OSDN Git Service

mm: hugetlb: proc: add HugetlbPages field to /proc/PID/status
[android-x86/kernel.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17
18 #include <asm/elf.h>
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
21 #include "internal.h"
22
23 void task_mem(struct seq_file *m, struct mm_struct *mm)
24 {
25         unsigned long data, text, lib, swap, ptes, pmds;
26         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
27
28         /*
29          * Note: to minimize their overhead, mm maintains hiwater_vm and
30          * hiwater_rss only when about to *lower* total_vm or rss.  Any
31          * collector of these hiwater stats must therefore get total_vm
32          * and rss too, which will usually be the higher.  Barriers? not
33          * worth the effort, such snapshots can always be inconsistent.
34          */
35         hiwater_vm = total_vm = mm->total_vm;
36         if (hiwater_vm < mm->hiwater_vm)
37                 hiwater_vm = mm->hiwater_vm;
38         hiwater_rss = total_rss = get_mm_rss(mm);
39         if (hiwater_rss < mm->hiwater_rss)
40                 hiwater_rss = mm->hiwater_rss;
41
42         data = mm->total_vm - mm->shared_vm - mm->stack_vm;
43         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
44         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
45         swap = get_mm_counter(mm, MM_SWAPENTS);
46         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
47         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
48         seq_printf(m,
49                 "VmPeak:\t%8lu kB\n"
50                 "VmSize:\t%8lu kB\n"
51                 "VmLck:\t%8lu kB\n"
52                 "VmPin:\t%8lu kB\n"
53                 "VmHWM:\t%8lu kB\n"
54                 "VmRSS:\t%8lu kB\n"
55                 "VmData:\t%8lu kB\n"
56                 "VmStk:\t%8lu kB\n"
57                 "VmExe:\t%8lu kB\n"
58                 "VmLib:\t%8lu kB\n"
59                 "VmPTE:\t%8lu kB\n"
60                 "VmPMD:\t%8lu kB\n"
61                 "VmSwap:\t%8lu kB\n",
62                 hiwater_vm << (PAGE_SHIFT-10),
63                 total_vm << (PAGE_SHIFT-10),
64                 mm->locked_vm << (PAGE_SHIFT-10),
65                 mm->pinned_vm << (PAGE_SHIFT-10),
66                 hiwater_rss << (PAGE_SHIFT-10),
67                 total_rss << (PAGE_SHIFT-10),
68                 data << (PAGE_SHIFT-10),
69                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
70                 ptes >> 10,
71                 pmds >> 10,
72                 swap << (PAGE_SHIFT-10));
73         hugetlb_report_usage(m, mm);
74 }
75
76 unsigned long task_vsize(struct mm_struct *mm)
77 {
78         return PAGE_SIZE * mm->total_vm;
79 }
80
81 unsigned long task_statm(struct mm_struct *mm,
82                          unsigned long *shared, unsigned long *text,
83                          unsigned long *data, unsigned long *resident)
84 {
85         *shared = get_mm_counter(mm, MM_FILEPAGES);
86         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
87                                                                 >> PAGE_SHIFT;
88         *data = mm->total_vm - mm->shared_vm;
89         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
90         return mm->total_vm;
91 }
92
93 #ifdef CONFIG_NUMA
94 /*
95  * Save get_task_policy() for show_numa_map().
96  */
97 static void hold_task_mempolicy(struct proc_maps_private *priv)
98 {
99         struct task_struct *task = priv->task;
100
101         task_lock(task);
102         priv->task_mempolicy = get_task_policy(task);
103         mpol_get(priv->task_mempolicy);
104         task_unlock(task);
105 }
106 static void release_task_mempolicy(struct proc_maps_private *priv)
107 {
108         mpol_put(priv->task_mempolicy);
109 }
110 #else
111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 }
114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 }
117 #endif
118
119 static void vma_stop(struct proc_maps_private *priv)
120 {
121         struct mm_struct *mm = priv->mm;
122
123         release_task_mempolicy(priv);
124         up_read(&mm->mmap_sem);
125         mmput(mm);
126 }
127
128 static struct vm_area_struct *
129 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
130 {
131         if (vma == priv->tail_vma)
132                 return NULL;
133         return vma->vm_next ?: priv->tail_vma;
134 }
135
136 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
137 {
138         if (m->count < m->size) /* vma is copied successfully */
139                 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
140 }
141
142 static void *m_start(struct seq_file *m, loff_t *ppos)
143 {
144         struct proc_maps_private *priv = m->private;
145         unsigned long last_addr = m->version;
146         struct mm_struct *mm;
147         struct vm_area_struct *vma;
148         unsigned int pos = *ppos;
149
150         /* See m_cache_vma(). Zero at the start or after lseek. */
151         if (last_addr == -1UL)
152                 return NULL;
153
154         priv->task = get_proc_task(priv->inode);
155         if (!priv->task)
156                 return ERR_PTR(-ESRCH);
157
158         mm = priv->mm;
159         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
160                 return NULL;
161
162         down_read(&mm->mmap_sem);
163         hold_task_mempolicy(priv);
164         priv->tail_vma = get_gate_vma(mm);
165
166         if (last_addr) {
167                 vma = find_vma(mm, last_addr);
168                 if (vma && (vma = m_next_vma(priv, vma)))
169                         return vma;
170         }
171
172         m->version = 0;
173         if (pos < mm->map_count) {
174                 for (vma = mm->mmap; pos; pos--) {
175                         m->version = vma->vm_start;
176                         vma = vma->vm_next;
177                 }
178                 return vma;
179         }
180
181         /* we do not bother to update m->version in this case */
182         if (pos == mm->map_count && priv->tail_vma)
183                 return priv->tail_vma;
184
185         vma_stop(priv);
186         return NULL;
187 }
188
189 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
190 {
191         struct proc_maps_private *priv = m->private;
192         struct vm_area_struct *next;
193
194         (*pos)++;
195         next = m_next_vma(priv, v);
196         if (!next)
197                 vma_stop(priv);
198         return next;
199 }
200
201 static void m_stop(struct seq_file *m, void *v)
202 {
203         struct proc_maps_private *priv = m->private;
204
205         if (!IS_ERR_OR_NULL(v))
206                 vma_stop(priv);
207         if (priv->task) {
208                 put_task_struct(priv->task);
209                 priv->task = NULL;
210         }
211 }
212
213 static int proc_maps_open(struct inode *inode, struct file *file,
214                         const struct seq_operations *ops, int psize)
215 {
216         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
217
218         if (!priv)
219                 return -ENOMEM;
220
221         priv->inode = inode;
222         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
