OSDN Git Service

PR 10400
[pf3gnuchains/pf3gnuchains3x.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
52
53 namespace gold
54 {
55
56 // Layout_task_runner methods.
57
58 // Lay out the sections.  This is called after all the input objects
59 // have been read.
60
61 void
62 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
63 {
64   off_t file_size = this->layout_->finalize(this->input_objects_,
65                                             this->symtab_,
66                                             this->target_,
67                                             task);
68
69   // Now we know the final size of the output file and we know where
70   // each piece of information goes.
71
72   if (this->mapfile_ != NULL)
73     {
74       this->mapfile_->print_discarded_sections(this->input_objects_);
75       this->layout_->print_to_mapfile(this->mapfile_);
76     }
77
78   Output_file* of = new Output_file(parameters->options().output_file_name());
79   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
80     of->set_is_temporary();
81   of->open(file_size);
82
83   // Queue up the final set of tasks.
84   gold::queue_final_tasks(this->options_, this->input_objects_,
85                           this->symtab_, this->layout_, workqueue, of);
86 }
87
88 // Layout methods.
89
90 Layout::Layout(int number_of_input_files, Script_options* script_options)
91   : number_of_input_files_(number_of_input_files),
92     script_options_(script_options),
93     namepool_(),
94     sympool_(),
95     dynpool_(),
96     signatures_(),
97     section_name_map_(),
98     segment_list_(),
99     section_list_(),
100     unattached_section_list_(),
101     special_output_list_(),
102     section_headers_(NULL),
103     tls_segment_(NULL),
104     relro_segment_(NULL),
105     symtab_section_(NULL),
106     symtab_xindex_(NULL),
107     dynsym_section_(NULL),
108     dynsym_xindex_(NULL),
109     dynamic_section_(NULL),
110     dynamic_data_(NULL),
111     eh_frame_section_(NULL),
112     eh_frame_data_(NULL),
113     added_eh_frame_data_(false),
114     eh_frame_hdr_section_(NULL),
115     build_id_note_(NULL),
116     debug_abbrev_(NULL),
117     debug_info_(NULL),
118     group_signatures_(),
119     output_file_size_(-1),
120     sections_are_attached_(false),
121     input_requires_executable_stack_(false),
122     input_with_gnu_stack_note_(false),
123     input_without_gnu_stack_note_(false),
124     has_static_tls_(false),
125     any_postprocessing_sections_(false),
126     resized_signatures_(false),
127     have_stabstr_section_(false),
128     incremental_inputs_(NULL)
129 {
130   // Make space for more than enough segments for a typical file.
131   // This is just for efficiency--it's OK if we wind up needing more.
132   this->segment_list_.reserve(12);
133
134   // We expect two unattached Output_data objects: the file header and
135   // the segment headers.
136   this->special_output_list_.reserve(2);
137
138   // Initialize structure needed for an incremental build.
139   if (parameters->options().incremental())
140     this->incremental_inputs_ = new Incremental_inputs;
141
142   // The section name pool is worth optimizing in all cases, because
143   // it is small, but there are often overlaps due to .rel sections.
144   this->namepool_.set_optimize();
145 }
146
147 // Hash a key we use to look up an output section mapping.
148
149 size_t
150 Layout::Hash_key::operator()(const Layout::Key& k) const
151 {
152  return k.first + k.second.first + k.second.second;
153 }
154
155 // Returns whether the given section is in the list of
156 // debug-sections-used-by-some-version-of-gdb.  Currently,
157 // we've checked versions of gdb up to and including 6.7.1.
158
159 static const char* gdb_sections[] =
160 { ".debug_abbrev",
161   // ".debug_aranges",   // not used by gdb as of 6.7.1
162   ".debug_frame",
163   ".debug_info",
164   ".debug_line",
165   ".debug_loc",
166   ".debug_macinfo",
167   // ".debug_pubnames",  // not used by gdb as of 6.7.1
168   ".debug_ranges",
169   ".debug_str",
170 };
171
172 static const char* lines_only_debug_sections[] =
173 { ".debug_abbrev",
174   // ".debug_aranges",   // not used by gdb as of 6.7.1
175   // ".debug_frame",
176   ".debug_info",
177   ".debug_line",
178   // ".debug_loc",
179   // ".debug_macinfo",
180   // ".debug_pubnames",  // not used by gdb as of 6.7.1
181   // ".debug_ranges",
182   ".debug_str",
183 };
184
185 static inline bool
186 is_gdb_debug_section(const char* str)
187 {
188   // We can do this faster: binary search or a hashtable.  But why bother?
189   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
190     if (strcmp(str, gdb_sections[i]) == 0)
191       return true;
192   return false;
193 }
194
195 static inline bool
196 is_lines_only_debug_section(const char* str)
197 {
198   // We can do this faster: binary search or a hashtable.  But why bother?
199   for (size_t i = 0;
200        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
201        ++i)
202     if (strcmp(str, lines_only_debug_sections[i]) == 0)
203       return true;
204   return false;
205 }
206
207 // Whether to include this section in the link.
208
209 template<int size, bool big_endian>
210 bool
211 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
212                         const elfcpp::Shdr<size, big_endian>& shdr)
213 {
214   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
215     return false;
216
217   switch (shdr.get_sh_type())
218     {
219     case elfcpp::SHT_NULL:
220     case elfcpp::SHT_SYMTAB:
221     case elfcpp::SHT_DYNSYM:
222     case elfcpp::SHT_HASH:
223     case elfcpp::SHT_DYNAMIC:
224     case elfcpp::SHT_SYMTAB_SHNDX:
225       return false;
226
227     case elfcpp::SHT_STRTAB:
228       // Discard the sections which have special meanings in the ELF
229       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
230       // checking the sh_link fields of the appropriate sections.
231       return (strcmp(name, ".dynstr") != 0
232               && strcmp(name, ".strtab") != 0
233               && strcmp(name, ".shstrtab") != 0);
234
235     case elfcpp::SHT_RELA:
236     case elfcpp::SHT_REL:
237     case elfcpp::SHT_GROUP:
238       // If we are emitting relocations these should be handled
239       // elsewhere.
240       gold_assert(!parameters->options().relocatable()
241                   && !parameters->options().emit_relocs());
242       return false;
243
244     case elfcpp::SHT_PROGBITS:
245       if (parameters->options().strip_debug()
246           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
247         {
248           if (is_debug_info_section(name))
249             return false;
250         }
251       if (parameters->options().strip_debug_non_line()
252           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
253         {
254           // Debugging sections can only be recognized by name.
255           if (is_prefix_of(".debug", name)
256               && !is_lines_only_debug_section(name))
257             return false;
258         }
259       if (parameters->options().strip_debug_gdb()
260           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
261         {
262           // Debugging sections can only be recognized by name.
263           if (is_prefix_of(".debug", name)
264               && !is_gdb_debug_section(name))
265             return false;
266         }
267       if (parameters->options().strip_lto_sections()
268           && !parameters->options().relocatable()
269           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
270         {
271           // Ignore LTO sections containing intermediate code.
272           if (is_prefix_of(".gnu.lto_", name))
273             return false;
274         }
275       return true;
276
277     default:
278       return true;
279     }
280 }
281
282 // Return an output section named NAME, or NULL if there is none.
283
284 Output_section*
285 Layout::find_output_section(const char* name) const
286 {
287   for (Section_list::const_iterator p = this->section_list_.begin();
288        p != this->section_list_.end();
289        ++p)
290     if (strcmp((*p)->name(), name) == 0)
291       return *p;
292   return NULL;
293 }
294
295 // Return an output segment of type TYPE, with segment flags SET set
296 // and segment flags CLEAR clear.  Return NULL if there is none.
297
298 Output_segment*
299 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
300                             elfcpp::Elf_Word clear) const
301 {
302   for (Segment_list::const_iterator p = this->segment_list_.begin();
303        p != this->segment_list_.end();
304        ++p)
305     if (static_cast<elfcpp::PT>((*p)->type()) == type
306         && ((*p)->flags() & set) == set
307         && ((*p)->flags() & clear) == 0)
308       return *p;
309   return NULL;
310 }
311
312 // Return the output section to use for section NAME with type TYPE
313 // and section flags FLAGS.  NAME must be canonicalized in the string
314 // pool, and NAME_KEY is the key.
315
316 Output_section*
317 Layout::get_output_section(const char* name, Stringpool::Key name_key,
318                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
319 {
320   elfcpp::Elf_Xword lookup_flags = flags;
321
322   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
323   // read-write with read-only sections.  Some other ELF linkers do
324   // not do this.  FIXME: Perhaps there should be an option
325   // controlling this.
326   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
327
328   const Key key(name_key, std::make_pair(type, lookup_flags));
329   const std::pair<Key, Output_section*> v(key, NULL);
330   std::pair<Section_name_map::iterator, bool> ins(
331     this->section_name_map_.insert(v));
332
333   if (!ins.second)
334     return ins.first->second;
335   else
336     {
337       // This is the first time we've seen this name/type/flags
338       // combination.  For compatibility with the GNU linker, we
339       // combine sections with contents and zero flags with sections
340       // with non-zero flags.  This is a workaround for cases where
341       // assembler code forgets to set section flags.  FIXME: Perhaps
342       // there should be an option to control this.
343       Output_section* os = NULL;
344
345       if (type == elfcpp::SHT_PROGBITS)
346         {
347           if (flags == 0)
348             {
349               Output_section* same_name = this->find_output_section(name);
350               if (same_name != NULL
351                   && same_name->type() == elfcpp::SHT_PROGBITS
352                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
353                 os = same_name;
354             }
355           else if ((flags & elfcpp::SHF_TLS) == 0)
356             {
357               elfcpp::Elf_Xword zero_flags = 0;
358               const Key zero_key(name_key, std::make_pair(type, zero_flags));
359               Section_name_map::iterator p =
360                   this->section_name_map_.find(zero_key);
361               if (p != this->section_name_map_.end())
362                 os = p->second;
363             }
364         }
365
366       if (os == NULL)
367         os = this->make_output_section(name, type, flags);
368       ins.first->second = os;
369       return os;
370     }
371 }
372
373 // Pick the output section to use for section NAME, in input file
374 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
375 // linker created section.  IS_INPUT_SECTION is true if we are
376 // choosing an output section for an input section found in a input
377 // file.  This will return NULL if the input section should be
378 // discarded.
379
380 Output_section*
381 Layout::choose_output_section(const Relobj* relobj, const char* name,
382                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
383                               bool is_input_section)
384 {
385   // We should not see any input sections after we have attached
386   // sections to segments.
387   gold_assert(!is_input_section || !this->sections_are_attached_);
388
389   // Some flags in the input section should not be automatically
390   // copied to the output section.
391   flags &= ~ (elfcpp::SHF_INFO_LINK
392               | elfcpp::SHF_LINK_ORDER
393               | elfcpp::SHF_GROUP
394               | elfcpp::SHF_MERGE
395               | elfcpp::SHF_STRINGS);
396
397   if (this->script_options_->saw_sections_clause())
398     {
399       // We are using a SECTIONS clause, so the output section is
400       // chosen based only on the name.
401
402       Script_sections* ss = this->script_options_->script_sections();
403       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
404       Output_section** output_section_slot;
405       name = ss->output_section_name(file_name, name, &output_section_slot);
406       if (name == NULL)
407         {
408           // The SECTIONS clause says to discard this input section.
