OSDN Git Service

Merge branch 'master' of git://github.com/monaka/binutils
[pf3gnuchains/pf3gnuchains3x.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
52
53 namespace gold
54 {
55
56 // Layout::Relaxation_debug_check methods.
57
58 // Check that sections and special data are in reset states.
59 // We do not save states for Output_sections and special Output_data.
60 // So we check that they have not assigned any addresses or offsets.
61 // clean_up_after_relaxation simply resets their addresses and offsets.
62 void
63 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
64     const Layout::Section_list& sections,
65     const Layout::Data_list& special_outputs)
66 {
67   for(Layout::Section_list::const_iterator p = sections.begin();
68       p != sections.end();
69       ++p)
70     gold_assert((*p)->address_and_file_offset_have_reset_values());
71
72   for(Layout::Data_list::const_iterator p = special_outputs.begin();
73       p != special_outputs.end();
74       ++p)
75     gold_assert((*p)->address_and_file_offset_have_reset_values());
76 }
77   
78 // Save information of SECTIONS for checking later.
79
80 void
81 Layout::Relaxation_debug_check::read_sections(
82     const Layout::Section_list& sections)
83 {
84   for(Layout::Section_list::const_iterator p = sections.begin();
85       p != sections.end();
86       ++p)
87     {
88       Output_section* os = *p;
89       Section_info info;
90       info.output_section = os;
91       info.address = os->is_address_valid() ? os->address() : 0;
92       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
93       info.offset = os->is_offset_valid()? os->offset() : -1 ;
94       this->section_infos_.push_back(info);
95     }
96 }
97
98 // Verify SECTIONS using previously recorded information.
99
100 void
101 Layout::Relaxation_debug_check::verify_sections(
102     const Layout::Section_list& sections)
103 {
104   size_t i = 0;
105   for(Layout::Section_list::const_iterator p = sections.begin();
106       p != sections.end();
107       ++p, ++i)
108     {
109       Output_section* os = *p;
110       uint64_t address = os->is_address_valid() ? os->address() : 0;
111       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
112       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
113
114       if (i >= this->section_infos_.size())
115         {
116           gold_fatal("Section_info of %s missing.\n", os->name());
117         }
118       const Section_info& info = this->section_infos_[i];
119       if (os != info.output_section)
120         gold_fatal("Section order changed.  Expecting %s but see %s\n",
121                    info.output_section->name(), os->name());
122       if (address != info.address
123           || data_size != info.data_size
124           || offset != info.offset)
125         gold_fatal("Section %s changed.\n", os->name());
126     }
127 }
128
129 // Layout_task_runner methods.
130
131 // Lay out the sections.  This is called after all the input objects
132 // have been read.
133
134 void
135 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
136 {
137   off_t file_size = this->layout_->finalize(this->input_objects_,
138                                             this->symtab_,
139                                             this->target_,
140                                             task);
141
142   // Now we know the final size of the output file and we know where
143   // each piece of information goes.
144
145   if (this->mapfile_ != NULL)
146     {
147       this->mapfile_->print_discarded_sections(this->input_objects_);
148       this->layout_->print_to_mapfile(this->mapfile_);
149     }
150
151   Output_file* of = new Output_file(parameters->options().output_file_name());
152   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
153     of->set_is_temporary();
154   of->open(file_size);
155
156   // Queue up the final set of tasks.
157   gold::queue_final_tasks(this->options_, this->input_objects_,
158                           this->symtab_, this->layout_, workqueue, of);
159 }
160
161 // Layout methods.
162
163 Layout::Layout(int number_of_input_files, Script_options* script_options)
164   : number_of_input_files_(number_of_input_files),
165     script_options_(script_options),
166     namepool_(),
167     sympool_(),
168     dynpool_(),
169     signatures_(),
170     section_name_map_(),
171     segment_list_(),
172     section_list_(),
173     unattached_section_list_(),
174     special_output_list_(),
175     section_headers_(NULL),
176     tls_segment_(NULL),
177     relro_segment_(NULL),
178     increase_relro_(0),
179     symtab_section_(NULL),
180     symtab_xindex_(NULL),
181     dynsym_section_(NULL),
182     dynsym_xindex_(NULL),
183     dynamic_section_(NULL),
184     dynamic_symbol_(NULL),
185     dynamic_data_(NULL),
186     eh_frame_section_(NULL),
187     eh_frame_data_(NULL),
188     added_eh_frame_data_(false),
189     eh_frame_hdr_section_(NULL),
190     build_id_note_(NULL),
191     debug_abbrev_(NULL),
192     debug_info_(NULL),
193     group_signatures_(),
194     output_file_size_(-1),
195     have_added_input_section_(false),
196     sections_are_attached_(false),
197     input_requires_executable_stack_(false),
198     input_with_gnu_stack_note_(false),
199     input_without_gnu_stack_note_(false),
200     has_static_tls_(false),
201     any_postprocessing_sections_(false),
202     resized_signatures_(false),
203     have_stabstr_section_(false),
204     incremental_inputs_(NULL),
205     record_output_section_data_from_script_(false),
206     script_output_section_data_list_(),
207     segment_states_(NULL),
208     relaxation_debug_check_(NULL)
209 {
210   // Make space for more than enough segments for a typical file.
211   // This is just for efficiency--it's OK if we wind up needing more.
212   this->segment_list_.reserve(12);
213
214   // We expect two unattached Output_data objects: the file header and
215   // the segment headers.
216   this->special_output_list_.reserve(2);
217
218   // Initialize structure needed for an incremental build.
219   if (parameters->options().incremental())
220     this->incremental_inputs_ = new Incremental_inputs;
221
222   // The section name pool is worth optimizing in all cases, because
223   // it is small, but there are often overlaps due to .rel sections.
224   this->namepool_.set_optimize();
225 }
226
227 // Hash a key we use to look up an output section mapping.
228
229 size_t
230 Layout::Hash_key::operator()(const Layout::Key& k) const
231 {
232  return k.first + k.second.first + k.second.second;
233 }
234
235 // Returns whether the given section is in the list of
236 // debug-sections-used-by-some-version-of-gdb.  Currently,
237 // we've checked versions of gdb up to and including 6.7.1.
238
239 static const char* gdb_sections[] =
240 { ".debug_abbrev",
241   // ".debug_aranges",   // not used by gdb as of 6.7.1
242   ".debug_frame",
243   ".debug_info",
244   ".debug_line",
245   ".debug_loc",
246   ".debug_macinfo",
247   // ".debug_pubnames",  // not used by gdb as of 6.7.1
248   ".debug_ranges",
249   ".debug_str",
250 };
251
252 static const char* lines_only_debug_sections[] =
253 { ".debug_abbrev",
254   // ".debug_aranges",   // not used by gdb as of 6.7.1
255   // ".debug_frame",
256   ".debug_info",
257   ".debug_line",
258   // ".debug_loc",
259   // ".debug_macinfo",
260   // ".debug_pubnames",  // not used by gdb as of 6.7.1
261   // ".debug_ranges",
262   ".debug_str",
263 };
264
265 static inline bool
266 is_gdb_debug_section(const char* str)
267 {
268   // We can do this faster: binary search or a hashtable.  But why bother?
269   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
270     if (strcmp(str, gdb_sections[i]) == 0)
271       return true;
272   return false;
273 }
274
275 static inline bool
276 is_lines_only_debug_section(const char* str)
277 {
278   // We can do this faster: binary search or a hashtable.  But why bother?
279   for (size_t i = 0;
280        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
281        ++i)
282     if (strcmp(str, lines_only_debug_sections[i]) == 0)
283       return true;
284   return false;
285 }
286
287 // Whether to include this section in the link.
288
289 template<int size, bool big_endian>
290 bool
291 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
292                         const elfcpp::Shdr<size, big_endian>& shdr)
293 {
294   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
295     return false;
296
297   switch (shdr.get_sh_type())
298     {
299     case elfcpp::SHT_NULL:
300     case elfcpp::SHT_SYMTAB:
301     case elfcpp::SHT_DYNSYM:
302     case elfcpp::SHT_HASH:
303     case elfcpp::SHT_DYNAMIC:
304     case elfcpp::SHT_SYMTAB_SHNDX:
305       return false;
306
307     case elfcpp::SHT_STRTAB:
308       // Discard the sections which have special meanings in the ELF
309       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
310       // checking the sh_link fields of the appropriate sections.
311       return (strcmp(name, ".dynstr") != 0
312               && strcmp(name, ".strtab") != 0
313               && strcmp(name, ".shstrtab") != 0);
314
315     case elfcpp::SHT_RELA:
316     case elfcpp::SHT_REL:
317     case elfcpp::SHT_GROUP:
318       // If we are emitting relocations these should be handled
319       // elsewhere.
320       gold_assert(!parameters->options().relocatable()
321                   && !parameters->options().emit_relocs());
322       return false;
323
324     case elfcpp::SHT_PROGBITS:
325       if (parameters->options().strip_debug()
326           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
327         {
328           if (is_debug_info_section(name))
329             return false;
330         }
331       if (parameters->options().strip_debug_non_line()
332           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
333         {
334           // Debugging sections can only be recognized by name.
335           if (is_prefix_of(".debug", name)
336               && !is_lines_only_debug_section(name))
337             return false;
338         }
339       if (parameters->options().strip_debug_gdb()
340           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
341         {
342           // Debugging sections can only be recognized by name.
343           if (is_prefix_of(".debug", name)
344               && !is_gdb_debug_section(name))
345             return false;
346         }
347       if (parameters->options().strip_lto_sections()
348           && !parameters->options().relocatable()
349           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
350         {
351           // Ignore LTO sections containing intermediate code.
352           if (is_prefix_of(".gnu.lto_", name))
353             return false;
354         }
355       return true;
356
357     default:
358       return true;
359     }
360 }
361
362 // Return an output section named NAME, or NULL if there is none.
363
364 Output_section*
365 Layout::find_output_section(const char* name) const
366 {
367   for (Section_list::const_iterator p = this->section_list_.begin();
368        p != this->section_list_.end();
369        ++p)
370     if (strcmp((*p)->name(), name) == 0)
371       return *p;
372   return NULL;
373 }
374
375 // Return an output segment of type TYPE, with segment flags SET set
376 // and segment flags CLEAR clear.  Return NULL if there is none.
377
378 Output_segment*
379 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
380                             elfcpp::Elf_Word clear) const
381 {
382   for (Segment_list::const_iterator p = this->segment_list_.begin();
383        p != this->segment_list_.end();
384        ++p)
385     if (static_cast<elfcpp::PT>((*p)->type()) == type
386         && ((*p)->flags() & set) == set
387         && ((*p)->flags() & clear) == 0)
388       return *p;
389   return NULL;
390 }
391
392 // Return the output section to use for section NAME with type TYPE
393 // and section flags FLAGS.  NAME must be canonicalized in the string
394 // pool, and NAME_KEY is the key.  IS_INTERP is true if this is the
395 // .interp section.  IS_DYNAMIC_LINKER_SECTION is true if this section
396 // is used by the dynamic linker.  IS_RELRO is true for a relro
397 // section.  IS_LAST_RELRO is true for the last relro section.
398 // IS_FIRST_NON_RELRO is true for the first non-relro section.
399
400 Output_section*
401 Layout::get_output_section(const char* name, Stringpool::Key name_key,
402                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
403                            bool is_interp, bool is_dynamic_linker_section,
404                            bool is_relro, bool is_last_relro,
405                            bool is_first_non_relro)
406 {
407   elfcpp::Elf_Xword lookup_flags = flags;
408
409   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
410   // read-write with read-only sections.  Some other ELF linkers do
411   // not do this.  FIXME: Perhaps there should be an option
412   // controlling this.
413   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
414
415   const Key key(name_key, std::make_pair(type, lookup_flags));
416   const std::pair<Key, Output_section*> v(key, NULL);
417   std::pair<Section_name_map::iterator, bool> ins(
418     this->section_name_map_.insert(v));
419
420   if (!ins.second)
421     return ins.first->second;
422   else
423     {
424       // This is the first time we've seen this name/type/flags
425       // combination.  For compatibility with the GNU linker, we
426       // combine sections with contents and zero flags with sections
427       // with non-zero flags.  This is a workaround for cases where
428       // assembler code forgets to set section flags.  FIXME: Perhaps
429       // there should be an option to control this.
430       Output_section* os = NULL;
431
432       if (type == elfcpp::SHT_PROGBITS)
433         {
434           if (flags == 0)
435             {
436               Output_section* same_name = this->find_output_section(name);
437               if (same_name != NULL
438                   && same_name->type() == elfcpp::SHT_PROGBITS
439                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
440                 os = same_name;
441             }
442           else if ((flags & elfcpp::SHF_TLS) == 0)
443             {
444               elfcpp::Elf_Xword zero_flags = 0;
445               const Key zero_key(name_key, std::make_pair(type, zero_flags));
446               Section_name_map::iterator p =
447                   this->section_name_map_.find(zero_key);
448               if (p != this->section_name_map_.end())
449                 os = p->second;
450             }
451         }
452
453       if (os == NULL)
454         os = this->make_output_section(name, type, flags, is_interp,
455                                        is_dynamic_linker_section, is_relro,
456                                        is_last_relro, is_first_non_relro);
457       ins.first->second = os;
458       return os;
459     }
460 }
461
462 // Pick the output section to use for section NAME, in input file
463 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
464 // linker created section.  IS_INPUT_SECTION is true if we are
465 // choosing an output section for an input section found in a input
466 // file.  IS_INTERP is true if this is the .interp section.
467 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
468 // dynamic linker.  IS_RELRO is true for a relro section.
469 // IS_LAST_RELRO is true for the last relro section.
470 // IS_FIRST_NON_RELRO is true for the first non-relro section.  This
471 // will return NULL if the input section should be discarded.
472
473 Output_section*
474 Layout::choose_output_section(const Relobj* relobj, const char* name,
475                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
476                               bool is_input_section, bool is_interp,
477                               bool is_dynamic_linker_section, bool is_relro,
478                               bool is_last_relro, bool is_first_non_relro)
479 {
480   // We should not see any input sections after we have attached
481   // sections to segments.
482   gold_assert(!is_input_section || !this->sections_are_attached_);
483
484   // Some flags in the input section should not be automatically
485   // copied to the output section.
486   flags &= ~ (elfcpp::SHF_INFO_LINK
487               | elfcpp::SHF_LINK_ORDER
488               | elfcpp::SHF_GROUP
489               | elfcpp::SHF_MERGE
490               | elfcpp::SHF_STRINGS);
491
492   if (this->script_options_->saw_sections_clause())
493     {
494       // We are using a SECTIONS clause, so the output section is
495       // chosen based only on the name.
496
497       Script_sections* ss = this->script_options_->script_sections();
498       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
499       Output_section** output_section_slot;
500       name = ss->output_section_name(file_name, name, &output_section_slot);
501       if (name == NULL)
502         {
503           // The SECTIONS clause says to discard this input section.
504           return NULL;
505         }
506
507       // If this is an orphan section--one not mentioned in the linker
508       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
509       // default processing below.
510
511       if (output_section_slot != NULL)
512         {
513           if (*output_section_slot != NULL)
514             {
515               (*output_section_slot)->update_flags_for_input_section(flags);
516               return *output_section_slot;
517             }
518
519           // We don't put sections found in the linker script into
520           // SECTION_NAME_MAP_.  That keeps us from getting confused
521           // if an orphan section is mapped to a section with the same
522           // name as one in the linker script.
523
524           name = this->namepool_.add(name, false, NULL);
525
526           Output_section* os =
527             this->make_output_section(name, type, flags, is_interp,
528                                       is_dynamic_linker_section, is_relro,
529                                       is_last_relro, is_first_non_relro);
530           os->set_found_in_sections_clause();
531           *output_section_slot = os;
532           return os;
533         }
534     }
535
536   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
537
538   // Turn NAME from the name of the input section into the name of the
539   // output section.
540
541   size_t len = strlen(name);
542   if (is_input_section
543       && !this->script_options_->saw_sections_clause()
544       && !parameters->options().relocatable())
545     name = Layout::output_section_name(name, &len);
546
547   Stringpool::Key name_key;
548   name = this->namepool_.add_with_length(name, len, true, &name_key);
549
550   // Find or make the output section.  The output section is selected
551   // based on the section name, type, and flags.
