OSDN Git Service

Initial revision
[pf3gnuchains/pf3gnuchains3x.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2    Copyright 1990, 91, 92, 93, 94, 1999 Free Software Foundation, Inc.
3    Contributed by Cygnus Support.  Written by John Gilmore.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20
21 #if !defined (TARGET_H)
22 #define TARGET_H
23
24 /* This include file defines the interface between the main part
25    of the debugger, and the part which is target-specific, or
26    specific to the communications interface between us and the
27    target.
28
29    A TARGET is an interface between the debugger and a particular 
30    kind of file or process.  Targets can be STACKED in STRATA, 
31    so that more than one target can potentially respond to a request.
32    In particular, memory accesses will walk down the stack of targets
33    until they find a target that is interested in handling that particular
34    address.  STRATA are artificial boundaries on the stack, within
35    which particular kinds of targets live.  Strata exist so that
36    people don't get confused by pushing e.g. a process target and then
37    a file target, and wondering why they can't see the current values
38    of variables any more (the file target is handling them and they
39    never get to the process target).  So when you push a file target,
40    it goes into the file stratum, which is always below the process
41    stratum.  */
42
43 #include "bfd.h"
44 #include "symtab.h"
45
46 enum strata {
47         dummy_stratum,          /* The lowest of the low */
48         file_stratum,           /* Executable files, etc */
49         core_stratum,           /* Core dump files */
50         download_stratum,       /* Downloading of remote targets */
51         process_stratum         /* Executing processes */
52 };
53
54 enum thread_control_capabilities {
55         tc_none = 0,            /* Default: can't control thread execution. */
56         tc_schedlock = 1,       /* Can lock the thread scheduler. */
57         tc_switch = 2           /* Can switch the running thread on demand. */
58 };
59
60 /* Stuff for target_wait.  */
61
62 /* Generally, what has the program done?  */
63 enum target_waitkind {
64   /* The program has exited.  The exit status is in value.integer.  */
65   TARGET_WAITKIND_EXITED,
66
67   /* The program has stopped with a signal.  Which signal is in value.sig.  */
68   TARGET_WAITKIND_STOPPED,
69
70   /* The program has terminated with a signal.  Which signal is in
71      value.sig.  */
72   TARGET_WAITKIND_SIGNALLED,
73
74   /* The program is letting us know that it dynamically loaded something
75      (e.g. it called load(2) on AIX).  */
76   TARGET_WAITKIND_LOADED,
77
78   /* The program has forked.  A "related" process' ID is in value.related_pid.
79      I.e., if the child forks, value.related_pid is the parent's ID.
80      */
81   TARGET_WAITKIND_FORKED,
82
83   /* The program has vforked.  A "related" process's ID is in value.related_pid.
84      */
85   TARGET_WAITKIND_VFORKED,
86
87   /* The program has exec'ed a new executable file.  The new file's pathname
88      is pointed to by value.execd_pathname.
89      */
90   TARGET_WAITKIND_EXECD,
91
92   /* The program has entered or returned from a system call.  On HP-UX, this
93      is used in the hardware watchpoint implementation.  The syscall's unique
94      integer ID number is in value.syscall_id;
95      */
96   TARGET_WAITKIND_SYSCALL_ENTRY,
97   TARGET_WAITKIND_SYSCALL_RETURN,
98
99   /* Nothing happened, but we stopped anyway.  This perhaps should be handled
100      within target_wait, but I'm not sure target_wait should be resuming the
101      inferior.  */
102   TARGET_WAITKIND_SPURIOUS
103   };
104
105 /* The numbering of these signals is chosen to match traditional unix
106    signals (insofar as various unices use the same numbers, anyway).
107    It is also the numbering of the GDB remote protocol.  Other remote
108    protocols, if they use a different numbering, should make sure to
109    translate appropriately.  */
110
111 /* This is based strongly on Unix/POSIX signals for several reasons:
112    (1) This set of signals represents a widely-accepted attempt to
113    represent events of this sort in a portable fashion, (2) we want a
114    signal to make it from wait to child_wait to the user intact, (3) many
115    remote protocols use a similar encoding.  However, it is
116    recognized that this set of signals has limitations (such as not
117    distinguishing between various kinds of SIGSEGV, or not
118    distinguishing hitting a breakpoint from finishing a single step).