409           return NULL;
410         }
411
412       // If this is an orphan section--one not mentioned in the linker
413       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
414       // default processing below.
415
416       if (output_section_slot != NULL)
417         {
418           if (*output_section_slot != NULL)
419             {
420               (*output_section_slot)->update_flags_for_input_section(flags);
421               return *output_section_slot;
422             }
423
424           // We don't put sections found in the linker script into
425           // SECTION_NAME_MAP_.  That keeps us from getting confused
426           // if an orphan section is mapped to a section with the same
427           // name as one in the linker script.
428
429           name = this->namepool_.add(name, false, NULL);
430
431           Output_section* os = this->make_output_section(name, type, flags);
432           os->set_found_in_sections_clause();
433           *output_section_slot = os;
434           return os;
435         }
436     }
437
438   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
439
440   // Turn NAME from the name of the input section into the name of the
441   // output section.
442
443   size_t len = strlen(name);
444   if (is_input_section
445       && !this->script_options_->saw_sections_clause()
446       && !parameters->options().relocatable())
447     name = Layout::output_section_name(name, &len);
448
449   Stringpool::Key name_key;
450   name = this->namepool_.add_with_length(name, len, true, &name_key);
451
452   // Find or make the output section.  The output section is selected
453   // based on the section name, type, and flags.
454   return this->get_output_section(name, name_key, type, flags);
455 }
456
457 // Return the output section to use for input section SHNDX, with name
458 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
459 // index of a relocation section which applies to this section, or 0
460 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
461 // relocation section if there is one.  Set *OFF to the offset of this
462 // input section without the output section.  Return NULL if the
463 // section should be discarded.  Set *OFF to -1 if the section
464 // contents should not be written directly to the output file, but
465 // will instead receive special handling.
466
467 template<int size, bool big_endian>
468 Output_section*
469 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
470                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
471                unsigned int reloc_shndx, unsigned int, off_t* off)
472 {
473   *off = 0;
474
475   if (!this->include_section(object, name, shdr))
476     return NULL;
477
478   Output_section* os;
479
480   // In a relocatable link a grouped section must not be combined with
481   // any other sections.
482   if (parameters->options().relocatable()
483       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
484     {
485       name = this->namepool_.add(name, true, NULL);
486       os = this->make_output_section(name, shdr.get_sh_type(),
487                                      shdr.get_sh_flags());
488     }
489   else
490     {
491       os = this->choose_output_section(object, name, shdr.get_sh_type(),
492                                        shdr.get_sh_flags(), true);
493       if (os == NULL)
494         return NULL;
495     }
496
497   // By default the GNU linker sorts input sections whose names match
498   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
499   // are sorted by name.  This is used to implement constructor
500   // priority ordering.  We are compatible.
501   if (!this->script_options_->saw_sections_clause()
502       && (is_prefix_of(".ctors.", name)
503           || is_prefix_of(".dtors.", name)
504           || is_prefix_of(".init_array.", name)
505           || is_prefix_of(".fini_array.", name)))
506     os->set_must_sort_attached_input_sections();
507
508   // FIXME: Handle SHF_LINK_ORDER somewhere.
509
510   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
511                                this->script_options_->saw_sections_clause());
512
513   return os;
514 }
515
516 // Handle a relocation section when doing a relocatable link.
517
518 template<int size, bool big_endian>
519 Output_section*
520 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
521                      unsigned int,
522                      const elfcpp::Shdr<size, big_endian>& shdr,
523                      Output_section* data_section,
524                      Relocatable_relocs* rr)
525 {
526   gold_assert(parameters->options().relocatable()
527               || parameters->options().emit_relocs());
528
529   int sh_type = shdr.get_sh_type();
530
531   std::string name;
532   if (sh_type == elfcpp::SHT_REL)
533     name = ".rel";
534   else if (sh_type == elfcpp::SHT_RELA)
535     name = ".rela";
536   else
537     gold_unreachable();
538   name += data_section->name();
539
540   Output_section* os = this->choose_output_section(object, name.c_str(),
541                                                    sh_type,
542                                                    shdr.get_sh_flags(),
543                                                    false);
544
545   os->set_should_link_to_symtab();
546   os->set_info_section(data_section);
547
548   Output_section_data* posd;
549   if (sh_type == elfcpp::SHT_REL)
550     {
551       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
552       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
553                                            size,
554                                            big_endian>(rr);
555     }
556   else if (sh_type == elfcpp::SHT_RELA)
557     {
558       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
559       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
560                                            size,
561                                            big_endian>(rr);
562     }
563   else
564     gold_unreachable();
565
566   os->add_output_section_data(posd);
567   rr->set_output_data(posd);
568
569   return os;
570 }
571
572 // Handle a group section when doing a relocatable link.
573
574 template<int size, bool big_endian>
575 void
576 Layout::layout_group(Symbol_table* symtab,
577                      Sized_relobj<size, big_endian>* object,
578                      unsigned int,
579                      const char* group_section_name,
580                      const char* signature,
581                      const elfcpp::Shdr<size, big_endian>& shdr,
582                      elfcpp::Elf_Word flags,
583                      std::vector<unsigned int>* shndxes)
584 {
585   gold_assert(parameters->options().relocatable());
586   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
587   group_section_name = this->namepool_.add(group_section_name, true, NULL);
588   Output_section* os = this->make_output_section(group_section_name,
589                                                  elfcpp::SHT_GROUP,
590                                                  shdr.get_sh_flags());
591
592   // We need to find a symbol with the signature in the symbol table.
593   // If we don't find one now, we need to look again later.
594   Symbol* sym = symtab->lookup(signature, NULL);
595   if (sym != NULL)
596     os->set_info_symndx(sym);
597   else
598     {
599       // Reserve some space to minimize reallocations.
600       if (this->group_signatures_.empty())
601         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
602
603       // We will wind up using a symbol whose name is the signature.
604       // So just put the signature in the symbol name pool to save it.
605       signature = symtab->canonicalize_name(signature);
606       this->group_signatures_.push_back(Group_signature(os, signature));
607     }
608
609   os->set_should_link_to_symtab();
610   os->set_entsize(4);
611
612   section_size_type entry_count =
613     convert_to_section_size_type(shdr.get_sh_size() / 4);
614   Output_section_data* posd =
615     new Output_data_group<size, big_endian>(object, entry_count, flags,
616                                             shndxes);
617   os->add_output_section_data(posd);
618 }
619
620 // Special GNU handling of sections name .eh_frame.  They will
621 // normally hold exception frame data as defined by the C++ ABI
622 // (http://codesourcery.com/cxx-abi/).
623
624 template<int size, bool big_endian>
625 Output_section*
626 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
627                         const unsigned char* symbols,
628                         off_t symbols_size,
629                         const unsigned char* symbol_names,
630                         off_t symbol_names_size,
631                         unsigned int shndx,
632                         const elfcpp::Shdr<size, big_endian>& shdr,
633                         unsigned int reloc_shndx, unsigned int reloc_type,
634                         off_t* off)
635 {
636   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
637   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
638
639   const char* const name = ".eh_frame";
640   Output_section* os = this->choose_output_section(object,
641                                                    name,
642                                                    elfcpp::SHT_PROGBITS,
643                                                    elfcpp::SHF_ALLOC,
644                                                    false);
645   if (os == NULL)
646     return NULL;
647
648   if (this->eh_frame_section_ == NULL)
649     {
650       this->eh_frame_section_ = os;
651       this->eh_frame_data_ = new Eh_frame();
652
653       if (parameters->options().eh_frame_hdr())
654         {
655           Output_section* hdr_os =
656             this->choose_output_section(NULL,
657                                         ".eh_frame_hdr",
658                                         elfcpp::SHT_PROGBITS,
659                                         elfcpp::SHF_ALLOC,
660                                         false);
661
662           if (hdr_os != NULL)
663             {
664               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
665                                                         this->eh_frame_data_);
666               hdr_os->add_output_section_data(hdr_posd);
667
668               hdr_os->set_after_input_sections();
669
670               if (!this->script_options_->saw_phdrs_clause())
671                 {
672                   Output_segment* hdr_oseg;
673                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
674                                                        elfcpp::PF_R);
675                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
676                 }
677
678               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
679             }
680         }
681     }
682
683   gold_assert(this->eh_frame_section_ == os);
684
685   if (this->eh_frame_data_->add_ehframe_input_section(object,
686                                                       symbols,
687                                                       symbols_size,
688                                                       symbol_names,
689                                                       symbol_names_size,
690                                                       shndx,
691                                                       reloc_shndx,
692                                                       reloc_type))
693     {
694       os->update_flags_for_input_section(shdr.get_sh_flags());
695
696       // We found a .eh_frame section we are going to optimize, so now
697       // we can add the set of optimized sections to the output
698       // section.  We need to postpone adding this until we've found a
699       // section we can optimize so that the .eh_frame section in
700       // crtbegin.o winds up at the start of the output section.
701       if (!this->added_eh_frame_data_)
702         {
703           os->add_output_section_data(this->eh_frame_data_);
704           this->added_eh_frame_data_ = true;
705         }
706       *off = -1;
707     }
708   else
709     {
710       // We couldn't handle this .eh_frame section for some reason.
711       // Add it as a normal section.
712       bool saw_sections_clause = this->script_options_->saw_sections_clause();
713       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
714                                    saw_sections_clause);
715     }
716
717   return os;
718 }
719
720 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
721 // the output section.
722
723 Output_section*
724 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
725                                 elfcpp::Elf_Xword flags,
726                                 Output_section_data* posd)
727 {
728   Output_section* os = this->choose_output_section(NULL, name, type, flags,
729                                                    false);
730   if (os != NULL)
731     os->add_output_section_data(posd);
732   return os;
733 }
734
735 // Map section flags to segment flags.
736
737 elfcpp::Elf_Word
738 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
739 {
740   elfcpp::Elf_Word ret = elfcpp::PF_R;
741   if ((flags & elfcpp::SHF_WRITE) != 0)
742     ret |= elfcpp::PF_W;
743   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
744     ret |= elfcpp::PF_X;
745   return ret;
746 }
747
748 // Sometimes we compress sections.  This is typically done for
749 // sections that are not part of normal program execution (such as
750 // .debug_* sections), and where the readers of these sections know
751 // how to deal with compressed sections.  (To make it easier for them,
752 // we will rename the ouput section in such cases from .foo to
753 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
754 // doesn't say for certain whether we'll compress -- it depends on
755 // commandline options as well -- just whether this section is a
756 // candidate for compression.
757
758 static bool
759 is_compressible_debug_section(const char* secname)
760 {
761   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
762 }
763
764 // Make a new Output_section, and attach it to segments as
765 // appropriate.
766
767 Output_section*
768 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
769                             elfcpp::Elf_Xword flags)
770 {
771   Output_section* os;
772   if ((flags & elfcpp::SHF_ALLOC) == 0
773       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
774       && is_compressible_debug_section(name))
775     os = new Output_compressed_section(&parameters->options(), name, type,
776                                        flags);
777
778   else if ((flags & elfcpp::SHF_ALLOC) == 0
779            && parameters->options().strip_debug_non_line()
780            && strcmp(".debug_abbrev", name) == 0)
781     {
782       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
783           name, type, flags);
784       if (this->debug_info_)
785         this->debug_info_->set_abbreviations(this->debug_abbrev_);
786     }
787   else if ((flags & elfcpp::SHF_ALLOC) == 0
788            && parameters->options().strip_debug_non_line()
789            && strcmp(".debug_info", name) == 0)
790     {
791       os = this->debug_info_ = new Output_reduced_debug_info_section(
792           name, type, flags);
793       if (this->debug_abbrev_)
794         this->debug_info_->set_abbreviations(this->debug_abbrev_);
795     }
796  else
797     os = new Output_section(name, type, flags);
798
799   parameters->target().new_output_section(os);
800
801   this->section_list_.push_back(os);
802
803   // The GNU linker by default sorts some sections by priority, so we
804   // do the same.  We need to know that this might happen before we
805   // attach any input sections.
