OSDN Git Service

Add global parameters.
[pf3gnuchains/pf3gnuchains3x.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 #include "gold.h"
4
5 #include <cstring>
6 #include <algorithm>
7 #include <iostream>
8 #include <utility>
9
10 #include "parameters.h"
11 #include "output.h"
12 #include "symtab.h"
13 #include "dynobj.h"
14 #include "layout.h"
15
16 namespace gold
17 {
18
19 // Layout_task_runner methods.
20
21 // Lay out the sections.  This is called after all the input objects
22 // have been read.
23
24 void
25 Layout_task_runner::run(Workqueue* workqueue)
26 {
27   off_t file_size = this->layout_->finalize(this->input_objects_,
28                                             this->symtab_);
29
30   // Now we know the final size of the output file and we know where
31   // each piece of information goes.
32   Output_file* of = new Output_file(this->options_,
33                                     this->input_objects_->target());
34   of->open(file_size);
35
36   // Queue up the final set of tasks.
37   gold::queue_final_tasks(this->options_, this->input_objects_,
38                           this->symtab_, this->layout_, workqueue, of);
39 }
40
41 // Layout methods.
42
43 Layout::Layout(const General_options& options)
44   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
45     section_name_map_(), segment_list_(), section_list_(),
46     unattached_section_list_(), special_output_list_(),
47     tls_segment_(NULL), symtab_section_(NULL),
48     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL)
49 {
50   // Make space for more than enough segments for a typical file.
51   // This is just for efficiency--it's OK if we wind up needing more.
52   this->segment_list_.reserve(12);
53
54   // We expect three unattached Output_data objects: the file header,
55   // the segment headers, and the section headers.
56   this->special_output_list_.reserve(3);
57 }
58
59 // Hash a key we use to look up an output section mapping.
60
61 size_t
62 Layout::Hash_key::operator()(const Layout::Key& k) const
63 {
64  return k.first + k.second.first + k.second.second;
65 }
66
67 // Whether to include this section in the link.
68
69 template<int size, bool big_endian>
70 bool
71 Layout::include_section(Object*, const char*,
72                         const elfcpp::Shdr<size, big_endian>& shdr)
73 {
74   // Some section types are never linked.  Some are only linked when
75   // doing a relocateable link.
76   switch (shdr.get_sh_type())
77     {
78     case elfcpp::SHT_NULL:
79     case elfcpp::SHT_SYMTAB:
80     case elfcpp::SHT_DYNSYM:
81     case elfcpp::SHT_STRTAB:
82     case elfcpp::SHT_HASH:
83     case elfcpp::SHT_DYNAMIC:
84     case elfcpp::SHT_SYMTAB_SHNDX:
85       return false;
86
87     case elfcpp::SHT_RELA:
88     case elfcpp::SHT_REL:
89     case elfcpp::SHT_GROUP:
90       return parameters->output_is_object();
91
92     default:
93       // FIXME: Handle stripping debug sections here.
94       return true;
95     }
96 }
97
98 // Return an output section named NAME, or NULL if there is none.
99
100 Output_section*
101 Layout::find_output_section(const char* name) const
102 {
103   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
104        p != this->section_name_map_.end();
105        ++p)
106     if (strcmp(p->second->name(), name) == 0)
107       return p->second;
108   return NULL;
109 }
110
111 // Return an output segment of type TYPE, with segment flags SET set
112 // and segment flags CLEAR clear.  Return NULL if there is none.
113
114 Output_segment*
115 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
116                             elfcpp::Elf_Word clear) const
117 {
118   for (Segment_list::const_iterator p = this->segment_list_.begin();
119        p != this->segment_list_.end();
120        ++p)
121     if (static_cast<elfcpp::PT>((*p)->type()) == type
122         && ((*p)->flags() & set) == set
123         && ((*p)->flags() & clear) == 0)
124       return *p;
125   return NULL;
126 }
127
128 // Return the output section to use for section NAME with type TYPE
129 // and section flags FLAGS.
130
131 Output_section*
132 Layout::get_output_section(const char* name, Stringpool::Key name_key,
133                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
134 {
135   // We should ignore some flags.
136   flags &= ~ (elfcpp::SHF_INFO_LINK
137               | elfcpp::SHF_LINK_ORDER
138               | elfcpp::SHF_GROUP
139               | elfcpp::SHF_MERGE
140               | elfcpp::SHF_STRINGS);
141
142   const Key key(name_key, std::make_pair(type, flags));
143   const std::pair<Key, Output_section*> v(key, NULL);
144   std::pair<Section_name_map::iterator, bool> ins(
145     this->section_name_map_.insert(v));
146
147   if (!ins.second)
148     return ins.first->second;
149   else
150     {
151       // This is the first time we've seen this name/type/flags
152       // combination.
153       Output_section* os = this->make_output_section(name, type, flags);
154       ins.first->second = os;
155       return os;
156     }
157 }
158
159 // Return the output section to use for input section SHNDX, with name
160 // NAME, with header HEADER, from object OBJECT.  Set *OFF to the
161 // offset of this input section without the output section.
162
163 template<int size, bool big_endian>
164 Output_section*
165 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
166                const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
167 {
168   if (!this->include_section(object, name, shdr))
169     return NULL;
170
171   // If we are not doing a relocateable link, choose the name to use
172   // for the output section.
173   size_t len = strlen(name);
174   if (!parameters->output_is_object())
175     name = Layout::output_section_name(name, &len);
176
177   // FIXME: Handle SHF_OS_NONCONFORMING here.
178
179   // Canonicalize the section name.
180   Stringpool::Key name_key;
181   name = this->namepool_.add(name, len, &name_key);
182
183   // Find the output section.  The output section is selected based on
184   // the section name, type, and flags.
185   Output_section* os = this->get_output_section(name, name_key,
186                                                 shdr.get_sh_type(),
187                                                 shdr.get_sh_flags());
188
189   // FIXME: Handle SHF_LINK_ORDER somewhere.
