OSDN Git Service

2003-08-22 Michael Chastain <mec@shout.net>
[pf3gnuchains/pf3gnuchains3x.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002 Free Software Foundation, Inc.
4    Contributed by Cygnus Support.  Written by John Gilmore.
5
6    This file is part of GDB.
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2 of the License, or
11    (at your option) any later version.
12
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 59 Temple Place - Suite 330,
21    Boston, MA 02111-1307, USA.  */
22
23 #if !defined (TARGET_H)
24 #define TARGET_H
25
26 struct objfile;
27 struct ui_file;
28 struct mem_attrib;
29
30 /* This include file defines the interface between the main part
31    of the debugger, and the part which is target-specific, or
32    specific to the communications interface between us and the
33    target.
34
35    A TARGET is an interface between the debugger and a particular 
36    kind of file or process.  Targets can be STACKED in STRATA, 
37    so that more than one target can potentially respond to a request.
38    In particular, memory accesses will walk down the stack of targets
39    until they find a target that is interested in handling that particular
40    address.  STRATA are artificial boundaries on the stack, within
41    which particular kinds of targets live.  Strata exist so that
42    people don't get confused by pushing e.g. a process target and then
43    a file target, and wondering why they can't see the current values
44    of variables any more (the file target is handling them and they
45    never get to the process target).  So when you push a file target,
46    it goes into the file stratum, which is always below the process
47    stratum.  */
48
49 #include "bfd.h"
50 #include "symtab.h"
51 #include "dcache.h"
52 #include "memattr.h"
53
54 enum strata
55   {
56     dummy_stratum,              /* The lowest of the low */
57     file_stratum,               /* Executable files, etc */
58     core_stratum,               /* Core dump files */
59     download_stratum,           /* Downloading of remote targets */
60     process_stratum,            /* Executing processes */
61     thread_stratum              /* Executing threads */
62   };
63
64 enum thread_control_capabilities
65   {
66     tc_none = 0,                /* Default: can't control thread execution.  */
67     tc_schedlock = 1,           /* Can lock the thread scheduler.  */
68     tc_switch = 2               /* Can switch the running thread on demand.  */
69   };
70
71 /* Stuff for target_wait.  */
72
73 /* Generally, what has the program done?  */
74 enum target_waitkind
75   {
76     /* The program has exited.  The exit status is in value.integer.  */
77     TARGET_WAITKIND_EXITED,
78
79     /* The program has stopped with a signal.  Which signal is in
80        value.sig.  */
81     TARGET_WAITKIND_STOPPED,
82
83     /* The program has terminated with a signal.  Which signal is in
84        value.sig.  */
85     TARGET_WAITKIND_SIGNALLED,
86
87     /* The program is letting us know that it dynamically loaded something
88        (e.g. it called load(2) on AIX).  */
89     TARGET_WAITKIND_LOADED,
90
91     /* The program has forked.  A "related" process' ID is in
92        value.related_pid.  I.e., if the child forks, value.related_pid
93        is the parent's ID.  */
94
95     TARGET_WAITKIND_FORKED,
96
97     /* The program has vforked.  A "related" process's ID is in
98        value.related_pid.  */
99
100     TARGET_WAITKIND_VFORKED,
101
102     /* The program has exec'ed a new executable file.  The new file's
103        pathname is pointed to by value.execd_pathname.  */
104
105     TARGET_WAITKIND_EXECD,
106
107     /* The program has entered or returned from a system call.  On
108        HP-UX, this is used in the hardware watchpoint implementation.
109        The syscall's unique integer ID number is in value.syscall_id */
110
111     TARGET_WAITKIND_SYSCALL_ENTRY,
112     TARGET_WAITKIND_SYSCALL_RETURN,
113
114     /* Nothing happened, but we stopped anyway.  This perhaps should be handled
115        within target_wait, but I'm not sure target_wait should be resuming the
116        inferior.  */
117     TARGET_WAITKIND_SPURIOUS,
118
119     /* An event has occured, but we should wait again.
