OSDN Git Service

cea25b0193e2c13748a99cc941049d25100b548b
[pf3gnuchains/pf3gnuchains3x.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "options.h"
32 #include "script.h"
33 #include "script-sections.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "dynobj.h"
37 #include "ehframe.h"
38 #include "compressed_output.h"
39 #include "reloc.h"
40 #include "layout.h"
41
42 namespace gold
43 {
44
45 // Layout_task_runner methods.
46
47 // Lay out the sections.  This is called after all the input objects
48 // have been read.
49
50 void
51 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
52 {
53   off_t file_size = this->layout_->finalize(this->input_objects_,
54                                             this->symtab_,
55                                             task);
56
57   // Now we know the final size of the output file and we know where
58   // each piece of information goes.
59   Output_file* of = new Output_file(parameters->output_file_name());
60   if (this->options_.output_format() != General_options::OUTPUT_FORMAT_ELF)
61     of->set_is_temporary();
62   of->open(file_size);
63
64   // Queue up the final set of tasks.
65   gold::queue_final_tasks(this->options_, this->input_objects_,
66                           this->symtab_, this->layout_, workqueue, of);
67 }
68
69 // Layout methods.
70
71 Layout::Layout(const General_options& options, Script_options* script_options)
72   : options_(options), script_options_(script_options), namepool_(),
73     sympool_(), dynpool_(), signatures_(),
74     section_name_map_(), segment_list_(), section_list_(),
75     unattached_section_list_(), special_output_list_(),
76     section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
77     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
78     eh_frame_section_(NULL), group_signatures_(), output_file_size_(-1),
79     input_requires_executable_stack_(false),
80     input_with_gnu_stack_note_(false),
81     input_without_gnu_stack_note_(false),
82     has_static_tls_(false),
83     any_postprocessing_sections_(false)
84 {
85   // Make space for more than enough segments for a typical file.
86   // This is just for efficiency--it's OK if we wind up needing more.
87   this->segment_list_.reserve(12);
88
89   // We expect two unattached Output_data objects: the file header and
90   // the segment headers.
91   this->special_output_list_.reserve(2);
92 }
93
94 // Hash a key we use to look up an output section mapping.
95
96 size_t
97 Layout::Hash_key::operator()(const Layout::Key& k) const
98 {
99  return k.first + k.second.first + k.second.second;
100 }
101
102 // Return whether PREFIX is a prefix of STR.
103
104 static inline bool
105 is_prefix_of(const char* prefix, const char* str)
106 {
107   return strncmp(prefix, str, strlen(prefix)) == 0;
108 }
109
110 // Returns whether the given section is in the list of
111 // debug-sections-used-by-some-version-of-gdb.  Currently,
112 // we've checked versions of gdb up to and including 6.7.1.
113
114 static const char* gdb_sections[] =
115 { ".debug_abbrev",
116   // ".debug_aranges",   // not used by gdb as of 6.7.1
117   ".debug_frame",
118   ".debug_info",
119   ".debug_line",
120   ".debug_loc",
121   ".debug_macinfo",
122   // ".debug_pubnames",  // not used by gdb as of 6.7.1
123   ".debug_ranges",
124   ".debug_str",
125 };
126
127 static inline bool
128 is_gdb_debug_section(const char* str)
129 {
130   // We can do this faster: binary search or a hashtable.  But why bother?
131   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
132     if (strcmp(str, gdb_sections[i]) == 0)
133       return true;
134   return false;
135 }
136
137 // Whether to include this section in the link.
138
139 template<int size, bool big_endian>
140 bool
141 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
142                         const elfcpp::Shdr<size, big_endian>& shdr)
143 {
144   switch (shdr.get_sh_type())
145     {
146     case elfcpp::SHT_NULL:
147     case elfcpp::SHT_SYMTAB:
148     case elfcpp::SHT_DYNSYM:
149     case elfcpp::SHT_STRTAB:
150     case elfcpp::SHT_HASH:
151     case elfcpp::SHT_DYNAMIC:
152     case elfcpp::SHT_SYMTAB_SHNDX:
153       return false;
154
155     case elfcpp::SHT_RELA:
156     case elfcpp::SHT_REL:
157     case elfcpp::SHT_GROUP:
158       // For a relocatable link these should be handled elsewhere.
159       gold_assert(!parameters->output_is_object());
160       return false;
161
162     case elfcpp::SHT_PROGBITS:
163       if (parameters->strip_debug()
164           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
165         {
166           // Debugging sections can only be recognized by name.
167           if (is_prefix_of(".debug", name)
168               || is_prefix_of(".gnu.linkonce.wi.", name)
169               || is_prefix_of(".line", name)
170               || is_prefix_of(".stab", name))
171             return false;
172         }
173       if (parameters->strip_debug_gdb()
174           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
175         {
176           // Debugging sections can only be recognized by name.
177           if (is_prefix_of(".debug", name)
178               && !is_gdb_debug_section(name))
179             return false;
180         }
181       return true;
182
183     default:
184       return true;
185     }
186 }
187
188 // Return an output section named NAME, or NULL if there is none.
189
190 Output_section*
191 Layout::find_output_section(const char* name) const
192 {
193   for (Section_list::const_iterator p = this->section_list_.begin();
194        p != this->section_list_.end();
195        ++p)
196     if (strcmp((*p)->name(), name) == 0)
197       return *p;
198   return NULL;
199 }
200
201 // Return an output segment of type TYPE, with segment flags SET set
202 // and segment flags CLEAR clear.  Return NULL if there is none.
203
204 Output_segment*
205 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
206                             elfcpp::Elf_Word clear) const
207 {
208   for (Segment_list::const_iterator p = this->segment_list_.begin();
209        p != this->segment_list_.end();
210        ++p)
211     if (static_cast<elfcpp::PT>((*p)->type()) == type
212         && ((*p)->flags() & set) == set
213         && ((*p)->flags() & clear) == 0)
214       return *p;
215   return NULL;
216 }
217
218 // Return the output section to use for section NAME with type TYPE
219 // and section flags FLAGS.  NAME must be canonicalized in the string
220 // pool, and NAME_KEY is the key.
221
222 Output_section*
223 Layout::get_output_section(const char* name, Stringpool::Key name_key,
224                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
225 {
226   const Key key(name_key, std::make_pair(type, flags));
227   const std::pair<Key, Output_section*> v(key, NULL);
228   std::pair<Section_name_map::iterator, bool> ins(
229     this->section_name_map_.insert(v));
230
231   if (!ins.second)
232     return ins.first->second;
233   else
234     {
235       // This is the first time we've seen this name/type/flags
236       // combination.
237       Output_section* os = this->make_output_section(name, type, flags);
238       ins.first->second = os;
239       return os;
240     }
241 }
242
243 // Pick the output section to use for section NAME, in input file
244 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
245 // linker created section.  ADJUST_NAME is true if we should apply the
246 // standard name mappings in Layout::output_section_name.  This will
247 // return NULL if the input section should be discarded.
248
249 Output_section*
250 Layout::choose_output_section(const Relobj* relobj, const char* name,
251                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
252                               bool adjust_name)
253 {
254   // We should ignore some flags.  FIXME: This will need some
255   // adjustment for ld -r.
256   flags &= ~ (elfcpp::SHF_INFO_LINK
257               | elfcpp::SHF_LINK_ORDER
258               | elfcpp::SHF_GROUP
259               | elfcpp::SHF_MERGE
260               | elfcpp::SHF_STRINGS);
261
262   if (this->script_options_->saw_sections_clause())
263     {
264       // We are using a SECTIONS clause, so the output section is
265       // chosen based only on the name.
266
267       Script_sections* ss = this->script_options_->script_sections();
268       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
269       Output_section** output_section_slot;
270       name = ss->output_section_name(file_name, name, &output_section_slot);
271       if (name == NULL)
272         {
273           // The SECTIONS clause says to discard this input section.
274           return NULL;
275         }
276
277       // If this is an orphan section--one not mentioned in the linker
278       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
279       // default processing below.
280
281       if (output_section_slot != NULL)
282         {
283           if (*output_section_slot != NULL)
284             return *output_section_slot;
285
286           // We don't put sections found in the linker script into
287           // SECTION_NAME_MAP_.  That keeps us from getting confused
288           // if an orphan section is mapped to a section with the same
289           // name as one in the linker script.
290
291           name = this->namepool_.add(name, false, NULL);
292
293           Output_section* os = this->make_output_section(name, type, flags);
294           os->set_found_in_sections_clause();
295           *output_section_slot = os;
296           return os;
297         }
298     }
299
300   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
301
302   // Turn NAME from the name of the input section into the name of the
303   // output section.
304
305   size_t len = strlen(name);
306   if (adjust_name && !parameters->output_is_object())
307     name = Layout::output_section_name(name, &len);
308
309   Stringpool::Key name_key;
310   name = this->namepool_.add_with_length(name, len, true, &name_key);
311
312   // Find or make the output section.  The output section is selected
313   // based on the section name, type, and flags.
314   return this->get_output_section(name, name_key, type, flags);
315 }
316
317 // Return the output section to use for input section SHNDX, with name
318 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
319 // index of a relocation section which applies to this section, or 0
320 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
321 // relocation section if there is one.  Set *OFF to the offset of this
322 // input section without the output section.  Return NULL if the
323 // section should be discarded.  Set *OFF to -1 if the section
324 // contents should not be written directly to the output file, but
325 // will instead receive special handling.
326
327 template<int size, bool big_endian>
328 Output_section*
329 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
330                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
331                unsigned int reloc_shndx, unsigned int, off_t* off)
332 {
333   if (!this->include_section(object, name, shdr))
334     return NULL;
335
336   Output_section* os;
337
338   // In a relocatable link a grouped section must not be combined with
339   // any other sections.
340   if (parameters->output_is_object()
341       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
342     {
343       name = this->namepool_.add(name, true, NULL);
344       os = this->make_output_section(name, shdr.get_sh_type(),
345                                      shdr.get_sh_flags());
346     }
347   else
348     {
349       os = this->choose_output_section(object, name, shdr.get_sh_type(),
350                                        shdr.get_sh_flags(), true);
351       if (os == NULL)
352         return NULL;
353     }
354
355   // FIXME: Handle SHF_LINK_ORDER somewhere.
356
357   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
358                                this->script_options_->saw_sections_clause());
359
360   return os;
361 }
362
363 // Handle a relocation section when doing a relocatable link.
