OSDN Git Service

Change file mode to 0755.
[pf3gnuchains/pf3gnuchains4x.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
52
53 namespace gold
54 {
55
56 // Layout::Relaxation_debug_check methods.
57
58 // Check that sections and special data are in reset states.
59 // We do not save states for Output_sections and special Output_data.
60 // So we check that they have not assigned any addresses or offsets.
61 // clean_up_after_relaxation simply resets their addresses and offsets.
62 void
63 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
64     const Layout::Section_list& sections,
65     const Layout::Data_list& special_outputs)
66 {
67   for(Layout::Section_list::const_iterator p = sections.begin();
68       p != sections.end();
69       ++p)
70     gold_assert((*p)->address_and_file_offset_have_reset_values());
71
72   for(Layout::Data_list::const_iterator p = special_outputs.begin();
73       p != special_outputs.end();
74       ++p)
75     gold_assert((*p)->address_and_file_offset_have_reset_values());
76 }
77   
78 // Save information of SECTIONS for checking later.
79
80 void
81 Layout::Relaxation_debug_check::read_sections(
82     const Layout::Section_list& sections)
83 {
84   for(Layout::Section_list::const_iterator p = sections.begin();
85       p != sections.end();
86       ++p)
87     {
88       Output_section* os = *p;
89       Section_info info;
90       info.output_section = os;
91       info.address = os->is_address_valid() ? os->address() : 0;
92       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
93       info.offset = os->is_offset_valid()? os->offset() : -1 ;
94       this->section_infos_.push_back(info);
95     }
96 }
97
98 // Verify SECTIONS using previously recorded information.
99
100 void
101 Layout::Relaxation_debug_check::verify_sections(
102     const Layout::Section_list& sections)
103 {
104   size_t i = 0;
105   for(Layout::Section_list::const_iterator p = sections.begin();
106       p != sections.end();
107       ++p, ++i)
108     {
109       Output_section* os = *p;
110       uint64_t address = os->is_address_valid() ? os->address() : 0;
111       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
112       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
113
114       if (i >= this->section_infos_.size())
115         {
116           gold_fatal("Section_info of %s missing.\n", os->name());
117         }
118       const Section_info& info = this->section_infos_[i];
119       if (os != info.output_section)
120         gold_fatal("Section order changed.  Expecting %s but see %s\n",
121                    info.output_section->name(), os->name());
122       if (address != info.address
123           || data_size != info.data_size
124           || offset != info.offset)
125         gold_fatal("Section %s changed.\n", os->name());
126     }
127 }
128
129 // Layout_task_runner methods.
130
131 // Lay out the sections.  This is called after all the input objects
132 // have been read.
133
134 void
135 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
136 {
137   off_t file_size = this->layout_->finalize(this->input_objects_,
138                                             this->symtab_,
139                                             this->target_,
140                                             task);
141
142   // Now we know the final size of the output file and we know where
143   // each piece of information goes.
144
145   if (this->mapfile_ != NULL)
146     {
147       this->mapfile_->print_discarded_sections(this->input_objects_);
148       this->layout_->print_to_mapfile(this->mapfile_);
149     }
150
151   Output_file* of = new Output_file(parameters->options().output_file_name());
152   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
153     of->set_is_temporary();
154   of->open(file_size);
155
156   // Queue up the final set of tasks.
157   gold::queue_final_tasks(this->options_, this->input_objects_,
158                           this->symtab_, this->layout_, workqueue, of);
159 }
160
161 // Layout methods.
162
163 Layout::Layout(int number_of_input_files, Script_options* script_options)
164   : number_of_input_files_(number_of_input_files),
165     script_options_(script_options),
166     namepool_(),
167     sympool_(),
168     dynpool_(),
169     signatures_(),
170     section_name_map_(),
171     segment_list_(),
172     section_list_(),
173     unattached_section_list_(),
174     special_output_list_(),
175     section_headers_(NULL),
176     tls_segment_(NULL),
177     relro_segment_(NULL),
178     increase_relro_(0),
179     symtab_section_(NULL),
180     symtab_xindex_(NULL),
181     dynsym_section_(NULL),
182     dynsym_xindex_(NULL),
183     dynamic_section_(NULL),
184     dynamic_symbol_(NULL),
185     dynamic_data_(NULL),
186     eh_frame_section_(NULL),
187     eh_frame_data_(NULL),
188     added_eh_frame_data_(false),
189     eh_frame_hdr_section_(NULL),
190     build_id_note_(NULL),
191     debug_abbrev_(NULL),
192     debug_info_(NULL),
193     group_signatures_(),
194     output_file_size_(-1),
195     have_added_input_section_(false),
196     sections_are_attached_(false),
197     input_requires_executable_stack_(false),
198     input_with_gnu_stack_note_(false),
199     input_without_gnu_stack_note_(false),
200     has_static_tls_(false),
201     any_postprocessing_sections_(false),
202     resized_signatures_(false),
203     have_stabstr_section_(false),
204     incremental_inputs_(NULL),
205     record_output_section_data_from_script_(false),
206     script_output_section_data_list_(),
207     segment_states_(NULL),
208     relaxation_debug_check_(NULL)
209 {
210   // Make space for more than enough segments for a typical file.
211   // This is just for efficiency--it's OK if we wind up needing more.
212   this->segment_list_.reserve(12);
213
214   // We expect two unattached Output_data objects: the file header and
215   // the segment headers.
216   this->special_output_list_.reserve(2);
217
218   // Initialize structure needed for an incremental build.
219   if (parameters->options().incremental())
220     this->incremental_inputs_ = new Incremental_inputs;
221
222   // The section name pool is worth optimizing in all cases, because
223   // it is small, but there are often overlaps due to .rel sections.
224   this->namepool_.set_optimize();
225 }
226
227 // Hash a key we use to look up an output section mapping.
228
229 size_t
230 Layout::Hash_key::operator()(const Layout::Key& k) const
231 {
232  return k.first + k.second.first + k.second.second;
233 }
234
235 // Returns whether the given section is in the list of
236 // debug-sections-used-by-some-version-of-gdb.  Currently,
237 // we've checked versions of gdb up to and including 6.7.1.
238
239 static const char* gdb_sections[] =
240 { ".debug_abbrev",
241   // ".debug_aranges",   // not used by gdb as of 6.7.1
242   ".debug_frame",
243   ".debug_info",
244   ".debug_line",
245   ".debug_loc",
246   ".debug_macinfo",
247   // ".debug_pubnames",  // not used by gdb as of 6.7.1
248   ".debug_ranges",
249   ".debug_str",
250 };
251
252 static const char* lines_only_debug_sections[] =
253 { ".debug_abbrev",
254   // ".debug_aranges",   // not used by gdb as of 6.7.1
255   // ".debug_frame",
256   ".debug_info",
257   ".debug_line",
258   // ".debug_loc",
259   // ".debug_macinfo",
260   // ".debug_pubnames",  // not used by gdb as of 6.7.1
261   // ".debug_ranges",
262   ".debug_str",
263 };
264
265 static inline bool
266 is_gdb_debug_section(const char* str)
267 {
268   // We can do this faster: binary search or a hashtable.  But why bother?
269   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
270     if (strcmp(str, gdb_sections[i]) == 0)
271       return true;
272   return false;
273 }
274
275 static inline bool
276 is_lines_only_debug_section(const char* str)
277 {
278   // We can do this faster: binary search or a hashtable.  But why bother?
279   for (size_t i = 0;
280        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
281        ++i)
282     if (strcmp(str, lines_only_debug_sections[i]) == 0)
283       return true;
284   return false;
285 }
286
287 // Whether to include this section in the link.
288
289 template<int size, bool big_endian>
290 bool
291 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
292                         const elfcpp::Shdr<size, big_endian>& shdr)
293 {
294   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
295     return false;
296
297   switch (shdr.get_sh_type())
298     {
299     case elfcpp::SHT_NULL:
300     case elfcpp::SHT_SYMTAB:
301     case elfcpp::SHT_DYNSYM:
302     case elfcpp::SHT_HASH:
303     case elfcpp::SHT_DYNAMIC:
304     case elfcpp::SHT_SYMTAB_SHNDX:
305       return false;
306
307     case elfcpp::SHT_STRTAB:
308       // Discard the sections which have special meanings in the ELF
309       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
310       // checking the sh_link fields of the appropriate sections.
311       return (strcmp(name, ".dynstr") != 0
312               && strcmp(name, ".strtab") != 0
313               && strcmp(name, ".shstrtab") != 0);
314
315     case elfcpp::SHT_RELA:
316     case elfcpp::SHT_REL:
317     case elfcpp::SHT_GROUP:
318       // If we are emitting relocations these should be handled
319       // elsewhere.
320       gold_assert(!parameters->options().relocatable()
321                   && !parameters->options().emit_relocs());
322       return false;
323
324     case elfcpp::SHT_PROGBITS:
325       if (parameters->options().strip_debug()
326           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
327         {
328           if (is_debug_info_section(name))
329             return false;
330         }
331       if (parameters->options().strip_debug_non_line()
332           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
333         {
334           // Debugging sections can only be recognized by name.
335           if (is_prefix_of(".debug", name)
336               && !is_lines_only_debug_section(name))
337             return false;
338         }
339       if (parameters->options().strip_debug_gdb()
340           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
341         {
342           // Debugging sections can only be recognized by name.
343           if (is_prefix_of(".debug", name)
344               && !is_gdb_debug_section(name))
345             return false;
346         }
347       if (parameters->options().strip_lto_sections()
348           && !parameters->options().relocatable()
349           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
350         {
351           // Ignore LTO sections containing intermediate code.
352           if (is_prefix_of(".gnu.lto_", name))
353             return false;
354         }
355       // The GNU linker strips .gnu_debuglink sections, so we do too.
356       // This is a feature used to keep debugging information in
357       // separate files.
358       if (strcmp(name, ".gnu_debuglink") == 0)
359         return false;
360       return true;
361
362     default:
363       return true;
364     }
365 }
366
367 // Return an output section named NAME, or NULL if there is none.
368
369 Output_section*
370 Layout::find_output_section(const char* name) const
371 {
372   for (Section_list::const_iterator p = this->section_list_.begin();
373        p != this->section_list_.end();
374        ++p)
375     if (strcmp((*p)->name(), name) == 0)
376       return *p;
377   return NULL;
378 }
379
380 // Return an output segment of type TYPE, with segment flags SET set
381 // and segment flags CLEAR clear.  Return NULL if there is none.
382
383 Output_segment*
384 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
385                             elfcpp::Elf_Word clear) const
386 {
387   for (Segment_list::const_iterator p = this->segment_list_.begin();
388        p != this->segment_list_.end();
389        ++p)
390     if (static_cast<elfcpp::PT>((*p)->type()) == type
391         && ((*p)->flags() & set) == set
392         && ((*p)->flags() & clear) == 0)
393       return *p;
394   return NULL;
395 }
396
397 // Return the output section to use for section NAME with type TYPE
398 // and section flags FLAGS.  NAME must be canonicalized in the string
399 // pool, and NAME_KEY is the key.  IS_INTERP is true if this is the
400 // .interp section.  IS_DYNAMIC_LINKER_SECTION is true if this section
401 // is used by the dynamic linker.  IS_RELRO is true for a relro
402 // section.  IS_LAST_RELRO is true for the last relro section.
403 // IS_FIRST_NON_RELRO is true for the first non-relro section.
404
405 Output_section*
406 Layout::get_output_section(const char* name, Stringpool::Key name_key,
407                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
408                            bool is_interp, bool is_dynamic_linker_section,
409                            bool is_relro, bool is_last_relro,
410                            bool is_first_non_relro)
411 {
412   elfcpp::Elf_Xword lookup_flags = flags;
413
414   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
415   // read-write with read-only sections.  Some other ELF linkers do
416   // not do this.  FIXME: Perhaps there should be an option
417   // controlling this.
418   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
419
420   const Key key(name_key, std::make_pair(type, lookup_flags));
421   const std::pair<Key, Output_section*> v(key, NULL);
422   std::pair<Section_name_map::iterator, bool> ins(
423     this->section_name_map_.insert(v));
424
425   if (!ins.second)
426     return ins.first->second;
427   else
428     {
429       // This is the first time we've seen this name/type/flags
430       // combination.  For compatibility with the GNU linker, we
431       // combine sections with contents and zero flags with sections
432       // with non-zero flags.  This is a workaround for cases where
433       // assembler code forgets to set section flags.  FIXME: Perhaps
434       // there should be an option to control this.
435       Output_section* os = NULL;
436
437       if (type == elfcpp::SHT_PROGBITS)
438         {
439           if (flags == 0)
440             {
441               Output_section* same_name = this->find_output_section(name);
442               if (same_name != NULL
443                   && same_name->type() == elfcpp::SHT_PROGBITS
444                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
445                 os = same_name;
446             }
447           else if ((flags & elfcpp::SHF_TLS) == 0)
448             {
449               elfcpp::Elf_Xword zero_flags = 0;
450               const Key zero_key(name_key, std::make_pair(type, zero_flags));
451               Section_name_map::iterator p =
452                   this->section_name_map_.find(zero_key);
453               if (p != this->section_name_map_.end())
454                 os = p->second;
455             }
456         }
457
458       if (os == NULL)
459         os = this->make_output_section(name, type, flags, is_interp,
460                                        is_dynamic_linker_section, is_relro,
461                                        is_last_relro, is_first_non_relro);
462       ins.first->second = os;
463       return os;
464     }
465 }
466
467 // Pick the output section to use for section NAME, in input file
468 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
469 // linker created section.  IS_INPUT_SECTION is true if we are
470 // choosing an output section for an input section found in a input
471 // file.  IS_INTERP is true if this is the .interp section.
472 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
473 // dynamic linker.  IS_RELRO is true for a relro section.
474 // IS_LAST_RELRO is true for the last relro section.
475 // IS_FIRST_NON_RELRO is true for the first non-relro section.  This
476 // will return NULL if the input section should be discarded.
477
478 Output_section*
479 Layout::choose_output_section(const Relobj* relobj, const char* name,
480                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
481                               bool is_input_section, bool is_interp,
482                               bool is_dynamic_linker_section, bool is_relro,
483                               bool is_last_relro, bool is_first_non_relro)
484 {
485   // We should not see any input sections after we have attached
486   // sections to segments.
487   gold_assert(!is_input_section || !this->sections_are_attached_);
488
489   // Some flags in the input section should not be automatically
490   // copied to the output section.
491   flags &= ~ (elfcpp::SHF_INFO_LINK
492               | elfcpp::SHF_LINK_ORDER
493               | elfcpp::SHF_GROUP
494               | elfcpp::SHF_MERGE
495               | elfcpp::SHF_STRINGS);
496
497   if (this->script_options_->saw_sections_clause())
498     {
499       // We are using a SECTIONS clause, so the output section is
500       // chosen based only on the name.
501
502       Script_sections* ss = this->script_options_->script_sections();
503       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
504       Output_section** output_section_slot;
505       name = ss->output_section_name(file_name, name, &output_section_slot);
506       if (name == NULL)
507         {
508           // The SECTIONS clause says to discard this input section.
509           return NULL;
510         }
511
512       // If this is an orphan section--one not mentioned in the linker
513       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
514       // default processing below.
515
516       if (output_section_slot != NULL)
517         {
518           if (*output_section_slot != NULL)
519             {
520               (*output_section_slot)->update_flags_for_input_section(flags);
521               return *output_section_slot;
522             }
523
524           // We don't put sections found in the linker script into
525           // SECTION_NAME_MAP_.  That keeps us from getting confused
526           // if an orphan section is mapped to a section with the same
527           // name as one in the linker script.
528
529           name = this->namepool_.add(name, false, NULL);
530
531           Output_section* os =
532             this->make_output_section(name, type, flags, is_interp,
533                                       is_dynamic_linker_section, is_relro,
534                                       is_last_relro, is_first_non_relro);
535           os->set_found_in_sections_clause();
536           *output_section_slot = os;
537           return os;
538         }
539     }
540
541   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
542
543   // Turn NAME from the name of the input section into the name of the
544   // output section.
545
546   size_t len = strlen(name);
547   if (is_input_section
548       && !this->script_options_->saw_sections_clause()
549       && !parameters->options().relocatable())
550     name = Layout::output_section_name(name, &len);
551
552   Stringpool::Key name_key;
553   name = this->namepool_.add_with_length(name, len, true, &name_key);
554
555   // Find or make the output section.  The output section is selected
556   // based on the section name, type, and flags.
557   return this->get_output_section(name, name_key, type, flags, is_interp,
558                                   is_dynamic_linker_section, is_relro,
559                                   is_last_relro, is_first_non_relro);
560 }
561
562 // Return the output section to use for input section SHNDX, with name
563 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
564 // index of a relocation section which applies to this section, or 0
565 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
566 // relocation section if there is one.  Set *OFF to the offset of this
567 // input section without the output section.  Return NULL if the
568 // section should be discarded.  Set *OFF to -1 if the section
569 // contents should not be written directly to the output file, but
570 // will instead receive special handling.