120        Remote_async_wait() returns this when there is an event
121        on the inferior, but the rest of the world is not interested in
122        it. The inferior has not stopped, but has just sent some output
123        to the console, for instance. In this case, we want to go back
124        to the event loop and wait there for another event from the
125        inferior, rather than being stuck in the remote_async_wait()
126        function. This way the event loop is responsive to other events,
127        like for instance the user typing.  */
128     TARGET_WAITKIND_IGNORE
129   };
130
131 struct target_waitstatus
132   {
133     enum target_waitkind kind;
134
135     /* Forked child pid, execd pathname, exit status or signal number.  */
136     union
137       {
138         int integer;
139         enum target_signal sig;
140         int related_pid;
141         char *execd_pathname;
142         int syscall_id;
143       }
144     value;
145   };
146
147 /* Possible types of events that the inferior handler will have to
148    deal with.  */
149 enum inferior_event_type
150   {
151     /* There is a request to quit the inferior, abandon it.  */
152     INF_QUIT_REQ,
153     /* Process a normal inferior event which will result in target_wait
154        being called.  */
155     INF_REG_EVENT, 
156     /* Deal with an error on the inferior.  */
157     INF_ERROR,
158     /* We are called because a timer went off.  */
159     INF_TIMER,
160     /* We are called to do stuff after the inferior stops.  */
161     INF_EXEC_COMPLETE,
162     /* We are called to do some stuff after the inferior stops, but we
163        are expected to reenter the proceed() and
164        handle_inferior_event() functions. This is used only in case of
165        'step n' like commands.  */
166     INF_EXEC_CONTINUE
167   };
168
169 /* Return the string for a signal.  */
170 extern char *target_signal_to_string (enum target_signal);
171
172 /* Return the name (SIGHUP, etc.) for a signal.  */
173 extern char *target_signal_to_name (enum target_signal);
174
175 /* Given a name (SIGHUP, etc.), return its signal.  */
176 enum target_signal target_signal_from_name (char *);
177 \f
178
179 /* If certain kinds of activity happen, target_wait should perform
180    callbacks.  */
181 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
182    on TARGET_ACTIVITY_FD.  */
183 extern int target_activity_fd;
184 /* Returns zero to leave the inferior alone, one to interrupt it.  */
185 extern int (*target_activity_function) (void);
186 \f
187 struct thread_info;             /* fwd decl for parameter list below: */
188
189 struct target_ops
190   {
191     char *to_shortname;         /* Name this target type */
192     char *to_longname;          /* Name for printing */
193     char *to_doc;               /* Documentation.  Does not include trailing
194                                    newline, and starts with a one-line descrip-
195                                    tion (probably similar to to_longname).  */
196     void (*to_open) (char *, int);
197     void (*to_close) (int);
198     void (*to_attach) (char *, int);
199     void (*to_post_attach) (int);
200     void (*to_detach) (char *, int);
201     void (*to_disconnect) (char *, int);
202     void (*to_resume) (ptid_t, int, enum target_signal);
203     ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
204     void (*to_post_wait) (ptid_t, int);
205     void (*to_fetch_registers) (int);
206     void (*to_store_registers) (int);
207     void (*to_prepare_to_store) (void);
208
209     /* Transfer LEN bytes of memory between GDB address MYADDR and
210        target address MEMADDR.  If WRITE, transfer them to the target, else
211        transfer them from the target.  TARGET is the target from which we
212        get this function.
213
214        Return value, N, is one of the following:
215
216        0 means that we can't handle this.  If errno has been set, it is the
217        error which prevented us from doing it (FIXME: What about bfd_error?).
218
219        positive (call it N) means that we have transferred N bytes
220        starting at MEMADDR.  We might be able to handle more bytes
221        beyond this length, but no promises.
222
223        negative (call its absolute value N) means that we cannot
224        transfer right at MEMADDR, but we could transfer at least
225        something at MEMADDR + N.  */
226
227     int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
228                            int len, int write, 
229                            struct mem_attrib *attrib,
230                            struct target_ops *target);
231
232 #if 0
233     /* Enable this after 4.12.  */
234
235     /* Search target memory.  Start at STARTADDR and take LEN bytes of
236        target memory, and them with MASK, and compare to DATA.  If they
237        match, set *ADDR_FOUND to the address we found it at, store the data
238        we found at LEN bytes starting at DATA_FOUND, and return.  If
239        not, add INCREMENT to the search address and keep trying until
240        the search address is outside of the range [LORANGE,HIRANGE).
241
242        If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
243        return.  */
244
245     void (*to_search) (int len, char *data, char *mask,
246                        CORE_ADDR startaddr, int increment,
247                        CORE_ADDR lorange, CORE_ADDR hirange,
248                        CORE_ADDR * addr_found, char *data_found);
249
250 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found)  \
251     (*current_target.to_search) (len, data, mask, startaddr, increment, \
252                                  lorange, hirange, addr_found, data_found)
253 #endif                          /* 0 */
254
255     void (*to_files_info) (struct target_ops *);
256     int (*to_insert_breakpoint) (CORE_ADDR, char *);
257     int (*to_remove_breakpoint) (CORE_ADDR, char *);
258     int (*to_can_use_hw_breakpoint) (int, int, int);
259     int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
260     int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
261     int (*to_remove_watchpoint) (CORE_ADDR, int, int);
262     int (*to_insert_watchpoint) (CORE_ADDR, int, int);
263     int (*to_stopped_by_watchpoint) (void);
264     int to_have_continuable_watchpoint;
265     CORE_ADDR (*to_stopped_data_address) (void);
266     int (*to_region_size_ok_for_hw_watchpoint) (int);
267     void (*to_terminal_init) (void);
268     void (*to_terminal_inferior) (void);
269     void (*to_terminal_ours_for_output) (void);
270     void (*to_terminal_ours) (void);
271     void (*to_terminal_save_ours) (void);
272     void (*to_terminal_info) (char *, int);
273     void (*to_kill) (void);
274     void (*to_load) (char *, int);
275     int (*to_lookup_symbol) (char *, CORE_ADDR *);
276     void (*to_create_inferior) (char *, char *, char **);
277     void (*to_post_startup_inferior) (ptid_t);
278     void (*to_acknowledge_created_inferior) (int);
279     int (*to_insert_fork_catchpoint) (int);
280     int (*to_remove_fork_catchpoint) (int);
281     int (*to_insert_vfork_catchpoint) (int);
282     int (*to_remove_vfork_catchpoint) (int);
283     int (*to_follow_fork) (int);
284     int (*to_insert_exec_catchpoint) (int);
285     int (*to_remove_exec_catchpoint) (int);
286     int (*to_reported_exec_events_per_exec_call) (void);