364
365 template<int size, bool big_endian>
366 Output_section*
367 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
368                      unsigned int,
369                      const elfcpp::Shdr<size, big_endian>& shdr,
370                      Output_section* data_section,
371                      Relocatable_relocs* rr)
372 {
373   gold_assert(parameters->output_is_object());
374
375   int sh_type = shdr.get_sh_type();
376
377   std::string name;
378   if (sh_type == elfcpp::SHT_REL)
379     name = ".rel";
380   else if (sh_type == elfcpp::SHT_RELA)
381     name = ".rela";
382   else
383     gold_unreachable();
384   name += data_section->name();
385
386   Output_section* os = this->choose_output_section(object, name.c_str(),
387                                                    sh_type,
388                                                    shdr.get_sh_flags(),
389                                                    false);
390
391   os->set_should_link_to_symtab();
392   os->set_info_section(data_section);
393
394   Output_section_data* posd;
395   if (sh_type == elfcpp::SHT_REL)
396     {
397       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
398       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
399                                            size,
400                                            big_endian>(rr);
401     }
402   else if (sh_type == elfcpp::SHT_RELA)
403     {
404       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
405       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
406                                            size,
407                                            big_endian>(rr);
408     }
409   else
410     gold_unreachable();
411
412   os->add_output_section_data(posd);
413   rr->set_output_data(posd);
414
415   return os;
416 }
417
418 // Handle a group section when doing a relocatable link.
419
420 template<int size, bool big_endian>
421 void
422 Layout::layout_group(Symbol_table* symtab,
423                      Sized_relobj<size, big_endian>* object,
424                      unsigned int,
425                      const char* group_section_name,
426                      const char* signature,
427                      const elfcpp::Shdr<size, big_endian>& shdr,
428                      const elfcpp::Elf_Word* contents)
429 {
430   gold_assert(parameters->output_is_object());
431   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
432   group_section_name = this->namepool_.add(group_section_name, true, NULL);
433   Output_section* os = this->make_output_section(group_section_name,
434                                                  elfcpp::SHT_GROUP,
435                                                  shdr.get_sh_flags());
436
437   // We need to find a symbol with the signature in the symbol table.
438   // If we don't find one now, we need to look again later.
439   Symbol* sym = symtab->lookup(signature, NULL);
440   if (sym != NULL)
441     os->set_info_symndx(sym);
442   else
443     {
444       // We will wind up using a symbol whose name is the signature.
445       // So just put the signature in the symbol name pool to save it.
446       signature = symtab->canonicalize_name(signature);
447       this->group_signatures_.push_back(Group_signature(os, signature));
448     }
449
450   os->set_should_link_to_symtab();
451   os->set_entsize(4);
452
453   section_size_type entry_count =
454     convert_to_section_size_type(shdr.get_sh_size() / 4);
455   Output_section_data* posd =
456     new Output_data_group<size, big_endian>(object, entry_count, contents);
457   os->add_output_section_data(posd);
458 }
459
460 // Special GNU handling of sections name .eh_frame.  They will
461 // normally hold exception frame data as defined by the C++ ABI
462 // (http://codesourcery.com/cxx-abi/).
463
464 template<int size, bool big_endian>
465 Output_section*
466 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
467                         const unsigned char* symbols,
468                         off_t symbols_size,
469                         const unsigned char* symbol_names,
470                         off_t symbol_names_size,
471                         unsigned int shndx,
472                         const elfcpp::Shdr<size, big_endian>& shdr,
473                         unsigned int reloc_shndx, unsigned int reloc_type,
474                         off_t* off)
475 {
476   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
477   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
478
479   const char* const name = ".eh_frame";
480   Output_section* os = this->choose_output_section(object,
481                                                    name,
482                                                    elfcpp::SHT_PROGBITS,
483                                                    elfcpp::SHF_ALLOC,
484                                                    false);
485   if (os == NULL)
486     return NULL;
487
488   if (this->eh_frame_section_ == NULL)
489     {
490       this->eh_frame_section_ = os;
491       this->eh_frame_data_ = new Eh_frame();
492       os->add_output_section_data(this->eh_frame_data_);
493
494       if (this->options_.create_eh_frame_hdr())
495         {
496           Output_section* hdr_os =
497             this->choose_output_section(NULL,
498                                         ".eh_frame_hdr",
499                                         elfcpp::SHT_PROGBITS,
500                                         elfcpp::SHF_ALLOC,
501                                         false);
502
503           if (hdr_os != NULL)
504             {
505               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
506                                                         this->eh_frame_data_);
507               hdr_os->add_output_section_data(hdr_posd);
508
509               hdr_os->set_after_input_sections();
510
511               if (!this->script_options_->saw_phdrs_clause())
512                 {
513                   Output_segment* hdr_oseg;
514                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
515                                                        elfcpp::PF_R);
516                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
517                 }
518
519               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
520             }
521         }
522     }
523
524   gold_assert(this->eh_frame_section_ == os);
525
526   if (this->eh_frame_data_->add_ehframe_input_section(object,
527                                                       symbols,
528                                                       symbols_size,
529                                                       symbol_names,
530                                                       symbol_names_size,
531                                                       shndx,
532                                                       reloc_shndx,
533                                                       reloc_type))
534     *off = -1;
535   else
536     {
537       // We couldn't handle this .eh_frame section for some reason.
538       // Add it as a normal section.
539       bool saw_sections_clause = this->script_options_->saw_sections_clause();
540       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
541                                    saw_sections_clause);
542     }
543
544   return os;
545 }
546
547 // Add POSD to an output section using NAME, TYPE, and FLAGS.
548
549 void
550 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
551                                 elfcpp::Elf_Xword flags,
552                                 Output_section_data* posd)
553 {
554   Output_section* os = this->choose_output_section(NULL, name, type, flags,
555                                                    false);
556   if (os != NULL)
557     os->add_output_section_data(posd);
558 }
559
560 // Map section flags to segment flags.
561
562 elfcpp::Elf_Word
563 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
564 {
565   elfcpp::Elf_Word ret = elfcpp::PF_R;
566   if ((flags & elfcpp::SHF_WRITE) != 0)
567     ret |= elfcpp::PF_W;
568   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
569     ret |= elfcpp::PF_X;
570   return ret;
571 }
572
573 // Sometimes we compress sections.  This is typically done for
574 // sections that are not part of normal program execution (such as
575 // .debug_* sections), and where the readers of these sections know
576 // how to deal with compressed sections.  (To make it easier for them,
577 // we will rename the ouput section in such cases from .foo to
578 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
579 // doesn't say for certain whether we'll compress -- it depends on
580 // commandline options as well -- just whether this section is a
581 // candidate for compression.
582
583 static bool
584 is_compressible_debug_section(const char* secname)
585 {
586   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
587 }
588
589 // Make a new Output_section, and attach it to segments as
590 // appropriate.
591
592 Output_section*
593 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
594                             elfcpp::Elf_Xword flags)
595 {
596   Output_section* os;
597   if ((flags & elfcpp::SHF_ALLOC) == 0
598       && this->options_.compress_debug_sections()
599       && is_compressible_debug_section(name))
600     os = new Output_compressed_section(&this->options_, name, type, flags);
601   else
602     os = new Output_section(name, type, flags);
603
604   this->section_list_.push_back(os);
605
606   if ((flags & elfcpp::SHF_ALLOC) == 0)
607     this->unattached_section_list_.push_back(os);
608   else
609     {
610       if (parameters->output_is_object())
611         return os;
612
613       // If we have a SECTIONS clause, we can't handle the attachment
614       // to segments until after we've seen all the sections.
615       if (this->script_options_->saw_sections_clause())
616         return os;
617
618       gold_assert(!this->script_options_->saw_phdrs_clause());
619
620       // This output section goes into a PT_LOAD segment.
621
622       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
623
624       // The only thing we really care about for PT_LOAD segments is
625       // whether or not they are writable, so that is how we search
626       // for them.  People who need segments sorted on some other
627       // basis will have to wait until we implement a mechanism for
628       // them to describe the segments they want.
629
630       Segment_list::const_iterator p;
631       for (p = this->segment_list_.begin();
632            p != this->segment_list_.end();
633            ++p)
634         {
635           if ((*p)->type() == elfcpp::PT_LOAD
636               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
637             {
638               (*p)->add_output_section(os, seg_flags);
639               break;
640             }
641         }
642
643       if (p == this->segment_list_.end())
644         {
645           Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
646                                                            seg_flags);
647           oseg->add_output_section(os, seg_flags);
648         }
649
650       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
651       // segment.
652       if (type == elfcpp::SHT_NOTE)
653         {
654           // See if we already have an equivalent PT_NOTE segment.
655           for (p = this->segment_list_.begin();
656                p != segment_list_.end();
657                ++p)
658             {
659               if ((*p)->type() == elfcpp::PT_NOTE
660                   && (((*p)->flags() & elfcpp::PF_W)
661                       == (seg_flags & elfcpp::PF_W)))
662                 {
663                   (*p)->add_output_section(os, seg_flags);
664                   break;
665                 }
666             }
667
668           if (p == this->segment_list_.end())
669             {
670               Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
671                                                                seg_flags);
672               oseg->add_output_section(os, seg_flags);
673             }
674         }
675
676       // If we see a loadable SHF_TLS section, we create a PT_TLS
677       // segment.  There can only be one such segment.
678       if ((flags & elfcpp::SHF_TLS) != 0)
679         {
680           if (this->tls_segment_ == NULL)
681             this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
682                                                            seg_flags);
683           this->tls_segment_->add_output_section(os, seg_flags);
684         }
685     }
686
687   return os;
688 }
689
690 // Return the number of segments we expect to see.
691
692 size_t
693 Layout::expected_segment_count() const
694 {
695   size_t ret = this->segment_list_.size();
696
697   // If we didn't see a SECTIONS clause in a linker script, we should
698   // already have the complete list of segments.  Otherwise we ask the
699   // SECTIONS clause how many segments it expects, and add in the ones
700   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
701
702   if (!this->script_options_->saw_sections_clause())
703     return ret;
704   else
705     {
706       const Script_sections* ss = this->script_options_->script_sections();
707       return ret + ss->expected_segment_count(this);
708     }
709 }
710
711 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
712 // is whether we saw a .note.GNU-stack section in the object file.
713 // GNU_STACK_FLAGS is the section flags.  The flags give the
714 // protection required for stack memory.  We record this in an
715 // executable as a PT_GNU_STACK segment.  If an object file does not
716 // have a .note.GNU-stack segment, we must assume that it is an old
717 // object.  On some targets that will force an executable stack.
718
719 void
720 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
721 {
722   if (!seen_gnu_stack)
723     this->input_without_gnu_stack_note_ = true;
724   else
725     {
726       this->input_with_gnu_stack_note_ = true;
727       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
728         this->input_requires_executable_stack_ = true;
729     }
730 }
731
732 // Create the dynamic sections which are needed before we read the
733 // relocs.
734
735 void
736 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
737 {
738   if (parameters->doing_static_link())
739     return;
740
741   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
742                                                        elfcpp::SHT_DYNAMIC,
743                                                        (elfcpp::SHF_ALLOC
744                                                         | elfcpp::SHF_WRITE),
745                                                        false);
746
747   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
748                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
749                                 elfcpp::STV_HIDDEN, 0, false, false);
750
751   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
752
753   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
754 }
755
756 // For each output section whose name can be represented as C symbol,
757 // define __start and __stop symbols for the section.  This is a GNU
758 // extension.
