OSDN Git Service

* mapfile.cc: New file.
[pf3gnuchains/pf3gnuchains3x.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reloc.h"
47 #include "layout.h"
48
49 namespace gold
50 {
51
52 // Layout_task_runner methods.
53
54 // Lay out the sections.  This is called after all the input objects
55 // have been read.
56
57 void
58 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
59 {
60   off_t file_size = this->layout_->finalize(this->input_objects_,
61                                             this->symtab_,
62                                             this->target_,
63                                             task);
64
65   // Now we know the final size of the output file and we know where
66   // each piece of information goes.
67
68   if (this->mapfile_ != NULL)
69     {
70       this->mapfile_->print_discarded_sections(this->input_objects_);
71       this->layout_->print_to_mapfile(this->mapfile_);
72     }
73
74   Output_file* of = new Output_file(parameters->options().output_file_name());
75   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
76     of->set_is_temporary();
77   of->open(file_size);
78
79   // Queue up the final set of tasks.
80   gold::queue_final_tasks(this->options_, this->input_objects_,
81                           this->symtab_, this->layout_, workqueue, of);
82 }
83
84 // Layout methods.
85
86 Layout::Layout(const General_options& options, Script_options* script_options)
87   : options_(options),
88     script_options_(script_options),
89     namepool_(),
90     sympool_(),
91     dynpool_(),
92     signatures_(),
93     section_name_map_(),
94     segment_list_(),
95     section_list_(),
96     unattached_section_list_(),
97     sections_are_attached_(false),
98     special_output_list_(),
99     section_headers_(NULL),
100     tls_segment_(NULL),
101     relro_segment_(NULL),
102     symtab_section_(NULL),
103     symtab_xindex_(NULL),
104     dynsym_section_(NULL),
105     dynsym_xindex_(NULL),
106     dynamic_section_(NULL),
107     dynamic_data_(NULL),
108     eh_frame_section_(NULL),
109     eh_frame_data_(NULL),
110     added_eh_frame_data_(false),
111     eh_frame_hdr_section_(NULL),
112     build_id_note_(NULL),
113     group_signatures_(),
114     output_file_size_(-1),
115     input_requires_executable_stack_(false),
116     input_with_gnu_stack_note_(false),
117     input_without_gnu_stack_note_(false),
118     has_static_tls_(false),
119     any_postprocessing_sections_(false)
120 {
121   // Make space for more than enough segments for a typical file.
122   // This is just for efficiency--it's OK if we wind up needing more.
123   this->segment_list_.reserve(12);
124
125   // We expect two unattached Output_data objects: the file header and
126   // the segment headers.
127   this->special_output_list_.reserve(2);
128 }
129
130 // Hash a key we use to look up an output section mapping.
131
132 size_t
133 Layout::Hash_key::operator()(const Layout::Key& k) const
134 {
135  return k.first + k.second.first + k.second.second;
136 }
137
138 // Return whether PREFIX is a prefix of STR.
139
140 static inline bool
141 is_prefix_of(const char* prefix, const char* str)
142 {
143   return strncmp(prefix, str, strlen(prefix)) == 0;
144 }
145
146 // Returns whether the given section is in the list of
147 // debug-sections-used-by-some-version-of-gdb.  Currently,
148 // we've checked versions of gdb up to and including 6.7.1.
149
150 static const char* gdb_sections[] =
151 { ".debug_abbrev",
152   // ".debug_aranges",   // not used by gdb as of 6.7.1
153   ".debug_frame",
154   ".debug_info",
155   ".debug_line",
156   ".debug_loc",
157   ".debug_macinfo",
158   // ".debug_pubnames",  // not used by gdb as of 6.7.1
159   ".debug_ranges",
160   ".debug_str",
161 };
162
163 static inline bool
164 is_gdb_debug_section(const char* str)
165 {
166   // We can do this faster: binary search or a hashtable.  But why bother?
167   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
168     if (strcmp(str, gdb_sections[i]) == 0)
169       return true;
170   return false;
171 }
172
173 // Whether to include this section in the link.
174
175 template<int size, bool big_endian>
176 bool
177 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
178                         const elfcpp::Shdr<size, big_endian>& shdr)
179 {
180   switch (shdr.get_sh_type())
181     {
182     case elfcpp::SHT_NULL:
183     case elfcpp::SHT_SYMTAB:
184     case elfcpp::SHT_DYNSYM:
185     case elfcpp::SHT_STRTAB:
186     case elfcpp::SHT_HASH:
187     case elfcpp::SHT_DYNAMIC:
188     case elfcpp::SHT_SYMTAB_SHNDX:
189       return false;
190
191     case elfcpp::SHT_RELA:
192     case elfcpp::SHT_REL:
193     case elfcpp::SHT_GROUP:
194       // If we are emitting relocations these should be handled
195       // elsewhere.
196       gold_assert(!parameters->options().relocatable()
197                   && !parameters->options().emit_relocs());
198       return false;
199
200     case elfcpp::SHT_PROGBITS:
201       if (parameters->options().strip_debug()
202           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
203         {
204           if (is_debug_info_section(name))
205             return false;
206         }
207       if (parameters->options().strip_debug_gdb()
208           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
209         {
210           // Debugging sections can only be recognized by name.
211           if (is_prefix_of(".debug", name)
212               && !is_gdb_debug_section(name))
213             return false;
214         }
215       return true;
216
217     default:
218       return true;
219     }
220 }
221
222 // Return an output section named NAME, or NULL if there is none.
223
224 Output_section*
225 Layout::find_output_section(const char* name) const
226 {
227   for (Section_list::const_iterator p = this->section_list_.begin();
228        p != this->section_list_.end();
229        ++p)
230     if (strcmp((*p)->name(), name) == 0)
231       return *p;
232   return NULL;
233 }
234
235 // Return an output segment of type TYPE, with segment flags SET set
236 // and segment flags CLEAR clear.  Return NULL if there is none.
237
238 Output_segment*
239 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
240                             elfcpp::Elf_Word clear) const
241 {
242   for (Segment_list::const_iterator p = this->segment_list_.begin();
243        p != this->segment_list_.end();
244        ++p)
245     if (static_cast<elfcpp::PT>((*p)->type()) == type
246         && ((*p)->flags() & set) == set
247         && ((*p)->flags() & clear) == 0)
248       return *p;
249   return NULL;
250 }
251
252 // Return the output section to use for section NAME with type TYPE
253 // and section flags FLAGS.  NAME must be canonicalized in the string
254 // pool, and NAME_KEY is the key.
255
256 Output_section*
257 Layout::get_output_section(const char* name, Stringpool::Key name_key,
258                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
259 {
260   elfcpp::Elf_Xword lookup_flags = flags;
261
262   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
263   // read-write with read-only sections.  Some other ELF linkers do
264   // not do this.  FIXME: Perhaps there should be an option
265   // controlling this.
266   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
267
268   const Key key(name_key, std::make_pair(type, lookup_flags));
269   const std::pair<Key, Output_section*> v(key, NULL);
270   std::pair<Section_name_map::iterator, bool> ins(
271     this->section_name_map_.insert(v));
272
273   if (!ins.second)
274     return ins.first->second;
275   else
276     {
277       // This is the first time we've seen this name/type/flags
278       // combination.  For compatibility with the GNU linker, we
279       // combine sections with contents and zero flags with sections
280       // with non-zero flags.  This is a workaround for cases where
281       // assembler code forgets to set section flags.  FIXME: Perhaps
282       // there should be an option to control this.
283       Output_section* os = NULL;
284
285       if (type == elfcpp::SHT_PROGBITS)
286         {
287           if (flags == 0)
288             {
289               Output_section* same_name = this->find_output_section(name);
290               if (same_name != NULL
291                   && same_name->type() == elfcpp::SHT_PROGBITS
292                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
293                 os = same_name;
294             }
295           else if ((flags & elfcpp::SHF_TLS) == 0)
296             {
297               elfcpp::Elf_Xword zero_flags = 0;
298               const Key zero_key(name_key, std::make_pair(type, zero_flags));
299               Section_name_map::iterator p =
300                   this->section_name_map_.find(zero_key);
301               if (p != this->section_name_map_.end())
302                 os = p->second;
303             }
304         }
305
306       if (os == NULL)
307         os = this->make_output_section(name, type, flags);
308       ins.first->second = os;
309       return os;
310     }
311 }
312
313 // Pick the output section to use for section NAME, in input file
314 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
315 // linker created section.  IS_INPUT_SECTION is true if we are
316 // choosing an output section for an input section found in a input
317 // file.  This will return NULL if the input section should be
318 // discarded.
319
320 Output_section*
321 Layout::choose_output_section(const Relobj* relobj, const char* name,
322                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
323                               bool is_input_section)
324 {
325   // We should not see any input sections after we have attached
326   // sections to segments.
327   gold_assert(!is_input_section || !this->sections_are_attached_);
328
329   // Some flags in the input section should not be automatically
330   // copied to the output section.
331   flags &= ~ (elfcpp::SHF_INFO_LINK
332               | elfcpp::SHF_LINK_ORDER
333               | elfcpp::SHF_GROUP
334               | elfcpp::SHF_MERGE
335               | elfcpp::SHF_STRINGS);
336
337   if (this->script_options_->saw_sections_clause())
338     {
339       // We are using a SECTIONS clause, so the output section is
340       // chosen based only on the name.
341
342       Script_sections* ss = this->script_options_->script_sections();
343       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
344       Output_section** output_section_slot;
345       name = ss->output_section_name(file_name, name, &output_section_slot);
346       if (name == NULL)
347         {
348           // The SECTIONS clause says to discard this input section.
349           return NULL;
350         }
351
352       // If this is an orphan section--one not mentioned in the linker
353       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
354       // default processing below.
355
356       if (output_section_slot != NULL)
357         {
358           if (*output_section_slot != NULL)
359             return *output_section_slot;
360
361           // We don't put sections found in the linker script into
362           // SECTION_NAME_MAP_.  That keeps us from getting confused
363           // if an orphan section is mapped to a section with the same
364           // name as one in the linker script.
365
366           name = this->namepool_.add(name, false, NULL);
367
368           Output_section* os = this->make_output_section(name, type, flags);
369           os->set_found_in_sections_clause();
370           *output_section_slot = os;
371           return os;
372         }
373     }
374
375   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
376
377   // Turn NAME from the name of the input section into the name of the
378   // output section.
379
380   size_t len = strlen(name);
381   if (is_input_section && !parameters->options().relocatable())
382     name = Layout::output_section_name(name, &len);
383
384   Stringpool::Key name_key;
385   name = this->namepool_.add_with_length(name, len, true, &name_key);
386
387   // Find or make the output section.  The output section is selected
388   // based on the section name, type, and flags.
389   return this->get_output_section(name, name_key, type, flags);
390 }
391
392 // Return the output section to use for input section SHNDX, with name
393 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
394 // index of a relocation section which applies to this section, or 0
395 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
396 // relocation section if there is one.  Set *OFF to the offset of this
397 // input section without the output section.  Return NULL if the
398 // section should be discarded.  Set *OFF to -1 if the section
399 // contents should not be written directly to the output file, but
400 // will instead receive special handling.
401
402 template<int size, bool big_endian>
403 Output_section*
404 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
405                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
406                unsigned int reloc_shndx, unsigned int, off_t* off)
407 {
408   if (!this->include_section(object, name, shdr))
409     return NULL;
410
411   Output_section* os;
412
413   // In a relocatable link a grouped section must not be combined with
414   // any other sections.
415   if (parameters->options().relocatable()
416       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
417     {
418       name = this->namepool_.add(name, true, NULL);
419       os = this->make_output_section(name, shdr.get_sh_type(),
420                                      shdr.get_sh_flags());
421     }
422   else
423     {
424       os = this->choose_output_section(object, name, shdr.get_sh_type(),
425                                        shdr.get_sh_flags(), true);
426       if (os == NULL)
427         return NULL;
428     }
429
430   // By default the GNU linker sorts input sections whose names match
431   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
432   // are sorted by name.  This is used to implement constructor
433   // priority ordering.  We are compatible.
434   if (!this->script_options_->saw_sections_clause()
435       && (is_prefix_of(".ctors.", name)
436           || is_prefix_of(".dtors.", name)
437           || is_prefix_of(".init_array.", name)
438           || is_prefix_of(".fini_array.", name)))
439     os->set_must_sort_attached_input_sections();
440
441   // FIXME: Handle SHF_LINK_ORDER somewhere.
442
443   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
444                                this->script_options_->saw_sections_clause());
445
446   return os;
447 }
448
449 // Handle a relocation section when doing a relocatable link.
450
451 template<int size, bool big_endian>
452 Output_section*
453 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
454                      unsigned int,
455                      const elfcpp::Shdr<size, big_endian>& shdr,
456                      Output_section* data_section,
457                      Relocatable_relocs* rr)
458 {
459   gold_assert(parameters->options().relocatable()
460               || parameters->options().emit_relocs());
461
462   int sh_type = shdr.get_sh_type();
463
464   std::string name;
465   if (sh_type == elfcpp::SHT_REL)
466     name = ".rel";
467   else if (sh_type == elfcpp::SHT_RELA)
468     name = ".rela";
469   else
470     gold_unreachable();
471   name += data_section->name();
472
473   Output_section* os = this->choose_output_section(object, name.c_str(),
474                                                    sh_type,
475                                                    shdr.get_sh_flags(),
476                                                    false);
477
478   os->set_should_link_to_symtab();
479   os->set_info_section(data_section);
480
481   Output_section_data* posd;
482   if (sh_type == elfcpp::SHT_REL)
483     {
484       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
485       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
486                                            size,
487                                            big_endian>(rr);
488     }
489   else if (sh_type == elfcpp::SHT_RELA)
490     {
491       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
492       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
493                                            size,
494                                            big_endian>(rr);
495     }
496   else
497     gold_unreachable();
498
499   os->add_output_section_data(posd);
500   rr->set_output_data(posd);
501
502   return os;
503 }
504
505 // Handle a group section when doing a relocatable link.
