;
888         }
889         error = 0;
890
891         /*
892          * The buffer is already part of this transaction if b_transaction or
893          * b_next_transaction points to it
894          */
895         if (jh->b_transaction == transaction ||
896             jh->b_next_transaction == transaction)
897                 goto done;
898
899         /*
900          * this is the first time this transaction is touching this buffer,
901          * reset the modified flag
902          */
903        jh->b_modified = 0;
904
905         /*
906          * If the buffer is not journaled right now, we need to make sure it
907          * doesn't get written to disk before the caller actually commits the
908          * new data
909          */
910         if (!jh->b_transaction) {
911                 JBUFFER_TRACE(jh, "no transaction");
912                 J_ASSERT_JH(jh, !jh->b_next_transaction);
913                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
914                 /*
915                  * Make sure all stores to jh (b_modified, b_frozen_data) are
916                  * visible before attaching it to the running transaction.
917                  * Paired with barrier in jbd2_write_access_granted()
918                  */
919                 smp_wmb();
920                 spin_lock(&journal->j_list_lock);
921                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
922                 spin_unlock(&journal->j_list_lock);
923                 goto done;
924         }
925         /*
926          * If there is already a copy-out version of this buffer, then we don't
927          * need to make another one
928          */
929         if (jh->b_frozen_data) {
930                 JBUFFER_TRACE(jh, "has frozen data");
931                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
932                 goto attach_next;
933         }
934
935         JBUFFER_TRACE(jh, "owned by older transaction");
936         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
937         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
938
939         /*
940          * There is one case we have to be very careful about.  If the
941          * committing transaction is currently writing this buffer out to disk
942          * and has NOT made a copy-out, then we cannot modify the buffer
943          * contents at all right now.  The essence of copy-out is that it is
944          * the extra copy, not the primary copy, which gets journaled.  If the
945          * primary copy is already going to disk then we cannot do copy-out
946          * here.
947          */
948         if (buffer_shadow(bh)) {
949                 JBUFFER_TRACE(jh, "on shadow: sleep");
950                 jbd_unlock_bh_state(bh);
951                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
952                 goto repeat;
953         }
954
955         /*
956          * Only do the copy if the currently-owning transaction still needs it.
957          * If buffer isn't on BJ_Metadata list, the committing transaction is
958          * past that stage (here we use the fact that BH_Shadow is set under
959          * bh_state lock together with refiling to BJ_Shadow list and at this
960          * point we know the buffer doesn't have BH_Shadow set).
961          *
962          * Subtle point, though: if this is a get_undo_access, then we will be
963          * relying on the frozen_data to contain the new value of the
964          * committed_data record after the transaction, so we HAVE to force the
965          * frozen_data copy in that case.
966          */
967         if (jh->b_jlist == BJ_Metadata || force_copy) {
968                 JBUFFER_TRACE(jh, "generate frozen data");
969                 if (!frozen_buffer) {
970                         JBUFFER_TRACE(jh, "allocate memory for buffer");
971                         jbd_unlock_bh_state(bh);
972                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
973                         if (!frozen_buffer) {
974                                 printk(KERN_ERR "%s: OOM for frozen_buffer\n",
975                                        __func__);
976                                 JBUFFER_TRACE(jh, "oom!");
977                                 error = -ENOMEM;
978                                 goto out;
979                         }
980                         goto repeat;
981                 }
982                 jh->b_frozen_data = frozen_buffer;
983                 frozen_buffer = NULL;
984                 jbd2_freeze_jh_data(jh);
985         }
986 attach_next:
987         /*
988          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
989          * before attaching it to the running transaction. Paired with barrier
990          * in jbd2_write_access_granted()
991          */
992         smp_wmb();
993         jh->b_next_transaction = transaction;
994
995 done:
996         jbd_unlock_bh_state(bh);
997
998         /*
999          * If we are about to journal a buffer, then any revoke pending on it is
1000          * no longer valid
1001          */
1002         jbd2_journal_cancel_revoke(handle, jh);
1003
1004 out:
1005         if (unlikely(frozen_buffer))    /* It's usually NULL */
1006                 jbd2_free(frozen_buffer, bh->b_size);
1007
1008         JBUFFER_TRACE(jh, "exit");
1009         return error;
1010 }
1011
1012 /* Fast check whether buffer is already attached to the required transaction */
1013 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1014                                                         bool undo)
1015 {
1016         struct journal_head *jh;
1017         bool ret = false;
1018
1019         /* Dirty buffers require special handling... */
1020         if (buffer_dirty(bh))
1021                 return false;
1022
1023         /*
1024          * RCU protects us from dereferencing freed pages. So the checks we do
1025          * are guaranteed not to oops. However the jh slab object can get freed
1026          * & reallocated while we work with it. So we have to be careful. When
1027          * we see jh attached to the running transaction, we know it must stay
1028          * so until the transaction is committed. Thus jh won't be freed and
1029          * will be attached to the same bh while we run.  However it can
1030          * happen jh gets freed, reallocated, and attached to the transaction
1031          * just after we get pointer to it from bh. So we have to be careful
1032          * and recheck jh still belongs to our bh before we return success.
1033          */
1034         rcu_read_lock();
1035         if (!buffer_jbd(bh))
1036                 goto out;
1037         /* This should be bh2jh() but that doesn't work with inline functions */
1038         jh = READ_ONCE(bh->b_private);
1039         if (!jh)
1040                 goto out;
1041         /* For undo access buffer must have data copied */
1042         if (undo && !jh->b_committed_data)
1043                 goto out;
1044         if (jh->b_transaction != handle->h_transaction &&
1045             jh->b_next_transaction != handle->h_transaction)
1046                 goto out;
1047         /*
1048          * There are two reasons for the barrier here:
1049          * 1) Make sure to fetch b_bh after we did previous checks so that we
1050          * detect when jh went through free, realloc, attach to transaction
1051          * while we were checking. Paired with implicit barrier in that path.
1052          * 2) So that access to bh done after jbd2_write_access_granted()
1053          * doesn't get reordered and see inconsistent state of concurrent
1054          * do_get_write_access().
1055          */
1056         smp_mb();
1057         if (unlikely(jh->b_bh != bh))
1058                 goto out;
1059         ret = true;
1060 out:
1061         rcu_read_unlock();
1062         return ret;
1063 }
1064
1065 /**
1066  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1067  * @handle: transaction to add buffer modifications to
1068  * @bh:     bh to be used for metadata writes
1069  *
1070  * Returns an error code or 0 on success.
1071  *
1072  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1073  * because we're write()ing a buffer which is also part of a shared mapping.
1074  */
1075
1076 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1077 {
1078         struct journal_head *jh;
1079         int rc;
1080
1081         if (jbd2_write_access_granted(handle, bh, false))
1082                 return 0;
1083
1084         jh = jbd2_journal_add_journal_head(bh);
1085         /* We do not want to get caught playing with fields which the
1086          * log thread also manipulates.  Make sure that the buffer
1087          * completes any outstanding IO before proceeding. */
1088         rc = do_get_write_access(handle, jh, 0);
1089         jbd2_journal_put_journal_head(jh);
1090         return rc;
1091 }
1092
1093
1094 /*
1095  * When the user wants to journal a newly created buffer_head
1096  * (ie. getblk() returned a new buffer and we are going to populate it
1097  * manually rather than reading off disk), then we need to keep the
1098  * buffer_head locked until it has been completely filled with new
1099  * data.  In this case, we should be able to make the assertion that
1100  * the bh is not already part of an existing transaction.
1101  *
1102  * The buffer should already be locked by the caller by this point.