190
191   *off = os->add_input_section(object, shndx, name, shdr);
192
193   return os;
194 }
195
196 // Add POSD to an output section using NAME, TYPE, and FLAGS.
197
198 void
199 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
200                                 elfcpp::Elf_Xword flags,
201                                 Output_section_data* posd)
202 {
203   // Canonicalize the name.
204   Stringpool::Key name_key;
205   name = this->namepool_.add(name, &name_key);
206
207   Output_section* os = this->get_output_section(name, name_key, type, flags);
208   os->add_output_section_data(posd);
209 }
210
211 // Map section flags to segment flags.
212
213 elfcpp::Elf_Word
214 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
215 {
216   elfcpp::Elf_Word ret = elfcpp::PF_R;
217   if ((flags & elfcpp::SHF_WRITE) != 0)
218     ret |= elfcpp::PF_W;
219   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
220     ret |= elfcpp::PF_X;
221   return ret;
222 }
223
224 // Make a new Output_section, and attach it to segments as
225 // appropriate.
226
227 Output_section*
228 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
229                             elfcpp::Elf_Xword flags)
230 {
231   Output_section* os = new Output_section(name, type, flags);
232   this->section_list_.push_back(os);
233
234   if ((flags & elfcpp::SHF_ALLOC) == 0)
235     this->unattached_section_list_.push_back(os);
236   else
237     {
238       // This output section goes into a PT_LOAD segment.
239
240       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
241
242       // The only thing we really care about for PT_LOAD segments is
243       // whether or not they are writable, so that is how we search
244       // for them.  People who need segments sorted on some other
245       // basis will have to wait until we implement a mechanism for
246       // them to describe the segments they want.
247
248       Segment_list::const_iterator p;
249       for (p = this->segment_list_.begin();
250            p != this->segment_list_.end();
251            ++p)
252         {
253           if ((*p)->type() == elfcpp::PT_LOAD
254               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
255             {
256               (*p)->add_output_section(os, seg_flags);
257               break;
258             }
259         }
260
261       if (p == this->segment_list_.end())
262         {
263           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
264                                                     seg_flags);
265           this->segment_list_.push_back(oseg);
266           oseg->add_output_section(os, seg_flags);
267         }
268
269       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
270       // segment.
271       if (type == elfcpp::SHT_NOTE)
272         {
273           // See if we already have an equivalent PT_NOTE segment.
274           for (p = this->segment_list_.begin();
275                p != segment_list_.end();
276                ++p)
277             {
278               if ((*p)->type() == elfcpp::PT_NOTE
279                   && (((*p)->flags() & elfcpp::PF_W)
280                       == (seg_flags & elfcpp::PF_W)))
281                 {
282                   (*p)->add_output_section(os, seg_flags);
283                   break;
284                 }
285             }
286
287           if (p == this->segment_list_.end())
288             {
289               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
290                                                         seg_flags);
291               this->segment_list_.push_back(oseg);
292               oseg->add_output_section(os, seg_flags);
293             }
294         }
295
296       // If we see a loadable SHF_TLS section, we create a PT_TLS
297       // segment.  There can only be one such segment.
298       if ((flags & elfcpp::SHF_TLS) != 0)
299         {
300           if (this->tls_segment_ == NULL)
301             {
302               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
303                                                       seg_flags);
304               this->segment_list_.push_back(this->tls_segment_);
305             }
306           this->tls_segment_->add_output_section(os, seg_flags);
307         }
308     }
309
310   return os;
311 }
312
313 // Create the dynamic sections which are needed before we read the
314 // relocs.
315
316 void
317 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
318                                         Symbol_table* symtab)
319 {
320   if (!input_objects->any_dynamic())
321     return;
322
323   const char* dynamic_name = this->namepool_.add(".dynamic", NULL);
324   this->dynamic_section_ = this->make_output_section(dynamic_name,
325                                                      elfcpp::SHT_DYNAMIC,
326                                                      (elfcpp::SHF_ALLOC
327                                                       | elfcpp::SHF_WRITE));
328
329   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
330                                 this->dynamic_section_, 0, 0,
331                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
332                                 elfcpp::STV_HIDDEN, 0, false, false);
333
334   this->dynamic_data_ =  new Output_data_dynamic(input_objects->target(),
335                                                  &this->dynpool_);
336
337   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
338 }
339
340 // Find the first read-only PT_LOAD segment, creating one if
341 // necessary.
342
343 Output_segment*
344 Layout::find_first_load_seg()
345 {
346   for (Segment_list::const_iterator p = this->segment_list_.begin();
347        p != this->segment_list_.end();
348        ++p)
349     {
350       if ((*p)->type() == elfcpp::PT_LOAD
351           && ((*p)->flags() & elfcpp::PF_R) != 0
352           && ((*p)->flags() & elfcpp::PF_W) == 0)
353         return *p;
354     }
355
356   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
357   this->segment_list_.push_back(load_seg);
358   return load_seg;
359 }
360
361 // Finalize the layout.  When this is called, we have created all the
362 // output sections and all the output segments which are based on
363 // input sections.  We have several things to do, and we have to do
364 // them in the right order, so that we get the right results correctly
365 // and efficiently.
366
367 // 1) Finalize the list of output segments and create the segment
368 // table header.
369
370 // 2) Finalize the dynamic symbol table and associated sections.
371
372 // 3) Determine the final file offset of all the output segments.
373
374 // 4) Determine the final file offset of all the SHF_ALLOC output
375 // sections.
376
377 // 5) Create the symbol table sections and the section name table
378 // section.
379
380 // 6) Finalize the symbol table: set symbol values to their final
381 // value and make a final determination of which symbols are going
382 // into the output symbol table.
383
384 // 7) Create the section table header.
385
386 // 8) Determine the final file offset of all the output sections which
387 // are not SHF_ALLOC, including the section table header.
388
389 // 9) Finalize the ELF file header.
390
391 // This function returns the size of the output file.
