OSDN Git Service

f2fs: update multi-dev metadata in resize_fs
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / fs / nilfs2 / page.c
1 /*
2  * page.c - buffer/page management specific to NILFS
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>,
21  *            Seiji Kihara <kihara@osrg.net>.
22  */
23
24 #include <linux/pagemap.h>
25 #include <linux/writeback.h>
26 #include <linux/swap.h>
27 #include <linux/bitops.h>
28 #include <linux/page-flags.h>
29 #include <linux/list.h>
30 #include <linux/highmem.h>
31 #include <linux/pagevec.h>
32 #include <linux/gfp.h>
33 #include "nilfs.h"
34 #include "page.h"
35 #include "mdt.h"
36
37
38 #define NILFS_BUFFER_INHERENT_BITS  \
39         ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
40          (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Checked))
41
42 static struct buffer_head *
43 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
44                        int blkbits, unsigned long b_state)
45
46 {
47         unsigned long first_block;
48         struct buffer_head *bh;
49
50         if (!page_has_buffers(page))
51                 create_empty_buffers(page, 1 << blkbits, b_state);
52
53         first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits);
54         bh = nilfs_page_get_nth_block(page, block - first_block);
55
56         touch_buffer(bh);
57         wait_on_buffer(bh);
58         return bh;
59 }
60
61 struct buffer_head *nilfs_grab_buffer(struct inode *inode,
62                                       struct address_space *mapping,
63                                       unsigned long blkoff,
64                                       unsigned long b_state)
65 {
66         int blkbits = inode->i_blkbits;
67         pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits);
68         struct page *page;
69         struct buffer_head *bh;
70
71         page = grab_cache_page(mapping, index);
72         if (unlikely(!page))
73                 return NULL;
74
75         bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
76         if (unlikely(!bh)) {
77                 unlock_page(page);
78                 page_cache_release(page);
79                 return NULL;
80         }
81         return bh;
82 }
83
84 /**
85  * nilfs_forget_buffer - discard dirty state
86  * @inode: owner inode of the buffer
87  * @bh: buffer head of the buffer to be discarded
88  */
89 void nilfs_forget_buffer(struct buffer_head *bh)
90 {
91         struct page *page = bh->b_page;
92         const unsigned long clear_bits =
93                 (1 << BH_Uptodate | 1 << BH_Dirty | 1 << BH_Mapped |
94                  1 << BH_Async_Write | 1 << BH_NILFS_Volatile |
95                  1 << BH_NILFS_Checked | 1 << BH_NILFS_Redirected);
96
97         lock_buffer(bh);
98         set_mask_bits(&bh->b_state, clear_bits, 0);
99         if (nilfs_page_buffers_clean(page))
100                 __nilfs_clear_page_dirty(page);
101
102         bh->b_blocknr = -1;
103         ClearPageUptodate(page);
104         ClearPageMappedToDisk(page);
105         unlock_buffer(bh);
106         brelse(bh);
107 }
108
109 /**
110  * nilfs_copy_buffer -- copy buffer data and flags
111  * @dbh: destination buffer
112  * @sbh: source buffer
113  */
114 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
115 {
116         void *kaddr0, *kaddr1;
117         unsigned long bits;
118         struct page *spage = sbh->b_page, *dpage = dbh->b_page;
119         struct buffer_head *bh;
120
121         kaddr0 = kmap_atomic(spage);
122         kaddr1 = kmap_atomic(dpage);
123         memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
124         kunmap_atomic(kaddr1);
125         kunmap_atomic(kaddr0);
126
127         dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
128         dbh->b_blocknr = sbh->b_blocknr;
129         dbh->b_bdev = sbh->b_bdev;
130
131         bh = dbh;
132         bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
133         while ((bh = bh->b_this_page) != dbh) {
134                 lock_buffer(bh);
135                 bits &= bh->b_state;
136                 unlock_buffer(bh);
137         }
138         if (bits & (1UL << BH_Uptodate))
139                 SetPageUptodate(dpage);
140         else
141                 ClearPageUptodate(dpage);
142         if (bits & (1UL << BH_Mapped))
143                 SetPageMappedToDisk(dpage);
144         else
145                 ClearPageMappedToDisk(dpage);
146 }
147
148 /**
149  * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
150  * @page: page to be checked
151  *
152  * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
153  * Otherwise, it returns non-zero value.