552   return this->get_output_section(name, name_key, type, flags, is_interp,
553                                   is_dynamic_linker_section, is_relro,
554                                   is_last_relro, is_first_non_relro);
555 }
556
557 // Return the output section to use for input section SHNDX, with name
558 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
559 // index of a relocation section which applies to this section, or 0
560 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
561 // relocation section if there is one.  Set *OFF to the offset of this
562 // input section without the output section.  Return NULL if the
563 // section should be discarded.  Set *OFF to -1 if the section
564 // contents should not be written directly to the output file, but
565 // will instead receive special handling.
566
567 template<int size, bool big_endian>
568 Output_section*
569 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
570                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
571                unsigned int reloc_shndx, unsigned int, off_t* off)
572 {
573   *off = 0;
574
575   if (!this->include_section(object, name, shdr))
576     return NULL;
577
578   Output_section* os;
579
580   // In a relocatable link a grouped section must not be combined with
581   // any other sections.
582   if (parameters->options().relocatable()
583       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
584     {
585       name = this->namepool_.add(name, true, NULL);
586       os = this->make_output_section(name, shdr.get_sh_type(),
587                                      shdr.get_sh_flags(), false, false,
588                                      false, false, false);
589     }
590   else
591     {
592       os = this->choose_output_section(object, name, shdr.get_sh_type(),
593                                        shdr.get_sh_flags(), true, false,
594                                        false, false, false, false);
595       if (os == NULL)
596         return NULL;
597     }
598
599   // By default the GNU linker sorts input sections whose names match
600   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
601   // are sorted by name.  This is used to implement constructor
602   // priority ordering.  We are compatible.
603   if (!this->script_options_->saw_sections_clause()
604       && (is_prefix_of(".ctors.", name)
605           || is_prefix_of(".dtors.", name)
606           || is_prefix_of(".init_array.", name)
607           || is_prefix_of(".fini_array.", name)))
608     os->set_must_sort_attached_input_sections();
609
610   // FIXME: Handle SHF_LINK_ORDER somewhere.
611
612   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
613                                this->script_options_->saw_sections_clause());
614   this->have_added_input_section_ = true;
615
616   return os;
617 }
618
619 // Handle a relocation section when doing a relocatable link.
620
621 template<int size, bool big_endian>
622 Output_section*
623 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
624                      unsigned int,
625                      const elfcpp::Shdr<size, big_endian>& shdr,
626                      Output_section* data_section,
627                      Relocatable_relocs* rr)
628 {
629   gold_assert(parameters->options().relocatable()
630               || parameters->options().emit_relocs());
631
632   int sh_type = shdr.get_sh_type();
633
634   std::string name;
635   if (sh_type == elfcpp::SHT_REL)
636     name = ".rel";
637   else if (sh_type == elfcpp::SHT_RELA)
638     name = ".rela";
639   else
640     gold_unreachable();
641   name += data_section->name();
642
643   Output_section* os = this->choose_output_section(object, name.c_str(),
644                                                    sh_type,
645                                                    shdr.get_sh_flags(),
646                                                    false, false, false,
647                                                    false, false, false);
648
649   os->set_should_link_to_symtab();
650   os->set_info_section(data_section);
651
652   Output_section_data* posd;
653   if (sh_type == elfcpp::SHT_REL)
654     {
655       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
656       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
657                                            size,
658                                            big_endian>(rr);
659     }
660   else if (sh_type == elfcpp::SHT_RELA)
661     {
662       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
663       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
664                                            size,
665                                            big_endian>(rr);
666     }
667   else
668     gold_unreachable();
669
670   os->add_output_section_data(posd);
671   rr->set_output_data(posd);
672
673   return os;
674 }
675
676 // Handle a group section when doing a relocatable link.
677
678 template<int size, bool big_endian>
679 void
680 Layout::layout_group(Symbol_table* symtab,
681                      Sized_relobj<size, big_endian>* object,
682                      unsigned int,
683                      const char* group_section_name,
684                      const char* signature,
685                      const elfcpp::Shdr<size, big_endian>& shdr,
686                      elfcpp::Elf_Word flags,
687                      std::vector<unsigned int>* shndxes)
688 {
689   gold_assert(parameters->options().relocatable());
690   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
691   group_section_name = this->namepool_.add(group_section_name, true, NULL);
692   Output_section* os = this->make_output_section(group_section_name,
693                                                  elfcpp::SHT_GROUP,
694                                                  shdr.get_sh_flags(),
695                                                  false, false, false,
696                                                  false, false);
697
698   // We need to find a symbol with the signature in the symbol table.
699   // If we don't find one now, we need to look again later.
700   Symbol* sym = symtab->lookup(signature, NULL);
701   if (sym != NULL)
702     os->set_info_symndx(sym);
703   else
704     {
705       // Reserve some space to minimize reallocations.
706       if (this->group_signatures_.empty())
707         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
708
709       // We will wind up using a symbol whose name is the signature.
710       // So just put the signature in the symbol name pool to save it.
711       signature = symtab->canonicalize_name(signature);
712       this->group_signatures_.push_back(Group_signature(os, signature));
713     }
714
715   os->set_should_link_to_symtab();
716   os->set_entsize(4);
717
718   section_size_type entry_count =
719     convert_to_section_size_type(shdr.get_sh_size() / 4);
720   Output_section_data* posd =
721     new Output_data_group<size, big_endian>(object, entry_count, flags,
722                                             shndxes);
723   os->add_output_section_data(posd);
724 }
725
726 // Special GNU handling of sections name .eh_frame.  They will
727 // normally hold exception frame data as defined by the C++ ABI
728 // (http://codesourcery.com/cxx-abi/).
729
730 template<int size, bool big_endian>
731 Output_section*
732 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
733                         const unsigned char* symbols,
734                         off_t symbols_size,
735                         const unsigned char* symbol_names,
736                         off_t symbol_names_size,
737                         unsigned int shndx,
738                         const elfcpp::Shdr<size, big_endian>& shdr,
739                         unsigned int reloc_shndx, unsigned int reloc_type,
740                         off_t* off)
741 {
742   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
743   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
744
745   const char* const name = ".eh_frame";
746   Output_section* os = this->choose_output_section(object,
747                                                    name,
748                                                    elfcpp::SHT_PROGBITS,
749                                                    elfcpp::SHF_ALLOC,
750                                                    false, false, false,
751                                                    false, false, false);
752   if (os == NULL)
753     return NULL;
754
755   if (this->eh_frame_section_ == NULL)
756     {
757       this->eh_frame_section_ = os;
758       this->eh_frame_data_ = new Eh_frame();
759
760       if (parameters->options().eh_frame_hdr())
761         {
762           Output_section* hdr_os =
763             this->choose_output_section(NULL,
764                                         ".eh_frame_hdr",
765                                         elfcpp::SHT_PROGBITS,
766                                         elfcpp::SHF_ALLOC,
767                                         false, false, false,
768                                         false, false, false);
769
770           if (hdr_os != NULL)
771             {
772               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
773                                                         this->eh_frame_data_);
774               hdr_os->add_output_section_data(hdr_posd);
775
776               hdr_os->set_after_input_sections();
777
778               if (!this->script_options_->saw_phdrs_clause())
779                 {
780                   Output_segment* hdr_oseg;
781                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
782                                                        elfcpp::PF_R);
783                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R, false);
784                 }
785
786               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
787             }
788         }
789     }
790
791   gold_assert(this->eh_frame_section_ == os);
792
793   if (this->eh_frame_data_->add_ehframe_input_section(object,
794                                                       symbols,
795                                                       symbols_size,
796                                                       symbol_names,
797                                                       symbol_names_size,
798                                                       shndx,
799                                                       reloc_shndx,
800                                                       reloc_type))
801     {
802       os->update_flags_for_input_section(shdr.get_sh_flags());
803
804       // We found a .eh_frame section we are going to optimize, so now
805       // we can add the set of optimized sections to the output
806       // section.  We need to postpone adding this until we've found a
807       // section we can optimize so that the .eh_frame section in
808       // crtbegin.o winds up at the start of the output section.
809       if (!this->added_eh_frame_data_)
810         {
811           os->add_output_section_data(this->eh_frame_data_);
812           this->added_eh_frame_data_ = true;
813         }
814       *off = -1;
815     }
816   else
817     {
818       // We couldn't handle this .eh_frame section for some reason.
819       // Add it as a normal section.
820       bool saw_sections_clause = this->script_options_->saw_sections_clause();
821       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
822                                    saw_sections_clause);
823       this->have_added_input_section_ = true;
824     }
825
826   return os;
827 }
828
829 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
830 // the output section.
831
832 Output_section*
833 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
834                                 elfcpp::Elf_Xword flags,
835                                 Output_section_data* posd,
836                                 bool is_dynamic_linker_section,
837                                 bool is_relro, bool is_last_relro,
838                                 bool is_first_non_relro)
839 {
840   Output_section* os = this->choose_output_section(NULL, name, type, flags,
841                                                    false, false,
842                                                    is_dynamic_linker_section,
843                                                    is_relro, is_last_relro,
844                                                    is_first_non_relro);
845   if (os != NULL)
846     os->add_output_section_data(posd);
847   return os;
848 }
849
850 // Map section flags to segment flags.
851
852 elfcpp::Elf_Word
853 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
854 {
855   elfcpp::Elf_Word ret = elfcpp::PF_R;
856   if ((flags & elfcpp::SHF_WRITE) != 0)
857     ret |= elfcpp::PF_W;
858   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
859     ret |= elfcpp::PF_X;
860   return ret;
861 }
862
863 // Sometimes we compress sections.  This is typically done for
864 // sections that are not part of normal program execution (such as
865 // .debug_* sections), and where the readers of these sections know
866 // how to deal with compressed sections.  This routine doesn't say for
867 // certain whether we'll compress -- it depends on commandline options
868 // as well -- just whether this section is a candidate for compression.
869 // (The Output_compressed_section class decides whether to compress
870 // a given section, and picks the name of the compressed section.)
871
872 static bool
873 is_compressible_debug_section(const char* secname)
874 {
875   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
876 }
877
878 // Make a new Output_section, and attach it to segments as
879 // appropriate.  IS_INTERP is true if this is the .interp section.
880 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
881 // dynamic linker.  IS_RELRO is true if this is a relro section.
882 // IS_LAST_RELRO is true if this is the last relro section.
883 // IS_FIRST_NON_RELRO is true if this is the first non relro section.
884
885 Output_section*
886 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
887                             elfcpp::Elf_Xword flags, bool is_interp,
888                             bool is_dynamic_linker_section, bool is_relro,
889                             bool is_last_relro, bool is_first_non_relro)
890 {
891   Output_section* os;
892   if ((flags & elfcpp::SHF_ALLOC) == 0
893       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
894       && is_compressible_debug_section(name))
895     os = new Output_compressed_section(&parameters->options(), name, type,
896                                        flags);
897   else if ((flags & elfcpp::SHF_ALLOC) == 0
898            && parameters->options().strip_debug_non_line()
899            && strcmp(".debug_abbrev", name) == 0)
900     {
901       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
902           name, type, flags);
903       if (this->debug_info_)
904         this->debug_info_->set_abbreviations(this->debug_abbrev_);
905     }
906   else if ((flags & elfcpp::SHF_ALLOC) == 0
907            && parameters->options().strip_debug_non_line()
908            && strcmp(".debug_info", name) == 0)
909     {
910       os = this->debug_info_ = new Output_reduced_debug_info_section(
911           name, type, flags);
912       if (this->debug_abbrev_)
913         this->debug_info_->set_abbreviations(this->debug_abbrev_);
914     }
915  else
916     {
917       // FIXME: const_cast is ugly.
918       Target* target = const_cast<Target*>(&parameters->target());
919       os = target->make_output_section(name, type, flags);
920     }
921
922   if (is_interp)
923     os->set_is_interp();
924   if (is_dynamic_linker_section)
925     os->set_is_dynamic_linker_section();
926   if (is_relro)
927     os->set_is_relro();
928   if (is_last_relro)
929     os->set_is_last_relro();
930   if (is_first_non_relro)
931     os->set_is_first_non_relro();
932
933   parameters->target().new_output_section(os);
934
935   this->section_list_.push_back(os);
936
937   // The GNU linker by default sorts some sections by priority, so we
938   // do the same.  We need to know that this might happen before we
939   // attach any input sections.
940   if (!this->script_options_->saw_sections_clause()
941       && (strcmp(name, ".ctors") == 0
942           || strcmp(name, ".dtors") == 0
943           || strcmp(name, ".init_array") == 0
944           || strcmp(name, ".fini_array") == 0))
945     os->set_may_sort_attached_input_sections();
946
947   // With -z relro, we have to recognize the special sections by name.
948   // There is no other way.
949   if (!this->script_options_->saw_sections_clause()
950       && parameters->options().relro()
951       && type == elfcpp::SHT_PROGBITS
952       && (flags & elfcpp::SHF_ALLOC) != 0
953       && (flags & elfcpp::SHF_WRITE) != 0)
954     {
955       if (strcmp(name, ".data.rel.ro") == 0)
956         os->set_is_relro();
957       else if (strcmp(name, ".data.rel.ro.local") == 0)
958         {
959           os->set_is_relro();
960           os->set_is_relro_local();
961         }
962     }
963
964   // Check for .stab*str sections, as .stab* sections need to link to
965   // them.
966   if (type == elfcpp::SHT_STRTAB
967       && !this->have_stabstr_section_
968       && strncmp(name, ".stab", 5) == 0
969       && strcmp(name + strlen(name) - 3, "str") == 0)
970     this->have_stabstr_section_ = true;
971
972   // If we have already attached the sections to segments, then we
973   // need to attach this one now.  This happens for sections created
974   // directly by the linker.
975   if (this->sections_are_attached_)
976     this->attach_section_to_segment(os);
977
978   return os;
979 }
980
981 // Attach output sections to segments.  This is called after we have
982 // seen all the input sections.
983
984 void
985 Layout::attach_sections_to_segments()
986 {
987   for (Section_list::iterator p = this->section_list_.begin();
988        p != this->section_list_.end();
989        ++p)
990     this->attach_section_to_segment(*p);
991
992   this->sections_are_attached_ = true;
993 }
994
995 // Attach an output section to a segment.
996
997 void
998 Layout::attach_section_to_segment(Output_section* os)
999 {
1000   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1001     this->unattached_section_list_.push_back(os);
1002   else
1003     this->attach_allocated_section_to_segment(os);
1004 }
1005
1006 // Attach an allocated output section to a segment.
1007
1008 void
1009 Layout::attach_allocated_section_to_segment(Output_section* os)
1010 {
1011   elfcpp::Elf_Xword flags = os->flags();
1012   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1013
1014   if (parameters->options().relocatable())
1015     return;
1016
1017   // If we have a SECTIONS clause, we can't handle the attachment to
1018   // segments until after we've seen all the sections.
1019   if (this->script_options_->saw_sections_clause())
1020     return;
1021
1022   gold_assert(!this->script_options_->saw_phdrs_clause());
1023
1024   // This output section goes into a PT_LOAD segment.
1025
1026   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1027
1028   // Check for --section-start.
1029   uint64_t addr;
1030   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1031
1032   // In general the only thing we really care about for PT_LOAD
1033   // segments is whether or not they are writable, so that is how we
1034   // search for them.  Large data sections also go into their own
1035   // PT_LOAD segment.  People who need segments sorted on some other
1036   // basis will have to use a linker script.
1037
1038   Segment_list::const_iterator p;
1039   for (p = this->segment_list_.begin();
1040        p != this->segment_list_.end();
1041        ++p)
1042     {
1043       if ((*p)->type() != elfcpp::PT_LOAD)
1044         continue;
1045       if (!parameters->options().omagic()
1046           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1047         continue;
1048       // If -Tbss was specified, we need to separate the data and BSS
1049       // segments.
1050       if (parameters->options().user_set_Tbss())
1051         {
1052           if ((os->type() == elfcpp::SHT_NOBITS)
1053               == (*p)->has_any_data_sections())
1054             continue;
1055         }
1056       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1057         continue;
1058
1059       if (is_address_set)
1060         {
1061           if ((*p)->are_addresses_set())
1062             continue;
1063
1064           (*p)->add_initial_output_data(os);
1065           (*p)->update_flags_for_output_section(seg_flags);
1066           (*p)->set_addresses(addr, addr);
1067           break;
1068         }
1069
1070       (*p)->add_output_section(os, seg_flags, true);
1071       break;
1072     }
1073
1074   if (p == this->segment_list_.end())
1075     {
1076       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1077                                                        seg_flags);
1078       if (os->is_large_data_section())
1079         oseg->set_is_large_data_segment();
1080       oseg->add_output_section(os, seg_flags, true);
1081       if (is_address_set)
1082         oseg->set_addresses(addr, addr);
1083     }
1084
1085   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1086   // segment.