506
507 template<int size, bool big_endian>
508 void
509 Layout::layout_group(Symbol_table* symtab,
510                      Sized_relobj<size, big_endian>* object,
511                      unsigned int,
512                      const char* group_section_name,
513                      const char* signature,
514                      const elfcpp::Shdr<size, big_endian>& shdr,
515                      elfcpp::Elf_Word flags,
516                      std::vector<unsigned int>* shndxes)
517 {
518   gold_assert(parameters->options().relocatable());
519   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
520   group_section_name = this->namepool_.add(group_section_name, true, NULL);
521   Output_section* os = this->make_output_section(group_section_name,
522                                                  elfcpp::SHT_GROUP,
523                                                  shdr.get_sh_flags());
524
525   // We need to find a symbol with the signature in the symbol table.
526   // If we don't find one now, we need to look again later.
527   Symbol* sym = symtab->lookup(signature, NULL);
528   if (sym != NULL)
529     os->set_info_symndx(sym);
530   else
531     {
532       // We will wind up using a symbol whose name is the signature.
533       // So just put the signature in the symbol name pool to save it.
534       signature = symtab->canonicalize_name(signature);
535       this->group_signatures_.push_back(Group_signature(os, signature));
536     }
537
538   os->set_should_link_to_symtab();
539   os->set_entsize(4);
540
541   section_size_type entry_count =
542     convert_to_section_size_type(shdr.get_sh_size() / 4);
543   Output_section_data* posd =
544     new Output_data_group<size, big_endian>(object, entry_count, flags,
545                                             shndxes);
546   os->add_output_section_data(posd);
547 }
548
549 // Special GNU handling of sections name .eh_frame.  They will
550 // normally hold exception frame data as defined by the C++ ABI
551 // (http://codesourcery.com/cxx-abi/).
552
553 template<int size, bool big_endian>
554 Output_section*
555 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
556                         const unsigned char* symbols,
557                         off_t symbols_size,
558                         const unsigned char* symbol_names,
559                         off_t symbol_names_size,
560                         unsigned int shndx,
561                         const elfcpp::Shdr<size, big_endian>& shdr,
562                         unsigned int reloc_shndx, unsigned int reloc_type,
563                         off_t* off)
564 {
565   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
566   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
567
568   const char* const name = ".eh_frame";
569   Output_section* os = this->choose_output_section(object,
570                                                    name,
571                                                    elfcpp::SHT_PROGBITS,
572                                                    elfcpp::SHF_ALLOC,
573                                                    false);
574   if (os == NULL)
575     return NULL;
576
577   if (this->eh_frame_section_ == NULL)
578     {
579       this->eh_frame_section_ = os;
580       this->eh_frame_data_ = new Eh_frame();
581
582       if (this->options_.eh_frame_hdr())
583         {
584           Output_section* hdr_os =
585             this->choose_output_section(NULL,
586                                         ".eh_frame_hdr",
587                                         elfcpp::SHT_PROGBITS,
588                                         elfcpp::SHF_ALLOC,
589                                         false);
590
591           if (hdr_os != NULL)
592             {
593               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
594                                                         this->eh_frame_data_);
595               hdr_os->add_output_section_data(hdr_posd);
596
597               hdr_os->set_after_input_sections();
598
599               if (!this->script_options_->saw_phdrs_clause())
600                 {
601                   Output_segment* hdr_oseg;
602                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
603                                                        elfcpp::PF_R);
604                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
605                 }
606
607               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
608             }
609         }
610     }
611
612   gold_assert(this->eh_frame_section_ == os);
613
614   if (this->eh_frame_data_->add_ehframe_input_section(object,
615                                                       symbols,
616                                                       symbols_size,
617                                                       symbol_names,
618                                                       symbol_names_size,
619                                                       shndx,
620                                                       reloc_shndx,
621                                                       reloc_type))
622     {
623       os->update_flags_for_input_section(shdr.get_sh_flags());
624
625       // We found a .eh_frame section we are going to optimize, so now
626       // we can add the set of optimized sections to the output
627       // section.  We need to postpone adding this until we've found a
628       // section we can optimize so that the .eh_frame section in
629       // crtbegin.o winds up at the start of the output section.
630       if (!this->added_eh_frame_data_)
631         {
632           os->add_output_section_data(this->eh_frame_data_);
633           this->added_eh_frame_data_ = true;
634         }
635       *off = -1;
636     }
637   else
638     {
639       // We couldn't handle this .eh_frame section for some reason.
640       // Add it as a normal section.
641       bool saw_sections_clause = this->script_options_->saw_sections_clause();
642       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
643                                    saw_sections_clause);
644     }
645
646   return os;
647 }
648
649 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
650 // the output section.
651
652 Output_section*
653 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
654                                 elfcpp::Elf_Xword flags,
655                                 Output_section_data* posd)
656 {
657   Output_section* os = this->choose_output_section(NULL, name, type, flags,
658                                                    false);
659   if (os != NULL)
660     os->add_output_section_data(posd);
661   return os;
662 }
663
664 // Map section flags to segment flags.
665
666 elfcpp::Elf_Word
667 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
668 {
669   elfcpp::Elf_Word ret = elfcpp::PF_R;
670   if ((flags & elfcpp::SHF_WRITE) != 0)
671     ret |= elfcpp::PF_W;
672   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
673     ret |= elfcpp::PF_X;
674   return ret;
675 }
676
677 // Sometimes we compress sections.  This is typically done for
678 // sections that are not part of normal program execution (such as
679 // .debug_* sections), and where the readers of these sections know
680 // how to deal with compressed sections.  (To make it easier for them,
681 // we will rename the ouput section in such cases from .foo to
682 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
683 // doesn't say for certain whether we'll compress -- it depends on
684 // commandline options as well -- just whether this section is a
685 // candidate for compression.
686
687 static bool
688 is_compressible_debug_section(const char* secname)
689 {
690   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
691 }
692
693 // Make a new Output_section, and attach it to segments as
694 // appropriate.
695
696 Output_section*
697 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
698                             elfcpp::Elf_Xword flags)
699 {
700   Output_section* os;
701   if ((flags & elfcpp::SHF_ALLOC) == 0
702       && strcmp(this->options_.compress_debug_sections(), "none") != 0
703       && is_compressible_debug_section(name))
704     os = new Output_compressed_section(&this->options_, name, type, flags);
705   else
706     os = new Output_section(name, type, flags);
707
708   this->section_list_.push_back(os);
709
710   // The GNU linker by default sorts some sections by priority, so we
711   // do the same.  We need to know that this might happen before we
712   // attach any input sections.
713   if (!this->script_options_->saw_sections_clause()
714       && (strcmp(name, ".ctors") == 0
715           || strcmp(name, ".dtors") == 0
716           || strcmp(name, ".init_array") == 0
717           || strcmp(name, ".fini_array") == 0))
718     os->set_may_sort_attached_input_sections();
719
720   // With -z relro, we have to recognize the special sections by name.
721   // There is no other way.
722   if (!this->script_options_->saw_sections_clause()
723       && parameters->options().relro()
724       && type == elfcpp::SHT_PROGBITS
725       && (flags & elfcpp::SHF_ALLOC) != 0
726       && (flags & elfcpp::SHF_WRITE) != 0)
727     {
728       if (strcmp(name, ".data.rel.ro") == 0)
729         os->set_is_relro();
730       else if (strcmp(name, ".data.rel.ro.local") == 0)
731         {
732           os->set_is_relro();
733           os->set_is_relro_local();
734         }
735     }
736
737   // If we have already attached the sections to segments, then we
738   // need to attach this one now.  This happens for sections created
739   // directly by the linker.
740   if (this->sections_are_attached_)
741     this->attach_section_to_segment(os);
742
743   return os;
744 }
745
746 // Attach output sections to segments.  This is called after we have
747 // seen all the input sections.
748
749 void
750 Layout::attach_sections_to_segments()
751 {
752   for (Section_list::iterator p = this->section_list_.begin();
753        p != this->section_list_.end();
754        ++p)
755     this->attach_section_to_segment(*p);
756
757   this->sections_are_attached_ = true;
758 }
759
760 // Attach an output section to a segment.
761
762 void
763 Layout::attach_section_to_segment(Output_section* os)
764 {
765   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
766     this->unattached_section_list_.push_back(os);
767   else
768     this->attach_allocated_section_to_segment(os);
769 }
770
771 // Attach an allocated output section to a segment.
772
773 void
774 Layout::attach_allocated_section_to_segment(Output_section* os)
775 {
776   elfcpp::Elf_Xword flags = os->flags();
777   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
778
779   if (parameters->options().relocatable())
780     return;
781
782   // If we have a SECTIONS clause, we can't handle the attachment to
783   // segments until after we've seen all the sections.
784   if (this->script_options_->saw_sections_clause())
785     return;
786
787   gold_assert(!this->script_options_->saw_phdrs_clause());
788
789   // This output section goes into a PT_LOAD segment.
790
791   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
792
793   // In general the only thing we really care about for PT_LOAD
794   // segments is whether or not they are writable, so that is how we
795   // search for them.  People who need segments sorted on some other
796   // basis will have to use a linker script.
797
798   Segment_list::const_iterator p;
799   for (p = this->segment_list_.begin();
800        p != this->segment_list_.end();
801        ++p)
802     {
803       if ((*p)->type() == elfcpp::PT_LOAD
804           && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
805         {
806           // If -Tbss was specified, we need to separate the data
807           // and BSS segments.
808           if (this->options_.user_set_Tbss())
809             {
810               if ((os->type() == elfcpp::SHT_NOBITS)
811                   == (*p)->has_any_data_sections())
812                 continue;
813             }
814
815           (*p)->add_output_section(os, seg_flags);
816           break;
817         }
818     }
819
820   if (p == this->segment_list_.end())
821     {
822       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
823                                                        seg_flags);
824       oseg->add_output_section(os, seg_flags);
825     }
826
827   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
828   // segment.
829   if (os->type() == elfcpp::SHT_NOTE)
830     {
831       // See if we already have an equivalent PT_NOTE segment.
832       for (p = this->segment_list_.begin();
833            p != segment_list_.end();
834            ++p)
835         {
836           if ((*p)->type() == elfcpp::PT_NOTE
837               && (((*p)->flags() & elfcpp::PF_W)
838                   == (seg_flags & elfcpp::PF_W)))
839             {
840               (*p)->add_output_section(os, seg_flags);
841               break;
842             }
843         }
844
845       if (p == this->segment_list_.end())
846         {
847           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
848                                                            seg_flags);
849           oseg->add_output_section(os, seg_flags);
850         }
851     }
852
853   // If we see a loadable SHF_TLS section, we create a PT_TLS
854   // segment.  There can only be one such segment.
855   if ((flags & elfcpp::SHF_TLS) != 0)
856     {
857       if (this->tls_segment_ == NULL)
858         this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
859                                                        seg_flags);
860       this->tls_segment_->add_output_section(os, seg_flags);
861     }
862
863   // If -z relro is in effect, and we see a relro section, we create a
864   // PT_GNU_RELRO segment.  There can only be one such segment.
865   if (os->is_relro() && parameters->options().relro())
866     {
867       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
868       if (this->relro_segment_ == NULL)
869         this->relro_segment_ = this->make_output_segment(elfcpp::PT_GNU_RELRO,
870                                                          seg_flags);
871       this->relro_segment_->add_output_section(os, seg_flags);
872     }
873 }
874
875 // Make an output section for a script.
876
877 Output_section*
878 Layout::make_output_section_for_script(const char* name)
879 {
880   name = this->namepool_.add(name, false, NULL);
881   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
882                                                  elfcpp::SHF_ALLOC);
883   os->set_found_in_sections_clause();
884   return os;
885 }
886
887 // Return the number of segments we expect to see.
888
889 size_t
890 Layout::expected_segment_count() const
891 {
892   size_t ret = this->segment_list_.size();
893
894   // If we didn't see a SECTIONS clause in a linker script, we should
895   // already have the complete list of segments.  Otherwise we ask the
896   // SECTIONS clause how many segments it expects, and add in the ones
897   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
898
899   if (!this->script_options_->saw_sections_clause())
900     return ret;
901   else
902     {
903       const Script_sections* ss = this->script_options_->script_sections();
904       return ret + ss->expected_segment_count(this);
905     }
906 }
907
908 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
909 // is whether we saw a .note.GNU-stack section in the object file.
910 // GNU_STACK_FLAGS is the section flags.  The flags give the
911 // protection required for stack memory.  We record this in an
912 // executable as a PT_GNU_STACK segment.  If an object file does not
913 // have a .note.GNU-stack segment, we must assume that it is an old
914 // object.  On some targets that will force an executable stack.