806   if (!this->script_options_->saw_sections_clause()
807       && (strcmp(name, ".ctors") == 0
808           || strcmp(name, ".dtors") == 0
809           || strcmp(name, ".init_array") == 0
810           || strcmp(name, ".fini_array") == 0))
811     os->set_may_sort_attached_input_sections();
812
813   // With -z relro, we have to recognize the special sections by name.
814   // There is no other way.
815   if (!this->script_options_->saw_sections_clause()
816       && parameters->options().relro()
817       && type == elfcpp::SHT_PROGBITS
818       && (flags & elfcpp::SHF_ALLOC) != 0
819       && (flags & elfcpp::SHF_WRITE) != 0)
820     {
821       if (strcmp(name, ".data.rel.ro") == 0)
822         os->set_is_relro();
823       else if (strcmp(name, ".data.rel.ro.local") == 0)
824         {
825           os->set_is_relro();
826           os->set_is_relro_local();
827         }
828     }
829
830   // Check for .stab*str sections, as .stab* sections need to link to
831   // them.
832   if (type == elfcpp::SHT_STRTAB
833       && !this->have_stabstr_section_
834       && strncmp(name, ".stab", 5) == 0
835       && strcmp(name + strlen(name) - 3, "str") == 0)
836     this->have_stabstr_section_ = true;
837
838   // If we have already attached the sections to segments, then we
839   // need to attach this one now.  This happens for sections created
840   // directly by the linker.
841   if (this->sections_are_attached_)
842     this->attach_section_to_segment(os);
843
844   return os;
845 }
846
847 // Attach output sections to segments.  This is called after we have
848 // seen all the input sections.
849
850 void
851 Layout::attach_sections_to_segments()
852 {
853   for (Section_list::iterator p = this->section_list_.begin();
854        p != this->section_list_.end();
855        ++p)
856     this->attach_section_to_segment(*p);
857
858   this->sections_are_attached_ = true;
859 }
860
861 // Attach an output section to a segment.
862
863 void
864 Layout::attach_section_to_segment(Output_section* os)
865 {
866   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
867     this->unattached_section_list_.push_back(os);
868   else
869     this->attach_allocated_section_to_segment(os);
870 }
871
872 // Attach an allocated output section to a segment.
873
874 void
875 Layout::attach_allocated_section_to_segment(Output_section* os)
876 {
877   elfcpp::Elf_Xword flags = os->flags();
878   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
879
880   if (parameters->options().relocatable())
881     return;
882
883   // If we have a SECTIONS clause, we can't handle the attachment to
884   // segments until after we've seen all the sections.
885   if (this->script_options_->saw_sections_clause())
886     return;
887
888   gold_assert(!this->script_options_->saw_phdrs_clause());
889
890   // This output section goes into a PT_LOAD segment.
891
892   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
893
894   // In general the only thing we really care about for PT_LOAD
895   // segments is whether or not they are writable, so that is how we
896   // search for them.  Large data sections also go into their own
897   // PT_LOAD segment.  People who need segments sorted on some other
898   // basis will have to use a linker script.
899
900   Segment_list::const_iterator p;
901   for (p = this->segment_list_.begin();
902        p != this->segment_list_.end();
903        ++p)
904     {
905       if ((*p)->type() != elfcpp::PT_LOAD)
906         continue;
907       if (!parameters->options().omagic()
908           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
909         continue;
910       // If -Tbss was specified, we need to separate the data and BSS
911       // segments.
912       if (parameters->options().user_set_Tbss())
913         {
914           if ((os->type() == elfcpp::SHT_NOBITS)
915               == (*p)->has_any_data_sections())
916             continue;
917         }
918       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
919         continue;
920
921       (*p)->add_output_section(os, seg_flags);
922       break;
923     }
924
925   if (p == this->segment_list_.end())
926     {
927       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
928                                                        seg_flags);
929       if (os->is_large_data_section())
930         oseg->set_is_large_data_segment();
931       oseg->add_output_section(os, seg_flags);
932     }
933
934   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
935   // segment.
936   if (os->type() == elfcpp::SHT_NOTE)
937     {
938       // See if we already have an equivalent PT_NOTE segment.
939       for (p = this->segment_list_.begin();
940            p != segment_list_.end();
941            ++p)
942         {
943           if ((*p)->type() == elfcpp::PT_NOTE
944               && (((*p)->flags() & elfcpp::PF_W)
945                   == (seg_flags & elfcpp::PF_W)))
946             {
947               (*p)->add_output_section(os, seg_flags);
948               break;
949             }
950         }
951
952       if (p == this->segment_list_.end())
953         {
954           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
955                                                            seg_flags);
956           oseg->add_output_section(os, seg_flags);
957         }
958     }
959
960   // If we see a loadable SHF_TLS section, we create a PT_TLS
961   // segment.  There can only be one such segment.
962   if ((flags & elfcpp::SHF_TLS) != 0)
963     {
964       if (this->tls_segment_ == NULL)
965         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
966       this->tls_segment_->add_output_section(os, seg_flags);
967     }
968
969   // If -z relro is in effect, and we see a relro section, we create a
970   // PT_GNU_RELRO segment.  There can only be one such segment.
971   if (os->is_relro() && parameters->options().relro())
972     {
973       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
974       if (this->relro_segment_ == NULL)
975         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
976       this->relro_segment_->add_output_section(os, seg_flags);
977     }
978 }
979
980 // Make an output section for a script.
981
982 Output_section*
983 Layout::make_output_section_for_script(const char* name)
984 {
985   name = this->namepool_.add(name, false, NULL);
986   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
987                                                  elfcpp::SHF_ALLOC);
988   os->set_found_in_sections_clause();
989   return os;
990 }
991
992 // Return the number of segments we expect to see.
993
994 size_t
995 Layout::expected_segment_count() const
996 {
997   size_t ret = this->segment_list_.size();
998
999   // If we didn't see a SECTIONS clause in a linker script, we should
1000   // already have the complete list of segments.  Otherwise we ask the
1001   // SECTIONS clause how many segments it expects, and add in the ones
1002   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1003
1004   if (!this->script_options_->saw_sections_clause())
1005     return ret;
1006   else
1007     {
1008       const Script_sections* ss = this->script_options_->script_sections();
1009       return ret + ss->expected_segment_count(this);
1010     }
1011 }
1012
1013 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1014 // is whether we saw a .note.GNU-stack section in the object file.
1015 // GNU_STACK_FLAGS is the section flags.  The flags give the
1016 // protection required for stack memory.  We record this in an
1017 // executable as a PT_GNU_STACK segment.  If an object file does not
1018 // have a .note.GNU-stack segment, we must assume that it is an old
1019 // object.  On some targets that will force an executable stack.
1020
1021 void
1022 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1023 {
1024   if (!seen_gnu_stack)
1025     this->input_without_gnu_stack_note_ = true;
1026   else
1027     {
1028       this->input_with_gnu_stack_note_ = true;
1029       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1030         this->input_requires_executable_stack_ = true;
1031     }
1032 }
1033
1034 // Create automatic note sections.
1035
1036 void
1037 Layout::create_notes()
1038 {
1039   this->create_gold_note();
1040   this->create_executable_stack_info();
1041   this->create_build_id();
1042 }
1043
1044 // Create the dynamic sections which are needed before we read the
1045 // relocs.
1046
1047 void
1048 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1049 {
1050   if (parameters->doing_static_link())
1051     return;
1052
1053   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1054                                                        elfcpp::SHT_DYNAMIC,
1055                                                        (elfcpp::SHF_ALLOC
1056                                                         | elfcpp::SHF_WRITE),
1057                                                        false);
1058   this->dynamic_section_->set_is_relro();
1059
1060   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1061                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1062                                 elfcpp::STV_HIDDEN, 0, false, false);
1063
1064   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1065
1066   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1067 }
1068
1069 // For each output section whose name can be represented as C symbol,
1070 // define __start and __stop symbols for the section.  This is a GNU
1071 // extension.
1072
1073 void
1074 Layout::define_section_symbols(Symbol_table* symtab)
1075 {
1076   for (Section_list::const_iterator p = this->section_list_.begin();
1077        p != this->section_list_.end();
1078        ++p)
1079     {
1080       const char* const name = (*p)->name();
1081       if (name[strspn(name,
1082                       ("0123456789"
1083                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1084                        "abcdefghijklmnopqrstuvwxyz"
1085                        "_"))]
1086           == '\0')
1087         {
1088           const std::string name_string(name);
1089           const std::string start_name("__start_" + name_string);
1090           const std::string stop_name("__stop_" + name_string);
1091
1092           symtab->define_in_output_data(start_name.c_str(),
1093                                         NULL, // version
1094                                         *p,
1095                                         0, // value
1096                                         0, // symsize
1097                                         elfcpp::STT_NOTYPE,
1098                                         elfcpp::STB_GLOBAL,
1099                                         elfcpp::STV_DEFAULT,
1100                                         0, // nonvis
1101                                         false, // offset_is_from_end
1102                                         true); // only_if_ref
1103
1104           symtab->define_in_output_data(stop_name.c_str(),
1105                                         NULL, // version
1106                                         *p,
1107                                         0, // value
1108                                         0, // symsize
1109                                         elfcpp::STT_NOTYPE,
1110                                         elfcpp::STB_GLOBAL,
1111                                         elfcpp::STV_DEFAULT,
1112                                         0, // nonvis
1113                                         true, // offset_is_from_end
1114                                         true); // only_if_ref
1115         }
1116     }
1117 }
1118
1119 // Define symbols for group signatures.
1120
1121 void
1122 Layout::define_group_signatures(Symbol_table* symtab)
1123 {
1124   for (Group_signatures::iterator p = this->group_signatures_.begin();
1125        p != this->group_signatures_.end();
1126        ++p)
1127     {
1128       Symbol* sym = symtab->lookup(p->signature, NULL);
1129       if (sym != NULL)
1130         p->section->set_info_symndx(sym);
1131       else
1132         {
1133           // Force the name of the group section to the group
1134           // signature, and use the group's section symbol as the
1135           // signature symbol.
1136           if (strcmp(p->section->name(), p->signature) != 0)
1137             {
1138               const char* name = this->namepool_.add(p->signature,
1139                                                      true, NULL);
1140               p->section->set_name(name);
1141             }
1142           p->section->set_needs_symtab_index();
1143           p->section->set_info_section_symndx(p->section);
1144         }
1145     }
1146
1147   this->group_signatures_.clear();
1148 }
1149
1150 // Find the first read-only PT_LOAD segment, creating one if
1151 // necessary.