571
572 template<int size, bool big_endian>
573 Output_section*
574 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
575                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
576                unsigned int reloc_shndx, unsigned int, off_t* off)
577 {
578   *off = 0;
579
580   if (!this->include_section(object, name, shdr))
581     return NULL;
582
583   Output_section* os;
584
585   // In a relocatable link a grouped section must not be combined with
586   // any other sections.
587   if (parameters->options().relocatable()
588       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
589     {
590       name = this->namepool_.add(name, true, NULL);
591       os = this->make_output_section(name, shdr.get_sh_type(),
592                                      shdr.get_sh_flags(), false, false,
593                                      false, false, false);
594     }
595   else
596     {
597       os = this->choose_output_section(object, name, shdr.get_sh_type(),
598                                        shdr.get_sh_flags(), true, false,
599                                        false, false, false, false);
600       if (os == NULL)
601         return NULL;
602     }
603
604   // By default the GNU linker sorts input sections whose names match
605   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
606   // are sorted by name.  This is used to implement constructor
607   // priority ordering.  We are compatible.
608   if (!this->script_options_->saw_sections_clause()
609       && (is_prefix_of(".ctors.", name)
610           || is_prefix_of(".dtors.", name)
611           || is_prefix_of(".init_array.", name)
612           || is_prefix_of(".fini_array.", name)))
613     os->set_must_sort_attached_input_sections();
614
615   // FIXME: Handle SHF_LINK_ORDER somewhere.
616
617   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
618                                this->script_options_->saw_sections_clause());
619   this->have_added_input_section_ = true;
620
621   return os;
622 }
623
624 // Handle a relocation section when doing a relocatable link.
625
626 template<int size, bool big_endian>
627 Output_section*
628 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
629                      unsigned int,
630                      const elfcpp::Shdr<size, big_endian>& shdr,
631                      Output_section* data_section,
632                      Relocatable_relocs* rr)
633 {
634   gold_assert(parameters->options().relocatable()
635               || parameters->options().emit_relocs());
636
637   int sh_type = shdr.get_sh_type();
638
639   std::string name;
640   if (sh_type == elfcpp::SHT_REL)
641     name = ".rel";
642   else if (sh_type == elfcpp::SHT_RELA)
643     name = ".rela";
644   else
645     gold_unreachable();
646   name += data_section->name();
647
648   Output_section* os = this->choose_output_section(object, name.c_str(),
649                                                    sh_type,
650                                                    shdr.get_sh_flags(),
651                                                    false, false, false,
652                                                    false, false, false);
653
654   os->set_should_link_to_symtab();
655   os->set_info_section(data_section);
656
657   Output_section_data* posd;
658   if (sh_type == elfcpp::SHT_REL)
659     {
660       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
661       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
662                                            size,
663                                            big_endian>(rr);
664     }
665   else if (sh_type == elfcpp::SHT_RELA)
666     {
667       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
668       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
669                                            size,
670                                            big_endian>(rr);
671     }
672   else
673     gold_unreachable();
674
675   os->add_output_section_data(posd);
676   rr->set_output_data(posd);
677
678   return os;
679 }
680
681 // Handle a group section when doing a relocatable link.
682
683 template<int size, bool big_endian>
684 void
685 Layout::layout_group(Symbol_table* symtab,
686                      Sized_relobj<size, big_endian>* object,
687                      unsigned int,
688                      const char* group_section_name,
689                      const char* signature,
690                      const elfcpp::Shdr<size, big_endian>& shdr,
691                      elfcpp::Elf_Word flags,
692                      std::vector<unsigned int>* shndxes)
693 {
694   gold_assert(parameters->options().relocatable());
695   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
696   group_section_name = this->namepool_.add(group_section_name, true, NULL);
697   Output_section* os = this->make_output_section(group_section_name,
698                                                  elfcpp::SHT_GROUP,
699                                                  shdr.get_sh_flags(),
700                                                  false, false, false,
701                                                  false, false);
702
703   // We need to find a symbol with the signature in the symbol table.
704   // If we don't find one now, we need to look again later.
705   Symbol* sym = symtab->lookup(signature, NULL);
706   if (sym != NULL)
707     os->set_info_symndx(sym);
708   else
709     {
710       // Reserve some space to minimize reallocations.
711       if (this->group_signatures_.empty())
712         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
713
714       // We will wind up using a symbol whose name is the signature.
715       // So just put the signature in the symbol name pool to save it.
716       signature = symtab->canonicalize_name(signature);
717       this->group_signatures_.push_back(Group_signature(os, signature));
718     }
719
720   os->set_should_link_to_symtab();
721   os->set_entsize(4);
722
723   section_size_type entry_count =
724     convert_to_section_size_type(shdr.get_sh_size() / 4);
725   Output_section_data* posd =
726     new Output_data_group<size, big_endian>(object, entry_count, flags,
727                                             shndxes);
728   os->add_output_section_data(posd);
729 }
730
731 // Special GNU handling of sections name .eh_frame.  They will
732 // normally hold exception frame data as defined by the C++ ABI
733 // (http://codesourcery.com/cxx-abi/).
734
735 template<int size, bool big_endian>
736 Output_section*
737 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
738                         const unsigned char* symbols,
739                         off_t symbols_size,
740                         const unsigned char* symbol_names,
741                         off_t symbol_names_size,
742                         unsigned int shndx,
743                         const elfcpp::Shdr<size, big_endian>& shdr,
744                         unsigned int reloc_shndx, unsigned int reloc_type,
745                         off_t* off)
746 {
747   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
748   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
749
750   const char* const name = ".eh_frame";
751   Output_section* os = this->choose_output_section(object,
752                                                    name,
753                                                    elfcpp::SHT_PROGBITS,
754                                                    elfcpp::SHF_ALLOC,
755                                                    false, false, false,
756                                                    false, false, false);
757   if (os == NULL)
758     return NULL;
759
760   if (this->eh_frame_section_ == NULL)
761     {
762       this->eh_frame_section_ = os;
763       this->eh_frame_data_ = new Eh_frame();
764
765       if (parameters->options().eh_frame_hdr())
766         {
767           Output_section* hdr_os =
768             this->choose_output_section(NULL,
769                                         ".eh_frame_hdr",
770                                         elfcpp::SHT_PROGBITS,
771                                         elfcpp::SHF_ALLOC,
772                                         false, false, false,
773                                         false, false, false);
774
775           if (hdr_os != NULL)
776             {
777               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
778                                                         this->eh_frame_data_);
779               hdr_os->add_output_section_data(hdr_posd);
780
781               hdr_os->set_after_input_sections();
782
783               if (!this->script_options_->saw_phdrs_clause())
784                 {
785                   Output_segment* hdr_oseg;
786                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
787                                                        elfcpp::PF_R);
788                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R, false);
789                 }
790
791               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
792             }
793         }
794     }
795
796   gold_assert(this->eh_frame_section_ == os);
797
798   if (this->eh_frame_data_->add_ehframe_input_section(object,
799                                                       symbols,
800                                                       symbols_size,
801                                                       symbol_names,
802                                                       symbol_names_size,
803                                                       shndx,
804                                                       reloc_shndx,
805                                                       reloc_type))
806     {
807       os->update_flags_for_input_section(shdr.get_sh_flags());
808
809       // We found a .eh_frame section we are going to optimize, so now
810       // we can add the set of optimized sections to the output
811       // section.  We need to postpone adding this until we've found a
812       // section we can optimize so that the .eh_frame section in
813       // crtbegin.o winds up at the start of the output section.
814       if (!this->added_eh_frame_data_)
815         {
816           os->add_output_section_data(this->eh_frame_data_);
817           this->added_eh_frame_data_ = true;
818         }
819       *off = -1;
820     }
821   else
822     {
823       // We couldn't handle this .eh_frame section for some reason.
824       // Add it as a normal section.
825       bool saw_sections_clause = this->script_options_->saw_sections_clause();
826       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
827                                    saw_sections_clause);
828       this->have_added_input_section_ = true;
829     }
830
831   return os;
832 }
833
834 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
835 // the output section.
836
837 Output_section*
838 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
839                                 elfcpp::Elf_Xword flags,
840                                 Output_section_data* posd,
841                                 bool is_dynamic_linker_section,
842                                 bool is_relro, bool is_last_relro,
843                                 bool is_first_non_relro)
844 {
845   Output_section* os = this->choose_output_section(NULL, name, type, flags,
846                                                    false, false,
847                                                    is_dynamic_linker_section,
848                                                    is_relro, is_last_relro,
849                                                    is_first_non_relro);
850   if (os != NULL)
851     os->add_output_section_data(posd);
852   return os;
853 }
854
855 // Map section flags to segment flags.
856
857 elfcpp::Elf_Word
858 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
859 {
860   elfcpp::Elf_Word ret = elfcpp::PF_R;
861   if ((flags & elfcpp::SHF_WRITE) != 0)
862     ret |= elfcpp::PF_W;
863   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
864     ret |= elfcpp::PF_X;
865   return ret;
866 }
867
868 // Sometimes we compress sections.  This is typically done for
869 // sections that are not part of normal program execution (such as
870 // .debug_* sections), and where the readers of these sections know
871 // how to deal with compressed sections.  This routine doesn't say for
872 // certain whether we'll compress -- it depends on commandline options
873 // as well -- just whether this section is a candidate for compression.
874 // (The Output_compressed_section class decides whether to compress
875 // a given section, and picks the name of the compressed section.)
876
877 static bool
878 is_compressible_debug_section(const char* secname)
879 {
880   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
881 }
882
883 // Make a new Output_section, and attach it to segments as
884 // appropriate.  IS_INTERP is true if this is the .interp section.
885 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
886 // dynamic linker.  IS_RELRO is true if this is a relro section.
887 // IS_LAST_RELRO is true if this is the last relro section.
888 // IS_FIRST_NON_RELRO is true if this is the first non relro section.
889
890 Output_section*
891 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
892                             elfcpp::Elf_Xword flags, bool is_interp,
893                             bool is_dynamic_linker_section, bool is_relro,
894                             bool is_last_relro, bool is_first_non_relro)
895 {
896   Output_section* os;
897   if ((flags & elfcpp::SHF_ALLOC) == 0
898       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
899       && is_compressible_debug_section(name))
900     os = new Output_compressed_section(&parameters->options(), name, type,
901                                        flags);
902   else if ((flags & elfcpp::SHF_ALLOC) == 0
903            && parameters->options().strip_debug_non_line()
904            && strcmp(".debug_abbrev", name) == 0)
905     {
906       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
907           name, type, flags);
908       if (this->debug_info_)
909         this->debug_info_->set_abbreviations(this->debug_abbrev_);
910     }
911   else if ((flags & elfcpp::SHF_ALLOC) == 0
912            && parameters->options().strip_debug_non_line()
913            && strcmp(".debug_info", name) == 0)
914     {
915       os = this->debug_info_ = new Output_reduced_debug_info_section(
916           name, type, flags);
917       if (this->debug_abbrev_)
918         this->debug_info_->set_abbreviations(this->debug_abbrev_);
919     }
920  else
921     {
922       // FIXME: const_cast is ugly.
923       Target* target = const_cast<Target*>(&parameters->target());
924       os = target->make_output_section(name, type, flags);
925     }
926
927   if (is_interp)
928     os->set_is_interp();
929   if (is_dynamic_linker_section)
930     os->set_is_dynamic_linker_section();
931   if (is_relro)
932     os->set_is_relro();
933   if (is_last_relro)
934     os->set_is_last_relro();
935   if (is_first_non_relro)
936     os->set_is_first_non_relro();
937
938   parameters->target().new_output_section(os);
939
940   this->section_list_.push_back(os);
941
942   // The GNU linker by default sorts some sections by priority, so we
943   // do the same.  We need to know that this might happen before we
944   // attach any input sections.
945   if (!this->script_options_->saw_sections_clause()
946       && (strcmp(name, ".ctors") == 0
947           || strcmp(name, ".dtors") == 0
948           || strcmp(name, ".init_array") == 0
949           || strcmp(name, ".fini_array") == 0))
950     os->set_may_sort_attached_input_sections();
951
952   // With -z relro, we have to recognize the special sections by name.
953   // There is no other way.
954   if (!this->script_options_->saw_sections_clause()
955       && parameters->options().relro()
956       && type == elfcpp::SHT_PROGBITS
957       && (flags & elfcpp::SHF_ALLOC) != 0
958       && (flags & elfcpp::SHF_WRITE) != 0)
959     {
960       if (strcmp(name, ".data.rel.ro") == 0)
961         os->set_is_relro();
962       else if (strcmp(name, ".data.rel.ro.local") == 0)
963         {
964           os->set_is_relro();
965           os->set_is_relro_local();
966         }
967     }
968
969   // Check for .stab*str sections, as .stab* sections need to link to
970   // them.
971   if (type == elfcpp::SHT_STRTAB
972       && !this->have_stabstr_section_
973       && strncmp(name, ".stab", 5) == 0
974       && strcmp(name + strlen(name) - 3, "str") == 0)
975     this->have_stabstr_section_ = true;
976
977   // If we have already attached the sections to segments, then we
978   // need to attach this one now.  This happens for sections created
979   // directly by the linker.
980   if (this->sections_are_attached_)
981     this->attach_section_to_segment(os);
982
983   return os;
984 }
985
986 // Attach output sections to segments.  This is called after we have
987 // seen all the input sections.
988
989 void
990 Layout::attach_sections_to_segments()
991 {
992   for (Section_list::iterator p = this->section_list_.begin();
993        p != this->section_list_.end();
994        ++p)
995     this->attach_section_to_segment(*p);
996
997   this->sections_are_attached_ = true;
998 }
999
1000 // Attach an output section to a segment.
1001
1002 void
1003 Layout::attach_section_to_segment(Output_section* os)
1004 {
1005   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1006     this->unattached_section_list_.push_back(os);
1007   else
1008     this->attach_allocated_section_to_segment(os);
1009 }
1010
1011 // Attach an allocated output section to a segment.
1012
1013 void
1014 Layout::attach_allocated_section_to_segment(Output_section* os)
1015 {
1016   elfcpp::Elf_Xword flags = os->flags();
1017   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1018
1019   if (parameters->options().relocatable())
1020     return;
1021
1022   // If we have a SECTIONS clause, we can't handle the attachment to
1023   // segments until after we've seen all the sections.
1024   if (this->script_options_->saw_sections_clause())
1025     return;
1026
1027   gold_assert(!this->script_options_->saw_phdrs_clause());
1028
1029   // This output section goes into a PT_LOAD segment.
1030
1031   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1032
1033   // Check for --section-start.
1034   uint64_t addr;
1035   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1036
1037   // In general the only thing we really care about for PT_LOAD
1038   // segments is whether or not they are writable, so that is how we
1039   // search for them.  Large data sections also go into their own
1040   // PT_LOAD segment.  People who need segments sorted on some other
1041   // basis will have to use a linker script.
1042
1043   Segment_list::const_iterator p;
1044   for (p = this->segment_list_.begin();
1045        p != this->segment_list_.end();
1046        ++p)
1047     {
1048       if ((*p)->type() != elfcpp::PT_LOAD)
1049         continue;
1050       if (!parameters->options().omagic()
1051           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1052         continue;
1053       // If -Tbss was specified, we need to separate the data and BSS
1054       // segments.
1055       if (parameters->options().user_set_Tbss())
1056         {
1057           if ((os->type() == elfcpp::SHT_NOBITS)
1058               == (*p)->has_any_data_sections())
1059             continue;
1060         }
1061       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1062         continue;
1063
1064       if (is_address_set)
1065         {
1066           if ((*p)->are_addresses_set())
1067             continue;
1068
1069           (*p)->add_initial_output_data(os);
1070           (*p)->update_flags_for_output_section(seg_flags);
1071           (*p)->set_addresses(addr, addr);
1072           break;
1073         }
1074
1075       (*p)->add_output_section(os, seg_flags, true);
1076       break;
1077     }
1078
1079   if (p == this->segment_list_.end())
1080     {
1081       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1082                                                        seg_flags);
1083       if (os->is_large_data_section())
1084         oseg->set_is_large_data_segment();
1085       oseg->add_output_section(os, seg_flags, true);
1086       if (is_address_set)
1087         oseg->set_addresses(addr, addr);
1088     }
1089
1090   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1091   // segment.
1092   if (os->type() == elfcpp::SHT_NOTE)
1093     {
1094       // See if we already have an equivalent PT_NOTE segment.