154  */
155 int nilfs_page_buffers_clean(struct page *page)
156 {
157         struct buffer_head *bh, *head;
158
159         bh = head = page_buffers(page);
160         do {
161                 if (buffer_dirty(bh))
162                         return 0;
163                 bh = bh->b_this_page;
164         } while (bh != head);
165         return 1;
166 }
167
168 void nilfs_page_bug(struct page *page)
169 {
170         struct address_space *m;
171         unsigned long ino;
172
173         if (unlikely(!page)) {
174                 printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
175                 return;
176         }
177
178         m = page->mapping;
179         ino = m ? m->host->i_ino : 0;
180
181         printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
182                "mapping=%p ino=%lu\n",
183                page, atomic_read(&page->_count),
184                (unsigned long long)page->index, page->flags, m, ino);
185
186         if (page_has_buffers(page)) {
187                 struct buffer_head *bh, *head;
188                 int i = 0;
189
190                 bh = head = page_buffers(page);
191                 do {
192                         printk(KERN_CRIT
193                                " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
194                                i++, bh, atomic_read(&bh->b_count),
195                                (unsigned long long)bh->b_blocknr, bh->b_state);
196                         bh = bh->b_this_page;
197                 } while (bh != head);
198         }
199 }
200
201 /**
202  * nilfs_copy_page -- copy the page with buffers
203  * @dst: destination page
204  * @src: source page
205  * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
206  *
207  * This function is for both data pages and btnode pages.  The dirty flag
208  * should be treated by caller.  The page must not be under i/o.
209  * Both src and dst page must be locked
210  */
211 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
212 {
213         struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
214         unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
215
216         BUG_ON(PageWriteback(dst));
217
218         sbh = sbufs = page_buffers(src);
219         if (!page_has_buffers(dst))
220                 create_empty_buffers(dst, sbh->b_size, 0);
221
222         if (copy_dirty)
223                 mask |= (1UL << BH_Dirty);
224
225         dbh = dbufs = page_buffers(dst);
226         do {
227                 lock_buffer(sbh);
228                 lock_buffer(dbh);
229                 dbh->b_state = sbh->b_state & mask;
230                 dbh->b_blocknr = sbh->b_blocknr;
231                 dbh->b_bdev = sbh->b_bdev;
232                 sbh = sbh->b_this_page;
233                 dbh = dbh->b_this_page;
234         } while (dbh != dbufs);
235
236         copy_highpage(dst, src);
237
238         if (PageUptodate(src) && !PageUptodate(dst))
239                 SetPageUptodate(dst);
240         else if (!PageUptodate(src) && PageUptodate(dst))
241                 ClearPageUptodate(dst);
242         if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
243                 SetPageMappedToDisk(dst);
244         else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
245                 ClearPageMappedToDisk(dst);
246
247         do {
248                 unlock_buffer(sbh);
249                 unlock_buffer(dbh);
250                 sbh = sbh->b_this_page;
251                 dbh = dbh->b_this_page;
252         } while (dbh != dbufs);
253 }
254
255 int nilfs_copy_dirty_pages(struct address_space *dmap,
256                            struct address_space *smap)
257 {
258         struct pagevec pvec;
259         unsigned int i;
260         pgoff_t index = 0;
261         int err = 0;
262
263         pagevec_init(&pvec, 0);
264 repeat:
265         if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY))
266                 return 0;
267
268         for (i = 0; i < pagevec_count(&pvec); i++) {
269                 struct page *page = pvec.pages[i], *dpage;
270
271                 lock_page(page);
272                 if (unlikely(!PageDirty(page)))
273                         NILFS_PAGE_BUG(page, "inconsistent dirty state");
274
275                 dpage = grab_cache_page(dmap, page->index);
276                 if (unlikely(!dpage)) {
277                         /* No empty page is added to the page cache */
278                         err = -ENOMEM;
279                         unlock_page(page);
280                         break;
281                 }
282                 if (unlikely(!page_has_buffers(page)))
283                         NILFS_PAGE_BUG(page,
284                                        "found empty page in dat page cache");
285
286                 nilfs_copy_page(dpage, page, 1);
287                 __set_page_dirty_nobuffers(dpage);
288
289                 unlock_page(dpage);
290                 page_cache_release(dpage);
291                 unlock_page(page);
292         }
293         pagevec_release(&pvec);
294         cond_resched();
295
296         if (likely(!err))
297                 goto repeat;
298         return err;
299 }
300
301 /**
302  * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
303  * @dmap: destination page cache
304  * @smap: source page cache
305  *
306  * No pages must no be added to the cache during this process.
307  * This must be ensured by the caller.