915
916 void
917 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
918 {
919   if (!seen_gnu_stack)
920     this->input_without_gnu_stack_note_ = true;
921   else
922     {
923       this->input_with_gnu_stack_note_ = true;
924       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
925         this->input_requires_executable_stack_ = true;
926     }
927 }
928
929 // Create the dynamic sections which are needed before we read the
930 // relocs.
931
932 void
933 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
934 {
935   if (parameters->doing_static_link())
936     return;
937
938   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
939                                                        elfcpp::SHT_DYNAMIC,
940                                                        (elfcpp::SHF_ALLOC
941                                                         | elfcpp::SHF_WRITE),
942                                                        false);
943   this->dynamic_section_->set_is_relro();
944
945   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
946                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
947                                 elfcpp::STV_HIDDEN, 0, false, false);
948
949   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
950
951   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
952 }
953
954 // For each output section whose name can be represented as C symbol,
955 // define __start and __stop symbols for the section.  This is a GNU
956 // extension.
957
958 void
959 Layout::define_section_symbols(Symbol_table* symtab)
960 {
961   for (Section_list::const_iterator p = this->section_list_.begin();
962        p != this->section_list_.end();
963        ++p)
964     {
965       const char* const name = (*p)->name();
966       if (name[strspn(name,
967                       ("0123456789"
968                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
969                        "abcdefghijklmnopqrstuvwxyz"
970                        "_"))]
971           == '\0')
972         {
973           const std::string name_string(name);
974           const std::string start_name("__start_" + name_string);
975           const std::string stop_name("__stop_" + name_string);
976
977           symtab->define_in_output_data(start_name.c_str(),
978                                         NULL, // version
979                                         *p,
980                                         0, // value
981                                         0, // symsize
982                                         elfcpp::STT_NOTYPE,
983                                         elfcpp::STB_GLOBAL,
984                                         elfcpp::STV_DEFAULT,
985                                         0, // nonvis
986                                         false, // offset_is_from_end
987                                         true); // only_if_ref
988
989           symtab->define_in_output_data(stop_name.c_str(),
990                                         NULL, // version
991                                         *p,
992                                         0, // value
993                                         0, // symsize
994                                         elfcpp::STT_NOTYPE,
995                                         elfcpp::STB_GLOBAL,
996                                         elfcpp::STV_DEFAULT,
997                                         0, // nonvis
998                                         true, // offset_is_from_end
999                                         true); // only_if_ref
1000         }
1001     }
1002 }
1003
1004 // Define symbols for group signatures.
1005
1006 void
1007 Layout::define_group_signatures(Symbol_table* symtab)
1008 {
1009   for (Group_signatures::iterator p = this->group_signatures_.begin();
1010        p != this->group_signatures_.end();
1011        ++p)
1012     {
1013       Symbol* sym = symtab->lookup(p->signature, NULL);
1014       if (sym != NULL)
1015         p->section->set_info_symndx(sym);
1016       else
1017         {
1018           // Force the name of the group section to the group
1019           // signature, and use the group's section symbol as the
1020           // signature symbol.
1021           if (strcmp(p->section->name(), p->signature) != 0)
1022             {
1023               const char* name = this->namepool_.add(p->signature,
1024                                                      true, NULL);
1025               p->section->set_name(name);
1026             }
1027           p->section->set_needs_symtab_index();
1028           p->section->set_info_section_symndx(p->section);
1029         }
1030     }
1031
1032   this->group_signatures_.clear();
1033 }
1034
1035 // Find the first read-only PT_LOAD segment, creating one if
1036 // necessary.
1037
1038 Output_segment*
1039 Layout::find_first_load_seg()
1040 {
1041   for (Segment_list::const_iterator p = this->segment_list_.begin();
1042        p != this->segment_list_.end();
1043        ++p)
1044     {
1045       if ((*p)->type() == elfcpp::PT_LOAD
1046           && ((*p)->flags() & elfcpp::PF_R) != 0
1047           && ((*p)->flags() & elfcpp::PF_W) == 0)
1048         return *p;
1049     }
1050
1051   gold_assert(!this->script_options_->saw_phdrs_clause());
1052
1053   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1054                                                        elfcpp::PF_R);
1055   return load_seg;
1056 }
1057
1058 // Finalize the layout.  When this is called, we have created all the
1059 // output sections and all the output segments which are based on
1060 // input sections.  We have several things to do, and we have to do
1061 // them in the right order, so that we get the right results correctly
1062 // and efficiently.
1063
1064 // 1) Finalize the list of output segments and create the segment
1065 // table header.
1066
1067 // 2) Finalize the dynamic symbol table and associated sections.
1068
1069 // 3) Determine the final file offset of all the output segments.
1070
1071 // 4) Determine the final file offset of all the SHF_ALLOC output
1072 // sections.
1073
1074 // 5) Create the symbol table sections and the section name table
1075 // section.
1076
1077 // 6) Finalize the symbol table: set symbol values to their final
1078 // value and make a final determination of which symbols are going
1079 // into the output symbol table.
1080
1081 // 7) Create the section table header.
1082
1083 // 8) Determine the final file offset of all the output sections which
1084 // are not SHF_ALLOC, including the section table header.
1085
1086 // 9) Finalize the ELF file header.
1087
1088 // This function returns the size of the output file.
1089
1090 off_t
1091 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1092                  Target* target, const Task* task)
1093 {
1094   target->finalize_sections(this);
1095
1096   this->count_local_symbols(task, input_objects);
1097
1098   this->create_gold_note();
1099   this->create_executable_stack_info(target);
1100   this->create_build_id();
1101
1102   Output_segment* phdr_seg = NULL;
1103   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1104     {
1105       // There was a dynamic object in the link.  We need to create
1106       // some information for the dynamic linker.
1107
1108       // Create the PT_PHDR segment which will hold the program
1109       // headers.
1110       if (!this->script_options_->saw_phdrs_clause())
1111         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1112
1113       // Create the dynamic symbol table, including the hash table.
1114       Output_section* dynstr;
1115       std::vector<Symbol*> dynamic_symbols;
1116       unsigned int local_dynamic_count;
1117       Versions versions(*this->script_options()->version_script_info(),
1118                         &this->dynpool_);
1119       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1120                                   &local_dynamic_count, &dynamic_symbols,
1121                                   &versions);
1122
1123       // Create the .interp section to hold the name of the
1124       // interpreter, and put it in a PT_INTERP segment.
1125       if (!parameters->options().shared())
1126         this->create_interp(target);
1127
1128       // Finish the .dynamic section to hold the dynamic data, and put
1129       // it in a PT_DYNAMIC segment.
1130       this->finish_dynamic_section(input_objects, symtab);
1131
1132       // We should have added everything we need to the dynamic string
1133       // table.
1134       this->dynpool_.set_string_offsets();
1135
1136       // Create the version sections.  We can't do this until the
1137       // dynamic string table is complete.
1138       this->create_version_sections(&versions, symtab, local_dynamic_count,
1139                                     dynamic_symbols, dynstr);
1140     }
1141
1142   // If there is a SECTIONS clause, put all the input sections into
1143   // the required order.
1144   Output_segment* load_seg;
1145   if (this->script_options_->saw_sections_clause())
1146     load_seg = this->set_section_addresses_from_script(symtab);
1147   else if (parameters->options().relocatable())
1148     load_seg = NULL;
1149   else
1150     load_seg = this->find_first_load_seg();
1151
1152   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
1153     load_seg = NULL;
1154
1155   gold_assert(phdr_seg == NULL || load_seg != NULL);
1156
1157   // Lay out the segment headers.
1158   Output_segment_headers* segment_headers;
1159   if (parameters->options().relocatable())
1160     segment_headers = NULL;
1161   else
1162     {
1163       segment_headers = new Output_segment_headers(this->segment_list_);
1164       if (load_seg != NULL)
1165         load_seg->add_initial_output_data(segment_headers);
1166       if (phdr_seg != NULL)
1167         phdr_seg->add_initial_output_data(segment_headers);
1168     }
1169
1170   // Lay out the file header.
1171   Output_file_header* file_header;
1172   file_header = new Output_file_header(target, symtab, segment_headers,
1173                                        this->options_.entry());
1174   if (load_seg != NULL)
1175     load_seg->add_initial_output_data(file_header);
1176
1177   this->special_output_list_.push_back(file_header);
1178   if (segment_headers != NULL)
1179     this->special_output_list_.push_back(segment_headers);
1180
1181   if (this->script_options_->saw_phdrs_clause()
1182       && !parameters->options().relocatable())
1183     {
1184       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1185       // clause in a linker script.
1186       Script_sections* ss = this->script_options_->script_sections();
1187       ss->put_headers_in_phdrs(file_header, segment_headers);
1188     }
1189
1190   // We set the output section indexes in set_segment_offsets and
1191   // set_section_indexes.
1192   unsigned int shndx = 1;
1193
1194   // Set the file offsets of all the segments, and all the sections
1195   // they contain.
1196   off_t off;
1197   if (!parameters->options().relocatable())
1198     off = this->set_segment_offsets(target, load_seg, &shndx);
1199   else
1200     off = this->set_relocatable_section_offsets(file_header, &shndx);
1201
1202   // Set the file offsets of all the non-data sections we've seen so
1203   // far which don't have to wait for the input sections.  We need
1204   // this in order to finalize local symbols in non-allocated
1205   // sections.
1206   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1207
1208   // Set the section indexes of all unallocated sections seen so far,
1209   // in case any of them are somehow referenced by a symbol.
1210   shndx = this->set_section_indexes(shndx);
1211
1212   // Create the symbol table sections.
1213   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1214   if (!parameters->doing_static_link())
1215     this->assign_local_dynsym_offsets(input_objects);
1216
1217   // Process any symbol assignments from a linker script.  This must
1218   // be called after the symbol table has been finalized.
1219   this->script_options_->finalize_symbols(symtab, this);
1220
1221   // Create the .shstrtab section.
1222   Output_section* shstrtab_section = this->create_shstrtab();
1223
1224   // Set the file offsets of the rest of the non-data sections which
1225   // don't have to wait for the input sections.
1226   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1227
1228   // Now that all sections have been created, set the section indexes
1229   // for any sections which haven't been done yet.
1230   shndx = this->set_section_indexes(shndx);
1231
1232   // Create the section table header.
1233   this->create_shdrs(shstrtab_section, &off);
1234
1235   // If there are no sections which require postprocessing, we can
1236   // handle the section names now, and avoid a resize later.
1237   if (!this->any_postprocessing_sections_)
1238     off = this->set_section_offsets(off,
1239                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1240
1241   file_header->set_section_info(this->section_headers_, shstrtab_section);
1242
1243   // Now we know exactly where everything goes in the output file
1244   // (except for non-allocated sections which require postprocessing).
1245   Output_data::layout_complete();
1246
1247   this->output_file_size_ = off;
1248
1249   return off;
1250 }
1251
1252 // Create a note header following the format defined in the ELF ABI.
1253 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1254 // descriptor.  ALLOCATE is true if the section should be allocated in
1255 // memory.  This returns the new note section.  It sets
1256 // *TRAILING_PADDING to the number of trailing zero bytes required.
1257
1258 Output_section*
1259 Layout::create_note(const char* name, int note_type, size_t descsz,
1260                     bool allocate, size_t* trailing_padding)
1261 {
1262   // Authorities all agree that the values in a .note field should
1263   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1264   // they differ on what the alignment is for 64-bit binaries.
1265   // The GABI says unambiguously they take 8-byte alignment:
1266   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1267   // Other documentation says alignment should always be 4 bytes:
1268   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1269   // GNU ld and GNU readelf both support the latter (at least as of
1270   // version 2.16.91), and glibc always generates the latter for
1271   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1272   // here.
1273 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1274   const int size = parameters->target().get_size();
1275 #else
1276   const int size = 32;
1277 #endif
1278
1279   // The contents of the .note section.
1280   size_t namesz = strlen(name) + 1;
1281   size_t aligned_namesz = align_address(namesz, size / 8);
1282   size_t aligned_descsz = align_address(descsz, size / 8);
1283
1284   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1285
1286   unsigned char* buffer = new unsigned char[notehdrsz];
1287   memset(buffer, 0, notehdrsz);
1288
1289   bool is_big_endian = parameters->target().is_big_endian();
1290
1291   if (size == 32)
1292     {
1293       if (!is_big_endian)
1294         {
1295           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1296           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1297           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1298         }
1299       else
1300         {
1301           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1302           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1303           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1304         }
1305     }
1306   else if (size == 64)
1307     {
1308       if (!is_big_endian)
1309         {
1310           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1311           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1312           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1313         }
1314       else
1315         {
1316           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1317           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1318           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1319         }
1320     }
1321   else
1322     gold_unreachable();
1323
1324   memcpy(buffer + 3 * (size / 8), name, namesz);
1325
1326   const char* note_name = this->namepool_.add(".note", false, NULL);
1327   elfcpp::Elf_Xword flags = 0;
1328   if (allocate)
1329     flags = elfcpp::SHF_ALLOC;
1330   Output_section* os = this->make_output_section(note_name,
1331                                                  elfcpp::SHT_NOTE,
1332                                                  flags);
1333   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1334                                                            size / 8,
1335                                                            "** note header");
1336   os->add_output_section_data(posd);
1337
1338   *trailing_padding = aligned_descsz - descsz;
1339
1340   return os;
1341 }
1342
1343 // For an executable or shared library, create a note to record the
1344 // version of gold used to create the binary.