1095       for (p = this->segment_list_.begin();
1096            p != segment_list_.end();
1097            ++p)
1098         {
1099           if ((*p)->type() == elfcpp::PT_NOTE
1100               && (((*p)->flags() & elfcpp::PF_W)
1101                   == (seg_flags & elfcpp::PF_W)))
1102             {
1103               (*p)->add_output_section(os, seg_flags, false);
1104               break;
1105             }
1106         }
1107
1108       if (p == this->segment_list_.end())
1109         {
1110           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1111                                                            seg_flags);
1112           oseg->add_output_section(os, seg_flags, false);
1113         }
1114     }
1115
1116   // If we see a loadable SHF_TLS section, we create a PT_TLS
1117   // segment.  There can only be one such segment.
1118   if ((flags & elfcpp::SHF_TLS) != 0)
1119     {
1120       if (this->tls_segment_ == NULL)
1121         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1122       this->tls_segment_->add_output_section(os, seg_flags, false);
1123     }
1124
1125   // If -z relro is in effect, and we see a relro section, we create a
1126   // PT_GNU_RELRO segment.  There can only be one such segment.
1127   if (os->is_relro() && parameters->options().relro())
1128     {
1129       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1130       if (this->relro_segment_ == NULL)
1131         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1132       this->relro_segment_->add_output_section(os, seg_flags, false);
1133     }
1134 }
1135
1136 // Make an output section for a script.
1137
1138 Output_section*
1139 Layout::make_output_section_for_script(const char* name)
1140 {
1141   name = this->namepool_.add(name, false, NULL);
1142   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1143                                                  elfcpp::SHF_ALLOC, false,
1144                                                  false, false, false, false);
1145   os->set_found_in_sections_clause();
1146   return os;
1147 }
1148
1149 // Return the number of segments we expect to see.
1150
1151 size_t
1152 Layout::expected_segment_count() const
1153 {
1154   size_t ret = this->segment_list_.size();
1155
1156   // If we didn't see a SECTIONS clause in a linker script, we should
1157   // already have the complete list of segments.  Otherwise we ask the
1158   // SECTIONS clause how many segments it expects, and add in the ones
1159   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1160
1161   if (!this->script_options_->saw_sections_clause())
1162     return ret;
1163   else
1164     {
1165       const Script_sections* ss = this->script_options_->script_sections();
1166       return ret + ss->expected_segment_count(this);
1167     }
1168 }
1169
1170 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1171 // is whether we saw a .note.GNU-stack section in the object file.
1172 // GNU_STACK_FLAGS is the section flags.  The flags give the
1173 // protection required for stack memory.  We record this in an
1174 // executable as a PT_GNU_STACK segment.  If an object file does not
1175 // have a .note.GNU-stack segment, we must assume that it is an old
1176 // object.  On some targets that will force an executable stack.
1177
1178 void
1179 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1180 {
1181   if (!seen_gnu_stack)
1182     this->input_without_gnu_stack_note_ = true;
1183   else
1184     {
1185       this->input_with_gnu_stack_note_ = true;
1186       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1187         this->input_requires_executable_stack_ = true;
1188     }
1189 }
1190
1191 // Create automatic note sections.
1192
1193 void
1194 Layout::create_notes()
1195 {
1196   this->create_gold_note();
1197   this->create_executable_stack_info();
1198   this->create_build_id();
1199 }
1200
1201 // Create the dynamic sections which are needed before we read the
1202 // relocs.
1203
1204 void
1205 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1206 {
1207   if (parameters->doing_static_link())
1208     return;
1209
1210   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1211                                                        elfcpp::SHT_DYNAMIC,
1212                                                        (elfcpp::SHF_ALLOC
1213                                                         | elfcpp::SHF_WRITE),
1214                                                        false, false, true,
1215                                                        true, false, false);
1216
1217   this->dynamic_symbol_ =
1218     symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1219                                   this->dynamic_section_, 0, 0,
1220                                   elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1221                                   elfcpp::STV_HIDDEN, 0, false, false);
1222
1223   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1224
1225   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1226 }
1227
1228 // For each output section whose name can be represented as C symbol,
1229 // define __start and __stop symbols for the section.  This is a GNU
1230 // extension.
1231
1232 void
1233 Layout::define_section_symbols(Symbol_table* symtab)
1234 {
1235   for (Section_list::const_iterator p = this->section_list_.begin();
1236        p != this->section_list_.end();
1237        ++p)
1238     {
1239       const char* const name = (*p)->name();
1240       if (is_cident(name))
1241         {
1242           const std::string name_string(name);
1243           const std::string start_name(cident_section_start_prefix
1244                                        + name_string);
1245           const std::string stop_name(cident_section_stop_prefix
1246                                       + name_string);
1247
1248           symtab->define_in_output_data(start_name.c_str(),
1249                                         NULL, // version
1250                                         Symbol_table::PREDEFINED,
1251                                         *p,
1252                                         0, // value
1253                                         0, // symsize
1254                                         elfcpp::STT_NOTYPE,
1255                                         elfcpp::STB_GLOBAL,
1256                                         elfcpp::STV_DEFAULT,
1257                                         0, // nonvis
1258                                         false, // offset_is_from_end
1259                                         true); // only_if_ref
1260
1261           symtab->define_in_output_data(stop_name.c_str(),
1262                                         NULL, // version
1263                                         Symbol_table::PREDEFINED,
1264                                         *p,
1265                                         0, // value
1266                                         0, // symsize
1267                                         elfcpp::STT_NOTYPE,
1268                                         elfcpp::STB_GLOBAL,
1269                                         elfcpp::STV_DEFAULT,
1270                                         0, // nonvis
1271                                         true, // offset_is_from_end
1272                                         true); // only_if_ref
1273         }
1274     }
1275 }
1276
1277 // Define symbols for group signatures.
1278
1279 void
1280 Layout::define_group_signatures(Symbol_table* symtab)
1281 {
1282   for (Group_signatures::iterator p = this->group_signatures_.begin();
1283        p != this->group_signatures_.end();
1284        ++p)
1285     {
1286       Symbol* sym = symtab->lookup(p->signature, NULL);
1287       if (sym != NULL)
1288         p->section->set_info_symndx(sym);
1289       else
1290         {
1291           // Force the name of the group section to the group
1292           // signature, and use the group's section symbol as the
1293           // signature symbol.
1294           if (strcmp(p->section->name(), p->signature) != 0)
1295             {
1296               const char* name = this->namepool_.add(p->signature,
1297                                                      true, NULL);
1298               p->section->set_name(name);
1299             }
1300           p->section->set_needs_symtab_index();
1301           p->section->set_info_section_symndx(p->section);
1302         }
1303     }
1304
1305   this->group_signatures_.clear();
1306 }
1307
1308 // Find the first read-only PT_LOAD segment, creating one if
1309 // necessary.
1310
1311 Output_segment*
1312 Layout::find_first_load_seg()
1313 {
1314   for (Segment_list::const_iterator p = this->segment_list_.begin();
1315        p != this->segment_list_.end();
1316        ++p)
1317     {
1318       if ((*p)->type() == elfcpp::PT_LOAD
1319           && ((*p)->flags() & elfcpp::PF_R) != 0
1320           && (parameters->options().omagic()
1321               || ((*p)->flags() & elfcpp::PF_W) == 0))
1322         return *p;
1323     }
1324
1325   gold_assert(!this->script_options_->saw_phdrs_clause());
1326
1327   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1328                                                        elfcpp::PF_R);
1329   return load_seg;
1330 }
1331
1332 // Save states of all current output segments.  Store saved states
1333 // in SEGMENT_STATES.
1334
1335 void
1336 Layout::save_segments(Segment_states* segment_states)
1337 {
1338   for (Segment_list::const_iterator p = this->segment_list_.begin();
1339        p != this->segment_list_.end();
1340        ++p)
1341     {
1342       Output_segment* segment = *p;
1343       // Shallow copy.
1344       Output_segment* copy = new Output_segment(*segment);
1345       (*segment_states)[segment] = copy;
1346     }
1347 }
1348
1349 // Restore states of output segments and delete any segment not found in
1350 // SEGMENT_STATES.
1351
1352 void
1353 Layout::restore_segments(const Segment_states* segment_states)
1354 {
1355   // Go through the segment list and remove any segment added in the
1356   // relaxation loop.
1357   this->tls_segment_ = NULL;
1358   this->relro_segment_ = NULL;
1359   Segment_list::iterator list_iter = this->segment_list_.begin();
1360   while (list_iter != this->segment_list_.end())
1361     {
1362       Output_segment* segment = *list_iter;
1363       Segment_states::const_iterator states_iter =
1364           segment_states->find(segment);
1365       if (states_iter != segment_states->end())
1366         {
1367           const Output_segment* copy = states_iter->second;
1368           // Shallow copy to restore states.
1369           *segment = *copy;
1370
1371           // Also fix up TLS and RELRO segment pointers as appropriate.
1372           if (segment->type() == elfcpp::PT_TLS)
1373             this->tls_segment_ = segment;
1374           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1375             this->relro_segment_ = segment;
1376
1377           ++list_iter;
1378         } 
1379       else
1380         {
1381           list_iter = this->segment_list_.erase(list_iter); 
1382           // This is a segment created during section layout.  It should be
1383           // safe to remove it since we should have removed all pointers to it.
1384           delete segment;
1385         }
1386     }
1387 }
1388
1389 // Clean up after relaxation so that sections can be laid out again.
1390
1391 void
1392 Layout::clean_up_after_relaxation()
1393 {
1394   // Restore the segments to point state just prior to the relaxation loop.
1395   Script_sections* script_section = this->script_options_->script_sections();
1396   script_section->release_segments();
1397   this->restore_segments(this->segment_states_);
1398
1399   // Reset section addresses and file offsets
1400   for (Section_list::iterator p = this->section_list_.begin();
1401        p != this->section_list_.end();
1402        ++p)
1403     {
1404       (*p)->reset_address_and_file_offset();
1405       (*p)->restore_states();
1406     }
1407   
1408   // Reset special output object address and file offsets.
1409   for (Data_list::iterator p = this->special_output_list_.begin();
1410        p != this->special_output_list_.end();
1411        ++p)
1412     (*p)->reset_address_and_file_offset();
1413
1414   // A linker script may have created some output section data objects.
1415   // They are useless now.
1416   for (Output_section_data_list::const_iterator p =
1417          this->script_output_section_data_list_.begin();
1418        p != this->script_output_section_data_list_.end();
1419        ++p)
1420     delete *p;
1421   this->script_output_section_data_list_.clear(); 
1422 }
1423
1424 // Prepare for relaxation.
1425
1426 void
1427 Layout::prepare_for_relaxation()
1428 {
1429   // Create an relaxation debug check if in debugging mode.
1430   if (is_debugging_enabled(DEBUG_RELAXATION))
1431     this->relaxation_debug_check_ = new Relaxation_debug_check();
1432
1433   // Save segment states.
1434   this->segment_states_ = new Segment_states();
1435   this->save_segments(this->segment_states_);
1436
1437   for(Section_list::const_iterator p = this->section_list_.begin();
1438       p != this->section_list_.end();
1439       ++p)
1440     (*p)->save_states();
1441
1442   if (is_debugging_enabled(DEBUG_RELAXATION))
1443     this->relaxation_debug_check_->check_output_data_for_reset_values(
1444         this->section_list_, this->special_output_list_);
1445
1446   // Also enable recording of output section data from scripts.
1447   this->record_output_section_data_from_script_ = true;
1448 }
1449
1450 // Relaxation loop body:  If target has no relaxation, this runs only once
1451 // Otherwise, the target relaxation hook is called at the end of
1452 // each iteration.  If the hook returns true, it means re-layout of
1453 // section is required.  
1454 //
1455 // The number of segments created by a linking script without a PHDRS
1456 // clause may be affected by section sizes and alignments.  There is
1457 // a remote chance that relaxation causes different number of PT_LOAD
1458 // segments are created and sections are attached to different segments.
1459 // Therefore, we always throw away all segments created during section
1460 // layout.  In order to be able to restart the section layout, we keep
1461 // a copy of the segment list right before the relaxation loop and use
1462 // that to restore the segments.
1463 // 
1464 // PASS is the current relaxation pass number. 
1465 // SYMTAB is a symbol table.
1466 // PLOAD_SEG is the address of a pointer for the load segment.
1467 // PHDR_SEG is a pointer to the PHDR segment.
1468 // SEGMENT_HEADERS points to the output segment header.
1469 // FILE_HEADER points to the output file header.
1470 // PSHNDX is the address to store the output section index.
1471
1472 off_t inline
1473 Layout::relaxation_loop_body(
1474     int pass,
1475     Target* target,
1476     Symbol_table* symtab,
1477     Output_segment** pload_seg,
1478     Output_segment* phdr_seg,
1479     Output_segment_headers* segment_headers,
1480     Output_file_header* file_header,
1481     unsigned int* pshndx)
1482 {
1483   // If this is not the first iteration, we need to clean up after
1484   // relaxation so that we can lay out the sections again.
1485   if (pass != 0)
1486     this->clean_up_after_relaxation();
1487
1488   // If there is a SECTIONS clause, put all the input sections into
1489   // the required order.
1490   Output_segment* load_seg;
1491   if (this->script_options_->saw_sections_clause())
1492     load_seg = this->set_section_addresses_from_script(symtab);
1493   else if (parameters->options().relocatable())
1494     load_seg = NULL;
1495   else
1496     load_seg = this->find_first_load_seg();
1497
1498   if (parameters->options().oformat_enum()
1499       != General_options::OBJECT_FORMAT_ELF)
1500     load_seg = NULL;
1501
1502   // If the user set the address of the text segment, that may not be
1503   // compatible with putting the segment headers and file headers into
1504   // that segment.
1505   if (parameters->options().user_set_Ttext())
1506     load_seg = NULL;
1507
1508   gold_assert(phdr_seg == NULL
1509               || load_seg != NULL
1510               || this->script_options_->saw_sections_clause());
1511
1512   // If the address of the load segment we found has been set by
1513   // --section-start rather than by a script, then we don't want to
1514   // use it for the file and segment headers.
1515   if (load_seg != NULL
1516       && load_seg->are_addresses_set()
1517       && !this->script_options_->saw_sections_clause())
1518     load_seg = NULL;
1519
1520   // Lay out the segment headers.
1521   if (!parameters->options().relocatable())
1522     {
1523       gold_assert(segment_headers != NULL);
1524       if (load_seg != NULL)
1525         load_seg->add_initial_output_data(segment_headers);
1526       if (phdr_seg != NULL)
1527         phdr_seg->add_initial_output_data(segment_headers);
1528     }
1529
1530   // Lay out the file header.
1531   if (load_seg != NULL)
1532     load_seg->add_initial_output_data(file_header);
1533
1534   if (this->script_options_->saw_phdrs_clause()
1535       && !parameters->options().relocatable())
1536     {
1537       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1538       // clause in a linker script.
1539       Script_sections* ss = this->script_options_->script_sections();
1540       ss->put_headers_in_phdrs(file_header, segment_headers);
1541     }
1542
1543   // We set the output section indexes in set_segment_offsets and
1544   // set_section_indexes.
1545   *pshndx = 1;
1546
1547   // Set the file offsets of all the segments, and all the sections
1548   // they contain.
1549   off_t off;
1550   if (!parameters->options().relocatable())
1551     off = this->set_segment_offsets(target, load_seg, pshndx);
1552   else
1553     off = this->set_relocatable_section_offsets(file_header, pshndx);
1554
1555    // Verify that the dummy relaxation does not change anything.
1556   if (is_debugging_enabled(DEBUG_RELAXATION))
1557     {
1558       if (pass == 0)
1559         this->relaxation_debug_check_->read_sections(this->section_list_);
1560       else
1561         this->relaxation_debug_check_->verify_sections(this->section_list_);
1562     }
1563
1564   *pload_seg = load_seg;
1565   return off;
1566 }
1567
1568 // Finalize the layout.  When this is called, we have created all the
1569 // output sections and all the output segments which are based on
1570 // input sections.  We have several things to do, and we have to do
1571 // them in the right order, so that we get the right results correctly
1572 // and efficiently.
1573
1574 // 1) Finalize the list of output segments and create the segment
1575 // table header.
1576
1577 // 2) Finalize the dynamic symbol table and associated sections.
1578
1579 // 3) Determine the final file offset of all the output segments.
1580
1581 // 4) Determine the final file offset of all the SHF_ALLOC output
1582 // sections.
1583
1584 // 5) Create the symbol table sections and the section name table
1585 // section.
1586
1587 // 6) Finalize the symbol table: set symbol values to their final
1588 // value and make a final determination of which symbols are going
1589 // into the output symbol table.
1590
1591 // 7) Create the section table header.
1592
1593 // 8) Determine the final file offset of all the output sections which
1594 // are not SHF_ALLOC, including the section table header.
1595
1596 // 9) Finalize the ELF file header.
1597
1598 // This function returns the size of the output file.