759
760 void
761 Layout::define_section_symbols(Symbol_table* symtab)
762 {
763   for (Section_list::const_iterator p = this->section_list_.begin();
764        p != this->section_list_.end();
765        ++p)
766     {
767       const char* const name = (*p)->name();
768       if (name[strspn(name,
769                       ("0123456789"
770                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
771                        "abcdefghijklmnopqrstuvwxyz"
772                        "_"))]
773           == '\0')
774         {
775           const std::string name_string(name);
776           const std::string start_name("__start_" + name_string);
777           const std::string stop_name("__stop_" + name_string);
778
779           symtab->define_in_output_data(start_name.c_str(),
780                                         NULL, // version
781                                         *p,
782                                         0, // value
783                                         0, // symsize
784                                         elfcpp::STT_NOTYPE,
785                                         elfcpp::STB_GLOBAL,
786                                         elfcpp::STV_DEFAULT,
787                                         0, // nonvis
788                                         false, // offset_is_from_end
789                                         true); // only_if_ref
790
791           symtab->define_in_output_data(stop_name.c_str(),
792                                         NULL, // version
793                                         *p,
794                                         0, // value
795                                         0, // symsize
796                                         elfcpp::STT_NOTYPE,
797                                         elfcpp::STB_GLOBAL,
798                                         elfcpp::STV_DEFAULT,
799                                         0, // nonvis
800                                         true, // offset_is_from_end
801                                         true); // only_if_ref
802         }
803     }
804 }
805
806 // Define symbols for group signatures.
807
808 void
809 Layout::define_group_signatures(Symbol_table* symtab)
810 {
811   for (Group_signatures::iterator p = this->group_signatures_.begin();
812        p != this->group_signatures_.end();
813        ++p)
814     {
815       Symbol* sym = symtab->lookup(p->signature, NULL);
816       if (sym != NULL)
817         p->section->set_info_symndx(sym);
818       else
819         {
820           // Force the name of the group section to the group
821           // signature, and use the group's section symbol as the
822           // signature symbol.
823           if (strcmp(p->section->name(), p->signature) != 0)
824             {
825               const char* name = this->namepool_.add(p->signature,
826                                                      true, NULL);
827               p->section->set_name(name);
828             }
829           p->section->set_needs_symtab_index();
830           p->section->set_info_section_symndx(p->section);
831         }
832     }
833
834   this->group_signatures_.clear();
835 }
836
837 // Find the first read-only PT_LOAD segment, creating one if
838 // necessary.
839
840 Output_segment*
841 Layout::find_first_load_seg()
842 {
843   for (Segment_list::const_iterator p = this->segment_list_.begin();
844        p != this->segment_list_.end();
845        ++p)
846     {
847       if ((*p)->type() == elfcpp::PT_LOAD
848           && ((*p)->flags() & elfcpp::PF_R) != 0
849           && ((*p)->flags() & elfcpp::PF_W) == 0)
850         return *p;
851     }
852
853   gold_assert(!this->script_options_->saw_phdrs_clause());
854
855   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
856                                                        elfcpp::PF_R);
857   return load_seg;
858 }
859
860 // Finalize the layout.  When this is called, we have created all the
861 // output sections and all the output segments which are based on
862 // input sections.  We have several things to do, and we have to do
863 // them in the right order, so that we get the right results correctly
864 // and efficiently.
865
866 // 1) Finalize the list of output segments and create the segment
867 // table header.
868
869 // 2) Finalize the dynamic symbol table and associated sections.
870
871 // 3) Determine the final file offset of all the output segments.
872
873 // 4) Determine the final file offset of all the SHF_ALLOC output
874 // sections.
875
876 // 5) Create the symbol table sections and the section name table
877 // section.
878
879 // 6) Finalize the symbol table: set symbol values to their final
880 // value and make a final determination of which symbols are going
881 // into the output symbol table.
882
883 // 7) Create the section table header.
884
885 // 8) Determine the final file offset of all the output sections which
886 // are not SHF_ALLOC, including the section table header.
887
888 // 9) Finalize the ELF file header.
889
890 // This function returns the size of the output file.
891
892 off_t
893 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
894                  const Task* task)
895 {
896   Target* const target = parameters->target();
897
898   target->finalize_sections(this);
899
900   this->count_local_symbols(task, input_objects);
901
902   this->create_gold_note();
903   this->create_executable_stack_info(target);
904
905   Output_segment* phdr_seg = NULL;
906   if (!parameters->output_is_object() && !parameters->doing_static_link())
907     {
908       // There was a dynamic object in the link.  We need to create
909       // some information for the dynamic linker.
910
911       // Create the PT_PHDR segment which will hold the program
912       // headers.
913       if (!this->script_options_->saw_phdrs_clause())
914         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
915
916       // Create the dynamic symbol table, including the hash table.
917       Output_section* dynstr;
918       std::vector<Symbol*> dynamic_symbols;
919       unsigned int local_dynamic_count;
920       Versions versions(this->options_, &this->dynpool_);
921       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
922                                   &local_dynamic_count, &dynamic_symbols,
923                                   &versions);
924
925       // Create the .interp section to hold the name of the
926       // interpreter, and put it in a PT_INTERP segment.
927       if (!parameters->output_is_shared())
928         this->create_interp(target);
929
930       // Finish the .dynamic section to hold the dynamic data, and put
931       // it in a PT_DYNAMIC segment.
932       this->finish_dynamic_section(input_objects, symtab);
933
934       // We should have added everything we need to the dynamic string
935       // table.
936       this->dynpool_.set_string_offsets();
937
938       // Create the version sections.  We can't do this until the
939       // dynamic string table is complete.
940       this->create_version_sections(&versions, symtab, local_dynamic_count,
941                                     dynamic_symbols, dynstr);
942     }
943
944   // If there is a SECTIONS clause, put all the input sections into
945   // the required order.
946   Output_segment* load_seg;
947   if (this->script_options_->saw_sections_clause())
948     load_seg = this->set_section_addresses_from_script(symtab);
949   else if (parameters->output_is_object())
950     load_seg = NULL;
951   else
952     load_seg = this->find_first_load_seg();
953
954   if (this->options_.output_format() != General_options::OUTPUT_FORMAT_ELF)
955     load_seg = NULL;
956
957   gold_assert(phdr_seg == NULL || load_seg != NULL);
958
959   // Lay out the segment headers.
960   Output_segment_headers* segment_headers;
961   if (parameters->output_is_object())
962     segment_headers = NULL;
963   else
964     {
965       segment_headers = new Output_segment_headers(this->segment_list_);
966       if (load_seg != NULL)
967         load_seg->add_initial_output_data(segment_headers);
968       if (phdr_seg != NULL)
969         phdr_seg->add_initial_output_data(segment_headers);
970     }
971
972   // Lay out the file header.
973   Output_file_header* file_header;
974   file_header = new Output_file_header(target, symtab, segment_headers,
975                                        this->script_options_->entry());
976   if (load_seg != NULL)
977     load_seg->add_initial_output_data(file_header);
978
979   this->special_output_list_.push_back(file_header);
980   if (segment_headers != NULL)
981     this->special_output_list_.push_back(segment_headers);
982
983   if (this->script_options_->saw_phdrs_clause()
984       && !parameters->output_is_object())
985     {
986       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
987       // clause in a linker script.
988       Script_sections* ss = this->script_options_->script_sections();
989       ss->put_headers_in_phdrs(file_header, segment_headers);
990     }
991
992   // We set the output section indexes in set_segment_offsets and
993   // set_section_indexes.
994   unsigned int shndx = 1;
995
996   // Set the file offsets of all the segments, and all the sections
997   // they contain.
998   off_t off;
999   if (!parameters->output_is_object())
1000     off = this->set_segment_offsets(target, load_seg, &shndx);
1001   else
1002     off = this->set_relocatable_section_offsets(file_header, &shndx);
1003
1004   // Set the file offsets of all the non-data sections we've seen so
1005   // far which don't have to wait for the input sections.  We need
1006   // this in order to finalize local symbols in non-allocated
1007   // sections.
1008   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1009
1010   // Create the symbol table sections.
1011   this->create_symtab_sections(input_objects, symtab, &off);
1012   if (!parameters->doing_static_link())
1013     this->assign_local_dynsym_offsets(input_objects);
1014
1015   // Process any symbol assignments from a linker script.  This must
1016   // be called after the symbol table has been finalized.
1017   this->script_options_->finalize_symbols(symtab, this);
1018
1019   // Create the .shstrtab section.
1020   Output_section* shstrtab_section = this->create_shstrtab();
1021
1022   // Set the file offsets of the rest of the non-data sections which
1023   // don't have to wait for the input sections.
1024   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1025
1026   // Now that all sections have been created, set the section indexes.
1027   shndx = this->set_section_indexes(shndx);
1028
1029   // Create the section table header.
1030   this->create_shdrs(&off);
1031
1032   // If there are no sections which require postprocessing, we can
1033   // handle the section names now, and avoid a resize later.
1034   if (!this->any_postprocessing_sections_)
1035     off = this->set_section_offsets(off,
1036                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1037
1038   file_header->set_section_info(this->section_headers_, shstrtab_section);
1039
1040   // Now we know exactly where everything goes in the output file
1041   // (except for non-allocated sections which require postprocessing).
1042   Output_data::layout_complete();
1043
1044   this->output_file_size_ = off;
1045
1046   return off;
1047 }
1048
1049 // Create a .note section for an executable or shared library.  This
1050 // records the version of gold used to create the binary.
1051
1052 void
1053 Layout::create_gold_note()
1054 {
1055   if (parameters->output_is_object())
1056     return;
1057
1058   // Authorities all agree that the values in a .note field should
1059   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1060   // they differ on what the alignment is for 64-bit binaries.
1061   // The GABI says unambiguously they take 8-byte alignment:
1062   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1063   // Other documentation says alignment should always be 4 bytes:
1064   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1065   // GNU ld and GNU readelf both support the latter (at least as of
1066   // version 2.16.91), and glibc always generates the latter for
1067   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1068   // here.
1069 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1070   const int size = parameters->get_size();
1071 #else
1072   const int size = 32;
1073 #endif
1074
1075   // The contents of the .note section.
1076   const char* name = "GNU";
1077   std::string desc(std::string("gold ") + gold::get_version_string());
1078   size_t namesz = strlen(name) + 1;
1079   size_t aligned_namesz = align_address(namesz, size / 8);
1080   size_t descsz = desc.length() + 1;
1081   size_t aligned_descsz = align_address(descsz, size / 8);
1082   const int note_type = 4;
1083
1084   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
1085
1086   unsigned char buffer[128];
1087   gold_assert(sizeof buffer >= notesz);
1088   memset(buffer, 0, notesz);
1089
1090   bool is_big_endian = parameters->is_big_endian();
1091
1092   if (size == 32)
1093     {
1094       if (!is_big_endian)
1095         {
1096           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1097           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1098           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1099         }
1100       else
1101         {
1102           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1103           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1104           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1105         }
1106     }
1107   else if (size == 64)
1108     {
1109       if (!is_big_endian)
1110         {
1111           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1112           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1113           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1114         }
1115       else
1116         {
1117           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1118           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1119           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1120         }
1121     }
1122   else
1123     gold_unreachable();
1124
1125   memcpy(buffer + 3 * (size / 8), name, namesz);
1126   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
1127
1128   const char* note_name = this->namepool_.add(".note", false, NULL);
1129   Output_section* os = this->make_output_section(note_name,
1130                                                  elfcpp::SHT_NOTE,
1131                                                  0);
1132   Output_section_data* posd = new Output_data_const(buffer, notesz,
1133                                                     size / 8);
1134   os->add_output_section_data(posd);
1135 }
1136
1137 // Record whether the stack should be executable.  This can be set
1138 // from the command line using the -z execstack or -z noexecstack
1139 // options.  Otherwise, if any input file has a .note.GNU-stack
1140 // section with the SHF_EXECINSTR flag set, the stack should be
1141 // executable.  Otherwise, if at least one input file a
1142 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1143 // section, we use the target default for whether the stack should be
1144 // executable.  Otherwise, we don't generate a stack note.  When
1145 // generating a object file, we create a .note.GNU-stack section with
1146 // the appropriate marking.  When generating an executable or shared
1147 // library, we create a PT_GNU_STACK segment.