308  */
309 void nilfs_copy_back_pages(struct address_space *dmap,
310                            struct address_space *smap)
311 {
312         struct pagevec pvec;
313         unsigned int i, n;
314         pgoff_t index = 0;
315         int err;
316
317         pagevec_init(&pvec, 0);
318 repeat:
319         n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
320         if (!n)
321                 return;
322         index = pvec.pages[n - 1]->index + 1;
323
324         for (i = 0; i < pagevec_count(&pvec); i++) {
325                 struct page *page = pvec.pages[i], *dpage;
326                 pgoff_t offset = page->index;
327
328                 lock_page(page);
329                 dpage = find_lock_page(dmap, offset);
330                 if (dpage) {
331                         /* override existing page on the destination cache */
332                         WARN_ON(PageDirty(dpage));
333                         nilfs_copy_page(dpage, page, 0);
334                         unlock_page(dpage);
335                         page_cache_release(dpage);
336                 } else {
337                         struct page *page2;
338
339                         /* move the page to the destination cache */
340                         spin_lock_irq(&smap->tree_lock);
341                         page2 = radix_tree_delete(&smap->page_tree, offset);
342                         WARN_ON(page2 != page);
343
344                         smap->nrpages--;
345                         spin_unlock_irq(&smap->tree_lock);
346
347                         spin_lock_irq(&dmap->tree_lock);
348                         err = radix_tree_insert(&dmap->page_tree, offset, page);
349                         if (unlikely(err < 0)) {
350                                 WARN_ON(err == -EEXIST);
351                                 page->mapping = NULL;
352                                 page_cache_release(page); /* for cache */
353                         } else {
354                                 page->mapping = dmap;
355                                 dmap->nrpages++;
356                                 if (PageDirty(page))
357                                         radix_tree_tag_set(&dmap->page_tree,
358                                                            offset,
359                                                            PAGECACHE_TAG_DIRTY);
360                         }
361                         spin_unlock_irq(&dmap->tree_lock);
362                 }
363                 unlock_page(page);
364         }
365         pagevec_release(&pvec);
366         cond_resched();
367
368         goto repeat;
369 }
370
371 /**
372  * nilfs_clear_dirty_pages - discard dirty pages in address space
373  * @mapping: address space with dirty pages for discarding
374  * @silent: suppress [true] or print [false] warning messages
375  */
376 void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent)
377 {
378         struct pagevec pvec;
379         unsigned int i;
380         pgoff_t index = 0;
381
382         pagevec_init(&pvec, 0);
383
384         while (pagevec_lookup_tag(&pvec, mapping, &index,
385                                         PAGECACHE_TAG_DIRTY)) {
386                 for (i = 0; i < pagevec_count(&pvec); i++) {
387                         struct page *page = pvec.pages[i];
388
389                         lock_page(page);
390                         nilfs_clear_dirty_page(page, silent);
391                         unlock_page(page);
392                 }
393                 pagevec_release(&pvec);
394                 cond_resched();
395         }
396 }
397
398 /**
399  * nilfs_clear_dirty_page - discard dirty page
400  * @page: dirty page that will be discarded
401  * @silent: suppress [true] or print [false] warning messages
402  */
403 void nilfs_clear_dirty_page(struct page *page, bool silent)
404 {
405         struct inode *inode = page->mapping->host;
406         struct super_block *sb = inode->i_sb;
407
408         BUG_ON(!PageLocked(page));
409
410         if (!silent) {
411                 nilfs_warning(sb, __func__,
412                                 "discard page: offset %lld, ino %lu",
413                                 page_offset(page), inode->i_ino);
414         }
415
416         ClearPageUptodate(page);
417         ClearPageMappedToDisk(page);
418
419         if (page_has_buffers(page)) {
420                 struct buffer_head *bh, *head;
421                 const unsigned long clear_bits =
422                         (1 << BH_Uptodate | 1 << BH_Dirty | 1 << BH_Mapped |
423                          1 << BH_Async_Write | 1 << BH_NILFS_Volatile |
424                          1 << BH_NILFS_Checked | 1 << BH_NILFS_Redirected);
425
426                 bh = head = page_buffers(page);
427                 do {
428                         lock_buffer(bh);
429                         if (!silent) {
430                                 nilfs_warning(sb, __func__,
431                                         "discard block %llu, size %zu",
432                                         (u64)bh->b_blocknr, bh->b_size);
433                         }
434                         set_mask_bits(&bh->b_state, clear_bits, 0);
435                         unlock_buffer(bh);
436                 } while (bh = bh->b_this_page, bh != head);
437         }
438
439         __nilfs_clear_page_dirty(page);
440 }
441
442 unsigned nilfs_page_count_clean_buffers(struct page *page,
443                                         unsigned from, unsigned to)
444 {
445         unsigned block_start, block_end;
446         struct buffer_head *bh, *head;
447         unsigned nc = 0;
448
449         for (bh = head = page_buffers(page), block_start = 0;
450              bh != head || !block_start;
451              block_start = block_end, bh = bh->b_this_page) {
452                 block_end = block_start + bh->b_size;
453                 if (block_end > from && block_start < to && !buffer_dirty(bh))
454                         nc++;
455         }
456         return nc;
457 }
458
459 void nilfs_mapping_init(struct address_space *mapping, struct inode *inode)
460 {
461         mapping->host = inode;
462         mapping->flags = 0;
463         mapping_set_gfp_mask(mapping, GFP_NOFS);
464         mapping->private_data = NULL;
465         mapping->a_ops = &empty_aops;
466 }
467
468 /*
469  * NILFS2 needs clear_page_dirty() in the following two cases:
470  *
471  * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
472  *    page dirty flags when it copies back pages from the shadow cache
473  *    (gcdat->{i_mapping,i_btnode_cache}) to its original cache
474  *    (dat->{i_mapping,i_btnode_cache}).