1599
1600 off_t
1601 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1602                  Target* target, const Task* task)
1603 {
1604   target->finalize_sections(this, input_objects, symtab);
1605
1606   this->count_local_symbols(task, input_objects);
1607
1608   this->link_stabs_sections();
1609
1610   Output_segment* phdr_seg = NULL;
1611   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1612     {
1613       // There was a dynamic object in the link.  We need to create
1614       // some information for the dynamic linker.
1615
1616       // Create the PT_PHDR segment which will hold the program
1617       // headers.
1618       if (!this->script_options_->saw_phdrs_clause())
1619         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1620
1621       // Create the dynamic symbol table, including the hash table.
1622       Output_section* dynstr;
1623       std::vector<Symbol*> dynamic_symbols;
1624       unsigned int local_dynamic_count;
1625       Versions versions(*this->script_options()->version_script_info(),
1626                         &this->dynpool_);
1627       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1628                                   &local_dynamic_count, &dynamic_symbols,
1629                                   &versions);
1630
1631       // Create the .interp section to hold the name of the
1632       // interpreter, and put it in a PT_INTERP segment.
1633       if (!parameters->options().shared())
1634         this->create_interp(target);
1635
1636       // Finish the .dynamic section to hold the dynamic data, and put
1637       // it in a PT_DYNAMIC segment.
1638       this->finish_dynamic_section(input_objects, symtab);
1639
1640       // We should have added everything we need to the dynamic string
1641       // table.
1642       this->dynpool_.set_string_offsets();
1643
1644       // Create the version sections.  We can't do this until the
1645       // dynamic string table is complete.
1646       this->create_version_sections(&versions, symtab, local_dynamic_count,
1647                                     dynamic_symbols, dynstr);
1648
1649       // Set the size of the _DYNAMIC symbol.  We can't do this until
1650       // after we call create_version_sections.
1651       this->set_dynamic_symbol_size(symtab);
1652     }
1653   
1654   if (this->incremental_inputs_)
1655     {
1656       this->incremental_inputs_->finalize();
1657       this->create_incremental_info_sections();
1658     }
1659
1660   // Create segment headers.
1661   Output_segment_headers* segment_headers =
1662     (parameters->options().relocatable()
1663      ? NULL
1664      : new Output_segment_headers(this->segment_list_));
1665
1666   // Lay out the file header.
1667   Output_file_header* file_header
1668     = new Output_file_header(target, symtab, segment_headers,
1669                              parameters->options().entry());
1670
1671   this->special_output_list_.push_back(file_header);
1672   if (segment_headers != NULL)
1673     this->special_output_list_.push_back(segment_headers);
1674
1675   // Find approriate places for orphan output sections if we are using
1676   // a linker script.
1677   if (this->script_options_->saw_sections_clause())
1678     this->place_orphan_sections_in_script();
1679   
1680   Output_segment* load_seg;
1681   off_t off;
1682   unsigned int shndx;
1683   int pass = 0;
1684
1685   // Take a snapshot of the section layout as needed.
1686   if (target->may_relax())
1687     this->prepare_for_relaxation();
1688   
1689   // Run the relaxation loop to lay out sections.
1690   do
1691     {
1692       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1693                                        phdr_seg, segment_headers, file_header,
1694                                        &shndx);
1695       pass++;
1696     }
1697   while (target->may_relax()
1698          && target->relax(pass, input_objects, symtab, this));
1699
1700   // Set the file offsets of all the non-data sections we've seen so
1701   // far which don't have to wait for the input sections.  We need
1702   // this in order to finalize local symbols in non-allocated
1703   // sections.
1704   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1705
1706   // Set the section indexes of all unallocated sections seen so far,
1707   // in case any of them are somehow referenced by a symbol.
1708   shndx = this->set_section_indexes(shndx);
1709
1710   // Create the symbol table sections.
1711   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1712   if (!parameters->doing_static_link())
1713     this->assign_local_dynsym_offsets(input_objects);
1714
1715   // Process any symbol assignments from a linker script.  This must
1716   // be called after the symbol table has been finalized.
1717   this->script_options_->finalize_symbols(symtab, this);
1718
1719   // Create the .shstrtab section.
1720   Output_section* shstrtab_section = this->create_shstrtab();
1721
1722   // Set the file offsets of the rest of the non-data sections which
1723   // don't have to wait for the input sections.
1724   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1725
1726   // Now that all sections have been created, set the section indexes
1727   // for any sections which haven't been done yet.
1728   shndx = this->set_section_indexes(shndx);
1729
1730   // Create the section table header.
1731   this->create_shdrs(shstrtab_section, &off);
1732
1733   // If there are no sections which require postprocessing, we can
1734   // handle the section names now, and avoid a resize later.
1735   if (!this->any_postprocessing_sections_)
1736     off = this->set_section_offsets(off,
1737                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1738
1739   file_header->set_section_info(this->section_headers_, shstrtab_section);
1740
1741   // Now we know exactly where everything goes in the output file
1742   // (except for non-allocated sections which require postprocessing).
1743   Output_data::layout_complete();
1744
1745   this->output_file_size_ = off;
1746
1747   return off;
1748 }
1749
1750 // Create a note header following the format defined in the ELF ABI.
1751 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1752 // of the section to create, DESCSZ is the size of the descriptor.
1753 // ALLOCATE is true if the section should be allocated in memory.
1754 // This returns the new note section.  It sets *TRAILING_PADDING to
1755 // the number of trailing zero bytes required.
1756
1757 Output_section*
1758 Layout::create_note(const char* name, int note_type,
1759                     const char* section_name, size_t descsz,
1760                     bool allocate, size_t* trailing_padding)
1761 {
1762   // Authorities all agree that the values in a .note field should
1763   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1764   // they differ on what the alignment is for 64-bit binaries.
1765   // The GABI says unambiguously they take 8-byte alignment:
1766   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1767   // Other documentation says alignment should always be 4 bytes:
1768   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1769   // GNU ld and GNU readelf both support the latter (at least as of
1770   // version 2.16.91), and glibc always generates the latter for
1771   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1772   // here.
1773 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1774   const int size = parameters->target().get_size();
1775 #else
1776   const int size = 32;
1777 #endif
1778
1779   // The contents of the .note section.
1780   size_t namesz = strlen(name) + 1;
1781   size_t aligned_namesz = align_address(namesz, size / 8);
1782   size_t aligned_descsz = align_address(descsz, size / 8);
1783
1784   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1785
1786   unsigned char* buffer = new unsigned char[notehdrsz];
1787   memset(buffer, 0, notehdrsz);
1788
1789   bool is_big_endian = parameters->target().is_big_endian();
1790
1791   if (size == 32)
1792     {
1793       if (!is_big_endian)
1794         {
1795           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1796           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1797           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1798         }
1799       else
1800         {
1801           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1802           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1803           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1804         }
1805     }
1806   else if (size == 64)
1807     {
1808       if (!is_big_endian)
1809         {
1810           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1811           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1812           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1813         }
1814       else
1815         {
1816           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1817           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1818           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1819         }
1820     }
1821   else
1822     gold_unreachable();
1823
1824   memcpy(buffer + 3 * (size / 8), name, namesz);
1825
1826   elfcpp::Elf_Xword flags = 0;
1827   if (allocate)
1828     flags = elfcpp::SHF_ALLOC;
1829   Output_section* os = this->choose_output_section(NULL, section_name,
1830                                                    elfcpp::SHT_NOTE,
1831                                                    flags, false, false,
1832                                                    false, false, false, false);
1833   if (os == NULL)
1834     return NULL;
1835
1836   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1837                                                            size / 8,
1838                                                            "** note header");
1839   os->add_output_section_data(posd);
1840
1841   *trailing_padding = aligned_descsz - descsz;
1842
1843   return os;
1844 }
1845
1846 // For an executable or shared library, create a note to record the
1847 // version of gold used to create the binary.
1848
1849 void
1850 Layout::create_gold_note()
1851 {
1852   if (parameters->options().relocatable())
1853     return;
1854
1855   std::string desc = std::string("gold ") + gold::get_version_string();
1856
1857   size_t trailing_padding;
1858   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1859                                          ".note.gnu.gold-version", desc.size(),
1860                                          false, &trailing_padding);
1861   if (os == NULL)
1862     return;
1863
1864   Output_section_data* posd = new Output_data_const(desc, 4);
1865   os->add_output_section_data(posd);
1866
1867   if (trailing_padding > 0)
1868     {
1869       posd = new Output_data_zero_fill(trailing_padding, 0);
1870       os->add_output_section_data(posd);
1871     }
1872 }
1873
1874 // Record whether the stack should be executable.  This can be set
1875 // from the command line using the -z execstack or -z noexecstack
1876 // options.  Otherwise, if any input file has a .note.GNU-stack
1877 // section with the SHF_EXECINSTR flag set, the stack should be
1878 // executable.  Otherwise, if at least one input file a
1879 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1880 // section, we use the target default for whether the stack should be
1881 // executable.  Otherwise, we don't generate a stack note.  When
1882 // generating a object file, we create a .note.GNU-stack section with
1883 // the appropriate marking.  When generating an executable or shared
1884 // library, we create a PT_GNU_STACK segment.
1885
1886 void
1887 Layout::create_executable_stack_info()
1888 {
1889   bool is_stack_executable;
1890   if (parameters->options().is_execstack_set())
1891     is_stack_executable = parameters->options().is_stack_executable();
1892   else if (!this->input_with_gnu_stack_note_)
1893     return;
1894   else
1895     {
1896       if (this->input_requires_executable_stack_)
1897         is_stack_executable = true;
1898       else if (this->input_without_gnu_stack_note_)
1899         is_stack_executable =
1900           parameters->target().is_default_stack_executable();
1901       else
1902         is_stack_executable = false;
1903     }
1904
1905   if (parameters->options().relocatable())
1906     {
1907       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1908       elfcpp::Elf_Xword flags = 0;
1909       if (is_stack_executable)
1910         flags |= elfcpp::SHF_EXECINSTR;
1911       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags, false,
1912                                 false, false, false, false);
1913     }
1914   else
1915     {
1916       if (this->script_options_->saw_phdrs_clause())
1917         return;
1918       int flags = elfcpp::PF_R | elfcpp::PF_W;
1919       if (is_stack_executable)
1920         flags |= elfcpp::PF_X;
1921       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1922     }
1923 }
1924
1925 // If --build-id was used, set up the build ID note.
1926
1927 void
1928 Layout::create_build_id()
1929 {
1930   if (!parameters->options().user_set_build_id())
1931     return;
1932
1933   const char* style = parameters->options().build_id();
1934   if (strcmp(style, "none") == 0)
1935     return;
1936
1937   // Set DESCSZ to the size of the note descriptor.  When possible,
1938   // set DESC to the note descriptor contents.
1939   size_t descsz;
1940   std::string desc;
1941   if (strcmp(style, "md5") == 0)
1942     descsz = 128 / 8;
1943   else if (strcmp(style, "sha1") == 0)
1944     descsz = 160 / 8;
1945   else if (strcmp(style, "uuid") == 0)
1946     {
1947       const size_t uuidsz = 128 / 8;
1948
1949       char buffer[uuidsz];
1950       memset(buffer, 0, uuidsz);
1951
1952       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1953       if (descriptor < 0)
1954         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1955                    strerror(errno));
1956       else
1957         {
1958           ssize_t got = ::read(descriptor, buffer, uuidsz);
1959           release_descriptor(descriptor, true);
1960           if (got < 0)
1961             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1962           else if (static_cast<size_t>(got) != uuidsz)
1963             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1964                        uuidsz, got);
1965         }
1966
1967       desc.assign(buffer, uuidsz);
1968       descsz = uuidsz;
1969     }
1970   else if (strncmp(style, "0x", 2) == 0)
1971     {
1972       hex_init();
1973       const char* p = style + 2;
1974       while (*p != '\0')
1975         {
1976           if (hex_p(p[0]) && hex_p(p[1]))
1977             {
1978               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1979               desc += c;
1980               p += 2;
1981             }
1982           else if (*p == '-' || *p == ':')
1983             ++p;
1984           else
1985             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1986                        style);
1987         }
1988       descsz = desc.size();
1989     }
1990   else
1991     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1992
1993   // Create the note.
1994   size_t trailing_padding;
1995   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1996                                          ".note.gnu.build-id", descsz, true,
1997                                          &trailing_padding);
1998   if (os == NULL)
1999     return;
2000
2001   if (!desc.empty())
2002     {
2003       // We know the value already, so we fill it in now.
2004       gold_assert(desc.size() == descsz);
2005
2006       Output_section_data* posd = new Output_data_const(desc, 4);
2007       os->add_output_section_data(posd);
2008
2009       if (trailing_padding != 0)
2010         {
2011           posd = new Output_data_zero_fill(trailing_padding, 0);
2012           os->add_output_section_data(posd);
2013         }
2014     }
2015   else
2016     {
2017       // We need to compute a checksum after we have completed the
2018       // link.
2019       gold_assert(trailing_padding == 0);
2020       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2021       os->add_output_section_data(this->build_id_note_);
2022     }
2023 }
2024
2025 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2026 // field of the former should point to the latter.  I'm not sure who
2027 // started this, but the GNU linker does it, and some tools depend
2028 // upon it.
2029
2030 void
2031 Layout::link_stabs_sections()
2032 {
2033   if (!this->have_stabstr_section_)
2034     return;
2035
2036   for (Section_list::iterator p = this->section_list_.begin();
2037        p != this->section_list_.end();
2038        ++p)
2039     {
2040       if ((*p)->type() != elfcpp::SHT_STRTAB)
2041         continue;
2042
2043       const char* name = (*p)->name();
2044       if (strncmp(name, ".stab", 5) != 0)
2045         continue;
2046
2047       size_t len = strlen(name);
2048       if (strcmp(name + len - 3, "str") != 0)
2049         continue;
2050
2051       std::string stab_name(name, len - 3);
2052       Output_section* stab_sec;
2053       stab_sec = this->find_output_section(stab_name.c_str());
2054       if (stab_sec != NULL)
2055         stab_sec->set_link_section(*p);
2056     }
2057 }
2058
2059 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
2060 // for the next run of incremental linking to check what has changed.
2061
2062 void
2063 Layout::create_incremental_info_sections()
2064 {
2065   gold_assert(this->incremental_inputs_ != NULL);
2066
2067   // Add the .gnu_incremental_inputs section.
2068   const char *incremental_inputs_name =
2069     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2070   Output_section* inputs_os =
2071     this->make_output_section(incremental_inputs_name,
2072                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2073                               false, false, false, false, false);
2074   Output_section_data* posd =
2075       this->incremental_inputs_->create_incremental_inputs_section_data();
2076   inputs_os->add_output_section_data(posd);
2077   
2078   // Add the .gnu_incremental_strtab section.
2079   const char *incremental_strtab_name =
2080     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2081   Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
2082                                                         elfcpp::SHT_STRTAB,
2083                                                         0, false, false,
2084                                                         false, false, false);
2085   Output_data_strtab* strtab_data =
2086     new Output_data_strtab(this->incremental_inputs_->get_stringpool());
2087   strtab_os->add_output_section_data(strtab_data);
2088   
2089   inputs_os->set_link_section(strtab_data);
2090 }
2091
2092 // Return whether SEG1 should be before SEG2 in the output file.  This
2093 // is based entirely on the segment type and flags.  When this is
2094 // called the segment addresses has normally not yet been set.
2095
2096 bool
2097 Layout::segment_precedes(const Output_segment* seg1,
2098                          const Output_segment* seg2)
2099 {
2100   elfcpp::Elf_Word type1 = seg1->type();
2101   elfcpp::Elf_Word type2 = seg2->type();
2102
2103   // The single PT_PHDR segment is required to precede any loadable
2104   // segment.  We simply make it always first.
2105   if (type1 == elfcpp::PT_PHDR)
2106     {
2107       gold_assert(type2 != elfcpp::PT_PHDR);
2108       return true;
2109     }
2110   if (type2 == elfcpp::PT_PHDR)
2111     return false;
2112
2113   // The single PT_INTERP segment is required to precede any loadable
2114   // segment.  We simply make it always second.
2115   if (type1 == elfcpp::PT_INTERP)
2116     {
2117       gold_assert(type2 != elfcpp::PT_INTERP);
2118       return true;
2119     }
2120   if (type2 == elfcpp::PT_INTERP)
2121     return false;
2122
2123   // We then put PT_LOAD segments before any other segments.
2124   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2125     return true;
2126   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2127     return false;
2128
2129   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2130   // segment, because that is where the dynamic linker expects to find
2131   // it (this is just for efficiency; other positions would also work
2132   // correctly).
2133   if (type1 == elfcpp::PT_TLS
2134       && type2 != elfcpp::PT_TLS
2135       && type2 != elfcpp::PT_GNU_RELRO)
2136     return false;
2137   if (type2 == elfcpp::PT_TLS
2138       && type1 != elfcpp::PT_TLS
2139       && type1 != elfcpp::PT_GNU_RELRO)
2140     return true;
2141
2142   // We put the PT_GNU_RELRO segment last, because that is where the
2143   // dynamic linker expects to find it (as with PT_TLS, this is just
2144   // for efficiency).