1148
1149 void
1150 Layout::create_executable_stack_info(const Target* target)
1151 {
1152   bool is_stack_executable;
1153   if (this->options_.is_execstack_set())
1154     is_stack_executable = this->options_.is_stack_executable();
1155   else if (!this->input_with_gnu_stack_note_)
1156     return;
1157   else
1158     {
1159       if (this->input_requires_executable_stack_)
1160         is_stack_executable = true;
1161       else if (this->input_without_gnu_stack_note_)
1162         is_stack_executable = target->is_default_stack_executable();
1163       else
1164         is_stack_executable = false;
1165     }
1166
1167   if (parameters->output_is_object())
1168     {
1169       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1170       elfcpp::Elf_Xword flags = 0;
1171       if (is_stack_executable)
1172         flags |= elfcpp::SHF_EXECINSTR;
1173       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1174     }
1175   else
1176     {
1177       if (this->script_options_->saw_phdrs_clause())
1178         return;
1179       int flags = elfcpp::PF_R | elfcpp::PF_W;
1180       if (is_stack_executable)
1181         flags |= elfcpp::PF_X;
1182       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1183     }
1184 }
1185
1186 // Return whether SEG1 should be before SEG2 in the output file.  This
1187 // is based entirely on the segment type and flags.  When this is
1188 // called the segment addresses has normally not yet been set.
1189
1190 bool
1191 Layout::segment_precedes(const Output_segment* seg1,
1192                          const Output_segment* seg2)
1193 {
1194   elfcpp::Elf_Word type1 = seg1->type();
1195   elfcpp::Elf_Word type2 = seg2->type();
1196
1197   // The single PT_PHDR segment is required to precede any loadable
1198   // segment.  We simply make it always first.
1199   if (type1 == elfcpp::PT_PHDR)
1200     {
1201       gold_assert(type2 != elfcpp::PT_PHDR);
1202       return true;
1203     }
1204   if (type2 == elfcpp::PT_PHDR)
1205     return false;
1206
1207   // The single PT_INTERP segment is required to precede any loadable
1208   // segment.  We simply make it always second.
1209   if (type1 == elfcpp::PT_INTERP)
1210     {
1211       gold_assert(type2 != elfcpp::PT_INTERP);
1212       return true;
1213     }
1214   if (type2 == elfcpp::PT_INTERP)
1215     return false;
1216
1217   // We then put PT_LOAD segments before any other segments.
1218   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1219     return true;
1220   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1221     return false;
1222
1223   // We put the PT_TLS segment last, because that is where the dynamic
1224   // linker expects to find it (this is just for efficiency; other
1225   // positions would also work correctly).
1226   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1227     return false;
1228   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1229     return true;
1230
1231   const elfcpp::Elf_Word flags1 = seg1->flags();
1232   const elfcpp::Elf_Word flags2 = seg2->flags();
1233
1234   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1235   // by the numeric segment type and flags values.  There should not
1236   // be more than one segment with the same type and flags.
1237   if (type1 != elfcpp::PT_LOAD)
1238     {
1239       if (type1 != type2)
1240         return type1 < type2;
1241       gold_assert(flags1 != flags2);
1242       return flags1 < flags2;
1243     }
1244
1245   // If the addresses are set already, sort by load address.
1246   if (seg1->are_addresses_set())
1247     {
1248       if (!seg2->are_addresses_set())
1249         return true;
1250
1251       unsigned int section_count1 = seg1->output_section_count();
1252       unsigned int section_count2 = seg2->output_section_count();
1253       if (section_count1 == 0 && section_count2 > 0)
1254         return true;
1255       if (section_count1 > 0 && section_count2 == 0)
1256         return false;
1257
1258       uint64_t paddr1 = seg1->first_section_load_address();
1259       uint64_t paddr2 = seg2->first_section_load_address();
1260       if (paddr1 != paddr2)
1261         return paddr1 < paddr2;
1262     }
1263   else if (seg2->are_addresses_set())
1264     return false;
1265
1266   // We sort PT_LOAD segments based on the flags.  Readonly segments
1267   // come before writable segments.  Then executable segments come
1268   // before non-executable segments.  Then the unlikely case of a
1269   // non-readable segment comes before the normal case of a readable
1270   // segment.  If there are multiple segments with the same type and
1271   // flags, we require that the address be set, and we sort by
1272   // virtual address and then physical address.
1273   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1274     return (flags1 & elfcpp::PF_W) == 0;
1275   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1276     return (flags1 & elfcpp::PF_X) != 0;
1277   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1278     return (flags1 & elfcpp::PF_R) == 0;
1279
1280   // We shouldn't get here--we shouldn't create segments which we
1281   // can't distinguish.
1282   gold_unreachable();
1283 }
1284
1285 // Set the file offsets of all the segments, and all the sections they
1286 // contain.  They have all been created.  LOAD_SEG must be be laid out
1287 // first.  Return the offset of the data to follow.
1288
1289 off_t
1290 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1291                             unsigned int *pshndx)
1292 {
1293   // Sort them into the final order.
1294   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1295             Layout::Compare_segments());
1296
1297   // Find the PT_LOAD segments, and set their addresses and offsets
1298   // and their section's addresses and offsets.
1299   uint64_t addr;
1300   if (this->options_.user_set_text_segment_address())
1301     addr = options_.text_segment_address();
1302   else if (parameters->output_is_shared())
1303     addr = 0;
1304   else
1305     addr = target->default_text_segment_address();
1306   off_t off = 0;
1307
1308   // If LOAD_SEG is NULL, then the file header and segment headers
1309   // will not be loadable.  But they still need to be at offset 0 in
1310   // the file.  Set their offsets now.
1311   if (load_seg == NULL)
1312     {
1313       for (Data_list::iterator p = this->special_output_list_.begin();
1314            p != this->special_output_list_.end();
1315            ++p)
1316         {
1317           off = align_address(off, (*p)->addralign());
1318           (*p)->set_address_and_file_offset(0, off);
1319           off += (*p)->data_size();
1320         }
1321     }
1322
1323   bool was_readonly = false;
1324   for (Segment_list::iterator p = this->segment_list_.begin();
1325        p != this->segment_list_.end();
1326        ++p)
1327     {
1328       if ((*p)->type() == elfcpp::PT_LOAD)
1329         {
1330           if (load_seg != NULL && load_seg != *p)
1331             gold_unreachable();
1332           load_seg = NULL;
1333
1334           uint64_t orig_addr = addr;
1335           uint64_t orig_off = off;
1336
1337           uint64_t aligned_addr = 0;
1338           uint64_t abi_pagesize = target->abi_pagesize();
1339
1340           // FIXME: This should depend on the -n and -N options.
1341           (*p)->set_minimum_p_align(target->common_pagesize());
1342
1343           bool are_addresses_set = (*p)->are_addresses_set();
1344           if (are_addresses_set)
1345             {
1346               // When it comes to setting file offsets, we care about
1347               // the physical address.
1348               addr = (*p)->paddr();
1349
1350               // Adjust the file offset to the same address modulo the
1351               // page size.
1352               uint64_t unsigned_off = off;
1353               uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1354                                       | (addr & (abi_pagesize - 1)));
1355               if (aligned_off < unsigned_off)
1356                 aligned_off += abi_pagesize;
1357               off = aligned_off;
1358             }
1359           else
1360             {
1361               // If the last segment was readonly, and this one is
1362               // not, then skip the address forward one page,
1363               // maintaining the same position within the page.  This
1364               // lets us store both segments overlapping on a single
1365               // page in the file, but the loader will put them on
1366               // different pages in memory.
1367
1368               addr = align_address(addr, (*p)->maximum_alignment());
1369               aligned_addr = addr;
1370
1371               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1372                 {
1373                   if ((addr & (abi_pagesize - 1)) != 0)
1374                     addr = addr + abi_pagesize;
1375                 }
1376
1377               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1378             }
1379
1380           unsigned int shndx_hold = *pshndx;
1381           uint64_t new_addr = (*p)->set_section_addresses(false, addr, &off,
1382                                                           pshndx);
1383
1384           // Now that we know the size of this segment, we may be able
1385           // to save a page in memory, at the cost of wasting some
1386           // file space, by instead aligning to the start of a new
1387           // page.  Here we use the real machine page size rather than
1388           // the ABI mandated page size.
1389
1390           if (!are_addresses_set && aligned_addr != addr)
1391             {
1392               uint64_t common_pagesize = target->common_pagesize();
1393               uint64_t first_off = (common_pagesize
1394                                     - (aligned_addr
1395                                        & (common_pagesize - 1)));
1396               uint64_t last_off = new_addr & (common_pagesize - 1);
1397               if (first_off > 0
1398                   && last_off > 0
1399                   && ((aligned_addr & ~ (common_pagesize - 1))
1400                       != (new_addr & ~ (common_pagesize - 1)))
1401                   && first_off + last_off <= common_pagesize)
1402                 {
1403                   *pshndx = shndx_hold;
1404                   addr = align_address(aligned_addr, common_pagesize);
1405                   addr = align_address(addr, (*p)->maximum_alignment());
1406                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1407                   new_addr = (*p)->set_section_addresses(true, addr, &off,
1408                                                          pshndx);
1409                 }
1410             }
1411
1412           addr = new_addr;
1413
1414           if (((*p)->flags() & elfcpp::PF_W) == 0)
1415             was_readonly = true;
1416         }
1417     }
1418
1419   // Handle the non-PT_LOAD segments, setting their offsets from their
1420   // section's offsets.
1421   for (Segment_list::iterator p = this->segment_list_.begin();
1422        p != this->segment_list_.end();
1423        ++p)
1424     {
1425       if ((*p)->type() != elfcpp::PT_LOAD)
1426         (*p)->set_offset();
1427     }
1428
1429   // Set the TLS offsets for each section in the PT_TLS segment.
1430   if (this->tls_segment_ != NULL)
1431     this->tls_segment_->set_tls_offsets();
1432
1433   return off;
1434 }
1435
1436 // Set the offsets of all the allocated sections when doing a
1437 // relocatable link.  This does the same jobs as set_segment_offsets,
1438 // only for a relocatable link.