392
393 off_t
394 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
395 {
396   Target* const target = input_objects->target();
397   const int size = target->get_size();
398
399   target->finalize_sections(this);
400
401   Output_segment* phdr_seg = NULL;
402   if (input_objects->any_dynamic())
403     {
404       // There was a dynamic object in the link.  We need to create
405       // some information for the dynamic linker.
406
407       // Create the PT_PHDR segment which will hold the program
408       // headers.
409       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
410       this->segment_list_.push_back(phdr_seg);
411
412       // Create the dynamic symbol table, including the hash table.
413       Output_section* dynstr;
414       std::vector<Symbol*> dynamic_symbols;
415       unsigned int local_dynamic_count;
416       Versions versions;
417       this->create_dynamic_symtab(target, symtab, &dynstr,
418                                   &local_dynamic_count, &dynamic_symbols,
419                                   &versions);
420
421       // Create the .interp section to hold the name of the
422       // interpreter, and put it in a PT_INTERP segment.
423       this->create_interp(target);
424
425       // Finish the .dynamic section to hold the dynamic data, and put
426       // it in a PT_DYNAMIC segment.
427       this->finish_dynamic_section(input_objects, symtab);
428
429       // We should have added everything we need to the dynamic string
430       // table.
431       this->dynpool_.set_string_offsets();
432
433       // Create the version sections.  We can't do this until the
434       // dynamic string table is complete.
435       this->create_version_sections(target, &versions, local_dynamic_count,
436                                     dynamic_symbols, dynstr);
437     }
438
439   // FIXME: Handle PT_GNU_STACK.
440
441   Output_segment* load_seg = this->find_first_load_seg();
442
443   // Lay out the segment headers.
444   bool big_endian = target->is_big_endian();
445   Output_segment_headers* segment_headers;
446   segment_headers = new Output_segment_headers(size, big_endian,
447                                                this->segment_list_);
448   load_seg->add_initial_output_data(segment_headers);
449   this->special_output_list_.push_back(segment_headers);
450   if (phdr_seg != NULL)
451     phdr_seg->add_initial_output_data(segment_headers);
452
453   // Lay out the file header.
454   Output_file_header* file_header;
455   file_header = new Output_file_header(size,
456                                        big_endian,
457                                        target,
458                                        symtab,
459                                        segment_headers);
460   load_seg->add_initial_output_data(file_header);
461   this->special_output_list_.push_back(file_header);
462
463   // We set the output section indexes in set_segment_offsets and
464   // set_section_offsets.
465   unsigned int shndx = 1;
466
467   // Set the file offsets of all the segments, and all the sections
468   // they contain.
469   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
470
471   // Create the symbol table sections.
472   this->create_symtab_sections(size, input_objects, symtab, &off);
473
474   // Create the .shstrtab section.
475   Output_section* shstrtab_section = this->create_shstrtab();
476
477   // Set the file offsets of all the sections not associated with
478   // segments.
479   off = this->set_section_offsets(off, &shndx);
480
481   // Create the section table header.
482   Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off);
483
484   file_header->set_section_info(oshdrs, shstrtab_section);
485
486   // Now we know exactly where everything goes in the output file.
487   Output_data::layout_complete();
488
489   return off;
490 }
491
492 // Return whether SEG1 should be before SEG2 in the output file.  This
493 // is based entirely on the segment type and flags.  When this is
494 // called the segment addresses has normally not yet been set.
495
496 bool
497 Layout::segment_precedes(const Output_segment* seg1,
498                          const Output_segment* seg2)
499 {
500   elfcpp::Elf_Word type1 = seg1->type();
501   elfcpp::Elf_Word type2 = seg2->type();
502
503   // The single PT_PHDR segment is required to precede any loadable
504   // segment.  We simply make it always first.
505   if (type1 == elfcpp::PT_PHDR)
506     {
507       gold_assert(type2 != elfcpp::PT_PHDR);
508       return true;
509     }
510   if (type2 == elfcpp::PT_PHDR)
511     return false;
512
513   // The single PT_INTERP segment is required to precede any loadable
514   // segment.  We simply make it always second.
515   if (type1 == elfcpp::PT_INTERP)
516     {
517       gold_assert(type2 != elfcpp::PT_INTERP);
518       return true;
519     }
520   if (type2 == elfcpp::PT_INTERP)
521     return false;
522
523   // We then put PT_LOAD segments before any other segments.
524   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
525     return true;
526   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
527     return false;
528
529   // We put the PT_TLS segment last, because that is where the dynamic
530   // linker expects to find it (this is just for efficiency; other
531   // positions would also work correctly).
532   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
533     return false;
534   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
535     return true;
536
537   const elfcpp::Elf_Word flags1 = seg1->flags();
538   const elfcpp::Elf_Word flags2 = seg2->flags();
539
540   // The order of non-PT_LOAD segments is unimportant.  We simply sort
541   // by the numeric segment type and flags values.  There should not
542   // be more than one segment with the same type and flags.
543   if (type1 != elfcpp::PT_LOAD)
544     {
545       if (type1 != type2)
546         return type1 < type2;
547       gold_assert(flags1 != flags2);
548       return flags1 < flags2;
549     }
550
551   // We sort PT_LOAD segments based on the flags.  Readonly segments
552   // come before writable segments.  Then executable segments come
553   // before non-executable segments.  Then the unlikely case of a
554   // non-readable segment comes before the normal case of a readable
555   // segment.  If there are multiple segments with the same type and
556   // flags, we require that the address be set, and we sort by
557   // virtual address and then physical address.