1087   if (os->type() == elfcpp::SHT_NOTE)
1088     {
1089       // See if we already have an equivalent PT_NOTE segment.
1090       for (p = this->segment_list_.begin();
1091            p != segment_list_.end();
1092            ++p)
1093         {
1094           if ((*p)->type() == elfcpp::PT_NOTE
1095               && (((*p)->flags() & elfcpp::PF_W)
1096                   == (seg_flags & elfcpp::PF_W)))
1097             {
1098               (*p)->add_output_section(os, seg_flags, false);
1099               break;
1100             }
1101         }
1102
1103       if (p == this->segment_list_.end())
1104         {
1105           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1106                                                            seg_flags);
1107           oseg->add_output_section(os, seg_flags, false);
1108         }
1109     }
1110
1111   // If we see a loadable SHF_TLS section, we create a PT_TLS
1112   // segment.  There can only be one such segment.
1113   if ((flags & elfcpp::SHF_TLS) != 0)
1114     {
1115       if (this->tls_segment_ == NULL)
1116         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1117       this->tls_segment_->add_output_section(os, seg_flags, false);
1118     }
1119
1120   // If -z relro is in effect, and we see a relro section, we create a
1121   // PT_GNU_RELRO segment.  There can only be one such segment.
1122   if (os->is_relro() && parameters->options().relro())
1123     {
1124       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1125       if (this->relro_segment_ == NULL)
1126         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1127       this->relro_segment_->add_output_section(os, seg_flags, false);
1128     }
1129 }
1130
1131 // Make an output section for a script.
1132
1133 Output_section*
1134 Layout::make_output_section_for_script(const char* name)
1135 {
1136   name = this->namepool_.add(name, false, NULL);
1137   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1138                                                  elfcpp::SHF_ALLOC, false,
1139                                                  false, false, false, false);
1140   os->set_found_in_sections_clause();
1141   return os;
1142 }
1143
1144 // Return the number of segments we expect to see.
1145
1146 size_t
1147 Layout::expected_segment_count() const
1148 {
1149   size_t ret = this->segment_list_.size();
1150
1151   // If we didn't see a SECTIONS clause in a linker script, we should
1152   // already have the complete list of segments.  Otherwise we ask the
1153   // SECTIONS clause how many segments it expects, and add in the ones
1154   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1155
1156   if (!this->script_options_->saw_sections_clause())
1157     return ret;
1158   else
1159     {
1160       const Script_sections* ss = this->script_options_->script_sections();
1161       return ret + ss->expected_segment_count(this);
1162     }
1163 }
1164
1165 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1166 // is whether we saw a .note.GNU-stack section in the object file.
1167 // GNU_STACK_FLAGS is the section flags.  The flags give the
1168 // protection required for stack memory.  We record this in an
1169 // executable as a PT_GNU_STACK segment.  If an object file does not
1170 // have a .note.GNU-stack segment, we must assume that it is an old
1171 // object.  On some targets that will force an executable stack.
1172
1173 void
1174 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1175 {
1176   if (!seen_gnu_stack)
1177     this->input_without_gnu_stack_note_ = true;
1178   else
1179     {
1180       this->input_with_gnu_stack_note_ = true;
1181       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1182         this->input_requires_executable_stack_ = true;
1183     }
1184 }
1185
1186 // Create automatic note sections.
1187
1188 void
1189 Layout::create_notes()
1190 {
1191   this->create_gold_note();
1192   this->create_executable_stack_info();
1193   this->create_build_id();
1194 }
1195
1196 // Create the dynamic sections which are needed before we read the
1197 // relocs.
1198
1199 void
1200 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1201 {
1202   if (parameters->doing_static_link())
1203     return;
1204
1205   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1206                                                        elfcpp::SHT_DYNAMIC,
1207                                                        (elfcpp::SHF_ALLOC
1208                                                         | elfcpp::SHF_WRITE),
1209                                                        false, false, true,
1210                                                        true, false, false);
1211
1212   this->dynamic_symbol_ =
1213     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1214                                   this->dynamic_section_, 0, 0,
1215                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1216                                   elfcpp::STV_HIDDEN, 0, false, false);
1217
1218   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1219
1220   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1221 }
1222
1223 // For each output section whose name can be represented as C symbol,
1224 // define __start and __stop symbols for the section.  This is a GNU
1225 // extension.
1226
1227 void
1228 Layout::define_section_symbols(Symbol_table* symtab)
1229 {
1230   for (Section_list::const_iterator p = this->section_list_.begin();
1231        p != this->section_list_.end();
1232        ++p)
1233     {
1234       const char* const name = (*p)->name();
1235       if (is_cident(name))
1236         {
1237           const std::string name_string(name);
1238           const std::string start_name(cident_section_start_prefix
1239                                        + name_string);
1240           const std::string stop_name(cident_section_stop_prefix
1241                                       + name_string);
1242
1243           symtab->define_in_output_data(start_name.c_str(),
1244                                         NULL, // version
1245                                         Symbol_table::PREDEFINED,
1246                                         *p,
1247                                         0, // value
1248                                         0, // symsize
1249                                         elfcpp::STT_NOTYPE,
1250                                         elfcpp::STB_GLOBAL,
1251                                         elfcpp::STV_DEFAULT,
1252                                         0, // nonvis
1253                                         false, // offset_is_from_end
1254                                         true); // only_if_ref
1255
1256           symtab->define_in_output_data(stop_name.c_str(),
1257                                         NULL, // version
1258                                         Symbol_table::PREDEFINED,
1259                                         *p,
1260                                         0, // value
1261                                         0, // symsize
1262                                         elfcpp::STT_NOTYPE,
1263                                         elfcpp::STB_GLOBAL,
1264                                         elfcpp::STV_DEFAULT,
1265                                         0, // nonvis
1266                                         true, // offset_is_from_end
1267                                         true); // only_if_ref
1268         }
1269     }
1270 }
1271
1272 // Define symbols for group signatures.
1273
1274 void
1275 Layout::define_group_signatures(Symbol_table* symtab)
1276 {
1277   for (Group_signatures::iterator p = this->group_signatures_.begin();
1278        p != this->group_signatures_.end();
1279        ++p)
1280     {
1281       Symbol* sym = symtab->lookup(p->signature, NULL);
1282       if (sym != NULL)
1283         p->section->set_info_symndx(sym);
1284       else
1285         {
1286           // Force the name of the group section to the group
1287           // signature, and use the group's section symbol as the
1288           // signature symbol.
1289           if (strcmp(p->section->name(), p->signature) != 0)
1290             {
1291               const char* name = this->namepool_.add(p->signature,
1292                                                      true, NULL);
1293               p->section->set_name(name);
1294             }
1295           p->section->set_needs_symtab_index();
1296           p->section->set_info_section_symndx(p->section);
1297         }
1298     }
1299
1300   this->group_signatures_.clear();
1301 }
1302
1303 // Find the first read-only PT_LOAD segment, creating one if
1304 // necessary.
1305
1306 Output_segment*
1307 Layout::find_first_load_seg()
1308 {
1309   for (Segment_list::const_iterator p = this->segment_list_.begin();
1310        p != this->segment_list_.end();
1311        ++p)
1312     {
1313       if ((*p)->type() == elfcpp::PT_LOAD
1314           && ((*p)->flags() & elfcpp::PF_R) != 0
1315           && (parameters->options().omagic()
1316               || ((*p)->flags() & elfcpp::PF_W) == 0))
1317         return *p;
1318     }
1319
1320   gold_assert(!this->script_options_->saw_phdrs_clause());
1321
1322   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1323                                                        elfcpp::PF_R);
1324   return load_seg;
1325 }
1326
1327 // Save states of all current output segments.  Store saved states
1328 // in SEGMENT_STATES.
1329
1330 void
1331 Layout::save_segments(Segment_states* segment_states)
1332 {
1333   for (Segment_list::const_iterator p = this->segment_list_.begin();
1334        p != this->segment_list_.end();
1335        ++p)
1336     {
1337       Output_segment* segment = *p;
1338       // Shallow copy.
1339       Output_segment* copy = new Output_segment(*segment);
1340       (*segment_states)[segment] = copy;
1341     }
1342 }
1343
1344 // Restore states of output segments and delete any segment not found in
1345 // SEGMENT_STATES.
1346
1347 void
1348 Layout::restore_segments(const Segment_states* segment_states)
1349 {
1350   // Go through the segment list and remove any segment added in the
1351   // relaxation loop.
1352   this->tls_segment_ = NULL;
1353   this->relro_segment_ = NULL;
1354   Segment_list::iterator list_iter = this->segment_list_.begin();
1355   while (list_iter != this->segment_list_.end())
1356     {
1357       Output_segment* segment = *list_iter;
1358       Segment_states::const_iterator states_iter =
1359           segment_states->find(segment);
1360       if (states_iter != segment_states->end())
1361         {
1362           const Output_segment* copy = states_iter->second;
1363           // Shallow copy to restore states.
1364           *segment = *copy;
1365
1366           // Also fix up TLS and RELRO segment pointers as appropriate.
1367           if (segment->type() == elfcpp::PT_TLS)
1368             this->tls_segment_ = segment;
1369           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1370             this->relro_segment_ = segment;
1371
1372           ++list_iter;
1373         } 
1374       else
1375         {
1376           list_iter = this->segment_list_.erase(list_iter); 
1377           // This is a segment created during section layout.  It should be
1378           // safe to remove it since we should have removed all pointers to it.
1379           delete segment;
1380         }
1381     }
1382 }
1383
1384 // Clean up after relaxation so that sections can be laid out again.
1385
1386 void
1387 Layout::clean_up_after_relaxation()
1388 {
1389   // Restore the segments to point state just prior to the relaxation loop.
1390   Script_sections* script_section = this->script_options_->script_sections();
1391   script_section->release_segments();
1392   this->restore_segments(this->segment_states_);
1393
1394   // Reset section addresses and file offsets
1395   for (Section_list::iterator p = this->section_list_.begin();
1396        p != this->section_list_.end();
1397        ++p)
1398     {
1399       (*p)->reset_address_and_file_offset();
1400       (*p)->restore_states();
1401     }
1402   
1403   // Reset special output object address and file offsets.
1404   for (Data_list::iterator p = this->special_output_list_.begin();
1405        p != this->special_output_list_.end();
1406        ++p)
1407     (*p)->reset_address_and_file_offset();
1408
1409   // A linker script may have created some output section data objects.
1410   // They are useless now.
1411   for (Output_section_data_list::const_iterator p =
1412          this->script_output_section_data_list_.begin();
1413        p != this->script_output_section_data_list_.end();
1414        ++p)
1415     delete *p;
1416   this->script_output_section_data_list_.clear(); 
1417 }
1418
1419 // Prepare for relaxation.
1420
1421 void
1422 Layout::prepare_for_relaxation()
1423 {
1424   // Create an relaxation debug check if in debugging mode.
1425   if (is_debugging_enabled(DEBUG_RELAXATION))
1426     this->relaxation_debug_check_ = new Relaxation_debug_check();
1427
1428   // Save segment states.
1429   this->segment_states_ = new Segment_states();
1430   this->save_segments(this->segment_states_);
1431
1432   for(Section_list::const_iterator p = this->section_list_.begin();
1433       p != this->section_list_.end();
1434       ++p)
1435     (*p)->save_states();
1436
1437   if (is_debugging_enabled(DEBUG_RELAXATION))
1438     this->relaxation_debug_check_->check_output_data_for_reset_values(
1439         this->section_list_, this->special_output_list_);
1440
1441   // Also enable recording of output section data from scripts.
1442   this->record_output_section_data_from_script_ = true;
1443 }
1444
1445 // Relaxation loop body:  If target has no relaxation, this runs only once
1446 // Otherwise, the target relaxation hook is called at the end of
1447 // each iteration.  If the hook returns true, it means re-layout of
1448 // section is required.  
1449 //
1450 // The number of segments created by a linking script without a PHDRS
1451 // clause may be affected by section sizes and alignments.  There is
1452 // a remote chance that relaxation causes different number of PT_LOAD
1453 // segments are created and sections are attached to different segments.
1454 // Therefore, we always throw away all segments created during section
1455 // layout.  In order to be able to restart the section layout, we keep
1456 // a copy of the segment list right before the relaxation loop and use
1457 // that to restore the segments.
1458 // 
1459 // PASS is the current relaxation pass number. 
1460 // SYMTAB is a symbol table.
1461 // PLOAD_SEG is the address of a pointer for the load segment.
1462 // PHDR_SEG is a pointer to the PHDR segment.
1463 // SEGMENT_HEADERS points to the output segment header.
1464 // FILE_HEADER points to the output file header.
1465 // PSHNDX is the address to store the output section index.
1466
1467 off_t inline
1468 Layout::relaxation_loop_body(
1469     int pass,
1470     Target* target,
1471     Symbol_table* symtab,
1472     Output_segment** pload_seg,
1473     Output_segment* phdr_seg,
1474     Output_segment_headers* segment_headers,
1475     Output_file_header* file_header,
1476     unsigned int* pshndx)
1477 {
1478   // If this is not the first iteration, we need to clean up after
1479   // relaxation so that we can lay out the sections again.
1480   if (pass != 0)
1481     this->clean_up_after_relaxation();
1482
1483   // If there is a SECTIONS clause, put all the input sections into
1484   // the required order.
1485   Output_segment* load_seg;
1486   if (this->script_options_->saw_sections_clause())
1487     load_seg = this->set_section_addresses_from_script(symtab);
1488   else if (parameters->options().relocatable())
1489     load_seg = NULL;
1490   else
1491     load_seg = this->find_first_load_seg();
1492
1493   if (parameters->options().oformat_enum()
1494       != General_options::OBJECT_FORMAT_ELF)
1495     load_seg = NULL;
1496
1497   // If the user set the address of the text segment, that may not be
1498   // compatible with putting the segment headers and file headers into
1499   // that segment.
1500   if (parameters->options().user_set_Ttext())
1501     load_seg = NULL;
1502
1503   gold_assert(phdr_seg == NULL
1504               || load_seg != NULL
1505               || this->script_options_->saw_sections_clause());
1506
1507   // If the address of the load segment we found has been set by
1508   // --section-start rather than by a script, then we don't want to
1509   // use it for the file and segment headers.
1510   if (load_seg != NULL
1511       && load_seg->are_addresses_set()
1512       && !this->script_options_->saw_sections_clause())
1513     load_seg = NULL;
1514
1515   // Lay out the segment headers.
1516   if (!parameters->options().relocatable())
1517     {
1518       gold_assert(segment_headers != NULL);
1519       if (load_seg != NULL)
1520         load_seg->add_initial_output_data(segment_headers);
1521       if (phdr_seg != NULL)
1522         phdr_seg->add_initial_output_data(segment_headers);
1523     }
1524
1525   // Lay out the file header.
1526   if (load_seg != NULL)
1527     load_seg->add_initial_output_data(file_header);
1528
1529   if (this->script_options_->saw_phdrs_clause()
1530       && !parameters->options().relocatable())
1531     {
1532       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1533       // clause in a linker script.
1534       Script_sections* ss = this->script_options_->script_sections();
1535       ss->put_headers_in_phdrs(file_header, segment_headers);
1536     }
1537
1538   // We set the output section indexes in set_segment_offsets and
1539   // set_section_indexes.
1540   *pshndx = 1;
1541
1542   // Set the file offsets of all the segments, and all the sections
1543   // they contain.
1544   off_t off;
1545   if (!parameters->options().relocatable())
1546     off = this->set_segment_offsets(target, load_seg, pshndx);
1547   else
1548     off = this->set_relocatable_section_offsets(file_header, pshndx);
1549
1550    // Verify that the dummy relaxation does not change anything.
1551   if (is_debugging_enabled(DEBUG_RELAXATION))
1552     {
1553       if (pass == 0)
1554         this->relaxation_debug_check_->read_sections(this->section_list_);
1555       else
1556         this->relaxation_debug_check_->verify_sections(this->section_list_);
1557     }
1558
1559   *pload_seg = load_seg;
1560   return off;
1561 }
1562
1563 // Finalize the layout.  When this is called, we have created all the
1564 // output sections and all the output segments which are based on
1565 // input sections.  We have several things to do, and we have to do
1566 // them in the right order, so that we get the right results correctly
1567 // and efficiently.
1568
1569 // 1) Finalize the list of output segments and create the segment
1570 // table header.
1571
1572 // 2) Finalize the dynamic symbol table and associated sections.