1345
1346 void
1347 Layout::create_gold_note()
1348 {
1349   if (parameters->options().relocatable())
1350     return;
1351
1352   std::string desc = std::string("gold ") + gold::get_version_string();
1353
1354   size_t trailing_padding;
1355   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1356                                          desc.size(), false, &trailing_padding);
1357
1358   Output_section_data* posd = new Output_data_const(desc, 4);
1359   os->add_output_section_data(posd);
1360
1361   if (trailing_padding > 0)
1362     {
1363       posd = new Output_data_zero_fill(trailing_padding, 0);
1364       os->add_output_section_data(posd);
1365     }
1366 }
1367
1368 // Record whether the stack should be executable.  This can be set
1369 // from the command line using the -z execstack or -z noexecstack
1370 // options.  Otherwise, if any input file has a .note.GNU-stack
1371 // section with the SHF_EXECINSTR flag set, the stack should be
1372 // executable.  Otherwise, if at least one input file a
1373 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1374 // section, we use the target default for whether the stack should be
1375 // executable.  Otherwise, we don't generate a stack note.  When
1376 // generating a object file, we create a .note.GNU-stack section with
1377 // the appropriate marking.  When generating an executable or shared
1378 // library, we create a PT_GNU_STACK segment.
1379
1380 void
1381 Layout::create_executable_stack_info(const Target* target)
1382 {
1383   bool is_stack_executable;
1384   if (this->options_.is_execstack_set())
1385     is_stack_executable = this->options_.is_stack_executable();
1386   else if (!this->input_with_gnu_stack_note_)
1387     return;
1388   else
1389     {
1390       if (this->input_requires_executable_stack_)
1391         is_stack_executable = true;
1392       else if (this->input_without_gnu_stack_note_)
1393         is_stack_executable = target->is_default_stack_executable();
1394       else
1395         is_stack_executable = false;
1396     }
1397
1398   if (parameters->options().relocatable())
1399     {
1400       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1401       elfcpp::Elf_Xword flags = 0;
1402       if (is_stack_executable)
1403         flags |= elfcpp::SHF_EXECINSTR;
1404       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1405     }
1406   else
1407     {
1408       if (this->script_options_->saw_phdrs_clause())
1409         return;
1410       int flags = elfcpp::PF_R | elfcpp::PF_W;
1411       if (is_stack_executable)
1412         flags |= elfcpp::PF_X;
1413       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1414     }
1415 }
1416
1417 // If --build-id was used, set up the build ID note.
1418
1419 void
1420 Layout::create_build_id()
1421 {
1422   if (!parameters->options().user_set_build_id())
1423     return;
1424
1425   const char* style = parameters->options().build_id();
1426   if (strcmp(style, "none") == 0)
1427     return;
1428
1429   // Set DESCSZ to the size of the note descriptor.  When possible,
1430   // set DESC to the note descriptor contents.
1431   size_t descsz;
1432   std::string desc;
1433   if (strcmp(style, "md5") == 0)
1434     descsz = 128 / 8;
1435   else if (strcmp(style, "sha1") == 0)
1436     descsz = 160 / 8;
1437   else if (strcmp(style, "uuid") == 0)
1438     {
1439       const size_t uuidsz = 128 / 8;
1440
1441       char buffer[uuidsz];
1442       memset(buffer, 0, uuidsz);
1443
1444       int descriptor = ::open("/dev/urandom", O_RDONLY);
1445       if (descriptor < 0)
1446         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1447                    strerror(errno));
1448       else
1449         {
1450           ssize_t got = ::read(descriptor, buffer, uuidsz);
1451           ::close(descriptor);
1452           if (got < 0)
1453             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1454           else if (static_cast<size_t>(got) != uuidsz)
1455             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1456                        uuidsz, got);
1457         }
1458
1459       desc.assign(buffer, uuidsz);
1460       descsz = uuidsz;
1461     }
1462   else if (strncmp(style, "0x", 2) == 0)
1463     {
1464       hex_init();
1465       const char* p = style + 2;
1466       while (*p != '\0')
1467         {
1468           if (hex_p(p[0]) && hex_p(p[1]))
1469             {
1470               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1471               desc += c;
1472               p += 2;
1473             }
1474           else if (*p == '-' || *p == ':')
1475             ++p;
1476           else
1477             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1478                        style);
1479         }
1480       descsz = desc.size();
1481     }
1482   else
1483     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1484
1485   // Create the note.
1486   size_t trailing_padding;
1487   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1488                                          descsz, true, &trailing_padding);
1489
1490   if (!desc.empty())
1491     {
1492       // We know the value already, so we fill it in now.
1493       gold_assert(desc.size() == descsz);
1494
1495       Output_section_data* posd = new Output_data_const(desc, 4);
1496       os->add_output_section_data(posd);
1497
1498       if (trailing_padding != 0)
1499         {
1500           posd = new Output_data_zero_fill(trailing_padding, 0);
1501           os->add_output_section_data(posd);
1502         }
1503     }
1504   else
1505     {
1506       // We need to compute a checksum after we have completed the
1507       // link.
1508       gold_assert(trailing_padding == 0);
1509       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1510       os->add_output_section_data(this->build_id_note_);
1511       os->set_after_input_sections();
1512     }
1513 }
1514
1515 // Return whether SEG1 should be before SEG2 in the output file.  This
1516 // is based entirely on the segment type and flags.  When this is
1517 // called the segment addresses has normally not yet been set.
1518
1519 bool
1520 Layout::segment_precedes(const Output_segment* seg1,
1521                          const Output_segment* seg2)
1522 {
1523   elfcpp::Elf_Word type1 = seg1->type();
1524   elfcpp::Elf_Word type2 = seg2->type();
1525
1526   // The single PT_PHDR segment is required to precede any loadable
1527   // segment.  We simply make it always first.
1528   if (type1 == elfcpp::PT_PHDR)
1529     {
1530       gold_assert(type2 != elfcpp::PT_PHDR);
1531       return true;
1532     }
1533   if (type2 == elfcpp::PT_PHDR)
1534     return false;
1535
1536   // The single PT_INTERP segment is required to precede any loadable
1537   // segment.  We simply make it always second.
1538   if (type1 == elfcpp::PT_INTERP)
1539     {
1540       gold_assert(type2 != elfcpp::PT_INTERP);
1541       return true;
1542     }
1543   if (type2 == elfcpp::PT_INTERP)
1544     return false;
1545
1546   // We then put PT_LOAD segments before any other segments.
1547   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1548     return true;
1549   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1550     return false;
1551
1552   // We put the PT_TLS segment last except for the PT_GNU_RELRO
1553   // segment, because that is where the dynamic linker expects to find
1554   // it (this is just for efficiency; other positions would also work
1555   // correctly).
1556   if (type1 == elfcpp::PT_TLS
1557       && type2 != elfcpp::PT_TLS
1558       && type2 != elfcpp::PT_GNU_RELRO)
1559     return false;
1560   if (type2 == elfcpp::PT_TLS
1561       && type1 != elfcpp::PT_TLS
1562       && type1 != elfcpp::PT_GNU_RELRO)
1563     return true;
1564
1565   // We put the PT_GNU_RELRO segment last, because that is where the
1566   // dynamic linker expects to find it (as with PT_TLS, this is just
1567   // for efficiency).
1568   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1569     return false;
1570   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1571     return true;
1572
1573   const elfcpp::Elf_Word flags1 = seg1->flags();
1574   const elfcpp::Elf_Word flags2 = seg2->flags();
1575
1576   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1577   // by the numeric segment type and flags values.  There should not
1578   // be more than one segment with the same type and flags.
1579   if (type1 != elfcpp::PT_LOAD)
1580     {
1581       if (type1 != type2)
1582         return type1 < type2;
1583       gold_assert(flags1 != flags2);
1584       return flags1 < flags2;
1585     }
1586
1587   // If the addresses are set already, sort by load address.
1588   if (seg1->are_addresses_set())
1589     {
1590       if (!seg2->are_addresses_set())
1591         return true;
1592
1593       unsigned int section_count1 = seg1->output_section_count();
1594       unsigned int section_count2 = seg2->output_section_count();
1595       if (section_count1 == 0 && section_count2 > 0)
1596         return true;
1597       if (section_count1 > 0 && section_count2 == 0)
1598         return false;
1599
1600       uint64_t paddr1 = seg1->first_section_load_address();
1601       uint64_t paddr2 = seg2->first_section_load_address();
1602       if (paddr1 != paddr2)
1603         return paddr1 < paddr2;
1604     }
1605   else if (seg2->are_addresses_set())
1606     return false;
1607
1608   // We sort PT_LOAD segments based on the flags.  Readonly segments
1609   // come before writable segments.  Then writable segments with data
1610   // come before writable segments without data.  Then executable
1611   // segments come before non-executable segments.  Then the unlikely
1612   // case of a non-readable segment comes before the normal case of a
1613   // readable segment.  If there are multiple segments with the same
1614   // type and flags, we require that the address be set, and we sort
1615   // by virtual address and then physical address.
1616   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1617     return (flags1 & elfcpp::PF_W) == 0;
1618   if ((flags1 & elfcpp::PF_W) != 0
1619       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1620     return seg1->has_any_data_sections();
1621   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1622     return (flags1 & elfcpp::PF_X) != 0;
1623   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1624     return (flags1 & elfcpp::PF_R) == 0;
1625
1626   // We shouldn't get here--we shouldn't create segments which we
1627   // can't distinguish.
1628   gold_unreachable();
1629 }
1630
1631 // Set the file offsets of all the segments, and all the sections they
1632 // contain.  They have all been created.  LOAD_SEG must be be laid out
1633 // first.  Return the offset of the data to follow.
1634
1635 off_t
1636 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1637                             unsigned int *pshndx)
1638 {
1639   // Sort them into the final order.
1640   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1641             Layout::Compare_segments());
1642
1643   // Find the PT_LOAD segments, and set their addresses and offsets
1644   // and their section's addresses and offsets.
1645   uint64_t addr;
1646   if (this->options_.user_set_Ttext())
1647     addr = this->options_.Ttext();
1648   else if (parameters->options().shared())
1649     addr = 0;
1650   else
1651     addr = target->default_text_segment_address();
1652   off_t off = 0;
1653
1654   // If LOAD_SEG is NULL, then the file header and segment headers
1655   // will not be loadable.  But they still need to be at offset 0 in
1656   // the file.  Set their offsets now.
1657   if (load_seg == NULL)
1658     {
1659       for (Data_list::iterator p = this->special_output_list_.begin();
1660            p != this->special_output_list_.end();
1661            ++p)
1662         {
1663           off = align_address(off, (*p)->addralign());
1664           (*p)->set_address_and_file_offset(0, off);
1665           off += (*p)->data_size();
1666         }
1667     }
1668
1669   bool was_readonly = false;
1670   for (Segment_list::iterator p = this->segment_list_.begin();
1671        p != this->segment_list_.end();
1672        ++p)
1673     {
1674       if ((*p)->type() == elfcpp::PT_LOAD)
1675         {
1676           if (load_seg != NULL && load_seg != *p)
1677             gold_unreachable();
1678           load_seg = NULL;
1679
1680           bool are_addresses_set = (*p)->are_addresses_set();
1681           if (are_addresses_set)
1682             {
1683               // When it comes to setting file offsets, we care about
1684               // the physical address.
1685               addr = (*p)->paddr();
1686             }
1687           else if (this->options_.user_set_Tdata()
1688                    && ((*p)->flags() & elfcpp::PF_W) != 0
1689                    && (!this->options_.user_set_Tbss()
1690                        || (*p)->has_any_data_sections()))
1691             {
1692               addr = this->options_.Tdata();
1693               are_addresses_set = true;
1694             }
1695           else if (this->options_.user_set_Tbss()
1696                    && ((*p)->flags() & elfcpp::PF_W) != 0
1697                    && !(*p)->has_any_data_sections())
1698             {
1699               addr = this->options_.Tbss();
1700               are_addresses_set = true;
1701             }
1702
1703           uint64_t orig_addr = addr;
1704           uint64_t orig_off = off;
1705
1706           uint64_t aligned_addr = 0;
1707           uint64_t abi_pagesize = target->abi_pagesize();
1708
1709           // FIXME: This should depend on the -n and -N options.
1710           (*p)->set_minimum_p_align(target->common_pagesize());
1711
1712           if (are_addresses_set)
1713             {
1714               // Adjust the file offset to the same address modulo the
1715               // page size.
1716               uint64_t unsigned_off = off;
1717               uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1718                                       | (addr & (abi_pagesize - 1)));
1719               if (aligned_off < unsigned_off)
1720                 aligned_off += abi_pagesize;
1721               off = aligned_off;
1722             }
1723           else
1724             {
1725               // If the last segment was readonly, and this one is
1726               // not, then skip the address forward one page,
1727               // maintaining the same position within the page.  This
1728               // lets us store both segments overlapping on a single
1729               // page in the file, but the loader will put them on
1730               // different pages in memory.
1731
1732               addr = align_address(addr, (*p)->maximum_alignment());
1733               aligned_addr = addr;
1734
1735               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1736                 {
1737                   if ((addr & (abi_pagesize - 1)) != 0)
1738                     addr = addr + abi_pagesize;
1739                 }
1740
1741               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1742             }
1743
1744           unsigned int shndx_hold = *pshndx;
1745           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1746                                                           &off, pshndx);
1747
1748           // Now that we know the size of this segment, we may be able
1749           // to save a page in memory, at the cost of wasting some
1750           // file space, by instead aligning to the start of a new
1751           // page.  Here we use the real machine page size rather than
1752           // the ABI mandated page size.
