OSDN Git Service

Don't check assertions until symbols are finalized. Create an output
[pf3gnuchains/pf3gnuchains3x.git] / gold / expression.cc
1 // expression.cc -- expressions in linker scripts for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <string>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "symtab.h"
30 #include "layout.h"
31 #include "output.h"
32 #include "script.h"
33 #include "script-c.h"
34
35 namespace gold
36 {
37
38 // This file holds the code which handles linker expressions.
39
40 // The dot symbol, which linker scripts refer to simply as ".",
41 // requires special treatment.  The dot symbol is set several times,
42 // section addresses will refer to it, output sections will change it,
43 // and it can be set based on the value of other symbols.  We simplify
44 // the handling by prohibiting setting the dot symbol to the value of
45 // a non-absolute symbol.
46
47 // When evaluating the value of an expression, we pass in a pointer to
48 // this struct, so that the expression evaluation can find the
49 // information it needs.
50
51 struct Expression::Expression_eval_info
52 {
53   // The symbol table.
54   const Symbol_table* symtab;
55   // The layout--we use this to get section information.
56   const Layout* layout;
57   // Whether to check assertions.
58   bool check_assertions;
59   // Whether expressions can refer to the dot symbol.  The dot symbol
60   // is only available within a SECTIONS clause.
61   bool is_dot_available;
62   // The current value of the dot symbol.
63   uint64_t dot_value;
64   // The section in which the dot symbol is defined; this is NULL if
65   // it is absolute.
66   Output_section* dot_section;
67   // Points to where the section of the result should be stored.
68   Output_section** result_section_pointer;
69 };
70
71 // Evaluate an expression.
72
73 uint64_t
74 Expression::eval(const Symbol_table* symtab, const Layout* layout,
75                  bool check_assertions)
76 {
77   Output_section* dummy;
78   return this->eval_maybe_dot(symtab, layout, check_assertions,
79                               false, 0, NULL, &dummy);
80 }
81
82 // Evaluate an expression which may refer to the dot symbol.
83
84 uint64_t
85 Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
86                           bool check_assertions, uint64_t dot_value,
87                           Output_section* dot_section,
88                           Output_section** result_section_pointer)
89 {
90   return this->eval_maybe_dot(symtab, layout, check_assertions, true,
91                               dot_value, dot_section, result_section_pointer);
92 }
93
94 // Evaluate an expression which may or may not refer to the dot
95 // symbol.
96
97 uint64_t
98 Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
99                            bool check_assertions, bool is_dot_available,
100                            uint64_t dot_value, Output_section* dot_section,
101                            Output_section** result_section_pointer)
102 {
103   Expression_eval_info eei;
104   eei.symtab = symtab;
105   eei.layout = layout;
106   eei.check_assertions = check_assertions;
107   eei.is_dot_available = is_dot_available;
108   eei.dot_value = dot_value;
109   eei.dot_section = dot_section;
110
111   // We assume the value is absolute, and only set this to a section
112   // if we find a section relative reference.
113   *result_section_pointer = NULL;
114   eei.result_section_pointer = result_section_pointer;
115
116   return this->value(&eei);
117 }
118
119 // A number.
120
121 class Integer_expression : public Expression
122 {
123  public:
124   Integer_expression(uint64_t val)
125     : val_(val)
126   { }
127
128   uint64_t
129   value(const Expression_eval_info*)
130   { return this->val_; }
131
132   void
133   print(FILE* f) const
134   { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }
135
136  private:
137   uint64_t val_;
138 };
139
140 extern "C" Expression*
141 script_exp_integer(uint64_t val)
142 {
143   return new Integer_expression(val);
144 }
145
146 // An expression whose value is the value of a symbol.