2145   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2146     return false;
2147   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2148     return true;
2149
2150   const elfcpp::Elf_Word flags1 = seg1->flags();
2151   const elfcpp::Elf_Word flags2 = seg2->flags();
2152
2153   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2154   // by the numeric segment type and flags values.  There should not
2155   // be more than one segment with the same type and flags.
2156   if (type1 != elfcpp::PT_LOAD)
2157     {
2158       if (type1 != type2)
2159         return type1 < type2;
2160       gold_assert(flags1 != flags2);
2161       return flags1 < flags2;
2162     }
2163
2164   // If the addresses are set already, sort by load address.
2165   if (seg1->are_addresses_set())
2166     {
2167       if (!seg2->are_addresses_set())
2168         return true;
2169
2170       unsigned int section_count1 = seg1->output_section_count();
2171       unsigned int section_count2 = seg2->output_section_count();
2172       if (section_count1 == 0 && section_count2 > 0)
2173         return true;
2174       if (section_count1 > 0 && section_count2 == 0)
2175         return false;
2176
2177       uint64_t paddr1 = seg1->first_section_load_address();
2178       uint64_t paddr2 = seg2->first_section_load_address();
2179       if (paddr1 != paddr2)
2180         return paddr1 < paddr2;
2181     }
2182   else if (seg2->are_addresses_set())
2183     return false;
2184
2185   // A segment which holds large data comes after a segment which does
2186   // not hold large data.
2187   if (seg1->is_large_data_segment())
2188     {
2189       if (!seg2->is_large_data_segment())
2190         return false;
2191     }
2192   else if (seg2->is_large_data_segment())
2193     return true;
2194
2195   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2196   // segments come before writable segments.  Then writable segments
2197   // with data come before writable segments without data.  Then
2198   // executable segments come before non-executable segments.  Then
2199   // the unlikely case of a non-readable segment comes before the
2200   // normal case of a readable segment.  If there are multiple
2201   // segments with the same type and flags, we require that the
2202   // address be set, and we sort by virtual address and then physical
2203   // address.
2204   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2205     return (flags1 & elfcpp::PF_W) == 0;
2206   if ((flags1 & elfcpp::PF_W) != 0
2207       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2208     return seg1->has_any_data_sections();
2209   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2210     return (flags1 & elfcpp::PF_X) != 0;
2211   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2212     return (flags1 & elfcpp::PF_R) == 0;
2213
2214   // We shouldn't get here--we shouldn't create segments which we
2215   // can't distinguish.
2216   gold_unreachable();
2217 }
2218
2219 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2220
2221 static off_t
2222 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2223 {
2224   uint64_t unsigned_off = off;
2225   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2226                           | (addr & (abi_pagesize - 1)));
2227   if (aligned_off < unsigned_off)
2228     aligned_off += abi_pagesize;
2229   return aligned_off;
2230 }
2231
2232 // Set the file offsets of all the segments, and all the sections they
2233 // contain.  They have all been created.  LOAD_SEG must be be laid out
2234 // first.  Return the offset of the data to follow.
2235
2236 off_t
2237 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2238                             unsigned int *pshndx)
2239 {
2240   // Sort them into the final order.
2241   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2242             Layout::Compare_segments());
2243
2244   // Find the PT_LOAD segments, and set their addresses and offsets
2245   // and their section's addresses and offsets.
2246   uint64_t addr;
2247   if (parameters->options().user_set_Ttext())
2248     addr = parameters->options().Ttext();
2249   else if (parameters->options().output_is_position_independent())
2250     addr = 0;
2251   else
2252     addr = target->default_text_segment_address();
2253   off_t off = 0;
2254
2255   // If LOAD_SEG is NULL, then the file header and segment headers
2256   // will not be loadable.  But they still need to be at offset 0 in
2257   // the file.  Set their offsets now.
2258   if (load_seg == NULL)
2259     {
2260       for (Data_list::iterator p = this->special_output_list_.begin();
2261            p != this->special_output_list_.end();
2262            ++p)
2263         {
2264           off = align_address(off, (*p)->addralign());
2265           (*p)->set_address_and_file_offset(0, off);
2266           off += (*p)->data_size();
2267         }
2268     }
2269
2270   unsigned int increase_relro = this->increase_relro_;
2271   if (this->script_options_->saw_sections_clause())
2272     increase_relro = 0;
2273
2274   const bool check_sections = parameters->options().check_sections();
2275   Output_segment* last_load_segment = NULL;
2276
2277   bool was_readonly = false;
2278   for (Segment_list::iterator p = this->segment_list_.begin();
2279        p != this->segment_list_.end();
2280        ++p)
2281     {
2282       if ((*p)->type() == elfcpp::PT_LOAD)
2283         {
2284           if (load_seg != NULL && load_seg != *p)
2285             gold_unreachable();
2286           load_seg = NULL;
2287
2288           bool are_addresses_set = (*p)->are_addresses_set();
2289           if (are_addresses_set)
2290             {
2291               // When it comes to setting file offsets, we care about
2292               // the physical address.
2293               addr = (*p)->paddr();
2294             }
2295           else if (parameters->options().user_set_Tdata()
2296                    && ((*p)->flags() & elfcpp::PF_W) != 0
2297                    && (!parameters->options().user_set_Tbss()
2298                        || (*p)->has_any_data_sections()))
2299             {
2300               addr = parameters->options().Tdata();
2301               are_addresses_set = true;
2302             }
2303           else if (parameters->options().user_set_Tbss()
2304                    && ((*p)->flags() & elfcpp::PF_W) != 0
2305                    && !(*p)->has_any_data_sections())
2306             {
2307               addr = parameters->options().Tbss();
2308               are_addresses_set = true;
2309             }
2310
2311           uint64_t orig_addr = addr;
2312           uint64_t orig_off = off;
2313
2314           uint64_t aligned_addr = 0;
2315           uint64_t abi_pagesize = target->abi_pagesize();
2316           uint64_t common_pagesize = target->common_pagesize();
2317
2318           if (!parameters->options().nmagic()
2319               && !parameters->options().omagic())
2320             (*p)->set_minimum_p_align(common_pagesize);
2321
2322           if (!are_addresses_set)
2323             {
2324               // If the last segment was readonly, and this one is
2325               // not, then skip the address forward one page,
2326               // maintaining the same position within the page.  This
2327               // lets us store both segments overlapping on a single
2328               // page in the file, but the loader will put them on
2329               // different pages in memory.
2330
2331               addr = align_address(addr, (*p)->maximum_alignment());
2332               aligned_addr = addr;
2333
2334               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
2335                 {
2336                   if ((addr & (abi_pagesize - 1)) != 0)
2337                     addr = addr + abi_pagesize;
2338                 }
2339
2340               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2341             }
2342
2343           if (!parameters->options().nmagic()
2344               && !parameters->options().omagic())
2345             off = align_file_offset(off, addr, abi_pagesize);
2346           else if (load_seg == NULL)
2347             {
2348               // This is -N or -n with a section script which prevents
2349               // us from using a load segment.  We need to ensure that
2350               // the file offset is aligned to the alignment of the
2351               // segment.  This is because the linker script
2352               // implicitly assumed a zero offset.  If we don't align
2353               // here, then the alignment of the sections in the
2354               // linker script may not match the alignment of the
2355               // sections in the set_section_addresses call below,
2356               // causing an error about dot moving backward.
2357               off = align_address(off, (*p)->maximum_alignment());
2358             }
2359
2360           unsigned int shndx_hold = *pshndx;
2361           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2362                                                           increase_relro,
2363                                                           &off, pshndx);
2364
2365           // Now that we know the size of this segment, we may be able
2366           // to save a page in memory, at the cost of wasting some
2367           // file space, by instead aligning to the start of a new
2368           // page.  Here we use the real machine page size rather than
2369           // the ABI mandated page size.
2370
2371           if (!are_addresses_set && aligned_addr != addr)
2372             {
2373               uint64_t first_off = (common_pagesize
2374                                     - (aligned_addr
2375                                        & (common_pagesize - 1)));
2376               uint64_t last_off = new_addr & (common_pagesize - 1);
2377               if (first_off > 0
2378                   && last_off > 0
2379                   && ((aligned_addr & ~ (common_pagesize - 1))
2380                       != (new_addr & ~ (common_pagesize - 1)))
2381                   && first_off + last_off <= common_pagesize)
2382                 {
2383                   *pshndx = shndx_hold;
2384                   addr = align_address(aligned_addr, common_pagesize);
2385                   addr = align_address(addr, (*p)->maximum_alignment());
2386                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2387                   off = align_file_offset(off, addr, abi_pagesize);
2388                   new_addr = (*p)->set_section_addresses(this, true, addr,
2389                                                          increase_relro,
2390                                                          &off, pshndx);
2391                 }
2392             }
2393
2394           addr = new_addr;
2395
2396           if (((*p)->flags() & elfcpp::PF_W) == 0)
2397             was_readonly = true;
2398
2399           // Implement --check-sections.  We know that the segments
2400           // are sorted by LMA.
2401           if (check_sections && last_load_segment != NULL)
2402             {
2403               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2404               if (last_load_segment->paddr() + last_load_segment->memsz()
2405                   > (*p)->paddr())
2406                 {
2407                   unsigned long long lb1 = last_load_segment->paddr();
2408                   unsigned long long le1 = lb1 + last_load_segment->memsz();
2409                   unsigned long long lb2 = (*p)->paddr();
2410                   unsigned long long le2 = lb2 + (*p)->memsz();
2411                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2412                                "[0x%llx -> 0x%llx]"),
2413                              lb1, le1, lb2, le2);
2414                 }
2415             }
2416           last_load_segment = *p;
2417         }
2418     }
2419
2420   // Handle the non-PT_LOAD segments, setting their offsets from their
2421   // section's offsets.
2422   for (Segment_list::iterator p = this->segment_list_.begin();
2423        p != this->segment_list_.end();
2424        ++p)
2425     {
2426       if ((*p)->type() != elfcpp::PT_LOAD)
2427         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
2428                          ? increase_relro
2429                          : 0);
2430     }
2431
2432   // Set the TLS offsets for each section in the PT_TLS segment.
2433   if (this->tls_segment_ != NULL)
2434     this->tls_segment_->set_tls_offsets();
2435
2436   return off;
2437 }
2438
2439 // Set the offsets of all the allocated sections when doing a
2440 // relocatable link.  This does the same jobs as set_segment_offsets,
2441 // only for a relocatable link.
2442
2443 off_t
2444 Layout::set_relocatable_section_offsets(Output_data* file_header,
2445                                         unsigned int *pshndx)
2446 {
2447   off_t off = 0;
2448
2449   file_header->set_address_and_file_offset(0, 0);
2450   off += file_header->data_size();
2451
2452   for (Section_list::iterator p = this->section_list_.begin();
2453        p != this->section_list_.end();
2454        ++p)
2455     {
2456       // We skip unallocated sections here, except that group sections
2457       // have to come first.
2458       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2459           && (*p)->type() != elfcpp::SHT_GROUP)
2460         continue;
2461
2462       off = align_address(off, (*p)->addralign());
2463
2464       // The linker script might have set the address.
2465       if (!(*p)->is_address_valid())
2466         (*p)->set_address(0);
2467       (*p)->set_file_offset(off);
2468       (*p)->finalize_data_size();
2469       off += (*p)->data_size();
2470
2471       (*p)->set_out_shndx(*pshndx);
2472       ++*pshndx;
2473     }
2474
2475   return off;
2476 }
2477
2478 // Set the file offset of all the sections not associated with a
2479 // segment.
2480
2481 off_t
2482 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2483 {
2484   for (Section_list::iterator p = this->unattached_section_list_.begin();
2485        p != this->unattached_section_list_.end();
2486        ++p)
2487     {
2488       // The symtab section is handled in create_symtab_sections.
2489       if (*p == this->symtab_section_)
2490         continue;
2491
2492       // If we've already set the data size, don't set it again.
2493       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2494         continue;
2495
2496       if (pass == BEFORE_INPUT_SECTIONS_PASS
2497           && (*p)->requires_postprocessing())
2498         {
2499           (*p)->create_postprocessing_buffer();
2500           this->any_postprocessing_sections_ = true;
2501         }
2502
2503       if (pass == BEFORE_INPUT_SECTIONS_PASS
2504           && (*p)->after_input_sections())
2505         continue;
2506       else if (pass == POSTPROCESSING_SECTIONS_PASS
2507                && (!(*p)->after_input_sections()
2508                    || (*p)->type() == elfcpp::SHT_STRTAB))
2509         continue;
2510       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2511                && (!(*p)->after_input_sections()
2512                    || (*p)->type() != elfcpp::SHT_STRTAB))
2513         continue;
2514
2515       off = align_address(off, (*p)->addralign());
2516       (*p)->set_file_offset(off);
2517       (*p)->finalize_data_size();
2518       off += (*p)->data_size();
2519
2520       // At this point the name must be set.
2521       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2522         this->namepool_.add((*p)->name(), false, NULL);
2523     }
2524   return off;
2525 }
2526
2527 // Set the section indexes of all the sections not associated with a
2528 // segment.
2529
2530 unsigned int
2531 Layout::set_section_indexes(unsigned int shndx)
2532 {
2533   for (Section_list::iterator p = this->unattached_section_list_.begin();
2534        p != this->unattached_section_list_.end();
2535        ++p)
2536     {
2537       if (!(*p)->has_out_shndx())
2538         {
2539           (*p)->set_out_shndx(shndx);
2540           ++shndx;
2541         }
2542     }
2543   return shndx;
2544 }
2545
2546 // Set the section addresses according to the linker script.  This is
2547 // only called when we see a SECTIONS clause.  This returns the
2548 // program segment which should hold the file header and segment
2549 // headers, if any.  It will return NULL if they should not be in a
2550 // segment.
2551
2552 Output_segment*
2553 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2554 {
2555   Script_sections* ss = this->script_options_->script_sections();
2556   gold_assert(ss->saw_sections_clause());
2557   return this->script_options_->set_section_addresses(symtab, this);
2558 }
2559
2560 // Place the orphan sections in the linker script.
2561
2562 void
2563 Layout::place_orphan_sections_in_script()
2564 {
2565   Script_sections* ss = this->script_options_->script_sections();
2566   gold_assert(ss->saw_sections_clause());
2567
2568   // Place each orphaned output section in the script.
2569   for (Section_list::iterator p = this->section_list_.begin();
2570        p != this->section_list_.end();
2571        ++p)
2572     {
2573       if (!(*p)->found_in_sections_clause())
2574         ss->place_orphan(*p);
2575     }
2576 }
2577
2578 // Count the local symbols in the regular symbol table and the dynamic
2579 // symbol table, and build the respective string pools.
2580
2581 void
2582 Layout::count_local_symbols(const Task* task,
2583                             const Input_objects* input_objects)
2584 {
2585   // First, figure out an upper bound on the number of symbols we'll
2586   // be inserting into each pool.  This helps us create the pools with
2587   // the right size, to avoid unnecessary hashtable resizing.
2588   unsigned int symbol_count = 0;
2589   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2590        p != input_objects->relobj_end();
2591        ++p)
2592     symbol_count += (*p)->local_symbol_count();
2593
2594   // Go from "upper bound" to "estimate."  We overcount for two
2595   // reasons: we double-count symbols that occur in more than one
2596   // object file, and we count symbols that are dropped from the
2597   // output.  Add it all together and assume we overcount by 100%.
2598   symbol_count /= 2;
2599
2600   // We assume all symbols will go into both the sympool and dynpool.
2601   this->sympool_.reserve(symbol_count);
2602   this->dynpool_.reserve(symbol_count);
2603
2604   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2605        p != input_objects->relobj_end();
2606        ++p)
2607     {
2608       Task_lock_obj<Object> tlo(task, *p);
2609       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2610     }
2611 }
2612
2613 // Create the symbol table sections.  Here we also set the final
2614 // values of the symbols.  At this point all the loadable sections are
2615 // fully laid out.  SHNUM is the number of sections so far.
2616
2617 void
2618 Layout::create_symtab_sections(const Input_objects* input_objects,
2619                                Symbol_table* symtab,
2620                                unsigned int shnum,
2621                                off_t* poff)
2622 {
2623   int symsize;
2624   unsigned int align;
2625   if (parameters->target().get_size() == 32)
2626     {
2627       symsize = elfcpp::Elf_sizes<32>::sym_size;
2628       align = 4;
2629     }
2630   else if (parameters->target().get_size() == 64)
2631     {
2632       symsize = elfcpp::Elf_sizes<64>::sym_size;
2633       align = 8;
2634     }
2635   else
2636     gold_unreachable();
2637
2638   off_t off = *poff;
2639   off = align_address(off, align);
2640   off_t startoff = off;
2641
2642   // Save space for the dummy symbol at the start of the section.  We
2643   // never bother to write this out--it will just be left as zero.