119    So in the future we may get around this either by adding additional
120    signals for breakpoint, single-step, etc., or by adding signal
121    codes; the latter seems more in the spirit of what BSD, System V,
122    etc. are doing to address these issues.  */
123
124 /* For an explanation of what each signal means, see
125    target_signal_to_string.  */
126
127 enum target_signal {
128   /* Used some places (e.g. stop_signal) to record the concept that
129      there is no signal.  */
130   TARGET_SIGNAL_0 = 0,
131   TARGET_SIGNAL_FIRST = 0,
132   TARGET_SIGNAL_HUP = 1,
133   TARGET_SIGNAL_INT = 2,
134   TARGET_SIGNAL_QUIT = 3,
135   TARGET_SIGNAL_ILL = 4,
136   TARGET_SIGNAL_TRAP = 5,
137   TARGET_SIGNAL_ABRT = 6,
138   TARGET_SIGNAL_EMT = 7,
139   TARGET_SIGNAL_FPE = 8,
140   TARGET_SIGNAL_KILL = 9,
141   TARGET_SIGNAL_BUS = 10,
142   TARGET_SIGNAL_SEGV = 11,
143   TARGET_SIGNAL_SYS = 12,
144   TARGET_SIGNAL_PIPE = 13,
145   TARGET_SIGNAL_ALRM = 14,
146   TARGET_SIGNAL_TERM = 15,
147   TARGET_SIGNAL_URG = 16,
148   TARGET_SIGNAL_STOP = 17,
149   TARGET_SIGNAL_TSTP = 18,
150   TARGET_SIGNAL_CONT = 19,
151   TARGET_SIGNAL_CHLD = 20,
152   TARGET_SIGNAL_TTIN = 21,
153   TARGET_SIGNAL_TTOU = 22,
154   TARGET_SIGNAL_IO = 23,
155   TARGET_SIGNAL_XCPU = 24,
156   TARGET_SIGNAL_XFSZ = 25,
157   TARGET_SIGNAL_VTALRM = 26,
158   TARGET_SIGNAL_PROF = 27,
159   TARGET_SIGNAL_WINCH = 28,
160   TARGET_SIGNAL_LOST = 29,
161   TARGET_SIGNAL_USR1 = 30,
162   TARGET_SIGNAL_USR2 = 31,
163   TARGET_SIGNAL_PWR = 32,
164   /* Similar to SIGIO.  Perhaps they should have the same number.  */
165   TARGET_SIGNAL_POLL = 33,
166   TARGET_SIGNAL_WIND = 34,
167   TARGET_SIGNAL_PHONE = 35,
168   TARGET_SIGNAL_WAITING = 36,
169   TARGET_SIGNAL_LWP = 37,
170   TARGET_SIGNAL_DANGER = 38,
171   TARGET_SIGNAL_GRANT = 39,
172   TARGET_SIGNAL_RETRACT = 40,
173   TARGET_SIGNAL_MSG = 41,
174   TARGET_SIGNAL_SOUND = 42,
175   TARGET_SIGNAL_SAK = 43,
176   TARGET_SIGNAL_PRIO = 44,
177   TARGET_SIGNAL_REALTIME_33 = 45,
178   TARGET_SIGNAL_REALTIME_34 = 46,
179   TARGET_SIGNAL_REALTIME_35 = 47,
180   TARGET_SIGNAL_REALTIME_36 = 48,
181   TARGET_SIGNAL_REALTIME_37 = 49,
182   TARGET_SIGNAL_REALTIME_38 = 50,
183   TARGET_SIGNAL_REALTIME_39 = 51,
184   TARGET_SIGNAL_REALTIME_40 = 52,
185   TARGET_SIGNAL_REALTIME_41 = 53,
186   TARGET_SIGNAL_REALTIME_42 = 54,
187   TARGET_SIGNAL_REALTIME_43 = 55,
188   TARGET_SIGNAL_REALTIME_44 = 56,
189   TARGET_SIGNAL_REALTIME_45 = 57,
190   TARGET_SIGNAL_REALTIME_46 = 58,
191   TARGET_SIGNAL_REALTIME_47 = 59,
192   TARGET_SIGNAL_REALTIME_48 = 60,
193   TARGET_SIGNAL_REALTIME_49 = 61,
194   TARGET_SIGNAL_REALTIME_50 = 62,
195   TARGET_SIGNAL_REALTIME_51 = 63,
196   TARGET_SIGNAL_REALTIME_52 = 64,
197   TARGET_SIGNAL_REALTIME_53 = 65,
198   TARGET_SIGNAL_REALTIME_54 = 66,
199   TARGET_SIGNAL_REALTIME_55 = 67,
200   TARGET_SIGNAL_REALTIME_56 = 68,
201   TARGET_SIGNAL_REALTIME_57 = 69,
202   TARGET_SIGNAL_REALTIME_58 = 70,
203   TARGET_SIGNAL_REALTIME_59 = 71,
204   TARGET_SIGNAL_REALTIME_60 = 72,
205   TARGET_SIGNAL_REALTIME_61 = 73,
206   TARGET_SIGNAL_REALTIME_62 = 74,
207   TARGET_SIGNAL_REALTIME_63 = 75,
208 #if defined(MACH) || defined(__MACH__)
209   /* Mach exceptions */
210   TARGET_EXC_BAD_ACCESS = 76,
211   TARGET_EXC_BAD_INSTRUCTION = 77,
212   TARGET_EXC_ARITHMETIC = 78,
213   TARGET_EXC_EMULATION = 79,
214   TARGET_EXC_SOFTWARE = 80,
215   TARGET_EXC_BREAKPOINT = 81,
216 #endif
217   /* Some signal we don't know about.  */
218   TARGET_SIGNAL_UNKNOWN,
219
220   /* Use whatever signal we use when one is not specifically specified
221      (for passing to proceed and so on).  */
222   TARGET_SIGNAL_DEFAULT,
223
224   /* Last and unused enum value, for sizing arrays, etc.  */
225   TARGET_SIGNAL_LAST
226 };
227
228 struct target_waitstatus {
229   enum target_waitkind kind;
230
231   /* Forked child pid, execd pathname, exit status or signal number.  */
232   union {
233     int integer;
234     enum target_signal sig;
235     int  related_pid;
236     char *  execd_pathname;
237     int  syscall_id;
238   } value;
239 };
240
241 /* Return the string for a signal.  */
242 extern char *target_signal_to_string PARAMS ((enum target_signal));
243
244 /* Return the name (SIGHUP, etc.) for a signal.  */
245 extern char *target_signal_to_name PARAMS ((enum target_signal));
246
247 /* Given a name (SIGHUP, etc.), return its signal.  */
248 enum target_signal target_signal_from_name PARAMS ((char *));
249
250 \f
251 /* If certain kinds of activity happen, target_wait should perform
252    callbacks.  */
253 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
254    on TARGET_ACTIVITY_FD.   */
255 extern int target_activity_fd;
256 /* Returns zero to leave the inferior alone, one to interrupt it.  */
257 extern int (*target_activity_function) PARAMS ((void));
258 \f
259 struct target_ops
260 {
261   char         *to_shortname;   /* Name this target type */
262   char         *to_longname;    /* Name for printing */
263   char         *to_doc;         /* Documentation.  Does not include trailing
264                                    newline, and starts with a one-line descrip-
265                                    tion (probably similar to to_longname). */
266   void        (*to_open) PARAMS ((char *, int));
267   void        (*to_close) PARAMS ((int));
268   void        (*to_attach) PARAMS ((char *, int));
269   void        (*to_post_attach) PARAMS ((int));
270   void        (*to_require_attach) PARAMS ((char *, int));
271   void        (*to_detach) PARAMS ((char *, int));
272   void        (*to_require_detach) PARAMS ((int, char *, int));
273   void        (*to_resume) PARAMS ((int, int, enum target_signal));
274   int         (*to_wait) PARAMS ((int, struct target_waitstatus *));
275   void        (*to_post_wait) PARAMS ((int, int));
276   void        (*to_fetch_registers) PARAMS ((int));
277   void        (*to_store_registers) PARAMS ((int));
278   void        (*to_prepare_to_store) PARAMS ((void));
279
280   /* Transfer LEN bytes of memory between GDB address MYADDR and
281      target address MEMADDR.  If WRITE, transfer them to the target, else
282      transfer them from the target.  TARGET is the target from which we
283      get this function.