1753
1754           if (!are_addresses_set && aligned_addr != addr)
1755             {
1756               uint64_t common_pagesize = target->common_pagesize();
1757               uint64_t first_off = (common_pagesize
1758                                     - (aligned_addr
1759                                        & (common_pagesize - 1)));
1760               uint64_t last_off = new_addr & (common_pagesize - 1);
1761               if (first_off > 0
1762                   && last_off > 0
1763                   && ((aligned_addr & ~ (common_pagesize - 1))
1764                       != (new_addr & ~ (common_pagesize - 1)))
1765                   && first_off + last_off <= common_pagesize)
1766                 {
1767                   *pshndx = shndx_hold;
1768                   addr = align_address(aligned_addr, common_pagesize);
1769                   addr = align_address(addr, (*p)->maximum_alignment());
1770                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1771                   new_addr = (*p)->set_section_addresses(this, true, addr,
1772                                                          &off, pshndx);
1773                 }
1774             }
1775
1776           addr = new_addr;
1777
1778           if (((*p)->flags() & elfcpp::PF_W) == 0)
1779             was_readonly = true;
1780         }
1781     }
1782
1783   // Handle the non-PT_LOAD segments, setting their offsets from their
1784   // section's offsets.
1785   for (Segment_list::iterator p = this->segment_list_.begin();
1786        p != this->segment_list_.end();
1787        ++p)
1788     {
1789       if ((*p)->type() != elfcpp::PT_LOAD)
1790         (*p)->set_offset();
1791     }
1792
1793   // Set the TLS offsets for each section in the PT_TLS segment.
1794   if (this->tls_segment_ != NULL)
1795     this->tls_segment_->set_tls_offsets();
1796
1797   return off;
1798 }
1799
1800 // Set the offsets of all the allocated sections when doing a
1801 // relocatable link.  This does the same jobs as set_segment_offsets,
1802 // only for a relocatable link.
1803
1804 off_t
1805 Layout::set_relocatable_section_offsets(Output_data* file_header,
1806                                         unsigned int *pshndx)
1807 {
1808   off_t off = 0;
1809
1810   file_header->set_address_and_file_offset(0, 0);
1811   off += file_header->data_size();
1812
1813   for (Section_list::iterator p = this->section_list_.begin();
1814        p != this->section_list_.end();
1815        ++p)
1816     {
1817       // We skip unallocated sections here, except that group sections
1818       // have to come first.
1819       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1820           && (*p)->type() != elfcpp::SHT_GROUP)
1821         continue;
1822
1823       off = align_address(off, (*p)->addralign());
1824
1825       // The linker script might have set the address.
1826       if (!(*p)->is_address_valid())
1827         (*p)->set_address(0);
1828       (*p)->set_file_offset(off);
1829       (*p)->finalize_data_size();
1830       off += (*p)->data_size();
1831
1832       (*p)->set_out_shndx(*pshndx);
1833       ++*pshndx;
1834     }
1835
1836   return off;
1837 }
1838
1839 // Set the file offset of all the sections not associated with a
1840 // segment.
1841
1842 off_t
1843 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1844 {
1845   for (Section_list::iterator p = this->unattached_section_list_.begin();
1846        p != this->unattached_section_list_.end();
1847        ++p)
1848     {
1849       // The symtab section is handled in create_symtab_sections.
1850       if (*p == this->symtab_section_)
1851         continue;
1852
1853       // If we've already set the data size, don't set it again.
1854       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1855         continue;
1856
1857       if (pass == BEFORE_INPUT_SECTIONS_PASS
1858           && (*p)->requires_postprocessing())
1859         {
1860           (*p)->create_postprocessing_buffer();
1861           this->any_postprocessing_sections_ = true;
1862         }
1863
1864       if (pass == BEFORE_INPUT_SECTIONS_PASS
1865           && (*p)->after_input_sections())
1866         continue;
1867       else if (pass == POSTPROCESSING_SECTIONS_PASS
1868                && (!(*p)->after_input_sections()
1869                    || (*p)->type() == elfcpp::SHT_STRTAB))
1870         continue;
1871       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1872                && (!(*p)->after_input_sections()
1873                    || (*p)->type() != elfcpp::SHT_STRTAB))
1874         continue;
1875
1876       off = align_address(off, (*p)->addralign());
1877       (*p)->set_file_offset(off);
1878       (*p)->finalize_data_size();
1879       off += (*p)->data_size();
1880
1881       // At this point the name must be set.
1882       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1883         this->namepool_.add((*p)->name(), false, NULL);
1884     }
1885   return off;
1886 }
1887
1888 // Set the section indexes of all the sections not associated with a
1889 // segment.
1890
1891 unsigned int
1892 Layout::set_section_indexes(unsigned int shndx)
1893 {
1894   for (Section_list::iterator p = this->unattached_section_list_.begin();
1895        p != this->unattached_section_list_.end();
1896        ++p)
1897     {
1898       if (!(*p)->has_out_shndx())
1899         {
1900           (*p)->set_out_shndx(shndx);
1901           ++shndx;
1902         }
1903     }
1904   return shndx;
1905 }
1906
1907 // Set the section addresses according to the linker script.  This is
1908 // only called when we see a SECTIONS clause.  This returns the
1909 // program segment which should hold the file header and segment
1910 // headers, if any.  It will return NULL if they should not be in a
1911 // segment.
1912
1913 Output_segment*
1914 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1915 {
1916   Script_sections* ss = this->script_options_->script_sections();
1917   gold_assert(ss->saw_sections_clause());
1918
1919   // Place each orphaned output section in the script.
1920   for (Section_list::iterator p = this->section_list_.begin();
1921        p != this->section_list_.end();
1922        ++p)
1923     {
1924       if (!(*p)->found_in_sections_clause())
1925         ss->place_orphan(*p);
1926     }
1927
1928   return this->script_options_->set_section_addresses(symtab, this);
1929 }
1930
1931 // Count the local symbols in the regular symbol table and the dynamic
1932 // symbol table, and build the respective string pools.
1933
1934 void
1935 Layout::count_local_symbols(const Task* task,
1936                             const Input_objects* input_objects)
1937 {
1938   // First, figure out an upper bound on the number of symbols we'll
1939   // be inserting into each pool.  This helps us create the pools with
1940   // the right size, to avoid unnecessary hashtable resizing.
1941   unsigned int symbol_count = 0;
1942   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1943        p != input_objects->relobj_end();
1944        ++p)
1945     symbol_count += (*p)->local_symbol_count();
1946
1947   // Go from "upper bound" to "estimate."  We overcount for two
1948   // reasons: we double-count symbols that occur in more than one
1949   // object file, and we count symbols that are dropped from the
1950   // output.  Add it all together and assume we overcount by 100%.
1951   symbol_count /= 2;
1952
1953   // We assume all symbols will go into both the sympool and dynpool.
1954   this->sympool_.reserve(symbol_count);
1955   this->dynpool_.reserve(symbol_count);
1956
1957   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1958        p != input_objects->relobj_end();
1959        ++p)
1960     {
1961       Task_lock_obj<Object> tlo(task, *p);
1962       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1963     }
1964 }
1965
1966 // Create the symbol table sections.  Here we also set the final
1967 // values of the symbols.  At this point all the loadable sections are
1968 // fully laid out.  SHNUM is the number of sections so far.
1969
1970 void
1971 Layout::create_symtab_sections(const Input_objects* input_objects,
1972                                Symbol_table* symtab,
1973                                unsigned int shnum,
1974                                off_t* poff)
1975 {
1976   int symsize;
1977   unsigned int align;
1978   if (parameters->target().get_size() == 32)
1979     {
1980       symsize = elfcpp::Elf_sizes<32>::sym_size;
1981       align = 4;
1982     }
1983   else if (parameters->target().get_size() == 64)
1984     {
1985       symsize = elfcpp::Elf_sizes<64>::sym_size;
1986       align = 8;
1987     }
1988   else
1989     gold_unreachable();
1990
1991   off_t off = *poff;
1992   off = align_address(off, align);
1993   off_t startoff = off;
1994
1995   // Save space for the dummy symbol at the start of the section.  We
1996   // never bother to write this out--it will just be left as zero.
1997   off += symsize;
1998   unsigned int local_symbol_index = 1;
1999
2000   // Add STT_SECTION symbols for each Output section which needs one.
2001   for (Section_list::iterator p = this->section_list_.begin();
2002        p != this->section_list_.end();
2003        ++p)
2004     {
2005       if (!(*p)->needs_symtab_index())
2006         (*p)->set_symtab_index(-1U);
2007       else
2008         {
2009           (*p)->set_symtab_index(local_symbol_index);
2010           ++local_symbol_index;
2011           off += symsize;
2012         }
2013     }
2014
2015   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2016        p != input_objects->relobj_end();
2017        ++p)
2018     {
2019       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2020                                                         off);
2021       off += (index - local_symbol_index) * symsize;
2022       local_symbol_index = index;
2023     }
2024
2025   unsigned int local_symcount = local_symbol_index;
2026   gold_assert(local_symcount * symsize == off - startoff);
2027
2028   off_t dynoff;
2029   size_t dyn_global_index;
2030   size_t dyncount;
2031   if (this->dynsym_section_ == NULL)
2032     {
2033       dynoff = 0;
2034       dyn_global_index = 0;
2035       dyncount = 0;
2036     }
2037   else
2038     {
2039       dyn_global_index = this->dynsym_section_->info();
2040       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2041       dynoff = this->dynsym_section_->offset() + locsize;
2042       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2043       gold_assert(static_cast<off_t>(dyncount * symsize)
2044                   == this->dynsym_section_->data_size() - locsize);
2045     }
2046
2047   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2048                          &this->sympool_, &local_symcount);
2049
2050   if (!parameters->options().strip_all())
2051     {
2052       this->sympool_.set_string_offsets();
2053
2054       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2055       Output_section* osymtab = this->make_output_section(symtab_name,
2056                                                           elfcpp::SHT_SYMTAB,
2057                                                           0);
2058       this->symtab_section_ = osymtab;
2059
2060       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2061                                                              align,
2062                                                              "** symtab");
2063       osymtab->add_output_section_data(pos);
2064
2065       // We generate a .symtab_shndx section if we have more than
2066       // SHN_LORESERVE sections.  Technically it is possible that we
2067       // don't need one, because it is possible that there are no
2068       // symbols in any of sections with indexes larger than
2069       // SHN_LORESERVE.  That is probably unusual, though, and it is
2070       // easier to always create one than to compute section indexes
2071       // twice (once here, once when writing out the symbols).
2072       if (shnum >= elfcpp::SHN_LORESERVE)
2073         {
2074           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2075                                                                false, NULL);
2076           Output_section* osymtab_xindex =
2077             this->make_output_section(symtab_xindex_name,
2078                                       elfcpp::SHT_SYMTAB_SHNDX, 0);
2079
2080           size_t symcount = (off - startoff) / symsize;
2081           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2082
2083           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2084
2085           osymtab_xindex->set_link_section(osymtab);
2086           osymtab_xindex->set_addralign(4);
2087           osymtab_xindex->set_entsize(4);
2088
2089           osymtab_xindex->set_after_input_sections();
2090
2091           // This tells the driver code to wait until the symbol table
2092           // has written out before writing out the postprocessing
2093           // sections, including the .symtab_shndx section.
2094           this->any_postprocessing_sections_ = true;
2095         }
2096
2097       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2098       Output_section* ostrtab = this->make_output_section(strtab_name,
2099                                                           elfcpp::SHT_STRTAB,
2100                                                           0);
2101
2102       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2103       ostrtab->add_output_section_data(pstr);
2104
2105       osymtab->set_file_offset(startoff);
2106       osymtab->finalize_data_size();
2107       osymtab->set_link_section(ostrtab);
2108       osymtab->set_info(local_symcount);
2109       osymtab->set_entsize(symsize);
2110
2111       *poff = off;
2112     }
2113 }
2114
2115 // Create the .shstrtab section, which holds the names of the
2116 // sections.  At the time this is called, we have created all the
2117 // output sections except .shstrtab itself.
2118
2119 Output_section*
2120 Layout::create_shstrtab()
2121 {
2122   // FIXME: We don't need to create a .shstrtab section if we are
2123   // stripping everything.
2124
2125   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2126
2127   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2128
2129   // We can't write out this section until we've set all the section
2130   // names, and we don't set the names of compressed output sections
2131   // until relocations are complete.
2132   os->set_after_input_sections();
2133
2134   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2135   os->add_output_section_data(posd);
2136
2137   return os;
2138 }
2139
2140 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2141 // offset.
2142
2143 void
2144 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2145 {
2146   Output_section_headers* oshdrs;
2147   oshdrs = new Output_section_headers(this,
2148                                       &this->segment_list_,
2149                                       &this->section_list_,
2150                                       &this->unattached_section_list_,
2151                                       &this->namepool_,
2152                                       shstrtab_section);
2153   off_t off = align_address(*poff, oshdrs->addralign());
2154   oshdrs->set_address_and_file_offset(0, off);
2155   off += oshdrs->data_size();
2156   *poff = off;
2157   this->section_headers_ = oshdrs;
2158 }
2159
2160 // Count the allocated sections.