147
148 class Symbol_expression : public Expression
149 {
150  public:
151   Symbol_expression(const char* name, size_t length)
152     : name_(name, length)
153   { }
154
155   uint64_t
156   value(const Expression_eval_info*);
157
158   void
159   print(FILE* f) const
160   { fprintf(f, "%s", this->name_.c_str()); }
161
162  private:
163   std::string name_;
164 };
165
166 uint64_t
167 Symbol_expression::value(const Expression_eval_info* eei)
168 {
169   Symbol* sym = eei->symtab->lookup(this->name_.c_str());
170   if (sym == NULL || !sym->is_defined())
171     {
172       gold_error(_("undefined symbol '%s' referenced in expression"),
173                  this->name_.c_str());
174       return 0;
175     }
176
177   *eei->result_section_pointer = sym->output_section();
178
179   if (parameters->target().get_size() == 32)
180     return eei->symtab->get_sized_symbol<32>(sym)->value();
181   else if (parameters->target().get_size() == 64)
182     return eei->symtab->get_sized_symbol<64>(sym)->value();
183   else
184     gold_unreachable();
185 }
186
187 // An expression whose value is the value of the special symbol ".".
188 // This is only valid within a SECTIONS clause.
189
190 class Dot_expression : public Expression
191 {
192  public:
193   Dot_expression()
194   { }
195
196   uint64_t
197   value(const Expression_eval_info*);
198
199   void
200   print(FILE* f) const
201   { fprintf(f, "."); }
202 };
203
204 uint64_t
205 Dot_expression::value(const Expression_eval_info* eei)
206 {
207   if (!eei->is_dot_available)
208     {
209       gold_error(_("invalid reference to dot symbol outside of "
210                    "SECTIONS clause"));
211       return 0;
212     }
213   *eei->result_section_pointer = eei->dot_section;
214   return eei->dot_value;
215 }
216
217 // A string.  This is either the name of a symbol, or ".".
218
219 extern "C" Expression*
220 script_exp_string(const char* name, size_t length)
221 {
222   if (length == 1 && name[0] == '.')
223     return new Dot_expression();
224   else
225     return new Symbol_expression(name, length);
226 }
227
228 // A unary expression.
229
230 class Unary_expression : public Expression
231 {
232  public:
233   Unary_expression(Expression* arg)
234     : arg_(arg)
235   { }
236
237   ~Unary_expression()
238   { delete this->arg_; }
239
240  protected:
241   uint64_t
242   arg_value(const Expression_eval_info* eei,
243             Output_section** arg_section_pointer) const
244   {
245     return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
246                                       eei->check_assertions,
247                                       eei->is_dot_available,
248                                       eei->dot_value,
249                                       eei->dot_section,
250                                       arg_section_pointer);
251   }
252
253   void
254   arg_print(FILE* f) const
255   { this->arg_->print(f); }
256
257  private:
258   Expression* arg_;
259 };
260
261 // Handle unary operators.  We use a preprocessor macro as a hack to
262 // capture the C operator.
263
264 #define UNARY_EXPRESSION(NAME, OPERATOR)                                \
265   class Unary_ ## NAME : public Unary_expression                        \
266   {                                                                     \
267   public:                                                               \
268     Unary_ ## NAME(Expression* arg)                                     \
269       : Unary_expression(arg)                                           \
270     { }                                                                 \
271                                                                         \
272     uint64_t                                                            \
273     value(const Expression_eval_info* eei)                              \
274     {                                                                   \
275       Output_section* arg_section;                                      \
276       uint64_t ret = OPERATOR this->arg_value(eei, &arg_section);       \
277       if (arg_section != NULL && parameters->options().relocatable())   \
278         gold_warning(_("unary " #NAME " applied to section "            \
279                        "relative value"));                              \
280       return ret;                                                       \
281     }                                                                   \
282                                                                         \
283     void                                                                \
284     print(FILE* f) const                                                \
285     {                                                                   \
286       fprintf(f, "(%s ", #OPERATOR);                                    \
287       this->arg_print(f);                                               \
288       fprintf(f, ")");                                                  \
289     }                                                                   \
290   };                                                                    \
291                                                                         \
292   extern "C" Expression*                                                \
293   script_exp_unary_ ## NAME(Expression* arg)                            \
294   {                                                                     \
295       return new Unary_ ## NAME(arg);                                   \
296   }
297
298 UNARY_EXPRESSION(minus, -)
299 UNARY_EXPRESSION(logical_not, !)
300 UNARY_EXPRESSION(bitwise_not, ~)
301
302 // A binary expression.