475  *
476  * 2) Some B-tree operations like insertion or deletion may dispose buffers
477  *    in dirty state, and this needs to cancel the dirty state of their pages.
478  */
479 int __nilfs_clear_page_dirty(struct page *page)
480 {
481         struct address_space *mapping = page->mapping;
482
483         if (mapping) {
484                 spin_lock_irq(&mapping->tree_lock);
485                 if (test_bit(PG_dirty, &page->flags)) {
486                         radix_tree_tag_clear(&mapping->page_tree,
487                                              page_index(page),
488                                              PAGECACHE_TAG_DIRTY);
489                         spin_unlock_irq(&mapping->tree_lock);
490                         return clear_page_dirty_for_io(page);
491                 }
492                 spin_unlock_irq(&mapping->tree_lock);
493                 return 0;
494         }
495         return TestClearPageDirty(page);
496 }
497
498 /**
499  * nilfs_find_uncommitted_extent - find extent of uncommitted data
500  * @inode: inode
501  * @start_blk: start block offset (in)
502  * @blkoff: start offset of the found extent (out)
503  *
504  * This function searches an extent of buffers marked "delayed" which
505  * starts from a block offset equal to or larger than @start_blk.  If
506  * such an extent was found, this will store the start offset in
507  * @blkoff and return its length in blocks.  Otherwise, zero is
508  * returned.
509  */
510 unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
511                                             sector_t start_blk,
512                                             sector_t *blkoff)
513 {
514         unsigned int i;
515         pgoff_t index;
516         unsigned int nblocks_in_page;
517         unsigned long length = 0;
518         sector_t b;
519         struct pagevec pvec;
520         struct page *page;
521
522         if (inode->i_mapping->nrpages == 0)
523                 return 0;
524
525         index = start_blk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
526         nblocks_in_page = 1U << (PAGE_CACHE_SHIFT - inode->i_blkbits);
527
528         pagevec_init(&pvec, 0);
529
530 repeat:
531         pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE,
532                                         pvec.pages);
533         if (pvec.nr == 0)
534                 return length;
535
536         if (length > 0 && pvec.pages[0]->index > index)
537                 goto out;
538
539         b = pvec.pages[0]->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
540         i = 0;
541         do {
542                 page = pvec.pages[i];
543
544                 lock_page(page);
545                 if (page_has_buffers(page)) {
546                         struct buffer_head *bh, *head;
547
548                         bh = head = page_buffers(page);
549                         do {
550                                 if (b < start_blk)
551                                         continue;
552                                 if (buffer_delay(bh)) {
553                                         if (length == 0)
554                                                 *blkoff = b;
555                                         length++;
556                                 } else if (length > 0) {
557                                         goto out_locked;
558                                 }
559                         } while (++b, bh = bh->b_this_page, bh != head);
560                 } else {
561                         if (length > 0)
562                                 goto out_locked;
563
564                         b += nblocks_in_page;
565                 }
566                 unlock_page(page);
567
568         } while (++i < pagevec_count(&pvec));
569
570         index = page->index + 1;
571         pagevec_release(&pvec);
572         cond_resched();
573         goto repeat;
574
575 out_locked:
576         unlock_page(page);
577 out:
578         pagevec_release(&pvec);
579         return length;
580 }