287     int (*to_has_exited) (int, int, int *);
288     void (*to_mourn_inferior) (void);
289     int (*to_can_run) (void);
290     void (*to_notice_signals) (ptid_t ptid);
291     int (*to_thread_alive) (ptid_t ptid);
292     void (*to_find_new_threads) (void);
293     char *(*to_pid_to_str) (ptid_t);
294     char *(*to_extra_thread_info) (struct thread_info *);
295     void (*to_stop) (void);
296     int (*to_query) (int /*char */ , char *, char *, int *);
297     void (*to_rcmd) (char *command, struct ui_file *output);
298     struct symtab_and_line *(*to_enable_exception_callback) (enum
299                                                              exception_event_kind,
300                                                              int);
301     struct exception_event_record *(*to_get_current_exception_event) (void);
302     char *(*to_pid_to_exec_file) (int pid);
303     enum strata to_stratum;
304     int to_has_all_memory;
305     int to_has_memory;
306     int to_has_stack;
307     int to_has_registers;
308     int to_has_execution;
309     int to_has_thread_control;  /* control thread execution */
310     struct section_table
311      *to_sections;
312     struct section_table
313      *to_sections_end;
314     /* ASYNC target controls */
315     int (*to_can_async_p) (void);
316     int (*to_is_async_p) (void);
317     void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
318                       void *context);
319     int to_async_mask_value;
320     int (*to_find_memory_regions) (int (*) (CORE_ADDR, 
321                                             unsigned long, 
322                                             int, int, int, 
323                                             void *), 
324                                    void *);
325     char * (*to_make_corefile_notes) (bfd *, int *);
326
327     /* Return the thread-local address at OFFSET in the
328        thread-local storage for the thread PTID and the shared library
329        or executable file given by OBJFILE.  If that block of
330        thread-local storage hasn't been allocated yet, this function
331        may return an error.  */
332     CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
333                                               struct objfile *objfile,
334                                               CORE_ADDR offset);
335
336     int to_magic;
337     /* Need sub-structure for target machine related rather than comm related?
338      */
339   };
340
341 /* Magic number for checking ops size.  If a struct doesn't end with this
342    number, somebody changed the declaration but didn't change all the
343    places that initialize one.  */
344
345 #define OPS_MAGIC       3840
346
347 /* The ops structure for our "current" target process.  This should
348    never be NULL.  If there is no target, it points to the dummy_target.  */
349
350 extern struct target_ops current_target;
351
352 /* An item on the target stack.  */
353
354 struct target_stack_item
355   {
356     struct target_stack_item *next;
357     struct target_ops *target_ops;
358   };
359
360 /* The target stack.  */
361
362 extern struct target_stack_item *target_stack;
363
364 /* Define easy words for doing these operations on our current target.  */
365
366 #define target_shortname        (current_target.to_shortname)
367 #define target_longname         (current_target.to_longname)
368
369 /* The open routine takes the rest of the parameters from the command,
370    and (if successful) pushes a new target onto the stack.
371    Targets should supply this routine, if only to provide an error message.  */
372
373 #define target_open(name, from_tty)                                     \
374   do {                                                                  \
375     dcache_invalidate (target_dcache);                                  \
376     (*current_target.to_open) (name, from_tty);                         \
377   } while (0)
378
379 /* Does whatever cleanup is required for a target that we are no longer
380    going to be calling.  Argument says whether we are quitting gdb and
381    should not get hung in case of errors, or whether we want a clean
382    termination even if it takes a while.  This routine is automatically
383    always called just before a routine is popped off the target stack.
384    Closing file descriptors and freeing memory are typical things it should
385    do.  */
386
387 #define target_close(quitting)  \
388      (*current_target.to_close) (quitting)
389
390 /* Attaches to a process on the target side.  Arguments are as passed
391    to the `attach' command by the user.  This routine can be called
392    when the target is not on the target-stack, if the target_can_run
393    routine returns 1; in that case, it must push itself onto the stack.  
394    Upon exit, the target should be ready for normal operations, and
395    should be ready to deliver the status of the process immediately 
396    (without waiting) to an upcoming target_wait call.  */
397
398 #define target_attach(args, from_tty)   \
399      (*current_target.to_attach) (args, from_tty)
400
401 /* The target_attach operation places a process under debugger control,
402    and stops the process.
403
404    This operation provides a target-specific hook that allows the
405    necessary bookkeeping to be performed after an attach completes.  */
406 #define target_post_attach(pid) \
407      (*current_target.to_post_attach) (pid)
408
409 /* Takes a program previously attached to and detaches it.
410    The program may resume execution (some targets do, some don't) and will
411    no longer stop on signals, etc.  We better not have left any breakpoints
412    in the program or it'll die when it hits one.  ARGS is arguments
413    typed by the user (e.g. a signal to send the process).  FROM_TTY
414    says whether to be verbose or not.  */
415
416 extern void target_detach (char *, int);
417
418 /* Disconnect from the current target without resuming it (leaving it
419    waiting for a debugger).  */
420
421 extern void target_disconnect (char *, int);
422
423 /* Resume execution of the target process PTID.  STEP says whether to
424    single-step or to run free; SIGGNAL is the signal to be given to
425    the target, or TARGET_SIGNAL_0 for no signal.  The caller may not
426    pass TARGET_SIGNAL_DEFAULT.  */
427
428 #define target_resume(ptid, step, siggnal)                              \
429   do {                                                                  \
430     dcache_invalidate(target_dcache);                                   \
431     (*current_target.to_resume) (ptid, step, siggnal);                  \
432   } while (0)
433
434 /* Wait for process pid to do something.  PTID = -1 to wait for any
435    pid to do something.  Return pid of child, or -1 in case of error;
436    store status through argument pointer STATUS.  Note that it is
437    _NOT_ OK to throw_exception() out of target_wait() without popping
438    the debugging target from the stack; GDB isn't prepared to get back
439    to the prompt with a debugging target but without the frame cache,
440    stop_pc, etc., set up.  */
441
442 #define target_wait(ptid, status)               \
443      (*current_target.to_wait) (ptid, status)
444
445 /* The target_wait operation waits for a process event to occur, and
446    thereby stop the process.