303
304 class Binary_expression : public Expression
305 {
306  public:
307   Binary_expression(Expression* left, Expression* right)
308     : left_(left), right_(right)
309   { }
310
311   ~Binary_expression()
312   {
313     delete this->left_;
314     delete this->right_;
315   }
316
317  protected:
318   uint64_t
319   left_value(const Expression_eval_info* eei,
320              Output_section** section_pointer) const
321   {
322     return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
323                                        eei->check_assertions,
324                                        eei->is_dot_available,
325                                        eei->dot_value,
326                                        eei->dot_section,
327                                        section_pointer);
328   }
329
330   uint64_t
331   right_value(const Expression_eval_info* eei,
332               Output_section** section_pointer) const
333   {
334     return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
335                                         eei->check_assertions,
336                                         eei->is_dot_available,
337                                         eei->dot_value,
338                                         eei->dot_section,
339                                         section_pointer);
340   }
341
342   void
343   left_print(FILE* f) const
344   { this->left_->print(f); }
345
346   void
347   right_print(FILE* f) const
348   { this->right_->print(f); }
349
350   // This is a call to function FUNCTION_NAME.  Print it.  This is for
351   // debugging.
352   void
353   print_function(FILE* f, const char *function_name) const
354   {
355     fprintf(f, "%s(", function_name);
356     this->left_print(f);
357     fprintf(f, ", ");
358     this->right_print(f);
359     fprintf(f, ")");
360   }
361
362  private:
363   Expression* left_;
364   Expression* right_;
365 };
366
367 // Handle binary operators.  We use a preprocessor macro as a hack to
368 // capture the C operator.  KEEP_LEFT means that if the left operand
369 // is section relative and the right operand is not, the result uses
370 // the same section as the left operand.  KEEP_RIGHT is the same with
371 // left and right swapped.  IS_DIV means that we need to give an error
372 // if the right operand is zero.  WARN means that we should warn if
373 // used on section relative values in a relocatable link.  We always
374 // warn if used on values in different sections in a relocatable link.
375
376 #define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
377   class Binary_ ## NAME : public Binary_expression                      \
378   {                                                                     \
379   public:                                                               \
380     Binary_ ## NAME(Expression* left, Expression* right)                \
381       : Binary_expression(left, right)                                  \
382     { }                                                                 \
383                                                                         \
384     uint64_t                                                            \
385     value(const Expression_eval_info* eei)                              \
386     {                                                                   \
387       Output_section* left_section;                                     \
388       uint64_t left = this->left_value(eei, &left_section);             \
389       Output_section* right_section;                                    \
390       uint64_t right = this->right_value(eei, &right_section);          \
391       if (KEEP_RIGHT && left_section == NULL && right_section != NULL)  \
392         *eei->result_section_pointer = right_section;                   \
393       else if (KEEP_LEFT                                                \
394                && left_section != NULL                                  \
395                && right_section == NULL)                                \
396         *eei->result_section_pointer = left_section;                    \
397       else if ((WARN || left_section != right_section)                  \
398                && (left_section != NULL || right_section != NULL)       \
399                && parameters->options().relocatable())                  \
400         gold_warning(_("binary " #NAME " applied to section "           \
401                        "relative value"));                              \
402       if (IS_DIV && right == 0)                                         \
403         {                                                               \
404           gold_error(_(#NAME " by zero"));                              \
405           return 0;                                                     \