1152
1153 Output_segment*
1154 Layout::find_first_load_seg()
1155 {
1156   for (Segment_list::const_iterator p = this->segment_list_.begin();
1157        p != this->segment_list_.end();
1158        ++p)
1159     {
1160       if ((*p)->type() == elfcpp::PT_LOAD
1161           && ((*p)->flags() & elfcpp::PF_R) != 0
1162           && (parameters->options().omagic()
1163               || ((*p)->flags() & elfcpp::PF_W) == 0))
1164         return *p;
1165     }
1166
1167   gold_assert(!this->script_options_->saw_phdrs_clause());
1168
1169   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1170                                                        elfcpp::PF_R);
1171   return load_seg;
1172 }
1173
1174 // Finalize the layout.  When this is called, we have created all the
1175 // output sections and all the output segments which are based on
1176 // input sections.  We have several things to do, and we have to do
1177 // them in the right order, so that we get the right results correctly
1178 // and efficiently.
1179
1180 // 1) Finalize the list of output segments and create the segment
1181 // table header.
1182
1183 // 2) Finalize the dynamic symbol table and associated sections.
1184
1185 // 3) Determine the final file offset of all the output segments.
1186
1187 // 4) Determine the final file offset of all the SHF_ALLOC output
1188 // sections.
1189
1190 // 5) Create the symbol table sections and the section name table
1191 // section.
1192
1193 // 6) Finalize the symbol table: set symbol values to their final
1194 // value and make a final determination of which symbols are going
1195 // into the output symbol table.
1196
1197 // 7) Create the section table header.
1198
1199 // 8) Determine the final file offset of all the output sections which
1200 // are not SHF_ALLOC, including the section table header.
1201
1202 // 9) Finalize the ELF file header.
1203
1204 // This function returns the size of the output file.
1205
1206 off_t
1207 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1208                  Target* target, const Task* task)
1209 {
1210   target->finalize_sections(this);
1211
1212   this->count_local_symbols(task, input_objects);
1213
1214   this->link_stabs_sections();
1215
1216   Output_segment* phdr_seg = NULL;
1217   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1218     {
1219       // There was a dynamic object in the link.  We need to create
1220       // some information for the dynamic linker.
1221
1222       // Create the PT_PHDR segment which will hold the program
1223       // headers.
1224       if (!this->script_options_->saw_phdrs_clause())
1225         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1226
1227       // Create the dynamic symbol table, including the hash table.
1228       Output_section* dynstr;
1229       std::vector<Symbol*> dynamic_symbols;
1230       unsigned int local_dynamic_count;
1231       Versions versions(*this->script_options()->version_script_info(),
1232                         &this->dynpool_);
1233       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1234                                   &local_dynamic_count, &dynamic_symbols,
1235                                   &versions);
1236
1237       // Create the .interp section to hold the name of the
1238       // interpreter, and put it in a PT_INTERP segment.
1239       if (!parameters->options().shared())
1240         this->create_interp(target);
1241
1242       // Finish the .dynamic section to hold the dynamic data, and put
1243       // it in a PT_DYNAMIC segment.
1244       this->finish_dynamic_section(input_objects, symtab);
1245
1246       // We should have added everything we need to the dynamic string
1247       // table.
1248       this->dynpool_.set_string_offsets();
1249
1250       // Create the version sections.  We can't do this until the
1251       // dynamic string table is complete.
1252       this->create_version_sections(&versions, symtab, local_dynamic_count,
1253                                     dynamic_symbols, dynstr);
1254     }
1255   
1256   if (this->incremental_inputs_)
1257     {
1258       this->incremental_inputs_->finalize();
1259       this->create_incremental_info_sections();
1260     }
1261
1262   // If there is a SECTIONS clause, put all the input sections into
1263   // the required order.
1264   Output_segment* load_seg;
1265   if (this->script_options_->saw_sections_clause())
1266     load_seg = this->set_section_addresses_from_script(symtab);
1267   else if (parameters->options().relocatable())
1268     load_seg = NULL;
1269   else
1270     load_seg = this->find_first_load_seg();
1271
1272   if (parameters->options().oformat_enum()
1273       != General_options::OBJECT_FORMAT_ELF)
1274     load_seg = NULL;
1275
1276   gold_assert(phdr_seg == NULL || load_seg != NULL);
1277
1278   // Lay out the segment headers.
1279   Output_segment_headers* segment_headers;
1280   if (parameters->options().relocatable())
1281     segment_headers = NULL;
1282   else
1283     {
1284       segment_headers = new Output_segment_headers(this->segment_list_);
1285       if (load_seg != NULL)
1286         load_seg->add_initial_output_data(segment_headers);
1287       if (phdr_seg != NULL)
1288         phdr_seg->add_initial_output_data(segment_headers);
1289     }
1290
1291   // Lay out the file header.
1292   Output_file_header* file_header;
1293   file_header = new Output_file_header(target, symtab, segment_headers,
1294                                        parameters->options().entry());
1295   if (load_seg != NULL)
1296     load_seg->add_initial_output_data(file_header);
1297
1298   this->special_output_list_.push_back(file_header);
1299   if (segment_headers != NULL)
1300     this->special_output_list_.push_back(segment_headers);
1301
1302   if (this->script_options_->saw_phdrs_clause()
1303       && !parameters->options().relocatable())
1304     {
1305       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1306       // clause in a linker script.
1307       Script_sections* ss = this->script_options_->script_sections();
1308       ss->put_headers_in_phdrs(file_header, segment_headers);
1309     }
1310
1311   // We set the output section indexes in set_segment_offsets and
1312   // set_section_indexes.
1313   unsigned int shndx = 1;
1314
1315   // Set the file offsets of all the segments, and all the sections
1316   // they contain.
1317   off_t off;
1318   if (!parameters->options().relocatable())
1319     off = this->set_segment_offsets(target, load_seg, &shndx);
1320   else
1321     off = this->set_relocatable_section_offsets(file_header, &shndx);
1322
1323   // Set the file offsets of all the non-data sections we've seen so
1324   // far which don't have to wait for the input sections.  We need
1325   // this in order to finalize local symbols in non-allocated
1326   // sections.
1327   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1328
1329   // Set the section indexes of all unallocated sections seen so far,
1330   // in case any of them are somehow referenced by a symbol.
1331   shndx = this->set_section_indexes(shndx);
1332
1333   // Create the symbol table sections.
1334   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1335   if (!parameters->doing_static_link())
1336     this->assign_local_dynsym_offsets(input_objects);
1337
1338   // Process any symbol assignments from a linker script.  This must
1339   // be called after the symbol table has been finalized.
1340   this->script_options_->finalize_symbols(symtab, this);
1341
1342   // Create the .shstrtab section.
1343   Output_section* shstrtab_section = this->create_shstrtab();
1344
1345   // Set the file offsets of the rest of the non-data sections which
1346   // don't have to wait for the input sections.
1347   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1348
1349   // Now that all sections have been created, set the section indexes
1350   // for any sections which haven't been done yet.
1351   shndx = this->set_section_indexes(shndx);
1352
1353   // Create the section table header.
1354   this->create_shdrs(shstrtab_section, &off);
1355
1356   // If there are no sections which require postprocessing, we can
1357   // handle the section names now, and avoid a resize later.
1358   if (!this->any_postprocessing_sections_)
1359     off = this->set_section_offsets(off,
1360                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1361
1362   file_header->set_section_info(this->section_headers_, shstrtab_section);
1363
1364   // Now we know exactly where everything goes in the output file
1365   // (except for non-allocated sections which require postprocessing).
1366   Output_data::layout_complete();
1367
1368   this->output_file_size_ = off;
1369
1370   return off;
1371 }
1372
1373 // Create a note header following the format defined in the ELF ABI.
1374 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1375 // of the section to create, DESCSZ is the size of the descriptor.
1376 // ALLOCATE is true if the section should be allocated in memory.
1377 // This returns the new note section.  It sets *TRAILING_PADDING to
1378 // the number of trailing zero bytes required.
1379
1380 Output_section*
1381 Layout::create_note(const char* name, int note_type,
1382                     const char* section_name, size_t descsz,
1383                     bool allocate, size_t* trailing_padding)
1384 {
1385   // Authorities all agree that the values in a .note field should
1386   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1387   // they differ on what the alignment is for 64-bit binaries.
1388   // The GABI says unambiguously they take 8-byte alignment:
1389   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1390   // Other documentation says alignment should always be 4 bytes:
1391   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1392   // GNU ld and GNU readelf both support the latter (at least as of
1393   // version 2.16.91), and glibc always generates the latter for
1394   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1395   // here.
1396 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1397   const int size = parameters->target().get_size();
1398 #else
1399   const int size = 32;
1400 #endif
1401
1402   // The contents of the .note section.
1403   size_t namesz = strlen(name) + 1;
1404   size_t aligned_namesz = align_address(namesz, size / 8);
1405   size_t aligned_descsz = align_address(descsz, size / 8);
1406
1407   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1408
1409   unsigned char* buffer = new unsigned char[notehdrsz];
1410   memset(buffer, 0, notehdrsz);
1411
1412   bool is_big_endian = parameters->target().is_big_endian();
1413
1414   if (size == 32)
1415     {
1416       if (!is_big_endian)
1417         {
1418           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1419           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1420           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1421         }
1422       else
1423         {
1424           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1425           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1426           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1427         }
1428     }
1429   else if (size == 64)
1430     {
1431       if (!is_big_endian)
1432         {
1433           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1434           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1435           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1436         }
1437       else
1438         {
1439           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1440           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1441           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1442         }
1443     }
1444   else
1445     gold_unreachable();
1446
1447   memcpy(buffer + 3 * (size / 8), name, namesz);
1448
1449   elfcpp::Elf_Xword flags = 0;
1450   if (allocate)
1451     flags = elfcpp::SHF_ALLOC;
1452   Output_section* os = this->choose_output_section(NULL, section_name,
1453                                                    elfcpp::SHT_NOTE,
1454                                                    flags, false);
1455   if (os == NULL)
1456     return NULL;
1457
1458   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1459                                                            size / 8,
1460                                                            "** note header");
1461   os->add_output_section_data(posd);
1462
1463   *trailing_padding = aligned_descsz - descsz;
1464
1465   return os;
1466 }
1467
1468 // For an executable or shared library, create a note to record the
1469 // version of gold used to create the binary.
1470
1471 void
1472 Layout::create_gold_note()
1473 {
1474   if (parameters->options().relocatable())
1475     return;
1476
1477   std::string desc = std::string("gold ") + gold::get_version_string();
1478
1479   size_t trailing_padding;
1480   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1481                                          ".note.gnu.gold-version", desc.size(),
1482                                          false, &trailing_padding);
1483   if (os == NULL)
1484     return;
1485
1486   Output_section_data* posd = new Output_data_const(desc, 4);
1487   os->add_output_section_data(posd);
1488
1489   if (trailing_padding > 0)
1490     {
1491       posd = new Output_data_zero_fill(trailing_padding, 0);
1492       os->add_output_section_data(posd);
1493     }
1494 }
1495
1496 // Record whether the stack should be executable.  This can be set
1497 // from the command line using the -z execstack or -z noexecstack
1498 // options.  Otherwise, if any input file has a .note.GNU-stack
1499 // section with the SHF_EXECINSTR flag set, the stack should be
1500 // executable.  Otherwise, if at least one input file a
1501 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1502 // section, we use the target default for whether the stack should be
1503 // executable.  Otherwise, we don't generate a stack note.  When
1504 // generating a object file, we create a .note.GNU-stack section with
1505 // the appropriate marking.  When generating an executable or shared
1506 // library, we create a PT_GNU_STACK segment.