223         if (IS_ERR(priv->mm)) {
224                 int err = PTR_ERR(priv->mm);
225
226                 seq_release_private(inode, file);
227                 return err;
228         }
229
230         return 0;
231 }
232
233 static int proc_map_release(struct inode *inode, struct file *file)
234 {
235         struct seq_file *seq = file->private_data;
236         struct proc_maps_private *priv = seq->private;
237
238         if (priv->mm)
239                 mmdrop(priv->mm);
240
241         return seq_release_private(inode, file);
242 }
243
244 static int do_maps_open(struct inode *inode, struct file *file,
245                         const struct seq_operations *ops)
246 {
247         return proc_maps_open(inode, file, ops,
248                                 sizeof(struct proc_maps_private));
249 }
250
251 static pid_t pid_of_stack(struct proc_maps_private *priv,
252                                 struct vm_area_struct *vma, bool is_pid)
253 {
254         struct inode *inode = priv->inode;
255         struct task_struct *task;
256         pid_t ret = 0;
257
258         rcu_read_lock();
259         task = pid_task(proc_pid(inode), PIDTYPE_PID);
260         if (task) {
261                 task = task_of_stack(task, vma, is_pid);
262                 if (task)
263                         ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
264         }
265         rcu_read_unlock();
266
267         return ret;
268 }
269
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
272 {
273         struct mm_struct *mm = vma->vm_mm;
274         struct file *file = vma->vm_file;
275         struct proc_maps_private *priv = m->private;
276         vm_flags_t flags = vma->vm_flags;
277         unsigned long ino = 0;
278         unsigned long long pgoff = 0;
279         unsigned long start, end;
280         dev_t dev = 0;
281         const char *name = NULL;
282
283         if (file) {
284                 struct inode *inode = file_inode(vma->vm_file);
285                 dev = inode->i_sb->s_dev;
286                 ino = inode->i_ino;
287                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
288         }
289
290         /* We don't show the stack guard page in /proc/maps */
291         start = vma->vm_start;
292         if (stack_guard_page_start(vma, start))
293                 start += PAGE_SIZE;
294         end = vma->vm_end;
295         if (stack_guard_page_end(vma, end))
296                 end -= PAGE_SIZE;
297
298         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
299         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
300                         start,
301                         end,
302                         flags & VM_READ ? 'r' : '-',
303                         flags & VM_WRITE ? 'w' : '-',
304                         flags & VM_EXEC ? 'x' : '-',
305                         flags & VM_MAYSHARE ? 's' : 'p',
306                         pgoff,
307                         MAJOR(dev), MINOR(dev), ino);
308
309         /*
310          * Print the dentry name for named mappings, and a
311          * special [heap] marker for the heap:
312          */
313         if (file) {
314                 seq_pad(m, ' ');
315                 seq_file_path(m, file, "\n");
316                 goto done;
317         }
318
319         if (vma->vm_ops && vma->vm_ops->name) {
320                 name = vma->vm_ops->name(vma);
321                 if (name)
322                         goto done;
323         }
324
325         name = arch_vma_name(vma);
326         if (!name) {
327                 pid_t tid;
328
329                 if (!mm) {
330                         name = "[vdso]";
331                         goto done;
332                 }
333
334                 if (vma->vm_start <= mm->brk &&
335                     vma->vm_end >= mm->start_brk) {
336                         name = "[heap]";
337                         goto done;
338                 }
339
340                 tid = pid_of_stack(priv, vma, is_pid);
341                 if (tid != 0) {
342                         /*
343                          * Thread stack in /proc/PID/task/TID/maps or
344                          * the main process stack.
345                          */
346                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
347                             vma->vm_end >= mm->start_stack)) {
348                                 name = "[stack]";
349                         } else {
350                                 /* Thread stack in /proc/PID/maps */
351                                 seq_pad(m, ' ');
352                                 seq_printf(m, "[stack:%d]", tid);
353                         }
354                 }
355         }
356
357 done:
358         if (name) {
359                 seq_pad(m, ' ');
360                 seq_puts(m, name);
361         }
362         seq_putc(m, '\n');
363 }
364
365 static int show_map(struct seq_file *m, void *v, int is_pid)
366 {
367         show_map_vma(m, v, is_pid);
368         m_cache_vma(m, v);
369         return 0;
370 }
371
372 static int show_pid_map(struct seq_file *m, void *v)
373 {
374         return show_map(m, v, 1);
375 }
376
377 static int show_tid_map(struct seq_file *m, void *v)
378 {
379         return show_map(m, v, 0);
380 }
381
382 static const struct seq_operations proc_pid_maps_op = {
383         .start  = m_start,
384         .next   = m_next,
385         .stop   = m_stop,
386         .show   = show_pid_map
387 };
388
389 static const struct seq_operations proc_tid_maps_op = {
390         .start  = m_start,
391         .next   = m_next,
392         .stop   = m_stop,
393         .show   = show_tid_map
394 };
395
396 static int pid_maps_open(struct inode *inode, struct file *file)
397 {
398         return do_maps_open(inode, file, &proc_pid_maps_op);
399 }
400
401 static int tid_maps_open(struct inode *inode, struct file *file)
402 {
403         return do_maps_open(inode, file, &proc_tid_maps_op);
404 }
405
406 const struct file_operations proc_pid_maps_operations = {
407         .open           = pid_maps_open,
408         .read           = seq_read,
409         .llseek         = seq_lseek,
410         .release        = proc_map_release,
411 };
412
413 const struct file_operations proc_tid_maps_operations = {
414         .open           = tid_maps_open,
415         .read           = seq_read,
416         .llseek         = seq_lseek,
417         .release        = proc_map_release,
418 };
419
420 /*
421  * Proportional Set Size(PSS): my share of RSS.
422  *
423  * PSS of a process is the count of pages it has in memory, where each
424  * page is divided by the number of processes sharing it.  So if a
425  * process has 1000 pages all to itself, and 1000 shared with one other
426  * process, its PSS will be 1500.
427  *
428  * To keep (accumulated) division errors low, we adopt a 64bit
429  * fixed-point pss counter to minimize division errors. So (pss >>
430  * PSS_SHIFT) would be the real byte count.
431  *
432  * A shift of 12 before division means (assuming 4K page size):
433  *      - 1M 3-user-pages add up to 8KB errors;
434  *      - supports mapcount up to 2^24, or 16M;
435  *      - supports PSS up to 2^52 bytes, or 4PB.