1439
1440 off_t
1441 Layout::set_relocatable_section_offsets(Output_data* file_header,
1442                                         unsigned int *pshndx)
1443 {
1444   off_t off = 0;
1445
1446   file_header->set_address_and_file_offset(0, 0);
1447   off += file_header->data_size();
1448
1449   for (Section_list::iterator p = this->section_list_.begin();
1450        p != this->section_list_.end();
1451        ++p)
1452     {
1453       // We skip unallocated sections here, except that group sections
1454       // have to come first.
1455       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1456           && (*p)->type() != elfcpp::SHT_GROUP)
1457         continue;
1458
1459       off = align_address(off, (*p)->addralign());
1460
1461       // The linker script might have set the address.
1462       if (!(*p)->is_address_valid())
1463         (*p)->set_address(0);
1464       (*p)->set_file_offset(off);
1465       (*p)->finalize_data_size();
1466       off += (*p)->data_size();
1467
1468       (*p)->set_out_shndx(*pshndx);
1469       ++*pshndx;
1470     }
1471
1472   return off;
1473 }
1474
1475 // Set the file offset of all the sections not associated with a
1476 // segment.
1477
1478 off_t
1479 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1480 {
1481   for (Section_list::iterator p = this->unattached_section_list_.begin();
1482        p != this->unattached_section_list_.end();
1483        ++p)
1484     {
1485       // The symtab section is handled in create_symtab_sections.
1486       if (*p == this->symtab_section_)
1487         continue;
1488
1489       // If we've already set the data size, don't set it again.
1490       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1491         continue;
1492
1493       if (pass == BEFORE_INPUT_SECTIONS_PASS
1494           && (*p)->requires_postprocessing())
1495         {
1496           (*p)->create_postprocessing_buffer();
1497           this->any_postprocessing_sections_ = true;
1498         }
1499
1500       if (pass == BEFORE_INPUT_SECTIONS_PASS
1501           && (*p)->after_input_sections())
1502         continue;
1503       else if (pass == POSTPROCESSING_SECTIONS_PASS
1504                && (!(*p)->after_input_sections()
1505                    || (*p)->type() == elfcpp::SHT_STRTAB))
1506         continue;
1507       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1508                && (!(*p)->after_input_sections()
1509                    || (*p)->type() != elfcpp::SHT_STRTAB))
1510         continue;
1511
1512       off = align_address(off, (*p)->addralign());
1513       (*p)->set_file_offset(off);
1514       (*p)->finalize_data_size();
1515       off += (*p)->data_size();
1516
1517       // At this point the name must be set.
1518       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1519         this->namepool_.add((*p)->name(), false, NULL);
1520     }
1521   return off;
1522 }
1523
1524 // Set the section indexes of all the sections not associated with a
1525 // segment.
1526
1527 unsigned int
1528 Layout::set_section_indexes(unsigned int shndx)
1529 {
1530   const bool output_is_object = parameters->output_is_object();
1531   for (Section_list::iterator p = this->unattached_section_list_.begin();
1532        p != this->unattached_section_list_.end();
1533        ++p)
1534     {
1535       // In a relocatable link, we already did group sections.
1536       if (output_is_object
1537           && (*p)->type() == elfcpp::SHT_GROUP)
1538         continue;
1539
1540       (*p)->set_out_shndx(shndx);
1541       ++shndx;
1542     }
1543   return shndx;
1544 }
1545
1546 // Set the section addresses according to the linker script.  This is
1547 // only called when we see a SECTIONS clause.  This returns the
1548 // program segment which should hold the file header and segment
1549 // headers, if any.  It will return NULL if they should not be in a
1550 // segment.
1551
1552 Output_segment*
1553 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1554 {
1555   Script_sections* ss = this->script_options_->script_sections();
1556   gold_assert(ss->saw_sections_clause());
1557
1558   // Place each orphaned output section in the script.
1559   for (Section_list::iterator p = this->section_list_.begin();
1560        p != this->section_list_.end();
1561        ++p)
1562     {
1563       if (!(*p)->found_in_sections_clause())
1564         ss->place_orphan(*p);
1565     }
1566
1567   return this->script_options_->set_section_addresses(symtab, this);
1568 }
1569
1570 // Count the local symbols in the regular symbol table and the dynamic
1571 // symbol table, and build the respective string pools.
1572
1573 void
1574 Layout::count_local_symbols(const Task* task,
1575                             const Input_objects* input_objects)
1576 {
1577   // First, figure out an upper bound on the number of symbols we'll
1578   // be inserting into each pool.  This helps us create the pools with
1579   // the right size, to avoid unnecessary hashtable resizing.
1580   unsigned int symbol_count = 0;
1581   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1582        p != input_objects->relobj_end();
1583        ++p)
1584     symbol_count += (*p)->local_symbol_count();
1585
1586   // Go from "upper bound" to "estimate."  We overcount for two
1587   // reasons: we double-count symbols that occur in more than one
1588   // object file, and we count symbols that are dropped from the
1589   // output.  Add it all together and assume we overcount by 100%.
1590   symbol_count /= 2;
1591
1592   // We assume all symbols will go into both the sympool and dynpool.
1593   this->sympool_.reserve(symbol_count);
1594   this->dynpool_.reserve(symbol_count);
1595
1596   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1597        p != input_objects->relobj_end();
1598        ++p)
1599     {
1600       Task_lock_obj<Object> tlo(task, *p);
1601       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1602     }
1603 }
1604
1605 // Create the symbol table sections.  Here we also set the final
1606 // values of the symbols.  At this point all the loadable sections are
1607 // fully laid out.
1608
1609 void
1610 Layout::create_symtab_sections(const Input_objects* input_objects,
1611                                Symbol_table* symtab,
1612                                off_t* poff)
1613 {
1614   int symsize;
1615   unsigned int align;
1616   if (parameters->get_size() == 32)
1617     {
1618       symsize = elfcpp::Elf_sizes<32>::sym_size;
1619       align = 4;
1620     }
1621   else if (parameters->get_size() == 64)
1622     {
1623       symsize = elfcpp::Elf_sizes<64>::sym_size;
1624       align = 8;
1625     }
1626   else
1627     gold_unreachable();
1628
1629   off_t off = *poff;
1630   off = align_address(off, align);
1631   off_t startoff = off;
1632
1633   // Save space for the dummy symbol at the start of the section.  We
1634   // never bother to write this out--it will just be left as zero.
1635   off += symsize;
1636   unsigned int local_symbol_index = 1;
1637
1638   // Add STT_SECTION symbols for each Output section which needs one.
1639   for (Section_list::iterator p = this->section_list_.begin();
1640        p != this->section_list_.end();
1641        ++p)
1642     {
1643       if (!(*p)->needs_symtab_index())
1644         (*p)->set_symtab_index(-1U);
1645       else
1646         {
1647           (*p)->set_symtab_index(local_symbol_index);
1648           ++local_symbol_index;
1649           off += symsize;
1650         }
1651     }
1652
1653   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1654        p != input_objects->relobj_end();
1655        ++p)
1656     {
1657       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1658                                                         off);
1659       off += (index - local_symbol_index) * symsize;
1660       local_symbol_index = index;
1661     }
1662
1663   unsigned int local_symcount = local_symbol_index;
1664   gold_assert(local_symcount * symsize == off - startoff);
1665
1666   off_t dynoff;
1667   size_t dyn_global_index;
1668   size_t dyncount;
1669   if (this->dynsym_section_ == NULL)
1670     {
1671       dynoff = 0;
1672       dyn_global_index = 0;
1673       dyncount = 0;
1674     }
1675   else
1676     {
1677       dyn_global_index = this->dynsym_section_->info();
1678       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1679       dynoff = this->dynsym_section_->offset() + locsize;
1680       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1681       gold_assert(static_cast<off_t>(dyncount * symsize)
1682                   == this->dynsym_section_->data_size() - locsize);
1683     }
1684
1685   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1686                          &this->sympool_, &local_symcount);
1687
1688   if (!parameters->strip_all())
1689     {
1690       this->sympool_.set_string_offsets();
1691
1692       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1693       Output_section* osymtab = this->make_output_section(symtab_name,
1694                                                           elfcpp::SHT_SYMTAB,
1695                                                           0);
1696       this->symtab_section_ = osymtab;
1697
1698       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1699                                                              align);
1700       osymtab->add_output_section_data(pos);
1701
1702       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1703       Output_section* ostrtab = this->make_output_section(strtab_name,
1704                                                           elfcpp::SHT_STRTAB,
1705                                                           0);
1706
1707       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1708       ostrtab->add_output_section_data(pstr);
1709
1710       osymtab->set_file_offset(startoff);
1711       osymtab->finalize_data_size();
1712       osymtab->set_link_section(ostrtab);
1713       osymtab->set_info(local_symcount);
1714       osymtab->set_entsize(symsize);
1715
1716       *poff = off;
1717     }
1718 }
1719
1720 // Create the .shstrtab section, which holds the names of the
1721 // sections.  At the time this is called, we have created all the
1722 // output sections except .shstrtab itself.
1723
1724 Output_section*
1725 Layout::create_shstrtab()
1726 {
1727   // FIXME: We don't need to create a .shstrtab section if we are
1728   // stripping everything.
1729
1730   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1731
1732   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1733
1734   // We can't write out this section until we've set all the section
1735   // names, and we don't set the names of compressed output sections
1736   // until relocations are complete.
1737   os->set_after_input_sections();
1738
1739   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1740   os->add_output_section_data(posd);
1741
1742   return os;
1743 }
1744
1745 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1746 // offset.
1747
1748 void
1749 Layout::create_shdrs(off_t* poff)
1750 {
1751   Output_section_headers* oshdrs;
1752   oshdrs = new Output_section_headers(this,
1753                                       &this->segment_list_,
1754                                       &this->section_list_,
1755                                       &this->unattached_section_list_,
1756                                       &this->namepool_);
1757   off_t off = align_address(*poff, oshdrs->addralign());
1758   oshdrs->set_address_and_file_offset(0, off);
1759   off += oshdrs->data_size();
1760   *poff = off;
1761   this->section_headers_ = oshdrs;
1762 }
1763
1764 // Create the dynamic symbol table.
1765
1766 void
1767 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1768                               Symbol_table* symtab,
1769                               Output_section **pdynstr,
1770                               unsigned int* plocal_dynamic_count,
1771                               std::vector<Symbol*>* pdynamic_symbols,
1772                               Versions* pversions)
1773 {
1774   // Count all the symbols in the dynamic symbol table, and set the
1775   // dynamic symbol indexes.
1776
1777   // Skip symbol 0, which is always all zeroes.
1778   unsigned int index = 1;
1779
1780   // Add STT_SECTION symbols for each Output section which needs one.