1573
1574 // 3) Determine the final file offset of all the output segments.
1575
1576 // 4) Determine the final file offset of all the SHF_ALLOC output
1577 // sections.
1578
1579 // 5) Create the symbol table sections and the section name table
1580 // section.
1581
1582 // 6) Finalize the symbol table: set symbol values to their final
1583 // value and make a final determination of which symbols are going
1584 // into the output symbol table.
1585
1586 // 7) Create the section table header.
1587
1588 // 8) Determine the final file offset of all the output sections which
1589 // are not SHF_ALLOC, including the section table header.
1590
1591 // 9) Finalize the ELF file header.
1592
1593 // This function returns the size of the output file.
1594
1595 off_t
1596 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1597                  Target* target, const Task* task)
1598 {
1599   target->finalize_sections(this, input_objects, symtab);
1600
1601   this->count_local_symbols(task, input_objects);
1602
1603   this->link_stabs_sections();
1604
1605   Output_segment* phdr_seg = NULL;
1606   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1607     {
1608       // There was a dynamic object in the link.  We need to create
1609       // some information for the dynamic linker.
1610
1611       // Create the PT_PHDR segment which will hold the program
1612       // headers.
1613       if (!this->script_options_->saw_phdrs_clause())
1614         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1615
1616       // Create the dynamic symbol table, including the hash table.
1617       Output_section* dynstr;
1618       std::vector<Symbol*> dynamic_symbols;
1619       unsigned int local_dynamic_count;
1620       Versions versions(*this->script_options()->version_script_info(),
1621                         &this->dynpool_);
1622       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1623                                   &local_dynamic_count, &dynamic_symbols,
1624                                   &versions);
1625
1626       // Create the .interp section to hold the name of the
1627       // interpreter, and put it in a PT_INTERP segment.
1628       if (!parameters->options().shared())
1629         this->create_interp(target);
1630
1631       // Finish the .dynamic section to hold the dynamic data, and put
1632       // it in a PT_DYNAMIC segment.
1633       this->finish_dynamic_section(input_objects, symtab);
1634
1635       // We should have added everything we need to the dynamic string
1636       // table.
1637       this->dynpool_.set_string_offsets();
1638
1639       // Create the version sections.  We can't do this until the
1640       // dynamic string table is complete.
1641       this->create_version_sections(&versions, symtab, local_dynamic_count,
1642                                     dynamic_symbols, dynstr);
1643
1644       // Set the size of the _DYNAMIC symbol.  We can't do this until
1645       // after we call create_version_sections.
1646       this->set_dynamic_symbol_size(symtab);
1647     }
1648   
1649   if (this->incremental_inputs_)
1650     {
1651       this->incremental_inputs_->finalize();
1652       this->create_incremental_info_sections();
1653     }
1654
1655   // Create segment headers.
1656   Output_segment_headers* segment_headers =
1657     (parameters->options().relocatable()
1658      ? NULL
1659      : new Output_segment_headers(this->segment_list_));
1660
1661   // Lay out the file header.
1662   Output_file_header* file_header
1663     = new Output_file_header(target, symtab, segment_headers,
1664                              parameters->options().entry());
1665
1666   this->special_output_list_.push_back(file_header);
1667   if (segment_headers != NULL)
1668     this->special_output_list_.push_back(segment_headers);
1669
1670   // Find approriate places for orphan output sections if we are using
1671   // a linker script.
1672   if (this->script_options_->saw_sections_clause())
1673     this->place_orphan_sections_in_script();
1674   
1675   Output_segment* load_seg;
1676   off_t off;
1677   unsigned int shndx;
1678   int pass = 0;
1679
1680   // Take a snapshot of the section layout as needed.
1681   if (target->may_relax())
1682     this->prepare_for_relaxation();
1683   
1684   // Run the relaxation loop to lay out sections.
1685   do
1686     {
1687       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1688                                        phdr_seg, segment_headers, file_header,
1689                                        &shndx);
1690       pass++;
1691     }
1692   while (target->may_relax()
1693          && target->relax(pass, input_objects, symtab, this));
1694
1695   // Set the file offsets of all the non-data sections we've seen so
1696   // far which don't have to wait for the input sections.  We need
1697   // this in order to finalize local symbols in non-allocated
1698   // sections.
1699   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1700
1701   // Set the section indexes of all unallocated sections seen so far,
1702   // in case any of them are somehow referenced by a symbol.
1703   shndx = this->set_section_indexes(shndx);
1704
1705   // Create the symbol table sections.
1706   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1707   if (!parameters->doing_static_link())
1708     this->assign_local_dynsym_offsets(input_objects);
1709
1710   // Process any symbol assignments from a linker script.  This must
1711   // be called after the symbol table has been finalized.
1712   this->script_options_->finalize_symbols(symtab, this);
1713
1714   // Create the .shstrtab section.
1715   Output_section* shstrtab_section = this->create_shstrtab();
1716
1717   // Set the file offsets of the rest of the non-data sections which
1718   // don't have to wait for the input sections.
1719   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1720
1721   // Now that all sections have been created, set the section indexes
1722   // for any sections which haven't been done yet.
1723   shndx = this->set_section_indexes(shndx);
1724
1725   // Create the section table header.
1726   this->create_shdrs(shstrtab_section, &off);
1727
1728   // If there are no sections which require postprocessing, we can
1729   // handle the section names now, and avoid a resize later.
1730   if (!this->any_postprocessing_sections_)
1731     off = this->set_section_offsets(off,
1732                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1733
1734   file_header->set_section_info(this->section_headers_, shstrtab_section);
1735
1736   // Now we know exactly where everything goes in the output file
1737   // (except for non-allocated sections which require postprocessing).
1738   Output_data::layout_complete();
1739
1740   this->output_file_size_ = off;
1741
1742   return off;
1743 }
1744
1745 // Create a note header following the format defined in the ELF ABI.
1746 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1747 // of the section to create, DESCSZ is the size of the descriptor.
1748 // ALLOCATE is true if the section should be allocated in memory.
1749 // This returns the new note section.  It sets *TRAILING_PADDING to
1750 // the number of trailing zero bytes required.
1751
1752 Output_section*
1753 Layout::create_note(const char* name, int note_type,
1754                     const char* section_name, size_t descsz,
1755                     bool allocate, size_t* trailing_padding)
1756 {
1757   // Authorities all agree that the values in a .note field should
1758   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1759   // they differ on what the alignment is for 64-bit binaries.
1760   // The GABI says unambiguously they take 8-byte alignment:
1761   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1762   // Other documentation says alignment should always be 4 bytes:
1763   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1764   // GNU ld and GNU readelf both support the latter (at least as of
1765   // version 2.16.91), and glibc always generates the latter for
1766   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1767   // here.
1768 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1769   const int size = parameters->target().get_size();
1770 #else
1771   const int size = 32;
1772 #endif
1773
1774   // The contents of the .note section.
1775   size_t namesz = strlen(name) + 1;
1776   size_t aligned_namesz = align_address(namesz, size / 8);
1777   size_t aligned_descsz = align_address(descsz, size / 8);
1778
1779   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1780
1781   unsigned char* buffer = new unsigned char[notehdrsz];
1782   memset(buffer, 0, notehdrsz);
1783
1784   bool is_big_endian = parameters->target().is_big_endian();
1785
1786   if (size == 32)
1787     {
1788       if (!is_big_endian)
1789         {
1790           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1791           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1792           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1793         }
1794       else
1795         {
1796           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1797           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1798           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1799         }
1800     }
1801   else if (size == 64)
1802     {
1803       if (!is_big_endian)
1804         {
1805           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1806           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1807           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1808         }
1809       else
1810         {
1811           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1812           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1813           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1814         }
1815     }
1816   else
1817     gold_unreachable();
1818
1819   memcpy(buffer + 3 * (size / 8), name, namesz);
1820
1821   elfcpp::Elf_Xword flags = 0;
1822   if (allocate)
1823     flags = elfcpp::SHF_ALLOC;
1824   Output_section* os = this->choose_output_section(NULL, section_name,
1825                                                    elfcpp::SHT_NOTE,
1826                                                    flags, false, false,
1827                                                    false, false, false, false);
1828   if (os == NULL)
1829     return NULL;
1830
1831   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1832                                                            size / 8,
1833                                                            "** note header");
1834   os->add_output_section_data(posd);
1835
1836   *trailing_padding = aligned_descsz - descsz;
1837
1838   return os;
1839 }
1840
1841 // For an executable or shared library, create a note to record the
1842 // version of gold used to create the binary.
1843
1844 void
1845 Layout::create_gold_note()
1846 {
1847   if (parameters->options().relocatable())
1848     return;
1849
1850   std::string desc = std::string("gold ") + gold::get_version_string();
1851
1852   size_t trailing_padding;
1853   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1854                                          ".note.gnu.gold-version", desc.size(),
1855                                          false, &trailing_padding);
1856   if (os == NULL)
1857     return;
1858
1859   Output_section_data* posd = new Output_data_const(desc, 4);
1860   os->add_output_section_data(posd);
1861
1862   if (trailing_padding > 0)
1863     {
1864       posd = new Output_data_zero_fill(trailing_padding, 0);
1865       os->add_output_section_data(posd);
1866     }
1867 }
1868
1869 // Record whether the stack should be executable.  This can be set
1870 // from the command line using the -z execstack or -z noexecstack
1871 // options.  Otherwise, if any input file has a .note.GNU-stack
1872 // section with the SHF_EXECINSTR flag set, the stack should be
1873 // executable.  Otherwise, if at least one input file a
1874 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1875 // section, we use the target default for whether the stack should be
1876 // executable.  Otherwise, we don't generate a stack note.  When
1877 // generating a object file, we create a .note.GNU-stack section with
1878 // the appropriate marking.  When generating an executable or shared
1879 // library, we create a PT_GNU_STACK segment.
1880
1881 void
1882 Layout::create_executable_stack_info()
1883 {
1884   bool is_stack_executable;
1885   if (parameters->options().is_execstack_set())
1886     is_stack_executable = parameters->options().is_stack_executable();
1887   else if (!this->input_with_gnu_stack_note_)
1888     return;
1889   else
1890     {
1891       if (this->input_requires_executable_stack_)
1892         is_stack_executable = true;
1893       else if (this->input_without_gnu_stack_note_)
1894         is_stack_executable =
1895           parameters->target().is_default_stack_executable();
1896       else
1897         is_stack_executable = false;
1898     }
1899
1900   if (parameters->options().relocatable())
1901     {
1902       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1903       elfcpp::Elf_Xword flags = 0;
1904       if (is_stack_executable)
1905         flags |= elfcpp::SHF_EXECINSTR;
1906       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags, false,
1907                                 false, false, false, false);
1908     }
1909   else
1910     {
1911       if (this->script_options_->saw_phdrs_clause())
1912         return;
1913       int flags = elfcpp::PF_R | elfcpp::PF_W;
1914       if (is_stack_executable)
1915         flags |= elfcpp::PF_X;
1916       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1917     }
1918 }
1919
1920 // If --build-id was used, set up the build ID note.
1921
1922 void
1923 Layout::create_build_id()
1924 {
1925   if (!parameters->options().user_set_build_id())
1926     return;
1927
1928   const char* style = parameters->options().build_id();
1929   if (strcmp(style, "none") == 0)
1930     return;
1931
1932   // Set DESCSZ to the size of the note descriptor.  When possible,
1933   // set DESC to the note descriptor contents.
1934   size_t descsz;
1935   std::string desc;
1936   if (strcmp(style, "md5") == 0)
1937     descsz = 128 / 8;
1938   else if (strcmp(style, "sha1") == 0)
1939     descsz = 160 / 8;
1940   else if (strcmp(style, "uuid") == 0)
1941     {
1942       const size_t uuidsz = 128 / 8;
1943
1944       char buffer[uuidsz];
1945       memset(buffer, 0, uuidsz);
1946
1947       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1948       if (descriptor < 0)
1949         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1950                    strerror(errno));
1951       else
1952         {
1953           ssize_t got = ::read(descriptor, buffer, uuidsz);
1954           release_descriptor(descriptor, true);
1955           if (got < 0)
1956             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1957           else if (static_cast<size_t>(got) != uuidsz)
1958             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1959                        uuidsz, got);
1960         }
1961
1962       desc.assign(buffer, uuidsz);
1963       descsz = uuidsz;
1964     }
1965   else if (strncmp(style, "0x", 2) == 0)
1966     {
1967       hex_init();
1968       const char* p = style + 2;
1969       while (*p != '\0')
1970         {
1971           if (hex_p(p[0]) && hex_p(p[1]))
1972             {
1973               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1974               desc += c;
1975               p += 2;
1976             }
1977           else if (*p == '-' || *p == ':')
1978             ++p;
1979           else
1980             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1981                        style);
1982         }
1983       descsz = desc.size();
1984     }
1985   else
1986     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1987
1988   // Create the note.
1989   size_t trailing_padding;
1990   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1991                                          ".note.gnu.build-id", descsz, true,
1992                                          &trailing_padding);
1993   if (os == NULL)
1994     return;
1995
1996   if (!desc.empty())
1997     {
1998       // We know the value already, so we fill it in now.
1999       gold_assert(desc.size() == descsz);
2000
2001       Output_section_data* posd = new Output_data_const(desc, 4);
2002       os->add_output_section_data(posd);
2003
2004       if (trailing_padding != 0)
2005         {
2006           posd = new Output_data_zero_fill(trailing_padding, 0);
2007           os->add_output_section_data(posd);
2008         }
2009     }
2010   else
2011     {
2012       // We need to compute a checksum after we have completed the
2013       // link.
2014       gold_assert(trailing_padding == 0);
2015       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2016       os->add_output_section_data(this->build_id_note_);
2017     }
2018 }
2019
2020 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2021 // field of the former should point to the latter.  I'm not sure who
2022 // started this, but the GNU linker does it, and some tools depend
2023 // upon it.
2024
2025 void
2026 Layout::link_stabs_sections()
2027 {
2028   if (!this->have_stabstr_section_)
2029     return;
2030
2031   for (Section_list::iterator p = this->section_list_.begin();
2032        p != this->section_list_.end();
2033        ++p)
2034     {
2035       if ((*p)->type() != elfcpp::SHT_STRTAB)
2036         continue;
2037
2038       const char* name = (*p)->name();
2039       if (strncmp(name, ".stab", 5) != 0)
2040         continue;
2041
2042       size_t len = strlen(name);
2043       if (strcmp(name + len - 3, "str") != 0)
2044         continue;
2045
2046       std::string stab_name(name, len - 3);
2047       Output_section* stab_sec;
2048       stab_sec = this->find_output_section(stab_name.c_str());
2049       if (stab_sec != NULL)
2050         stab_sec->set_link_section(*p);
2051     }
2052 }
2053
2054 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
2055 // for the next run of incremental linking to check what has changed.
2056
2057 void
2058 Layout::create_incremental_info_sections()
2059 {
2060   gold_assert(this->incremental_inputs_ != NULL);
2061
2062   // Add the .gnu_incremental_inputs section.
2063   const char *incremental_inputs_name =
2064     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2065   Output_section* inputs_os =
2066     this->make_output_section(incremental_inputs_name,
2067                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2068                               false, false, false, false, false);
2069   Output_section_data* posd =
2070       this->incremental_inputs_->create_incremental_inputs_section_data();
2071   inputs_os->add_output_section_data(posd);
2072   
2073   // Add the .gnu_incremental_strtab section.
2074   const char *incremental_strtab_name =
2075     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2076   Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
2077                                                         elfcpp::SHT_STRTAB,
2078                                                         0, false, false,
2079                                                         false, false, false);
2080   Output_data_strtab* strtab_data =
2081     new Output_data_strtab(this->incremental_inputs_->get_stringpool());
2082   strtab_os->add_output_section_data(strtab_data);
2083   
2084   inputs_os->set_link_section(strtab_data);
2085 }
2086
2087 // Return whether SEG1 should be before SEG2 in the output file.  This
2088 // is based entirely on the segment type and flags.  When this is
2089 // called the segment addresses has normally not yet been set.
2090
2091 bool
2092 Layout::segment_precedes(const Output_segment* seg1,
2093                          const Output_segment* seg2)
2094 {
2095   elfcpp::Elf_Word type1 = seg1->type();
2096   elfcpp::Elf_Word type2 = seg2->type();
2097
2098   // The single PT_PHDR segment is required to precede any loadable
2099   // segment.  We simply make it always first.