406         }                                                               \
407       return left OPERATOR right;                                       \
408     }                                                                   \
409                                                                         \
410     void                                                                \
411     print(FILE* f) const                                                \
412     {                                                                   \
413       fprintf(f, "(");                                                  \
414       this->left_print(f);                                              \
415       fprintf(f, " %s ", #OPERATOR);                                    \
416       this->right_print(f);                                             \
417       fprintf(f, ")");                                                  \
418     }                                                                   \
419   };                                                                    \
420                                                                         \
421   extern "C" Expression*                                                \
422   script_exp_binary_ ## NAME(Expression* left, Expression* right)       \
423   {                                                                     \
424     return new Binary_ ## NAME(left, right);                            \
425   }
426
427 BINARY_EXPRESSION(mult, *, false, false, false, true)
428 BINARY_EXPRESSION(div, /, false, false, true, true)
429 BINARY_EXPRESSION(mod, %, false, false, true, true)
430 BINARY_EXPRESSION(add, +, true, true, false, true)
431 BINARY_EXPRESSION(sub, -, true, false, false, false)
432 BINARY_EXPRESSION(lshift, <<, false, false, false, true)
433 BINARY_EXPRESSION(rshift, >>, false, false, false, true)
434 BINARY_EXPRESSION(eq, ==, false, false, false, false)
435 BINARY_EXPRESSION(ne, !=, false, false, false, false)
436 BINARY_EXPRESSION(le, <=, false, false, false, false)
437 BINARY_EXPRESSION(ge, >=, false, false, false, false)
438 BINARY_EXPRESSION(lt, <, false, false, false, false)
439 BINARY_EXPRESSION(gt, >, false, false, false, false)
440 BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
441 BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
442 BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
443 BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
444 BINARY_EXPRESSION(logical_or, ||, false, false, false, true)
445
446 // A trinary expression.
447
448 class Trinary_expression : public Expression
449 {
450  public:
451   Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
452     : arg1_(arg1), arg2_(arg2), arg3_(arg3)
453   { }
454
455   ~Trinary_expression()
456   {
457     delete this->arg1_;
458     delete this->arg2_;
459     delete this->arg3_;
460   }
461
462  protected:
463   uint64_t
464   arg1_value(const Expression_eval_info* eei,
465              Output_section** section_pointer) const
466   {
467     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
468                                        eei->check_assertions,
469                                        eei->is_dot_available,
470                                        eei->dot_value,
471                                        eei->dot_section,
472                                        section_pointer);
473   }
474
475   uint64_t
476   arg2_value(const Expression_eval_info* eei,
477              Output_section** section_pointer) const
478   {
479     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
480                                        eei->check_assertions,
481                                        eei->is_dot_available,
482                                        eei->dot_value,
483                                        eei->dot_section,
484                                        section_pointer);
485   }
486
487   uint64_t
488   arg3_value(const Expression_eval_info* eei,
489              Output_section** section_pointer) const
490   {
491     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
492                                        eei->check_assertions,
493                                        eei->is_dot_available,
494                                        eei->dot_value,
495                                        eei->dot_section,
496                                        section_pointer);
497   }
498
499   void
500   arg1_print(FILE* f) const
501   { this->arg1_->print(f); }
502
503   void
504   arg2_print(FILE* f) const
505   { this->arg2_->print(f); }
506
507   void
508   arg3_print(FILE* f) const
509   { this->arg3_->print(f); }
510
511  private:
512   Expression* arg1_;
513   Expression* arg2_;
514   Expression* arg3_;
515 };
516
517 // The conditional operator.