558   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
559     return (flags1 & elfcpp::PF_W) == 0;
560   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
561     return (flags1 & elfcpp::PF_X) != 0;
562   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
563     return (flags1 & elfcpp::PF_R) == 0;
564
565   uint64_t vaddr1 = seg1->vaddr();
566   uint64_t vaddr2 = seg2->vaddr();
567   if (vaddr1 != vaddr2)
568     return vaddr1 < vaddr2;
569
570   uint64_t paddr1 = seg1->paddr();
571   uint64_t paddr2 = seg2->paddr();
572   gold_assert(paddr1 != paddr2);
573   return paddr1 < paddr2;
574 }
575
576 // Set the file offsets of all the segments, and all the sections they
577 // contain.  They have all been created.  LOAD_SEG must be be laid out
578 // first.  Return the offset of the data to follow.
579
580 off_t
581 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
582                             unsigned int *pshndx)
583 {
584   // Sort them into the final order.
585   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
586             Layout::Compare_segments());
587
588   // Find the PT_LOAD segments, and set their addresses and offsets
589   // and their section's addresses and offsets.
590   uint64_t addr = target->text_segment_address();
591   off_t off = 0;
592   bool was_readonly = false;
593   for (Segment_list::iterator p = this->segment_list_.begin();
594        p != this->segment_list_.end();
595        ++p)
596     {
597       if ((*p)->type() == elfcpp::PT_LOAD)
598         {
599           if (load_seg != NULL && load_seg != *p)
600             gold_unreachable();
601           load_seg = NULL;
602
603           // If the last segment was readonly, and this one is not,
604           // then skip the address forward one page, maintaining the
605           // same position within the page.  This lets us store both
606           // segments overlapping on a single page in the file, but
607           // the loader will put them on different pages in memory.
608
609           uint64_t orig_addr = addr;
610           uint64_t orig_off = off;
611
612           uint64_t aligned_addr = addr;
613           uint64_t abi_pagesize = target->abi_pagesize();
614
615           // FIXME: This should depend on the -n and -N options.
616           (*p)->set_minimum_addralign(target->common_pagesize());
617
618           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
619             {
620               uint64_t align = (*p)->addralign();
621
622               addr = align_address(addr, align);
623               aligned_addr = addr;
624               if ((addr & (abi_pagesize - 1)) != 0)
625                 addr = addr + abi_pagesize;
626             }
627
628           unsigned int shndx_hold = *pshndx;
629           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
630           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
631
632           // Now that we know the size of this segment, we may be able
633           // to save a page in memory, at the cost of wasting some
634           // file space, by instead aligning to the start of a new
635           // page.  Here we use the real machine page size rather than
636           // the ABI mandated page size.
637
638           if (aligned_addr != addr)
639             {
640               uint64_t common_pagesize = target->common_pagesize();
641               uint64_t first_off = (common_pagesize
642                                     - (aligned_addr
643                                        & (common_pagesize - 1)));
644               uint64_t last_off = new_addr & (common_pagesize - 1);
645               if (first_off > 0
646                   && last_off > 0
647                   && ((aligned_addr & ~ (common_pagesize - 1))
648                       != (new_addr & ~ (common_pagesize - 1)))
649                   && first_off + last_off <= common_pagesize)
650                 {
651                   *pshndx = shndx_hold;
652                   addr = align_address(aligned_addr, common_pagesize);
653                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
654                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
655                 }
656             }
657
658           addr = new_addr;
659
660           if (((*p)->flags() & elfcpp::PF_W) == 0)
661             was_readonly = true;
662         }
663     }
664
665   // Handle the non-PT_LOAD segments, setting their offsets from their
666   // section's offsets.
667   for (Segment_list::iterator p = this->segment_list_.begin();
668        p != this->segment_list_.end();
669        ++p)
670     {
671       if ((*p)->type() != elfcpp::PT_LOAD)
672         (*p)->set_offset();
673     }
674
675   return off;
676 }
677
678 // Set the file offset of all the sections not associated with a
679 // segment.
680
681 off_t
682 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
683 {
684   for (Section_list::iterator p = this->unattached_section_list_.begin();
685        p != this->unattached_section_list_.end();
686        ++p)
687     {
688       (*p)->set_out_shndx(*pshndx);
689       ++*pshndx;
690       if ((*p)->offset() != -1)
691         continue;
692       off = align_address(off, (*p)->addralign());
693       (*p)->set_address(0, off);
694       off += (*p)->data_size();
695     }
696   return off;
697 }
698
699 // Create the symbol table sections.  Here we also set the final
700 // values of the symbols.  At this point all the loadable sections are
701 // fully laid out.
702
703 void
704 Layout::create_symtab_sections(int size, const Input_objects* input_objects,
705                                Symbol_table* symtab,
706                                off_t* poff)
707 {
708   int symsize;
709   unsigned int align;
710   if (size == 32)
711     {
712       symsize = elfcpp::Elf_sizes<32>::sym_size;
713       align = 4;
714     }
715   else if (size == 64)
716     {
717       symsize = elfcpp::Elf_sizes<64>::sym_size;
718       align = 8;
719     }
720   else
721     gold_unreachable();
722
723   off_t off = *poff;
724   off = align_address(off, align);
725   off_t startoff = off;
726
727   // Save space for the dummy symbol at the start of the section.  We
728   // never bother to write this out--it will just be left as zero.
729   off += symsize;
730   unsigned int local_symbol_index = 1;
731
732   // Add STT_SECTION symbols for each Output section which needs one.