447
448    On some targets, certain events may happen in sequences.  gdb's
449    correct response to any single event of such a sequence may require
450    knowledge of what earlier events in the sequence have been seen.
451
452    This operation provides a target-specific hook that allows the
453    necessary bookkeeping to be performed to track such sequences.  */
454
455 #define target_post_wait(ptid, status) \
456      (*current_target.to_post_wait) (ptid, status)
457
458 /* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
459
460 #define target_fetch_registers(regno)   \
461      (*current_target.to_fetch_registers) (regno)
462
463 /* Store at least register REGNO, or all regs if REGNO == -1.
464    It can store as many registers as it wants to, so target_prepare_to_store
465    must have been previously called.  Calls error() if there are problems.  */
466
467 #define target_store_registers(regs)    \
468      (*current_target.to_store_registers) (regs)
469
470 /* Get ready to modify the registers array.  On machines which store
471    individual registers, this doesn't need to do anything.  On machines
472    which store all the registers in one fell swoop, this makes sure
473    that REGISTERS contains all the registers from the program being
474    debugged.  */
475
476 #define target_prepare_to_store()       \
477      (*current_target.to_prepare_to_store) ()
478
479 extern DCACHE *target_dcache;
480
481 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
482                            struct mem_attrib *attrib);
483
484 extern int target_read_string (CORE_ADDR, char **, int, int *);
485
486 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
487
488 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
489
490 extern int xfer_memory (CORE_ADDR, char *, int, int, 
491                         struct mem_attrib *, struct target_ops *);
492
493 extern int child_xfer_memory (CORE_ADDR, char *, int, int, 
494                               struct mem_attrib *, struct target_ops *);
495
496 /* Make a single attempt at transfering LEN bytes.  On a successful
497    transfer, the number of bytes actually transfered is returned and
498    ERR is set to 0.  When a transfer fails, -1 is returned (the number
499    of bytes actually transfered is not defined) and ERR is set to a
500    non-zero error indication.  */
501
502 extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
503                                        int *err);
504
505 extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
506                                         int *err);
507
508 extern char *child_pid_to_exec_file (int);
509
510 extern char *child_core_file_to_sym_file (char *);
511
512 #if defined(CHILD_POST_ATTACH)
513 extern void child_post_attach (int);
514 #endif
515
516 extern void child_post_wait (ptid_t, int);
517
518 extern void child_post_startup_inferior (ptid_t);
519
520 extern void child_acknowledge_created_inferior (int);
521
522 extern int child_insert_fork_catchpoint (int);
523
524 extern int child_remove_fork_catchpoint (int);
525
526 extern int child_insert_vfork_catchpoint (int);
527
528 extern int child_remove_vfork_catchpoint (int);
529
530 extern void child_acknowledge_created_inferior (int);
531
532 extern int child_follow_fork (int);
533
534 extern int child_insert_exec_catchpoint (int);
535
536 extern int child_remove_exec_catchpoint (int);
537
538 extern int child_reported_exec_events_per_exec_call (void);
539
540 extern int child_has_exited (int, int, int *);
541
542 extern int child_thread_alive (ptid_t);
543
544 /* From infrun.c.  */
545
546 extern int inferior_has_forked (int pid, int *child_pid);
547
548 extern int inferior_has_vforked (int pid, int *child_pid);
549
550 extern int inferior_has_execd (int pid, char **execd_pathname);
551
552 /* From exec.c */
553
554 extern void print_section_info (struct target_ops *, bfd *);
555
556 /* Print a line about the current target.  */
557
558 #define target_files_info()     \
559      (*current_target.to_files_info) (&current_target)
560
561 /* Insert a breakpoint at address ADDR in the target machine.  SAVE is
562    a pointer to memory allocated for saving the target contents.  It
563    is guaranteed by the caller to be long enough to save the number of
564    breakpoint bytes indicated by BREAKPOINT_FROM_PC.  Result is 0 for
565    success, or an errno value.  */
566
567 #define target_insert_breakpoint(addr, save)    \
568      (*current_target.to_insert_breakpoint) (addr, save)
569
570 /* Remove a breakpoint at address ADDR in the target machine.
571    SAVE is a pointer to the same save area 
572    that was previously passed to target_insert_breakpoint.  
573    Result is 0 for success, or an errno value.  */
574
575 #define target_remove_breakpoint(addr, save)    \
576      (*current_target.to_remove_breakpoint) (addr, save)
577
578 /* Initialize the terminal settings we record for the inferior,
579    before we actually run the inferior.  */
580
581 #define target_terminal_init() \
582      (*current_target.to_terminal_init) ()
583
584 /* Put the inferior's terminal settings into effect.
585    This is preparation for starting or resuming the inferior.  */
586
587 #define target_terminal_inferior() \
588      (*current_target.to_terminal_inferior) ()
589
590 /* Put some of our terminal settings into effect,
591    enough to get proper results from our output,
592    but do not change into or out of RAW mode
593    so that no input is discarded.