1507
1508 void
1509 Layout::create_executable_stack_info()
1510 {
1511   bool is_stack_executable;
1512   if (parameters->options().is_execstack_set())
1513     is_stack_executable = parameters->options().is_stack_executable();
1514   else if (!this->input_with_gnu_stack_note_)
1515     return;
1516   else
1517     {
1518       if (this->input_requires_executable_stack_)
1519         is_stack_executable = true;
1520       else if (this->input_without_gnu_stack_note_)
1521         is_stack_executable =
1522           parameters->target().is_default_stack_executable();
1523       else
1524         is_stack_executable = false;
1525     }
1526
1527   if (parameters->options().relocatable())
1528     {
1529       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1530       elfcpp::Elf_Xword flags = 0;
1531       if (is_stack_executable)
1532         flags |= elfcpp::SHF_EXECINSTR;
1533       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1534     }
1535   else
1536     {
1537       if (this->script_options_->saw_phdrs_clause())
1538         return;
1539       int flags = elfcpp::PF_R | elfcpp::PF_W;
1540       if (is_stack_executable)
1541         flags |= elfcpp::PF_X;
1542       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1543     }
1544 }
1545
1546 // If --build-id was used, set up the build ID note.
1547
1548 void
1549 Layout::create_build_id()
1550 {
1551   if (!parameters->options().user_set_build_id())
1552     return;
1553
1554   const char* style = parameters->options().build_id();
1555   if (strcmp(style, "none") == 0)
1556     return;
1557
1558   // Set DESCSZ to the size of the note descriptor.  When possible,
1559   // set DESC to the note descriptor contents.
1560   size_t descsz;
1561   std::string desc;
1562   if (strcmp(style, "md5") == 0)
1563     descsz = 128 / 8;
1564   else if (strcmp(style, "sha1") == 0)
1565     descsz = 160 / 8;
1566   else if (strcmp(style, "uuid") == 0)
1567     {
1568       const size_t uuidsz = 128 / 8;
1569
1570       char buffer[uuidsz];
1571       memset(buffer, 0, uuidsz);
1572
1573       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1574       if (descriptor < 0)
1575         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1576                    strerror(errno));
1577       else
1578         {
1579           ssize_t got = ::read(descriptor, buffer, uuidsz);
1580           release_descriptor(descriptor, true);
1581           if (got < 0)
1582             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1583           else if (static_cast<size_t>(got) != uuidsz)
1584             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1585                        uuidsz, got);
1586         }
1587
1588       desc.assign(buffer, uuidsz);
1589       descsz = uuidsz;
1590     }
1591   else if (strncmp(style, "0x", 2) == 0)
1592     {
1593       hex_init();
1594       const char* p = style + 2;
1595       while (*p != '\0')
1596         {
1597           if (hex_p(p[0]) && hex_p(p[1]))
1598             {
1599               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1600               desc += c;
1601               p += 2;
1602             }
1603           else if (*p == '-' || *p == ':')
1604             ++p;
1605           else
1606             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1607                        style);
1608         }
1609       descsz = desc.size();
1610     }
1611   else
1612     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1613
1614   // Create the note.
1615   size_t trailing_padding;
1616   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1617                                          ".note.gnu.build-id", descsz, true,
1618                                          &trailing_padding);
1619   if (os == NULL)
1620     return;
1621
1622   if (!desc.empty())
1623     {
1624       // We know the value already, so we fill it in now.
1625       gold_assert(desc.size() == descsz);
1626
1627       Output_section_data* posd = new Output_data_const(desc, 4);
1628       os->add_output_section_data(posd);
1629
1630       if (trailing_padding != 0)
1631         {
1632           posd = new Output_data_zero_fill(trailing_padding, 0);
1633           os->add_output_section_data(posd);
1634         }
1635     }
1636   else
1637     {
1638       // We need to compute a checksum after we have completed the
1639       // link.
1640       gold_assert(trailing_padding == 0);
1641       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1642       os->add_output_section_data(this->build_id_note_);
1643     }
1644 }
1645
1646 // If we have both .stabXX and .stabXXstr sections, then the sh_link
1647 // field of the former should point to the latter.  I'm not sure who
1648 // started this, but the GNU linker does it, and some tools depend
1649 // upon it.
1650
1651 void
1652 Layout::link_stabs_sections()
1653 {
1654   if (!this->have_stabstr_section_)
1655     return;
1656
1657   for (Section_list::iterator p = this->section_list_.begin();
1658        p != this->section_list_.end();
1659        ++p)
1660     {
1661       if ((*p)->type() != elfcpp::SHT_STRTAB)
1662         continue;
1663
1664       const char* name = (*p)->name();
1665       if (strncmp(name, ".stab", 5) != 0)
1666         continue;
1667
1668       size_t len = strlen(name);
1669       if (strcmp(name + len - 3, "str") != 0)
1670         continue;
1671
1672       std::string stab_name(name, len - 3);
1673       Output_section* stab_sec;
1674       stab_sec = this->find_output_section(stab_name.c_str());
1675       if (stab_sec != NULL)
1676         stab_sec->set_link_section(*p);
1677     }
1678 }
1679
1680 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1681 // for the next run of incremental linking to check what has changed.
1682
1683 void
1684 Layout::create_incremental_info_sections()
1685 {
1686   gold_assert(this->incremental_inputs_ != NULL);
1687
1688   // Add the .gnu_incremental_inputs section.
1689   const char *incremental_inputs_name =
1690     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
1691   Output_section* inputs_os =
1692     this->make_output_section(incremental_inputs_name,
1693                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0);
1694   Output_section_data* posd =
1695       this->incremental_inputs_->create_incremental_inputs_section_data();
1696   inputs_os->add_output_section_data(posd);
1697   
1698   // Add the .gnu_incremental_strtab section.
1699   const char *incremental_strtab_name =
1700     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
1701   Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
1702                                                         elfcpp::SHT_STRTAB,
1703                                                         0);
1704   Output_data_strtab* strtab_data =
1705     new Output_data_strtab(this->incremental_inputs_->get_stringpool());
1706   strtab_os->add_output_section_data(strtab_data);
1707   
1708   inputs_os->set_link_section(strtab_data);
1709 }
1710
1711 // Return whether SEG1 should be before SEG2 in the output file.  This
1712 // is based entirely on the segment type and flags.  When this is
1713 // called the segment addresses has normally not yet been set.
1714
1715 bool
1716 Layout::segment_precedes(const Output_segment* seg1,
1717                          const Output_segment* seg2)
1718 {
1719   elfcpp::Elf_Word type1 = seg1->type();
1720   elfcpp::Elf_Word type2 = seg2->type();
1721
1722   // The single PT_PHDR segment is required to precede any loadable
1723   // segment.  We simply make it always first.
1724   if (type1 == elfcpp::PT_PHDR)
1725     {
1726       gold_assert(type2 != elfcpp::PT_PHDR);
1727       return true;
1728     }
1729   if (type2 == elfcpp::PT_PHDR)
1730     return false;
1731
1732   // The single PT_INTERP segment is required to precede any loadable
1733   // segment.  We simply make it always second.
1734   if (type1 == elfcpp::PT_INTERP)
1735     {
1736       gold_assert(type2 != elfcpp::PT_INTERP);
1737       return true;
1738     }
1739   if (type2 == elfcpp::PT_INTERP)
1740     return false;
1741
1742   // We then put PT_LOAD segments before any other segments.
1743   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1744     return true;
1745   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1746     return false;
1747
1748   // We put the PT_TLS segment last except for the PT_GNU_RELRO
1749   // segment, because that is where the dynamic linker expects to find
1750   // it (this is just for efficiency; other positions would also work
1751   // correctly).
1752   if (type1 == elfcpp::PT_TLS
1753       && type2 != elfcpp::PT_TLS
1754       && type2 != elfcpp::PT_GNU_RELRO)
1755     return false;
1756   if (type2 == elfcpp::PT_TLS
1757       && type1 != elfcpp::PT_TLS
1758       && type1 != elfcpp::PT_GNU_RELRO)
1759     return true;
1760
1761   // We put the PT_GNU_RELRO segment last, because that is where the
1762   // dynamic linker expects to find it (as with PT_TLS, this is just
1763   // for efficiency).
1764   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1765     return false;
1766   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1767     return true;
1768
1769   const elfcpp::Elf_Word flags1 = seg1->flags();
1770   const elfcpp::Elf_Word flags2 = seg2->flags();
1771
1772   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1773   // by the numeric segment type and flags values.  There should not
1774   // be more than one segment with the same type and flags.
1775   if (type1 != elfcpp::PT_LOAD)
1776     {
1777       if (type1 != type2)
1778         return type1 < type2;
1779       gold_assert(flags1 != flags2);
1780       return flags1 < flags2;
1781     }
1782
1783   // If the addresses are set already, sort by load address.
1784   if (seg1->are_addresses_set())
1785     {
1786       if (!seg2->are_addresses_set())
1787         return true;
1788
1789       unsigned int section_count1 = seg1->output_section_count();
1790       unsigned int section_count2 = seg2->output_section_count();
1791       if (section_count1 == 0 && section_count2 > 0)
1792         return true;
1793       if (section_count1 > 0 && section_count2 == 0)
1794         return false;
1795
1796       uint64_t paddr1 = seg1->first_section_load_address();
1797       uint64_t paddr2 = seg2->first_section_load_address();
1798       if (paddr1 != paddr2)
1799         return paddr1 < paddr2;
1800     }
1801   else if (seg2->are_addresses_set())
1802     return false;
1803
1804   // A segment which holds large data comes after a segment which does
1805   // not hold large data.
1806   if (seg1->is_large_data_segment())
1807     {
1808       if (!seg2->is_large_data_segment())
1809         return false;
1810     }
1811   else if (seg2->is_large_data_segment())
1812     return true;
1813
1814   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
1815   // segments come before writable segments.  Then writable segments
1816   // with data come before writable segments without data.  Then
1817   // executable segments come before non-executable segments.  Then
1818   // the unlikely case of a non-readable segment comes before the
1819   // normal case of a readable segment.  If there are multiple
1820   // segments with the same type and flags, we require that the
1821   // address be set, and we sort by virtual address and then physical
1822   // address.
1823   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1824     return (flags1 & elfcpp::PF_W) == 0;
1825   if ((flags1 & elfcpp::PF_W) != 0
1826       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1827     return seg1->has_any_data_sections();
1828   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1829     return (flags1 & elfcpp::PF_X) != 0;
1830   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1831     return (flags1 & elfcpp::PF_R) == 0;
1832
1833   // We shouldn't get here--we shouldn't create segments which we
1834   // can't distinguish.
1835   gold_unreachable();
1836 }
1837
1838 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
1839
1840 static off_t
1841 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
1842 {
1843   uint64_t unsigned_off = off;
1844   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1845                           | (addr & (abi_pagesize - 1)));
1846   if (aligned_off < unsigned_off)
1847     aligned_off += abi_pagesize;
1848   return aligned_off;
1849 }
1850
1851 // Set the file offsets of all the segments, and all the sections they
1852 // contain.  They have all been created.  LOAD_SEG must be be laid out
1853 // first.  Return the offset of the data to follow.
1854
1855 off_t
1856 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1857                             unsigned int *pshndx)
1858 {
1859   // Sort them into the final order.
1860   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1861             Layout::Compare_segments());
1862
1863   // Find the PT_LOAD segments, and set their addresses and offsets
1864   // and their section's addresses and offsets.