733   for (Section_list::iterator p = this->section_list_.begin();
734        p != this->section_list_.end();
735        ++p)
736     {
737       if (!(*p)->needs_symtab_index())
738         (*p)->set_symtab_index(-1U);
739       else
740         {
741           (*p)->set_symtab_index(local_symbol_index);
742           ++local_symbol_index;
743           off += symsize;
744         }
745     }
746
747   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
748        p != input_objects->relobj_end();
749        ++p)
750     {
751       Task_lock_obj<Object> tlo(**p);
752       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
753                                                         off,
754                                                         &this->sympool_);
755       off += (index - local_symbol_index) * symsize;
756       local_symbol_index = index;
757     }
758
759   unsigned int local_symcount = local_symbol_index;
760   gold_assert(local_symcount * symsize == off - startoff);
761
762   off_t dynoff;
763   size_t dyn_global_index;
764   size_t dyncount;
765   if (this->dynsym_section_ == NULL)
766     {
767       dynoff = 0;
768       dyn_global_index = 0;
769       dyncount = 0;
770     }
771   else
772     {
773       dyn_global_index = this->dynsym_section_->info();
774       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
775       dynoff = this->dynsym_section_->offset() + locsize;
776       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
777       gold_assert(dyncount * symsize
778                   == this->dynsym_section_->data_size() - locsize);
779     }
780
781   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
782                          dyncount, &this->sympool_);
783
784   this->sympool_.set_string_offsets();
785
786   const char* symtab_name = this->namepool_.add(".symtab", NULL);
787   Output_section* osymtab = this->make_output_section(symtab_name,
788                                                       elfcpp::SHT_SYMTAB,
789                                                       0);
790   this->symtab_section_ = osymtab;
791
792   Output_section_data* pos = new Output_data_space(off - startoff,
793                                                    align);
794   osymtab->add_output_section_data(pos);
795
796   const char* strtab_name = this->namepool_.add(".strtab", NULL);
797   Output_section* ostrtab = this->make_output_section(strtab_name,
798                                                       elfcpp::SHT_STRTAB,
799                                                       0);
800
801   Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
802   ostrtab->add_output_section_data(pstr);
803
804   osymtab->set_address(0, startoff);
805   osymtab->set_link_section(ostrtab);
806   osymtab->set_info(local_symcount);
807   osymtab->set_entsize(symsize);
808
809   *poff = off;
810 }
811
812 // Create the .shstrtab section, which holds the names of the
813 // sections.  At the time this is called, we have created all the
814 // output sections except .shstrtab itself.
815
816 Output_section*
817 Layout::create_shstrtab()
818 {
819   // FIXME: We don't need to create a .shstrtab section if we are
820   // stripping everything.
821
822   const char* name = this->namepool_.add(".shstrtab", NULL);
823
824   this->namepool_.set_string_offsets();
825
826   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
827
828   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
829   os->add_output_section_data(posd);
830
831   return os;
832 }
833
834 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
835 // offset.
836
837 Output_section_headers*
838 Layout::create_shdrs(int size, bool big_endian, off_t* poff)
839 {
840   Output_section_headers* oshdrs;
841   oshdrs = new Output_section_headers(size, big_endian, this,
842                                       &this->segment_list_,
843                                       &this->unattached_section_list_,
844                                       &this->namepool_);
845   off_t off = align_address(*poff, oshdrs->addralign());
846   oshdrs->set_address(0, off);
847   off += oshdrs->data_size();
848   *poff = off;
849   this->special_output_list_.push_back(oshdrs);
850   return oshdrs;
851 }
852
853 // Create the dynamic symbol table.
854
855 void
856 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
857                               Output_section **pdynstr,
858                               unsigned int* plocal_dynamic_count,
859                               std::vector<Symbol*>* pdynamic_symbols,
860                               Versions* pversions)
861 {
862   // Count all the symbols in the dynamic symbol table, and set the
863   // dynamic symbol indexes.
864
865   // Skip symbol 0, which is always all zeroes.
866   unsigned int index = 1;
867
868   // Add STT_SECTION symbols for each Output section which needs one.
869   for (Section_list::iterator p = this->section_list_.begin();
870        p != this->section_list_.end();
871        ++p)
872     {
873       if (!(*p)->needs_dynsym_index())
874         (*p)->set_dynsym_index(-1U);
875       else
876         {
877           (*p)->set_dynsym_index(index);
878           ++index;
879         }
880     }
881
882   // FIXME: Some targets apparently require local symbols in the
883   // dynamic symbol table.  Here is where we will have to count them,
884   // and set the dynamic symbol indexes, and add the names to
885   // this->dynpool_.
886
887   unsigned int local_symcount = index;
888   *plocal_dynamic_count = local_symcount;
889
890   // FIXME: We have to tell set_dynsym_indexes whether the
891   // -E/--export-dynamic option was used.
892   index = symtab->set_dynsym_indexes(&this->options_, target, index,
893                                      pdynamic_symbols, &this->dynpool_,
894                                      pversions);
895
896   int symsize;
897   unsigned int align;
898   const int size = target->get_size();
899   if (size == 32)
900     {
901       symsize = elfcpp::Elf_sizes<32>::sym_size;
902       align = 4;
903     }
904   else if (size == 64)
905     {
906       symsize = elfcpp::Elf_sizes<64>::sym_size;
907       align = 8;
908     }
909   else
910     gold_unreachable();
911
912   // Create the dynamic symbol table section.
913
914   const char* dynsym_name = this->namepool_.add(".dynsym", NULL);
915   Output_section* dynsym = this->make_output_section(dynsym_name,
916                                                      elfcpp::SHT_DYNSYM,
917                                                      elfcpp::SHF_ALLOC);
918
919   Output_section_data* odata = new Output_data_space(index * symsize,
920                                                      align);
921   dynsym->add_output_section_data(odata);
922
923   dynsym->set_info(local_symcount);
924   dynsym->set_entsize(symsize);
925   dynsym->set_addralign(align);
926
927   this->dynsym_section_ = dynsym;
928
929   Output_data_dynamic* const odyn = this->dynamic_data_;
930   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
931   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
932
933   // Create the dynamic string table section.
934
935   const char* dynstr_name = this->namepool_.add(".dynstr", NULL);
936   Output_section* dynstr = this->make_output_section(dynstr_name,
937                                                      elfcpp::SHT_STRTAB,
938                                                      elfcpp::SHF_ALLOC);
939
940   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
941   dynstr->add_output_section_data(strdata);
942
943   dynsym->set_link_section(dynstr);
944   this->dynamic_section_->set_link_section(dynstr);
945
946   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
947   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
948
949   *pdynstr = dynstr;
950
951   // Create the hash tables.
952
953   // FIXME: We need an option to create a GNU hash table.