594
595    After doing this, either terminal_ours or terminal_inferior
596    should be called to get back to a normal state of affairs.  */
597
598 #define target_terminal_ours_for_output() \
599      (*current_target.to_terminal_ours_for_output) ()
600
601 /* Put our terminal settings into effect.
602    First record the inferior's terminal settings
603    so they can be restored properly later.  */
604
605 #define target_terminal_ours() \
606      (*current_target.to_terminal_ours) ()
607
608 /* Save our terminal settings.
609    This is called from TUI after entering or leaving the curses
610    mode.  Since curses modifies our terminal this call is here
611    to take this change into account.  */
612
613 #define target_terminal_save_ours() \
614      (*current_target.to_terminal_save_ours) ()
615
616 /* Print useful information about our terminal status, if such a thing
617    exists.  */
618
619 #define target_terminal_info(arg, from_tty) \
620      (*current_target.to_terminal_info) (arg, from_tty)
621
622 /* Kill the inferior process.   Make it go away.  */
623
624 #define target_kill() \
625      (*current_target.to_kill) ()
626
627 /* Load an executable file into the target process.  This is expected
628    to not only bring new code into the target process, but also to
629    update GDB's symbol tables to match.  */
630
631 extern void target_load (char *arg, int from_tty);
632
633 /* Look up a symbol in the target's symbol table.  NAME is the symbol
634    name.  ADDRP is a CORE_ADDR * pointing to where the value of the
635    symbol should be returned.  The result is 0 if successful, nonzero
636    if the symbol does not exist in the target environment.  This
637    function should not call error() if communication with the target
638    is interrupted, since it is called from symbol reading, but should
639    return nonzero, possibly doing a complain().  */
640
641 #define target_lookup_symbol(name, addrp) \
642      (*current_target.to_lookup_symbol) (name, addrp)
643
644 /* Start an inferior process and set inferior_ptid to its pid.
645    EXEC_FILE is the file to run.
646    ALLARGS is a string containing the arguments to the program.
647    ENV is the environment vector to pass.  Errors reported with error().
648    On VxWorks and various standalone systems, we ignore exec_file.  */
649
650 #define target_create_inferior(exec_file, args, env)    \
651      (*current_target.to_create_inferior) (exec_file, args, env)
652
653
654 /* Some targets (such as ttrace-based HPUX) don't allow us to request
655    notification of inferior events such as fork and vork immediately
656    after the inferior is created.  (This because of how gdb gets an
657    inferior created via invoking a shell to do it.  In such a scenario,
658    if the shell init file has commands in it, the shell will fork and
659    exec for each of those commands, and we will see each such fork
660    event.  Very bad.)
661
662    Such targets will supply an appropriate definition for this function.  */
663
664 #define target_post_startup_inferior(ptid) \
665      (*current_target.to_post_startup_inferior) (ptid)
666
667 /* On some targets, the sequence of starting up an inferior requires
668    some synchronization between gdb and the new inferior process, PID.  */
669
670 #define target_acknowledge_created_inferior(pid) \
671      (*current_target.to_acknowledge_created_inferior) (pid)
672
673 /* On some targets, we can catch an inferior fork or vfork event when
674    it occurs.  These functions insert/remove an already-created
675    catchpoint for such events.  */
676
677 #define target_insert_fork_catchpoint(pid) \
678      (*current_target.to_insert_fork_catchpoint) (pid)
679
680 #define target_remove_fork_catchpoint(pid) \
681      (*current_target.to_remove_fork_catchpoint) (pid)
682
683 #define target_insert_vfork_catchpoint(pid) \
684      (*current_target.to_insert_vfork_catchpoint) (pid)
685
686 #define target_remove_vfork_catchpoint(pid) \
687      (*current_target.to_remove_vfork_catchpoint) (pid)
688
689 /* If the inferior forks or vforks, this function will be called at
690    the next resume in order to perform any bookkeeping and fiddling
691    necessary to continue debugging either the parent or child, as
692    requested, and releasing the other.  Information about the fork
693    or vfork event is available via get_last_target_status ().