436  */
437 #define PSS_SHIFT 12
438
439 #ifdef CONFIG_PROC_PAGE_MONITOR
440 struct mem_size_stats {
441         unsigned long resident;
442         unsigned long shared_clean;
443         unsigned long shared_dirty;
444         unsigned long private_clean;
445         unsigned long private_dirty;
446         unsigned long referenced;
447         unsigned long anonymous;
448         unsigned long anonymous_thp;
449         unsigned long swap;
450         unsigned long shared_hugetlb;
451         unsigned long private_hugetlb;
452         u64 pss;
453         u64 swap_pss;
454 };
455
456 static void smaps_account(struct mem_size_stats *mss, struct page *page,
457                 unsigned long size, bool young, bool dirty)
458 {
459         int mapcount;
460
461         if (PageAnon(page))
462                 mss->anonymous += size;
463
464         mss->resident += size;
465         /* Accumulate the size in pages that have been accessed. */
466         if (young || page_is_young(page) || PageReferenced(page))
467                 mss->referenced += size;
468         mapcount = page_mapcount(page);
469         if (mapcount >= 2) {
470                 u64 pss_delta;
471
472                 if (dirty || PageDirty(page))
473                         mss->shared_dirty += size;
474                 else
475                         mss->shared_clean += size;
476                 pss_delta = (u64)size << PSS_SHIFT;
477                 do_div(pss_delta, mapcount);
478                 mss->pss += pss_delta;
479         } else {
480                 if (dirty || PageDirty(page))
481                         mss->private_dirty += size;
482                 else
483                         mss->private_clean += size;
484                 mss->pss += (u64)size << PSS_SHIFT;
485         }
486 }
487
488 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
489                 struct mm_walk *walk)
490 {
491         struct mem_size_stats *mss = walk->private;
492         struct vm_area_struct *vma = walk->vma;
493         struct page *page = NULL;
494
495         if (pte_present(*pte)) {
496                 page = vm_normal_page(vma, addr, *pte);
497         } else if (is_swap_pte(*pte)) {
498                 swp_entry_t swpent = pte_to_swp_entry(*pte);
499
500                 if (!non_swap_entry(swpent)) {
501                         int mapcount;
502
503                         mss->swap += PAGE_SIZE;
504                         mapcount = swp_swapcount(swpent);
505                         if (mapcount >= 2) {
506                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
507
508                                 do_div(pss_delta, mapcount);
509                                 mss->swap_pss += pss_delta;
510                         } else {
511                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
512                         }
513                 } else if (is_migration_entry(swpent))
514                         page = migration_entry_to_page(swpent);
515         }
516
517         if (!page)
518                 return;
519         smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
520 }
521
522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
523 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
524                 struct mm_walk *walk)
525 {
526         struct mem_size_stats *mss = walk->private;
527         struct vm_area_struct *vma = walk->vma;
528         struct page *page;
529
530         /* FOLL_DUMP will return -EFAULT on huge zero page */
531         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
532         if (IS_ERR_OR_NULL(page))
533                 return;
534         mss->anonymous_thp += HPAGE_PMD_SIZE;
535         smaps_account(mss, page, HPAGE_PMD_SIZE,
536                         pmd_young(*pmd), pmd_dirty(*pmd));
537 }
538 #else
539 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
540                 struct mm_walk *walk)
541 {
542 }
543 #endif
544
545 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
546                            struct mm_walk *walk)
547 {
548         struct vm_area_struct *vma = walk->vma;
549         pte_t *pte;
550         spinlock_t *ptl;
551
552         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
553                 smaps_pmd_entry(pmd, addr, walk);
554                 spin_unlock(ptl);
555                 return 0;
556         }
557
558         if (pmd_trans_unstable(pmd))
559                 return 0;
560         /*
561          * The mmap_sem held all the way back in m_start() is what
562          * keeps khugepaged out of here and from collapsing things
563          * in here.
564          */
565         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
566         for (; addr != end; pte++, addr += PAGE_SIZE)
567                 smaps_pte_entry(pte, addr, walk);
568         pte_unmap_unlock(pte - 1, ptl);
569         cond_resched();
570         return 0;
571 }
572
573 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
574 {
575         /*
576          * Don't forget to update Documentation/ on changes.
577          */
578         static const char mnemonics[BITS_PER_LONG][2] = {
579                 /*
580                  * In case if we meet a flag we don't know about.
581                  */
582                 [0 ... (BITS_PER_LONG-1)] = "??",
583
584                 [ilog2(VM_READ)]        = "rd",
585                 [ilog2(VM_WRITE)]       = "wr",
586                 [ilog2(VM_EXEC)]        = "ex",
587                 [ilog2(VM_SHARED)]      = "sh",
588                 [ilog2(VM_MAYREAD)]     = "mr",
589                 [ilog2(VM_MAYWRITE)]    = "mw",
590                 [ilog2(VM_MAYEXEC)]     = "me",
591                 [ilog2(VM_MAYSHARE)]    = "ms",
592                 [ilog2(VM_GROWSDOWN)]   = "gd",
593                 [ilog2(VM_PFNMAP)]      = "pf",
594                 [ilog2(VM_DENYWRITE)]   = "dw",
595 #ifdef CONFIG_X86_INTEL_MPX
596                 [ilog2(VM_MPX)]         = "mp",
597 #endif
598                 [ilog2(VM_LOCKED)]      = "lo",
599                 [ilog2(VM_IO)]          = "io",
600                 [ilog2(VM_SEQ_READ)]    = "sr",
601                 [ilog2(VM_RAND_READ)]   = "rr",
602                 [ilog2(VM_DONTCOPY)]    = "dc",
603                 [ilog2(VM_DONTEXPAND)]  = "de",
604                 [ilog2(VM_ACCOUNT)]     = "ac",
605                 [ilog2(VM_NORESERVE)]   = "nr",
606                 [ilog2(VM_HUGETLB)]     = "ht",
607                 [ilog2(VM_ARCH_1)]      = "ar",
608                 [ilog2(VM_DONTDUMP)]    = "dd",
609 #ifdef CONFIG_MEM_SOFT_DIRTY