1781   for (Section_list::iterator p = this->section_list_.begin();
1782        p != this->section_list_.end();
1783        ++p)
1784     {
1785       if (!(*p)->needs_dynsym_index())
1786         (*p)->set_dynsym_index(-1U);
1787       else
1788         {
1789           (*p)->set_dynsym_index(index);
1790           ++index;
1791         }
1792     }
1793
1794   // Count the local symbols that need to go in the dynamic symbol table,
1795   // and set the dynamic symbol indexes.
1796   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1797        p != input_objects->relobj_end();
1798        ++p)
1799     {
1800       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1801       index = new_index;
1802     }
1803
1804   unsigned int local_symcount = index;
1805   *plocal_dynamic_count = local_symcount;
1806
1807   // FIXME: We have to tell set_dynsym_indexes whether the
1808   // -E/--export-dynamic option was used.
1809   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
1810                                      &this->dynpool_, pversions);
1811
1812   int symsize;
1813   unsigned int align;
1814   const int size = parameters->get_size();
1815   if (size == 32)
1816     {
1817       symsize = elfcpp::Elf_sizes<32>::sym_size;
1818       align = 4;
1819     }
1820   else if (size == 64)
1821     {
1822       symsize = elfcpp::Elf_sizes<64>::sym_size;
1823       align = 8;
1824     }
1825   else
1826     gold_unreachable();
1827
1828   // Create the dynamic symbol table section.
1829
1830   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
1831                                                        elfcpp::SHT_DYNSYM,
1832                                                        elfcpp::SHF_ALLOC,
1833                                                        false);
1834
1835   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1836                                                            align);
1837   dynsym->add_output_section_data(odata);
1838
1839   dynsym->set_info(local_symcount);
1840   dynsym->set_entsize(symsize);
1841   dynsym->set_addralign(align);
1842
1843   this->dynsym_section_ = dynsym;
1844
1845   Output_data_dynamic* const odyn = this->dynamic_data_;
1846   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1847   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1848
1849   // Create the dynamic string table section.
1850
1851   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
1852                                                        elfcpp::SHT_STRTAB,
1853                                                        elfcpp::SHF_ALLOC,
1854                                                        false);
1855
1856   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1857   dynstr->add_output_section_data(strdata);
1858
1859   dynsym->set_link_section(dynstr);
1860   this->dynamic_section_->set_link_section(dynstr);
1861
1862   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1863   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1864
1865   *pdynstr = dynstr;
1866
1867   // Create the hash tables.
1868
1869   // FIXME: We need an option to create a GNU hash table.
1870
1871   unsigned char* phash;
1872   unsigned int hashlen;
1873   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1874                                 &phash, &hashlen);
1875
1876   Output_section* hashsec = this->choose_output_section(NULL, ".hash",
1877                                                         elfcpp::SHT_HASH,
1878                                                         elfcpp::SHF_ALLOC,
1879                                                         false);
1880
1881   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1882                                                                hashlen,
1883                                                                align);
1884   hashsec->add_output_section_data(hashdata);
1885
1886   hashsec->set_link_section(dynsym);
1887   hashsec->set_entsize(4);
1888
1889   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1890 }
1891
1892 // Assign offsets to each local portion of the dynamic symbol table.
1893
1894 void
1895 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1896 {
1897   Output_section* dynsym = this->dynsym_section_;
1898   gold_assert(dynsym != NULL);
1899
1900   off_t off = dynsym->offset();
1901
1902   // Skip the dummy symbol at the start of the section.
1903   off += dynsym->entsize();
1904
1905   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1906        p != input_objects->relobj_end();
1907        ++p)
1908     {
1909       unsigned int count = (*p)->set_local_dynsym_offset(off);
1910       off += count * dynsym->entsize();
1911     }
1912 }
1913
1914 // Create the version sections.
1915
1916 void
1917 Layout::create_version_sections(const Versions* versions,
1918                                 const Symbol_table* symtab,
1919                                 unsigned int local_symcount,
1920                                 const std::vector<Symbol*>& dynamic_symbols,
1921                                 const Output_section* dynstr)
1922 {
1923   if (!versions->any_defs() && !versions->any_needs())
1924     return;
1925
1926   if (parameters->get_size() == 32)
1927     {
1928       if (parameters->is_big_endian())
1929         {
1930 #ifdef HAVE_TARGET_32_BIG
1931           this->sized_create_version_sections
1932               SELECT_SIZE_ENDIAN_NAME(32, true)(
1933                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1934                   SELECT_SIZE_ENDIAN(32, true));
1935 #else
1936           gold_unreachable();
1937 #endif
1938         }
1939       else
1940         {
1941 #ifdef HAVE_TARGET_32_LITTLE
1942           this->sized_create_version_sections
1943               SELECT_SIZE_ENDIAN_NAME(32, false)(
1944                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1945                   SELECT_SIZE_ENDIAN(32, false));
1946 #else
1947           gold_unreachable();
1948 #endif
1949         }
1950     }
1951   else if (parameters->get_size() == 64)
1952     {
1953       if (parameters->is_big_endian())
1954         {
1955 #ifdef HAVE_TARGET_64_BIG
1956           this->sized_create_version_sections
1957               SELECT_SIZE_ENDIAN_NAME(64, true)(
1958                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1959                   SELECT_SIZE_ENDIAN(64, true));
1960 #else
1961           gold_unreachable();
1962 #endif
1963         }
1964       else
1965         {
1966 #ifdef HAVE_TARGET_64_LITTLE
1967           this->sized_create_version_sections
1968               SELECT_SIZE_ENDIAN_NAME(64, false)(
1969                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1970                   SELECT_SIZE_ENDIAN(64, false));
1971 #else
1972           gold_unreachable();
1973 #endif
1974         }
1975     }
1976   else
1977     gold_unreachable();
1978 }
1979
1980 // Create the version sections, sized version.
1981
1982 template<int size, bool big_endian>
1983 void
1984 Layout::sized_create_version_sections(
1985     const Versions* versions,
1986     const Symbol_table* symtab,
1987     unsigned int local_symcount,
1988     const std::vector<Symbol*>& dynamic_symbols,
1989     const Output_section* dynstr
1990     ACCEPT_SIZE_ENDIAN)
1991 {
1992   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
1993                                                      elfcpp::SHT_GNU_versym,
1994                                                      elfcpp::SHF_ALLOC,
1995                                                      false);
1996
1997   unsigned char* vbuf;
1998   unsigned int vsize;
1999   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2000       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
2001       SELECT_SIZE_ENDIAN(size, big_endian));
2002
2003   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
2004
2005   vsec->add_output_section_data(vdata);
2006   vsec->set_entsize(2);
2007   vsec->set_link_section(this->dynsym_section_);
2008
2009   Output_data_dynamic* const odyn = this->dynamic_data_;
2010   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2011
2012   if (versions->any_defs())
2013     {
2014       Output_section* vdsec;
2015       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2016                                          elfcpp::SHT_GNU_verdef,
2017                                          elfcpp::SHF_ALLOC,
2018                                          false);
2019
2020       unsigned char* vdbuf;
2021       unsigned int vdsize;
2022       unsigned int vdentries;
2023       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2024           &this->dynpool_, &vdbuf, &vdsize, &vdentries
2025           SELECT_SIZE_ENDIAN(size, big_endian));
2026
2027       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
2028                                                                  vdsize,
2029                                                                  4);
2030
2031       vdsec->add_output_section_data(vddata);
2032       vdsec->set_link_section(dynstr);
2033       vdsec->set_info(vdentries);
2034
2035       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2036       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2037     }
2038
2039   if (versions->any_needs())
2040     {
2041       Output_section* vnsec;
2042       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2043                                           elfcpp::SHT_GNU_verneed,
2044                                           elfcpp::SHF_ALLOC,
2045                                           false);
2046
2047       unsigned char* vnbuf;
2048       unsigned int vnsize;
2049       unsigned int vnentries;
2050       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
2051         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
2052          SELECT_SIZE_ENDIAN(size, big_endian));
2053
2054       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
2055                                                                  vnsize,
2056                                                                  4);
2057
2058       vnsec->add_output_section_data(vndata);
2059       vnsec->set_link_section(dynstr);
2060       vnsec->set_info(vnentries);
2061
2062       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2063       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2064     }
2065 }
2066
2067 // Create the .interp section and PT_INTERP segment.
2068
2069 void
2070 Layout::create_interp(const Target* target)
2071 {
2072   const char* interp = this->options_.dynamic_linker();
2073   if (interp == NULL)
2074     {
2075       interp = target->dynamic_linker();
2076       gold_assert(interp != NULL);
2077     }
2078
2079   size_t len = strlen(interp) + 1;
2080
2081   Output_section_data* odata = new Output_data_const(interp, len, 1);
2082
2083   Output_section* osec = this->choose_output_section(NULL, ".interp",
2084                                                      elfcpp::SHT_PROGBITS,
2085                                                      elfcpp::SHF_ALLOC,
2086                                                      false);
2087   osec->add_output_section_data(odata);
2088
2089   if (!this->script_options_->saw_phdrs_clause())
2090     {
2091       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2092                                                        elfcpp::PF_R);
2093       oseg->add_initial_output_section(osec, elfcpp::PF_R);
2094     }
2095 }
2096
2097 // Finish the .dynamic section and PT_DYNAMIC segment.
2098
2099 void
2100 Layout::finish_dynamic_section(const Input_objects* input_objects,
2101                                const Symbol_table* symtab)
2102 {
2103   if (!this->script_options_->saw_phdrs_clause())
2104     {
2105       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2106                                                        (elfcpp::PF_R
2107                                                         | elfcpp::PF_W));
2108       oseg->add_initial_output_section(this->dynamic_section_,
2109                                        elfcpp::PF_R | elfcpp::PF_W);
2110     }
2111
2112   Output_data_dynamic* const odyn = this->dynamic_data_;
2113
2114   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2115        p != input_objects->dynobj_end();
2116        ++p)
2117     {
2118       // FIXME: Handle --as-needed.
2119       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2120     }
2121
2122   if (parameters->output_is_shared())
2123     {
2124       const char* soname = this->options_.soname();
2125       if (soname != NULL)
2126         odyn->add_string(elfcpp::DT_SONAME, soname);
2127     }
2128
2129   // FIXME: Support --init and --fini.
2130   Symbol* sym = symtab->lookup("_init");
2131   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2132     odyn->add_symbol(elfcpp::DT_INIT, sym);
2133
2134   sym = symtab->lookup("_fini");
2135   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2136     odyn->add_symbol(elfcpp::DT_FINI, sym);
2137
2138   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2139
2140   // Add a DT_RPATH entry if needed.
2141   const General_options::Dir_list& rpath(this->options_.rpath());
2142   if (!rpath.empty())
2143     {
2144       std::string rpath_val;
2145       for (General_options::Dir_list::const_iterator p = rpath.begin();
2146            p != rpath.end();
2147            ++p)
2148         {
2149           if (rpath_val.empty())
2150             rpath_val = p->name();
2151           else
2152             {
2153               // Eliminate duplicates.
2154               General_options::Dir_list::const_iterator q;
2155               for (q = rpath.begin(); q != p; ++q)
2156                 if (q->name() == p->name())
2157                   break;
2158               if (q == p)
2159                 {
2160                   rpath_val += ':';
2161                   rpath_val += p->name();
2162                 }
2163             }
2164         }
2165
2166       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2167     }
2168
2169   // Look for text segments that have dynamic relocations.