2644   off += symsize;
2645   unsigned int local_symbol_index = 1;
2646
2647   // Add STT_SECTION symbols for each Output section which needs one.
2648   for (Section_list::iterator p = this->section_list_.begin();
2649        p != this->section_list_.end();
2650        ++p)
2651     {
2652       if (!(*p)->needs_symtab_index())
2653         (*p)->set_symtab_index(-1U);
2654       else
2655         {
2656           (*p)->set_symtab_index(local_symbol_index);
2657           ++local_symbol_index;
2658           off += symsize;
2659         }
2660     }
2661
2662   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2663        p != input_objects->relobj_end();
2664        ++p)
2665     {
2666       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2667                                                         off, symtab);
2668       off += (index - local_symbol_index) * symsize;
2669       local_symbol_index = index;
2670     }
2671
2672   unsigned int local_symcount = local_symbol_index;
2673   gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2674
2675   off_t dynoff;
2676   size_t dyn_global_index;
2677   size_t dyncount;
2678   if (this->dynsym_section_ == NULL)
2679     {
2680       dynoff = 0;
2681       dyn_global_index = 0;
2682       dyncount = 0;
2683     }
2684   else
2685     {
2686       dyn_global_index = this->dynsym_section_->info();
2687       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2688       dynoff = this->dynsym_section_->offset() + locsize;
2689       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2690       gold_assert(static_cast<off_t>(dyncount * symsize)
2691                   == this->dynsym_section_->data_size() - locsize);
2692     }
2693
2694   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2695                          &this->sympool_, &local_symcount);
2696
2697   if (!parameters->options().strip_all())
2698     {
2699       this->sympool_.set_string_offsets();
2700
2701       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2702       Output_section* osymtab = this->make_output_section(symtab_name,
2703                                                           elfcpp::SHT_SYMTAB,
2704                                                           0, false, false,
2705                                                           false, false, false);
2706       this->symtab_section_ = osymtab;
2707
2708       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2709                                                              align,
2710                                                              "** symtab");
2711       osymtab->add_output_section_data(pos);
2712
2713       // We generate a .symtab_shndx section if we have more than
2714       // SHN_LORESERVE sections.  Technically it is possible that we
2715       // don't need one, because it is possible that there are no
2716       // symbols in any of sections with indexes larger than
2717       // SHN_LORESERVE.  That is probably unusual, though, and it is
2718       // easier to always create one than to compute section indexes
2719       // twice (once here, once when writing out the symbols).
2720       if (shnum >= elfcpp::SHN_LORESERVE)
2721         {
2722           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2723                                                                false, NULL);
2724           Output_section* osymtab_xindex =
2725             this->make_output_section(symtab_xindex_name,
2726                                       elfcpp::SHT_SYMTAB_SHNDX, 0, false,
2727                                       false, false, false, false);
2728
2729           size_t symcount = (off - startoff) / symsize;
2730           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2731
2732           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2733
2734           osymtab_xindex->set_link_section(osymtab);
2735           osymtab_xindex->set_addralign(4);
2736           osymtab_xindex->set_entsize(4);
2737
2738           osymtab_xindex->set_after_input_sections();
2739
2740           // This tells the driver code to wait until the symbol table
2741           // has written out before writing out the postprocessing
2742           // sections, including the .symtab_shndx section.
2743           this->any_postprocessing_sections_ = true;
2744         }
2745
2746       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2747       Output_section* ostrtab = this->make_output_section(strtab_name,
2748                                                           elfcpp::SHT_STRTAB,
2749                                                           0, false, false,
2750                                                           false, false, false);
2751
2752       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2753       ostrtab->add_output_section_data(pstr);
2754
2755       osymtab->set_file_offset(startoff);
2756       osymtab->finalize_data_size();
2757       osymtab->set_link_section(ostrtab);
2758       osymtab->set_info(local_symcount);
2759       osymtab->set_entsize(symsize);
2760
2761       *poff = off;
2762     }
2763 }
2764
2765 // Create the .shstrtab section, which holds the names of the
2766 // sections.  At the time this is called, we have created all the
2767 // output sections except .shstrtab itself.
2768
2769 Output_section*
2770 Layout::create_shstrtab()
2771 {
2772   // FIXME: We don't need to create a .shstrtab section if we are
2773   // stripping everything.
2774
2775   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2776
2777   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
2778                                                  false, false, false, false,
2779                                                  false);
2780
2781   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
2782     {
2783       // We can't write out this section until we've set all the
2784       // section names, and we don't set the names of compressed
2785       // output sections until relocations are complete.  FIXME: With
2786       // the current names we use, this is unnecessary.
2787       os->set_after_input_sections();
2788     }
2789
2790   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2791   os->add_output_section_data(posd);
2792
2793   return os;
2794 }
2795
2796 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2797 // offset.
2798
2799 void
2800 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2801 {
2802   Output_section_headers* oshdrs;
2803   oshdrs = new Output_section_headers(this,
2804                                       &this->segment_list_,
2805                                       &this->section_list_,
2806                                       &this->unattached_section_list_,
2807                                       &this->namepool_,
2808                                       shstrtab_section);
2809   off_t off = align_address(*poff, oshdrs->addralign());
2810   oshdrs->set_address_and_file_offset(0, off);
2811   off += oshdrs->data_size();
2812   *poff = off;
2813   this->section_headers_ = oshdrs;
2814 }
2815
2816 // Count the allocated sections.
2817
2818 size_t
2819 Layout::allocated_output_section_count() const
2820 {
2821   size_t section_count = 0;
2822   for (Segment_list::const_iterator p = this->segment_list_.begin();
2823        p != this->segment_list_.end();
2824        ++p)
2825     section_count += (*p)->output_section_count();
2826   return section_count;
2827 }
2828
2829 // Create the dynamic symbol table.
2830
2831 void
2832 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2833                               Symbol_table* symtab,
2834                               Output_section **pdynstr,
2835                               unsigned int* plocal_dynamic_count,
2836                               std::vector<Symbol*>* pdynamic_symbols,
2837                               Versions* pversions)
2838 {
2839   // Count all the symbols in the dynamic symbol table, and set the
2840   // dynamic symbol indexes.
2841
2842   // Skip symbol 0, which is always all zeroes.
2843   unsigned int index = 1;
2844
2845   // Add STT_SECTION symbols for each Output section which needs one.
2846   for (Section_list::iterator p = this->section_list_.begin();
2847        p != this->section_list_.end();
2848        ++p)
2849     {
2850       if (!(*p)->needs_dynsym_index())
2851         (*p)->set_dynsym_index(-1U);
2852       else
2853         {
2854           (*p)->set_dynsym_index(index);
2855           ++index;
2856         }
2857     }
2858
2859   // Count the local symbols that need to go in the dynamic symbol table,
2860   // and set the dynamic symbol indexes.
2861   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2862        p != input_objects->relobj_end();
2863        ++p)
2864     {
2865       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2866       index = new_index;
2867     }
2868
2869   unsigned int local_symcount = index;
2870   *plocal_dynamic_count = local_symcount;
2871
2872   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2873                                      &this->dynpool_, pversions);
2874
2875   int symsize;
2876   unsigned int align;
2877   const int size = parameters->target().get_size();
2878   if (size == 32)
2879     {
2880       symsize = elfcpp::Elf_sizes<32>::sym_size;
2881       align = 4;
2882     }
2883   else if (size == 64)
2884     {
2885       symsize = elfcpp::Elf_sizes<64>::sym_size;
2886       align = 8;
2887     }
2888   else
2889     gold_unreachable();
2890
2891   // Create the dynamic symbol table section.
2892
2893   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2894                                                        elfcpp::SHT_DYNSYM,
2895                                                        elfcpp::SHF_ALLOC,
2896                                                        false, false, true,
2897                                                        false, false, false);
2898
2899   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2900                                                            align,
2901                                                            "** dynsym");
2902   dynsym->add_output_section_data(odata);
2903
2904   dynsym->set_info(local_symcount);
2905   dynsym->set_entsize(symsize);
2906   dynsym->set_addralign(align);
2907
2908   this->dynsym_section_ = dynsym;
2909
2910   Output_data_dynamic* const odyn = this->dynamic_data_;
2911   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2912   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2913
2914   // If there are more than SHN_LORESERVE allocated sections, we
2915   // create a .dynsym_shndx section.  It is possible that we don't
2916   // need one, because it is possible that there are no dynamic
2917   // symbols in any of the sections with indexes larger than
2918   // SHN_LORESERVE.  This is probably unusual, though, and at this
2919   // time we don't know the actual section indexes so it is
2920   // inconvenient to check.
2921   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2922     {
2923       Output_section* dynsym_xindex =
2924         this->choose_output_section(NULL, ".dynsym_shndx",
2925                                     elfcpp::SHT_SYMTAB_SHNDX,
2926                                     elfcpp::SHF_ALLOC,
2927                                     false, false, true, false, false, false);
2928
2929       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2930
2931       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2932
2933       dynsym_xindex->set_link_section(dynsym);
2934       dynsym_xindex->set_addralign(4);
2935       dynsym_xindex->set_entsize(4);
2936
2937       dynsym_xindex->set_after_input_sections();
2938
2939       // This tells the driver code to wait until the symbol table has
2940       // written out before writing out the postprocessing sections,
2941       // including the .dynsym_shndx section.
2942       this->any_postprocessing_sections_ = true;
2943     }
2944
2945   // Create the dynamic string table section.
2946
2947   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2948                                                        elfcpp::SHT_STRTAB,
2949                                                        elfcpp::SHF_ALLOC,
2950                                                        false, false, true,
2951                                                        false, false, false);
2952
2953   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2954   dynstr->add_output_section_data(strdata);
2955
2956   dynsym->set_link_section(dynstr);
2957   this->dynamic_section_->set_link_section(dynstr);
2958
2959   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2960   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2961
2962   *pdynstr = dynstr;
2963
2964   // Create the hash tables.
2965
2966   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2967       || strcmp(parameters->options().hash_style(), "both") == 0)
2968     {
2969       unsigned char* phash;
2970       unsigned int hashlen;
2971       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2972                                     &phash, &hashlen);
2973
2974       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2975                                                             elfcpp::SHT_HASH,
2976                                                             elfcpp::SHF_ALLOC,
2977                                                             false, false, true,
2978                                                             false, false,
2979                                                             false);
2980
2981       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2982                                                                    hashlen,
2983                                                                    align,
2984                                                                    "** hash");
2985       hashsec->add_output_section_data(hashdata);
2986
2987       hashsec->set_link_section(dynsym);
2988       hashsec->set_entsize(4);
2989
2990       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2991     }
2992
2993   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2994       || strcmp(parameters->options().hash_style(), "both") == 0)
2995     {
2996       unsigned char* phash;
2997       unsigned int hashlen;
2998       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2999                                     &phash, &hashlen);
3000
3001       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
3002                                                             elfcpp::SHT_GNU_HASH,
3003                                                             elfcpp::SHF_ALLOC,
3004                                                             false, false, true,
3005                                                             false, false,
3006                                                             false);
3007
3008       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3009                                                                    hashlen,
3010                                                                    align,
3011                                                                    "** hash");
3012       hashsec->add_output_section_data(hashdata);
3013
3014       hashsec->set_link_section(dynsym);
3015
3016       // For a 64-bit target, the entries in .gnu.hash do not have a
3017       // uniform size, so we only set the entry size for a 32-bit
3018       // target.
3019       if (parameters->target().get_size() == 32)
3020         hashsec->set_entsize(4);
3021
3022       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3023     }
3024 }
3025
3026 // Assign offsets to each local portion of the dynamic symbol table.
3027
3028 void
3029 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3030 {
3031   Output_section* dynsym = this->dynsym_section_;
3032   gold_assert(dynsym != NULL);
3033
3034   off_t off = dynsym->offset();
3035
3036   // Skip the dummy symbol at the start of the section.
3037   off += dynsym->entsize();
3038
3039   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3040        p != input_objects->relobj_end();
3041        ++p)
3042     {
3043       unsigned int count = (*p)->set_local_dynsym_offset(off);
3044       off += count * dynsym->entsize();
3045     }
3046 }
3047
3048 // Create the version sections.
3049
3050 void
3051 Layout::create_version_sections(const Versions* versions,
3052                                 const Symbol_table* symtab,
3053                                 unsigned int local_symcount,
3054                                 const std::vector<Symbol*>& dynamic_symbols,
3055                                 const Output_section* dynstr)
3056 {
3057   if (!versions->any_defs() && !versions->any_needs())
3058     return;
3059
3060   switch (parameters->size_and_endianness())
3061     {
3062 #ifdef HAVE_TARGET_32_LITTLE
3063     case Parameters::TARGET_32_LITTLE:
3064       this->sized_create_version_sections<32, false>(versions, symtab,
3065                                                      local_symcount,
3066                                                      dynamic_symbols, dynstr);
3067       break;
3068 #endif
3069 #ifdef HAVE_TARGET_32_BIG
3070     case Parameters::TARGET_32_BIG:
3071       this->sized_create_version_sections<32, true>(versions, symtab,
3072                                                     local_symcount,
3073                                                     dynamic_symbols, dynstr);
3074       break;
3075 #endif
3076 #ifdef HAVE_TARGET_64_LITTLE
3077     case Parameters::TARGET_64_LITTLE:
3078       this->sized_create_version_sections<64, false>(versions, symtab,
3079                                                      local_symcount,
3080                                                      dynamic_symbols, dynstr);
3081       break;
3082 #endif
3083 #ifdef HAVE_TARGET_64_BIG
3084     case Parameters::TARGET_64_BIG:
3085       this->sized_create_version_sections<64, true>(versions, symtab,
3086                                                     local_symcount,
3087                                                     dynamic_symbols, dynstr);
3088       break;
3089 #endif
3090     default:
3091       gold_unreachable();
3092     }
3093 }
3094
3095 // Create the version sections, sized version.
3096
3097 template<int size, bool big_endian>
3098 void
3099 Layout::sized_create_version_sections(
3100     const Versions* versions,
3101     const Symbol_table* symtab,
3102     unsigned int local_symcount,
3103     const std::vector<Symbol*>& dynamic_symbols,
3104     const Output_section* dynstr)
3105 {
3106   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3107                                                      elfcpp::SHT_GNU_versym,
3108                                                      elfcpp::SHF_ALLOC,
3109                                                      false, false, true,
3110                                                      false, false, false);
3111
3112   unsigned char* vbuf;
3113   unsigned int vsize;
3114   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3115                                                       local_symcount,
3116                                                       dynamic_symbols,
3117                                                       &vbuf, &vsize);
3118
3119   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3120                                                             "** versions");
3121
3122   vsec->add_output_section_data(vdata);
3123   vsec->set_entsize(2);
3124   vsec->set_link_section(this->dynsym_section_);
3125
3126   Output_data_dynamic* const odyn = this->dynamic_data_;
3127   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3128
3129   if (versions->any_defs())
3130     {
3131       Output_section* vdsec;
3132       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3133                                          elfcpp::SHT_GNU_verdef,
3134                                          elfcpp::SHF_ALLOC,
3135                                          false, false, true, false, false,
3136                                          false);
3137
3138       unsigned char* vdbuf;
3139       unsigned int vdsize;
3140       unsigned int vdentries;
3141       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3142                                                        &vdsize, &vdentries);
3143
3144       Output_section_data* vddata =
3145         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3146
3147       vdsec->add_output_section_data(vddata);
3148       vdsec->set_link_section(dynstr);
3149       vdsec->set_info(vdentries);
3150
3151       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3152       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3153     }
3154
3155   if (versions->any_needs())
3156     {
3157       Output_section* vnsec;
3158       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3159                                           elfcpp::SHT_GNU_verneed,
3160                                           elfcpp::SHF_ALLOC,
3161                                           false, false, true, false, false,
3162                                           false);
3163
3164       unsigned char* vnbuf;
3165       unsigned int vnsize;
3166       unsigned int vnentries;
3167       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3168                                                         &vnbuf, &vnsize,
3169                                                         &vnentries);
3170
3171       Output_section_data* vndata =
3172         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3173
3174       vnsec->add_output_section_data(vndata);
3175       vnsec->set_link_section(dynstr);
3176       vnsec->set_info(vnentries);
3177
3178       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3179       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3180     }
3181 }
3182
3183 // Create the .interp section and PT_INTERP segment.