284
285      Return value, N, is one of the following:
286
287      0 means that we can't handle this.  If errno has been set, it is the
288      error which prevented us from doing it (FIXME: What about bfd_error?).
289
290      positive (call it N) means that we have transferred N bytes
291      starting at MEMADDR.  We might be able to handle more bytes
292      beyond this length, but no promises.
293
294      negative (call its absolute value N) means that we cannot
295      transfer right at MEMADDR, but we could transfer at least
296      something at MEMADDR + N.  */
297
298   int         (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
299                                          int len, int write,
300                                          struct target_ops * target));
301
302 #if 0
303   /* Enable this after 4.12.  */
304
305   /* Search target memory.  Start at STARTADDR and take LEN bytes of
306      target memory, and them with MASK, and compare to DATA.  If they
307      match, set *ADDR_FOUND to the address we found it at, store the data
308      we found at LEN bytes starting at DATA_FOUND, and return.  If
309      not, add INCREMENT to the search address and keep trying until
310      the search address is outside of the range [LORANGE,HIRANGE).
311
312      If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return.  */
313   void (*to_search) PARAMS ((int len, char *data, char *mask,
314                              CORE_ADDR startaddr, int increment,
315                              CORE_ADDR lorange, CORE_ADDR hirange,
316                              CORE_ADDR *addr_found, char *data_found));
317
318 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found)  \
319   (*current_target.to_search) (len, data, mask, startaddr, increment, \
320                                 lorange, hirange, addr_found, data_found)
321 #endif /* 0 */
322
323   void        (*to_files_info) PARAMS ((struct target_ops *));
324   int         (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
325   int         (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
326   void        (*to_terminal_init) PARAMS ((void));
327   void        (*to_terminal_inferior) PARAMS ((void));
328   void        (*to_terminal_ours_for_output) PARAMS ((void));
329   void        (*to_terminal_ours) PARAMS ((void));
330   void        (*to_terminal_info) PARAMS ((char *, int));
331   void        (*to_kill) PARAMS ((void));
332   void        (*to_load) PARAMS ((char *, int));
333   int         (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
334   void        (*to_create_inferior) PARAMS ((char *, char *, char **));
335   void        (*to_post_startup_inferior) PARAMS ((int));
336   void        (*to_acknowledge_created_inferior) PARAMS ((int));
337   void        (*to_clone_and_follow_inferior) PARAMS ((int, int *));
338   void        (*to_post_follow_inferior_by_clone) PARAMS ((void));
339   int         (*to_insert_fork_catchpoint) PARAMS ((int));
340   int         (*to_remove_fork_catchpoint) PARAMS ((int));
341   int         (*to_insert_vfork_catchpoint) PARAMS ((int));
342   int         (*to_remove_vfork_catchpoint) PARAMS ((int));
343   int         (*to_has_forked) PARAMS ((int, int *));
344   int         (*to_has_vforked) PARAMS ((int, int *));
345   int         (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
346   void        (*to_post_follow_vfork) PARAMS ((int, int, int, int));
347   int         (*to_insert_exec_catchpoint) PARAMS ((int));
348   int         (*to_remove_exec_catchpoint) PARAMS ((int));
349   int         (*to_has_execd) PARAMS ((int, char **));
350   int         (*to_reported_exec_events_per_exec_call) PARAMS ((void));
351   int         (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
352   int         (*to_has_exited) PARAMS ((int, int, int *));
353   void        (*to_mourn_inferior) PARAMS ((void));
354   int         (*to_can_run) PARAMS ((void));
355   void        (*to_notice_signals) PARAMS ((int pid));
356   int         (*to_thread_alive) PARAMS ((int pid));
357   void        (*to_stop) PARAMS ((void));
358   int         (*to_query) PARAMS ((int/*char*/, char *, char *, int *));
359   struct symtab_and_line * (*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
360   struct exception_event_record * (*to_get_current_exception_event) PARAMS ((void));
361   char *      (*to_pid_to_exec_file) PARAMS ((int pid));
362   char *      (*to_core_file_to_sym_file) PARAMS ((char *));
363   enum strata   to_stratum;
364   struct target_ops
365                 *DONT_USE;      /* formerly to_next */
366   int           to_has_all_memory;
367   int           to_has_memory;
368   int           to_has_stack;
369   int           to_has_registers;
370   int           to_has_execution;
371   int           to_has_thread_control;  /* control thread execution */
372   struct section_table
373                *to_sections;
374   struct section_table
375                *to_sections_end;
376   int           to_magic;
377   /* Need sub-structure for target machine related rather than comm related? */
378 };
379
380 /* Magic number for checking ops size.  If a struct doesn't end with this
381    number, somebody changed the declaration but didn't change all the
382    places that initialize one.  */
383
384 #define OPS_MAGIC       3840
385
386 /* The ops structure for our "current" target process.  This should
387    never be NULL.  If there is no target, it points to the dummy_target.  */
388
389 extern struct target_ops        current_target;
390
391 /* An item on the target stack.  */
392
393 struct target_stack_item
394 {
395   struct target_stack_item *next;
396   struct target_ops *target_ops;
397 };
398
399 /* The target stack.  */
400
401 extern struct target_stack_item *target_stack;
402
403 /* Define easy words for doing these operations on our current target.  */
404
405 #define target_shortname        (current_target.to_shortname)
406 #define target_longname         (current_target.to_longname)
407
408 /* The open routine takes the rest of the parameters from the command,
409    and (if successful) pushes a new target onto the stack.