610                 [ilog2(VM_SOFTDIRTY)]   = "sd",
611 #endif
612                 [ilog2(VM_MIXEDMAP)]    = "mm",
613                 [ilog2(VM_HUGEPAGE)]    = "hg",
614                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
615                 [ilog2(VM_MERGEABLE)]   = "mg",
616                 [ilog2(VM_UFFD_MISSING)]= "um",
617                 [ilog2(VM_UFFD_WP)]     = "uw",
618         };
619         size_t i;
620
621         seq_puts(m, "VmFlags: ");
622         for (i = 0; i < BITS_PER_LONG; i++) {
623                 if (vma->vm_flags & (1UL << i)) {
624                         seq_printf(m, "%c%c ",
625                                    mnemonics[i][0], mnemonics[i][1]);
626                 }
627         }
628         seq_putc(m, '\n');
629 }
630
631 #ifdef CONFIG_HUGETLB_PAGE
632 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
633                                  unsigned long addr, unsigned long end,
634                                  struct mm_walk *walk)
635 {
636         struct mem_size_stats *mss = walk->private;
637         struct vm_area_struct *vma = walk->vma;
638         struct page *page = NULL;
639
640         if (pte_present(*pte)) {
641                 page = vm_normal_page(vma, addr, *pte);
642         } else if (is_swap_pte(*pte)) {
643                 swp_entry_t swpent = pte_to_swp_entry(*pte);
644
645                 if (is_migration_entry(swpent))
646                         page = migration_entry_to_page(swpent);
647         }
648         if (page) {
649                 int mapcount = page_mapcount(page);
650
651                 if (mapcount >= 2)
652                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
653                 else
654                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
655         }
656         return 0;
657 }
658 #endif /* HUGETLB_PAGE */
659
660 static int show_smap(struct seq_file *m, void *v, int is_pid)
661 {
662         struct vm_area_struct *vma = v;
663         struct mem_size_stats mss;
664         struct mm_walk smaps_walk = {
665                 .pmd_entry = smaps_pte_range,
666 #ifdef CONFIG_HUGETLB_PAGE
667                 .hugetlb_entry = smaps_hugetlb_range,
668 #endif
669                 .mm = vma->vm_mm,
670                 .private = &mss,
671         };
672
673         memset(&mss, 0, sizeof mss);
674         /* mmap_sem is held in m_start */
675         walk_page_vma(vma, &smaps_walk);
676
677         show_map_vma(m, vma, is_pid);
678
679         seq_printf(m,
680                    "Size:           %8lu kB\n"
681                    "Rss:            %8lu kB\n"
682                    "Pss:            %8lu kB\n"
683                    "Shared_Clean:   %8lu kB\n"
684                    "Shared_Dirty:   %8lu kB\n"
685                    "Private_Clean:  %8lu kB\n"
686                    "Private_Dirty:  %8lu kB\n"
687                    "Referenced:     %8lu kB\n"
688                    "Anonymous:      %8lu kB\n"
689                    "AnonHugePages:  %8lu kB\n"
690                    "Shared_Hugetlb: %8lu kB\n"
691                    "Private_Hugetlb: %7lu kB\n"
692                    "Swap:           %8lu kB\n"
693                    "SwapPss:        %8lu kB\n"
694                    "KernelPageSize: %8lu kB\n"
695                    "MMUPageSize:    %8lu kB\n"
696                    "Locked:         %8lu kB\n",
697                    (vma->vm_end - vma->vm_start) >> 10,
698                    mss.resident >> 10,
699                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
700                    mss.shared_clean  >> 10,
701                    mss.shared_dirty  >> 10,
702                    mss.private_clean >> 10,
703                    mss.private_dirty >> 10,
704                    mss.referenced >> 10,
705                    mss.anonymous >> 10,
706                    mss.anonymous_thp >> 10,
707                    mss.shared_hugetlb >> 10,
708                    mss.private_hugetlb >> 10,
709                    mss.swap >> 10,
710                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
711                    vma_kernel_pagesize(vma) >> 10,
712                    vma_mmu_pagesize(vma) >> 10,
713                    (vma->vm_flags & VM_LOCKED) ?
714                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
715
716         show_smap_vma_flags(m, vma);
717         m_cache_vma(m, vma);
718         return 0;
719 }
720
721 static int show_pid_smap(struct seq_file *m, void *v)
722 {
723         return show_smap(m, v, 1);
724 }
725
726 static int show_tid_smap(struct seq_file *m, void *v)
727 {
728         return show_smap(m, v, 0);
729 }
730
731 static const struct seq_operations proc_pid_smaps_op = {
732         .start  = m_start,
733         .next   = m_next,
734         .stop   = m_stop,
735         .show   = show_pid_smap
736 };
737
738 static const struct seq_operations proc_tid_smaps_op = {
739         .start  = m_start,
740         .next   = m_next,
741         .stop   = m_stop,
742         .show   = show_tid_smap
743 };
744
745 static int pid_smaps_open(struct inode *inode, struct file *file)
746 {
747         return do_maps_open(inode, file, &proc_pid_smaps_op);
748 }
749
750 static int tid_smaps_open(struct inode *inode, struct file *file)
751 {
752         return do_maps_open(inode, file, &proc_tid_smaps_op);
753 }
754
755 const struct file_operations proc_pid_smaps_operations = {
756         .open           = pid_smaps_open,
757         .read           = seq_read,
758         .llseek         = seq_lseek,
759         .release        = proc_map_release,
760 };
761
762 const struct file_operations proc_tid_smaps_operations = {
763         .open           = tid_smaps_open,
764         .read           = seq_read,
765         .llseek         = seq_lseek,
766         .release        = proc_map_release,
767 };
768
769 enum clear_refs_types {
770         CLEAR_REFS_ALL = 1,
771         CLEAR_REFS_ANON,
772         CLEAR_REFS_MAPPED,
773         CLEAR_REFS_SOFT_DIRTY,
774         CLEAR_REFS_MM_HIWATER_RSS,
775         CLEAR_REFS_LAST,
776 };
777
778 struct clear_refs_private {
779         enum clear_refs_types type;
780 };
781
782 #ifdef CONFIG_MEM_SOFT_DIRTY
783 static inline void clear_soft_dirty(struct vm_area_struct *vma,
784                 unsigned long addr, pte_t *pte)
785 {
786         /*
787          * The soft-dirty tracker uses #PF-s to catch writes
788          * to pages, so write-protect the pte as well. See the
789          * Documentation/vm/soft-dirty.txt for full description
790          * of how soft-dirty works.