1103  * There is no lock ranking violation: it was a newly created,
1104  * unlocked buffer beforehand. */
1105
1106 /**
1107  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1108  * @handle: transaction to new buffer to
1109  * @bh: new buffer.
1110  *
1111  * Call this if you create a new bh.
1112  */
1113 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1114 {
1115         transaction_t *transaction = handle->h_transaction;
1116         journal_t *journal;
1117         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1118         int err;
1119
1120         jbd_debug(5, "journal_head %p\n", jh);
1121         err = -EROFS;
1122         if (is_handle_aborted(handle))
1123                 goto out;
1124         journal = transaction->t_journal;
1125         err = 0;
1126
1127         JBUFFER_TRACE(jh, "entry");
1128         /*
1129          * The buffer may already belong to this transaction due to pre-zeroing
1130          * in the filesystem's new_block code.  It may also be on the previous,
1131          * committing transaction's lists, but it HAS to be in Forget state in
1132          * that case: the transaction must have deleted the buffer for it to be
1133          * reused here.
1134          */
1135         jbd_lock_bh_state(bh);
1136         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1137                 jh->b_transaction == NULL ||
1138                 (jh->b_transaction == journal->j_committing_transaction &&
1139                           jh->b_jlist == BJ_Forget)));
1140
1141         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1142         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1143
1144         if (jh->b_transaction == NULL) {
1145                 /*
1146                  * Previous jbd2_journal_forget() could have left the buffer
1147                  * with jbddirty bit set because it was being committed. When
1148                  * the commit finished, we've filed the buffer for
1149                  * checkpointing and marked it dirty. Now we are reallocating
1150                  * the buffer so the transaction freeing it must have
1151                  * committed and so it's safe to clear the dirty bit.
1152                  */
1153                 clear_buffer_dirty(jh2bh(jh));
1154                 /* first access by this transaction */
1155                 jh->b_modified = 0;
1156
1157                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1158                 spin_lock(&journal->j_list_lock);
1159                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1160                 spin_unlock(&journal->j_list_lock);
1161         } else if (jh->b_transaction == journal->j_committing_transaction) {
1162                 /* first access by this transaction */
1163                 jh->b_modified = 0;
1164
1165                 JBUFFER_TRACE(jh, "set next transaction");
1166                 spin_lock(&journal->j_list_lock);
1167                 jh->b_next_transaction = transaction;
1168                 spin_unlock(&journal->j_list_lock);
1169         }
1170         jbd_unlock_bh_state(bh);
1171
1172         /*
1173          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1174          * blocks which contain freed but then revoked metadata.  We need
1175          * to cancel the revoke in case we end up freeing it yet again
1176          * and the reallocating as data - this would cause a second revoke,
1177          * which hits an assertion error.
1178          */
1179         JBUFFER_TRACE(jh, "cancelling revoke");
1180         jbd2_journal_cancel_revoke(handle, jh);
1181 out:
1182         jbd2_journal_put_journal_head(jh);
1183         return err;
1184 }
1185
1186 /**
1187  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1188  *     non-rewindable consequences
1189  * @handle: transaction
1190  * @bh: buffer to undo
1191  *
1192  * Sometimes there is a need to distinguish between metadata which has
1193  * been committed to disk and that which has not.  The ext3fs code uses
1194  * this for freeing and allocating space, we have to make sure that we
1195  * do not reuse freed space until the deallocation has been committed,
1196  * since if we overwrote that space we would make the delete
1197  * un-rewindable in case of a crash.
1198  *
1199  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1200  * buffer for parts of non-rewindable operations such as delete
1201  * operations on the bitmaps.  The journaling code must keep a copy of
1202  * the buffer's contents prior to the undo_access call until such time
1203  * as we know that the buffer has definitely been committed to disk.
1204  *
1205  * We never need to know which transaction the committed data is part
1206  * of, buffers touched here are guaranteed to be dirtied later and so
1207  * will be committed to a new transaction in due course, at which point
1208  * we can discard the old committed data pointer.
1209  *
1210  * Returns error number or 0 on success.
1211  */
1212 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1213 {
1214         int err;
1215         struct journal_head *jh;
1216         char *committed_data = NULL;
1217
1218         if (jbd2_write_access_granted(handle, bh, true))
1219                 return 0;
1220
1221         jh = jbd2_journal_add_journal_head(bh);
1222         JBUFFER_TRACE(jh, "entry");
1223
1224         /*
1225          * Do this first --- it can drop the journal lock, so we want to
1226          * make sure that obtaining the committed_data is done
1227          * atomically wrt. completion of any outstanding commits.
1228          */
1229         err = do_get_write_access(handle, jh, 1);
1230         if (err)
1231                 goto out;
1232
1233 repeat:
1234         if (!jh->b_committed_data) {
1235                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1236                 if (!committed_data) {
1237                         printk(KERN_ERR "%s: No memory for committed data\n",
1238                                 __func__);
1239                         err = -ENOMEM;
1240                         goto out;
1241                 }
1242         }
1243
1244         jbd_lock_bh_state(bh);
1245         if (!jh->b_committed_data) {
1246                 /* Copy out the current buffer contents into the
1247                  * preserved, committed copy. */
1248                 JBUFFER_TRACE(jh, "generate b_committed data");
1249                 if (!committed_data) {
1250                         jbd_unlock_bh_state(bh);
1251                         goto repeat;
1252                 }
1253
1254                 jh->b_committed_data = committed_data;
1255                 committed_data = NULL;
1256                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1257         }
1258         jbd_unlock_bh_state(bh);
1259 out:
1260         jbd2_journal_put_journal_head(jh);
1261         if (unlikely(committed_data))
1262                 jbd2_free(committed_data, bh->b_size);
1263         return err;
1264 }
1265
1266 /**
1267  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1268  * @bh: buffer to trigger on
1269  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1270  *
1271  * Set any triggers on this journal_head.  This is always safe, because
1272  * triggers for a committing buffer will be saved off, and triggers for
1273  * a running transaction will match the buffer in that transaction.
1274  *
1275  * Call with NULL to clear the triggers.
1276  */
1277 void jbd2_journal_set_triggers(struct buffer_head *bh,
1278                                struct jbd2_buffer_trigger_type *type)
1279 {
1280         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1281
1282         if (WARN_ON(!jh))
1283                 return;
1284         jh->b_triggers = type;
1285         jbd2_journal_put_journal_head(jh);
1286 }
1287
1288 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1289                                 struct jbd2_buffer_trigger_type *triggers)
1290 {
1291         struct buffer_head *bh = jh2bh(jh);
1292
1293         if (!triggers || !triggers->t_frozen)
1294                 return;
1295
1296         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1297 }
1298
1299 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1300                                struct jbd2_buffer_trigger_type *triggers)
1301 {
1302         if (!triggers || !triggers->t_abort)
1303                 return;
1304
1305         triggers->t_abort(triggers, jh2bh(jh));
1306 }
1307
1308 /**
1309  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1310  * @handle: transaction to add buffer to.
1311  * @bh: buffer to mark
1312  *
1313  * mark dirty metadata which needs to be journaled as part of the current
1314  * transaction.
1315  *
1316  * The buffer must have previously had jbd2_journal_get_write_access()
1317  * called so that it has a valid journal_head attached to the buffer
1318  * head.
1319  *
1320  * The buffer is placed on the transaction's metadata list and is marked
1321  * as belonging to the transaction.
1322  *
1323  * Returns error number or 0 on success.
1324  *
1325  * Special care needs to be taken if the buffer already belongs to the
1326  * current committing transaction (in which case we should have frozen
1327  * data present for that commit).  In that case, we don't relink the
1328  * buffer: that only gets done when the old transaction finally
1329  * completes its commit.