410    Targets should supply this routine, if only to provide an error message.  */
411 #define target_open(name, from_tty)     \
412         (*current_target.to_open) (name, from_tty)
413
414 /* Does whatever cleanup is required for a target that we are no longer
415    going to be calling.  Argument says whether we are quitting gdb and
416    should not get hung in case of errors, or whether we want a clean
417    termination even if it takes a while.  This routine is automatically
418    always called just before a routine is popped off the target stack.
419    Closing file descriptors and freeing memory are typical things it should
420    do.  */
421
422 #define target_close(quitting)  \
423         (*current_target.to_close) (quitting)
424
425 /* Attaches to a process on the target side.  Arguments are as passed
426    to the `attach' command by the user.  This routine can be called
427    when the target is not on the target-stack, if the target_can_run
428    routine returns 1; in that case, it must push itself onto the stack.  
429    Upon exit, the target should be ready for normal operations, and
430    should be ready to deliver the status of the process immediately 
431    (without waiting) to an upcoming target_wait call.  */
432
433 #define target_attach(args, from_tty)   \
434         (*current_target.to_attach) (args, from_tty)
435
436 /* The target_attach operation places a process under debugger control,
437    and stops the process.
438
439    This operation provides a target-specific hook that allows the
440    necessary bookkeeping to be performed after an attach completes.
441    */
442 #define target_post_attach(pid) \
443         (*current_target.to_post_attach) (pid)
444
445 /* Attaches to a process on the target side, if not already attached.
446    (If already attached, takes no action.)
447
448    This operation can be used to follow the child process of a fork.
449    On some targets, such child processes of an original inferior process
450    are automatically under debugger control, and thus do not require an
451    actual attach operation.  */
452
453 #define target_require_attach(args, from_tty)   \
454         (*current_target.to_require_attach) (args, from_tty)
455
456 /* Takes a program previously attached to and detaches it.
457    The program may resume execution (some targets do, some don't) and will
458    no longer stop on signals, etc.  We better not have left any breakpoints
459    in the program or it'll die when it hits one.  ARGS is arguments
460    typed by the user (e.g. a signal to send the process).  FROM_TTY
461    says whether to be verbose or not.  */
462
463 extern void
464 target_detach PARAMS ((char *, int));
465
466 /* Detaches from a process on the target side, if not already dettached.
467    (If already detached, takes no action.)
468
469    This operation can be used to follow the parent process of a fork.
470    On some targets, such child processes of an original inferior process
471    are automatically under debugger control, and thus do require an actual
472    detach operation.
473
474    PID is the process id of the child to detach from.
475    ARGS is arguments typed by the user (e.g. a signal to send the process).
476    FROM_TTY says whether to be verbose or not.  */
477
478 #define target_require_detach(pid, args, from_tty) \
479         (*current_target.to_require_detach) (pid, args, from_tty)
480
481 /* Resume execution of the target process PID.  STEP says whether to
482    single-step or to run free; SIGGNAL is the signal to be given to
483    the target, or TARGET_SIGNAL_0 for no signal.  The caller may not
484    pass TARGET_SIGNAL_DEFAULT.  */
485
486 #define target_resume(pid, step, siggnal)       \
487         (*current_target.to_resume) (pid, step, siggnal)
488
489 /* Wait for process pid to do something.  Pid = -1 to wait for any pid
490    to do something.  Return pid of child, or -1 in case of error;
491    store status through argument pointer STATUS.  Note that it is
492    *not* OK to return_to_top_level out of target_wait without popping
493    the debugging target from the stack; GDB isn't prepared to get back
494    to the prompt with a debugging target but without the frame cache,
495    stop_pc, etc., set up.  */
496
497 #define target_wait(pid, status)                \
498         (*current_target.to_wait) (pid, status)
499
500 /* The target_wait operation waits for a process event to occur, and
501    thereby stop the process.
502
503    On some targets, certain events may happen in sequences.  gdb's
504    correct response to any single event of such a sequence may require
505    knowledge of what earlier events in the sequence have been seen.
506
507    This operation provides a target-specific hook that allows the
508    necessary bookkeeping to be performed to track such sequences.
509    */
510
511 #define target_post_wait(pid, status) \
512         (*current_target.to_post_wait) (pid, status)
513
514 /* Fetch register REGNO, or all regs if regno == -1.  No result.  */
515
516 #define target_fetch_registers(regno)   \
517         (*current_target.to_fetch_registers) (regno)
518
519 /* Store at least register REGNO, or all regs if REGNO == -1.