2100   if (type1 == elfcpp::PT_PHDR)
2101     {
2102       gold_assert(type2 != elfcpp::PT_PHDR);
2103       return true;
2104     }
2105   if (type2 == elfcpp::PT_PHDR)
2106     return false;
2107
2108   // The single PT_INTERP segment is required to precede any loadable
2109   // segment.  We simply make it always second.
2110   if (type1 == elfcpp::PT_INTERP)
2111     {
2112       gold_assert(type2 != elfcpp::PT_INTERP);
2113       return true;
2114     }
2115   if (type2 == elfcpp::PT_INTERP)
2116     return false;
2117
2118   // We then put PT_LOAD segments before any other segments.
2119   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2120     return true;
2121   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2122     return false;
2123
2124   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2125   // segment, because that is where the dynamic linker expects to find
2126   // it (this is just for efficiency; other positions would also work
2127   // correctly).
2128   if (type1 == elfcpp::PT_TLS
2129       && type2 != elfcpp::PT_TLS
2130       && type2 != elfcpp::PT_GNU_RELRO)
2131     return false;
2132   if (type2 == elfcpp::PT_TLS
2133       && type1 != elfcpp::PT_TLS
2134       && type1 != elfcpp::PT_GNU_RELRO)
2135     return true;
2136
2137   // We put the PT_GNU_RELRO segment last, because that is where the
2138   // dynamic linker expects to find it (as with PT_TLS, this is just
2139   // for efficiency).
2140   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2141     return false;
2142   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2143     return true;
2144
2145   const elfcpp::Elf_Word flags1 = seg1->flags();
2146   const elfcpp::Elf_Word flags2 = seg2->flags();
2147
2148   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2149   // by the numeric segment type and flags values.  There should not
2150   // be more than one segment with the same type and flags.
2151   if (type1 != elfcpp::PT_LOAD)
2152     {
2153       if (type1 != type2)
2154         return type1 < type2;
2155       gold_assert(flags1 != flags2);
2156       return flags1 < flags2;
2157     }
2158
2159   // If the addresses are set already, sort by load address.
2160   if (seg1->are_addresses_set())
2161     {
2162       if (!seg2->are_addresses_set())
2163         return true;
2164
2165       unsigned int section_count1 = seg1->output_section_count();
2166       unsigned int section_count2 = seg2->output_section_count();
2167       if (section_count1 == 0 && section_count2 > 0)
2168         return true;
2169       if (section_count1 > 0 && section_count2 == 0)
2170         return false;
2171
2172       uint64_t paddr1 = seg1->first_section_load_address();
2173       uint64_t paddr2 = seg2->first_section_load_address();
2174       if (paddr1 != paddr2)
2175         return paddr1 < paddr2;
2176     }
2177   else if (seg2->are_addresses_set())
2178     return false;
2179
2180   // A segment which holds large data comes after a segment which does
2181   // not hold large data.
2182   if (seg1->is_large_data_segment())
2183     {
2184       if (!seg2->is_large_data_segment())
2185         return false;
2186     }
2187   else if (seg2->is_large_data_segment())
2188     return true;
2189
2190   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2191   // segments come before writable segments.  Then writable segments
2192   // with data come before writable segments without data.  Then
2193   // executable segments come before non-executable segments.  Then
2194   // the unlikely case of a non-readable segment comes before the
2195   // normal case of a readable segment.  If there are multiple
2196   // segments with the same type and flags, we require that the
2197   // address be set, and we sort by virtual address and then physical
2198   // address.
2199   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2200     return (flags1 & elfcpp::PF_W) == 0;
2201   if ((flags1 & elfcpp::PF_W) != 0
2202       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2203     return seg1->has_any_data_sections();
2204   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2205     return (flags1 & elfcpp::PF_X) != 0;
2206   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2207     return (flags1 & elfcpp::PF_R) == 0;
2208
2209   // We shouldn't get here--we shouldn't create segments which we
2210   // can't distinguish.
2211   gold_unreachable();
2212 }
2213
2214 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2215
2216 static off_t
2217 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2218 {
2219   uint64_t unsigned_off = off;
2220   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2221                           | (addr & (abi_pagesize - 1)));
2222   if (aligned_off < unsigned_off)
2223     aligned_off += abi_pagesize;
2224   return aligned_off;
2225 }
2226
2227 // Set the file offsets of all the segments, and all the sections they
2228 // contain.  They have all been created.  LOAD_SEG must be be laid out
2229 // first.  Return the offset of the data to follow.
2230
2231 off_t
2232 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2233                             unsigned int *pshndx)
2234 {
2235   // Sort them into the final order.
2236   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2237             Layout::Compare_segments());
2238
2239   // Find the PT_LOAD segments, and set their addresses and offsets
2240   // and their section's addresses and offsets.
2241   uint64_t addr;
2242   if (parameters->options().user_set_Ttext())
2243     addr = parameters->options().Ttext();
2244   else if (parameters->options().output_is_position_independent())
2245     addr = 0;
2246   else
2247     addr = target->default_text_segment_address();
2248   off_t off = 0;
2249
2250   // If LOAD_SEG is NULL, then the file header and segment headers
2251   // will not be loadable.  But they still need to be at offset 0 in
2252   // the file.  Set their offsets now.
2253   if (load_seg == NULL)
2254     {
2255       for (Data_list::iterator p = this->special_output_list_.begin();
2256            p != this->special_output_list_.end();
2257            ++p)
2258         {
2259           off = align_address(off, (*p)->addralign());
2260           (*p)->set_address_and_file_offset(0, off);
2261           off += (*p)->data_size();
2262         }
2263     }
2264
2265   unsigned int increase_relro = this->increase_relro_;
2266   if (this->script_options_->saw_sections_clause())
2267     increase_relro = 0;
2268
2269   const bool check_sections = parameters->options().check_sections();
2270   Output_segment* last_load_segment = NULL;
2271
2272   bool was_readonly = false;
2273   for (Segment_list::iterator p = this->segment_list_.begin();
2274        p != this->segment_list_.end();
2275        ++p)
2276     {
2277       if ((*p)->type() == elfcpp::PT_LOAD)
2278         {
2279           if (load_seg != NULL && load_seg != *p)
2280             gold_unreachable();
2281           load_seg = NULL;
2282
2283           bool are_addresses_set = (*p)->are_addresses_set();
2284           if (are_addresses_set)
2285             {
2286               // When it comes to setting file offsets, we care about
2287               // the physical address.
2288               addr = (*p)->paddr();
2289             }
2290           else if (parameters->options().user_set_Tdata()
2291                    && ((*p)->flags() & elfcpp::PF_W) != 0
2292                    && (!parameters->options().user_set_Tbss()
2293                        || (*p)->has_any_data_sections()))
2294             {
2295               addr = parameters->options().Tdata();
2296               are_addresses_set = true;
2297             }
2298           else if (parameters->options().user_set_Tbss()
2299                    && ((*p)->flags() & elfcpp::PF_W) != 0
2300                    && !(*p)->has_any_data_sections())
2301             {
2302               addr = parameters->options().Tbss();
2303               are_addresses_set = true;
2304             }
2305
2306           uint64_t orig_addr = addr;
2307           uint64_t orig_off = off;
2308
2309           uint64_t aligned_addr = 0;
2310           uint64_t abi_pagesize = target->abi_pagesize();
2311           uint64_t common_pagesize = target->common_pagesize();
2312
2313           if (!parameters->options().nmagic()
2314               && !parameters->options().omagic())
2315             (*p)->set_minimum_p_align(common_pagesize);
2316
2317           if (!are_addresses_set)
2318             {
2319               // If the last segment was readonly, and this one is
2320               // not, then skip the address forward one page,
2321               // maintaining the same position within the page.  This
2322               // lets us store both segments overlapping on a single
2323               // page in the file, but the loader will put them on
2324               // different pages in memory.
2325
2326               addr = align_address(addr, (*p)->maximum_alignment());
2327               aligned_addr = addr;
2328
2329               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
2330                 {
2331                   if ((addr & (abi_pagesize - 1)) != 0)
2332                     addr = addr + abi_pagesize;
2333                 }
2334
2335               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2336             }
2337
2338           if (!parameters->options().nmagic()
2339               && !parameters->options().omagic())
2340             off = align_file_offset(off, addr, abi_pagesize);
2341           else if (load_seg == NULL)
2342             {
2343               // This is -N or -n with a section script which prevents
2344               // us from using a load segment.  We need to ensure that
2345               // the file offset is aligned to the alignment of the
2346               // segment.  This is because the linker script
2347               // implicitly assumed a zero offset.  If we don't align
2348               // here, then the alignment of the sections in the
2349               // linker script may not match the alignment of the
2350               // sections in the set_section_addresses call below,
2351               // causing an error about dot moving backward.
2352               off = align_address(off, (*p)->maximum_alignment());
2353             }
2354
2355           unsigned int shndx_hold = *pshndx;
2356           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2357                                                           increase_relro,
2358                                                           &off, pshndx);
2359
2360           // Now that we know the size of this segment, we may be able
2361           // to save a page in memory, at the cost of wasting some
2362           // file space, by instead aligning to the start of a new
2363           // page.  Here we use the real machine page size rather than
2364           // the ABI mandated page size.
2365
2366           if (!are_addresses_set && aligned_addr != addr)
2367             {
2368               uint64_t first_off = (common_pagesize
2369                                     - (aligned_addr
2370                                        & (common_pagesize - 1)));
2371               uint64_t last_off = new_addr & (common_pagesize - 1);
2372               if (first_off > 0
2373                   && last_off > 0
2374                   && ((aligned_addr & ~ (common_pagesize - 1))
2375                       != (new_addr & ~ (common_pagesize - 1)))
2376                   && first_off + last_off <= common_pagesize)
2377                 {
2378                   *pshndx = shndx_hold;
2379                   addr = align_address(aligned_addr, common_pagesize);
2380                   addr = align_address(addr, (*p)->maximum_alignment());
2381                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2382                   off = align_file_offset(off, addr, abi_pagesize);
2383                   new_addr = (*p)->set_section_addresses(this, true, addr,
2384                                                          increase_relro,
2385                                                          &off, pshndx);
2386                 }
2387             }
2388
2389           addr = new_addr;
2390
2391           if (((*p)->flags() & elfcpp::PF_W) == 0)
2392             was_readonly = true;
2393
2394           // Implement --check-sections.  We know that the segments
2395           // are sorted by LMA.
2396           if (check_sections && last_load_segment != NULL)
2397             {
2398               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2399               if (last_load_segment->paddr() + last_load_segment->memsz()
2400                   > (*p)->paddr())
2401                 {
2402                   unsigned long long lb1 = last_load_segment->paddr();
2403                   unsigned long long le1 = lb1 + last_load_segment->memsz();
2404                   unsigned long long lb2 = (*p)->paddr();
2405                   unsigned long long le2 = lb2 + (*p)->memsz();
2406                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2407                                "[0x%llx -> 0x%llx]"),
2408                              lb1, le1, lb2, le2);
2409                 }
2410             }
2411           last_load_segment = *p;
2412         }
2413     }
2414
2415   // Handle the non-PT_LOAD segments, setting their offsets from their
2416   // section's offsets.
2417   for (Segment_list::iterator p = this->segment_list_.begin();
2418        p != this->segment_list_.end();
2419        ++p)
2420     {
2421       if ((*p)->type() != elfcpp::PT_LOAD)
2422         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
2423                          ? increase_relro
2424                          : 0);
2425     }
2426
2427   // Set the TLS offsets for each section in the PT_TLS segment.
2428   if (this->tls_segment_ != NULL)
2429     this->tls_segment_->set_tls_offsets();
2430
2431   return off;
2432 }
2433
2434 // Set the offsets of all the allocated sections when doing a
2435 // relocatable link.  This does the same jobs as set_segment_offsets,
2436 // only for a relocatable link.
2437
2438 off_t
2439 Layout::set_relocatable_section_offsets(Output_data* file_header,
2440                                         unsigned int *pshndx)
2441 {
2442   off_t off = 0;
2443
2444   file_header->set_address_and_file_offset(0, 0);
2445   off += file_header->data_size();
2446
2447   for (Section_list::iterator p = this->section_list_.begin();
2448        p != this->section_list_.end();
2449        ++p)
2450     {
2451       // We skip unallocated sections here, except that group sections
2452       // have to come first.
2453       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2454           && (*p)->type() != elfcpp::SHT_GROUP)
2455         continue;
2456
2457       off = align_address(off, (*p)->addralign());
2458
2459       // The linker script might have set the address.
2460       if (!(*p)->is_address_valid())
2461         (*p)->set_address(0);
2462       (*p)->set_file_offset(off);
2463       (*p)->finalize_data_size();
2464       off += (*p)->data_size();
2465
2466       (*p)->set_out_shndx(*pshndx);
2467       ++*pshndx;
2468     }
2469
2470   return off;
2471 }
2472
2473 // Set the file offset of all the sections not associated with a
2474 // segment.
2475
2476 off_t
2477 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2478 {
2479   for (Section_list::iterator p = this->unattached_section_list_.begin();
2480        p != this->unattached_section_list_.end();
2481        ++p)
2482     {
2483       // The symtab section is handled in create_symtab_sections.
2484       if (*p == this->symtab_section_)
2485         continue;
2486
2487       // If we've already set the data size, don't set it again.
2488       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2489         continue;
2490
2491       if (pass == BEFORE_INPUT_SECTIONS_PASS
2492           && (*p)->requires_postprocessing())
2493         {
2494           (*p)->create_postprocessing_buffer();
2495           this->any_postprocessing_sections_ = true;
2496         }
2497
2498       if (pass == BEFORE_INPUT_SECTIONS_PASS
2499           && (*p)->after_input_sections())
2500         continue;
2501       else if (pass == POSTPROCESSING_SECTIONS_PASS
2502                && (!(*p)->after_input_sections()
2503                    || (*p)->type() == elfcpp::SHT_STRTAB))
2504         continue;
2505       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2506                && (!(*p)->after_input_sections()
2507                    || (*p)->type() != elfcpp::SHT_STRTAB))
2508         continue;
2509
2510       off = align_address(off, (*p)->addralign());
2511       (*p)->set_file_offset(off);
2512       (*p)->finalize_data_size();
2513       off += (*p)->data_size();
2514
2515       // At this point the name must be set.
2516       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2517         this->namepool_.add((*p)->name(), false, NULL);
2518     }
2519   return off;
2520 }
2521
2522 // Set the section indexes of all the sections not associated with a
2523 // segment.
2524
2525 unsigned int
2526 Layout::set_section_indexes(unsigned int shndx)
2527 {
2528   for (Section_list::iterator p = this->unattached_section_list_.begin();
2529        p != this->unattached_section_list_.end();
2530        ++p)
2531     {
2532       if (!(*p)->has_out_shndx())
2533         {
2534           (*p)->set_out_shndx(shndx);
2535           ++shndx;
2536         }
2537     }
2538   return shndx;
2539 }
2540
2541 // Set the section addresses according to the linker script.  This is
2542 // only called when we see a SECTIONS clause.  This returns the
2543 // program segment which should hold the file header and segment
2544 // headers, if any.  It will return NULL if they should not be in a
2545 // segment.
2546
2547 Output_segment*
2548 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2549 {
2550   Script_sections* ss = this->script_options_->script_sections();
2551   gold_assert(ss->saw_sections_clause());
2552   return this->script_options_->set_section_addresses(symtab, this);
2553 }
2554
2555 // Place the orphan sections in the linker script.
2556
2557 void
2558 Layout::place_orphan_sections_in_script()
2559 {
2560   Script_sections* ss = this->script_options_->script_sections();
2561   gold_assert(ss->saw_sections_clause());
2562
2563   // Place each orphaned output section in the script.
2564   for (Section_list::iterator p = this->section_list_.begin();
2565        p != this->section_list_.end();
2566        ++p)
2567     {
2568       if (!(*p)->found_in_sections_clause())
2569         ss->place_orphan(*p);
2570     }
2571 }
2572
2573 // Count the local symbols in the regular symbol table and the dynamic
2574 // symbol table, and build the respective string pools.
2575
2576 void
2577 Layout::count_local_symbols(const Task* task,
2578                             const Input_objects* input_objects)
2579 {
2580   // First, figure out an upper bound on the number of symbols we'll
2581   // be inserting into each pool.  This helps us create the pools with
2582   // the right size, to avoid unnecessary hashtable resizing.