1330  */
1331 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1332 {
1333         transaction_t *transaction = handle->h_transaction;
1334         journal_t *journal;
1335         struct journal_head *jh;
1336         int ret = 0;
1337
1338         if (is_handle_aborted(handle))
1339                 return -EROFS;
1340         if (!buffer_jbd(bh))
1341                 return -EUCLEAN;
1342
1343         /*
1344          * We don't grab jh reference here since the buffer must be part
1345          * of the running transaction.
1346          */
1347         jh = bh2jh(bh);
1348         jbd_debug(5, "journal_head %p\n", jh);
1349         JBUFFER_TRACE(jh, "entry");
1350
1351         /*
1352          * This and the following assertions are unreliable since we may see jh
1353          * in inconsistent state unless we grab bh_state lock. But this is
1354          * crucial to catch bugs so let's do a reliable check until the
1355          * lockless handling is fully proven.
1356          */
1357         if (jh->b_transaction != transaction &&
1358             jh->b_next_transaction != transaction) {
1359                 jbd_lock_bh_state(bh);
1360                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1361                                 jh->b_next_transaction == transaction);
1362                 jbd_unlock_bh_state(bh);
1363         }
1364         if (jh->b_modified == 1) {
1365                 /* If it's in our transaction it must be in BJ_Metadata list. */
1366                 if (jh->b_transaction == transaction &&
1367                     jh->b_jlist != BJ_Metadata) {
1368                         jbd_lock_bh_state(bh);
1369                         if (jh->b_transaction == transaction &&
1370                             jh->b_jlist != BJ_Metadata)
1371                                 pr_err("JBD2: assertion failure: h_type=%u "
1372                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1373                                        handle->h_type, handle->h_line_no,
1374                                        (unsigned long long) bh->b_blocknr,
1375                                        jh->b_jlist);
1376                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1377                                         jh->b_jlist == BJ_Metadata);
1378                         jbd_unlock_bh_state(bh);
1379                 }
1380                 goto out;
1381         }
1382
1383         journal = transaction->t_journal;
1384         jbd_lock_bh_state(bh);
1385
1386         if (jh->b_modified == 0) {
1387                 /*
1388                  * This buffer's got modified and becoming part
1389                  * of the transaction. This needs to be done
1390                  * once a transaction -bzzz
1391                  */
1392                 if (handle->h_buffer_credits <= 0) {
1393                         ret = -ENOSPC;
1394                         goto out_unlock_bh;
1395                 }
1396                 jh->b_modified = 1;
1397                 handle->h_buffer_credits--;
1398         }
1399
1400         /*
1401          * fastpath, to avoid expensive locking.  If this buffer is already
1402          * on the running transaction's metadata list there is nothing to do.
1403          * Nobody can take it off again because there is a handle open.
1404          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1405          * result in this test being false, so we go in and take the locks.
1406          */
1407         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1408                 JBUFFER_TRACE(jh, "fastpath");
1409                 if (unlikely(jh->b_transaction !=
1410                              journal->j_running_transaction)) {
1411                         printk(KERN_ERR "JBD2: %s: "
1412                                "jh->b_transaction (%llu, %p, %u) != "
1413                                "journal->j_running_transaction (%p, %u)\n",
1414                                journal->j_devname,
1415                                (unsigned long long) bh->b_blocknr,
1416                                jh->b_transaction,
1417                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1418                                journal->j_running_transaction,
1419                                journal->j_running_transaction ?
1420                                journal->j_running_transaction->t_tid : 0);
1421                         ret = -EINVAL;
1422                 }
1423                 goto out_unlock_bh;
1424         }
1425
1426         set_buffer_jbddirty(bh);
1427
1428         /*
1429          * Metadata already on the current transaction list doesn't
1430          * need to be filed.  Metadata on another transaction's list must
1431          * be committing, and will be refiled once the commit completes:
1432          * leave it alone for now.
1433          */
1434         if (jh->b_transaction != transaction) {
1435                 JBUFFER_TRACE(jh, "already on other transaction");
1436                 if (unlikely(((jh->b_transaction !=
1437                                journal->j_committing_transaction)) ||
1438                              (jh->b_next_transaction != transaction))) {
1439                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1440                                "bad jh for block %llu: "
1441                                "transaction (%p, %u), "
1442                                "jh->b_transaction (%p, %u), "
1443                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1444                                journal->j_devname,
1445                                (unsigned long long) bh->b_blocknr,
1446                                transaction, transaction->t_tid,
1447                                jh->b_transaction,
1448                                jh->b_transaction ?
1449                                jh->b_transaction->t_tid : 0,
1450                                jh->b_next_transaction,
1451                                jh->b_next_transaction ?
1452                                jh->b_next_transaction->t_tid : 0,
1453                                jh->b_jlist);
1454                         WARN_ON(1);
1455                         ret = -EINVAL;
1456                 }
1457                 /* And this case is illegal: we can't reuse another
1458                  * transaction's data buffer, ever. */
1459                 goto out_unlock_bh;
1460         }
1461
1462         /* That test should have eliminated the following case: */
1463         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1464
1465         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1466         spin_lock(&journal->j_list_lock);
1467         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1468         spin_unlock(&journal->j_list_lock);
1469 out_unlock_bh:
1470         jbd_unlock_bh_state(bh);
1471 out:
1472         JBUFFER_TRACE(jh, "exit");
1473         return ret;
1474 }
1475
1476 /**
1477  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1478  * @handle: transaction handle
1479  * @bh:     bh to 'forget'
1480  *
1481  * We can only do the bforget if there are no commits pending against the
1482  * buffer.  If the buffer is dirty in the current running transaction we
1483  * can safely unlink it.
1484  *
1485  * bh may not be a journalled buffer at all - it may be a non-JBD
1486  * buffer which came off the hashtable.  Check for this.
1487  *
1488  * Decrements bh->b_count by one.
1489  *
1490  * Allow this call even if the handle has aborted --- it may be part of
1491  * the caller's cleanup after an abort.
1492  */
1493 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1494 {
1495         transaction_t *transaction = handle->h_transaction;
1496         journal_t *journal;
1497         struct journal_head *jh;
1498         int drop_reserve = 0;
1499         int err = 0;
1500         int was_modified = 0;
1501
1502         if (is_handle_aborted(handle))
1503                 return -EROFS;
1504         journal = transaction->t_journal;
1505
1506         BUFFER_TRACE(bh, "entry");
1507
1508         jbd_lock_bh_state(bh);
1509
1510         if (!buffer_jbd(bh))
1511                 goto not_jbd;
1512         jh = bh2jh(bh);
1513
1514         /* Critical error: attempting to delete a bitmap buffer, maybe?
1515          * Don't do any jbd operations, and return an error. */
1516         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1517                          "inconsistent data on disk")) {
1518                 err = -EIO;
1519                 goto not_jbd;
1520         }
1521
1522         /* keep track of whether or not this transaction modified us */
1523         was_modified = jh->b_modified;
1524
1525         /*
1526          * The buffer's going from the transaction, we must drop
1527          * all references -bzzz
1528          */
1529         jh->b_modified = 0;
1530
1531         if (jh->b_transaction == transaction) {
1532                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1533
1534                 /* If we are forgetting a buffer which is already part
1535                  * of this transaction, then we can just drop it from
1536                  * the transaction immediately. */
1537                 clear_buffer_dirty(bh);
1538                 clear_buffer_jbddirty(bh);
1539
1540                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1541
1542                 /*
1543                  * we only want to drop a reference if this transaction
1544                  * modified the buffer
1545                  */
1546                 if (was_modified)
1547                         drop_reserve = 1;
1548
1549                 /*
1550                  * We are no longer going to journal this buffer.