520    It can store as many registers as it wants to, so target_prepare_to_store
521    must have been previously called.  Calls error() if there are problems.  */
522
523 #define target_store_registers(regs)    \
524         (*current_target.to_store_registers) (regs)
525
526 /* Get ready to modify the registers array.  On machines which store
527    individual registers, this doesn't need to do anything.  On machines
528    which store all the registers in one fell swoop, this makes sure
529    that REGISTERS contains all the registers from the program being
530    debugged.  */
531
532 #define target_prepare_to_store()       \
533         (*current_target.to_prepare_to_store) ()
534
535 extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
536
537 extern int
538 target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
539
540 extern int
541 target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
542                                     asection *bfd_section));
543
544 extern int
545 target_read_memory_partial PARAMS ((CORE_ADDR, char *, int, int *));
546
547 extern int
548 target_write_memory PARAMS ((CORE_ADDR, char *, int));
549
550 extern int
551 xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
552
553 extern int
554 child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
555
556 extern char *
557 child_pid_to_exec_file PARAMS ((int));
558
559 extern char *
560 child_core_file_to_sym_file PARAMS ((char *));
561
562 #if defined(CHILD_POST_ATTACH)
563 extern void
564 child_post_attach PARAMS ((int));
565 #endif
566
567 extern void
568 child_post_wait PARAMS ((int, int));
569
570 extern void
571 child_post_startup_inferior PARAMS ((int));
572
573 extern void
574 child_acknowledge_created_inferior PARAMS ((int));
575
576 extern void
577 child_clone_and_follow_inferior PARAMS ((int, int *));
578
579 extern void
580 child_post_follow_inferior_by_clone PARAMS ((void));
581
582 extern int
583 child_insert_fork_catchpoint PARAMS ((int));
584
585 extern int
586 child_remove_fork_catchpoint PARAMS ((int));
587
588 extern int
589 child_insert_vfork_catchpoint PARAMS ((int));
590
591 extern int
592 child_remove_vfork_catchpoint PARAMS ((int));
593
594 extern int
595 child_has_forked PARAMS ((int, int *));
596
597 extern int
598 child_has_vforked PARAMS ((int, int *));
599
600 extern void
601 child_acknowledge_created_inferior PARAMS ((int));
602
603 extern int
604 child_can_follow_vfork_prior_to_exec PARAMS ((void));
605
606 extern void
607 child_post_follow_vfork PARAMS ((int, int, int, int));
608
609 extern int
610 child_insert_exec_catchpoint PARAMS ((int));
611
612 extern int
613 child_remove_exec_catchpoint PARAMS ((int));
614
615 extern int
616 child_has_execd PARAMS ((int, char **));
617
618 extern int
619 child_reported_exec_events_per_exec_call PARAMS ((void));
620
621 extern int
622 child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
623
624 extern int
625 child_has_exited PARAMS ((int, int, int *));
626
627 extern int
628 child_thread_alive PARAMS ((int));
629
630 /* From exec.c */
631
632 extern void
633 print_section_info PARAMS ((struct target_ops *, bfd *));
634
635 /* Print a line about the current target.  */
636
637 #define target_files_info()     \
638         (*current_target.to_files_info) (&current_target)
639
640 /* Insert a breakpoint at address ADDR in the target machine.
641    SAVE is a pointer to memory allocated for saving the
642    target contents.  It is guaranteed by the caller to be long enough
643    to save "sizeof BREAKPOINT" bytes.  Result is 0 for success, or
644    an errno value.  */
645
646 #define target_insert_breakpoint(addr, save)    \
647         (*current_target.to_insert_breakpoint) (addr, save)
648
649 /* Remove a breakpoint at address ADDR in the target machine.
650    SAVE is a pointer to the same save area 
651    that was previously passed to target_insert_breakpoint.  
652    Result is 0 for success, or an errno value.  */
653
654 #define target_remove_breakpoint(addr, save)    \
655         (*current_target.to_remove_breakpoint) (addr, save)
656
657 /* Initialize the terminal settings we record for the inferior,
658    before we actually run the inferior.  */
659
660 #define target_terminal_init() \
661         (*current_target.to_terminal_init) ()
662
663 /* Put the inferior's terminal settings into effect.
664    This is preparation for starting or resuming the inferior.  */
665
666 #define target_terminal_inferior() \
667         (*current_target.to_terminal_inferior) ()
668
669 /* Put some of our terminal settings into effect,
670    enough to get proper results from our output,
671    but do not change into or out of RAW mode
672    so that no input is discarded.
673
674    After doing this, either terminal_ours or terminal_inferior
675    should be called to get back to a normal state of affairs.  */
676
677 #define target_terminal_ours_for_output() \
678         (*current_target.to_terminal_ours_for_output) ()
679
680 /* Put our terminal settings into effect.
681    First record the inferior's terminal settings
682    so they can be restored properly later.  */
683
684 #define target_terminal_ours() \
685         (*current_target.to_terminal_ours) ()
686
687 /* Print useful information about our terminal status, if such a thing
688    exists.  */
689
690 #define target_terminal_info(arg, from_tty) \
691         (*current_target.to_terminal_info) (arg, from_tty)
692
693 /* Kill the inferior process.   Make it go away.  */
694
695 #define target_kill() \
696         (*current_target.to_kill) ()
697
698 /* Load an executable file into the target process.  This is expected to
699    not only bring new code into the target process, but also to update
700    GDB's symbol tables to match.  */
701
702 #define target_load(arg, from_tty) \
703         (*current_target.to_load) (arg, from_tty)
704
705 /* Look up a symbol in the target's symbol table.  NAME is the symbol
706    name.  ADDRP is a CORE_ADDR * pointing to where the value of the symbol
707    should be returned.  The result is 0 if successful, nonzero if the
708    symbol does not exist in the target environment.  This function should
709    not call error() if communication with the target is interrupted, since
710    it is called from symbol reading, but should return nonzero, possibly
711    doing a complain().  */
712
713 #define target_lookup_symbol(name, addrp)       \
714   (*current_target.to_lookup_symbol) (name, addrp)
715
716 /* Start an inferior process and set inferior_pid to its pid.
717    EXEC_FILE is the file to run.
718    ALLARGS is a string containing the arguments to the program.
719    ENV is the environment vector to pass.  Errors reported with error().
720    On VxWorks and various standalone systems, we ignore exec_file.  */
721  
722 #define target_create_inferior(exec_file, args, env)    \
723         (*current_target.to_create_inferior) (exec_file, args, env)
724
725
726 /* Some targets (such as ttrace-based HPUX) don't allow us to request
727    notification of inferior events such as fork and vork immediately
728    after the inferior is created.  (This because of how gdb gets an
729    inferior created via invoking a shell to do it.  In such a scenario,
730    if the shell init file has commands in it, the shell will fork and
731    exec for each of those commands, and we will see each such fork
732    event.  Very bad.)
733    
734    Such targets will supply an appropriate definition for this function.
735    */
736 #define target_post_startup_inferior(pid) \
737         (*current_target.to_post_startup_inferior) (pid)
738
739 /* On some targets, the sequence of starting up an inferior requires
740    some synchronization between gdb and the new inferior process, PID.