1865   uint64_t addr;
1866   if (parameters->options().user_set_Ttext())
1867     addr = parameters->options().Ttext();
1868   else if (parameters->options().shared())
1869     addr = 0;
1870   else
1871     addr = target->default_text_segment_address();
1872   off_t off = 0;
1873
1874   // If LOAD_SEG is NULL, then the file header and segment headers
1875   // will not be loadable.  But they still need to be at offset 0 in
1876   // the file.  Set their offsets now.
1877   if (load_seg == NULL)
1878     {
1879       for (Data_list::iterator p = this->special_output_list_.begin();
1880            p != this->special_output_list_.end();
1881            ++p)
1882         {
1883           off = align_address(off, (*p)->addralign());
1884           (*p)->set_address_and_file_offset(0, off);
1885           off += (*p)->data_size();
1886         }
1887     }
1888
1889   const bool check_sections = parameters->options().check_sections();
1890   Output_segment* last_load_segment = NULL;
1891
1892   bool was_readonly = false;
1893   for (Segment_list::iterator p = this->segment_list_.begin();
1894        p != this->segment_list_.end();
1895        ++p)
1896     {
1897       if ((*p)->type() == elfcpp::PT_LOAD)
1898         {
1899           if (load_seg != NULL && load_seg != *p)
1900             gold_unreachable();
1901           load_seg = NULL;
1902
1903           bool are_addresses_set = (*p)->are_addresses_set();
1904           if (are_addresses_set)
1905             {
1906               // When it comes to setting file offsets, we care about
1907               // the physical address.
1908               addr = (*p)->paddr();
1909             }
1910           else if (parameters->options().user_set_Tdata()
1911                    && ((*p)->flags() & elfcpp::PF_W) != 0
1912                    && (!parameters->options().user_set_Tbss()
1913                        || (*p)->has_any_data_sections()))
1914             {
1915               addr = parameters->options().Tdata();
1916               are_addresses_set = true;
1917             }
1918           else if (parameters->options().user_set_Tbss()
1919                    && ((*p)->flags() & elfcpp::PF_W) != 0
1920                    && !(*p)->has_any_data_sections())
1921             {
1922               addr = parameters->options().Tbss();
1923               are_addresses_set = true;
1924             }
1925
1926           uint64_t orig_addr = addr;
1927           uint64_t orig_off = off;
1928
1929           uint64_t aligned_addr = 0;
1930           uint64_t abi_pagesize = target->abi_pagesize();
1931           uint64_t common_pagesize = target->common_pagesize();
1932
1933           if (!parameters->options().nmagic()
1934               && !parameters->options().omagic())
1935             (*p)->set_minimum_p_align(common_pagesize);
1936
1937           if (!are_addresses_set)
1938             {
1939               // If the last segment was readonly, and this one is
1940               // not, then skip the address forward one page,
1941               // maintaining the same position within the page.  This
1942               // lets us store both segments overlapping on a single
1943               // page in the file, but the loader will put them on
1944               // different pages in memory.
1945
1946               addr = align_address(addr, (*p)->maximum_alignment());
1947               aligned_addr = addr;
1948
1949               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1950                 {
1951                   if ((addr & (abi_pagesize - 1)) != 0)
1952                     addr = addr + abi_pagesize;
1953                 }
1954
1955               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1956             }
1957
1958           if (!parameters->options().nmagic()
1959               && !parameters->options().omagic())
1960             off = align_file_offset(off, addr, abi_pagesize);
1961
1962           unsigned int shndx_hold = *pshndx;
1963           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1964                                                           &off, pshndx);
1965
1966           // Now that we know the size of this segment, we may be able
1967           // to save a page in memory, at the cost of wasting some
1968           // file space, by instead aligning to the start of a new
1969           // page.  Here we use the real machine page size rather than
1970           // the ABI mandated page size.
1971
1972           if (!are_addresses_set && aligned_addr != addr)
1973             {
1974               uint64_t first_off = (common_pagesize
1975                                     - (aligned_addr
1976                                        & (common_pagesize - 1)));
1977               uint64_t last_off = new_addr & (common_pagesize - 1);
1978               if (first_off > 0
1979                   && last_off > 0
1980                   && ((aligned_addr & ~ (common_pagesize - 1))
1981                       != (new_addr & ~ (common_pagesize - 1)))
1982                   && first_off + last_off <= common_pagesize)
1983                 {
1984                   *pshndx = shndx_hold;
1985                   addr = align_address(aligned_addr, common_pagesize);
1986                   addr = align_address(addr, (*p)->maximum_alignment());
1987                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1988                   off = align_file_offset(off, addr, abi_pagesize);
1989                   new_addr = (*p)->set_section_addresses(this, true, addr,
1990                                                          &off, pshndx);
1991                 }
1992             }
1993
1994           addr = new_addr;
1995
1996           if (((*p)->flags() & elfcpp::PF_W) == 0)
1997             was_readonly = true;
1998
1999           // Implement --check-sections.  We know that the segments
2000           // are sorted by LMA.
2001           if (check_sections && last_load_segment != NULL)
2002             {
2003               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2004               if (last_load_segment->paddr() + last_load_segment->memsz()
2005                   > (*p)->paddr())
2006                 {
2007                   unsigned long long lb1 = last_load_segment->paddr();
2008                   unsigned long long le1 = lb1 + last_load_segment->memsz();
2009                   unsigned long long lb2 = (*p)->paddr();
2010                   unsigned long long le2 = lb2 + (*p)->memsz();
2011                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2012                                "[0x%llx -> 0x%llx]"),
2013                              lb1, le1, lb2, le2);
2014                 }
2015             }
2016           last_load_segment = *p;
2017         }
2018     }
2019
2020   // Handle the non-PT_LOAD segments, setting their offsets from their
2021   // section's offsets.
2022   for (Segment_list::iterator p = this->segment_list_.begin();
2023        p != this->segment_list_.end();
2024        ++p)
2025     {
2026       if ((*p)->type() != elfcpp::PT_LOAD)
2027         (*p)->set_offset();
2028     }
2029
2030   // Set the TLS offsets for each section in the PT_TLS segment.
2031   if (this->tls_segment_ != NULL)
2032     this->tls_segment_->set_tls_offsets();
2033
2034   return off;
2035 }
2036
2037 // Set the offsets of all the allocated sections when doing a
2038 // relocatable link.  This does the same jobs as set_segment_offsets,
2039 // only for a relocatable link.
2040
2041 off_t
2042 Layout::set_relocatable_section_offsets(Output_data* file_header,
2043                                         unsigned int *pshndx)
2044 {
2045   off_t off = 0;
2046
2047   file_header->set_address_and_file_offset(0, 0);
2048   off += file_header->data_size();
2049
2050   for (Section_list::iterator p = this->section_list_.begin();
2051        p != this->section_list_.end();
2052        ++p)
2053     {
2054       // We skip unallocated sections here, except that group sections
2055       // have to come first.
2056       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2057           && (*p)->type() != elfcpp::SHT_GROUP)
2058         continue;
2059
2060       off = align_address(off, (*p)->addralign());
2061
2062       // The linker script might have set the address.
2063       if (!(*p)->is_address_valid())
2064         (*p)->set_address(0);
2065       (*p)->set_file_offset(off);
2066       (*p)->finalize_data_size();
2067       off += (*p)->data_size();
2068
2069       (*p)->set_out_shndx(*pshndx);
2070       ++*pshndx;
2071     }
2072
2073   return off;
2074 }
2075
2076 // Set the file offset of all the sections not associated with a
2077 // segment.
2078
2079 off_t
2080 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2081 {
2082   for (Section_list::iterator p = this->unattached_section_list_.begin();
2083        p != this->unattached_section_list_.end();
2084        ++p)
2085     {
2086       // The symtab section is handled in create_symtab_sections.
2087       if (*p == this->symtab_section_)
2088         continue;
2089
2090       // If we've already set the data size, don't set it again.
2091       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2092         continue;
2093
2094       if (pass == BEFORE_INPUT_SECTIONS_PASS
2095           && (*p)->requires_postprocessing())
2096         {
2097           (*p)->create_postprocessing_buffer();
2098           this->any_postprocessing_sections_ = true;
2099         }
2100
2101       if (pass == BEFORE_INPUT_SECTIONS_PASS
2102           && (*p)->after_input_sections())
2103         continue;
2104       else if (pass == POSTPROCESSING_SECTIONS_PASS
2105                && (!(*p)->after_input_sections()
2106                    || (*p)->type() == elfcpp::SHT_STRTAB))
2107         continue;
2108       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2109                && (!(*p)->after_input_sections()
2110                    || (*p)->type() != elfcpp::SHT_STRTAB))
2111         continue;
2112
2113       off = align_address(off, (*p)->addralign());
2114       (*p)->set_file_offset(off);
2115       (*p)->finalize_data_size();
2116       off += (*p)->data_size();
2117
2118       // At this point the name must be set.
2119       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2120         this->namepool_.add((*p)->name(), false, NULL);
2121     }
2122   return off;
2123 }
2124
2125 // Set the section indexes of all the sections not associated with a
2126 // segment.
2127
2128 unsigned int
2129 Layout::set_section_indexes(unsigned int shndx)
2130 {
2131   for (Section_list::iterator p = this->unattached_section_list_.begin();
2132        p != this->unattached_section_list_.end();
2133        ++p)
2134     {
2135       if (!(*p)->has_out_shndx())
2136         {
2137           (*p)->set_out_shndx(shndx);
2138           ++shndx;
2139         }
2140     }
2141   return shndx;
2142 }
2143
2144 // Set the section addresses according to the linker script.  This is
2145 // only called when we see a SECTIONS clause.  This returns the
2146 // program segment which should hold the file header and segment
2147 // headers, if any.  It will return NULL if they should not be in a
2148 // segment.
2149
2150 Output_segment*
2151 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2152 {
2153   Script_sections* ss = this->script_options_->script_sections();
2154   gold_assert(ss->saw_sections_clause());
2155
2156   // Place each orphaned output section in the script.
2157   for (Section_list::iterator p = this->section_list_.begin();
2158        p != this->section_list_.end();
2159        ++p)
2160     {
2161       if (!(*p)->found_in_sections_clause())
2162         ss->place_orphan(*p);
2163     }
2164
2165   return this->script_options_->set_section_addresses(symtab, this);
2166 }
2167
2168 // Count the local symbols in the regular symbol table and the dynamic
2169 // symbol table, and build the respective string pools.
2170
2171 void
2172 Layout::count_local_symbols(const Task* task,
2173                             const Input_objects* input_objects)
2174 {
2175   // First, figure out an upper bound on the number of symbols we'll
2176   // be inserting into each pool.  This helps us create the pools with
2177   // the right size, to avoid unnecessary hashtable resizing.
2178   unsigned int symbol_count = 0;
2179   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2180        p != input_objects->relobj_end();
2181        ++p)
2182     symbol_count += (*p)->local_symbol_count();
2183
2184   // Go from "upper bound" to "estimate."  We overcount for two
2185   // reasons: we double-count symbols that occur in more than one
2186   // object file, and we count symbols that are dropped from the
2187   // output.  Add it all together and assume we overcount by 100%.
2188   symbol_count /= 2;
2189
2190   // We assume all symbols will go into both the sympool and dynpool.