2161
2162 size_t
2163 Layout::allocated_output_section_count() const
2164 {
2165   size_t section_count = 0;
2166   for (Segment_list::const_iterator p = this->segment_list_.begin();
2167        p != this->segment_list_.end();
2168        ++p)
2169     section_count += (*p)->output_section_count();
2170   return section_count;
2171 }
2172
2173 // Create the dynamic symbol table.
2174
2175 void
2176 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2177                               Symbol_table* symtab,
2178                               Output_section **pdynstr,
2179                               unsigned int* plocal_dynamic_count,
2180                               std::vector<Symbol*>* pdynamic_symbols,
2181                               Versions* pversions)
2182 {
2183   // Count all the symbols in the dynamic symbol table, and set the
2184   // dynamic symbol indexes.
2185
2186   // Skip symbol 0, which is always all zeroes.
2187   unsigned int index = 1;
2188
2189   // Add STT_SECTION symbols for each Output section which needs one.
2190   for (Section_list::iterator p = this->section_list_.begin();
2191        p != this->section_list_.end();
2192        ++p)
2193     {
2194       if (!(*p)->needs_dynsym_index())
2195         (*p)->set_dynsym_index(-1U);
2196       else
2197         {
2198           (*p)->set_dynsym_index(index);
2199           ++index;
2200         }
2201     }
2202
2203   // Count the local symbols that need to go in the dynamic symbol table,
2204   // and set the dynamic symbol indexes.
2205   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2206        p != input_objects->relobj_end();
2207        ++p)
2208     {
2209       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2210       index = new_index;
2211     }
2212
2213   unsigned int local_symcount = index;
2214   *plocal_dynamic_count = local_symcount;
2215
2216   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2217                                      &this->dynpool_, pversions);
2218
2219   int symsize;
2220   unsigned int align;
2221   const int size = parameters->target().get_size();
2222   if (size == 32)
2223     {
2224       symsize = elfcpp::Elf_sizes<32>::sym_size;
2225       align = 4;
2226     }
2227   else if (size == 64)
2228     {
2229       symsize = elfcpp::Elf_sizes<64>::sym_size;
2230       align = 8;
2231     }
2232   else
2233     gold_unreachable();
2234
2235   // Create the dynamic symbol table section.
2236
2237   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2238                                                        elfcpp::SHT_DYNSYM,
2239                                                        elfcpp::SHF_ALLOC,
2240                                                        false);
2241
2242   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2243                                                            align,
2244                                                            "** dynsym");
2245   dynsym->add_output_section_data(odata);
2246
2247   dynsym->set_info(local_symcount);
2248   dynsym->set_entsize(symsize);
2249   dynsym->set_addralign(align);
2250
2251   this->dynsym_section_ = dynsym;
2252
2253   Output_data_dynamic* const odyn = this->dynamic_data_;
2254   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2255   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2256
2257   // If there are more than SHN_LORESERVE allocated sections, we
2258   // create a .dynsym_shndx section.  It is possible that we don't
2259   // need one, because it is possible that there are no dynamic
2260   // symbols in any of the sections with indexes larger than
2261   // SHN_LORESERVE.  This is probably unusual, though, and at this
2262   // time we don't know the actual section indexes so it is
2263   // inconvenient to check.
2264   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2265     {
2266       Output_section* dynsym_xindex =
2267         this->choose_output_section(NULL, ".dynsym_shndx",
2268                                     elfcpp::SHT_SYMTAB_SHNDX,
2269                                     elfcpp::SHF_ALLOC,
2270                                     false);
2271
2272       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2273
2274       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2275
2276       dynsym_xindex->set_link_section(dynsym);
2277       dynsym_xindex->set_addralign(4);
2278       dynsym_xindex->set_entsize(4);
2279
2280       dynsym_xindex->set_after_input_sections();
2281
2282       // This tells the driver code to wait until the symbol table has
2283       // written out before writing out the postprocessing sections,
2284       // including the .dynsym_shndx section.
2285       this->any_postprocessing_sections_ = true;
2286     }
2287
2288   // Create the dynamic string table section.
2289
2290   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2291                                                        elfcpp::SHT_STRTAB,
2292                                                        elfcpp::SHF_ALLOC,
2293                                                        false);
2294
2295   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2296   dynstr->add_output_section_data(strdata);
2297
2298   dynsym->set_link_section(dynstr);
2299   this->dynamic_section_->set_link_section(dynstr);
2300
2301   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2302   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2303
2304   *pdynstr = dynstr;
2305
2306   // Create the hash tables.
2307
2308   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2309       || strcmp(parameters->options().hash_style(), "both") == 0)
2310     {
2311       unsigned char* phash;
2312       unsigned int hashlen;
2313       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2314                                     &phash, &hashlen);
2315
2316       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2317                                                             elfcpp::SHT_HASH,
2318                                                             elfcpp::SHF_ALLOC,
2319                                                             false);
2320
2321       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2322                                                                    hashlen,
2323                                                                    align,
2324                                                                    "** hash");
2325       hashsec->add_output_section_data(hashdata);
2326
2327       hashsec->set_link_section(dynsym);
2328       hashsec->set_entsize(4);
2329
2330       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2331     }
2332
2333   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2334       || strcmp(parameters->options().hash_style(), "both") == 0)
2335     {
2336       unsigned char* phash;
2337       unsigned int hashlen;
2338       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2339                                     &phash, &hashlen);
2340
2341       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2342                                                             elfcpp::SHT_GNU_HASH,
2343                                                             elfcpp::SHF_ALLOC,
2344                                                             false);
2345
2346       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2347                                                                    hashlen,
2348                                                                    align,
2349                                                                    "** hash");
2350       hashsec->add_output_section_data(hashdata);
2351
2352       hashsec->set_link_section(dynsym);
2353       hashsec->set_entsize(4);
2354
2355       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2356     }
2357 }
2358
2359 // Assign offsets to each local portion of the dynamic symbol table.
2360
2361 void
2362 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2363 {
2364   Output_section* dynsym = this->dynsym_section_;
2365   gold_assert(dynsym != NULL);
2366
2367   off_t off = dynsym->offset();
2368
2369   // Skip the dummy symbol at the start of the section.
2370   off += dynsym->entsize();
2371
2372   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2373        p != input_objects->relobj_end();
2374        ++p)
2375     {
2376       unsigned int count = (*p)->set_local_dynsym_offset(off);
2377       off += count * dynsym->entsize();
2378     }
2379 }
2380
2381 // Create the version sections.
2382
2383 void
2384 Layout::create_version_sections(const Versions* versions,
2385                                 const Symbol_table* symtab,
2386                                 unsigned int local_symcount,
2387                                 const std::vector<Symbol*>& dynamic_symbols,
2388                                 const Output_section* dynstr)
2389 {
2390   if (!versions->any_defs() && !versions->any_needs())
2391     return;
2392
2393   switch (parameters->size_and_endianness())
2394     {
2395 #ifdef HAVE_TARGET_32_LITTLE
2396     case Parameters::TARGET_32_LITTLE:
2397       this->sized_create_version_sections<32, false>(versions, symtab,
2398                                                      local_symcount,
2399                                                      dynamic_symbols, dynstr);
2400       break;
2401 #endif
2402 #ifdef HAVE_TARGET_32_BIG
2403     case Parameters::TARGET_32_BIG:
2404       this->sized_create_version_sections<32, true>(versions, symtab,
2405                                                     local_symcount,
2406                                                     dynamic_symbols, dynstr);
2407       break;
2408 #endif
2409 #ifdef HAVE_TARGET_64_LITTLE
2410     case Parameters::TARGET_64_LITTLE:
2411       this->sized_create_version_sections<64, false>(versions, symtab,
2412                                                      local_symcount,
2413                                                      dynamic_symbols, dynstr);
2414       break;
2415 #endif
2416 #ifdef HAVE_TARGET_64_BIG
2417     case Parameters::TARGET_64_BIG:
2418       this->sized_create_version_sections<64, true>(versions, symtab,
2419                                                     local_symcount,
2420                                                     dynamic_symbols, dynstr);
2421       break;
2422 #endif
2423     default:
2424       gold_unreachable();
2425     }
2426 }
2427
2428 // Create the version sections, sized version.
2429
2430 template<int size, bool big_endian>
2431 void
2432 Layout::sized_create_version_sections(
2433     const Versions* versions,
2434     const Symbol_table* symtab,
2435     unsigned int local_symcount,
2436     const std::vector<Symbol*>& dynamic_symbols,
2437     const Output_section* dynstr)
2438 {
2439   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2440                                                      elfcpp::SHT_GNU_versym,
2441                                                      elfcpp::SHF_ALLOC,
2442                                                      false);
2443
2444   unsigned char* vbuf;
2445   unsigned int vsize;
2446   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2447                                                       local_symcount,
2448                                                       dynamic_symbols,
2449                                                       &vbuf, &vsize);
2450
2451   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2452                                                             "** versions");
2453
2454   vsec->add_output_section_data(vdata);
2455   vsec->set_entsize(2);
2456   vsec->set_link_section(this->dynsym_section_);
2457
2458   Output_data_dynamic* const odyn = this->dynamic_data_;
2459   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2460
2461   if (versions->any_defs())
2462     {
2463       Output_section* vdsec;
2464       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2465                                          elfcpp::SHT_GNU_verdef,
2466                                          elfcpp::SHF_ALLOC,
2467                                          false);
2468
2469       unsigned char* vdbuf;
2470       unsigned int vdsize;
2471       unsigned int vdentries;
2472       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2473                                                        &vdsize, &vdentries);
2474
2475       Output_section_data* vddata =
2476         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2477
2478       vdsec->add_output_section_data(vddata);
2479       vdsec->set_link_section(dynstr);
2480       vdsec->set_info(vdentries);
2481
2482       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2483       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2484     }
2485
2486   if (versions->any_needs())
2487     {
2488       Output_section* vnsec;
2489       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2490                                           elfcpp::SHT_GNU_verneed,
2491                                           elfcpp::SHF_ALLOC,
2492                                           false);
2493
2494       unsigned char* vnbuf;
2495       unsigned int vnsize;
2496       unsigned int vnentries;
2497       versions->need_section_contents<size, big_endian>(&this->dynpool_,
2498                                                         &vnbuf, &vnsize,
2499                                                         &vnentries);
2500
2501       Output_section_data* vndata =
2502         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2503
2504       vnsec->add_output_section_data(vndata);
2505       vnsec->set_link_section(dynstr);
2506       vnsec->set_info(vnentries);
2507
2508       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2509       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2510     }
2511 }
2512
2513 // Create the .interp section and PT_INTERP segment.
2514
2515 void
2516 Layout::create_interp(const Target* target)
2517 {
2518   const char* interp = this->options_.dynamic_linker();
2519   if (interp == NULL)
2520     {
2521       interp = target->dynamic_linker();
2522       gold_assert(interp != NULL);
2523     }
2524
2525   size_t len = strlen(interp) + 1;
2526
2527   Output_section_data* odata = new Output_data_const(interp, len, 1);
2528
2529   Output_section* osec = this->choose_output_section(NULL, ".interp",
2530                                                      elfcpp::SHT_PROGBITS,
2531                                                      elfcpp::SHF_ALLOC,
2532                                                      false);
2533   osec->add_output_section_data(odata);
2534
2535   if (!this->script_options_->saw_phdrs_clause())
2536     {
2537       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2538                                                        elfcpp::PF_R);
2539       oseg->add_output_section(osec, elfcpp::PF_R);
2540     }
2541 }
2542
2543 // Finish the .dynamic section and PT_DYNAMIC segment.
2544
2545 void
2546 Layout::finish_dynamic_section(const Input_objects* input_objects,
2547                                const Symbol_table* symtab)
2548 {
2549   if (!this->script_options_->saw_phdrs_clause())
2550     {
2551       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2552                                                        (elfcpp::PF_R
2553                                                         | elfcpp::PF_W));
2554       oseg->add_output_section(this->dynamic_section_,
2555                                elfcpp::PF_R | elfcpp::PF_W);
2556     }
2557
2558   Output_data_dynamic* const odyn = this->dynamic_data_;
2559
2560   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2561        p != input_objects->dynobj_end();
2562        ++p)
2563     {
2564       // FIXME: Handle --as-needed.
2565       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2566     }
2567
2568   if (parameters->options().shared())
2569     {
2570       const char* soname = this->options_.soname();
2571       if (soname != NULL)
2572         odyn->add_string(elfcpp::DT_SONAME, soname);
2573     }
2574
2575   // FIXME: Support --init and --fini.
2576   Symbol* sym = symtab->lookup("_init");
2577   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2578     odyn->add_symbol(elfcpp::DT_INIT, sym);
2579
2580   sym = symtab->lookup("_fini");
2581   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2582     odyn->add_symbol(elfcpp::DT_FINI, sym);
2583
2584   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2585
2586   // Add a DT_RPATH entry if needed.
2587   const General_options::Dir_list& rpath(this->options_.rpath());
2588   if (!rpath.empty())
2589     {
2590       std::string rpath_val;
2591       for (General_options::Dir_list::const_iterator p = rpath.begin();
2592            p != rpath.end();
2593            ++p)
2594         {
2595           if (rpath_val.empty())
2596             rpath_val = p->name();
2597           else
2598             {
2599               // Eliminate duplicates.