3184
3185 void
3186 Layout::create_interp(const Target* target)
3187 {
3188   const char* interp = parameters->options().dynamic_linker();
3189   if (interp == NULL)
3190     {
3191       interp = target->dynamic_linker();
3192       gold_assert(interp != NULL);
3193     }
3194
3195   size_t len = strlen(interp) + 1;
3196
3197   Output_section_data* odata = new Output_data_const(interp, len, 1);
3198
3199   Output_section* osec = this->choose_output_section(NULL, ".interp",
3200                                                      elfcpp::SHT_PROGBITS,
3201                                                      elfcpp::SHF_ALLOC,
3202                                                      false, true, true,
3203                                                      false, false, false);
3204   osec->add_output_section_data(odata);
3205
3206   if (!this->script_options_->saw_phdrs_clause())
3207     {
3208       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3209                                                        elfcpp::PF_R);
3210       oseg->add_output_section(osec, elfcpp::PF_R, false);
3211     }
3212 }
3213
3214 // Add dynamic tags for the PLT and the dynamic relocs.  This is
3215 // called by the target-specific code.  This does nothing if not doing
3216 // a dynamic link.
3217
3218 // USE_REL is true for REL relocs rather than RELA relocs.
3219
3220 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3221
3222 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3223 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
3224 // some targets have multiple reloc sections in PLT_REL.
3225
3226 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3227 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3228
3229 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3230 // executable.
3231
3232 void
3233 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3234                                 const Output_data* plt_rel,
3235                                 const Output_data_reloc_generic* dyn_rel,
3236                                 bool add_debug)
3237 {
3238   Output_data_dynamic* odyn = this->dynamic_data_;
3239   if (odyn == NULL)
3240     return;
3241
3242   if (plt_got != NULL && plt_got->output_section() != NULL)
3243     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3244
3245   if (plt_rel != NULL && plt_rel->output_section() != NULL)
3246     {
3247       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3248       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3249       odyn->add_constant(elfcpp::DT_PLTREL,
3250                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3251     }
3252
3253   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3254     {
3255       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3256                                 dyn_rel);
3257       odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3258                              dyn_rel);
3259       const int size = parameters->target().get_size();
3260       elfcpp::DT rel_tag;
3261       int rel_size;
3262       if (use_rel)
3263         {
3264           rel_tag = elfcpp::DT_RELENT;
3265           if (size == 32)
3266             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3267           else if (size == 64)
3268             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3269           else
3270             gold_unreachable();
3271         }
3272       else
3273         {
3274           rel_tag = elfcpp::DT_RELAENT;
3275           if (size == 32)
3276             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3277           else if (size == 64)
3278             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3279           else
3280             gold_unreachable();
3281         }
3282       odyn->add_constant(rel_tag, rel_size);
3283
3284       if (parameters->options().combreloc())
3285         {
3286           size_t c = dyn_rel->relative_reloc_count();
3287           if (c > 0)
3288             odyn->add_constant((use_rel
3289                                 ? elfcpp::DT_RELCOUNT
3290                                 : elfcpp::DT_RELACOUNT),
3291                                c);
3292         }
3293     }
3294
3295   if (add_debug && !parameters->options().shared())
3296     {
3297       // The value of the DT_DEBUG tag is filled in by the dynamic
3298       // linker at run time, and used by the debugger.
3299       odyn->add_constant(elfcpp::DT_DEBUG, 0);
3300     }
3301 }
3302
3303 // Finish the .dynamic section and PT_DYNAMIC segment.
3304
3305 void
3306 Layout::finish_dynamic_section(const Input_objects* input_objects,
3307                                const Symbol_table* symtab)
3308 {
3309   if (!this->script_options_->saw_phdrs_clause())
3310     {
3311       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3312                                                        (elfcpp::PF_R
3313                                                         | elfcpp::PF_W));
3314       oseg->add_output_section(this->dynamic_section_,
3315                                elfcpp::PF_R | elfcpp::PF_W,
3316                                false);
3317     }
3318
3319   Output_data_dynamic* const odyn = this->dynamic_data_;
3320
3321   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3322        p != input_objects->dynobj_end();
3323        ++p)
3324     {
3325       if (!(*p)->is_needed()
3326           && (*p)->input_file()->options().as_needed())
3327         {
3328           // This dynamic object was linked with --as-needed, but it
3329           // is not needed.
3330           continue;
3331         }
3332
3333       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3334     }
3335
3336   if (parameters->options().shared())
3337     {
3338       const char* soname = parameters->options().soname();
3339       if (soname != NULL)
3340         odyn->add_string(elfcpp::DT_SONAME, soname);
3341     }
3342
3343   Symbol* sym = symtab->lookup(parameters->options().init());
3344   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3345     odyn->add_symbol(elfcpp::DT_INIT, sym);
3346
3347   sym = symtab->lookup(parameters->options().fini());
3348   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3349     odyn->add_symbol(elfcpp::DT_FINI, sym);
3350
3351   // Look for .init_array, .preinit_array and .fini_array by checking
3352   // section types.
3353   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3354       p != this->section_list_.end();
3355       ++p)
3356     switch((*p)->type())
3357       {
3358       case elfcpp::SHT_FINI_ARRAY:
3359         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3360         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
3361         break;
3362       case elfcpp::SHT_INIT_ARRAY:
3363         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3364         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
3365         break;
3366       case elfcpp::SHT_PREINIT_ARRAY:
3367         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3368         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
3369         break;
3370       default:
3371         break;
3372       }
3373   
3374   // Add a DT_RPATH entry if needed.
3375   const General_options::Dir_list& rpath(parameters->options().rpath());
3376   if (!rpath.empty())
3377     {
3378       std::string rpath_val;
3379       for (General_options::Dir_list::const_iterator p = rpath.begin();
3380            p != rpath.end();
3381            ++p)
3382         {
3383           if (rpath_val.empty())
3384             rpath_val = p->name();
3385           else
3386             {
3387               // Eliminate duplicates.
3388               General_options::Dir_list::const_iterator q;
3389               for (q = rpath.begin(); q != p; ++q)
3390                 if (q->name() == p->name())
3391                   break;
3392               if (q == p)
3393                 {
3394                   rpath_val += ':';
3395                   rpath_val += p->name();
3396                 }
3397             }
3398         }
3399
3400       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3401       if (parameters->options().enable_new_dtags())
3402         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3403     }
3404
3405   // Look for text segments that have dynamic relocations.
3406   bool have_textrel = false;
3407   if (!this->script_options_->saw_sections_clause())
3408     {
3409       for (Segment_list::const_iterator p = this->segment_list_.begin();
3410            p != this->segment_list_.end();
3411            ++p)
3412         {
3413           if (((*p)->flags() & elfcpp::PF_W) == 0
3414               && (*p)->dynamic_reloc_count() > 0)
3415             {
3416               have_textrel = true;
3417               break;
3418             }
3419         }
3420     }
3421   else
3422     {
3423       // We don't know the section -> segment mapping, so we are
3424       // conservative and just look for readonly sections with
3425       // relocations.  If those sections wind up in writable segments,
3426       // then we have created an unnecessary DT_TEXTREL entry.
3427       for (Section_list::const_iterator p = this->section_list_.begin();
3428            p != this->section_list_.end();
3429            ++p)
3430         {
3431           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3432               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3433               && ((*p)->dynamic_reloc_count() > 0))
3434             {
3435               have_textrel = true;
3436               break;
3437             }
3438         }
3439     }
3440
3441   // Add a DT_FLAGS entry. We add it even if no flags are set so that
3442   // post-link tools can easily modify these flags if desired.
3443   unsigned int flags = 0;
3444   if (have_textrel)
3445     {
3446       // Add a DT_TEXTREL for compatibility with older loaders.
3447       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3448       flags |= elfcpp::DF_TEXTREL;
3449
3450       if (parameters->options().text())
3451         gold_error(_("read-only segment has dynamic relocations"));
3452       else if (parameters->options().warn_shared_textrel()
3453                && parameters->options().shared())
3454         gold_warning(_("shared library text segment is not shareable"));
3455     }
3456   if (parameters->options().shared() && this->has_static_tls())
3457     flags |= elfcpp::DF_STATIC_TLS;
3458   if (parameters->options().origin())
3459     flags |= elfcpp::DF_ORIGIN;
3460   if (parameters->options().Bsymbolic())
3461     {
3462       flags |= elfcpp::DF_SYMBOLIC;
3463       // Add DT_SYMBOLIC for compatibility with older loaders.
3464       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3465     }
3466   if (parameters->options().now())
3467     flags |= elfcpp::DF_BIND_NOW;
3468   odyn->add_constant(elfcpp::DT_FLAGS, flags);
3469
3470   flags = 0;
3471   if (parameters->options().initfirst())
3472     flags |= elfcpp::DF_1_INITFIRST;
3473   if (parameters->options().interpose())
3474     flags |= elfcpp::DF_1_INTERPOSE;
3475   if (parameters->options().loadfltr())
3476     flags |= elfcpp::DF_1_LOADFLTR;
3477   if (parameters->options().nodefaultlib())
3478     flags |= elfcpp::DF_1_NODEFLIB;
3479   if (parameters->options().nodelete())
3480     flags |= elfcpp::DF_1_NODELETE;
3481   if (parameters->options().nodlopen())
3482     flags |= elfcpp::DF_1_NOOPEN;
3483   if (parameters->options().nodump())
3484     flags |= elfcpp::DF_1_NODUMP;
3485   if (!parameters->options().shared())
3486     flags &= ~(elfcpp::DF_1_INITFIRST
3487                | elfcpp::DF_1_NODELETE
3488                | elfcpp::DF_1_NOOPEN);
3489   if (parameters->options().origin())
3490     flags |= elfcpp::DF_1_ORIGIN;
3491   if (parameters->options().now())
3492     flags |= elfcpp::DF_1_NOW;
3493   if (flags)
3494     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3495 }
3496
3497 // Set the size of the _DYNAMIC symbol table to be the size of the
3498 // dynamic data.
3499
3500 void
3501 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
3502 {
3503   Output_data_dynamic* const odyn = this->dynamic_data_;
3504   odyn->finalize_data_size();
3505   off_t data_size = odyn->data_size();
3506   const int size = parameters->target().get_size();
3507   if (size == 32)
3508     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
3509   else if (size == 64)
3510     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
3511   else
3512     gold_unreachable();
3513 }
3514
3515 // The mapping of input section name prefixes to output section names.
3516 // In some cases one prefix is itself a prefix of another prefix; in
3517 // such a case the longer prefix must come first.  These prefixes are
3518 // based on the GNU linker default ELF linker script.
3519
3520 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3521 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3522 {
3523   MAPPING_INIT(".text.", ".text"),
3524   MAPPING_INIT(".ctors.", ".ctors"),
3525   MAPPING_INIT(".dtors.", ".dtors"),
3526   MAPPING_INIT(".rodata.", ".rodata"),
3527   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3528   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3529   MAPPING_INIT(".data.", ".data"),
3530   MAPPING_INIT(".bss.", ".bss"),
3531   MAPPING_INIT(".tdata.", ".tdata"),
3532   MAPPING_INIT(".tbss.", ".tbss"),
3533   MAPPING_INIT(".init_array.", ".init_array"),
3534   MAPPING_INIT(".fini_array.", ".fini_array"),
3535   MAPPING_INIT(".sdata.", ".sdata"),
3536   MAPPING_INIT(".sbss.", ".sbss"),
3537   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3538   // differently depending on whether it is creating a shared library.
3539   MAPPING_INIT(".sdata2.", ".sdata"),
3540   MAPPING_INIT(".sbss2.", ".sbss"),
3541   MAPPING_INIT(".lrodata.", ".lrodata"),
3542   MAPPING_INIT(".ldata.", ".ldata"),
3543   MAPPING_INIT(".lbss.", ".lbss"),
3544   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3545   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3546   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3547   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3548   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3549   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3550   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3551   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3552   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3553   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3554   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3555   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3556   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3557   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3558   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3559   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3560   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3561   MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
3562   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3563   MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
3564   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3565 };
3566 #undef MAPPING_INIT
3567
3568 const int Layout::section_name_mapping_count =
3569   (sizeof(Layout::section_name_mapping)
3570    / sizeof(Layout::section_name_mapping[0]));
3571
3572 // Choose the output section name to use given an input section name.
3573 // Set *PLEN to the length of the name.  *PLEN is initialized to the
3574 // length of NAME.
3575
3576 const char*
3577 Layout::output_section_name(const char* name, size_t* plen)
3578 {
3579   // gcc 4.3 generates the following sorts of section names when it
3580   // needs a section name specific to a function:
3581   //   .text.FN
3582   //   .rodata.FN
3583   //   .sdata2.FN
3584   //   .data.FN
3585   //   .data.rel.FN
3586   //   .data.rel.local.FN
3587   //   .data.rel.ro.FN
3588   //   .data.rel.ro.local.FN
3589   //   .sdata.FN
3590   //   .bss.FN
3591   //   .sbss.FN
3592   //   .tdata.FN
3593   //   .tbss.FN
3594
3595   // The GNU linker maps all of those to the part before the .FN,
3596   // except that .data.rel.local.FN is mapped to .data, and
3597   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
3598   // beginning with .data.rel.ro.local are grouped together.
3599
3600   // For an anonymous namespace, the string FN can contain a '.'.
3601
3602   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3603   // GNU linker maps to .rodata.
3604
3605   // The .data.rel.ro sections are used with -z relro.  The sections
3606   // are recognized by name.  We use the same names that the GNU
3607   // linker does for these sections.
3608
3609   // It is hard to handle this in a principled way, so we don't even
3610   // try.  We use a table of mappings.  If the input section name is
3611   // not found in the table, we simply use it as the output section
3612   // name.
3613
3614   const Section_name_mapping* psnm = section_name_mapping;
3615   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3616     {
3617       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3618         {
3619           *plen = psnm->tolen;
3620           return psnm->to;
3621         }
3622     }
3623
3624   return name;
3625 }
3626
3627 // Check if a comdat group or .gnu.linkonce section with the given
3628 // NAME is selected for the link.  If there is already a section,
3629 // *KEPT_SECTION is set to point to the existing section and the
3630 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3631 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3632 // *KEPT_SECTION is set to the internal copy and the function returns
3633 // true.
3634
3635 bool
3636 Layout::find_or_add_kept_section(const std::string& name,
3637                                  Relobj* object,
3638                                  unsigned int shndx,
3639                                  bool is_comdat,
3640                                  bool is_group_name,
3641                                  Kept_section** kept_section)
3642 {
3643   // It's normal to see a couple of entries here, for the x86 thunk
3644   // sections.  If we see more than a few, we're linking a C++
3645   // program, and we resize to get more space to minimize rehashing.
3646   if (this->signatures_.size() > 4
3647       && !this->resized_signatures_)
3648     {
3649       reserve_unordered_map(&this->signatures_,
3650                             this->number_of_input_files_ * 64);
3651       this->resized_signatures_ = true;
3652     }
3653
3654   Kept_section candidate;
3655   std::pair<Signatures::iterator, bool> ins =
3656     this->signatures_.insert(std::make_pair(name, candidate));
3657
3658   if (kept_section != NULL)
3659     *kept_section = &ins.first->second;
3660   if (ins.second)
3661     {
3662       // This is the first time we've seen this signature.
3663       ins.first->second.set_object(object);
3664       ins.first->second.set_shndx(shndx);
3665       if (is_comdat)
3666         ins.first->second.set_is_comdat();
3667       if (is_group_name)
3668         ins.first->second.set_is_group_name();
3669       return true;
3670     }
3671
3672   // We have already seen this signature.
3673
3674   if (ins.first->second.is_group_name())
3675     {
3676       // We've already seen a real section group with this signature.
3677       // If the kept group is from a plugin object, and we're in the
3678       // replacement phase, accept the new one as a replacement.
3679       if (ins.first->second.object() == NULL
3680           && parameters->options().plugins()->in_replacement_phase())
3681         {
3682           ins.first->second.set_object(object);
3683           ins.first->second.set_shndx(shndx);
3684           return true;
3685         }
3686       return false;
3687     }
3688   else if (is_group_name)
3689     {
3690       // This is a real section group, and we've already seen a
3691       // linkonce section with this signature.  Record that we've seen
3692       // a section group, and don't include this section group.
3693       ins.first->second.set_is_group_name();
3694       return false;
3695     }
3696   else
3697     {
3698       // We've already seen a linkonce section and this is a linkonce
3699       // section.  These don't block each other--this may be the same
3700       // symbol name with different section types.
3701       return true;
3702     }
3703 }
3704
3705 // Store the allocated sections into the section list.
3706
3707 void
3708 Layout::get_allocated_sections(Section_list* section_list) const
3709 {
3710   for (Section_list::const_iterator p = this->section_list_.begin();
3711        p != this->section_list_.end();
3712        ++p)
3713     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3714       section_list->push_back(*p);
3715 }
3716
3717 // Create an output segment.