741    */
742 #define target_acknowledge_created_inferior(pid) \
743         (*current_target.to_acknowledge_created_inferior) (pid)
744
745 /* An inferior process has been created via a fork() or similar
746    system call.  This function will clone the debugger, then ensure
747    that CHILD_PID is attached to by that debugger.
748
749    FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
750    and FALSE otherwise.  (The original and clone debuggers can use this
751    to determine which they are, if need be.)
752
753    (This is not a terribly useful feature without a GUI to prevent
754    the two debuggers from competing for shell input.)
755    */
756 #define target_clone_and_follow_inferior(child_pid,followed_child) \
757         (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
758
759 /* This operation is intended to be used as the last in a sequence of
760    steps taken when following both parent and child of a fork.  This
761    is used by a clone of the debugger, which will follow the child.
762
763    The original debugger has detached from this process, and the
764    clone has attached to it.
765
766    On some targets, this requires a bit of cleanup to make it work
767    correctly.
768    */
769 #define target_post_follow_inferior_by_clone() \
770         (*current_target.to_post_follow_inferior_by_clone) ()
771
772 /* On some targets, we can catch an inferior fork or vfork event when it
773    occurs.  These functions insert/remove an already-created catchpoint for
774    such events.
775    */
776 #define target_insert_fork_catchpoint(pid) \
777         (*current_target.to_insert_fork_catchpoint) (pid)
778
779 #define target_remove_fork_catchpoint(pid) \
780         (*current_target.to_remove_fork_catchpoint) (pid)
781
782 #define target_insert_vfork_catchpoint(pid) \
783         (*current_target.to_insert_vfork_catchpoint) (pid)
784
785 #define target_remove_vfork_catchpoint(pid) \
786         (*current_target.to_remove_vfork_catchpoint) (pid)
787
788 /* Returns TRUE if PID has invoked the fork() system call.  And,
789    also sets CHILD_PID to the process id of the other ("child")
790    inferior process that was created by that call.
791    */
792 #define target_has_forked(pid,child_pid) \
793         (*current_target.to_has_forked) (pid,child_pid)
794
795 /* Returns TRUE if PID has invoked the vfork() system call.  And,
796    also sets CHILD_PID to the process id of the other ("child")
797    inferior process that was created by that call.
798    */
799 #define target_has_vforked(pid,child_pid) \
800         (*current_target.to_has_vforked) (pid,child_pid)
801
802 /* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
803    anything to a vforked child before it subsequently calls exec().
804    On such platforms, we say that the debugger cannot "follow" the
805    child until it has vforked.
806
807    This function should be defined to return 1 by those targets
808    which can allow the debugger to immediately follow a vforked
809    child, and 0 if they cannot.
810    */
811 #define target_can_follow_vfork_prior_to_exec() \
812         (*current_target.to_can_follow_vfork_prior_to_exec) ()
813
814 /* An inferior process has been created via a vfork() system call.
815    The debugger has followed the parent, the child, or both.  The
816    process of setting up for that follow may have required some
817    target-specific trickery to track the sequence of reported events.
818    If so, this function should be defined by those targets that
819    require the debugger to perform cleanup or initialization after
820    the vfork follow.
821    */
822 #define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
823         (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
824
825 /* On some targets, we can catch an inferior exec event when it
826    occurs.  These functions insert/remove an already-created catchpoint
827    for such events.
828    */
829 #define target_insert_exec_catchpoint(pid) \
830         (*current_target.to_insert_exec_catchpoint) (pid)
831  
832 #define target_remove_exec_catchpoint(pid) \
833         (*current_target.to_remove_exec_catchpoint) (pid)
834
835 /* Returns TRUE if PID has invoked a flavor of the exec() system call.
836    And, also sets EXECD_PATHNAME to the pathname of the executable file
837    that was passed to exec(), and is now being executed.
838    */
839 #define target_has_execd(pid,execd_pathname) \
840         (*current_target.to_has_execd) (pid,execd_pathname)
841
842 /* Returns the number of exec events that are reported when a process
843    invokes a flavor of the exec() system call on this target, if exec
844    events are being reported.
845    */
846 #define target_reported_exec_events_per_exec_call() \
847         (*current_target.to_reported_exec_events_per_exec_call) ()
848
849 /* Returns TRUE if PID has reported a syscall event.  And, also sets
850    KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
851    the unique integer ID of the syscall.
852    */
853 #define target_has_syscall_event(pid,kind,syscall_id) \
854   (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
855
856 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
857    exit code of PID, if any.
858    */
859 #define target_has_exited(pid,wait_status,exit_status) \
860         (*current_target.to_has_exited) (pid,wait_status,exit_status)
861
862 /* The debugger has completed a blocking wait() call.  There is now
863    some process event that must be processed.  This function should
864    be defined by those targets that require the debugger to perform
865    cleanup or internal state changes in response to the process event.
866    */
867
868 /* The inferior process has died.  Do what is right.  */
869
870 #define target_mourn_inferior() \
871         (*current_target.to_mourn_inferior) ()
872
873 /* Does target have enough data to do a run or attach command? */
874
875 #define target_can_run(t) \
876         ((t)->to_can_run) ()
877
878 /* post process changes to signal handling in the inferior.  */
879
880 #define target_notice_signals(pid) \
881         (*current_target.to_notice_signals) (pid)
882
883 /* Check to see if a thread is still alive.  */
884
885 #define target_thread_alive(pid) \
886         (*current_target.to_thread_alive) (pid)
887
888 /* Make target stop in a continuable fashion.  (For instance, under Unix, this
889    should act like SIGSTOP).  This function is normally used by GUIs to
890    implement a stop button.  */
891
892 #define target_stop current_target.to_stop
893
894 /* Queries the target side for some information.  The first argument is a
895    letter specifying the type of the query, which is used to determine who
896    should process it.  The second argument is a string that specifies which 
897    information is desired and the third is a buffer that carries back the 
898    response from the target side. The fourth parameter is the size of the
899    output buffer supplied. */
900  
901 #define target_query(query_type, query, resp_buffer, bufffer_size)      \
902         (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
903
904 /* Get the symbol information for a breakpointable routine called when
905    an exception event occurs. 