2191   this->sympool_.reserve(symbol_count);
2192   this->dynpool_.reserve(symbol_count);
2193
2194   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2195        p != input_objects->relobj_end();
2196        ++p)
2197     {
2198       Task_lock_obj<Object> tlo(task, *p);
2199       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2200     }
2201 }
2202
2203 // Create the symbol table sections.  Here we also set the final
2204 // values of the symbols.  At this point all the loadable sections are
2205 // fully laid out.  SHNUM is the number of sections so far.
2206
2207 void
2208 Layout::create_symtab_sections(const Input_objects* input_objects,
2209                                Symbol_table* symtab,
2210                                unsigned int shnum,
2211                                off_t* poff)
2212 {
2213   int symsize;
2214   unsigned int align;
2215   if (parameters->target().get_size() == 32)
2216     {
2217       symsize = elfcpp::Elf_sizes<32>::sym_size;
2218       align = 4;
2219     }
2220   else if (parameters->target().get_size() == 64)
2221     {
2222       symsize = elfcpp::Elf_sizes<64>::sym_size;
2223       align = 8;
2224     }
2225   else
2226     gold_unreachable();
2227
2228   off_t off = *poff;
2229   off = align_address(off, align);
2230   off_t startoff = off;
2231
2232   // Save space for the dummy symbol at the start of the section.  We
2233   // never bother to write this out--it will just be left as zero.
2234   off += symsize;
2235   unsigned int local_symbol_index = 1;
2236
2237   // Add STT_SECTION symbols for each Output section which needs one.
2238   for (Section_list::iterator p = this->section_list_.begin();
2239        p != this->section_list_.end();
2240        ++p)
2241     {
2242       if (!(*p)->needs_symtab_index())
2243         (*p)->set_symtab_index(-1U);
2244       else
2245         {
2246           (*p)->set_symtab_index(local_symbol_index);
2247           ++local_symbol_index;
2248           off += symsize;
2249         }
2250     }
2251
2252   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2253        p != input_objects->relobj_end();
2254        ++p)
2255     {
2256       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2257                                                         off);
2258       off += (index - local_symbol_index) * symsize;
2259       local_symbol_index = index;
2260     }
2261
2262   unsigned int local_symcount = local_symbol_index;
2263   gold_assert(local_symcount * symsize == off - startoff);
2264
2265   off_t dynoff;
2266   size_t dyn_global_index;
2267   size_t dyncount;
2268   if (this->dynsym_section_ == NULL)
2269     {
2270       dynoff = 0;
2271       dyn_global_index = 0;
2272       dyncount = 0;
2273     }
2274   else
2275     {
2276       dyn_global_index = this->dynsym_section_->info();
2277       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2278       dynoff = this->dynsym_section_->offset() + locsize;
2279       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2280       gold_assert(static_cast<off_t>(dyncount * symsize)
2281                   == this->dynsym_section_->data_size() - locsize);
2282     }
2283
2284   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2285                          &this->sympool_, &local_symcount);
2286
2287   if (!parameters->options().strip_all())
2288     {
2289       this->sympool_.set_string_offsets();
2290
2291       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2292       Output_section* osymtab = this->make_output_section(symtab_name,
2293                                                           elfcpp::SHT_SYMTAB,
2294                                                           0);
2295       this->symtab_section_ = osymtab;
2296
2297       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2298                                                              align,
2299                                                              "** symtab");
2300       osymtab->add_output_section_data(pos);
2301
2302       // We generate a .symtab_shndx section if we have more than
2303       // SHN_LORESERVE sections.  Technically it is possible that we
2304       // don't need one, because it is possible that there are no
2305       // symbols in any of sections with indexes larger than
2306       // SHN_LORESERVE.  That is probably unusual, though, and it is
2307       // easier to always create one than to compute section indexes
2308       // twice (once here, once when writing out the symbols).
2309       if (shnum >= elfcpp::SHN_LORESERVE)
2310         {
2311           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2312                                                                false, NULL);
2313           Output_section* osymtab_xindex =
2314             this->make_output_section(symtab_xindex_name,
2315                                       elfcpp::SHT_SYMTAB_SHNDX, 0);
2316
2317           size_t symcount = (off - startoff) / symsize;
2318           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2319
2320           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2321
2322           osymtab_xindex->set_link_section(osymtab);
2323           osymtab_xindex->set_addralign(4);
2324           osymtab_xindex->set_entsize(4);
2325
2326           osymtab_xindex->set_after_input_sections();
2327
2328           // This tells the driver code to wait until the symbol table
2329           // has written out before writing out the postprocessing
2330           // sections, including the .symtab_shndx section.
2331           this->any_postprocessing_sections_ = true;
2332         }
2333
2334       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2335       Output_section* ostrtab = this->make_output_section(strtab_name,
2336                                                           elfcpp::SHT_STRTAB,
2337                                                           0);
2338
2339       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2340       ostrtab->add_output_section_data(pstr);
2341
2342       osymtab->set_file_offset(startoff);
2343       osymtab->finalize_data_size();
2344       osymtab->set_link_section(ostrtab);
2345       osymtab->set_info(local_symcount);
2346       osymtab->set_entsize(symsize);
2347
2348       *poff = off;
2349     }
2350 }
2351
2352 // Create the .shstrtab section, which holds the names of the
2353 // sections.  At the time this is called, we have created all the
2354 // output sections except .shstrtab itself.
2355
2356 Output_section*
2357 Layout::create_shstrtab()
2358 {
2359   // FIXME: We don't need to create a .shstrtab section if we are
2360   // stripping everything.
2361
2362   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2363
2364   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2365
2366   // We can't write out this section until we've set all the section
2367   // names, and we don't set the names of compressed output sections
2368   // until relocations are complete.
2369   os->set_after_input_sections();
2370
2371   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2372   os->add_output_section_data(posd);
2373
2374   return os;
2375 }
2376
2377 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2378 // offset.
2379
2380 void
2381 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2382 {
2383   Output_section_headers* oshdrs;
2384   oshdrs = new Output_section_headers(this,
2385                                       &this->segment_list_,
2386                                       &this->section_list_,
2387                                       &this->unattached_section_list_,
2388                                       &this->namepool_,
2389                                       shstrtab_section);
2390   off_t off = align_address(*poff, oshdrs->addralign());
2391   oshdrs->set_address_and_file_offset(0, off);
2392   off += oshdrs->data_size();
2393   *poff = off;
2394   this->section_headers_ = oshdrs;
2395 }
2396
2397 // Count the allocated sections.
2398
2399 size_t
2400 Layout::allocated_output_section_count() const
2401 {
2402   size_t section_count = 0;
2403   for (Segment_list::const_iterator p = this->segment_list_.begin();
2404        p != this->segment_list_.end();
2405        ++p)
2406     section_count += (*p)->output_section_count();
2407   return section_count;
2408 }
2409
2410 // Create the dynamic symbol table.
2411
2412 void
2413 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2414                               Symbol_table* symtab,
2415                               Output_section **pdynstr,
2416                               unsigned int* plocal_dynamic_count,
2417                               std::vector<Symbol*>* pdynamic_symbols,
2418                               Versions* pversions)
2419 {
2420   // Count all the symbols in the dynamic symbol table, and set the
2421   // dynamic symbol indexes.
2422
2423   // Skip symbol 0, which is always all zeroes.
2424   unsigned int index = 1;
2425
2426   // Add STT_SECTION symbols for each Output section which needs one.
2427   for (Section_list::iterator p = this->section_list_.begin();
2428        p != this->section_list_.end();
2429        ++p)
2430     {
2431       if (!(*p)->needs_dynsym_index())
2432         (*p)->set_dynsym_index(-1U);
2433       else
2434         {
2435           (*p)->set_dynsym_index(index);
2436           ++index;
2437         }
2438     }
2439
2440   // Count the local symbols that need to go in the dynamic symbol table,
2441   // and set the dynamic symbol indexes.
2442   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2443        p != input_objects->relobj_end();
2444        ++p)
2445     {
2446       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2447       index = new_index;
2448     }
2449
2450   unsigned int local_symcount = index;
2451   *plocal_dynamic_count = local_symcount;
2452
2453   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2454                                      &this->dynpool_, pversions);
2455
2456   int symsize;
2457   unsigned int align;
2458   const int size = parameters->target().get_size();
2459   if (size == 32)
2460     {
2461       symsize = elfcpp::Elf_sizes<32>::sym_size;
2462       align = 4;
2463     }
2464   else if (size == 64)
2465     {
2466       symsize = elfcpp::Elf_sizes<64>::sym_size;
2467       align = 8;
2468     }
2469   else
2470     gold_unreachable();
2471
2472   // Create the dynamic symbol table section.
2473
2474   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2475                                                        elfcpp::SHT_DYNSYM,
2476                                                        elfcpp::SHF_ALLOC,
2477                                                        false);
2478
2479   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2480                                                            align,
2481                                                            "** dynsym");
2482   dynsym->add_output_section_data(odata);
2483
2484   dynsym->set_info(local_symcount);
2485   dynsym->set_entsize(symsize);
2486   dynsym->set_addralign(align);
2487
2488   this->dynsym_section_ = dynsym;
2489
2490   Output_data_dynamic* const odyn = this->dynamic_data_;
2491   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2492   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2493
2494   // If there are more than SHN_LORESERVE allocated sections, we
2495   // create a .dynsym_shndx section.  It is possible that we don't
2496   // need one, because it is possible that there are no dynamic
2497   // symbols in any of the sections with indexes larger than
2498   // SHN_LORESERVE.  This is probably unusual, though, and at this
2499   // time we don't know the actual section indexes so it is
2500   // inconvenient to check.
2501   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2502     {
2503       Output_section* dynsym_xindex =
2504         this->choose_output_section(NULL, ".dynsym_shndx",
2505                                     elfcpp::SHT_SYMTAB_SHNDX,
2506                                     elfcpp::SHF_ALLOC,
2507                                     false);
2508
2509       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2510
2511       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2512
2513       dynsym_xindex->set_link_section(dynsym);
2514       dynsym_xindex->set_addralign(4);
2515       dynsym_xindex->set_entsize(4);
2516
2517       dynsym_xindex->set_after_input_sections();
2518
2519       // This tells the driver code to wait until the symbol table has
2520       // written out before writing out the postprocessing sections,
2521       // including the .dynsym_shndx section.
2522       this->any_postprocessing_sections_ = true;
2523     }
2524
2525   // Create the dynamic string table section.
2526
2527   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2528                                                        elfcpp::SHT_STRTAB,
2529                                                        elfcpp::SHF_ALLOC,
2530                                                        false);
2531
2532   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2533   dynstr->add_output_section_data(strdata);
2534
2535   dynsym->set_link_section(dynstr);
2536   this->dynamic_section_->set_link_section(dynstr);
2537
2538   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2539   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2540
2541   *pdynstr = dynstr;
2542
2543   // Create the hash tables.
2544
2545   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2546       || strcmp(parameters->options().hash_style(), "both") == 0)
2547     {
2548       unsigned char* phash;
2549       unsigned int hashlen;
2550       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2551                                     &phash, &hashlen);
2552
2553       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2554                                                             elfcpp::SHT_HASH,
2555                                                             elfcpp::SHF_ALLOC,
2556                                                             false);
2557
2558       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2559                                                                    hashlen,
2560                                                                    align,
2561                                                                    "** hash");
2562       hashsec->add_output_section_data(hashdata);
2563
2564       hashsec->set_link_section(dynsym);
2565       hashsec->set_entsize(4);
2566
2567       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2568     }
2569
2570   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2571       || strcmp(parameters->options().hash_style(), "both") == 0)
2572     {
2573       unsigned char* phash;
2574       unsigned int hashlen;
2575       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2576                                     &phash, &hashlen);
2577
2578       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2579                                                             elfcpp::SHT_GNU_HASH,
2580                                                             elfcpp::SHF_ALLOC,
2581                                                             false);
2582
2583       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2584                                                                    hashlen,
2585                                                                    align,
2586                                                                    "** hash");
2587       hashsec->add_output_section_data(hashdata);
2588
2589       hashsec->set_link_section(dynsym);
2590       hashsec->set_entsize(4);
2591
2592       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2593     }
2594 }
2595
2596 // Assign offsets to each local portion of the dynamic symbol table.