2600               General_options::Dir_list::const_iterator q;
2601               for (q = rpath.begin(); q != p; ++q)
2602                 if (q->name() == p->name())
2603                   break;
2604               if (q == p)
2605                 {
2606                   rpath_val += ':';
2607                   rpath_val += p->name();
2608                 }
2609             }
2610         }
2611
2612       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2613       if (parameters->options().enable_new_dtags())
2614         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2615     }
2616
2617   // Look for text segments that have dynamic relocations.
2618   bool have_textrel = false;
2619   if (!this->script_options_->saw_sections_clause())
2620     {
2621       for (Segment_list::const_iterator p = this->segment_list_.begin();
2622            p != this->segment_list_.end();
2623            ++p)
2624         {
2625           if (((*p)->flags() & elfcpp::PF_W) == 0
2626               && (*p)->dynamic_reloc_count() > 0)
2627             {
2628               have_textrel = true;
2629               break;
2630             }
2631         }
2632     }
2633   else
2634     {
2635       // We don't know the section -> segment mapping, so we are
2636       // conservative and just look for readonly sections with
2637       // relocations.  If those sections wind up in writable segments,
2638       // then we have created an unnecessary DT_TEXTREL entry.
2639       for (Section_list::const_iterator p = this->section_list_.begin();
2640            p != this->section_list_.end();
2641            ++p)
2642         {
2643           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2644               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2645               && ((*p)->dynamic_reloc_count() > 0))
2646             {
2647               have_textrel = true;
2648               break;
2649             }
2650         }
2651     }
2652
2653   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2654   // post-link tools can easily modify these flags if desired.
2655   unsigned int flags = 0;
2656   if (have_textrel)
2657     {
2658       // Add a DT_TEXTREL for compatibility with older loaders.
2659       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2660       flags |= elfcpp::DF_TEXTREL;
2661     }
2662   if (parameters->options().shared() && this->has_static_tls())
2663     flags |= elfcpp::DF_STATIC_TLS;
2664   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2665
2666   flags = 0;
2667   if (parameters->options().initfirst())
2668     flags |= elfcpp::DF_1_INITFIRST;
2669   if (parameters->options().interpose())
2670     flags |= elfcpp::DF_1_INTERPOSE;
2671   if (parameters->options().loadfltr())
2672     flags |= elfcpp::DF_1_LOADFLTR;
2673   if (parameters->options().nodefaultlib())
2674     flags |= elfcpp::DF_1_NODEFLIB;
2675   if (parameters->options().nodelete())
2676     flags |= elfcpp::DF_1_NODELETE;
2677   if (parameters->options().nodlopen())
2678     flags |= elfcpp::DF_1_NOOPEN;
2679   if (parameters->options().nodump())
2680     flags |= elfcpp::DF_1_NODUMP;
2681   if (!parameters->options().shared())
2682     flags &= ~(elfcpp::DF_1_INITFIRST
2683                | elfcpp::DF_1_NODELETE
2684                | elfcpp::DF_1_NOOPEN);
2685   if (flags)
2686     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2687 }
2688
2689 // The mapping of .gnu.linkonce section names to real section names.
2690
2691 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2692 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2693 {
2694   MAPPING_INIT("d.rel.ro.local", ".data.rel.ro.local"), // Before "d.rel.ro".
2695   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),             // Before "d".
2696   MAPPING_INIT("t", ".text"),
2697   MAPPING_INIT("r", ".rodata"),
2698   MAPPING_INIT("d", ".data"),
2699   MAPPING_INIT("b", ".bss"),
2700   MAPPING_INIT("s", ".sdata"),
2701   MAPPING_INIT("sb", ".sbss"),
2702   MAPPING_INIT("s2", ".sdata2"),
2703   MAPPING_INIT("sb2", ".sbss2"),
2704   MAPPING_INIT("wi", ".debug_info"),
2705   MAPPING_INIT("td", ".tdata"),
2706   MAPPING_INIT("tb", ".tbss"),
2707   MAPPING_INIT("lr", ".lrodata"),
2708   MAPPING_INIT("l", ".ldata"),
2709   MAPPING_INIT("lb", ".lbss"),
2710 };
2711 #undef MAPPING_INIT
2712
2713 const int Layout::linkonce_mapping_count =
2714   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2715
2716 // Return the name of the output section to use for a .gnu.linkonce
2717 // section.  This is based on the default ELF linker script of the old
2718 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
2719 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
2720 // initialized to the length of NAME.
2721
2722 const char*
2723 Layout::linkonce_output_name(const char* name, size_t *plen)
2724 {
2725   const char* s = name + sizeof(".gnu.linkonce") - 1;
2726   if (*s != '.')
2727     return name;
2728   ++s;
2729   const Linkonce_mapping* plm = linkonce_mapping;
2730   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2731     {
2732       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2733         {
2734           *plen = plm->tolen;
2735           return plm->to;
2736         }
2737     }
2738   return name;
2739 }
2740
2741 // Choose the output section name to use given an input section name.
2742 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2743 // length of NAME.
2744
2745 const char*
2746 Layout::output_section_name(const char* name, size_t* plen)
2747 {
2748   if (Layout::is_linkonce(name))
2749     {
2750       // .gnu.linkonce sections are laid out as though they were named
2751       // for the sections are placed into.
2752       return Layout::linkonce_output_name(name, plen);
2753     }
2754
2755   // gcc 4.3 generates the following sorts of section names when it
2756   // needs a section name specific to a function:
2757   //   .text.FN
2758   //   .rodata.FN
2759   //   .sdata2.FN
2760   //   .data.FN
2761   //   .data.rel.FN
2762   //   .data.rel.local.FN
2763   //   .data.rel.ro.FN
2764   //   .data.rel.ro.local.FN
2765   //   .sdata.FN
2766   //   .bss.FN
2767   //   .sbss.FN
2768   //   .tdata.FN
2769   //   .tbss.FN
2770
2771   // The GNU linker maps all of those to the part before the .FN,
2772   // except that .data.rel.local.FN is mapped to .data, and
2773   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2774   // beginning with .data.rel.ro.local are grouped together.
2775
2776   // For an anonymous namespace, the string FN can contain a '.'.
2777
2778   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2779   // GNU linker maps to .rodata.
2780
2781   // The .data.rel.ro sections enable a security feature triggered by
2782   // the -z relro option.  Section which need to be relocated at
2783   // program startup time but which may be readonly after startup are
2784   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
2785   // segment.  The dynamic linker will make that segment writable,
2786   // perform relocations, and then make it read-only.  FIXME: We do
2787   // not yet implement this optimization.
2788
2789   // It is hard to handle this in a principled way.
2790
2791   // These are the rules we follow:
2792
2793   // If the section name has no initial '.', or no dot other than an
2794   // initial '.', we use the name unchanged (i.e., "mysection" and
2795   // ".text" are unchanged).
2796
2797   // If the name starts with ".data.rel.ro.local" we use
2798   // ".data.rel.ro.local".
2799
2800   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2801
2802   // Otherwise, we drop the second '.' and everything that comes after
2803   // it (i.e., ".text.XXX" becomes ".text").
2804
2805   const char* s = name;
2806   if (*s != '.')
2807     return name;
2808   ++s;
2809   const char* sdot = strchr(s, '.');
2810   if (sdot == NULL)
2811     return name;
2812
2813   const char* const data_rel_ro_local = ".data.rel.ro.local";
2814   if (strncmp(name, data_rel_ro_local, strlen(data_rel_ro_local)) == 0)
2815     {
2816       *plen = strlen(data_rel_ro_local);
2817       return data_rel_ro_local;
2818     }
2819
2820   const char* const data_rel_ro = ".data.rel.ro";
2821   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2822     {
2823       *plen = strlen(data_rel_ro);
2824       return data_rel_ro;
2825     }
2826
2827   *plen = sdot - name;
2828   return name;
2829 }
2830
2831 // Record the signature of a comdat section, and return whether to
2832 // include it in the link.  If GROUP is true, this is a regular
2833 // section group.  If GROUP is false, this is a group signature
2834 // derived from the name of a linkonce section.  We want linkonce
2835 // signatures and group signatures to block each other, but we don't
2836 // want a linkonce signature to block another linkonce signature.
2837
2838 bool
2839 Layout::add_comdat(Relobj* object, unsigned int shndx,
2840                    const std::string& signature, bool group)
2841 {
2842   Kept_section kept(object, shndx, group);
2843   std::pair<Signatures::iterator, bool> ins(
2844     this->signatures_.insert(std::make_pair(signature, kept)));
2845
2846   if (ins.second)
2847     {
2848       // This is the first time we've seen this signature.
2849       return true;
2850     }
2851
2852   if (ins.first->second.group_)
2853     {
2854       // We've already seen a real section group with this signature.
2855       return false;
2856     }
2857   else if (group)
2858     {
2859       // This is a real section group, and we've already seen a
2860       // linkonce section with this signature.  Record that we've seen
2861       // a section group, and don't include this section group.
2862       ins.first->second.group_ = true;
2863       return false;
2864     }
2865   else
2866     {
2867       // We've already seen a linkonce section and this is a linkonce
2868       // section.  These don't block each other--this may be the same
2869       // symbol name with different section types.
2870       return true;
2871     }
2872 }
2873
2874 // Find the given comdat signature, and return the object and section
2875 // index of the kept group.
2876 Relobj*
2877 Layout::find_kept_object(const std::string& signature,
2878                          unsigned int* pshndx) const
2879 {
2880   Signatures::const_iterator p = this->signatures_.find(signature);
2881   if (p == this->signatures_.end())
2882     return NULL;
2883   if (pshndx != NULL)
2884     *pshndx = p->second.shndx_;
2885   return p->second.object_;
2886 }
2887
2888 // Store the allocated sections into the section list.
2889
2890 void
2891 Layout::get_allocated_sections(Section_list* section_list) const
2892 {
2893   for (Section_list::const_iterator p = this->section_list_.begin();
2894        p != this->section_list_.end();
2895        ++p)
2896     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2897       section_list->push_back(*p);
2898 }
2899
2900 // Create an output segment.
2901
2902 Output_segment*
2903 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2904 {
2905   gold_assert(!parameters->options().relocatable());
2906   Output_segment* oseg = new Output_segment(type, flags);
2907   this->segment_list_.push_back(oseg);
2908   return oseg;
2909 }
2910
2911 // Write out the Output_sections.  Most won't have anything to write,
2912 // since most of the data will come from input sections which are
2913 // handled elsewhere.  But some Output_sections do have Output_data.
2914
2915 void
2916 Layout::write_output_sections(Output_file* of) const
2917 {
2918   for (Section_list::const_iterator p = this->section_list_.begin();
2919        p != this->section_list_.end();
2920        ++p)
2921     {
2922       if (!(*p)->after_input_sections())
2923         (*p)->write(of);
2924     }
2925 }
2926
2927 // Write out data not associated with a section or the symbol table.
2928
2929 void
2930 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2931 {
2932   if (!parameters->options().strip_all())
2933     {
2934       const Output_section* symtab_section = this->symtab_section_;
2935       for (Section_list::const_iterator p = this->section_list_.begin();
2936            p != this->section_list_.end();
2937            ++p)
2938         {
2939           if ((*p)->needs_symtab_index())
2940             {
2941               gold_assert(symtab_section != NULL);
2942               unsigned int index = (*p)->symtab_index();
2943               gold_assert(index > 0 && index != -1U);
2944               off_t off = (symtab_section->offset()
2945                            + index * symtab_section->entsize());
2946               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
2947             }
2948         }
2949     }
2950
2951   const Output_section* dynsym_section = this->dynsym_section_;
2952   for (Section_list::const_iterator p = this->section_list_.begin();
2953        p != this->section_list_.end();
2954        ++p)
2955     {
2956       if ((*p)->needs_dynsym_index())
2957         {
2958           gold_assert(dynsym_section != NULL);
2959           unsigned int index = (*p)->dynsym_index();
2960           gold_assert(index > 0 && index != -1U);
2961           off_t off = (dynsym_section->offset()
2962                        + index * dynsym_section->entsize());
2963           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
2964         }
2965     }
2966
2967   // Write out the Output_data which are not in an Output_section.
2968   for (Data_list::const_iterator p = this->special_output_list_.begin();
2969        p != this->special_output_list_.end();
2970        ++p)
2971     (*p)->write(of);
2972 }
2973
2974 // Write out the Output_sections which can only be written after the
2975 // input sections are complete.
2976
2977 void
2978 Layout::write_sections_after_input_sections(Output_file* of)
2979 {
2980   // Determine the final section offsets, and thus the final output
2981   // file size.  Note we finalize the .shstrab last, to allow the
2982   // after_input_section sections to modify their section-names before
2983   // writing.
2984   if (this->any_postprocessing_sections_)
2985     {
2986       off_t off = this->output_file_size_;
2987       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2988       
2989       // Now that we've finalized the names, we can finalize the shstrab.
2990       off =
2991         this->set_section_offsets(off,
2992                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2993
2994       if (off > this->output_file_size_)
2995         {
2996           of->resize(off);
2997           this->output_file_size_ = off;
2998         }
2999     }
3000
3001   for (Section_list::const_iterator p = this->section_list_.begin();
3002        p != this->section_list_.end();
3003        ++p)
3004     {
3005       if ((*p)->after_input_sections())
3006         (*p)->write(of);
3007     }
3008
3009   this->section_headers_->write(of);
3010 }
3011
3012 // If the build ID requires computing a checksum, do so here, and
3013 // write it out.  We compute a checksum over the entire file because
3014 // that is simplest.