518
519 class Trinary_cond : public Trinary_expression
520 {
521  public:
522   Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
523     : Trinary_expression(arg1, arg2, arg3)
524   { }
525
526   uint64_t
527   value(const Expression_eval_info* eei)
528   {
529     Output_section* arg1_section;
530     uint64_t arg1 = this->arg1_value(eei, &arg1_section);
531     return (arg1
532             ? this->arg2_value(eei, eei->result_section_pointer)
533             : this->arg3_value(eei, eei->result_section_pointer));
534   }
535
536   void
537   print(FILE* f) const
538   {
539     fprintf(f, "(");
540     this->arg1_print(f);
541     fprintf(f, " ? ");
542     this->arg2_print(f);
543     fprintf(f, " : ");
544     this->arg3_print(f);
545     fprintf(f, ")");
546   }
547 };
548
549 extern "C" Expression*
550 script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
551 {
552   return new Trinary_cond(arg1, arg2, arg3);
553 }
554
555 // Max function.
556
557 class Max_expression : public Binary_expression
558 {
559  public:
560   Max_expression(Expression* left, Expression* right)
561     : Binary_expression(left, right)
562   { }
563
564   uint64_t
565   value(const Expression_eval_info* eei)
566   {
567     Output_section* left_section;
568     uint64_t left = this->left_value(eei, &left_section);
569     Output_section* right_section;
570     uint64_t right = this->right_value(eei, &right_section);
571     if (left_section == right_section)
572       *eei->result_section_pointer = left_section;
573     else if ((left_section != NULL || right_section != NULL)
574              && parameters->options().relocatable())
575       gold_warning(_("max applied to section relative value"));
576     return std::max(left, right);
577   }
578
579   void
580   print(FILE* f) const
581   { this->print_function(f, "MAX"); }
582 };
583
584 extern "C" Expression*
585 script_exp_function_max(Expression* left, Expression* right)
586 {
587   return new Max_expression(left, right);
588 }
589
590 // Min function.
591
592 class Min_expression : public Binary_expression
593 {
594  public:
595   Min_expression(Expression* left, Expression* right)
596     : Binary_expression(left, right)
597   { }
598
599   uint64_t
600   value(const Expression_eval_info* eei)
601   {
602     Output_section* left_section;
603     uint64_t left = this->left_value(eei, &left_section);
604     Output_section* right_section;
605     uint64_t right = this->right_value(eei, &right_section);
606     if (left_section == right_section)
607       *eei->result_section_pointer = left_section;
608     else if ((left_section != NULL || right_section != NULL)
609              && parameters->options().relocatable())
610       gold_warning(_("min applied to section relative value"));
611     return std::min(left, right);
612   }
613
614   void
615   print(FILE* f) const
616   { this->print_function(f, "MIN"); }
617 };
618
619 extern "C" Expression*
620 script_exp_function_min(Expression* left, Expression* right)
621 {
622   return new Min_expression(left, right);
623 }
624
625 // Class Section_expression.  This is a parent class used for
626 // functions which take the name of an output section.
627
628 class Section_expression : public Expression
629 {
630  public:
631   Section_expression(const char* section_name, size_t section_name_len)
632     : section_name_(section_name, section_name_len)
633   { }
634
635   uint64_t
636   value(const Expression_eval_info*);
637
638   void
639   print(FILE* f) const
640   { fprintf(f, "%s(%s)", this->function_name(), this->section_name_.c_str()); }
641
642  protected:
643   // The child class must implement this.
644   virtual uint64_t
645   value_from_output_section(const Expression_eval_info*,
646                             Output_section*) = 0;
647
648   // The child class must implement this.
649   virtual const char*
650   function_name() const = 0;
651
652  private:
653   std::string section_name_;
654 };
655
656 uint64_t
657 Section_expression::value(const Expression_eval_info* eei)
658 {
659   const char* section_name = this->section_name_.c_str();
660   Output_section* os = eei->layout->find_output_section(section_name);
661   if (os == NULL)
662     {
663       gold_error("%s called on nonexistent output section '%s'",
664                  this->function_name(), section_name);
665       return 0;
666     }
667
668   return this->value_from_output_section(eei, os);
669 }
670
671 // ABSOLUTE function.