791          */
792         pte_t ptent = *pte;
793
794         if (pte_present(ptent)) {
795                 ptent = pte_wrprotect(ptent);
796                 ptent = pte_clear_soft_dirty(ptent);
797         } else if (is_swap_pte(ptent)) {
798                 ptent = pte_swp_clear_soft_dirty(ptent);
799         }
800
801         set_pte_at(vma->vm_mm, addr, pte, ptent);
802 }
803
804 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
805                 unsigned long addr, pmd_t *pmdp)
806 {
807         pmd_t pmd = *pmdp;
808
809         pmd = pmd_wrprotect(pmd);
810         pmd = pmd_clear_soft_dirty(pmd);
811
812         if (vma->vm_flags & VM_SOFTDIRTY)
813                 vma->vm_flags &= ~VM_SOFTDIRTY;
814
815         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
816 }
817
818 #else
819
820 static inline void clear_soft_dirty(struct vm_area_struct *vma,
821                 unsigned long addr, pte_t *pte)
822 {
823 }
824
825 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
826                 unsigned long addr, pmd_t *pmdp)
827 {
828 }
829 #endif
830
831 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
832                                 unsigned long end, struct mm_walk *walk)
833 {
834         struct clear_refs_private *cp = walk->private;
835         struct vm_area_struct *vma = walk->vma;
836         pte_t *pte, ptent;
837         spinlock_t *ptl;
838         struct page *page;
839
840         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
841                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
842                         clear_soft_dirty_pmd(vma, addr, pmd);
843                         goto out;
844                 }
845
846                 page = pmd_page(*pmd);
847
848                 /* Clear accessed and referenced bits. */
849                 pmdp_test_and_clear_young(vma, addr, pmd);
850                 test_and_clear_page_young(page);
851                 ClearPageReferenced(page);
852 out:
853                 spin_unlock(ptl);
854                 return 0;
855         }
856
857         if (pmd_trans_unstable(pmd))
858                 return 0;
859
860         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
861         for (; addr != end; pte++, addr += PAGE_SIZE) {
862                 ptent = *pte;
863
864                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
865                         clear_soft_dirty(vma, addr, pte);
866                         continue;
867                 }
868
869                 if (!pte_present(ptent))
870                         continue;
871
872                 page = vm_normal_page(vma, addr, ptent);
873                 if (!page)
874                         continue;
875
876                 /* Clear accessed and referenced bits. */
877                 ptep_test_and_clear_young(vma, addr, pte);
878                 test_and_clear_page_young(page);
879                 ClearPageReferenced(page);
880         }
881         pte_unmap_unlock(pte - 1, ptl);
882         cond_resched();
883         return 0;
884 }
885
886 static int clear_refs_test_walk(unsigned long start, unsigned long end,
887                                 struct mm_walk *walk)
888 {
889         struct clear_refs_private *cp = walk->private;
890         struct vm_area_struct *vma = walk->vma;
891
892         if (vma->vm_flags & VM_PFNMAP)
893                 return 1;
894
895         /*
896          * Writing 1 to /proc/pid/clear_refs affects all pages.
897          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
898          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
899          * Writing 4 to /proc/pid/clear_refs affects all pages.
900          */
901         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
902                 return 1;
903         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
904                 return 1;
905         return 0;
906 }
907
908 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
909                                 size_t count, loff_t *ppos)
910 {
911         struct task_struct *task;
912         char buffer[PROC_NUMBUF];
913         struct mm_struct *mm;
914         struct vm_area_struct *vma;
915         enum clear_refs_types type;
916         int itype;
917         int rv;
918
919         memset(buffer, 0, sizeof(buffer));
920         if (count > sizeof(buffer) - 1)
921                 count = sizeof(buffer) - 1;
922         if (copy_from_user(buffer, buf, count))
923                 return -EFAULT;
924         rv = kstrtoint(strstrip(buffer), 10, &itype);
925         if (rv < 0)
926                 return rv;
927         type = (enum clear_refs_types)itype;
928         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
929                 return -EINVAL;
930
931         task = get_proc_task(file_inode(file));
932         if (!task)
933                 return -ESRCH;
934         mm = get_task_mm(task);
935         if (mm) {
936                 struct clear_refs_private cp = {
937                         .type = type,
938                 };
939                 struct mm_walk clear_refs_walk = {
940                         .pmd_entry = clear_refs_pte_range,
941                         .test_walk = clear_refs_test_walk,
942                         .mm = mm,
943                         .private = &cp,
944                 };
945
946                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
947                         /*
948                          * Writing 5 to /proc/pid/clear_refs resets the peak
949                          * resident set size to this mm's current rss value.
950                          */
951                         down_write(&mm->mmap_sem);
952                         reset_mm_hiwater_rss(mm);
953                         up_write(&mm->mmap_sem);
954                         goto out_mm;
955                 }
956
957                 down_read(&mm->mmap_sem);
958                 if (type == CLEAR_REFS_SOFT_DIRTY) {
959                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
960                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
961                                         continue;
962                                 up_read(&mm->mmap_sem);
963                                 down_write(&mm->mmap_sem);
964                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
965                                         vma->vm_flags &= ~VM_SOFTDIRTY;
966                                         vma_set_page_prot(vma);
967                                 }
968                                 downgrade_write(&mm->mmap_sem);
969                                 break;
970                         }
971                         mmu_notifier_invalidate_range_start(mm, 0, -1);
972                 }
973                 walk_page_range(0, ~0UL, &clear_refs_walk);
974                 if (type == CLEAR_REFS_SOFT_DIRTY)
975                         mmu_notifier_invalidate_range_end(mm, 0, -1);
976                 flush_tlb_mm(mm);
977                 up_read(&mm->mmap_sem);
978 out_mm:
979                 mmput(mm);
980         }
981         put_task_struct(task);
982
983         return count;
984 }
985
986 const struct file_operations proc_clear_refs_operations = {
987         .write          = clear_refs_write,
988         .llseek         = noop_llseek,
989 };
990
991 typedef struct {
992         u64 pme;
993 } pagemap_entry_t;
994
995 struct pagemapread {
996         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
997         pagemap_entry_t *buffer;
998         bool show_pfn;
999 };
1000
1001 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1002 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1003
1004 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1005 #define PM_PFRAME_BITS          55
1006 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1007 #define PM_SOFT_DIRTY           BIT_ULL(55)
1008 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1009 #define PM_FILE                 BIT_ULL(61)
1010 #define PM_SWAP                 BIT_ULL(62)
1011 #define PM_PRESENT              BIT_ULL(63)
1012
1013 #define PM_END_OF_BUFFER    1
1014
1015 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1016 {
1017         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1018 }
1019
1020 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1021                           struct pagemapread *pm)
1022 {