906    Intended mainly for C++, and for those
907    platforms/implementations where such a callback mechanism is available,
908    e.g. HP-UX with ANSI C++ (aCC).  Some compilers (e.g. g++) support
909    different mechanisms for debugging exceptions. */
910
911 #define target_enable_exception_callback(kind, enable) \
912         (*current_target.to_enable_exception_callback) (kind, enable)
913
914 /* Get the current exception event kind -- throw or catch, etc. */
915    
916 #define target_get_current_exception_event() \
917         (*current_target.to_get_current_exception_event) ()
918
919 /* Pointer to next target in the chain, e.g. a core file and an exec file.  */
920
921 #define target_next \
922         (current_target.to_next)
923
924 /* Does the target include all of memory, or only part of it?  This
925    determines whether we look up the target chain for other parts of
926    memory if this target can't satisfy a request.  */
927
928 #define target_has_all_memory   \
929         (current_target.to_has_all_memory)
930
931 /* Does the target include memory?  (Dummy targets don't.)  */
932
933 #define target_has_memory       \
934         (current_target.to_has_memory)
935
936 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
937    we start a process.)  */
938    
939 #define target_has_stack        \
940         (current_target.to_has_stack)
941
942 /* Does the target have registers?  (Exec files don't.)  */
943
944 #define target_has_registers    \
945         (current_target.to_has_registers)
946
947 /* Does the target have execution?  Can we make it jump (through
948    hoops), or pop its stack a few times?  FIXME: If this is to work that
949    way, it needs to check whether an inferior actually exists.
950    remote-udi.c and probably other targets can be the current target
951    when the inferior doesn't actually exist at the moment.  Right now
952    this just tells us whether this target is *capable* of execution.  */
953
954 #define target_has_execution    \
955         (current_target.to_has_execution)
956
957 /* Can the target support the debugger control of thread execution?
958    a) Can it lock the thread scheduler?
959    b) Can it switch the currently running thread?  */
960
961 #define target_can_lock_scheduler \
962         (current_target.to_has_thread_control & tc_schedlock)
963
964 #define target_can_switch_threads \
965         (current_target.to_has_thread_control & tc_switch)
966
967 extern void target_link PARAMS ((char *, CORE_ADDR *));
968
969 /* Converts a process id to a string.  Usually, the string just contains
970    `process xyz', but on some systems it may contain
971    `process xyz thread abc'.  */
972
973 #ifndef target_pid_to_str
974 #define target_pid_to_str(PID) \
975         normal_pid_to_str (PID)
976 extern char *normal_pid_to_str PARAMS ((int pid));
977 #endif
978
979 #ifndef target_tid_to_str
980 #define target_tid_to_str(PID) \
981         normal_pid_to_str (PID)
982 extern char *normal_pid_to_str PARAMS ((int pid));
983 #endif
984  
985
986 #ifndef target_new_objfile
987 #define target_new_objfile(OBJFILE)
988 #endif
989
990 #ifndef target_pid_or_tid_to_str
991 #define target_pid_or_tid_to_str(ID) \
992         normal_pid_to_str (ID)
993 #endif
994
995 /* Attempts to find the pathname of the executable file
996    that was run to create a specified process.
997
998    The process PID must be stopped when this operation is used.
999    
1000    If the executable file cannot be determined, NULL is returned.
1001
1002    Else, a pointer to a character string containing the pathname
1003    is returned.  This string should be copied into a buffer by
1004    the client if the string will not be immediately used, or if
1005    it must persist.
1006    */
1007
1008 #define target_pid_to_exec_file(pid) \
1009         (current_target.to_pid_to_exec_file) (pid)
1010
1011 /* Hook to call target-dependant code after reading in a new symbol table. */
1012
1013 #ifndef TARGET_SYMFILE_POSTREAD
1014 #define TARGET_SYMFILE_POSTREAD(OBJFILE)
1015 #endif
1016
1017 /* Hook to call target dependant code just after inferior target process has
1018    started.  */
1019
1020 #ifndef TARGET_CREATE_INFERIOR_HOOK
1021 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1022 #endif
1023
1024 /* Hardware watchpoint interfaces.  */
1025
1026 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1027    write).  */
1028
1029 #ifndef STOPPED_BY_WATCHPOINT
1030 #define STOPPED_BY_WATCHPOINT(w) 0
1031 #endif
1032
1033 /* HP-UX supplies these operations, which respectively disable and enable
1034    the memory page-protections that are used to implement hardware watchpoints
1035    on that platform.  See wait_for_inferior's use of these.
1036    */
1037 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1038 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1039 #endif
1040
1041 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1042 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1043 #endif
1044
1045 /* Provide defaults for systems that don't support hardware watchpoints. */
1046
1047 #ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1048
1049 /* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
1050    one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1051    bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
1052    (including this one?).  OTHERTYPE is who knows what...  */
1053
1054 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1055
1056 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1057 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1058         (LONGEST)(byte_count) <= REGISTER_SIZE
1059 #endif
1060
1061 /* However, some addresses may not be profitable to use hardware to watch,
1062    or may be difficult to understand when the addressed object is out of
1063    scope, and hence should be unwatched.  On some targets, this may have
1064    severe performance penalties, such that we might as well use regular
1065    watchpoints, and save (possibly precious) hardware watchpoints for other
1066    locations.