672
673 class Absolute_expression : public Unary_expression
674 {
675  public:
676   Absolute_expression(Expression* arg)
677     : Unary_expression(arg)
678   { }
679
680   uint64_t
681   value(const Expression_eval_info* eei)
682   {
683     Output_section* dummy;
684     uint64_t ret = this->arg_value(eei, &dummy);
685     // Force the value to be absolute.
686     *eei->result_section_pointer = NULL;
687     return ret;
688   }
689
690   void
691   print(FILE* f) const
692   {
693     fprintf(f, "ABSOLUTE(");
694     this->arg_print(f);
695     fprintf(f, ")");
696   }
697 };
698
699 extern "C" Expression*
700 script_exp_function_absolute(Expression* arg)
701 {
702   return new Absolute_expression(arg);
703 }
704
705 // ALIGN function.
706
707 class Align_expression : public Binary_expression
708 {
709  public:
710   Align_expression(Expression* left, Expression* right)
711     : Binary_expression(left, right)
712   { }
713
714   uint64_t
715   value(const Expression_eval_info* eei)
716   {
717     Output_section* align_section;
718     uint64_t align = this->right_value(eei, &align_section);
719     if (align_section != NULL
720         && parameters->options().relocatable())
721       gold_warning(_("aligning to section relative value"));
722
723     uint64_t value = this->left_value(eei, eei->result_section_pointer);
724     if (align <= 1)
725       return value;
726     return ((value + align - 1) / align) * align;
727   }
728
729   void
730   print(FILE* f) const
731   { this->print_function(f, "ALIGN"); }
732 };
733
734 extern "C" Expression*
735 script_exp_function_align(Expression* left, Expression* right)
736 {
737   return new Align_expression(left, right);
738 }
739
740 // ASSERT function.
741
742 class Assert_expression : public Unary_expression
743 {
744  public:
745   Assert_expression(Expression* arg, const char* message, size_t length)
746     : Unary_expression(arg), message_(message, length)
747   { }
748
749   uint64_t
750   value(const Expression_eval_info* eei)
751   {
752     uint64_t value = this->arg_value(eei, eei->result_section_pointer);
753     if (!value && eei->check_assertions)
754       gold_error("%s", this->message_.c_str());
755     return value;
756   }
757
758   void
759   print(FILE* f) const
760   {
761     fprintf(f, "ASSERT(");
762     this->arg_print(f);
763     fprintf(f, ", %s)", this->message_.c_str());
764   }
765
766  private:
767   std::string message_;
768 };
769
770 extern "C" Expression*
771 script_exp_function_assert(Expression* expr, const char* message,
772                            size_t length)
773 {
774   return new Assert_expression(expr, message, length);
775 }
776
777 // ADDR function.
778
779 class Addr_expression : public Section_expression
780 {
781  public:
782   Addr_expression(const char* section_name, size_t section_name_len)
783     : Section_expression(section_name, section_name_len)
784   { }
785
786  protected:
787   uint64_t
788   value_from_output_section(const Expression_eval_info* eei,
789                             Output_section* os)
790   {
791     *eei->result_section_pointer = os;
792     return os->address();
793   }
794
795   const char*
796   function_name() const
797   { return "ADDR"; }
798 };
799
800 extern "C" Expression*
801 script_exp_function_addr(const char* section_name, size_t section_name_len)
802 {
803   return new Addr_expression(section_name, section_name_len);
804 }
805
806 // ALIGNOF.
807
808 class Alignof_expression : public Section_expression
809 {
810  public:
811   Alignof_expression(const char* section_name, size_t section_name_len)
812     : Section_expression(section_name, section_name_len)
813   { }
814
815  protected:
816   uint64_t
817   value_from_output_section(const Expression_eval_info*,
818                             Output_section* os)
819   { return os->addralign(); }
820
821   const char*
822   function_name() const
823   { return "ALIGNOF"; }
824 };
825
826 extern "C" Expression*
827 script_exp_function_alignof(const char* section_name, size_t section_name_len)
828 {
829   return new Alignof_expression(section_name, section_name_len);
830 }
831
832 // CONSTANT.  It would be nice if we could simply evaluate this
833 // immediately and return an Integer_expression, but unfortunately we
834 // don't know the target.