1023         pm->buffer[pm->pos++] = *pme;
1024         if (pm->pos >= pm->len)
1025                 return PM_END_OF_BUFFER;
1026         return 0;
1027 }
1028
1029 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1030                                 struct mm_walk *walk)
1031 {
1032         struct pagemapread *pm = walk->private;
1033         unsigned long addr = start;
1034         int err = 0;
1035
1036         while (addr < end) {
1037                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1038                 pagemap_entry_t pme = make_pme(0, 0);
1039                 /* End of address space hole, which we mark as non-present. */
1040                 unsigned long hole_end;
1041
1042                 if (vma)
1043                         hole_end = min(end, vma->vm_start);
1044                 else
1045                         hole_end = end;
1046
1047                 for (; addr < hole_end; addr += PAGE_SIZE) {
1048                         err = add_to_pagemap(addr, &pme, pm);
1049                         if (err)
1050                                 goto out;
1051                 }
1052
1053                 if (!vma)
1054                         break;
1055
1056                 /* Addresses in the VMA. */
1057                 if (vma->vm_flags & VM_SOFTDIRTY)
1058                         pme = make_pme(0, PM_SOFT_DIRTY);
1059                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1060                         err = add_to_pagemap(addr, &pme, pm);
1061                         if (err)
1062                                 goto out;
1063                 }
1064         }
1065 out:
1066         return err;
1067 }
1068
1069 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1070                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1071 {
1072         u64 frame = 0, flags = 0;
1073         struct page *page = NULL;
1074
1075         if (pte_present(pte)) {
1076                 if (pm->show_pfn)
1077                         frame = pte_pfn(pte);
1078                 flags |= PM_PRESENT;
1079                 page = vm_normal_page(vma, addr, pte);
1080                 if (pte_soft_dirty(pte))
1081                         flags |= PM_SOFT_DIRTY;
1082         } else if (is_swap_pte(pte)) {
1083                 swp_entry_t entry;
1084                 if (pte_swp_soft_dirty(pte))
1085                         flags |= PM_SOFT_DIRTY;
1086                 entry = pte_to_swp_entry(pte);
1087                 frame = swp_type(entry) |
1088                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1089                 flags |= PM_SWAP;
1090                 if (is_migration_entry(entry))
1091                         page = migration_entry_to_page(entry);
1092         }
1093
1094         if (page && !PageAnon(page))
1095                 flags |= PM_FILE;
1096         if (page && page_mapcount(page) == 1)
1097                 flags |= PM_MMAP_EXCLUSIVE;
1098         if (vma->vm_flags & VM_SOFTDIRTY)
1099                 flags |= PM_SOFT_DIRTY;
1100
1101         return make_pme(frame, flags);
1102 }
1103
1104 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1105                              struct mm_walk *walk)
1106 {
1107         struct vm_area_struct *vma = walk->vma;
1108         struct pagemapread *pm = walk->private;
1109         spinlock_t *ptl;
1110         pte_t *pte, *orig_pte;
1111         int err = 0;
1112
1113 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1114         if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
1115                 u64 flags = 0, frame = 0;
1116                 pmd_t pmd = *pmdp;
1117
1118                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1119                         flags |= PM_SOFT_DIRTY;
1120
1121                 /*
1122                  * Currently pmd for thp is always present because thp
1123                  * can not be swapped-out, migrated, or HWPOISONed
1124                  * (split in such cases instead.)
1125                  * This if-check is just to prepare for future implementation.
1126                  */
1127                 if (pmd_present(pmd)) {
1128                         struct page *page = pmd_page(pmd);
1129
1130                         if (page_mapcount(page) == 1)
1131                                 flags |= PM_MMAP_EXCLUSIVE;
1132
1133                         flags |= PM_PRESENT;
1134                         if (pm->show_pfn)
1135                                 frame = pmd_pfn(pmd) +
1136                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1137                 }
1138
1139                 for (; addr != end; addr += PAGE_SIZE) {
1140                         pagemap_entry_t pme = make_pme(frame, flags);
1141
1142                         err = add_to_pagemap(addr, &pme, pm);
1143                         if (err)
1144                                 break;
1145                         if (pm->show_pfn && (flags & PM_PRESENT))
1146                                 frame++;
1147                 }
1148                 spin_unlock(ptl);
1149                 return err;
1150         }
1151
1152         if (pmd_trans_unstable(pmdp))
1153                 return 0;
1154 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1155
1156         /*
1157          * We can assume that @vma always points to a valid one and @end never
1158          * goes beyond vma->vm_end.
1159          */
1160         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1161         for (; addr < end; pte++, addr += PAGE_SIZE) {
1162                 pagemap_entry_t pme;
1163
1164                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1165                 err = add_to_pagemap(addr, &pme, pm);
1166                 if (err)
1167                         break;
1168         }
1169         pte_unmap_unlock(orig_pte, ptl);
1170
1171         cond_resched();
1172
1173         return err;
1174 }
1175
1176 #ifdef CONFIG_HUGETLB_PAGE
1177 /* This function walks within one hugetlb entry in the single call */
1178 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1179                                  unsigned long addr, unsigned long end,
1180                                  struct mm_walk *walk)
1181 {
1182         struct pagemapread *pm = walk->private;
1183         struct vm_area_struct *vma = walk->vma;
1184         u64 flags = 0, frame = 0;
1185         int err = 0;
1186         pte_t pte;
1187
1188         if (vma->vm_flags & VM_SOFTDIRTY)
1189                 flags |= PM_SOFT_DIRTY;
1190
1191         pte = huge_ptep_get(ptep);
1192         if (pte_present(pte)) {
1193                 struct page *page = pte_page(pte);
1194
1195                 if (!PageAnon(page))
1196                         flags |= PM_FILE;
1197
1198                 if (page_mapcount(page) == 1)
1199                         flags |= PM_MMAP_EXCLUSIVE;
1200
1201                 flags |= PM_PRESENT;
1202                 if (pm->show_pfn)
1203                         frame = pte_pfn(pte) +
1204                                 ((addr & ~hmask) >> PAGE_SHIFT);
1205         }
1206
1207         for (; addr != end; addr += PAGE_SIZE) {
1208                 pagemap_entry_t pme = make_pme(frame, flags);
1209
1210                 err = add_to_pagemap(addr, &pme, pm);
1211                 if (err)
1212                         return err;
1213                 if (pm->show_pfn && (flags & PM_PRESENT))
1214                         frame++;
1215         }
1216
1217         cond_resched();
1218
1219         return err;
1220 }
1221 #endif /* HUGETLB_PAGE */
1222
1223 /*
1224  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1225  *
1226  * For each page in the address space, this file contains one 64-bit entry
1227  * consisting of the following:
1228  *
1229  * Bits 0-54  page frame number (PFN) if present
1230  * Bits 0-4   swap type if swapped
1231  * Bits 5-54  swap offset if swapped
1232  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1233  * Bit  56    page exclusively mapped
1234  * Bits 57-60 zero
1235  * Bit  61    page is file-page or shared-anon
1236  * Bit  62    page swapped
1237  * Bit  63    page present
1238  *
1239  * If the page is not present but in swap, then the PFN contains an
1240  * encoding of the swap file number and the page's offset into the
1241  * swap. Unmapped pages return a null PFN. This allows determining
1242  * precisely which pages are mapped (or in swap) and comparing mapped
1243  * pages between processes.