2170   bool have_textrel = false;
2171   for (Segment_list::const_iterator p = this->segment_list_.begin();
2172        p != this->segment_list_.end();
2173        ++p)
2174     {
2175       if (((*p)->flags() & elfcpp::PF_W) == 0
2176           && (*p)->dynamic_reloc_count() > 0)
2177         {
2178           have_textrel = true;
2179           break;
2180         }
2181     }
2182
2183   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2184   // post-link tools can easily modify these flags if desired.
2185   unsigned int flags = 0;
2186   if (have_textrel)
2187     {
2188       // Add a DT_TEXTREL for compatibility with older loaders.
2189       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2190       flags |= elfcpp::DF_TEXTREL;
2191     }
2192   if (parameters->output_is_shared() && this->has_static_tls())
2193     flags |= elfcpp::DF_STATIC_TLS;
2194   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2195 }
2196
2197 // The mapping of .gnu.linkonce section names to real section names.
2198
2199 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2200 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2201 {
2202   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
2203   MAPPING_INIT("t", ".text"),
2204   MAPPING_INIT("r", ".rodata"),
2205   MAPPING_INIT("d", ".data"),
2206   MAPPING_INIT("b", ".bss"),
2207   MAPPING_INIT("s", ".sdata"),
2208   MAPPING_INIT("sb", ".sbss"),
2209   MAPPING_INIT("s2", ".sdata2"),
2210   MAPPING_INIT("sb2", ".sbss2"),
2211   MAPPING_INIT("wi", ".debug_info"),
2212   MAPPING_INIT("td", ".tdata"),
2213   MAPPING_INIT("tb", ".tbss"),
2214   MAPPING_INIT("lr", ".lrodata"),
2215   MAPPING_INIT("l", ".ldata"),
2216   MAPPING_INIT("lb", ".lbss"),
2217 };
2218 #undef MAPPING_INIT
2219
2220 const int Layout::linkonce_mapping_count =
2221   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2222
2223 // Return the name of the output section to use for a .gnu.linkonce
2224 // section.  This is based on the default ELF linker script of the old
2225 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
2226 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
2227 // initialized to the length of NAME.
2228
2229 const char*
2230 Layout::linkonce_output_name(const char* name, size_t *plen)
2231 {
2232   const char* s = name + sizeof(".gnu.linkonce") - 1;
2233   if (*s != '.')
2234     return name;
2235   ++s;
2236   const Linkonce_mapping* plm = linkonce_mapping;
2237   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2238     {
2239       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2240         {
2241           *plen = plm->tolen;
2242           return plm->to;
2243         }
2244     }
2245   return name;
2246 }
2247
2248 // Choose the output section name to use given an input section name.
2249 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2250 // length of NAME.
2251
2252 const char*
2253 Layout::output_section_name(const char* name, size_t* plen)
2254 {
2255   if (Layout::is_linkonce(name))
2256     {
2257       // .gnu.linkonce sections are laid out as though they were named
2258       // for the sections are placed into.
2259       return Layout::linkonce_output_name(name, plen);
2260     }
2261
2262   // gcc 4.3 generates the following sorts of section names when it
2263   // needs a section name specific to a function:
2264   //   .text.FN
2265   //   .rodata.FN
2266   //   .sdata2.FN
2267   //   .data.FN
2268   //   .data.rel.FN
2269   //   .data.rel.local.FN
2270   //   .data.rel.ro.FN
2271   //   .data.rel.ro.local.FN
2272   //   .sdata.FN
2273   //   .bss.FN
2274   //   .sbss.FN
2275   //   .tdata.FN
2276   //   .tbss.FN
2277
2278   // The GNU linker maps all of those to the part before the .FN,
2279   // except that .data.rel.local.FN is mapped to .data, and
2280   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2281   // beginning with .data.rel.ro.local are grouped together.
2282
2283   // For an anonymous namespace, the string FN can contain a '.'.
2284
2285   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2286   // GNU linker maps to .rodata.
2287
2288   // The .data.rel.ro sections enable a security feature triggered by
2289   // the -z relro option.  Section which need to be relocated at
2290   // program startup time but which may be readonly after startup are
2291   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
2292   // segment.  The dynamic linker will make that segment writable,
2293   // perform relocations, and then make it read-only.  FIXME: We do
2294   // not yet implement this optimization.
2295
2296   // It is hard to handle this in a principled way.
2297
2298   // These are the rules we follow:
2299
2300   // If the section name has no initial '.', or no dot other than an
2301   // initial '.', we use the name unchanged (i.e., "mysection" and
2302   // ".text" are unchanged).
2303
2304   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2305
2306   // Otherwise, we drop the second '.' and everything that comes after
2307   // it (i.e., ".text.XXX" becomes ".text").
2308
2309   const char* s = name;
2310   if (*s != '.')
2311     return name;
2312   ++s;
2313   const char* sdot = strchr(s, '.');
2314   if (sdot == NULL)
2315     return name;
2316
2317   const char* const data_rel_ro = ".data.rel.ro";
2318   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2319     {
2320       *plen = strlen(data_rel_ro);
2321       return data_rel_ro;
2322     }
2323
2324   *plen = sdot - name;
2325   return name;
2326 }
2327
2328 // Record the signature of a comdat section, and return whether to
2329 // include it in the link.  If GROUP is true, this is a regular
2330 // section group.  If GROUP is false, this is a group signature
2331 // derived from the name of a linkonce section.  We want linkonce
2332 // signatures and group signatures to block each other, but we don't
2333 // want a linkonce signature to block another linkonce signature.
2334
2335 bool
2336 Layout::add_comdat(const char* signature, bool group)
2337 {
2338   std::string sig(signature);
2339   std::pair<Signatures::iterator, bool> ins(
2340     this->signatures_.insert(std::make_pair(sig, group)));
2341
2342   if (ins.second)
2343     {
2344       // This is the first time we've seen this signature.
2345       return true;
2346     }
2347
2348   if (ins.first->second)
2349     {
2350       // We've already seen a real section group with this signature.
2351       return false;
2352     }
2353   else if (group)
2354     {
2355       // This is a real section group, and we've already seen a
2356       // linkonce section with this signature.  Record that we've seen
2357       // a section group, and don't include this section group.
2358       ins.first->second = true;
2359       return false;
2360     }
2361   else
2362     {
2363       // We've already seen a linkonce section and this is a linkonce
2364       // section.  These don't block each other--this may be the same
2365       // symbol name with different section types.
2366       return true;
2367     }
2368 }
2369
2370 // Store the allocated sections into the section list.
2371
2372 void
2373 Layout::get_allocated_sections(Section_list* section_list) const
2374 {
2375   for (Section_list::const_iterator p = this->section_list_.begin();
2376        p != this->section_list_.end();
2377        ++p)
2378     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2379       section_list->push_back(*p);
2380 }
2381
2382 // Create an output segment.
2383
2384 Output_segment*
2385 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2386 {
2387   gold_assert(!parameters->output_is_object());
2388   Output_segment* oseg = new Output_segment(type, flags);
2389   this->segment_list_.push_back(oseg);
2390   return oseg;
2391 }
2392
2393 // Write out the Output_sections.  Most won't have anything to write,
2394 // since most of the data will come from input sections which are
2395 // handled elsewhere.  But some Output_sections do have Output_data.
2396
2397 void
2398 Layout::write_output_sections(Output_file* of) const
2399 {
2400   for (Section_list::const_iterator p = this->section_list_.begin();
2401        p != this->section_list_.end();
2402        ++p)
2403     {
2404       if (!(*p)->after_input_sections())
2405         (*p)->write(of);
2406     }
2407 }
2408
2409 // Write out data not associated with a section or the symbol table.
2410
2411 void
2412 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2413 {
2414   if (!parameters->strip_all())
2415     {
2416       const Output_section* symtab_section = this->symtab_section_;
2417       for (Section_list::const_iterator p = this->section_list_.begin();
2418            p != this->section_list_.end();
2419            ++p)
2420         {
2421           if ((*p)->needs_symtab_index())
2422             {
2423               gold_assert(symtab_section != NULL);
2424               unsigned int index = (*p)->symtab_index();
2425               gold_assert(index > 0 && index != -1U);
2426               off_t off = (symtab_section->offset()
2427                            + index * symtab_section->entsize());
2428               symtab->write_section_symbol(*p, of, off);
2429             }
2430         }
2431     }
2432
2433   const Output_section* dynsym_section = this->dynsym_section_;
2434   for (Section_list::const_iterator p = this->section_list_.begin();
2435        p != this->section_list_.end();
2436        ++p)
2437     {
2438       if ((*p)->needs_dynsym_index())
2439         {
2440           gold_assert(dynsym_section != NULL);
2441           unsigned int index = (*p)->dynsym_index();
2442           gold_assert(index > 0 && index != -1U);
2443           off_t off = (dynsym_section->offset()
2444                        + index * dynsym_section->entsize());
2445           symtab->write_section_symbol(*p, of, off);
2446         }
2447     }
2448
2449   // Write out the Output_data which are not in an Output_section.
2450   for (Data_list::const_iterator p = this->special_output_list_.begin();
2451        p != this->special_output_list_.end();
2452        ++p)
2453     (*p)->write(of);
2454 }
2455
2456 // Write out the Output_sections which can only be written after the
2457 // input sections are complete.
2458
2459 void
2460 Layout::write_sections_after_input_sections(Output_file* of)
2461 {
2462   // Determine the final section offsets, and thus the final output
2463   // file size.  Note we finalize the .shstrab last, to allow the
2464   // after_input_section sections to modify their section-names before
2465   // writing.
2466   if (this->any_postprocessing_sections_)
2467     {
2468       off_t off = this->output_file_size_;
2469       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2470       
2471       // Now that we've finalized the names, we can finalize the shstrab.
2472       off =
2473         this->set_section_offsets(off,
2474                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2475
2476       if (off > this->output_file_size_)
2477         {
2478           of->resize(off);
2479           this->output_file_size_ = off;
2480         }
2481     }
2482
2483   for (Section_list::const_iterator p = this->section_list_.begin();
2484        p != this->section_list_.end();
2485        ++p)
2486     {
2487       if ((*p)->after_input_sections())
2488         (*p)->write(of);
2489     }
2490
2491   this->section_headers_->write(of);
2492 }
2493
2494 // Write out a binary file.  This is called after the link is
2495 // complete.  IN is the temporary output file we used to generate the
2496 // ELF code.  We simply walk through the segments, read them from
2497 // their file offset in IN, and write them to their load address in
2498 // the output file.  FIXME: with a bit more work, we could support
2499 // S-records and/or Intel hex format here.
2500
2501 void
2502 Layout::write_binary(Output_file* in) const
2503 {
2504   gold_assert(this->options_.output_format()
2505               == General_options::OUTPUT_FORMAT_BINARY);
2506
2507   // Get the size of the binary file.