1551                  * However, the commit of this transaction is still
1552                  * important to the buffer: the delete that we are now
1553                  * processing might obsolete an old log entry, so by
1554                  * committing, we can satisfy the buffer's checkpoint.
1555                  *
1556                  * So, if we have a checkpoint on the buffer, we should
1557                  * now refile the buffer on our BJ_Forget list so that
1558                  * we know to remove the checkpoint after we commit.
1559                  */
1560
1561                 spin_lock(&journal->j_list_lock);
1562                 if (jh->b_cp_transaction) {
1563                         __jbd2_journal_temp_unlink_buffer(jh);
1564                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1565                 } else {
1566                         __jbd2_journal_unfile_buffer(jh);
1567                         if (!buffer_jbd(bh)) {
1568                                 spin_unlock(&journal->j_list_lock);
1569                                 jbd_unlock_bh_state(bh);
1570                                 __bforget(bh);
1571                                 goto drop;
1572                         }
1573                 }
1574                 spin_unlock(&journal->j_list_lock);
1575         } else if (jh->b_transaction) {
1576                 J_ASSERT_JH(jh, (jh->b_transaction ==
1577                                  journal->j_committing_transaction));
1578                 /* However, if the buffer is still owned by a prior
1579                  * (committing) transaction, we can't drop it yet... */
1580                 JBUFFER_TRACE(jh, "belongs to older transaction");
1581                 /* ... but we CAN drop it from the new transaction through
1582                  * marking the buffer as freed and set j_next_transaction to
1583                  * the new transaction, so that not only the commit code
1584                  * knows it should clear dirty bits when it is done with the
1585                  * buffer, but also the buffer can be checkpointed only
1586                  * after the new transaction commits. */
1587
1588                 set_buffer_freed(bh);
1589
1590                 if (!jh->b_next_transaction) {
1591                         spin_lock(&journal->j_list_lock);
1592                         jh->b_next_transaction = transaction;
1593                         spin_unlock(&journal->j_list_lock);
1594                 } else {
1595                         J_ASSERT(jh->b_next_transaction == transaction);
1596
1597                         /*
1598                          * only drop a reference if this transaction modified
1599                          * the buffer
1600                          */
1601                         if (was_modified)
1602                                 drop_reserve = 1;
1603                 }
1604         }
1605
1606 not_jbd:
1607         jbd_unlock_bh_state(bh);
1608         __brelse(bh);
1609 drop:
1610         if (drop_reserve) {
1611                 /* no need to reserve log space for this block -bzzz */
1612                 handle->h_buffer_credits++;
1613         }
1614         return err;
1615 }
1616
1617 /**
1618  * int jbd2_journal_stop() - complete a transaction
1619  * @handle: tranaction to complete.
1620  *
1621  * All done for a particular handle.
1622  *
1623  * There is not much action needed here.  We just return any remaining
1624  * buffer credits to the transaction and remove the handle.  The only
1625  * complication is that we need to start a commit operation if the
1626  * filesystem is marked for synchronous update.
1627  *
1628  * jbd2_journal_stop itself will not usually return an error, but it may
1629  * do so in unusual circumstances.  In particular, expect it to
1630  * return -EIO if a jbd2_journal_abort has been executed since the
1631  * transaction began.
1632  */
1633 int jbd2_journal_stop(handle_t *handle)
1634 {
1635         transaction_t *transaction = handle->h_transaction;
1636         journal_t *journal;
1637         int err = 0, wait_for_commit = 0;
1638         tid_t tid;
1639         pid_t pid;
1640
1641         if (!transaction) {
1642                 /*
1643                  * Handle is already detached from the transaction so
1644                  * there is nothing to do other than decrease a refcount,
1645                  * or free the handle if refcount drops to zero
1646                  */
1647                 if (--handle->h_ref > 0) {
1648                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1649                                                          handle->h_ref);
1650                         return err;
1651                 } else {
1652                         if (handle->h_rsv_handle)
1653                                 jbd2_free_handle(handle->h_rsv_handle);
1654                         goto free_and_exit;
1655                 }
1656         }
1657         journal = transaction->t_journal;
1658
1659         J_ASSERT(journal_current_handle() == handle);
1660
1661         if (is_handle_aborted(handle))
1662                 err = -EIO;
1663         else
1664                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1665
1666         if (--handle->h_ref > 0) {
1667                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1668                           handle->h_ref);
1669                 return err;
1670         }
1671
1672         jbd_debug(4, "Handle %p going down\n", handle);
1673         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1674                                 transaction->t_tid,
1675                                 handle->h_type, handle->h_line_no,
1676                                 jiffies - handle->h_start_jiffies,
1677                                 handle->h_sync, handle->h_requested_credits,
1678                                 (handle->h_requested_credits -
1679                                  handle->h_buffer_credits));
1680
1681         /*
1682          * Implement synchronous transaction batching.  If the handle
1683          * was synchronous, don't force a commit immediately.  Let's
1684          * yield and let another thread piggyback onto this
1685          * transaction.  Keep doing that while new threads continue to
1686          * arrive.  It doesn't cost much - we're about to run a commit
1687          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1688          * operations by 30x or more...
1689          *
1690          * We try and optimize the sleep time against what the
1691          * underlying disk can do, instead of having a static sleep
1692          * time.  This is useful for the case where our storage is so
1693          * fast that it is more optimal to go ahead and force a flush
1694          * and wait for the transaction to be committed than it is to
1695          * wait for an arbitrary amount of time for new writers to
1696          * join the transaction.  We achieve this by measuring how
1697          * long it takes to commit a transaction, and compare it with
1698          * how long this transaction has been running, and if run time
1699          * < commit time then we sleep for the delta and commit.  This
1700          * greatly helps super fast disks that would see slowdowns as
1701          * more threads started doing fsyncs.
1702          *
1703          * But don't do this if this process was the most recent one
1704          * to perform a synchronous write.  We do this to detect the
1705          * case where a single process is doing a stream of sync
1706          * writes.  No point in waiting for joiners in that case.
1707          *
1708          * Setting max_batch_time to 0 disables this completely.
1709          */
1710         pid = current->pid;
1711         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1712             journal->j_max_batch_time) {
1713                 u64 commit_time, trans_time;
1714
1715                 journal->j_last_sync_writer = pid;
1716
1717                 read_lock(&journal->j_state_lock);
1718                 commit_time = journal->j_average_commit_time;
1719                 read_unlock(&journal->j_state_lock);
1720
1721                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1722                                                    transaction->t_start_time));
1723
1724                 commit_time = max_t(u64, commit_time,
1725                                     1000*journal->j_min_batch_time);
1726                 commit_time = min_t(u64, commit_time,
1727                                     1000*journal->j_max_batch_time);
1728
1729                 if (trans_time < commit_time) {
1730                         ktime_t expires = ktime_add_ns(ktime_get(),
1731                                                        commit_time);
1732                         set_current_state(TASK_UNINTERRUPTIBLE);
1733                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1734                 }
1735         }
1736
1737         if (handle->h_sync)
1738                 transaction->t_synchronous_commit = 1;
1739         current->journal_info = NULL;
1740         atomic_sub(handle->h_buffer_credits,
1741                    &transaction->t_outstanding_credits);
1742
1743         /*
1744          * If the handle is marked SYNC, we need to set another commit
1745          * going!  We also want to force a commit if the current
1746          * transaction is occupying too much of the log, or if the
1747          * transaction is too old now.