954
955   unsigned char* phash;
956   unsigned int hashlen;
957   Dynobj::create_elf_hash_table(target, *pdynamic_symbols, local_symcount,
958                                 &phash, &hashlen);
959
960   const char* hash_name = this->namepool_.add(".hash", NULL);
961   Output_section* hashsec = this->make_output_section(hash_name,
962                                                       elfcpp::SHT_HASH,
963                                                       elfcpp::SHF_ALLOC);
964
965   Output_section_data* hashdata = new Output_data_const_buffer(phash,
966                                                                hashlen,
967                                                                align);
968   hashsec->add_output_section_data(hashdata);
969
970   hashsec->set_link_section(dynsym);
971   hashsec->set_entsize(4);
972
973   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
974 }
975
976 // Create the version sections.
977
978 void
979 Layout::create_version_sections(const Target* target, const Versions* versions,
980                                 unsigned int local_symcount,
981                                 const std::vector<Symbol*>& dynamic_symbols,
982                                 const Output_section* dynstr)
983 {
984   if (!versions->any_defs() && !versions->any_needs())
985     return;
986
987   if (target->get_size() == 32)
988     {
989       if (target->is_big_endian())
990         {
991 #ifdef HAVE_TARGET_32_BIG
992           this->sized_create_version_sections
993               SELECT_SIZE_ENDIAN_NAME(32, true)(
994                   versions, local_symcount, dynamic_symbols, dynstr
995                   SELECT_SIZE_ENDIAN(32, true));
996 #else
997           gold_unreachable();
998 #endif
999         }
1000       else
1001         {
1002 #ifdef HAVE_TARGET_32_LITTLE
1003           this->sized_create_version_sections
1004               SELECT_SIZE_ENDIAN_NAME(32, false)(
1005                   versions, local_symcount, dynamic_symbols, dynstr
1006                   SELECT_SIZE_ENDIAN(32, false));
1007 #else
1008           gold_unreachable();
1009 #endif
1010         }
1011     }
1012   else if (target->get_size() == 64)
1013     {
1014       if (target->is_big_endian())
1015         {
1016 #ifdef HAVE_TARGET_64_BIG
1017           this->sized_create_version_sections
1018               SELECT_SIZE_ENDIAN_NAME(64, true)(
1019                   versions, local_symcount, dynamic_symbols, dynstr
1020                   SELECT_SIZE_ENDIAN(64, true));
1021 #else
1022           gold_unreachable();
1023 #endif
1024         }
1025       else
1026         {
1027 #ifdef HAVE_TARGET_64_LITTLE
1028           this->sized_create_version_sections
1029               SELECT_SIZE_ENDIAN_NAME(64, false)(
1030                   versions, local_symcount, dynamic_symbols, dynstr
1031                   SELECT_SIZE_ENDIAN(64, false));
1032 #else
1033           gold_unreachable();
1034 #endif
1035         }
1036     }
1037   else
1038     gold_unreachable();
1039 }
1040
1041 // Create the version sections, sized version.
1042
1043 template<int size, bool big_endian>
1044 void
1045 Layout::sized_create_version_sections(
1046     const Versions* versions,
1047     unsigned int local_symcount,
1048     const std::vector<Symbol*>& dynamic_symbols,
1049     const Output_section* dynstr
1050     ACCEPT_SIZE_ENDIAN)
1051 {
1052   const char* vname = this->namepool_.add(".gnu.version", NULL);
1053   Output_section* vsec = this->make_output_section(vname,
1054                                                    elfcpp::SHT_GNU_versym,
1055                                                    elfcpp::SHF_ALLOC);
1056
1057   unsigned char* vbuf;
1058   unsigned int vsize;
1059   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1060       &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1061       SELECT_SIZE_ENDIAN(size, big_endian));
1062
1063   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1064
1065   vsec->add_output_section_data(vdata);
1066   vsec->set_entsize(2);
1067   vsec->set_link_section(this->dynsym_section_);
1068
1069   Output_data_dynamic* const odyn = this->dynamic_data_;
1070   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1071
1072   if (versions->any_defs())
1073     {
1074       const char* vdname = this->namepool_.add(".gnu.version_d", NULL);
1075       Output_section *vdsec;
1076       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1077                                         elfcpp::SHF_ALLOC);
1078
1079       unsigned char* vdbuf;
1080       unsigned int vdsize;
1081       unsigned int vdentries;
1082       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1083           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1084           SELECT_SIZE_ENDIAN(size, big_endian));
1085
1086       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1087                                                                  vdsize,
1088                                                                  4);
1089
1090       vdsec->add_output_section_data(vddata);
1091       vdsec->set_link_section(dynstr);
1092       vdsec->set_info(vdentries);
1093
1094       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1095       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1096     }
1097
1098   if (versions->any_needs())
1099     {
1100       const char* vnname = this->namepool_.add(".gnu.version_r", NULL);
1101       Output_section* vnsec;
1102       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1103                                         elfcpp::SHF_ALLOC);
1104
1105       unsigned char* vnbuf;
1106       unsigned int vnsize;
1107       unsigned int vnentries;
1108       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1109         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1110          SELECT_SIZE_ENDIAN(size, big_endian));
1111
1112       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1113                                                                  vnsize,
1114                                                                  4);
1115
1116       vnsec->add_output_section_data(vndata);
1117       vnsec->set_link_section(dynstr);
1118       vnsec->set_info(vnentries);
1119
1120       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1121       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1122     }
1123 }
1124
1125 // Create the .interp section and PT_INTERP segment.