835
836 class Constant_expression : public Expression
837 {
838  public:
839   Constant_expression(const char* name, size_t length);
840
841   uint64_t
842   value(const Expression_eval_info*);
843
844   void
845   print(FILE* f) const;
846
847  private:
848   enum Constant_function
849   {
850     CONSTANT_MAXPAGESIZE,
851     CONSTANT_COMMONPAGESIZE
852   };
853
854   Constant_function function_;
855 };
856
857 Constant_expression::Constant_expression(const char* name, size_t length)
858 {
859   if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
860     this->function_ = CONSTANT_MAXPAGESIZE;
861   else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
862     this->function_ = CONSTANT_COMMONPAGESIZE;
863   else
864     {
865       std::string s(name, length);
866       gold_error(_("unknown constant %s"), s.c_str());
867       this->function_ = CONSTANT_MAXPAGESIZE;
868     }
869 }
870
871 uint64_t
872 Constant_expression::value(const Expression_eval_info*)
873 {
874   switch (this->function_)
875     {
876     case CONSTANT_MAXPAGESIZE:
877       return parameters->target().abi_pagesize();
878     case CONSTANT_COMMONPAGESIZE:
879       return parameters->target().common_pagesize();
880     default:
881       gold_unreachable();
882     }
883 }
884
885 void
886 Constant_expression::print(FILE* f) const
887 {
888   const char* name;
889   switch (this->function_)
890     {
891     case CONSTANT_MAXPAGESIZE:
892       name = "MAXPAGESIZE";
893       break;
894     case CONSTANT_COMMONPAGESIZE:
895       name = "COMMONPAGESIZE";
896       break;
897     default:
898       gold_unreachable();
899     }
900   fprintf(f, "CONSTANT(%s)", name);
901 }
902   
903 extern "C" Expression*
904 script_exp_function_constant(const char* name, size_t length)
905 {
906   return new Constant_expression(name, length);
907 }
908
909 // DATA_SEGMENT_ALIGN.  FIXME: we don't implement this; we always fall
910 // back to the general case.
911
912 extern "C" Expression*
913 script_exp_function_data_segment_align(Expression* left, Expression*)
914 {
915   Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
916   Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
917   Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
918                                                  e2);
919   return script_exp_binary_add(e1, e3);
920 }
921
922 // DATA_SEGMENT_RELRO.  FIXME: This is not implemented.
923
924 extern "C" Expression*
925 script_exp_function_data_segment_relro_end(Expression*, Expression* right)
926 {
927   return right;
928 }
929
930 // DATA_SEGMENT_END.  FIXME: This is not implemented.
931
932 extern "C" Expression*
933 script_exp_function_data_segment_end(Expression* val)
934 {
935   return val;
936 }
937
938 // DEFINED function.