2508   uint64_t max_load_address = 0;
2509   for (Segment_list::const_iterator p = this->segment_list_.begin();
2510        p != this->segment_list_.end();
2511        ++p)
2512     {
2513       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2514         {
2515           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
2516           if (max_paddr > max_load_address)
2517             max_load_address = max_paddr;
2518         }
2519     }
2520
2521   Output_file out(parameters->output_file_name());
2522   out.open(max_load_address);
2523
2524   for (Segment_list::const_iterator p = this->segment_list_.begin();
2525        p != this->segment_list_.end();
2526        ++p)
2527     {
2528       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2529         {
2530           const unsigned char* vin = in->get_input_view((*p)->offset(),
2531                                                         (*p)->filesz());
2532           unsigned char* vout = out.get_output_view((*p)->paddr(),
2533                                                     (*p)->filesz());
2534           memcpy(vout, vin, (*p)->filesz());
2535           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
2536           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
2537         }
2538     }
2539
2540   out.close();
2541 }
2542
2543 // Print statistical information to stderr.  This is used for --stats.
2544
2545 void
2546 Layout::print_stats() const
2547 {
2548   this->namepool_.print_stats("section name pool");
2549   this->sympool_.print_stats("output symbol name pool");
2550   this->dynpool_.print_stats("dynamic name pool");
2551
2552   for (Section_list::const_iterator p = this->section_list_.begin();
2553        p != this->section_list_.end();
2554        ++p)
2555     (*p)->print_merge_stats();
2556 }
2557
2558 // Write_sections_task methods.
2559
2560 // We can always run this task.
2561
2562 Task_token*
2563 Write_sections_task::is_runnable()
2564 {
2565   return NULL;
2566 }
2567
2568 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2569 // when finished.
2570
2571 void
2572 Write_sections_task::locks(Task_locker* tl)
2573 {
2574   tl->add(this, this->output_sections_blocker_);
2575   tl->add(this, this->final_blocker_);
2576 }
2577
2578 // Run the task--write out the data.
2579
2580 void
2581 Write_sections_task::run(Workqueue*)
2582 {
2583   this->layout_->write_output_sections(this->of_);
2584 }
2585
2586 // Write_data_task methods.
2587
2588 // We can always run this task.
2589
2590 Task_token*
2591 Write_data_task::is_runnable()
2592 {
2593   return NULL;
2594 }
2595
2596 // We need to unlock FINAL_BLOCKER when finished.
2597
2598 void
2599 Write_data_task::locks(Task_locker* tl)
2600 {
2601   tl->add(this, this->final_blocker_);
2602 }
2603
2604 // Run the task--write out the data.
2605
2606 void
2607 Write_data_task::run(Workqueue*)
2608 {
2609   this->layout_->write_data(this->symtab_, this->of_);
2610 }
2611
2612 // Write_symbols_task methods.
2613
2614 // We can always run this task.
2615
2616 Task_token*
2617 Write_symbols_task::is_runnable()
2618 {
2619   return NULL;
2620 }
2621
2622 // We need to unlock FINAL_BLOCKER when finished.
2623
2624 void
2625 Write_symbols_task::locks(Task_locker* tl)
2626 {
2627   tl->add(this, this->final_blocker_);
2628 }
2629
2630 // Run the task--write out the symbols.
2631
2632 void
2633 Write_symbols_task::run(Workqueue*)
2634 {
2635   this->symtab_->write_globals(this->input_objects_, this->sympool_,
2636                                this->dynpool_, this->of_);
2637 }
2638
2639 // Write_after_input_sections_task methods.
2640
2641 // We can only run this task after the input sections have completed.
2642
2643 Task_token*
2644 Write_after_input_sections_task::is_runnable()
2645 {
2646   if (this->input_sections_blocker_->is_blocked())
2647     return this->input_sections_blocker_;
2648   return NULL;
2649 }
2650
2651 // We need to unlock FINAL_BLOCKER when finished.
2652
2653 void
2654 Write_after_input_sections_task::locks(Task_locker* tl)
2655 {
2656   tl->add(this, this->final_blocker_);
2657 }
2658
2659 // Run the task.
2660
2661 void
2662 Write_after_input_sections_task::run(Workqueue*)
2663 {
2664   this->layout_->write_sections_after_input_sections(this->of_);
2665 }
2666
2667 // Close_task_runner methods.
2668
2669 // Run the task--close the file.
2670
2671 void
2672 Close_task_runner::run(Workqueue*, const Task*)
2673 {
2674   // If we've been asked to create a binary file, we do so here.
2675   if (this->options_->output_format() != General_options::OUTPUT_FORMAT_ELF)
2676     this->layout_->write_binary(this->of_);
2677
2678   this->of_->close();
2679 }
2680
2681 // Instantiate the templates we need.  We could use the configure
2682 // script to restrict this to only the ones for implemented targets.
2683
2684 #ifdef HAVE_TARGET_32_LITTLE
2685 template
2686 Output_section*
2687 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2688                           const char* name,
2689                           const elfcpp::Shdr<32, false>& shdr,
2690                           unsigned int, unsigned int, off_t*);
2691 #endif
2692
2693 #ifdef HAVE_TARGET_32_BIG
2694 template
2695 Output_section*
2696 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2697                          const char* name,
2698                          const elfcpp::Shdr<32, true>& shdr,
2699                          unsigned int, unsigned int, off_t*);
2700 #endif
2701
2702 #ifdef HAVE_TARGET_64_LITTLE
2703 template
2704 Output_section*
2705 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2706                           const char* name,
2707                           const elfcpp::Shdr<64, false>& shdr,
2708                           unsigned int, unsigned int, off_t*);
2709 #endif
2710
2711 #ifdef HAVE_TARGET_64_BIG
2712 template
2713 Output_section*
2714 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2715                          const char* name,
2716                          const elfcpp::Shdr<64, true>& shdr,
2717                          unsigned int, unsigned int, off_t*);
2718 #endif
2719
2720 #ifdef HAVE_TARGET_32_LITTLE
2721 template
2722 Output_section*
2723 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
2724                                 unsigned int reloc_shndx,
2725                                 const elfcpp::Shdr<32, false>& shdr,
2726                                 Output_section* data_section,
2727                                 Relocatable_relocs* rr);
2728 #endif
2729
2730 #ifdef HAVE_TARGET_32_BIG
2731 template
2732 Output_section*
2733 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
2734                                unsigned int reloc_shndx,
2735                                const elfcpp::Shdr<32, true>& shdr,
2736                                Output_section* data_section,
2737                                Relocatable_relocs* rr);
2738 #endif
2739
2740 #ifdef HAVE_TARGET_64_LITTLE
2741 template
2742 Output_section*
2743 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
2744                                 unsigned int reloc_shndx,
2745                                 const elfcpp::Shdr<64, false>& shdr,
2746                                 Output_section* data_section,
2747                                 Relocatable_relocs* rr);
2748 #endif
2749
2750 #ifdef HAVE_TARGET_64_BIG
2751 template
2752 Output_section*
2753 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
2754                                unsigned int reloc_shndx,
2755                                const elfcpp::Shdr<64, true>& shdr,
2756                                Output_section* data_section,
2757                                Relocatable_relocs* rr);
2758 #endif
2759
2760 #ifdef HAVE_TARGET_32_LITTLE
2761 template
2762 void
2763 Layout::layout_group<32, false>(Symbol_table* symtab,
2764                                 Sized_relobj<32, false>* object,
2765                                 unsigned int,
2766                                 const char* group_section_name,
2767                                 const char* signature,
2768                                 const elfcpp::Shdr<32, false>& shdr,
2769                                 const elfcpp::Elf_Word* contents);
2770 #endif
2771
2772 #ifdef HAVE_TARGET_32_BIG
2773 template
2774 void
2775 Layout::layout_group<32, true>(Symbol_table* symtab,
2776                                Sized_relobj<32, true>* object,
2777                                unsigned int,
2778                                const char* group_section_name,
2779                                const char* signature,
2780                                const elfcpp::Shdr<32, true>& shdr,
2781                                const elfcpp::Elf_Word* contents);
2782 #endif
2783
2784 #ifdef HAVE_TARGET_64_LITTLE
2785 template
2786 void
2787 Layout::layout_group<64, false>(Symbol_table* symtab,
2788                                 Sized_relobj<64, false>* object,
2789                                 unsigned int,
2790                                 const char* group_section_name,
2791                                 const char* signature,
2792                                 const elfcpp::Shdr<64, false>& shdr,
2793                                 const elfcpp::Elf_Word* contents);
2794 #endif
2795
2796 #ifdef HAVE_TARGET_64_BIG
2797 template
2798 void
2799 Layout::layout_group<64, true>(Symbol_table* symtab,
2800                                Sized_relobj<64, true>* object,
2801                                unsigned int,
2802                                const char* group_section_name,
2803                                const char* signature,
2804                                const elfcpp::Shdr<64, true>& shdr,
2805                                const elfcpp::Elf_Word* contents);
2806 #endif
2807
2808 #ifdef HAVE_TARGET_32_LITTLE
2809 template
2810 Output_section*
2811 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2812                                    const unsigned char* symbols,
2813                                    off_t symbols_size,
2814                                    const unsigned char* symbol_names,
2815                                    off_t symbol_names_size,
2816                                    unsigned int shndx,
2817                                    const elfcpp::Shdr<32, false>& shdr,
2818                                    unsigned int reloc_shndx,
2819                                    unsigned int reloc_type,
2820                                    off_t* off);
2821 #endif
2822
2823 #ifdef HAVE_TARGET_32_BIG
2824 template
2825 Output_section*
2826 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2827                                    const unsigned char* symbols,
2828                                    off_t symbols_size,
2829                                   const unsigned char* symbol_names,
2830                                   off_t symbol_names_size,
2831                                   unsigned int shndx,
2832                                   const elfcpp::Shdr<32, true>& shdr,
2833                                   unsigned int reloc_shndx,
2834                                   unsigned int reloc_type,
2835                                   off_t* off);
2836 #endif
2837
2838 #ifdef HAVE_TARGET_64_LITTLE
2839 template
2840 Output_section*
2841 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2842                                    const unsigned char* symbols,
2843                                    off_t symbols_size,
2844                                    const unsigned char* symbol_names,
2845                                    off_t symbol_names_size,
2846                                    unsigned int shndx,
2847                                    const elfcpp::Shdr<64, false>& shdr,
2848                                    unsigned int reloc_shndx,
2849                                    unsigned int reloc_type,
2850                                    off_t* off);
2851 #endif
2852
2853 #ifdef HAVE_TARGET_64_BIG
2854 template
2855 Output_section*
2856 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2857                                    const unsigned char* symbols,
2858                                    off_t symbols_size,
2859                                   const unsigned char* symbol_names,
2860                                   off_t symbol_names_size,
2861                                   unsigned int shndx,
2862                                   const elfcpp::Shdr<64, true>& shdr,
2863                                   unsigned int reloc_shndx,
2864                                   unsigned int reloc_type,
2865                                   off_t* off);
2866 #endif
2867
2868 } // End namespace gold.