1244  *
1245  * Efficient users of this interface will use /proc/pid/maps to
1246  * determine which areas of memory are actually mapped and llseek to
1247  * skip over unmapped regions.
1248  */
1249 static ssize_t pagemap_read(struct file *file, char __user *buf,
1250                             size_t count, loff_t *ppos)
1251 {
1252         struct mm_struct *mm = file->private_data;
1253         struct pagemapread pm;
1254         struct mm_walk pagemap_walk = {};
1255         unsigned long src;
1256         unsigned long svpfn;
1257         unsigned long start_vaddr;
1258         unsigned long end_vaddr;
1259         int ret = 0, copied = 0;
1260
1261         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1262                 goto out;
1263
1264         ret = -EINVAL;
1265         /* file position must be aligned */
1266         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1267                 goto out_mm;
1268
1269         ret = 0;
1270         if (!count)
1271                 goto out_mm;
1272
1273         /* do not disclose physical addresses: attack vector */
1274         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1275
1276         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1277         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1278         ret = -ENOMEM;
1279         if (!pm.buffer)
1280                 goto out_mm;
1281
1282         pagemap_walk.pmd_entry = pagemap_pmd_range;
1283         pagemap_walk.pte_hole = pagemap_pte_hole;
1284 #ifdef CONFIG_HUGETLB_PAGE
1285         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1286 #endif
1287         pagemap_walk.mm = mm;
1288         pagemap_walk.private = &pm;
1289
1290         src = *ppos;
1291         svpfn = src / PM_ENTRY_BYTES;
1292         start_vaddr = svpfn << PAGE_SHIFT;
1293         end_vaddr = mm->task_size;
1294
1295         /* watch out for wraparound */
1296         if (svpfn > mm->task_size >> PAGE_SHIFT)
1297                 start_vaddr = end_vaddr;
1298
1299         /*
1300          * The odds are that this will stop walking way
1301          * before end_vaddr, because the length of the
1302          * user buffer is tracked in "pm", and the walk
1303          * will stop when we hit the end of the buffer.
1304          */
1305         ret = 0;
1306         while (count && (start_vaddr < end_vaddr)) {
1307                 int len;
1308                 unsigned long end;
1309
1310                 pm.pos = 0;
1311                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1312                 /* overflow ? */
1313                 if (end < start_vaddr || end > end_vaddr)
1314                         end = end_vaddr;
1315                 down_read(&mm->mmap_sem);
1316                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1317                 up_read(&mm->mmap_sem);
1318                 start_vaddr = end;
1319
1320                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1321                 if (copy_to_user(buf, pm.buffer, len)) {
1322                         ret = -EFAULT;
1323                         goto out_free;
1324                 }
1325                 copied += len;
1326                 buf += len;
1327                 count -= len;
1328         }
1329         *ppos += copied;
1330         if (!ret || ret == PM_END_OF_BUFFER)
1331                 ret = copied;
1332
1333 out_free:
1334         kfree(pm.buffer);
1335 out_mm:
1336         mmput(mm);
1337 out:
1338         return ret;
1339 }
1340
1341 static int pagemap_open(struct inode *inode, struct file *file)
1342 {
1343         struct mm_struct *mm;
1344
1345         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1346         if (IS_ERR(mm))
1347                 return PTR_ERR(mm);
1348         file->private_data = mm;
1349         return 0;
1350 }
1351
1352 static int pagemap_release(struct inode *inode, struct file *file)
1353 {
1354         struct mm_struct *mm = file->private_data;
1355
1356         if (mm)
1357                 mmdrop(mm);
1358         return 0;
1359 }
1360
1361 const struct file_operations proc_pagemap_operations = {
1362         .llseek         = mem_lseek, /* borrow this */
1363         .read           = pagemap_read,
1364         .open           = pagemap_open,
1365         .release        = pagemap_release,
1366 };
1367 #endif /* CONFIG_PROC_PAGE_MONITOR */
1368
1369 #ifdef CONFIG_NUMA
1370
1371 struct numa_maps {
1372         unsigned long pages;
1373         unsigned long anon;
1374         unsigned long active;
1375         unsigned long writeback;
1376         unsigned long mapcount_max;
1377         unsigned long dirty;
1378         unsigned long swapcache;
1379         unsigned long node[MAX_NUMNODES];
1380 };
1381
1382 struct numa_maps_private {
1383         struct proc_maps_private proc_maps;
1384         struct numa_maps md;
1385 };
1386
1387 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1388                         unsigned long nr_pages)
1389 {
1390         int count = page_mapcount(page);
1391
1392         md->pages += nr_pages;
1393         if (pte_dirty || PageDirty(page))
1394                 md->dirty += nr_pages;
1395
1396         if (PageSwapCache(page))
1397                 md->swapcache += nr_pages;
1398
1399         if (PageActive(page) || PageUnevictable(page))
1400                 md->active += nr_pages;
1401
1402         if (PageWriteback(page))
1403                 md->writeback += nr_pages;
1404
1405         if (PageAnon(page))
1406                 md->anon += nr_pages;
1407
1408         if (count > md->mapcount_max)
1409                 md->mapcount_max = count;
1410
1411         md->node[page_to_nid(page)] += nr_pages;
1412 }
1413
1414 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1415                 unsigned long addr)
1416 {
1417         struct page *page;
1418         int nid;
1419
1420         if (!pte_present(pte))
1421                 return NULL;
1422
1423         page = vm_normal_page(vma, addr, pte);
1424         if (!page)
1425                 return NULL;
1426
1427         if (PageReserved(page))
1428                 return NULL;
1429
1430         nid = page_to_nid(page);
1431         if (!node_isset(nid, node_states[N_MEMORY]))
1432                 return NULL;
1433
1434         return page;
1435 }
1436
1437 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1438                 unsigned long end, struct mm_walk *walk)
1439 {
1440         struct numa_maps *md = walk->private;
1441         struct vm_area_struct *vma = walk->vma;
1442         spinlock_t *ptl;
1443         pte_t *orig_pte;
1444         pte_t *pte;
1445
1446         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1447                 pte_t huge_pte = *(pte_t *)pmd;
1448                 struct page *page;
1449
1450                 page = can_gather_numa_stats(huge_pte, vma, addr);
1451                 if (page)
1452                         gather_stats(page, md, pte_dirty(huge_pte),
1453                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1454                 spin_unlock(ptl);
1455                 return 0;
1456         }
1457
1458         if (pmd_trans_unstable(pmd))
1459                 return 0;
1460         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1461         do {
1462                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1463                 if (!page)
1464                         continue;
1465                 gather_stats(page, md, pte_dirty(*pte), 1);
1466
1467         } while (pte++, addr += PAGE_SIZE, addr != end);
1468         pte_unmap_unlock(orig_pte, ptl);
1469         return 0;
1470 }
1471 #ifdef CONFIG_HUGETLB_PAGE
1472 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1473                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1474 {
1475         struct numa_maps *md;
1476         struct page *page;
1477
1478         if (!pte_present(*pte))
1479                 return 0;
1480
1481         page = pte_page(*pte);
1482         if (!page)
1483                 return 0;
1484
1485         md = walk->private;
1486         gather_stats(page, md, pte_dirty(*pte), 1);
1487         return 0;
1488 }
1489
1490 #else
1491 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1492                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1493 {
1494         return 0;
1495 }
1496 #endif
1497
1498 /*
1499  * Display pages allocated per node and memory policy via /proc.