939
940 class Defined_expression : public Expression
941 {
942  public:
943   Defined_expression(const char* symbol_name, size_t symbol_name_len)
944     : symbol_name_(symbol_name, symbol_name_len)
945   { }
946
947   uint64_t
948   value(const Expression_eval_info* eei)
949   {
950     Symbol* sym = eei->symtab->lookup(this->symbol_name_.c_str());
951     return sym != NULL && sym->is_defined();
952   }
953
954   void
955   print(FILE* f) const
956   { fprintf(f, "DEFINED(%s)", this->symbol_name_.c_str()); }
957
958  private:
959   std::string symbol_name_;
960 };
961
962 extern "C" Expression*
963 script_exp_function_defined(const char* symbol_name, size_t symbol_name_len)
964 {
965   return new Defined_expression(symbol_name, symbol_name_len);
966 }
967
968 // LOADADDR function
969
970 class Loadaddr_expression : public Section_expression
971 {
972  public:
973   Loadaddr_expression(const char* section_name, size_t section_name_len)
974     : Section_expression(section_name, section_name_len)
975   { }
976
977  protected:
978   uint64_t
979   value_from_output_section(const Expression_eval_info* eei,
980                             Output_section* os)
981   {
982     if (os->has_load_address())
983       return os->load_address();
984     else
985       {
986         *eei->result_section_pointer = os;
987         return os->address();
988       }
989   }
990
991   const char*
992   function_name() const
993   { return "LOADADDR"; }
994 };
995
996 extern "C" Expression*
997 script_exp_function_loadaddr(const char* section_name, size_t section_name_len)
998 {
999   return new Loadaddr_expression(section_name, section_name_len);
1000 }
1001
1002 // SIZEOF function
1003
1004 class Sizeof_expression : public Section_expression
1005 {
1006  public:
1007   Sizeof_expression(const char* section_name, size_t section_name_len)
1008     : Section_expression(section_name, section_name_len)
1009   { }
1010
1011  protected:
1012   uint64_t
1013   value_from_output_section(const Expression_eval_info*,
1014                             Output_section* os)
1015   {
1016     // We can not use data_size here, as the size of the section may
1017     // not have been finalized.  Instead we get whatever the current
1018     // size is.  This will work correctly for backward references in
1019     // linker scripts.
1020     return os->current_data_size();
1021   }
1022
1023   const char*
1024   function_name() const
1025   { return "SIZEOF"; }
1026 };
1027
1028 extern "C" Expression*
1029 script_exp_function_sizeof(const char* section_name, size_t section_name_len)
1030 {
1031   return new Sizeof_expression(section_name, section_name_len);
1032 }
1033
1034 // SIZEOF_HEADERS.
1035
1036 class Sizeof_headers_expression : public Expression
1037 {
1038  public:
1039   Sizeof_headers_expression()
1040   { }
1041
1042   uint64_t
1043   value(const Expression_eval_info*);
1044
1045   void
1046   print(FILE* f) const
1047   { fprintf(f, "SIZEOF_HEADERS"); }
1048 };
1049
1050 uint64_t
1051 Sizeof_headers_expression::value(const Expression_eval_info* eei)
1052 {
1053   unsigned int ehdr_size;
1054   unsigned int phdr_size;
1055   if (parameters->target().get_size() == 32)
1056     {
1057       ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
1058       phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
1059     }
1060   else if (parameters->target().get_size() == 64)
1061     {
1062       ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
1063       phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
1064     }
1065   else
1066     gold_unreachable();
1067
1068   return ehdr_size + phdr_size * eei->layout->expected_segment_count();
1069 }
1070
1071 extern "C" Expression*
1072 script_exp_function_sizeof_headers()
1073 {
1074   return new Sizeof_headers_expression();
1075 }
1076
1077 // In the GNU linker SEGMENT_START basically returns the value for
1078 // -Ttext, -Tdata, or -Tbss.  We could implement this by copying the
1079 // values from General_options to Parameters.  But I doubt that
1080 // anybody actually uses it.  The point of it for the GNU linker was
1081 // because -Ttext set the address of the .text section rather than the
1082 // text segment.  In gold -Ttext sets the text segment address anyhow.
1083
1084 extern "C" Expression*
1085 script_exp_function_segment_start(const char*, size_t, Expression*)
1086 {
1087   gold_fatal(_("SEGMENT_START not implemented"));
1088 }
1089
1090 // Functions for memory regions.  These can not be implemented unless
1091 // and until we implement memory regions.
1092
1093 extern "C" Expression*
1094 script_exp_function_origin(const char*, size_t)
1095 {
1096   gold_fatal(_("ORIGIN not implemented"));
1097 }
1098
1099 extern "C" Expression*
1100 script_exp_function_length(const char*, size_t)
1101 {
1102   gold_fatal(_("LENGTH not implemented"));
1103 }
1104
1105 } // End namespace gold.