3015
3016 void
3017 Layout::write_build_id(Output_file* of) const
3018 {
3019   if (this->build_id_note_ == NULL)
3020     return;
3021
3022   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3023
3024   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3025                                           this->build_id_note_->data_size());
3026
3027   const char* style = parameters->options().build_id();
3028   if (strcmp(style, "sha1") == 0)
3029     {
3030       sha1_ctx ctx;
3031       sha1_init_ctx(&ctx);
3032       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3033       sha1_finish_ctx(&ctx, ov);
3034     }
3035   else if (strcmp(style, "md5") == 0)
3036     {
3037       md5_ctx ctx;
3038       md5_init_ctx(&ctx);
3039       md5_process_bytes(iv, this->output_file_size_, &ctx);
3040       md5_finish_ctx(&ctx, ov);
3041     }
3042   else
3043     gold_unreachable();
3044
3045   of->write_output_view(this->build_id_note_->offset(),
3046                         this->build_id_note_->data_size(),
3047                         ov);
3048
3049   of->free_input_view(0, this->output_file_size_, iv);
3050 }
3051
3052 // Write out a binary file.  This is called after the link is
3053 // complete.  IN is the temporary output file we used to generate the
3054 // ELF code.  We simply walk through the segments, read them from
3055 // their file offset in IN, and write them to their load address in
3056 // the output file.  FIXME: with a bit more work, we could support
3057 // S-records and/or Intel hex format here.
3058
3059 void
3060 Layout::write_binary(Output_file* in) const
3061 {
3062   gold_assert(this->options_.oformat_enum()
3063               == General_options::OBJECT_FORMAT_BINARY);
3064
3065   // Get the size of the binary file.
3066   uint64_t max_load_address = 0;
3067   for (Segment_list::const_iterator p = this->segment_list_.begin();
3068        p != this->segment_list_.end();
3069        ++p)
3070     {
3071       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3072         {
3073           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3074           if (max_paddr > max_load_address)
3075             max_load_address = max_paddr;
3076         }
3077     }
3078
3079   Output_file out(parameters->options().output_file_name());
3080   out.open(max_load_address);
3081
3082   for (Segment_list::const_iterator p = this->segment_list_.begin();
3083        p != this->segment_list_.end();
3084        ++p)
3085     {
3086       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3087         {
3088           const unsigned char* vin = in->get_input_view((*p)->offset(),
3089                                                         (*p)->filesz());
3090           unsigned char* vout = out.get_output_view((*p)->paddr(),
3091                                                     (*p)->filesz());
3092           memcpy(vout, vin, (*p)->filesz());
3093           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3094           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3095         }
3096     }
3097
3098   out.close();
3099 }
3100
3101 // Print the output sections to the map file.
3102
3103 void
3104 Layout::print_to_mapfile(Mapfile* mapfile) const
3105 {
3106   for (Segment_list::const_iterator p = this->segment_list_.begin();
3107        p != this->segment_list_.end();
3108        ++p)
3109     (*p)->print_sections_to_mapfile(mapfile);
3110 }
3111
3112 // Print statistical information to stderr.  This is used for --stats.
3113
3114 void
3115 Layout::print_stats() const
3116 {
3117   this->namepool_.print_stats("section name pool");
3118   this->sympool_.print_stats("output symbol name pool");
3119   this->dynpool_.print_stats("dynamic name pool");
3120
3121   for (Section_list::const_iterator p = this->section_list_.begin();
3122        p != this->section_list_.end();
3123        ++p)
3124     (*p)->print_merge_stats();
3125 }
3126
3127 // Write_sections_task methods.
3128
3129 // We can always run this task.
3130
3131 Task_token*
3132 Write_sections_task::is_runnable()
3133 {
3134   return NULL;
3135 }
3136
3137 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3138 // when finished.
3139
3140 void
3141 Write_sections_task::locks(Task_locker* tl)
3142 {
3143   tl->add(this, this->output_sections_blocker_);
3144   tl->add(this, this->final_blocker_);
3145 }
3146
3147 // Run the task--write out the data.
3148
3149 void
3150 Write_sections_task::run(Workqueue*)
3151 {
3152   this->layout_->write_output_sections(this->of_);
3153 }
3154
3155 // Write_data_task methods.
3156
3157 // We can always run this task.
3158
3159 Task_token*
3160 Write_data_task::is_runnable()
3161 {
3162   return NULL;
3163 }
3164
3165 // We need to unlock FINAL_BLOCKER when finished.
3166
3167 void
3168 Write_data_task::locks(Task_locker* tl)
3169 {
3170   tl->add(this, this->final_blocker_);
3171 }
3172
3173 // Run the task--write out the data.
3174
3175 void
3176 Write_data_task::run(Workqueue*)
3177 {
3178   this->layout_->write_data(this->symtab_, this->of_);
3179 }
3180
3181 // Write_symbols_task methods.
3182
3183 // We can always run this task.
3184
3185 Task_token*
3186 Write_symbols_task::is_runnable()
3187 {
3188   return NULL;
3189 }
3190
3191 // We need to unlock FINAL_BLOCKER when finished.
3192
3193 void
3194 Write_symbols_task::locks(Task_locker* tl)
3195 {
3196   tl->add(this, this->final_blocker_);
3197 }
3198
3199 // Run the task--write out the symbols.
3200
3201 void
3202 Write_symbols_task::run(Workqueue*)
3203 {
3204   this->symtab_->write_globals(this->input_objects_, this->sympool_,
3205                                this->dynpool_, this->layout_->symtab_xindex(),
3206                                this->layout_->dynsym_xindex(), this->of_);
3207 }
3208
3209 // Write_after_input_sections_task methods.
3210
3211 // We can only run this task after the input sections have completed.
3212
3213 Task_token*
3214 Write_after_input_sections_task::is_runnable()
3215 {
3216   if (this->input_sections_blocker_->is_blocked())
3217     return this->input_sections_blocker_;
3218   return NULL;
3219 }
3220
3221 // We need to unlock FINAL_BLOCKER when finished.
3222
3223 void
3224 Write_after_input_sections_task::locks(Task_locker* tl)
3225 {
3226   tl->add(this, this->final_blocker_);
3227 }
3228
3229 // Run the task.
3230
3231 void
3232 Write_after_input_sections_task::run(Workqueue*)
3233 {
3234   this->layout_->write_sections_after_input_sections(this->of_);
3235 }
3236
3237 // Close_task_runner methods.
3238
3239 // Run the task--close the file.
3240
3241 void
3242 Close_task_runner::run(Workqueue*, const Task*)
3243 {
3244   // If we need to compute a checksum for the BUILD if, we do so here.
3245   this->layout_->write_build_id(this->of_);
3246
3247   // If we've been asked to create a binary file, we do so here.
3248   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3249     this->layout_->write_binary(this->of_);
3250
3251   this->of_->close();
3252 }
3253
3254 // Instantiate the templates we need.  We could use the configure
3255 // script to restrict this to only the ones for implemented targets.
3256
3257 #ifdef HAVE_TARGET_32_LITTLE
3258 template
3259 Output_section*
3260 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3261                           const char* name,
3262                           const elfcpp::Shdr<32, false>& shdr,
3263                           unsigned int, unsigned int, off_t*);
3264 #endif
3265
3266 #ifdef HAVE_TARGET_32_BIG
3267 template
3268 Output_section*
3269 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3270                          const char* name,
3271                          const elfcpp::Shdr<32, true>& shdr,
3272                          unsigned int, unsigned int, off_t*);
3273 #endif
3274
3275 #ifdef HAVE_TARGET_64_LITTLE
3276 template
3277 Output_section*
3278 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3279                           const char* name,
3280                           const elfcpp::Shdr<64, false>& shdr,
3281                           unsigned int, unsigned int, off_t*);
3282 #endif
3283
3284 #ifdef HAVE_TARGET_64_BIG
3285 template
3286 Output_section*
3287 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3288                          const char* name,
3289                          const elfcpp::Shdr<64, true>& shdr,
3290                          unsigned int, unsigned int, off_t*);
3291 #endif
3292
3293 #ifdef HAVE_TARGET_32_LITTLE
3294 template
3295 Output_section*
3296 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3297                                 unsigned int reloc_shndx,
3298                                 const elfcpp::Shdr<32, false>& shdr,
3299                                 Output_section* data_section,
3300                                 Relocatable_relocs* rr);
3301 #endif
3302
3303 #ifdef HAVE_TARGET_32_BIG
3304 template
3305 Output_section*
3306 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3307                                unsigned int reloc_shndx,
3308                                const elfcpp::Shdr<32, true>& shdr,
3309                                Output_section* data_section,
3310                                Relocatable_relocs* rr);
3311 #endif
3312
3313 #ifdef HAVE_TARGET_64_LITTLE
3314 template
3315 Output_section*
3316 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3317                                 unsigned int reloc_shndx,
3318                                 const elfcpp::Shdr<64, false>& shdr,
3319                                 Output_section* data_section,
3320                                 Relocatable_relocs* rr);
3321 #endif
3322
3323 #ifdef HAVE_TARGET_64_BIG
3324 template
3325 Output_section*
3326 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3327                                unsigned int reloc_shndx,
3328                                const elfcpp::Shdr<64, true>& shdr,
3329                                Output_section* data_section,
3330                                Relocatable_relocs* rr);
3331 #endif
3332
3333 #ifdef HAVE_TARGET_32_LITTLE
3334 template
3335 void
3336 Layout::layout_group<32, false>(Symbol_table* symtab,
3337                                 Sized_relobj<32, false>* object,
3338                                 unsigned int,
3339                                 const char* group_section_name,
3340                                 const char* signature,
3341                                 const elfcpp::Shdr<32, false>& shdr,
3342                                 elfcpp::Elf_Word flags,
3343                                 std::vector<unsigned int>* shndxes);
3344 #endif
3345
3346 #ifdef HAVE_TARGET_32_BIG
3347 template
3348 void
3349 Layout::layout_group<32, true>(Symbol_table* symtab,
3350                                Sized_relobj<32, true>* object,
3351                                unsigned int,
3352                                const char* group_section_name,
3353                                const char* signature,
3354                                const elfcpp::Shdr<32, true>& shdr,
3355                                elfcpp::Elf_Word flags,
3356                                std::vector<unsigned int>* shndxes);
3357 #endif
3358
3359 #ifdef HAVE_TARGET_64_LITTLE
3360 template
3361 void
3362 Layout::layout_group<64, false>(Symbol_table* symtab,
3363                                 Sized_relobj<64, false>* object,
3364                                 unsigned int,
3365                                 const char* group_section_name,
3366                                 const char* signature,
3367                                 const elfcpp::Shdr<64, false>& shdr,
3368                                 elfcpp::Elf_Word flags,
3369                                 std::vector<unsigned int>* shndxes);
3370 #endif
3371
3372 #ifdef HAVE_TARGET_64_BIG
3373 template
3374 void
3375 Layout::layout_group<64, true>(Symbol_table* symtab,
3376                                Sized_relobj<64, true>* object,
3377                                unsigned int,
3378                                const char* group_section_name,
3379                                const char* signature,
3380                                const elfcpp::Shdr<64, true>& shdr,
3381                                elfcpp::Elf_Word flags,
3382                                std::vector<unsigned int>* shndxes);
3383 #endif
3384
3385 #ifdef HAVE_TARGET_32_LITTLE
3386 template
3387 Output_section*
3388 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3389                                    const unsigned char* symbols,
3390                                    off_t symbols_size,
3391                                    const unsigned char* symbol_names,
3392                                    off_t symbol_names_size,
3393                                    unsigned int shndx,
3394                                    const elfcpp::Shdr<32, false>& shdr,
3395                                    unsigned int reloc_shndx,
3396                                    unsigned int reloc_type,
3397                                    off_t* off);
3398 #endif
3399
3400 #ifdef HAVE_TARGET_32_BIG
3401 template
3402 Output_section*
3403 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3404                                    const unsigned char* symbols,
3405                                    off_t symbols_size,
3406                                   const unsigned char* symbol_names,
3407                                   off_t symbol_names_size,
3408                                   unsigned int shndx,
3409                                   const elfcpp::Shdr<32, true>& shdr,
3410                                   unsigned int reloc_shndx,
3411                                   unsigned int reloc_type,
3412                                   off_t* off);
3413 #endif
3414
3415 #ifdef HAVE_TARGET_64_LITTLE
3416 template
3417 Output_section*
3418 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3419                                    const unsigned char* symbols,
3420                                    off_t symbols_size,
3421                                    const unsigned char* symbol_names,
3422                                    off_t symbol_names_size,
3423                                    unsigned int shndx,
3424                                    const elfcpp::Shdr<64, false>& shdr,
3425                                    unsigned int reloc_shndx,
3426                                    unsigned int reloc_type,
3427                                    off_t* off);
3428 #endif
3429
3430 #ifdef HAVE_TARGET_64_BIG
3431 template
3432 Output_section*
3433 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3434                                    const unsigned char* symbols,
3435                                    off_t symbols_size,
3436                                   const unsigned char* symbol_names,
3437                                   off_t symbol_names_size,
3438                                   unsigned int shndx,
3439                                   const elfcpp::Shdr<64, true>& shdr,
3440                                   unsigned int reloc_shndx,
3441                                   unsigned int reloc_type,
3442                                   off_t* off);
3443 #endif
3444
3445 } // End namespace gold.