694    This function returns 1 if the inferior should not be resumed
695    (i.e. there is another event pending).  */
696
697 #define target_follow_fork(follow_child) \
698      (*current_target.to_follow_fork) (follow_child)
699
700 /* On some targets, we can catch an inferior exec event when it
701    occurs.  These functions insert/remove an already-created
702    catchpoint for such events.  */
703
704 #define target_insert_exec_catchpoint(pid) \
705      (*current_target.to_insert_exec_catchpoint) (pid)
706
707 #define target_remove_exec_catchpoint(pid) \
708      (*current_target.to_remove_exec_catchpoint) (pid)
709
710 /* Returns the number of exec events that are reported when a process
711    invokes a flavor of the exec() system call on this target, if exec
712    events are being reported.  */
713
714 #define target_reported_exec_events_per_exec_call() \
715      (*current_target.to_reported_exec_events_per_exec_call) ()
716
717 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
718    exit code of PID, if any.  */
719
720 #define target_has_exited(pid,wait_status,exit_status) \
721      (*current_target.to_has_exited) (pid,wait_status,exit_status)
722
723 /* The debugger has completed a blocking wait() call.  There is now
724    some process event that must be processed.  This function should 
725    be defined by those targets that require the debugger to perform
726    cleanup or internal state changes in response to the process event.  */
727
728 /* The inferior process has died.  Do what is right.  */
729
730 #define target_mourn_inferior() \
731      (*current_target.to_mourn_inferior) ()
732
733 /* Does target have enough data to do a run or attach command? */
734
735 #define target_can_run(t) \
736      ((t)->to_can_run) ()
737
738 /* post process changes to signal handling in the inferior.  */
739
740 #define target_notice_signals(ptid) \
741      (*current_target.to_notice_signals) (ptid)
742
743 /* Check to see if a thread is still alive.  */
744
745 #define target_thread_alive(ptid) \
746      (*current_target.to_thread_alive) (ptid)
747
748 /* Query for new threads and add them to the thread list.  */
749
750 #define target_find_new_threads() \
751      (*current_target.to_find_new_threads) (); \
752
753 /* Make target stop in a continuable fashion.  (For instance, under
754    Unix, this should act like SIGSTOP).  This function is normally
755    used by GUIs to implement a stop button.  */
756
757 #define target_stop current_target.to_stop
758
759 /* Queries the target side for some information.  The first argument is a
760    letter specifying the type of the query, which is used to determine who
761    should process it.  The second argument is a string that specifies which 
762    information is desired and the third is a buffer that carries back the 
763    response from the target side. The fourth parameter is the size of the
764    output buffer supplied.  */
765
766 #define target_query(query_type, query, resp_buffer, bufffer_size)      \
767      (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
768
769 /* Send the specified COMMAND to the target's monitor
770    (shell,interpreter) for execution.  The result of the query is
771    placed in OUTBUF.  */
772
773 #define target_rcmd(command, outbuf) \
774      (*current_target.to_rcmd) (command, outbuf)
775
776
777 /* Get the symbol information for a breakpointable routine called when
778    an exception event occurs. 
779    Intended mainly for C++, and for those
780    platforms/implementations where such a callback mechanism is available,
781    e.g. HP-UX with ANSI C++ (aCC).  Some compilers (e.g. g++) support
782    different mechanisms for debugging exceptions.  */
783
784 #define target_enable_exception_callback(kind, enable) \
785      (*current_target.to_enable_exception_callback) (kind, enable)
786
787 /* Get the current exception event kind -- throw or catch, etc.  */
788
789 #define target_get_current_exception_event() \
790      (*current_target.to_get_current_exception_event) ()
791
792 /* Does the target include all of memory, or only part of it?  This
793    determines whether we look up the target chain for other parts of
794    memory if this target can't satisfy a request.  */
795
796 #define target_has_all_memory   \
797      (current_target.to_has_all_memory)
798
799 /* Does the target include memory?  (Dummy targets don't.)  */
800
801 #define target_has_memory       \
802      (current_target.to_has_memory)
803
804 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
805    we start a process.)  */
806
807 #define target_has_stack        \
808      (current_target.to_has_stack)
809
810 /* Does the target have registers?  (Exec files don't.)  */
811
812 #define target_has_registers    \
813      (current_target.to_has_registers)
814
815 /* Does the target have execution?  Can we make it jump (through
816    hoops), or pop its stack a few times?  FIXME: If this is to work that
817    way, it needs to check whether an inferior actually exists.
818    remote-udi.c and probably other targets can be the current target
819    when the inferior doesn't actually exist at the moment.  Right now
820    this just tells us whether this target is *capable* of execution.  */
821
822 #define target_has_execution    \
823      (current_target.to_has_execution)
824
825 /* Can the target support the debugger control of thread execution?
826    a) Can it lock the thread scheduler?
827    b) Can it switch the currently running thread?  */
828
829 #define target_can_lock_scheduler \
830      (current_target.to_has_thread_control & tc_schedlock)
831
832 #define target_can_switch_threads \
833      (current_target.to_has_thread_control & tc_switch)
834
835 /* Can the target support asynchronous execution? */
836 #define target_can_async_p() (current_target.to_can_async_p ())
837
838 /* Is the target in asynchronous execution mode? */
839 #define target_is_async_p() (current_target.to_is_async_p())
840
841 /* Put the target in async mode with the specified callback function. */
842 #define target_async(CALLBACK,CONTEXT) \
843      (current_target.to_async((CALLBACK), (CONTEXT)))
844
845 /* This is to be used ONLY within call_function_by_hand(). It provides
846    a workaround, to have inferior function calls done in sychronous
847    mode, even though the target is asynchronous. After
848    target_async_mask(0) is called, calls to target_can_async_p() will
849    return FALSE , so that target_resume() will not try to start the
850    target asynchronously. After the inferior stops, we IMMEDIATELY
851    restore the previous nature of the target, by calling
852    target_async_mask(1). After that, target_can_async_p() will return
853    TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
854
855    FIXME ezannoni 1999-12-13: we won't need this once we move
856    the turning async on and off to the single execution commands,
857    from where it is done currently, in remote_resume().  */
858
859 #define target_async_mask_value \
860      (current_target.to_async_mask_value)
861
862 extern int target_async_mask (int mask);     
863
864 extern void target_link (char *, CORE_ADDR *);
865
866 /* Converts a process id to a string.  Usually, the string just contains
867    `process xyz', but on some systems it may contain
868    `process xyz thread abc'.  */
869
870 #undef target_pid_to_str
871 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
872
873 #ifndef target_tid_to_str
874 #define target_tid_to_str(PID) \
875      target_pid_to_str (PID)
876 extern char *normal_pid_to_str (ptid_t ptid);
877 #endif
878
879 /* Return a short string describing extra information about PID,
880    e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
881    is okay.  */
882
883 #define target_extra_thread_info(TP) \
884      (current_target.to_extra_thread_info (TP))
885
886 /*
887  * New Objfile Event Hook:
888  *
889  * Sometimes a GDB component wants to get notified whenever a new
890  * objfile is loaded.  Mainly this is used by thread-debugging 
891  * implementations that need to know when symbols for the target
892  * thread implemenation are available.