1126
1127 void
1128 Layout::create_interp(const Target* target)
1129 {
1130   const char* interp = this->options_.dynamic_linker();
1131   if (interp == NULL)
1132     {
1133       interp = target->dynamic_linker();
1134       gold_assert(interp != NULL);
1135     }
1136
1137   size_t len = strlen(interp) + 1;
1138
1139   Output_section_data* odata = new Output_data_const(interp, len, 1);
1140
1141   const char* interp_name = this->namepool_.add(".interp", NULL);
1142   Output_section* osec = this->make_output_section(interp_name,
1143                                                    elfcpp::SHT_PROGBITS,
1144                                                    elfcpp::SHF_ALLOC);
1145   osec->add_output_section_data(odata);
1146
1147   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1148   this->segment_list_.push_back(oseg);
1149   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1150 }
1151
1152 // Finish the .dynamic section and PT_DYNAMIC segment.
1153
1154 void
1155 Layout::finish_dynamic_section(const Input_objects* input_objects,
1156                                const Symbol_table* symtab)
1157 {
1158   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1159                                             elfcpp::PF_R | elfcpp::PF_W);
1160   this->segment_list_.push_back(oseg);
1161   oseg->add_initial_output_section(this->dynamic_section_,
1162                                    elfcpp::PF_R | elfcpp::PF_W);
1163
1164   Output_data_dynamic* const odyn = this->dynamic_data_;
1165
1166   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1167        p != input_objects->dynobj_end();
1168        ++p)
1169     {
1170       // FIXME: Handle --as-needed.
1171       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1172     }
1173
1174   // FIXME: Support --init and --fini.
1175   Symbol* sym = symtab->lookup("_init");
1176   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1177     odyn->add_symbol(elfcpp::DT_INIT, sym);
1178
1179   sym = symtab->lookup("_fini");
1180   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1181     odyn->add_symbol(elfcpp::DT_FINI, sym);
1182
1183   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1184
1185   // Add a DT_RPATH entry if needed.
1186   const General_options::Dir_list& rpath(this->options_.rpath());
1187   if (!rpath.empty())
1188     {
1189       std::string rpath_val;
1190       for (General_options::Dir_list::const_iterator p = rpath.begin();
1191            p != rpath.end();
1192            ++p)
1193         {
1194           if (rpath_val.empty())
1195             rpath_val = *p;
1196           else
1197             {
1198               // Eliminate duplicates.
1199               General_options::Dir_list::const_iterator q;
1200               for (q = rpath.begin(); q != p; ++q)
1201                 if (strcmp(*q, *p) == 0)
1202                   break;
1203               if (q == p)
1204                 {
1205                   rpath_val += ':';
1206                   rpath_val += *p;
1207                 }
1208             }
1209         }
1210
1211       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1212     }
1213 }
1214
1215 // The mapping of .gnu.linkonce section names to real section names.
1216
1217 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1218 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1219 {
1220   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1221   MAPPING_INIT("t", ".text"),
1222   MAPPING_INIT("r", ".rodata"),
1223   MAPPING_INIT("d", ".data"),
1224   MAPPING_INIT("b", ".bss"),
1225   MAPPING_INIT("s", ".sdata"),
1226   MAPPING_INIT("sb", ".sbss"),
1227   MAPPING_INIT("s2", ".sdata2"),
1228   MAPPING_INIT("sb2", ".sbss2"),
1229   MAPPING_INIT("wi", ".debug_info"),
1230   MAPPING_INIT("td", ".tdata"),
1231   MAPPING_INIT("tb", ".tbss"),
1232   MAPPING_INIT("lr", ".lrodata"),
1233   MAPPING_INIT("l", ".ldata"),
1234   MAPPING_INIT("lb", ".lbss"),
1235 };
1236 #undef MAPPING_INIT
1237
1238 const int Layout::linkonce_mapping_count =
1239   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1240
1241 // Return the name of the output section to use for a .gnu.linkonce
1242 // section.  This is based on the default ELF linker script of the old
1243 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1244 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1245 // initialized to the length of NAME.
1246
1247 const char*
1248 Layout::linkonce_output_name(const char* name, size_t *plen)
1249 {
1250   const char* s = name + sizeof(".gnu.linkonce") - 1;
1251   if (*s != '.')
1252     return name;
1253   ++s;
1254   const Linkonce_mapping* plm = linkonce_mapping;
1255   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1256     {
1257       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1258         {
1259           *plen = plm->tolen;
1260           return plm->to;
1261         }
1262     }
1263   return name;
1264 }
1265
1266 // Choose the output section name to use given an input section name.
1267 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1268 // length of NAME.
1269
1270 const char*
1271 Layout::output_section_name(const char* name, size_t* plen)
1272 {
1273   if (Layout::is_linkonce(name))
1274     {
1275       // .gnu.linkonce sections are laid out as though they were named
1276       // for the sections are placed into.
1277       return Layout::linkonce_output_name(name, plen);
1278     }
1279
1280   // If the section name has no '.', or only an initial '.', we use
1281   // the name unchanged (i.e., ".text" is unchanged).
1282
1283   // Otherwise, if the section name does not include ".rel", we drop
1284   // the last '.'  and everything that follows (i.e., ".text.XXX"
1285   // becomes ".text").
1286
1287   // Otherwise, if the section name has zero or one '.' after the
1288   // ".rel", we use the name unchanged (i.e., ".rel.text" is
1289   // unchanged).
1290
1291   // Otherwise, we drop the last '.' and everything that follows
1292   // (i.e., ".rel.text.XXX" becomes ".rel.text").
1293
1294   const char* s = name;
1295   if (*s == '.')
1296     ++s;
1297   const char* sdot = strchr(s, '.');
1298   if (sdot == NULL)
1299     return name;
1300
1301   const char* srel = strstr(s, ".rel");
1302   if (srel == NULL)
1303     {
1304       *plen = sdot - name;
1305       return name;
1306     }
1307
1308   sdot = strchr(srel + 1, '.');
1309   if (sdot == NULL)
1310     return name;
1311   sdot = strchr(sdot + 1, '.');
1312   if (sdot == NULL)
1313     return name;
1314
1315   *plen = sdot - name;
1316   return name;
1317 }
1318
1319 // Record the signature of a comdat section, and return whether to
1320 // include it in the link.  If GROUP is true, this is a regular
1321 // section group.  If GROUP is false, this is a group signature
1322 // derived from the name of a linkonce section.  We want linkonce
1323 // signatures and group signatures to block each other, but we don't
1324 // want a linkonce signature to block another linkonce signature.