2583   unsigned int symbol_count = 0;
2584   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2585        p != input_objects->relobj_end();
2586        ++p)
2587     symbol_count += (*p)->local_symbol_count();
2588
2589   // Go from "upper bound" to "estimate."  We overcount for two
2590   // reasons: we double-count symbols that occur in more than one
2591   // object file, and we count symbols that are dropped from the
2592   // output.  Add it all together and assume we overcount by 100%.
2593   symbol_count /= 2;
2594
2595   // We assume all symbols will go into both the sympool and dynpool.
2596   this->sympool_.reserve(symbol_count);
2597   this->dynpool_.reserve(symbol_count);
2598
2599   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2600        p != input_objects->relobj_end();
2601        ++p)
2602     {
2603       Task_lock_obj<Object> tlo(task, *p);
2604       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2605     }
2606 }
2607
2608 // Create the symbol table sections.  Here we also set the final
2609 // values of the symbols.  At this point all the loadable sections are
2610 // fully laid out.  SHNUM is the number of sections so far.
2611
2612 void
2613 Layout::create_symtab_sections(const Input_objects* input_objects,
2614                                Symbol_table* symtab,
2615                                unsigned int shnum,
2616                                off_t* poff)
2617 {
2618   int symsize;
2619   unsigned int align;
2620   if (parameters->target().get_size() == 32)
2621     {
2622       symsize = elfcpp::Elf_sizes<32>::sym_size;
2623       align = 4;
2624     }
2625   else if (parameters->target().get_size() == 64)
2626     {
2627       symsize = elfcpp::Elf_sizes<64>::sym_size;
2628       align = 8;
2629     }
2630   else
2631     gold_unreachable();
2632
2633   off_t off = *poff;
2634   off = align_address(off, align);
2635   off_t startoff = off;
2636
2637   // Save space for the dummy symbol at the start of the section.  We
2638   // never bother to write this out--it will just be left as zero.
2639   off += symsize;
2640   unsigned int local_symbol_index = 1;
2641
2642   // Add STT_SECTION symbols for each Output section which needs one.
2643   for (Section_list::iterator p = this->section_list_.begin();
2644        p != this->section_list_.end();
2645        ++p)
2646     {
2647       if (!(*p)->needs_symtab_index())
2648         (*p)->set_symtab_index(-1U);
2649       else
2650         {
2651           (*p)->set_symtab_index(local_symbol_index);
2652           ++local_symbol_index;
2653           off += symsize;
2654         }
2655     }
2656
2657   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2658        p != input_objects->relobj_end();
2659        ++p)
2660     {
2661       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2662                                                         off, symtab);
2663       off += (index - local_symbol_index) * symsize;
2664       local_symbol_index = index;
2665     }
2666
2667   unsigned int local_symcount = local_symbol_index;
2668   gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2669
2670   off_t dynoff;
2671   size_t dyn_global_index;
2672   size_t dyncount;
2673   if (this->dynsym_section_ == NULL)
2674     {
2675       dynoff = 0;
2676       dyn_global_index = 0;
2677       dyncount = 0;
2678     }
2679   else
2680     {
2681       dyn_global_index = this->dynsym_section_->info();
2682       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2683       dynoff = this->dynsym_section_->offset() + locsize;
2684       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2685       gold_assert(static_cast<off_t>(dyncount * symsize)
2686                   == this->dynsym_section_->data_size() - locsize);
2687     }
2688
2689   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2690                          &this->sympool_, &local_symcount);
2691
2692   if (!parameters->options().strip_all())
2693     {
2694       this->sympool_.set_string_offsets();
2695
2696       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2697       Output_section* osymtab = this->make_output_section(symtab_name,
2698                                                           elfcpp::SHT_SYMTAB,
2699                                                           0, false, false,
2700                                                           false, false, false);
2701       this->symtab_section_ = osymtab;
2702
2703       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2704                                                              align,
2705                                                              "** symtab");
2706       osymtab->add_output_section_data(pos);
2707
2708       // We generate a .symtab_shndx section if we have more than
2709       // SHN_LORESERVE sections.  Technically it is possible that we
2710       // don't need one, because it is possible that there are no
2711       // symbols in any of sections with indexes larger than
2712       // SHN_LORESERVE.  That is probably unusual, though, and it is
2713       // easier to always create one than to compute section indexes
2714       // twice (once here, once when writing out the symbols).
2715       if (shnum >= elfcpp::SHN_LORESERVE)
2716         {
2717           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2718                                                                false, NULL);
2719           Output_section* osymtab_xindex =
2720             this->make_output_section(symtab_xindex_name,
2721                                       elfcpp::SHT_SYMTAB_SHNDX, 0, false,
2722                                       false, false, false, false);
2723
2724           size_t symcount = (off - startoff) / symsize;
2725           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2726
2727           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2728
2729           osymtab_xindex->set_link_section(osymtab);
2730           osymtab_xindex->set_addralign(4);
2731           osymtab_xindex->set_entsize(4);
2732
2733           osymtab_xindex->set_after_input_sections();
2734
2735           // This tells the driver code to wait until the symbol table
2736           // has written out before writing out the postprocessing
2737           // sections, including the .symtab_shndx section.
2738           this->any_postprocessing_sections_ = true;
2739         }
2740
2741       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2742       Output_section* ostrtab = this->make_output_section(strtab_name,
2743                                                           elfcpp::SHT_STRTAB,
2744                                                           0, false, false,
2745                                                           false, false, false);
2746
2747       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2748       ostrtab->add_output_section_data(pstr);
2749
2750       osymtab->set_file_offset(startoff);
2751       osymtab->finalize_data_size();
2752       osymtab->set_link_section(ostrtab);
2753       osymtab->set_info(local_symcount);
2754       osymtab->set_entsize(symsize);
2755
2756       *poff = off;
2757     }
2758 }
2759
2760 // Create the .shstrtab section, which holds the names of the
2761 // sections.  At the time this is called, we have created all the
2762 // output sections except .shstrtab itself.
2763
2764 Output_section*
2765 Layout::create_shstrtab()
2766 {
2767   // FIXME: We don't need to create a .shstrtab section if we are
2768   // stripping everything.
2769
2770   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2771
2772   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
2773                                                  false, false, false, false,
2774                                                  false);
2775
2776   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
2777     {
2778       // We can't write out this section until we've set all the
2779       // section names, and we don't set the names of compressed
2780       // output sections until relocations are complete.  FIXME: With
2781       // the current names we use, this is unnecessary.
2782       os->set_after_input_sections();
2783     }
2784
2785   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2786   os->add_output_section_data(posd);
2787
2788   return os;
2789 }
2790
2791 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2792 // offset.
2793
2794 void
2795 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2796 {
2797   Output_section_headers* oshdrs;
2798   oshdrs = new Output_section_headers(this,
2799                                       &this->segment_list_,
2800                                       &this->section_list_,
2801                                       &this->unattached_section_list_,
2802                                       &this->namepool_,
2803                                       shstrtab_section);
2804   off_t off = align_address(*poff, oshdrs->addralign());
2805   oshdrs->set_address_and_file_offset(0, off);
2806   off += oshdrs->data_size();
2807   *poff = off;
2808   this->section_headers_ = oshdrs;
2809 }
2810
2811 // Count the allocated sections.
2812
2813 size_t
2814 Layout::allocated_output_section_count() const
2815 {
2816   size_t section_count = 0;
2817   for (Segment_list::const_iterator p = this->segment_list_.begin();
2818        p != this->segment_list_.end();
2819        ++p)
2820     section_count += (*p)->output_section_count();
2821   return section_count;
2822 }
2823
2824 // Create the dynamic symbol table.
2825
2826 void
2827 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2828                               Symbol_table* symtab,
2829                               Output_section **pdynstr,
2830                               unsigned int* plocal_dynamic_count,
2831                               std::vector<Symbol*>* pdynamic_symbols,
2832                               Versions* pversions)
2833 {
2834   // Count all the symbols in the dynamic symbol table, and set the
2835   // dynamic symbol indexes.
2836
2837   // Skip symbol 0, which is always all zeroes.
2838   unsigned int index = 1;
2839
2840   // Add STT_SECTION symbols for each Output section which needs one.
2841   for (Section_list::iterator p = this->section_list_.begin();
2842        p != this->section_list_.end();
2843        ++p)
2844     {
2845       if (!(*p)->needs_dynsym_index())
2846         (*p)->set_dynsym_index(-1U);
2847       else
2848         {
2849           (*p)->set_dynsym_index(index);
2850           ++index;
2851         }
2852     }
2853
2854   // Count the local symbols that need to go in the dynamic symbol table,
2855   // and set the dynamic symbol indexes.
2856   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2857        p != input_objects->relobj_end();
2858        ++p)
2859     {
2860       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2861       index = new_index;
2862     }
2863
2864   unsigned int local_symcount = index;
2865   *plocal_dynamic_count = local_symcount;
2866
2867   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2868                                      &this->dynpool_, pversions);
2869
2870   int symsize;
2871   unsigned int align;
2872   const int size = parameters->target().get_size();
2873   if (size == 32)
2874     {
2875       symsize = elfcpp::Elf_sizes<32>::sym_size;
2876       align = 4;
2877     }
2878   else if (size == 64)
2879     {
2880       symsize = elfcpp::Elf_sizes<64>::sym_size;
2881       align = 8;
2882     }
2883   else
2884     gold_unreachable();
2885
2886   // Create the dynamic symbol table section.
2887
2888   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2889                                                        elfcpp::SHT_DYNSYM,
2890                                                        elfcpp::SHF_ALLOC,
2891                                                        false, false, true,
2892                                                        false, false, false);
2893
2894   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2895                                                            align,
2896                                                            "** dynsym");
2897   dynsym->add_output_section_data(odata);
2898
2899   dynsym->set_info(local_symcount);
2900   dynsym->set_entsize(symsize);
2901   dynsym->set_addralign(align);
2902
2903   this->dynsym_section_ = dynsym;
2904
2905   Output_data_dynamic* const odyn = this->dynamic_data_;
2906   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2907   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2908
2909   // If there are more than SHN_LORESERVE allocated sections, we
2910   // create a .dynsym_shndx section.  It is possible that we don't
2911   // need one, because it is possible that there are no dynamic
2912   // symbols in any of the sections with indexes larger than
2913   // SHN_LORESERVE.  This is probably unusual, though, and at this
2914   // time we don't know the actual section indexes so it is
2915   // inconvenient to check.
2916   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2917     {
2918       Output_section* dynsym_xindex =
2919         this->choose_output_section(NULL, ".dynsym_shndx",
2920                                     elfcpp::SHT_SYMTAB_SHNDX,
2921                                     elfcpp::SHF_ALLOC,
2922                                     false, false, true, false, false, false);
2923
2924       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2925
2926       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2927
2928       dynsym_xindex->set_link_section(dynsym);
2929       dynsym_xindex->set_addralign(4);
2930       dynsym_xindex->set_entsize(4);
2931
2932       dynsym_xindex->set_after_input_sections();
2933
2934       // This tells the driver code to wait until the symbol table has
2935       // written out before writing out the postprocessing sections,
2936       // including the .dynsym_shndx section.
2937       this->any_postprocessing_sections_ = true;
2938     }
2939
2940   // Create the dynamic string table section.
2941
2942   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2943                                                        elfcpp::SHT_STRTAB,
2944                                                        elfcpp::SHF_ALLOC,
2945                                                        false, false, true,
2946                                                        false, false, false);
2947
2948   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2949   dynstr->add_output_section_data(strdata);
2950
2951   dynsym->set_link_section(dynstr);
2952   this->dynamic_section_->set_link_section(dynstr);
2953
2954   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2955   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2956
2957   *pdynstr = dynstr;
2958
2959   // Create the hash tables.
2960
2961   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2962       || strcmp(parameters->options().hash_style(), "both") == 0)
2963     {
2964       unsigned char* phash;
2965       unsigned int hashlen;
2966       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2967                                     &phash, &hashlen);
2968
2969       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2970                                                             elfcpp::SHT_HASH,
2971                                                             elfcpp::SHF_ALLOC,
2972                                                             false, false, true,
2973                                                             false, false,
2974                                                             false);
2975
2976       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2977                                                                    hashlen,
2978                                                                    align,
2979                                                                    "** hash");
2980       hashsec->add_output_section_data(hashdata);
2981
2982       hashsec->set_link_section(dynsym);
2983       hashsec->set_entsize(4);
2984
2985       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2986     }
2987
2988   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2989       || strcmp(parameters->options().hash_style(), "both") == 0)
2990     {
2991       unsigned char* phash;
2992       unsigned int hashlen;
2993       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2994                                     &phash, &hashlen);
2995
2996       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2997                                                             elfcpp::SHT_GNU_HASH,
2998                                                             elfcpp::SHF_ALLOC,
2999                                                             false, false, true,
3000                                                             false, false,
3001                                                             false);
3002
3003       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3004                                                                    hashlen,
3005                                                                    align,
3006                                                                    "** hash");
3007       hashsec->add_output_section_data(hashdata);
3008
3009       hashsec->set_link_section(dynsym);
3010
3011       // For a 64-bit target, the entries in .gnu.hash do not have a
3012       // uniform size, so we only set the entry size for a 32-bit
3013       // target.
3014       if (parameters->target().get_size() == 32)
3015         hashsec->set_entsize(4);
3016
3017       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3018     }
3019 }
3020
3021 // Assign offsets to each local portion of the dynamic symbol table.
3022
3023 void
3024 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3025 {
3026   Output_section* dynsym = this->dynsym_section_;
3027   gold_assert(dynsym != NULL);
3028
3029   off_t off = dynsym->offset();
3030
3031   // Skip the dummy symbol at the start of the section.
3032   off += dynsym->entsize();
3033
3034   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3035        p != input_objects->relobj_end();
3036        ++p)
3037     {
3038       unsigned int count = (*p)->set_local_dynsym_offset(off);
3039       off += count * dynsym->entsize();
3040     }
3041 }
3042
3043 // Create the version sections.
3044
3045 void
3046 Layout::create_version_sections(const Versions* versions,
3047                                 const Symbol_table* symtab,
3048                                 unsigned int local_symcount,
3049                                 const std::vector<Symbol*>& dynamic_symbols,
3050                                 const Output_section* dynstr)
3051 {
3052   if (!versions->any_defs() && !versions->any_needs())
3053     return;
3054
3055   switch (parameters->size_and_endianness())
3056     {
3057 #ifdef HAVE_TARGET_32_LITTLE
3058     case Parameters::TARGET_32_LITTLE:
3059       this->sized_create_version_sections<32, false>(versions, symtab,
3060                                                      local_symcount,
3061                                                      dynamic_symbols, dynstr);
3062       break;
3063 #endif
3064 #ifdef HAVE_TARGET_32_BIG
3065     case Parameters::TARGET_32_BIG:
3066       this->sized_create_version_sections<32, true>(versions, symtab,
3067                                                     local_symcount,
3068                                                     dynamic_symbols, dynstr);
3069       break;
3070 #endif
3071 #ifdef HAVE_TARGET_64_LITTLE
3072     case Parameters::TARGET_64_LITTLE:
3073       this->sized_create_version_sections<64, false>(versions, symtab,
3074                                                      local_symcount,
3075                                                      dynamic_symbols, dynstr);
3076       break;
3077 #endif
3078 #ifdef HAVE_TARGET_64_BIG
3079     case Parameters::TARGET_64_BIG:
3080       this->sized_create_version_sections<64, true>(versions, symtab,
3081                                                     local_symcount,
3082                                                     dynamic_symbols, dynstr);
3083       break;
3084 #endif
3085     default:
3086       gold_unreachable();
3087     }
3088 }
3089
3090 // Create the version sections, sized version.