893  *
894  * The old way of doing this is to define a macro 'target_new_objfile'
895  * that points to the function that you want to be called on every
896  * objfile/shlib load.
897  *
898  * The new way is to grab the function pointer, 'target_new_objfile_hook',
899  * and point it to the function that you want to be called on every
900  * objfile/shlib load.
901  *
902  * If multiple clients are willing to be cooperative, they can each
903  * save a pointer to the previous value of target_new_objfile_hook
904  * before modifying it, and arrange for their function to call the
905  * previous function in the chain.  In that way, multiple clients
906  * can receive this notification (something like with signal handlers).
907  */
908
909 extern void (*target_new_objfile_hook) (struct objfile *);
910
911 #ifndef target_pid_or_tid_to_str
912 #define target_pid_or_tid_to_str(ID) \
913      target_pid_to_str (ID)
914 #endif
915
916 /* Attempts to find the pathname of the executable file
917    that was run to create a specified process.
918
919    The process PID must be stopped when this operation is used.
920
921    If the executable file cannot be determined, NULL is returned.
922
923    Else, a pointer to a character string containing the pathname
924    is returned.  This string should be copied into a buffer by
925    the client if the string will not be immediately used, or if
926    it must persist.  */
927
928 #define target_pid_to_exec_file(pid) \
929      (current_target.to_pid_to_exec_file) (pid)
930
931 /*
932  * Iterator function for target memory regions.
933  * Calls a callback function once for each memory region 'mapped'
934  * in the child process.  Defined as a simple macro rather than
935  * as a function macro so that it can be tested for nullity.  
936  */
937
938 #define target_find_memory_regions(FUNC, DATA) \
939      (current_target.to_find_memory_regions) (FUNC, DATA)
940
941 /*
942  * Compose corefile .note section.
943  */
944
945 #define target_make_corefile_notes(BFD, SIZE_P) \
946      (current_target.to_make_corefile_notes) (BFD, SIZE_P)
947
948 /* Thread-local values.  */
949 #define target_get_thread_local_address \
950     (current_target.to_get_thread_local_address)
951 #define target_get_thread_local_address_p() \
952     (target_get_thread_local_address != NULL)
953
954 /* Hook to call target dependent code just after inferior target process has
955    started.  */
956
957 #ifndef TARGET_CREATE_INFERIOR_HOOK
958 #define TARGET_CREATE_INFERIOR_HOOK(PID)
959 #endif
960
961 /* Hardware watchpoint interfaces.  */
962
963 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
964    write).  */
965
966 #ifndef STOPPED_BY_WATCHPOINT
967 #define STOPPED_BY_WATCHPOINT(w) \
968    (*current_target.to_stopped_by_watchpoint) ()
969 #endif
970
971 /* Non-zero if we have continuable watchpoints  */
972
973 #ifndef HAVE_CONTINUABLE_WATCHPOINT
974 #define HAVE_CONTINUABLE_WATCHPOINT \
975    (current_target.to_have_continuable_watchpoint)
976 #endif
977
978 /* HP-UX supplies these operations, which respectively disable and enable
979    the memory page-protections that are used to implement hardware watchpoints
980    on that platform.  See wait_for_inferior's use of these.  */
981
982 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
983 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
984 #endif
985
986 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
987 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
988 #endif
989
990 /* Provide defaults for hardware watchpoint functions.  */
991
992 /* If the *_hw_beakpoint functions have not been defined 
993    elsewhere use the definitions in the target vector.  */
994
995 /* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
996    one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
997    bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
998    (including this one?).  OTHERTYPE is who knows what...  */
999
1000 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1001 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1002  (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1003 #endif
1004
1005 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1006 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1007     (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1008 #endif
1009
1010
1011 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.  TYPE is 0
1012    for write, 1 for read, and 2 for read/write accesses.  Returns 0 for
1013    success, non-zero for failure.  */
1014
1015 #ifndef target_insert_watchpoint
1016 #define target_insert_watchpoint(addr, len, type)       \
1017      (*current_target.to_insert_watchpoint) (addr, len, type)
1018
1019 #define target_remove_watchpoint(addr, len, type)       \
1020      (*current_target.to_remove_watchpoint) (addr, len, type)
1021 #endif
1022
1023 #ifndef target_insert_hw_breakpoint
1024 #define target_insert_hw_breakpoint(addr, save) \
1025      (*current_target.to_insert_hw_breakpoint) (addr, save)
1026
1027 #define target_remove_hw_breakpoint(addr, save) \
1028      (*current_target.to_remove_hw_breakpoint) (addr, save)
1029 #endif
1030
1031 #ifndef target_stopped_data_address
1032 #define target_stopped_data_address() \
1033     (*current_target.to_stopped_data_address) ()
1034 #endif
1035
1036 /* If defined, then we need to decr pc by this much after a hardware break-
1037    point.  Presumably this overrides DECR_PC_AFTER_BREAK...  */
1038
1039 #ifndef DECR_PC_AFTER_HW_BREAK
1040 #define DECR_PC_AFTER_HW_BREAK 0
1041 #endif
1042
1043 /* Sometimes gdb may pick up what appears to be a valid target address
1044    from a minimal symbol, but the value really means, essentially,
1045    "This is an index into a table which is populated when the inferior
1046    is run.  Therefore, do not attempt to use this as a PC."  */
1047
1048 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1049 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1050 #endif
1051
1052 /* This will only be defined by a target that supports catching vfork events,
1053    such as HP-UX.