1067    */
1068 #if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1069 #define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1070 #endif
1071
1072
1073 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.  TYPE is 0
1074    for write, 1 for read, and 2 for read/write accesses.  Returns 0 for
1075    success, non-zero for failure.  */
1076
1077 #define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1078 #define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1079
1080 #endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1081
1082 #ifndef target_insert_hw_breakpoint
1083 #define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1084 #define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1085 #endif
1086
1087 #ifndef target_stopped_data_address
1088 #define target_stopped_data_address() 0
1089 #endif
1090
1091 /* If defined, then we need to decr pc by this much after a hardware break-
1092    point.  Presumably this overrides DECR_PC_AFTER_BREAK...  */
1093
1094 #ifndef DECR_PC_AFTER_HW_BREAK
1095 #define DECR_PC_AFTER_HW_BREAK 0
1096 #endif
1097
1098 /* Sometimes gdb may pick up what appears to be a valid target address
1099    from a minimal symbol, but the value really means, essentially,
1100    "This is an index into a table which is populated when the inferior
1101    is run.  Therefore, do not attempt to use this as a PC."
1102    */
1103 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1104 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1105 #endif
1106
1107 /* This will only be defined by a target that supports catching vfork events,
1108    such as HP-UX.
1109
1110    On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1111    child process after it has exec'd, causes the parent process to resume as
1112    well.  To prevent the parent from running spontaneously, such targets should
1113    define this to a function that prevents that from happening.
1114    */
1115 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1116 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1117 #endif
1118
1119 /* This will only be defined by a target that supports catching vfork events,
1120    such as HP-UX.
1121
1122    On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1123    process must be resumed when it delivers its exec event, before the parent
1124    vfork event will be delivered to us.
1125    */
1126 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1127 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1128 #endif
1129
1130 /* Routines for maintenance of the target structures...
1131
1132    add_target:   Add a target to the list of all possible targets.
1133
1134    push_target:  Make this target the top of the stack of currently used
1135                  targets, within its particular stratum of the stack.  Result
1136                  is 0 if now atop the stack, nonzero if not on top (maybe
1137                  should warn user).
1138
1139    unpush_target: Remove this from the stack of currently used targets,
1140                  no matter where it is on the list.  Returns 0 if no
1141                  change, 1 if removed from stack.
1142
1143    pop_target:   Remove the top thing on the stack of current targets.  */
1144
1145 extern void
1146 add_target PARAMS ((struct target_ops *));
1147
1148 extern int
1149 push_target PARAMS ((struct target_ops *));
1150
1151 extern int
1152 unpush_target PARAMS ((struct target_ops *));
1153
1154 extern void
1155 target_preopen PARAMS ((int));
1156
1157 extern void
1158 pop_target PARAMS ((void));
1159
1160 /* Struct section_table maps address ranges to file sections.  It is
1161    mostly used with BFD files, but can be used without (e.g. for handling
1162    raw disks, or files not in formats handled by BFD).  */
1163
1164 struct section_table {
1165   CORE_ADDR addr;               /* Lowest address in section */
1166   CORE_ADDR endaddr;            /* 1+highest address in section */
1167
1168   sec_ptr the_bfd_section;
1169
1170   bfd      *bfd;                /* BFD file pointer */
1171 };
1172
1173 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1174    Returns 0 if OK, 1 on error.  */
1175
1176 extern int
1177 build_section_table PARAMS ((bfd *, struct section_table **,
1178                              struct section_table **));
1179
1180 /* From mem-break.c */
1181
1182 extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1183
1184 extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1185
1186 extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1187 #ifndef BREAKPOINT_FROM_PC
1188 #define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1189 #endif
1190
1191
1192 /* From target.c */
1193
1194 extern void
1195 initialize_targets PARAMS ((void));
1196
1197 extern void
1198 noprocess PARAMS ((void));
1199
1200 extern void
1201 find_default_attach PARAMS ((char *, int));
1202
1203 void
1204 find_default_require_attach PARAMS ((char *, int));
1205
1206 void
1207 find_default_require_detach PARAMS ((int, char *, int));
1208
1209 extern void
1210 find_default_create_inferior PARAMS ((char *, char *, char **));
1211
1212 void
1213 find_default_clone_and_follow_inferior PARAMS ((int, int *));
1214
1215 extern struct target_ops *
1216 find_core_target PARAMS ((void));
1217 \f
1218 /* Stuff that should be shared among the various remote targets.  */
1219
1220 /* Debugging level.  0 is off, and non-zero values mean to print some debug
1221    information (higher values, more information).  */
1222 extern int remote_debug;
1223
1224 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
1225 extern int baud_rate;
1226 /* Timeout limit for response from target. */
1227 extern int remote_timeout;
1228
1229 extern asection *target_memory_bfd_section;
1230 \f
1231 /* Functions for helping to write a native target.  */
1232
1233 /* This is for native targets which use a unix/POSIX-style waitstatus.  */
1234 extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1235
1236 /* Convert between host signal numbers and enum target_signal's.  */
1237 extern enum target_signal target_signal_from_host PARAMS ((int));
1238 extern int target_signal_to_host PARAMS ((enum target_signal));
1239
1240 /* Convert from a number used in a GDB command to an enum target_signal.  */
1241 extern enum target_signal target_signal_from_command PARAMS ((int));
1242
1243 /* Any target can call this to switch to remote protocol (in remote.c). */
1244 extern void push_remote_target PARAMS ((char *name, int from_tty));
1245 \f
1246 /* Imported from machine dependent code */
1247
1248 #ifndef SOFTWARE_SINGLE_STEP_P
1249 #define SOFTWARE_SINGLE_STEP_P 0
1250 #define SOFTWARE_SINGLE_STEP(sig,bp_p) abort ()
1251 #endif /* SOFTWARE_SINGLE_STEP_P */
1252
1253 /* Blank target vector entries are initialized to target_ignore. */
1254 void target_ignore PARAMS ((void));
1255
1256 /* Macro for getting target's idea of a frame pointer.
1257    FIXME: GDB's whole scheme for dealing with "frames" and
1258    "frame pointers" needs a serious shakedown.  */
1259 #ifndef TARGET_VIRTUAL_FRAME_POINTER
1260 #define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1261    do { *(REGP) = FP_REGNUM; *(OFFP) =  0; } while (0)
1262 #endif /* TARGET_VIRTUAL_FRAME_POINTER */
1263
1264 #endif  /* !defined (TARGET_H) */