3091
3092 template<int size, bool big_endian>
3093 void
3094 Layout::sized_create_version_sections(
3095     const Versions* versions,
3096     const Symbol_table* symtab,
3097     unsigned int local_symcount,
3098     const std::vector<Symbol*>& dynamic_symbols,
3099     const Output_section* dynstr)
3100 {
3101   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3102                                                      elfcpp::SHT_GNU_versym,
3103                                                      elfcpp::SHF_ALLOC,
3104                                                      false, false, true,
3105                                                      false, false, false);
3106
3107   unsigned char* vbuf;
3108   unsigned int vsize;
3109   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3110                                                       local_symcount,
3111                                                       dynamic_symbols,
3112                                                       &vbuf, &vsize);
3113
3114   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3115                                                             "** versions");
3116
3117   vsec->add_output_section_data(vdata);
3118   vsec->set_entsize(2);
3119   vsec->set_link_section(this->dynsym_section_);
3120
3121   Output_data_dynamic* const odyn = this->dynamic_data_;
3122   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3123
3124   if (versions->any_defs())
3125     {
3126       Output_section* vdsec;
3127       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3128                                          elfcpp::SHT_GNU_verdef,
3129                                          elfcpp::SHF_ALLOC,
3130                                          false, false, true, false, false,
3131                                          false);
3132
3133       unsigned char* vdbuf;
3134       unsigned int vdsize;
3135       unsigned int vdentries;
3136       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3137                                                        &vdsize, &vdentries);
3138
3139       Output_section_data* vddata =
3140         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3141
3142       vdsec->add_output_section_data(vddata);
3143       vdsec->set_link_section(dynstr);
3144       vdsec->set_info(vdentries);
3145
3146       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3147       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3148     }
3149
3150   if (versions->any_needs())
3151     {
3152       Output_section* vnsec;
3153       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3154                                           elfcpp::SHT_GNU_verneed,
3155                                           elfcpp::SHF_ALLOC,
3156                                           false, false, true, false, false,
3157                                           false);
3158
3159       unsigned char* vnbuf;
3160       unsigned int vnsize;
3161       unsigned int vnentries;
3162       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3163                                                         &vnbuf, &vnsize,
3164                                                         &vnentries);
3165
3166       Output_section_data* vndata =
3167         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3168
3169       vnsec->add_output_section_data(vndata);
3170       vnsec->set_link_section(dynstr);
3171       vnsec->set_info(vnentries);
3172
3173       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3174       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3175     }
3176 }
3177
3178 // Create the .interp section and PT_INTERP segment.
3179
3180 void
3181 Layout::create_interp(const Target* target)
3182 {
3183   const char* interp = parameters->options().dynamic_linker();
3184   if (interp == NULL)
3185     {
3186       interp = target->dynamic_linker();
3187       gold_assert(interp != NULL);
3188     }
3189
3190   size_t len = strlen(interp) + 1;
3191
3192   Output_section_data* odata = new Output_data_const(interp, len, 1);
3193
3194   Output_section* osec = this->choose_output_section(NULL, ".interp",
3195                                                      elfcpp::SHT_PROGBITS,
3196                                                      elfcpp::SHF_ALLOC,
3197                                                      false, true, true,
3198                                                      false, false, false);
3199   osec->add_output_section_data(odata);
3200
3201   if (!this->script_options_->saw_phdrs_clause())
3202     {
3203       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3204                                                        elfcpp::PF_R);
3205       oseg->add_output_section(osec, elfcpp::PF_R, false);
3206     }
3207 }
3208
3209 // Finish the .dynamic section and PT_DYNAMIC segment.
3210
3211 void
3212 Layout::finish_dynamic_section(const Input_objects* input_objects,
3213                                const Symbol_table* symtab)
3214 {
3215   if (!this->script_options_->saw_phdrs_clause())
3216     {
3217       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3218                                                        (elfcpp::PF_R
3219                                                         | elfcpp::PF_W));
3220       oseg->add_output_section(this->dynamic_section_,
3221                                elfcpp::PF_R | elfcpp::PF_W,
3222                                false);
3223     }
3224
3225   Output_data_dynamic* const odyn = this->dynamic_data_;
3226
3227   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3228        p != input_objects->dynobj_end();
3229        ++p)
3230     {
3231       if (!(*p)->is_needed()
3232           && (*p)->input_file()->options().as_needed())
3233         {
3234           // This dynamic object was linked with --as-needed, but it
3235           // is not needed.
3236           continue;
3237         }
3238
3239       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3240     }
3241
3242   if (parameters->options().shared())
3243     {
3244       const char* soname = parameters->options().soname();
3245       if (soname != NULL)
3246         odyn->add_string(elfcpp::DT_SONAME, soname);
3247     }
3248
3249   Symbol* sym = symtab->lookup(parameters->options().init());
3250   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3251     odyn->add_symbol(elfcpp::DT_INIT, sym);
3252
3253   sym = symtab->lookup(parameters->options().fini());
3254   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3255     odyn->add_symbol(elfcpp::DT_FINI, sym);
3256
3257   // Look for .init_array, .preinit_array and .fini_array by checking
3258   // section types.
3259   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3260       p != this->section_list_.end();
3261       ++p)
3262     switch((*p)->type())
3263       {
3264       case elfcpp::SHT_FINI_ARRAY:
3265         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3266         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
3267         break;
3268       case elfcpp::SHT_INIT_ARRAY:
3269         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3270         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
3271         break;
3272       case elfcpp::SHT_PREINIT_ARRAY:
3273         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3274         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
3275         break;
3276       default:
3277         break;
3278       }
3279   
3280   // Add a DT_RPATH entry if needed.
3281   const General_options::Dir_list& rpath(parameters->options().rpath());
3282   if (!rpath.empty())
3283     {
3284       std::string rpath_val;
3285       for (General_options::Dir_list::const_iterator p = rpath.begin();
3286            p != rpath.end();
3287            ++p)
3288         {
3289           if (rpath_val.empty())
3290             rpath_val = p->name();
3291           else
3292             {
3293               // Eliminate duplicates.
3294               General_options::Dir_list::const_iterator q;
3295               for (q = rpath.begin(); q != p; ++q)
3296                 if (q->name() == p->name())
3297                   break;
3298               if (q == p)
3299                 {
3300                   rpath_val += ':';
3301                   rpath_val += p->name();
3302                 }
3303             }
3304         }
3305
3306       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3307       if (parameters->options().enable_new_dtags())
3308         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3309     }
3310
3311   // Look for text segments that have dynamic relocations.
3312   bool have_textrel = false;
3313   if (!this->script_options_->saw_sections_clause())
3314     {
3315       for (Segment_list::const_iterator p = this->segment_list_.begin();
3316            p != this->segment_list_.end();
3317            ++p)
3318         {
3319           if (((*p)->flags() & elfcpp::PF_W) == 0
3320               && (*p)->dynamic_reloc_count() > 0)
3321             {
3322               have_textrel = true;
3323               break;
3324             }
3325         }
3326     }
3327   else
3328     {
3329       // We don't know the section -> segment mapping, so we are
3330       // conservative and just look for readonly sections with
3331       // relocations.  If those sections wind up in writable segments,
3332       // then we have created an unnecessary DT_TEXTREL entry.
3333       for (Section_list::const_iterator p = this->section_list_.begin();
3334            p != this->section_list_.end();
3335            ++p)
3336         {
3337           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3338               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3339               && ((*p)->dynamic_reloc_count() > 0))
3340             {
3341               have_textrel = true;
3342               break;
3343             }
3344         }
3345     }
3346
3347   // Add a DT_FLAGS entry. We add it even if no flags are set so that
3348   // post-link tools can easily modify these flags if desired.
3349   unsigned int flags = 0;
3350   if (have_textrel)
3351     {
3352       // Add a DT_TEXTREL for compatibility with older loaders.
3353       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3354       flags |= elfcpp::DF_TEXTREL;
3355
3356       if (parameters->options().text())
3357         gold_error(_("read-only segment has dynamic relocations"));
3358       else if (parameters->options().warn_shared_textrel()
3359                && parameters->options().shared())
3360         gold_warning(_("shared library text segment is not shareable"));
3361     }
3362   if (parameters->options().shared() && this->has_static_tls())
3363     flags |= elfcpp::DF_STATIC_TLS;
3364   if (parameters->options().origin())
3365     flags |= elfcpp::DF_ORIGIN;
3366   if (parameters->options().Bsymbolic())
3367     {
3368       flags |= elfcpp::DF_SYMBOLIC;
3369       // Add DT_SYMBOLIC for compatibility with older loaders.
3370       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3371     }
3372   if (parameters->options().now())
3373     flags |= elfcpp::DF_BIND_NOW;
3374   odyn->add_constant(elfcpp::DT_FLAGS, flags);
3375
3376   flags = 0;
3377   if (parameters->options().initfirst())
3378     flags |= elfcpp::DF_1_INITFIRST;
3379   if (parameters->options().interpose())
3380     flags |= elfcpp::DF_1_INTERPOSE;
3381   if (parameters->options().loadfltr())
3382     flags |= elfcpp::DF_1_LOADFLTR;
3383   if (parameters->options().nodefaultlib())
3384     flags |= elfcpp::DF_1_NODEFLIB;
3385   if (parameters->options().nodelete())
3386     flags |= elfcpp::DF_1_NODELETE;
3387   if (parameters->options().nodlopen())
3388     flags |= elfcpp::DF_1_NOOPEN;
3389   if (parameters->options().nodump())
3390     flags |= elfcpp::DF_1_NODUMP;
3391   if (!parameters->options().shared())
3392     flags &= ~(elfcpp::DF_1_INITFIRST
3393                | elfcpp::DF_1_NODELETE
3394                | elfcpp::DF_1_NOOPEN);
3395   if (parameters->options().origin())
3396     flags |= elfcpp::DF_1_ORIGIN;
3397   if (parameters->options().now())
3398     flags |= elfcpp::DF_1_NOW;
3399   if (flags)
3400     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3401 }
3402
3403 // Set the size of the _DYNAMIC symbol table to be the size of the
3404 // dynamic data.
3405
3406 void
3407 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
3408 {
3409   Output_data_dynamic* const odyn = this->dynamic_data_;
3410   odyn->finalize_data_size();
3411   off_t data_size = odyn->data_size();
3412   const int size = parameters->target().get_size();
3413   if (size == 32)
3414     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
3415   else if (size == 64)
3416     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
3417   else
3418     gold_unreachable();
3419 }
3420
3421 // The mapping of input section name prefixes to output section names.
3422 // In some cases one prefix is itself a prefix of another prefix; in
3423 // such a case the longer prefix must come first.  These prefixes are
3424 // based on the GNU linker default ELF linker script.
3425
3426 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3427 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3428 {
3429   MAPPING_INIT(".text.", ".text"),
3430   MAPPING_INIT(".ctors.", ".ctors"),
3431   MAPPING_INIT(".dtors.", ".dtors"),
3432   MAPPING_INIT(".rodata.", ".rodata"),
3433   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3434   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3435   MAPPING_INIT(".data.", ".data"),
3436   MAPPING_INIT(".bss.", ".bss"),
3437   MAPPING_INIT(".tdata.", ".tdata"),
3438   MAPPING_INIT(".tbss.", ".tbss"),
3439   MAPPING_INIT(".init_array.", ".init_array"),
3440   MAPPING_INIT(".fini_array.", ".fini_array"),
3441   MAPPING_INIT(".sdata.", ".sdata"),
3442   MAPPING_INIT(".sbss.", ".sbss"),
3443   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3444   // differently depending on whether it is creating a shared library.
3445   MAPPING_INIT(".sdata2.", ".sdata"),
3446   MAPPING_INIT(".sbss2.", ".sbss"),
3447   MAPPING_INIT(".lrodata.", ".lrodata"),
3448   MAPPING_INIT(".ldata.", ".ldata"),
3449   MAPPING_INIT(".lbss.", ".lbss"),
3450   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3451   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3452   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3453   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3454   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3455   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3456   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3457   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3458   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3459   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3460   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3461   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3462   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3463   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3464   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3465   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3466   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3467   MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
3468   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3469   MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
3470   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3471 };
3472 #undef MAPPING_INIT
3473
3474 const int Layout::section_name_mapping_count =
3475   (sizeof(Layout::section_name_mapping)
3476    / sizeof(Layout::section_name_mapping[0]));
3477
3478 // Choose the output section name to use given an input section name.
3479 // Set *PLEN to the length of the name.  *PLEN is initialized to the
3480 // length of NAME.
3481
3482 const char*
3483 Layout::output_section_name(const char* name, size_t* plen)
3484 {
3485   // gcc 4.3 generates the following sorts of section names when it
3486   // needs a section name specific to a function:
3487   //   .text.FN
3488   //   .rodata.FN
3489   //   .sdata2.FN
3490   //   .data.FN
3491   //   .data.rel.FN
3492   //   .data.rel.local.FN
3493   //   .data.rel.ro.FN
3494   //   .data.rel.ro.local.FN
3495   //   .sdata.FN
3496   //   .bss.FN
3497   //   .sbss.FN
3498   //   .tdata.FN
3499   //   .tbss.FN
3500
3501   // The GNU linker maps all of those to the part before the .FN,
3502   // except that .data.rel.local.FN is mapped to .data, and
3503   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
3504   // beginning with .data.rel.ro.local are grouped together.
3505
3506   // For an anonymous namespace, the string FN can contain a '.'.
3507
3508   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3509   // GNU linker maps to .rodata.
3510
3511   // The .data.rel.ro sections are used with -z relro.  The sections
3512   // are recognized by name.  We use the same names that the GNU
3513   // linker does for these sections.
3514
3515   // It is hard to handle this in a principled way, so we don't even
3516   // try.  We use a table of mappings.  If the input section name is
3517   // not found in the table, we simply use it as the output section
3518   // name.
3519
3520   const Section_name_mapping* psnm = section_name_mapping;
3521   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3522     {
3523       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3524         {
3525           *plen = psnm->tolen;
3526           return psnm->to;
3527         }
3528     }
3529
3530   return name;
3531 }
3532
3533 // Check if a comdat group or .gnu.linkonce section with the given
3534 // NAME is selected for the link.  If there is already a section,
3535 // *KEPT_SECTION is set to point to the existing section and the
3536 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3537 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3538 // *KEPT_SECTION is set to the internal copy and the function returns
3539 // true.
3540
3541 bool
3542 Layout::find_or_add_kept_section(const std::string& name,
3543                                  Relobj* object,
3544                                  unsigned int shndx,
3545                                  bool is_comdat,
3546                                  bool is_group_name,
3547                                  Kept_section** kept_section)
3548 {
3549   // It's normal to see a couple of entries here, for the x86 thunk
3550   // sections.  If we see more than a few, we're linking a C++
3551   // program, and we resize to get more space to minimize rehashing.
3552   if (this->signatures_.size() > 4
3553       && !this->resized_signatures_)
3554     {
3555       reserve_unordered_map(&this->signatures_,
3556                             this->number_of_input_files_ * 64);
3557       this->resized_signatures_ = true;
3558     }
3559
3560   Kept_section candidate;
3561   std::pair<Signatures::iterator, bool> ins =
3562     this->signatures_.insert(std::make_pair(name, candidate));
3563
3564   if (kept_section != NULL)
3565     *kept_section = &ins.first->second;
3566   if (ins.second)
3567     {
3568       // This is the first time we've seen this signature.
3569       ins.first->second.set_object(object);
3570       ins.first->second.set_shndx(shndx);
3571       if (is_comdat)
3572         ins.first->second.set_is_comdat();
3573       if (is_group_name)
3574         ins.first->second.set_is_group_name();
3575       return true;
3576     }
3577
3578   // We have already seen this signature.
3579
3580   if (ins.first->second.is_group_name())
3581     {
3582       // We've already seen a real section group with this signature.
3583       // If the kept group is from a plugin object, and we're in the
3584       // replacement phase, accept the new one as a replacement.
3585       if (ins.first->second.object() == NULL
3586           && parameters->options().plugins()->in_replacement_phase())
3587         {
3588           ins.first->second.set_object(object);
3589           ins.first->second.set_shndx(shndx);
3590           return true;
3591         }
3592       return false;
3593     }
3594   else if (is_group_name)
3595     {
3596       // This is a real section group, and we've already seen a
3597       // linkonce section with this signature.  Record that we've seen
3598       // a section group, and don't include this section group.
3599       ins.first->second.set_is_group_name();
3600       return false;
3601     }
3602   else
3603     {
3604       // We've already seen a linkonce section and this is a linkonce
3605       // section.  These don't block each other--this may be the same
3606       // symbol name with different section types.
3607       return true;
3608     }
3609 }
3610
3611 // Store the allocated sections into the section list.
3612
3613 void
3614 Layout::get_allocated_sections(Section_list* section_list) const
3615 {
3616   for (Section_list::const_iterator p = this->section_list_.begin();
3617        p != this->section_list_.end();
3618        ++p)
3619     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3620       section_list->push_back(*p);
3621 }
3622
3623 // Create an output segment.
3624
3625 Output_segment*
3626 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3627 {
3628   gold_assert(!parameters->options().relocatable());
3629   Output_segment* oseg = new Output_segment(type, flags);
3630   this->segment_list_.push_back(oseg);
3631
3632   if (type == elfcpp::PT_TLS)
3633     this->tls_segment_ = oseg;
3634   else if (type == elfcpp::PT_GNU_RELRO)
3635     this->relro_segment_ = oseg;
3636
3637   return oseg;
3638 }
3639
3640 // Write out the Output_sections.  Most won't have anything to write,
3641 // since most of the data will come from input sections which are
3642 // handled elsewhere.  But some Output_sections do have Output_data.