1748          */
1749         if (handle->h_sync ||
1750             (atomic_read(&transaction->t_outstanding_credits) >
1751              journal->j_max_transaction_buffers) ||
1752             time_after_eq(jiffies, transaction->t_expires)) {
1753                 /* Do this even for aborted journals: an abort still
1754                  * completes the commit thread, it just doesn't write
1755                  * anything to disk. */
1756
1757                 jbd_debug(2, "transaction too old, requesting commit for "
1758                                         "handle %p\n", handle);
1759                 /* This is non-blocking */
1760                 jbd2_log_start_commit(journal, transaction->t_tid);
1761
1762                 /*
1763                  * Special case: JBD2_SYNC synchronous updates require us
1764                  * to wait for the commit to complete.
1765                  */
1766                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1767                         wait_for_commit = 1;
1768         }
1769
1770         /*
1771          * Once we drop t_updates, if it goes to zero the transaction
1772          * could start committing on us and eventually disappear.  So
1773          * once we do this, we must not dereference transaction
1774          * pointer again.
1775          */
1776         tid = transaction->t_tid;
1777         if (atomic_dec_and_test(&transaction->t_updates)) {
1778                 wake_up(&journal->j_wait_updates);
1779                 if (journal->j_barrier_count)
1780                         wake_up(&journal->j_wait_transaction_locked);
1781         }
1782
1783         if (wait_for_commit)
1784                 err = jbd2_log_wait_commit(journal, tid);
1785
1786         lock_map_release(&handle->h_lockdep_map);
1787
1788         if (handle->h_rsv_handle)
1789                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1790 free_and_exit:
1791         jbd2_free_handle(handle);
1792         return err;
1793 }
1794
1795 /*
1796  *
1797  * List management code snippets: various functions for manipulating the
1798  * transaction buffer lists.
1799  *
1800  */
1801
1802 /*
1803  * Append a buffer to a transaction list, given the transaction's list head
1804  * pointer.
1805  *
1806  * j_list_lock is held.
1807  *
1808  * jbd_lock_bh_state(jh2bh(jh)) is held.
1809  */
1810
1811 static inline void
1812 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1813 {
1814         if (!*list) {
1815                 jh->b_tnext = jh->b_tprev = jh;
1816                 *list = jh;
1817         } else {
1818                 /* Insert at the tail of the list to preserve order */
1819                 struct journal_head *first = *list, *last = first->b_tprev;
1820                 jh->b_tprev = last;
1821                 jh->b_tnext = first;
1822                 last->b_tnext = first->b_tprev = jh;
1823         }
1824 }
1825
1826 /*
1827  * Remove a buffer from a transaction list, given the transaction's list
1828  * head pointer.
1829  *
1830  * Called with j_list_lock held, and the journal may not be locked.
1831  *
1832  * jbd_lock_bh_state(jh2bh(jh)) is held.
1833  */
1834
1835 static inline void
1836 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1837 {
1838         if (*list == jh) {
1839                 *list = jh->b_tnext;
1840                 if (*list == jh)
1841                         *list = NULL;
1842         }
1843         jh->b_tprev->b_tnext = jh->b_tnext;
1844         jh->b_tnext->b_tprev = jh->b_tprev;
1845 }
1846
1847 /*
1848  * Remove a buffer from the appropriate transaction list.
1849  *
1850  * Note that this function can *change* the value of
1851  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1852  * t_reserved_list.  If the caller is holding onto a copy of one of these
1853  * pointers, it could go bad.  Generally the caller needs to re-read the
1854  * pointer from the transaction_t.
1855  *
1856  * Called under j_list_lock.
1857  */
1858 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1859 {
1860         struct journal_head **list = NULL;
1861         transaction_t *transaction;
1862         struct buffer_head *bh = jh2bh(jh);
1863
1864         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1865         transaction = jh->b_transaction;
1866         if (transaction)
1867                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1868
1869         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1870         if (jh->b_jlist != BJ_None)
1871                 J_ASSERT_JH(jh, transaction != NULL);
1872
1873         switch (jh->b_jlist) {
1874         case BJ_None:
1875                 return;
1876         case BJ_Metadata:
1877                 transaction->t_nr_buffers--;
1878                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1879                 list = &transaction->t_buffers;
1880                 break;
1881         case BJ_Forget:
1882                 list = &transaction->t_forget;
1883                 break;
1884         case BJ_Shadow:
1885                 list = &transaction->t_shadow_list;
1886                 break;
1887         case BJ_Reserved:
1888                 list = &transaction->t_reserved_list;
1889                 break;
1890         }
1891
1892         __blist_del_buffer(list, jh);
1893         jh->b_jlist = BJ_None;
1894         if (transaction && is_journal_aborted(transaction->t_journal))
1895                 clear_buffer_jbddirty(bh);
1896         else if (test_clear_buffer_jbddirty(bh))
1897                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1898 }
1899
1900 /*
1901  * Remove buffer from all transactions.
1902  *
1903  * Called with bh_state lock and j_list_lock
1904  *
1905  * jh and bh may be already freed when this function returns.
1906  */
1907 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1908 {
1909         __jbd2_journal_temp_unlink_buffer(jh);
1910         jh->b_transaction = NULL;
1911         jbd2_journal_put_journal_head(jh);
1912 }
1913
1914 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1915 {
1916         struct buffer_head *bh = jh2bh(jh);
1917
1918         /* Get reference so that buffer cannot be freed before we unlock it */
1919         get_bh(bh);
1920         jbd_lock_bh_state(bh);
1921         spin_lock(&journal->j_list_lock);
1922         __jbd2_journal_unfile_buffer(jh);
1923         spin_unlock(&journal->j_list_lock);
1924         jbd_unlock_bh_state(bh);
1925         __brelse(bh);
1926 }
1927
1928 /*
1929  * Called from jbd2_journal_try_to_free_buffers().
1930  *
1931  * Called under jbd_lock_bh_state(bh)
1932  */
1933 static void
1934 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1935 {
1936         struct journal_head *jh;
1937
1938         jh = bh2jh(bh);
1939
1940         if (buffer_locked(bh) || buffer_dirty(bh))
1941                 goto out;
1942
1943         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1944                 goto out;
1945
1946         spin_lock(&journal->j_list_lock);
1947         if (jh->b_cp_transaction != NULL) {
1948                 /* written-back checkpointed metadata buffer */
1949                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1950                 __jbd2_journal_remove_checkpoint(jh);
1951         }
1952         spin_unlock(&journal->j_list_lock);
1953 out:
1954         return;
1955 }
1956
1957 /**
1958  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1959  * @journal: journal for operation
1960  * @page: to try and free
1961  * @gfp_mask: we use the mask to detect how hard should we try to release
1962  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1963  * code to release the buffers.
1964  *
1965  *
1966  * For all the buffers on this page,
1967  * if they are fully written out ordered data, move them onto BUF_CLEAN
1968  * so try_to_free_buffers() can reap them.
1969  *
1970  * This function returns non-zero if we wish try_to_free_buffers()
1971  * to be called. We do this if the page is releasable by try_to_free_buffers().
1972  * We also do it if the page has locked or dirty buffers and the caller wants
1973  * us to perform sync or async writeout.
1974  *
1975  * This complicates JBD locking somewhat.  We aren't protected by the
1976  * BKL here.  We wish to remove the buffer from its committing or
1977  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1978  *
1979  * This may *change* the value of transaction_t->t_datalist, so anyone
1980  * who looks at t_datalist needs to lock against this function.
1981  *
1982  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1983  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1984  * will come out of the lock with the buffer dirty, which makes it
1985  * ineligible for release here.
1986  *
1987  * Who else is affected by this?  hmm...  Really the only contender
1988  * is do_get_write_access() - it could be looking at the buffer while
1989  * journal_try_to_free_buffer() is changing its state.  But that
1990  * cannot happen because we never reallocate freed data as metadata
1991  * while the data is part of a transaction.  Yes?