1500  */
1501 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1502 {
1503         struct numa_maps_private *numa_priv = m->private;
1504         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1505         struct vm_area_struct *vma = v;
1506         struct numa_maps *md = &numa_priv->md;
1507         struct file *file = vma->vm_file;
1508         struct mm_struct *mm = vma->vm_mm;
1509         struct mm_walk walk = {
1510                 .hugetlb_entry = gather_hugetlb_stats,
1511                 .pmd_entry = gather_pte_stats,
1512                 .private = md,
1513                 .mm = mm,
1514         };
1515         struct mempolicy *pol;
1516         char buffer[64];
1517         int nid;
1518
1519         if (!mm)
1520                 return 0;
1521
1522         /* Ensure we start with an empty set of numa_maps statistics. */
1523         memset(md, 0, sizeof(*md));
1524
1525         pol = __get_vma_policy(vma, vma->vm_start);
1526         if (pol) {
1527                 mpol_to_str(buffer, sizeof(buffer), pol);
1528                 mpol_cond_put(pol);
1529         } else {
1530                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1531         }
1532
1533         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1534
1535         if (file) {
1536                 seq_puts(m, " file=");
1537                 seq_file_path(m, file, "\n\t= ");
1538         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1539                 seq_puts(m, " heap");
1540         } else {
1541                 pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1542                 if (tid != 0) {
1543                         /*
1544                          * Thread stack in /proc/PID/task/TID/maps or
1545                          * the main process stack.
1546                          */
1547                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
1548                             vma->vm_end >= mm->start_stack))
1549                                 seq_puts(m, " stack");
1550                         else
1551                                 seq_printf(m, " stack:%d", tid);
1552                 }
1553         }
1554
1555         if (is_vm_hugetlb_page(vma))
1556                 seq_puts(m, " huge");
1557
1558         /* mmap_sem is held by m_start */
1559         walk_page_vma(vma, &walk);
1560
1561         if (!md->pages)
1562                 goto out;
1563
1564         if (md->anon)
1565                 seq_printf(m, " anon=%lu", md->anon);
1566
1567         if (md->dirty)
1568                 seq_printf(m, " dirty=%lu", md->dirty);
1569
1570         if (md->pages != md->anon && md->pages != md->dirty)
1571                 seq_printf(m, " mapped=%lu", md->pages);
1572
1573         if (md->mapcount_max > 1)
1574                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1575
1576         if (md->swapcache)
1577                 seq_printf(m, " swapcache=%lu", md->swapcache);
1578
1579         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1580                 seq_printf(m, " active=%lu", md->active);
1581
1582         if (md->writeback)
1583                 seq_printf(m, " writeback=%lu", md->writeback);
1584
1585         for_each_node_state(nid, N_MEMORY)
1586                 if (md->node[nid])
1587                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1588
1589         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1590 out:
1591         seq_putc(m, '\n');
1592         m_cache_vma(m, vma);
1593         return 0;
1594 }
1595
1596 static int show_pid_numa_map(struct seq_file *m, void *v)
1597 {
1598         return show_numa_map(m, v, 1);
1599 }
1600
1601 static int show_tid_numa_map(struct seq_file *m, void *v)
1602 {
1603         return show_numa_map(m, v, 0);
1604 }
1605
1606 static const struct seq_operations proc_pid_numa_maps_op = {
1607         .start  = m_start,
1608         .next   = m_next,
1609         .stop   = m_stop,
1610         .show   = show_pid_numa_map,
1611 };
1612
1613 static const struct seq_operations proc_tid_numa_maps_op = {
1614         .start  = m_start,
1615         .next   = m_next,
1616         .stop   = m_stop,
1617         .show   = show_tid_numa_map,
1618 };
1619
1620 static int numa_maps_open(struct inode *inode, struct file *file,
1621                           const struct seq_operations *ops)
1622 {
1623         return proc_maps_open(inode, file, ops,
1624                                 sizeof(struct numa_maps_private));
1625 }
1626
1627 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1628 {
1629         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1630 }
1631
1632 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1633 {
1634         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1635 }
1636
1637 const struct file_operations proc_pid_numa_maps_operations = {
1638         .open           = pid_numa_maps_open,
1639         .read           = seq_read,
1640         .llseek         = seq_lseek,
1641         .release        = proc_map_release,
1642 };
1643
1644 const struct file_operations proc_tid_numa_maps_operations = {
1645         .open           = tid_numa_maps_open,
1646         .read           = seq_read,
1647         .llseek         = seq_lseek,
1648         .release        = proc_map_release,
1649 };
1650 #endif /* CONFIG_NUMA */