1054
1055    On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1056    child process after it has exec'd, causes the parent process to resume as
1057    well.  To prevent the parent from running spontaneously, such targets should
1058    define this to a function that prevents that from happening.  */
1059 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1060 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1061 #endif
1062
1063 /* This will only be defined by a target that supports catching vfork events,
1064    such as HP-UX.
1065
1066    On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1067    process must be resumed when it delivers its exec event, before the parent
1068    vfork event will be delivered to us.  */
1069
1070 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1071 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1072 #endif
1073
1074 /* Routines for maintenance of the target structures...
1075
1076    add_target:   Add a target to the list of all possible targets.
1077
1078    push_target:  Make this target the top of the stack of currently used
1079    targets, within its particular stratum of the stack.  Result
1080    is 0 if now atop the stack, nonzero if not on top (maybe
1081    should warn user).
1082
1083    unpush_target: Remove this from the stack of currently used targets,
1084    no matter where it is on the list.  Returns 0 if no
1085    change, 1 if removed from stack.
1086
1087    pop_target:   Remove the top thing on the stack of current targets.  */
1088
1089 extern void add_target (struct target_ops *);
1090
1091 extern int push_target (struct target_ops *);
1092
1093 extern int unpush_target (struct target_ops *);
1094
1095 extern void target_preopen (int);
1096
1097 extern void pop_target (void);
1098
1099 /* Struct section_table maps address ranges to file sections.  It is
1100    mostly used with BFD files, but can be used without (e.g. for handling
1101    raw disks, or files not in formats handled by BFD).  */
1102
1103 struct section_table
1104   {
1105     CORE_ADDR addr;             /* Lowest address in section */
1106     CORE_ADDR endaddr;          /* 1+highest address in section */
1107
1108     sec_ptr the_bfd_section;
1109
1110     bfd *bfd;                   /* BFD file pointer */
1111   };
1112
1113 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1114    Returns 0 if OK, 1 on error.  */
1115
1116 extern int build_section_table (bfd *, struct section_table **,
1117                                 struct section_table **);
1118
1119 /* From mem-break.c */
1120
1121 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1122
1123 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1124
1125 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1126
1127 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1128
1129
1130 /* From target.c */
1131
1132 extern void initialize_targets (void);
1133
1134 extern void noprocess (void);
1135
1136 extern void find_default_attach (char *, int);
1137
1138 extern void find_default_create_inferior (char *, char *, char **);
1139
1140 extern struct target_ops *find_run_target (void);
1141
1142 extern struct target_ops *find_core_target (void);
1143
1144 extern struct target_ops *find_target_beneath (struct target_ops *);
1145
1146 extern int target_resize_to_sections (struct target_ops *target,
1147                                       int num_added);
1148
1149 extern void remove_target_sections (bfd *abfd);
1150
1151 \f
1152 /* Stuff that should be shared among the various remote targets.  */
1153
1154 /* Debugging level.  0 is off, and non-zero values mean to print some debug
1155    information (higher values, more information).  */
1156 extern int remote_debug;
1157
1158 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
1159 extern int baud_rate;
1160 /* Timeout limit for response from target. */
1161 extern int remote_timeout;
1162
1163 \f
1164 /* Functions for helping to write a native target.  */
1165
1166 /* This is for native targets which use a unix/POSIX-style waitstatus.  */
1167 extern void store_waitstatus (struct target_waitstatus *, int);
1168
1169 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1170    targ_signal SIGNO has an equivalent ``host'' representation.  */
1171 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1172    to the shorter target_signal_p() because it is far less ambigious.
1173    In this context ``target_signal'' refers to GDB's internal
1174    representation of the target's set of signals while ``host signal''
1175    refers to the target operating system's signal.  Confused?  */
1176
1177 extern int target_signal_to_host_p (enum target_signal signo);
1178
1179 /* Convert between host signal numbers and enum target_signal's.
1180    target_signal_to_host() returns 0 and prints a warning() on GDB's
1181    console if SIGNO has no equivalent host representation.  */
1182 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1183    refering to the target operating system's signal numbering.
1184    Similarly, ``enum target_signal'' is named incorrectly, ``enum
1185    gdb_signal'' would probably be better as it is refering to GDB's
1186    internal representation of a target operating system's signal.  */
1187
1188 extern enum target_signal target_signal_from_host (int);
1189 extern int target_signal_to_host (enum target_signal);
1190
1191 /* Convert from a number used in a GDB command to an enum target_signal.  */
1192 extern enum target_signal target_signal_from_command (int);
1193
1194 /* Any target can call this to switch to remote protocol (in remote.c). */
1195 extern void push_remote_target (char *name, int from_tty);
1196 \f
1197 /* Imported from machine dependent code */
1198
1199 /* Blank target vector entries are initialized to target_ignore. */
1200 void target_ignore (void);
1201
1202 #endif /* !defined (TARGET_H) */