1992  *
1993  * Return 0 on failure, 1 on success
1994  */
1995 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1996                                 struct page *page, gfp_t gfp_mask)
1997 {
1998         struct buffer_head *head;
1999         struct buffer_head *bh;
2000         int ret = 0;
2001
2002         J_ASSERT(PageLocked(page));
2003
2004         head = page_buffers(page);
2005         bh = head;
2006         do {
2007                 struct journal_head *jh;
2008
2009                 /*
2010                  * We take our own ref against the journal_head here to avoid
2011                  * having to add tons of locking around each instance of
2012                  * jbd2_journal_put_journal_head().
2013                  */
2014                 jh = jbd2_journal_grab_journal_head(bh);
2015                 if (!jh)
2016                         continue;
2017
2018                 jbd_lock_bh_state(bh);
2019                 __journal_try_to_free_buffer(journal, bh);
2020                 jbd2_journal_put_journal_head(jh);
2021                 jbd_unlock_bh_state(bh);
2022                 if (buffer_jbd(bh))
2023                         goto busy;
2024         } while ((bh = bh->b_this_page) != head);
2025
2026         ret = try_to_free_buffers(page);
2027
2028 busy:
2029         return ret;
2030 }
2031
2032 /*
2033  * This buffer is no longer needed.  If it is on an older transaction's
2034  * checkpoint list we need to record it on this transaction's forget list
2035  * to pin this buffer (and hence its checkpointing transaction) down until
2036  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2037  * release it.
2038  * Returns non-zero if JBD no longer has an interest in the buffer.
2039  *
2040  * Called under j_list_lock.
2041  *
2042  * Called under jbd_lock_bh_state(bh).
2043  */
2044 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2045 {
2046         int may_free = 1;
2047         struct buffer_head *bh = jh2bh(jh);
2048
2049         if (jh->b_cp_transaction) {
2050                 JBUFFER_TRACE(jh, "on running+cp transaction");
2051                 __jbd2_journal_temp_unlink_buffer(jh);
2052                 /*
2053                  * We don't want to write the buffer anymore, clear the
2054                  * bit so that we don't confuse checks in
2055                  * __journal_file_buffer
2056                  */
2057                 clear_buffer_dirty(bh);
2058                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2059                 may_free = 0;
2060         } else {
2061                 JBUFFER_TRACE(jh, "on running transaction");
2062                 __jbd2_journal_unfile_buffer(jh);
2063         }
2064         return may_free;
2065 }
2066
2067 /*
2068  * jbd2_journal_invalidatepage
2069  *
2070  * This code is tricky.  It has a number of cases to deal with.
2071  *
2072  * There are two invariants which this code relies on:
2073  *
2074  * i_size must be updated on disk before we start calling invalidatepage on the
2075  * data.
2076  *
2077  *  This is done in ext3 by defining an ext3_setattr method which
2078  *  updates i_size before truncate gets going.  By maintaining this
2079  *  invariant, we can be sure that it is safe to throw away any buffers
2080  *  attached to the current transaction: once the transaction commits,
2081  *  we know that the data will not be needed.
2082  *
2083  *  Note however that we can *not* throw away data belonging to the
2084  *  previous, committing transaction!
2085  *
2086  * Any disk blocks which *are* part of the previous, committing
2087  * transaction (and which therefore cannot be discarded immediately) are
2088  * not going to be reused in the new running transaction
2089  *
2090  *  The bitmap committed_data images guarantee this: any block which is
2091  *  allocated in one transaction and removed in the next will be marked
2092  *  as in-use in the committed_data bitmap, so cannot be reused until
2093  *  the next transaction to delete the block commits.  This means that
2094  *  leaving committing buffers dirty is quite safe: the disk blocks
2095  *  cannot be reallocated to a different file and so buffer aliasing is
2096  *  not possible.
2097  *
2098  *
2099  * The above applies mainly to ordered data mode.  In writeback mode we
2100  * don't make guarantees about the order in which data hits disk --- in
2101  * particular we don't guarantee that new dirty data is flushed before
2102  * transaction commit --- so it is always safe just to discard data
2103  * immediately in that mode.  --sct
2104  */
2105
2106 /*
2107  * The journal_unmap_buffer helper function returns zero if the buffer
2108  * concerned remains pinned as an anonymous buffer belonging to an older
2109  * transaction.
2110  *
2111  * We're outside-transaction here.  Either or both of j_running_transaction
2112  * and j_committing_transaction may be NULL.
2113  */
2114 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2115                                 int partial_page)
2116 {
2117         transaction_t *transaction;
2118         struct journal_head *jh;
2119         int may_free = 1;
2120
2121         BUFFER_TRACE(bh, "entry");
2122
2123         /*
2124          * It is safe to proceed here without the j_list_lock because the
2125          * buffers cannot be stolen by try_to_free_buffers as long as we are
2126          * holding the page lock. --sct
2127          */
2128
2129         if (!buffer_jbd(bh))
2130                 goto zap_buffer_unlocked;
2131
2132         /* OK, we have data buffer in journaled mode */
2133         write_lock(&journal->j_state_lock);
2134         jbd_lock_bh_state(bh);
2135         spin_lock(&journal->j_list_lock);
2136
2137         jh = jbd2_journal_grab_journal_head(bh);
2138         if (!jh)
2139                 goto zap_buffer_no_jh;
2140
2141         /*
2142          * We cannot remove the buffer from checkpoint lists until the
2143          * transaction adding inode to orphan list (let's call it T)
2144          * is committed.  Otherwise if the transaction changing the
2145          * buffer would be cleaned from the journal before T is
2146          * committed, a crash will cause that the correct contents of
2147          * the buffer will be lost.  On the other hand we have to
2148          * clear the buffer dirty bit at latest at the moment when the
2149          * transaction marking the buffer as freed in the filesystem
2150          * structures is committed because from that moment on the
2151          * block can be reallocated and used by a different page.
2152          * Since the block hasn't been freed yet but the inode has
2153          * already been added to orphan list, it is safe for us to add
2154          * the buffer to BJ_Forget list of the newest transaction.
2155          *
2156          * Also we have to clear buffer_mapped flag of a truncated buffer
2157          * because the buffer_head may be attached to the page straddling
2158          * i_size (can happen only when blocksize < pagesize) and thus the
2159          * buffer_head can be reused when the file is extended again. So we end
2160          * up keeping around invalidated buffers attached to transactions'
2161          * BJ_Forget list just to stop checkpointing code from cleaning up
2162          * the transaction this buffer was modified in.