3718
3719 Output_segment*
3720 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3721 {
3722   gold_assert(!parameters->options().relocatable());
3723   Output_segment* oseg = new Output_segment(type, flags);
3724   this->segment_list_.push_back(oseg);
3725
3726   if (type == elfcpp::PT_TLS)
3727     this->tls_segment_ = oseg;
3728   else if (type == elfcpp::PT_GNU_RELRO)
3729     this->relro_segment_ = oseg;
3730
3731   return oseg;
3732 }
3733
3734 // Write out the Output_sections.  Most won't have anything to write,
3735 // since most of the data will come from input sections which are
3736 // handled elsewhere.  But some Output_sections do have Output_data.
3737
3738 void
3739 Layout::write_output_sections(Output_file* of) const
3740 {
3741   for (Section_list::const_iterator p = this->section_list_.begin();
3742        p != this->section_list_.end();
3743        ++p)
3744     {
3745       if (!(*p)->after_input_sections())
3746         (*p)->write(of);
3747     }
3748 }
3749
3750 // Write out data not associated with a section or the symbol table.
3751
3752 void
3753 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3754 {
3755   if (!parameters->options().strip_all())
3756     {
3757       const Output_section* symtab_section = this->symtab_section_;
3758       for (Section_list::const_iterator p = this->section_list_.begin();
3759            p != this->section_list_.end();
3760            ++p)
3761         {
3762           if ((*p)->needs_symtab_index())
3763             {
3764               gold_assert(symtab_section != NULL);
3765               unsigned int index = (*p)->symtab_index();
3766               gold_assert(index > 0 && index != -1U);
3767               off_t off = (symtab_section->offset()
3768                            + index * symtab_section->entsize());
3769               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3770             }
3771         }
3772     }
3773
3774   const Output_section* dynsym_section = this->dynsym_section_;
3775   for (Section_list::const_iterator p = this->section_list_.begin();
3776        p != this->section_list_.end();
3777        ++p)
3778     {
3779       if ((*p)->needs_dynsym_index())
3780         {
3781           gold_assert(dynsym_section != NULL);
3782           unsigned int index = (*p)->dynsym_index();
3783           gold_assert(index > 0 && index != -1U);
3784           off_t off = (dynsym_section->offset()
3785                        + index * dynsym_section->entsize());
3786           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3787         }
3788     }
3789
3790   // Write out the Output_data which are not in an Output_section.
3791   for (Data_list::const_iterator p = this->special_output_list_.begin();
3792        p != this->special_output_list_.end();
3793        ++p)
3794     (*p)->write(of);
3795 }
3796
3797 // Write out the Output_sections which can only be written after the
3798 // input sections are complete.
3799
3800 void
3801 Layout::write_sections_after_input_sections(Output_file* of)
3802 {
3803   // Determine the final section offsets, and thus the final output
3804   // file size.  Note we finalize the .shstrab last, to allow the
3805   // after_input_section sections to modify their section-names before
3806   // writing.
3807   if (this->any_postprocessing_sections_)
3808     {
3809       off_t off = this->output_file_size_;
3810       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3811
3812       // Now that we've finalized the names, we can finalize the shstrab.
3813       off =
3814         this->set_section_offsets(off,
3815                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3816
3817       if (off > this->output_file_size_)
3818         {
3819           of->resize(off);
3820           this->output_file_size_ = off;
3821         }
3822     }
3823
3824   for (Section_list::const_iterator p = this->section_list_.begin();
3825        p != this->section_list_.end();
3826        ++p)
3827     {
3828       if ((*p)->after_input_sections())
3829         (*p)->write(of);
3830     }
3831
3832   this->section_headers_->write(of);
3833 }
3834
3835 // If the build ID requires computing a checksum, do so here, and
3836 // write it out.  We compute a checksum over the entire file because
3837 // that is simplest.
3838
3839 void
3840 Layout::write_build_id(Output_file* of) const
3841 {
3842   if (this->build_id_note_ == NULL)
3843     return;
3844
3845   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3846
3847   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3848                                           this->build_id_note_->data_size());
3849
3850   const char* style = parameters->options().build_id();
3851   if (strcmp(style, "sha1") == 0)
3852     {
3853       sha1_ctx ctx;
3854       sha1_init_ctx(&ctx);
3855       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3856       sha1_finish_ctx(&ctx, ov);
3857     }
3858   else if (strcmp(style, "md5") == 0)
3859     {
3860       md5_ctx ctx;
3861       md5_init_ctx(&ctx);
3862       md5_process_bytes(iv, this->output_file_size_, &ctx);
3863       md5_finish_ctx(&ctx, ov);
3864     }
3865   else
3866     gold_unreachable();
3867
3868   of->write_output_view(this->build_id_note_->offset(),
3869                         this->build_id_note_->data_size(),
3870                         ov);
3871
3872   of->free_input_view(0, this->output_file_size_, iv);
3873 }
3874
3875 // Write out a binary file.  This is called after the link is
3876 // complete.  IN is the temporary output file we used to generate the
3877 // ELF code.  We simply walk through the segments, read them from
3878 // their file offset in IN, and write them to their load address in
3879 // the output file.  FIXME: with a bit more work, we could support
3880 // S-records and/or Intel hex format here.
3881
3882 void
3883 Layout::write_binary(Output_file* in) const
3884 {
3885   gold_assert(parameters->options().oformat_enum()
3886               == General_options::OBJECT_FORMAT_BINARY);
3887
3888   // Get the size of the binary file.
3889   uint64_t max_load_address = 0;
3890   for (Segment_list::const_iterator p = this->segment_list_.begin();
3891        p != this->segment_list_.end();
3892        ++p)
3893     {
3894       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3895         {
3896           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3897           if (max_paddr > max_load_address)
3898             max_load_address = max_paddr;
3899         }
3900     }
3901
3902   Output_file out(parameters->options().output_file_name());
3903   out.open(max_load_address);
3904
3905   for (Segment_list::const_iterator p = this->segment_list_.begin();
3906        p != this->segment_list_.end();
3907        ++p)
3908     {
3909       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3910         {
3911           const unsigned char* vin = in->get_input_view((*p)->offset(),
3912                                                         (*p)->filesz());
3913           unsigned char* vout = out.get_output_view((*p)->paddr(),
3914                                                     (*p)->filesz());
3915           memcpy(vout, vin, (*p)->filesz());
3916           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3917           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3918         }
3919     }
3920
3921   out.close();
3922 }
3923
3924 // Print the output sections to the map file.
3925
3926 void
3927 Layout::print_to_mapfile(Mapfile* mapfile) const
3928 {
3929   for (Segment_list::const_iterator p = this->segment_list_.begin();
3930        p != this->segment_list_.end();
3931        ++p)
3932     (*p)->print_sections_to_mapfile(mapfile);
3933 }
3934
3935 // Print statistical information to stderr.  This is used for --stats.
3936
3937 void
3938 Layout::print_stats() const
3939 {
3940   this->namepool_.print_stats("section name pool");
3941   this->sympool_.print_stats("output symbol name pool");
3942   this->dynpool_.print_stats("dynamic name pool");
3943
3944   for (Section_list::const_iterator p = this->section_list_.begin();
3945        p != this->section_list_.end();
3946        ++p)
3947     (*p)->print_merge_stats();
3948 }
3949
3950 // Write_sections_task methods.
3951
3952 // We can always run this task.
3953
3954 Task_token*
3955 Write_sections_task::is_runnable()
3956 {
3957   return NULL;
3958 }
3959
3960 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3961 // when finished.
3962
3963 void
3964 Write_sections_task::locks(Task_locker* tl)
3965 {
3966   tl->add(this, this->output_sections_blocker_);
3967   tl->add(this, this->final_blocker_);
3968 }
3969
3970 // Run the task--write out the data.
3971
3972 void
3973 Write_sections_task::run(Workqueue*)
3974 {
3975   this->layout_->write_output_sections(this->of_);
3976 }
3977
3978 // Write_data_task methods.
3979
3980 // We can always run this task.
3981
3982 Task_token*
3983 Write_data_task::is_runnable()
3984 {
3985   return NULL;
3986 }
3987
3988 // We need to unlock FINAL_BLOCKER when finished.
3989
3990 void
3991 Write_data_task::locks(Task_locker* tl)
3992 {
3993   tl->add(this, this->final_blocker_);
3994 }
3995
3996 // Run the task--write out the data.
3997
3998 void
3999 Write_data_task::run(Workqueue*)
4000 {
4001   this->layout_->write_data(this->symtab_, this->of_);
4002 }
4003
4004 // Write_symbols_task methods.
4005
4006 // We can always run this task.
4007
4008 Task_token*
4009 Write_symbols_task::is_runnable()
4010 {
4011   return NULL;
4012 }
4013
4014 // We need to unlock FINAL_BLOCKER when finished.
4015
4016 void
4017 Write_symbols_task::locks(Task_locker* tl)
4018 {
4019   tl->add(this, this->final_blocker_);
4020 }
4021
4022 // Run the task--write out the symbols.
4023
4024 void
4025 Write_symbols_task::run(Workqueue*)
4026 {
4027   this->symtab_->write_globals(this->sympool_, this->dynpool_,
4028                                this->layout_->symtab_xindex(),
4029                                this->layout_->dynsym_xindex(), this->of_);
4030 }
4031
4032 // Write_after_input_sections_task methods.
4033
4034 // We can only run this task after the input sections have completed.
4035
4036 Task_token*
4037 Write_after_input_sections_task::is_runnable()
4038 {
4039   if (this->input_sections_blocker_->is_blocked())
4040     return this->input_sections_blocker_;
4041   return NULL;
4042 }
4043
4044 // We need to unlock FINAL_BLOCKER when finished.
4045
4046 void
4047 Write_after_input_sections_task::locks(Task_locker* tl)
4048 {
4049   tl->add(this, this->final_blocker_);
4050 }
4051
4052 // Run the task.
4053
4054 void
4055 Write_after_input_sections_task::run(Workqueue*)
4056 {
4057   this->layout_->write_sections_after_input_sections(this->of_);
4058 }
4059
4060 // Close_task_runner methods.
4061
4062 // Run the task--close the file.
4063
4064 void
4065 Close_task_runner::run(Workqueue*, const Task*)
4066 {
4067   // If we need to compute a checksum for the BUILD if, we do so here.
4068   this->layout_->write_build_id(this->of_);
4069
4070   // If we've been asked to create a binary file, we do so here.
4071   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4072     this->layout_->write_binary(this->of_);
4073
4074   this->of_->close();
4075 }
4076
4077 // Instantiate the templates we need.  We could use the configure
4078 // script to restrict this to only the ones for implemented targets.
4079
4080 #ifdef HAVE_TARGET_32_LITTLE
4081 template
4082 Output_section*
4083 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
4084                           const char* name,
4085                           const elfcpp::Shdr<32, false>& shdr,
4086                           unsigned int, unsigned int, off_t*);
4087 #endif
4088
4089 #ifdef HAVE_TARGET_32_BIG
4090 template
4091 Output_section*
4092 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
4093                          const char* name,
4094                          const elfcpp::Shdr<32, true>& shdr,
4095                          unsigned int, unsigned int, off_t*);
4096 #endif
4097
4098 #ifdef HAVE_TARGET_64_LITTLE
4099 template
4100 Output_section*
4101 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
4102                           const char* name,
4103                           const elfcpp::Shdr<64, false>& shdr,
4104                           unsigned int, unsigned int, off_t*);
4105 #endif
4106
4107 #ifdef HAVE_TARGET_64_BIG
4108 template
4109 Output_section*
4110 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
4111                          const char* name,
4112                          const elfcpp::Shdr<64, true>& shdr,
4113                          unsigned int, unsigned int, off_t*);
4114 #endif
4115
4116 #ifdef HAVE_TARGET_32_LITTLE
4117 template
4118 Output_section*
4119 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
4120                                 unsigned int reloc_shndx,
4121                                 const elfcpp::Shdr<32, false>& shdr,
4122                                 Output_section* data_section,
4123                                 Relocatable_relocs* rr);
4124 #endif
4125
4126 #ifdef HAVE_TARGET_32_BIG
4127 template
4128 Output_section*
4129 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4130                                unsigned int reloc_shndx,
4131                                const elfcpp::Shdr<32, true>& shdr,
4132                                Output_section* data_section,
4133                                Relocatable_relocs* rr);
4134 #endif
4135
4136 #ifdef HAVE_TARGET_64_LITTLE
4137 template
4138 Output_section*
4139 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4140                                 unsigned int reloc_shndx,
4141                                 const elfcpp::Shdr<64, false>& shdr,
4142                                 Output_section* data_section,
4143                                 Relocatable_relocs* rr);
4144 #endif
4145
4146 #ifdef HAVE_TARGET_64_BIG
4147 template
4148 Output_section*
4149 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4150                                unsigned int reloc_shndx,
4151                                const elfcpp::Shdr<64, true>& shdr,
4152                                Output_section* data_section,
4153                                Relocatable_relocs* rr);
4154 #endif
4155
4156 #ifdef HAVE_TARGET_32_LITTLE
4157 template
4158 void
4159 Layout::layout_group<32, false>(Symbol_table* symtab,
4160                                 Sized_relobj<32, false>* object,
4161                                 unsigned int,
4162                                 const char* group_section_name,
4163                                 const char* signature,
4164                                 const elfcpp::Shdr<32, false>& shdr,
4165                                 elfcpp::Elf_Word flags,
4166                                 std::vector<unsigned int>* shndxes);
4167 #endif
4168
4169 #ifdef HAVE_TARGET_32_BIG
4170 template
4171 void
4172 Layout::layout_group<32, true>(Symbol_table* symtab,
4173                                Sized_relobj<32, true>* object,
4174                                unsigned int,
4175                                const char* group_section_name,
4176                                const char* signature,
4177                                const elfcpp::Shdr<32, true>& shdr,
4178                                elfcpp::Elf_Word flags,
4179                                std::vector<unsigned int>* shndxes);
4180 #endif
4181
4182 #ifdef HAVE_TARGET_64_LITTLE
4183 template
4184 void
4185 Layout::layout_group<64, false>(Symbol_table* symtab,
4186                                 Sized_relobj<64, false>* object,
4187                                 unsigned int,
4188                                 const char* group_section_name,
4189                                 const char* signature,
4190                                 const elfcpp::Shdr<64, false>& shdr,
4191                                 elfcpp::Elf_Word flags,
4192                                 std::vector<unsigned int>* shndxes);
4193 #endif
4194
4195 #ifdef HAVE_TARGET_64_BIG
4196 template
4197 void
4198 Layout::layout_group<64, true>(Symbol_table* symtab,
4199                                Sized_relobj<64, true>* object,
4200                                unsigned int,
4201                                const char* group_section_name,
4202                                const char* signature,
4203                                const elfcpp::Shdr<64, true>& shdr,
4204                                elfcpp::Elf_Word flags,
4205                                std::vector<unsigned int>* shndxes);
4206 #endif
4207
4208 #ifdef HAVE_TARGET_32_LITTLE
4209 template
4210 Output_section*
4211 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4212                                    const unsigned char* symbols,
4213                                    off_t symbols_size,
4214                                    const unsigned char* symbol_names,
4215                                    off_t symbol_names_size,
4216                                    unsigned int shndx,
4217                                    const elfcpp::Shdr<32, false>& shdr,
4218                                    unsigned int reloc_shndx,
4219                                    unsigned int reloc_type,
4220                                    off_t* off);
4221 #endif
4222
4223 #ifdef HAVE_TARGET_32_BIG
4224 template
4225 Output_section*
4226 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4227                                    const unsigned char* symbols,
4228                                    off_t symbols_size,
4229                                   const unsigned char* symbol_names,
4230                                   off_t symbol_names_size,
4231                                   unsigned int shndx,
4232                                   const elfcpp::Shdr<32, true>& shdr,
4233                                   unsigned int reloc_shndx,
4234                                   unsigned int reloc_type,
4235                                   off_t* off);
4236 #endif
4237
4238 #ifdef HAVE_TARGET_64_LITTLE
4239 template
4240 Output_section*
4241 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4242                                    const unsigned char* symbols,
4243                                    off_t symbols_size,
4244                                    const unsigned char* symbol_names,
4245                                    off_t symbol_names_size,
4246                                    unsigned int shndx,
4247                                    const elfcpp::Shdr<64, false>& shdr,
4248                                    unsigned int reloc_shndx,
4249                                    unsigned int reloc_type,
4250                                    off_t* off);
4251 #endif
4252
4253 #ifdef HAVE_TARGET_64_BIG
4254 template
4255 Output_section*
4256 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4257                                    const unsigned char* symbols,
4258                                    off_t symbols_size,
4259                                   const unsigned char* symbol_names,
4260                                   off_t symbol_names_size,
4261                                   unsigned int shndx,
4262                                   const elfcpp::Shdr<64, true>& shdr,
4263                                   unsigned int reloc_shndx,
4264                                   unsigned int reloc_type,
4265                                   off_t* off);
4266 #endif
4267
4268 } // End namespace gold.