1325
1326 bool
1327 Layout::add_comdat(const char* signature, bool group)
1328 {
1329   std::string sig(signature);
1330   std::pair<Signatures::iterator, bool> ins(
1331     this->signatures_.insert(std::make_pair(sig, group)));
1332
1333   if (ins.second)
1334     {
1335       // This is the first time we've seen this signature.
1336       return true;
1337     }
1338
1339   if (ins.first->second)
1340     {
1341       // We've already seen a real section group with this signature.
1342       return false;
1343     }
1344   else if (group)
1345     {
1346       // This is a real section group, and we've already seen a
1347       // linkonce section with tihs signature.  Record that we've seen
1348       // a section group, and don't include this section group.
1349       ins.first->second = true;
1350       return false;
1351     }
1352   else
1353     {
1354       // We've already seen a linkonce section and this is a linkonce
1355       // section.  These don't block each other--this may be the same
1356       // symbol name with different section types.
1357       return true;
1358     }
1359 }
1360
1361 // Write out data not associated with a section or the symbol table.
1362
1363 void
1364 Layout::write_data(const Symbol_table* symtab, const Target* target,
1365                    Output_file* of) const
1366 {
1367   const Output_section* symtab_section = this->symtab_section_;
1368   for (Section_list::const_iterator p = this->section_list_.begin();
1369        p != this->section_list_.end();
1370        ++p)
1371     {
1372       if ((*p)->needs_symtab_index())
1373         {
1374           gold_assert(symtab_section != NULL);
1375           unsigned int index = (*p)->symtab_index();
1376           gold_assert(index > 0 && index != -1U);
1377           off_t off = (symtab_section->offset()
1378                        + index * symtab_section->entsize());
1379           symtab->write_section_symbol(target, *p, of, off);
1380         }
1381     }
1382
1383   const Output_section* dynsym_section = this->dynsym_section_;
1384   for (Section_list::const_iterator p = this->section_list_.begin();
1385        p != this->section_list_.end();
1386        ++p)
1387     {
1388       if ((*p)->needs_dynsym_index())
1389         {
1390           gold_assert(dynsym_section != NULL);
1391           unsigned int index = (*p)->dynsym_index();
1392           gold_assert(index > 0 && index != -1U);
1393           off_t off = (dynsym_section->offset()
1394                        + index * dynsym_section->entsize());
1395           symtab->write_section_symbol(target, *p, of, off);
1396         }
1397     }
1398
1399   // Write out the Output_sections.  Most won't have anything to
1400   // write, since most of the data will come from input sections which
1401   // are handled elsewhere.  But some Output_sections do have
1402   // Output_data.
1403   for (Section_list::const_iterator p = this->section_list_.begin();
1404        p != this->section_list_.end();
1405        ++p)
1406     (*p)->write(of);
1407
1408   // Write out the Output_data which are not in an Output_section.
1409   for (Data_list::const_iterator p = this->special_output_list_.begin();
1410        p != this->special_output_list_.end();
1411        ++p)
1412     (*p)->write(of);
1413 }
1414
1415 // Write_data_task methods.
1416
1417 // We can always run this task.
1418
1419 Task::Is_runnable_type
1420 Write_data_task::is_runnable(Workqueue*)
1421 {
1422   return IS_RUNNABLE;
1423 }
1424
1425 // We need to unlock FINAL_BLOCKER when finished.
1426
1427 Task_locker*
1428 Write_data_task::locks(Workqueue* workqueue)
1429 {
1430   return new Task_locker_block(*this->final_blocker_, workqueue);
1431 }
1432
1433 // Run the task--write out the data.
1434
1435 void
1436 Write_data_task::run(Workqueue*)
1437 {
1438   this->layout_->write_data(this->symtab_, this->target_, this->of_);
1439 }
1440
1441 // Write_symbols_task methods.
1442
1443 // We can always run this task.
1444
1445 Task::Is_runnable_type
1446 Write_symbols_task::is_runnable(Workqueue*)
1447 {
1448   return IS_RUNNABLE;
1449 }
1450
1451 // We need to unlock FINAL_BLOCKER when finished.
1452
1453 Task_locker*
1454 Write_symbols_task::locks(Workqueue* workqueue)
1455 {
1456   return new Task_locker_block(*this->final_blocker_, workqueue);
1457 }
1458
1459 // Run the task--write out the symbols.
1460
1461 void
1462 Write_symbols_task::run(Workqueue*)
1463 {
1464   this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1465                                this->of_);
1466 }
1467
1468 // Close_task_runner methods.
1469
1470 // Run the task--close the file.
1471
1472 void
1473 Close_task_runner::run(Workqueue*)
1474 {
1475   this->of_->close();
1476 }
1477
1478 // Instantiate the templates we need.  We could use the configure
1479 // script to restrict this to only the ones for implemented targets.
1480
1481 #ifdef HAVE_TARGET_32_LITTLE
1482 template
1483 Output_section*
1484 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1485                           const elfcpp::Shdr<32, false>& shdr, off_t*);
1486 #endif
1487
1488 #ifdef HAVE_TARGET_32_BIG
1489 template
1490 Output_section*
1491 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1492                          const elfcpp::Shdr<32, true>& shdr, off_t*);
1493 #endif
1494
1495 #ifdef HAVE_TARGET_64_LITTLE
1496 template
1497 Output_section*
1498 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1499                           const elfcpp::Shdr<64, false>& shdr, off_t*);
1500 #endif
1501
1502 #ifdef HAVE_TARGET_64_BIG
1503 template
1504 Output_section*
1505 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1506                          const elfcpp::Shdr<64, true>& shdr, off_t*);
1507 #endif
1508
1509
1510 } // End namespace gold.