2163          */
2164         transaction = jh->b_transaction;
2165         if (transaction == NULL) {
2166                 /* First case: not on any transaction.  If it
2167                  * has no checkpoint link, then we can zap it:
2168                  * it's a writeback-mode buffer so we don't care
2169                  * if it hits disk safely. */
2170                 if (!jh->b_cp_transaction) {
2171                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2172                         goto zap_buffer;
2173                 }
2174
2175                 if (!buffer_dirty(bh)) {
2176                         /* bdflush has written it.  We can drop it now */
2177                         __jbd2_journal_remove_checkpoint(jh);
2178                         goto zap_buffer;
2179                 }
2180
2181                 /* OK, it must be in the journal but still not
2182                  * written fully to disk: it's metadata or
2183                  * journaled data... */
2184
2185                 if (journal->j_running_transaction) {
2186                         /* ... and once the current transaction has
2187                          * committed, the buffer won't be needed any
2188                          * longer. */
2189                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2190                         may_free = __dispose_buffer(jh,
2191                                         journal->j_running_transaction);
2192                         goto zap_buffer;
2193                 } else {
2194                         /* There is no currently-running transaction. So the
2195                          * orphan record which we wrote for this file must have
2196                          * passed into commit.  We must attach this buffer to
2197                          * the committing transaction, if it exists. */
2198                         if (journal->j_committing_transaction) {
2199                                 JBUFFER_TRACE(jh, "give to committing trans");
2200                                 may_free = __dispose_buffer(jh,
2201                                         journal->j_committing_transaction);
2202                                 goto zap_buffer;
2203                         } else {
2204                                 /* The orphan record's transaction has
2205                                  * committed.  We can cleanse this buffer */
2206                                 clear_buffer_jbddirty(bh);
2207                                 __jbd2_journal_remove_checkpoint(jh);
2208                                 goto zap_buffer;
2209                         }
2210                 }
2211         } else if (transaction == journal->j_committing_transaction) {
2212                 JBUFFER_TRACE(jh, "on committing transaction");
2213                 /*
2214                  * The buffer is committing, we simply cannot touch
2215                  * it. If the page is straddling i_size we have to wait
2216                  * for commit and try again.
2217                  */
2218                 if (partial_page) {
2219                         jbd2_journal_put_journal_head(jh);
2220                         spin_unlock(&journal->j_list_lock);
2221                         jbd_unlock_bh_state(bh);
2222                         write_unlock(&journal->j_state_lock);
2223                         return -EBUSY;
2224                 }
2225                 /*
2226                  * OK, buffer won't be reachable after truncate. We just set
2227                  * j_next_transaction to the running transaction (if there is
2228                  * one) and mark buffer as freed so that commit code knows it
2229                  * should clear dirty bits when it is done with the buffer.
2230                  */
2231                 set_buffer_freed(bh);
2232                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2233                         jh->b_next_transaction = journal->j_running_transaction;
2234                 jbd2_journal_put_journal_head(jh);
2235                 spin_unlock(&journal->j_list_lock);
2236                 jbd_unlock_bh_state(bh);
2237                 write_unlock(&journal->j_state_lock);
2238                 return 0;
2239         } else {
2240                 /* Good, the buffer belongs to the running transaction.
2241                  * We are writing our own transaction's data, not any
2242                  * previous one's, so it is safe to throw it away
2243                  * (remember that we expect the filesystem to have set
2244                  * i_size already for this truncate so recovery will not
2245                  * expose the disk blocks we are discarding here.) */
2246                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2247                 JBUFFER_TRACE(jh, "on running transaction");
2248                 may_free = __dispose_buffer(jh, transaction);
2249         }
2250
2251 zap_buffer:
2252         /*
2253          * This is tricky. Although the buffer is truncated, it may be reused
2254          * if blocksize < pagesize and it is attached to the page straddling
2255          * EOF. Since the buffer might have been added to BJ_Forget list of the
2256          * running transaction, journal_get_write_access() won't clear
2257          * b_modified and credit accounting gets confused. So clear b_modified
2258          * here.
2259          */
2260         jh->b_modified = 0;
2261         jbd2_journal_put_journal_head(jh);
2262 zap_buffer_no_jh:
2263         spin_unlock(&journal->j_list_lock);
2264         jbd_unlock_bh_state(bh);
2265         write_unlock(&journal->j_state_lock);
2266 zap_buffer_unlocked:
2267         clear_buffer_dirty(bh);
2268         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2269         clear_buffer_mapped(bh);
2270         clear_buffer_req(bh);
2271         clear_buffer_new(bh);
2272         clear_buffer_delay(bh);
2273         clear_buffer_unwritten(bh);
2274         bh->b_bdev = NULL;
2275         return may_free;
2276 }
2277
2278 /**
2279  * void jbd2_journal_invalidatepage()
2280  * @journal: journal to use for flush...
2281  * @page:    page to flush
2282  * @offset:  start of the range to invalidate
2283  * @length:  length of the range to invalidate
2284  *
2285  * Reap page buffers containing data after in the specified range in page.
2286  * Can return -EBUSY if buffers are part of the committing transaction and
2287  * the page is straddling i_size. Caller then has to wait for current commit
2288  * and try again.
2289  */
2290 int jbd2_journal_invalidatepage(journal_t *journal,
2291                                 struct page *page,
2292                                 unsigned int offset,
2293                                 unsigned int length)
2294 {
2295         struct buffer_head *head, *bh, *next;
2296         unsigned int stop = offset + length;
2297         unsigned int curr_off = 0;
2298         int partial_page = (offset || length < PAGE_CACHE_SIZE);
2299         int may_free = 1;
2300         int ret = 0;
2301
2302         if (!PageLocked(page))
2303                 BUG();
2304         if (!page_has_buffers(page))
2305                 return 0;
2306
2307         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2308
2309         /* We will potentially be playing with lists other than just the
2310          * data lists (especially for journaled data mode), so be
2311          * cautious in our locking. */
2312
2313         head = bh = page_buffers(page);
2314         do {
2315                 unsigned int next_off = curr_off + bh->b_size;
2316                 next = bh->b_this_page;
2317
2318                 if (next_off > stop)
2319                         return 0;
2320
2321                 if (offset <= curr_off) {
2322                         /* This block is wholly outside the truncation point */
2323                         lock_buffer(bh);
2324                         ret = journal_unmap_buffer(journal, bh, partial_page);
2325                         unlock_buffer(bh);
2326                         if (ret < 0)
2327                                 return ret;
2328                         may_free &= ret;
2329                 }
2330                 curr_off = next_off;
2331                 bh = next;
2332
2333         } while (bh != head);
2334
2335         if (!partial_page) {
2336                 if (may_free && try_to_free_buffers(page))
2337                         J_ASSERT(!page_has_buffers(page));
2338         }
2339         return 0;
2340 }
2341
2342 /*
2343  * File a buffer on the given transaction list.
2344  */
2345 void __jbd2_journal_file_buffer(struct journal_head *jh,
2346                         transaction_t *transaction, int jlist)
2347 {
2348         struct journal_head **list = NULL;
2349         int was_dirty = 0;
2350         struct buffer_head *bh = jh2bh(jh);
2351
2352         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2353         assert_spin_locked(&transaction->t_journal->j_list_lock);
2354
2355         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2356         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2357                                 jh->b_transaction == NULL);
2358
2359         if (jh->b_transaction && jh->b_jlist == jlist)
2360                 return;
2361
2362         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2363             jlist == BJ_Shadow || jlist == BJ_Forget) {
2364                 /*
2365                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2366                  * instead of buffer_dirty. We should not see a dirty bit set
2367                  * here because we clear it in do_get_write_access but e.g.
2368                  * tune2fs can modify the sb and set the dirty bit at any time
2369                  * so we try to gracefully handle that.