3643
3644 void
3645 Layout::write_output_sections(Output_file* of) const
3646 {
3647   for (Section_list::const_iterator p = this->section_list_.begin();
3648        p != this->section_list_.end();
3649        ++p)
3650     {
3651       if (!(*p)->after_input_sections())
3652         (*p)->write(of);
3653     }
3654 }
3655
3656 // Write out data not associated with a section or the symbol table.
3657
3658 void
3659 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3660 {
3661   if (!parameters->options().strip_all())
3662     {
3663       const Output_section* symtab_section = this->symtab_section_;
3664       for (Section_list::const_iterator p = this->section_list_.begin();
3665            p != this->section_list_.end();
3666            ++p)
3667         {
3668           if ((*p)->needs_symtab_index())
3669             {
3670               gold_assert(symtab_section != NULL);
3671               unsigned int index = (*p)->symtab_index();
3672               gold_assert(index > 0 && index != -1U);
3673               off_t off = (symtab_section->offset()
3674                            + index * symtab_section->entsize());
3675               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3676             }
3677         }
3678     }
3679
3680   const Output_section* dynsym_section = this->dynsym_section_;
3681   for (Section_list::const_iterator p = this->section_list_.begin();
3682        p != this->section_list_.end();
3683        ++p)
3684     {
3685       if ((*p)->needs_dynsym_index())
3686         {
3687           gold_assert(dynsym_section != NULL);
3688           unsigned int index = (*p)->dynsym_index();
3689           gold_assert(index > 0 && index != -1U);
3690           off_t off = (dynsym_section->offset()
3691                        + index * dynsym_section->entsize());
3692           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3693         }
3694     }
3695
3696   // Write out the Output_data which are not in an Output_section.
3697   for (Data_list::const_iterator p = this->special_output_list_.begin();
3698        p != this->special_output_list_.end();
3699        ++p)
3700     (*p)->write(of);
3701 }
3702
3703 // Write out the Output_sections which can only be written after the
3704 // input sections are complete.
3705
3706 void
3707 Layout::write_sections_after_input_sections(Output_file* of)
3708 {
3709   // Determine the final section offsets, and thus the final output
3710   // file size.  Note we finalize the .shstrab last, to allow the
3711   // after_input_section sections to modify their section-names before
3712   // writing.
3713   if (this->any_postprocessing_sections_)
3714     {
3715       off_t off = this->output_file_size_;
3716       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3717
3718       // Now that we've finalized the names, we can finalize the shstrab.
3719       off =
3720         this->set_section_offsets(off,
3721                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3722
3723       if (off > this->output_file_size_)
3724         {
3725           of->resize(off);
3726           this->output_file_size_ = off;
3727         }
3728     }
3729
3730   for (Section_list::const_iterator p = this->section_list_.begin();
3731        p != this->section_list_.end();
3732        ++p)
3733     {
3734       if ((*p)->after_input_sections())
3735         (*p)->write(of);
3736     }
3737
3738   this->section_headers_->write(of);
3739 }
3740
3741 // If the build ID requires computing a checksum, do so here, and
3742 // write it out.  We compute a checksum over the entire file because
3743 // that is simplest.
3744
3745 void
3746 Layout::write_build_id(Output_file* of) const
3747 {
3748   if (this->build_id_note_ == NULL)
3749     return;
3750
3751   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3752
3753   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3754                                           this->build_id_note_->data_size());
3755
3756   const char* style = parameters->options().build_id();
3757   if (strcmp(style, "sha1") == 0)
3758     {
3759       sha1_ctx ctx;
3760       sha1_init_ctx(&ctx);
3761       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3762       sha1_finish_ctx(&ctx, ov);
3763     }
3764   else if (strcmp(style, "md5") == 0)
3765     {
3766       md5_ctx ctx;
3767       md5_init_ctx(&ctx);
3768       md5_process_bytes(iv, this->output_file_size_, &ctx);
3769       md5_finish_ctx(&ctx, ov);
3770     }
3771   else
3772     gold_unreachable();
3773
3774   of->write_output_view(this->build_id_note_->offset(),
3775                         this->build_id_note_->data_size(),
3776                         ov);
3777
3778   of->free_input_view(0, this->output_file_size_, iv);
3779 }
3780
3781 // Write out a binary file.  This is called after the link is
3782 // complete.  IN is the temporary output file we used to generate the
3783 // ELF code.  We simply walk through the segments, read them from
3784 // their file offset in IN, and write them to their load address in
3785 // the output file.  FIXME: with a bit more work, we could support
3786 // S-records and/or Intel hex format here.
3787
3788 void
3789 Layout::write_binary(Output_file* in) const
3790 {
3791   gold_assert(parameters->options().oformat_enum()
3792               == General_options::OBJECT_FORMAT_BINARY);
3793
3794   // Get the size of the binary file.
3795   uint64_t max_load_address = 0;
3796   for (Segment_list::const_iterator p = this->segment_list_.begin();
3797        p != this->segment_list_.end();
3798        ++p)
3799     {
3800       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3801         {
3802           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3803           if (max_paddr > max_load_address)
3804             max_load_address = max_paddr;
3805         }
3806     }
3807
3808   Output_file out(parameters->options().output_file_name());
3809   out.open(max_load_address);
3810
3811   for (Segment_list::const_iterator p = this->segment_list_.begin();
3812        p != this->segment_list_.end();
3813        ++p)
3814     {
3815       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3816         {
3817           const unsigned char* vin = in->get_input_view((*p)->offset(),
3818                                                         (*p)->filesz());
3819           unsigned char* vout = out.get_output_view((*p)->paddr(),
3820                                                     (*p)->filesz());
3821           memcpy(vout, vin, (*p)->filesz());
3822           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3823           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3824         }
3825     }
3826
3827   out.close();
3828 }
3829
3830 // Print the output sections to the map file.
3831
3832 void
3833 Layout::print_to_mapfile(Mapfile* mapfile) const
3834 {
3835   for (Segment_list::const_iterator p = this->segment_list_.begin();
3836        p != this->segment_list_.end();
3837        ++p)
3838     (*p)->print_sections_to_mapfile(mapfile);
3839 }
3840
3841 // Print statistical information to stderr.  This is used for --stats.
3842
3843 void
3844 Layout::print_stats() const
3845 {
3846   this->namepool_.print_stats("section name pool");
3847   this->sympool_.print_stats("output symbol name pool");
3848   this->dynpool_.print_stats("dynamic name pool");
3849
3850   for (Section_list::const_iterator p = this->section_list_.begin();
3851        p != this->section_list_.end();
3852        ++p)
3853     (*p)->print_merge_stats();
3854 }
3855
3856 // Write_sections_task methods.
3857
3858 // We can always run this task.
3859
3860 Task_token*
3861 Write_sections_task::is_runnable()
3862 {
3863   return NULL;
3864 }
3865
3866 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3867 // when finished.
3868
3869 void
3870 Write_sections_task::locks(Task_locker* tl)
3871 {
3872   tl->add(this, this->output_sections_blocker_);
3873   tl->add(this, this->final_blocker_);
3874 }
3875
3876 // Run the task--write out the data.
3877
3878 void
3879 Write_sections_task::run(Workqueue*)
3880 {
3881   this->layout_->write_output_sections(this->of_);
3882 }
3883
3884 // Write_data_task methods.
3885
3886 // We can always run this task.
3887
3888 Task_token*
3889 Write_data_task::is_runnable()
3890 {
3891   return NULL;
3892 }
3893
3894 // We need to unlock FINAL_BLOCKER when finished.
3895
3896 void
3897 Write_data_task::locks(Task_locker* tl)
3898 {
3899   tl->add(this, this->final_blocker_);
3900 }
3901
3902 // Run the task--write out the data.
3903
3904 void
3905 Write_data_task::run(Workqueue*)
3906 {
3907   this->layout_->write_data(this->symtab_, this->of_);
3908 }
3909
3910 // Write_symbols_task methods.
3911
3912 // We can always run this task.
3913
3914 Task_token*
3915 Write_symbols_task::is_runnable()
3916 {
3917   return NULL;
3918 }
3919
3920 // We need to unlock FINAL_BLOCKER when finished.
3921
3922 void
3923 Write_symbols_task::locks(Task_locker* tl)
3924 {
3925   tl->add(this, this->final_blocker_);
3926 }
3927
3928 // Run the task--write out the symbols.
3929
3930 void
3931 Write_symbols_task::run(Workqueue*)
3932 {
3933   this->symtab_->write_globals(this->sympool_, this->dynpool_,
3934                                this->layout_->symtab_xindex(),
3935                                this->layout_->dynsym_xindex(), this->of_);
3936 }
3937
3938 // Write_after_input_sections_task methods.
3939
3940 // We can only run this task after the input sections have completed.
3941
3942 Task_token*
3943 Write_after_input_sections_task::is_runnable()
3944 {
3945   if (this->input_sections_blocker_->is_blocked())
3946     return this->input_sections_blocker_;
3947   return NULL;
3948 }
3949
3950 // We need to unlock FINAL_BLOCKER when finished.
3951
3952 void
3953 Write_after_input_sections_task::locks(Task_locker* tl)
3954 {
3955   tl->add(this, this->final_blocker_);
3956 }
3957
3958 // Run the task.
3959
3960 void
3961 Write_after_input_sections_task::run(Workqueue*)
3962 {
3963   this->layout_->write_sections_after_input_sections(this->of_);
3964 }
3965
3966 // Close_task_runner methods.
3967
3968 // Run the task--close the file.
3969
3970 void
3971 Close_task_runner::run(Workqueue*, const Task*)
3972 {
3973   // If we need to compute a checksum for the BUILD if, we do so here.
3974   this->layout_->write_build_id(this->of_);
3975
3976   // If we've been asked to create a binary file, we do so here.
3977   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3978     this->layout_->write_binary(this->of_);
3979
3980   this->of_->close();
3981 }
3982
3983 // Instantiate the templates we need.  We could use the configure
3984 // script to restrict this to only the ones for implemented targets.
3985
3986 #ifdef HAVE_TARGET_32_LITTLE
3987 template
3988 Output_section*
3989 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3990                           const char* name,
3991                           const elfcpp::Shdr<32, false>& shdr,
3992                           unsigned int, unsigned int, off_t*);
3993 #endif
3994
3995 #ifdef HAVE_TARGET_32_BIG
3996 template
3997 Output_section*
3998 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3999                          const char* name,
4000                          const elfcpp::Shdr<32, true>& shdr,
4001                          unsigned int, unsigned int, off_t*);
4002 #endif
4003
4004 #ifdef HAVE_TARGET_64_LITTLE
4005 template
4006 Output_section*
4007 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
4008                           const char* name,
4009                           const elfcpp::Shdr<64, false>& shdr,
4010                           unsigned int, unsigned int, off_t*);
4011 #endif
4012
4013 #ifdef HAVE_TARGET_64_BIG
4014 template
4015 Output_section*
4016 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
4017                          const char* name,
4018                          const elfcpp::Shdr<64, true>& shdr,
4019                          unsigned int, unsigned int, off_t*);
4020 #endif
4021
4022 #ifdef HAVE_TARGET_32_LITTLE
4023 template
4024 Output_section*
4025 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
4026                                 unsigned int reloc_shndx,
4027                                 const elfcpp::Shdr<32, false>& shdr,
4028                                 Output_section* data_section,
4029                                 Relocatable_relocs* rr);
4030 #endif
4031
4032 #ifdef HAVE_TARGET_32_BIG
4033 template
4034 Output_section*
4035 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4036                                unsigned int reloc_shndx,
4037                                const elfcpp::Shdr<32, true>& shdr,
4038                                Output_section* data_section,
4039                                Relocatable_relocs* rr);
4040 #endif
4041
4042 #ifdef HAVE_TARGET_64_LITTLE
4043 template
4044 Output_section*
4045 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4046                                 unsigned int reloc_shndx,
4047                                 const elfcpp::Shdr<64, false>& shdr,
4048                                 Output_section* data_section,
4049                                 Relocatable_relocs* rr);
4050 #endif
4051
4052 #ifdef HAVE_TARGET_64_BIG
4053 template
4054 Output_section*
4055 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4056                                unsigned int reloc_shndx,
4057                                const elfcpp::Shdr<64, true>& shdr,
4058                                Output_section* data_section,
4059                                Relocatable_relocs* rr);
4060 #endif
4061
4062 #ifdef HAVE_TARGET_32_LITTLE
4063 template
4064 void
4065 Layout::layout_group<32, false>(Symbol_table* symtab,
4066                                 Sized_relobj<32, false>* object,
4067                                 unsigned int,
4068                                 const char* group_section_name,
4069                                 const char* signature,
4070                                 const elfcpp::Shdr<32, false>& shdr,
4071                                 elfcpp::Elf_Word flags,
4072                                 std::vector<unsigned int>* shndxes);
4073 #endif
4074
4075 #ifdef HAVE_TARGET_32_BIG
4076 template
4077 void
4078 Layout::layout_group<32, true>(Symbol_table* symtab,
4079                                Sized_relobj<32, true>* object,
4080                                unsigned int,
4081                                const char* group_section_name,
4082                                const char* signature,
4083                                const elfcpp::Shdr<32, true>& shdr,
4084                                elfcpp::Elf_Word flags,
4085                                std::vector<unsigned int>* shndxes);
4086 #endif
4087
4088 #ifdef HAVE_TARGET_64_LITTLE
4089 template
4090 void
4091 Layout::layout_group<64, false>(Symbol_table* symtab,
4092                                 Sized_relobj<64, false>* object,
4093                                 unsigned int,
4094                                 const char* group_section_name,
4095                                 const char* signature,
4096                                 const elfcpp::Shdr<64, false>& shdr,
4097                                 elfcpp::Elf_Word flags,
4098                                 std::vector<unsigned int>* shndxes);
4099 #endif
4100
4101 #ifdef HAVE_TARGET_64_BIG
4102 template
4103 void
4104 Layout::layout_group<64, true>(Symbol_table* symtab,
4105                                Sized_relobj<64, true>* object,
4106                                unsigned int,
4107                                const char* group_section_name,
4108                                const char* signature,
4109                                const elfcpp::Shdr<64, true>& shdr,
4110                                elfcpp::Elf_Word flags,
4111                                std::vector<unsigned int>* shndxes);
4112 #endif
4113
4114 #ifdef HAVE_TARGET_32_LITTLE
4115 template
4116 Output_section*
4117 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4118                                    const unsigned char* symbols,
4119                                    off_t symbols_size,
4120                                    const unsigned char* symbol_names,
4121                                    off_t symbol_names_size,
4122                                    unsigned int shndx,
4123                                    const elfcpp::Shdr<32, false>& shdr,
4124                                    unsigned int reloc_shndx,
4125                                    unsigned int reloc_type,
4126                                    off_t* off);
4127 #endif
4128
4129 #ifdef HAVE_TARGET_32_BIG
4130 template
4131 Output_section*
4132 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4133                                    const unsigned char* symbols,
4134                                    off_t symbols_size,
4135                                   const unsigned char* symbol_names,
4136                                   off_t symbol_names_size,
4137                                   unsigned int shndx,
4138                                   const elfcpp::Shdr<32, true>& shdr,
4139                                   unsigned int reloc_shndx,
4140                                   unsigned int reloc_type,
4141                                   off_t* off);
4142 #endif
4143
4144 #ifdef HAVE_TARGET_64_LITTLE
4145 template
4146 Output_section*
4147 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4148                                    const unsigned char* symbols,
4149                                    off_t symbols_size,
4150                                    const unsigned char* symbol_names,
4151                                    off_t symbol_names_size,
4152                                    unsigned int shndx,
4153                                    const elfcpp::Shdr<64, false>& shdr,
4154                                    unsigned int reloc_shndx,
4155                                    unsigned int reloc_type,
4156                                    off_t* off);
4157 #endif
4158
4159 #ifdef HAVE_TARGET_64_BIG
4160 template
4161 Output_section*
4162 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4163                                    const unsigned char* symbols,
4164                                    off_t symbols_size,
4165                                   const unsigned char* symbol_names,
4166                                   off_t symbol_names_size,
4167                                   unsigned int shndx,
4168                                   const elfcpp::Shdr<64, true>& shdr,
4169                                   unsigned int reloc_shndx,
4170                                   unsigned int reloc_type,
4171                                   off_t* off);
4172 #endif
4173
4174 } // End namespace gold.