2370                  */
2371                 if (buffer_dirty(bh))
2372                         warn_dirty_buffer(bh);
2373                 if (test_clear_buffer_dirty(bh) ||
2374                     test_clear_buffer_jbddirty(bh))
2375                         was_dirty = 1;
2376         }
2377
2378         if (jh->b_transaction)
2379                 __jbd2_journal_temp_unlink_buffer(jh);
2380         else
2381                 jbd2_journal_grab_journal_head(bh);
2382         jh->b_transaction = transaction;
2383
2384         switch (jlist) {
2385         case BJ_None:
2386                 J_ASSERT_JH(jh, !jh->b_committed_data);
2387                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2388                 return;
2389         case BJ_Metadata:
2390                 transaction->t_nr_buffers++;
2391                 list = &transaction->t_buffers;
2392                 break;
2393         case BJ_Forget:
2394                 list = &transaction->t_forget;
2395                 break;
2396         case BJ_Shadow:
2397                 list = &transaction->t_shadow_list;
2398                 break;
2399         case BJ_Reserved:
2400                 list = &transaction->t_reserved_list;
2401                 break;
2402         }
2403
2404         __blist_add_buffer(list, jh);
2405         jh->b_jlist = jlist;
2406
2407         if (was_dirty)
2408                 set_buffer_jbddirty(bh);
2409 }
2410
2411 void jbd2_journal_file_buffer(struct journal_head *jh,
2412                                 transaction_t *transaction, int jlist)
2413 {
2414         jbd_lock_bh_state(jh2bh(jh));
2415         spin_lock(&transaction->t_journal->j_list_lock);
2416         __jbd2_journal_file_buffer(jh, transaction, jlist);
2417         spin_unlock(&transaction->t_journal->j_list_lock);
2418         jbd_unlock_bh_state(jh2bh(jh));
2419 }
2420
2421 /*
2422  * Remove a buffer from its current buffer list in preparation for
2423  * dropping it from its current transaction entirely.  If the buffer has
2424  * already started to be used by a subsequent transaction, refile the
2425  * buffer on that transaction's metadata list.
2426  *
2427  * Called under j_list_lock
2428  * Called under jbd_lock_bh_state(jh2bh(jh))
2429  *
2430  * jh and bh may be already free when this function returns
2431  */
2432 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2433 {
2434         int was_dirty, jlist;
2435         struct buffer_head *bh = jh2bh(jh);
2436
2437         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2438         if (jh->b_transaction)
2439                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2440
2441         /* If the buffer is now unused, just drop it. */
2442         if (jh->b_next_transaction == NULL) {
2443                 __jbd2_journal_unfile_buffer(jh);
2444                 return;
2445         }
2446
2447         /*
2448          * It has been modified by a later transaction: add it to the new
2449          * transaction's metadata list.
2450          */
2451
2452         was_dirty = test_clear_buffer_jbddirty(bh);
2453         __jbd2_journal_temp_unlink_buffer(jh);
2454         /*
2455          * We set b_transaction here because b_next_transaction will inherit
2456          * our jh reference and thus __jbd2_journal_file_buffer() must not
2457          * take a new one.
2458          */
2459         jh->b_transaction = jh->b_next_transaction;
2460         jh->b_next_transaction = NULL;
2461         if (buffer_freed(bh))
2462                 jlist = BJ_Forget;
2463         else if (jh->b_modified)
2464                 jlist = BJ_Metadata;
2465         else
2466                 jlist = BJ_Reserved;
2467         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2468         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2469
2470         if (was_dirty)
2471                 set_buffer_jbddirty(bh);
2472 }
2473
2474 /*
2475  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2476  * bh reference so that we can safely unlock bh.
2477  *
2478  * The jh and bh may be freed by this call.
2479  */
2480 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2481 {
2482         struct buffer_head *bh = jh2bh(jh);
2483
2484         /* Get reference so that buffer cannot be freed before we unlock it */
2485         get_bh(bh);
2486         jbd_lock_bh_state(bh);
2487         spin_lock(&journal->j_list_lock);
2488         __jbd2_journal_refile_buffer(jh);
2489         jbd_unlock_bh_state(bh);
2490         spin_unlock(&journal->j_list_lock);
2491         __brelse(bh);
2492 }
2493
2494 /*
2495  * File inode in the inode list of the handle's transaction
2496  */
2497 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2498 {
2499         transaction_t *transaction = handle->h_transaction;
2500         journal_t *journal;
2501
2502         if (is_handle_aborted(handle))
2503                 return -EROFS;
2504         journal = transaction->t_journal;
2505
2506         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2507                         transaction->t_tid);
2508
2509         /*
2510          * First check whether inode isn't already on the transaction's
2511          * lists without taking the lock. Note that this check is safe
2512          * without the lock as we cannot race with somebody removing inode
2513          * from the transaction. The reason is that we remove inode from the
2514          * transaction only in journal_release_jbd_inode() and when we commit
2515          * the transaction. We are guarded from the first case by holding
2516          * a reference to the inode. We are safe against the second case
2517          * because if jinode->i_transaction == transaction, commit code
2518          * cannot touch the transaction because we hold reference to it,
2519          * and if jinode->i_next_transaction == transaction, commit code
2520          * will only file the inode where we want it.
2521          */
2522         if (jinode->i_transaction == transaction ||
2523             jinode->i_next_transaction == transaction)
2524                 return 0;
2525
2526         spin_lock(&journal->j_list_lock);
2527
2528         if (jinode->i_transaction == transaction ||
2529             jinode->i_next_transaction == transaction)
2530                 goto done;
2531
2532         /*
2533          * We only ever set this variable to 1 so the test is safe. Since
2534          * t_need_data_flush is likely to be set, we do the test to save some
2535          * cacheline bouncing
2536          */
2537         if (!transaction->t_need_data_flush)
2538                 transaction->t_need_data_flush = 1;
2539         /* On some different transaction's list - should be
2540          * the committing one */
2541         if (jinode->i_transaction) {
2542                 J_ASSERT(jinode->i_next_transaction == NULL);
2543                 J_ASSERT(jinode->i_transaction ==
2544                                         journal->j_committing_transaction);
2545                 jinode->i_next_transaction = transaction;
2546                 goto done;
2547         }
2548         /* Not on any transaction list... */
2549         J_ASSERT(!jinode->i_next_transaction);
2550         jinode->i_transaction = transaction;
2551         list_add(&jinode->i_list, &transaction->t_inode_list);
2552 done:
2553         spin_unlock(&journal->j_list_lock);
2554
2555         return 0;
2556 }
2557
2558 /*
2559  * File truncate and transaction commit interact with each other in a
2560  * non-trivial way.  If a transaction writing data block A is
2561  * committing, we cannot discard the data by truncate until we have
2562  * written them.  Otherwise if we crashed after the transaction with
2563  * write has committed but before the transaction with truncate has
2564  * committed, we could see stale data in block A.  This function is a
2565  * helper to solve this problem.  It starts writeout of the truncated
2566  * part in case it is in the committing transaction.
2567  *
2568  * Filesystem code must call this function when inode is journaled in
2569  * ordered mode before truncation happens and after the inode has been
2570  * placed on orphan list with the new inode size. The second condition
2571  * avoids the race that someone writes new data and we start
2572  * committing the transaction after this function has been called but
2573  * before a transaction for truncate is started (and furthermore it
2574  * allows us to optimize the case where the addition to orphan list
2575  * happens in the same transaction as write --- we don't have to write
2576  * any data in such case).
2577  */
2578 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2579                                         struct jbd2_inode *jinode,
2580                                         loff_t new_size)
2581 {
2582         transaction_t *inode_trans, *commit_trans;
2583         int ret = 0;
2584
2585         /* This is a quick check to avoid locking if not necessary */
2586         if (!jinode->i_transaction)
2587                 goto out;
2588         /* Locks are here just to force reading of recent values, it is
2589          * enough that the transaction was not committing before we started
2590          * a transaction adding the inode to orphan list */
2591         read_lock(&journal->j_state_lock);
2592         commit_trans = journal->j_committing_transaction;
2593         read_unlock(&journal->j_state_lock);
2594         spin_lock(&journal->j_list_lock);
2595         inode_trans = jinode->i_transaction;
2596         spin_unlock(&journal->j_list_lock);
2597         if (inode_trans == commit_trans) {
2598                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2599                         new_size, LLONG_MAX);
2600                 if (ret)
2601                         jbd2_journal_abort(journal, ret);
2602         }
2603 out:
2604         return ret;
2605 }