2597
2598 void
2599 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2600 {
2601   Output_section* dynsym = this->dynsym_section_;
2602   gold_assert(dynsym != NULL);
2603
2604   off_t off = dynsym->offset();
2605
2606   // Skip the dummy symbol at the start of the section.
2607   off += dynsym->entsize();
2608
2609   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2610        p != input_objects->relobj_end();
2611        ++p)
2612     {
2613       unsigned int count = (*p)->set_local_dynsym_offset(off);
2614       off += count * dynsym->entsize();
2615     }
2616 }
2617
2618 // Create the version sections.
2619
2620 void
2621 Layout::create_version_sections(const Versions* versions,
2622                                 const Symbol_table* symtab,
2623                                 unsigned int local_symcount,
2624                                 const std::vector<Symbol*>& dynamic_symbols,
2625                                 const Output_section* dynstr)
2626 {
2627   if (!versions->any_defs() && !versions->any_needs())
2628     return;
2629
2630   switch (parameters->size_and_endianness())
2631     {
2632 #ifdef HAVE_TARGET_32_LITTLE
2633     case Parameters::TARGET_32_LITTLE:
2634       this->sized_create_version_sections<32, false>(versions, symtab,
2635                                                      local_symcount,
2636                                                      dynamic_symbols, dynstr);
2637       break;
2638 #endif
2639 #ifdef HAVE_TARGET_32_BIG
2640     case Parameters::TARGET_32_BIG:
2641       this->sized_create_version_sections<32, true>(versions, symtab,
2642                                                     local_symcount,
2643                                                     dynamic_symbols, dynstr);
2644       break;
2645 #endif
2646 #ifdef HAVE_TARGET_64_LITTLE
2647     case Parameters::TARGET_64_LITTLE:
2648       this->sized_create_version_sections<64, false>(versions, symtab,
2649                                                      local_symcount,
2650                                                      dynamic_symbols, dynstr);
2651       break;
2652 #endif
2653 #ifdef HAVE_TARGET_64_BIG
2654     case Parameters::TARGET_64_BIG:
2655       this->sized_create_version_sections<64, true>(versions, symtab,
2656                                                     local_symcount,
2657                                                     dynamic_symbols, dynstr);
2658       break;
2659 #endif
2660     default:
2661       gold_unreachable();
2662     }
2663 }
2664
2665 // Create the version sections, sized version.
2666
2667 template<int size, bool big_endian>
2668 void
2669 Layout::sized_create_version_sections(
2670     const Versions* versions,
2671     const Symbol_table* symtab,
2672     unsigned int local_symcount,
2673     const std::vector<Symbol*>& dynamic_symbols,
2674     const Output_section* dynstr)
2675 {
2676   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2677                                                      elfcpp::SHT_GNU_versym,
2678                                                      elfcpp::SHF_ALLOC,
2679                                                      false);
2680
2681   unsigned char* vbuf;
2682   unsigned int vsize;
2683   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2684                                                       local_symcount,
2685                                                       dynamic_symbols,
2686                                                       &vbuf, &vsize);
2687
2688   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2689                                                             "** versions");
2690
2691   vsec->add_output_section_data(vdata);
2692   vsec->set_entsize(2);
2693   vsec->set_link_section(this->dynsym_section_);
2694
2695   Output_data_dynamic* const odyn = this->dynamic_data_;
2696   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2697
2698   if (versions->any_defs())
2699     {
2700       Output_section* vdsec;
2701       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2702                                          elfcpp::SHT_GNU_verdef,
2703                                          elfcpp::SHF_ALLOC,
2704                                          false);
2705
2706       unsigned char* vdbuf;
2707       unsigned int vdsize;
2708       unsigned int vdentries;
2709       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2710                                                        &vdsize, &vdentries);
2711
2712       Output_section_data* vddata =
2713         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2714
2715       vdsec->add_output_section_data(vddata);
2716       vdsec->set_link_section(dynstr);
2717       vdsec->set_info(vdentries);
2718
2719       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2720       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2721     }
2722
2723   if (versions->any_needs())
2724     {
2725       Output_section* vnsec;
2726       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2727                                           elfcpp::SHT_GNU_verneed,
2728                                           elfcpp::SHF_ALLOC,
2729                                           false);
2730
2731       unsigned char* vnbuf;
2732       unsigned int vnsize;
2733       unsigned int vnentries;
2734       versions->need_section_contents<size, big_endian>(&this->dynpool_,
2735                                                         &vnbuf, &vnsize,
2736                                                         &vnentries);
2737
2738       Output_section_data* vndata =
2739         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2740
2741       vnsec->add_output_section_data(vndata);
2742       vnsec->set_link_section(dynstr);
2743       vnsec->set_info(vnentries);
2744
2745       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2746       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2747     }
2748 }
2749
2750 // Create the .interp section and PT_INTERP segment.
2751
2752 void
2753 Layout::create_interp(const Target* target)
2754 {
2755   const char* interp = parameters->options().dynamic_linker();
2756   if (interp == NULL)
2757     {
2758       interp = target->dynamic_linker();
2759       gold_assert(interp != NULL);
2760     }
2761
2762   size_t len = strlen(interp) + 1;
2763
2764   Output_section_data* odata = new Output_data_const(interp, len, 1);
2765
2766   Output_section* osec = this->choose_output_section(NULL, ".interp",
2767                                                      elfcpp::SHT_PROGBITS,
2768                                                      elfcpp::SHF_ALLOC,
2769                                                      false);
2770   osec->add_output_section_data(odata);
2771
2772   if (!this->script_options_->saw_phdrs_clause())
2773     {
2774       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2775                                                        elfcpp::PF_R);
2776       oseg->add_output_section(osec, elfcpp::PF_R);
2777     }
2778 }
2779
2780 // Finish the .dynamic section and PT_DYNAMIC segment.
2781
2782 void
2783 Layout::finish_dynamic_section(const Input_objects* input_objects,
2784                                const Symbol_table* symtab)
2785 {
2786   if (!this->script_options_->saw_phdrs_clause())
2787     {
2788       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2789                                                        (elfcpp::PF_R
2790                                                         | elfcpp::PF_W));
2791       oseg->add_output_section(this->dynamic_section_,
2792                                elfcpp::PF_R | elfcpp::PF_W);
2793     }
2794
2795   Output_data_dynamic* const odyn = this->dynamic_data_;
2796
2797   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2798        p != input_objects->dynobj_end();
2799        ++p)
2800     {
2801       // FIXME: Handle --as-needed.
2802       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2803     }
2804
2805   if (parameters->options().shared())
2806     {
2807       const char* soname = parameters->options().soname();
2808       if (soname != NULL)
2809         odyn->add_string(elfcpp::DT_SONAME, soname);
2810     }
2811
2812   // FIXME: Support --init and --fini.
2813   Symbol* sym = symtab->lookup("_init");
2814   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2815     odyn->add_symbol(elfcpp::DT_INIT, sym);
2816
2817   sym = symtab->lookup("_fini");
2818   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2819     odyn->add_symbol(elfcpp::DT_FINI, sym);
2820
2821   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2822
2823   // Add a DT_RPATH entry if needed.
2824   const General_options::Dir_list& rpath(parameters->options().rpath());
2825   if (!rpath.empty())
2826     {
2827       std::string rpath_val;
2828       for (General_options::Dir_list::const_iterator p = rpath.begin();
2829            p != rpath.end();
2830            ++p)
2831         {
2832           if (rpath_val.empty())
2833             rpath_val = p->name();
2834           else
2835             {
2836               // Eliminate duplicates.
2837               General_options::Dir_list::const_iterator q;
2838               for (q = rpath.begin(); q != p; ++q)
2839                 if (q->name() == p->name())
2840                   break;
2841               if (q == p)
2842                 {
2843                   rpath_val += ':';
2844                   rpath_val += p->name();
2845                 }
2846             }
2847         }
2848
2849       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2850       if (parameters->options().enable_new_dtags())
2851         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2852     }
2853
2854   // Look for text segments that have dynamic relocations.
2855   bool have_textrel = false;
2856   if (!this->script_options_->saw_sections_clause())
2857     {
2858       for (Segment_list::const_iterator p = this->segment_list_.begin();
2859            p != this->segment_list_.end();
2860            ++p)
2861         {
2862           if (((*p)->flags() & elfcpp::PF_W) == 0
2863               && (*p)->dynamic_reloc_count() > 0)
2864             {
2865               have_textrel = true;
2866               break;
2867             }
2868         }
2869     }
2870   else
2871     {
2872       // We don't know the section -> segment mapping, so we are
2873       // conservative and just look for readonly sections with
2874       // relocations.  If those sections wind up in writable segments,
2875       // then we have created an unnecessary DT_TEXTREL entry.
2876       for (Section_list::const_iterator p = this->section_list_.begin();
2877            p != this->section_list_.end();
2878            ++p)
2879         {
2880           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2881               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2882               && ((*p)->dynamic_reloc_count() > 0))
2883             {
2884               have_textrel = true;
2885               break;
2886             }
2887         }
2888     }
2889
2890   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2891   // post-link tools can easily modify these flags if desired.
2892   unsigned int flags = 0;
2893   if (have_textrel)
2894     {
2895       // Add a DT_TEXTREL for compatibility with older loaders.
2896       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2897       flags |= elfcpp::DF_TEXTREL;
2898     }
2899   if (parameters->options().shared() && this->has_static_tls())
2900     flags |= elfcpp::DF_STATIC_TLS;
2901   if (parameters->options().origin())
2902     flags |= elfcpp::DF_ORIGIN;
2903   if (parameters->options().now())
2904     flags |= elfcpp::DF_BIND_NOW;
2905   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2906
2907   flags = 0;
2908   if (parameters->options().initfirst())
2909     flags |= elfcpp::DF_1_INITFIRST;
2910   if (parameters->options().interpose())
2911     flags |= elfcpp::DF_1_INTERPOSE;
2912   if (parameters->options().loadfltr())
2913     flags |= elfcpp::DF_1_LOADFLTR;
2914   if (parameters->options().nodefaultlib())
2915     flags |= elfcpp::DF_1_NODEFLIB;
2916   if (parameters->options().nodelete())
2917     flags |= elfcpp::DF_1_NODELETE;
2918   if (parameters->options().nodlopen())
2919     flags |= elfcpp::DF_1_NOOPEN;
2920   if (parameters->options().nodump())
2921     flags |= elfcpp::DF_1_NODUMP;
2922   if (!parameters->options().shared())
2923     flags &= ~(elfcpp::DF_1_INITFIRST
2924                | elfcpp::DF_1_NODELETE
2925                | elfcpp::DF_1_NOOPEN);
2926   if (parameters->options().origin())
2927     flags |= elfcpp::DF_1_ORIGIN;
2928   if (parameters->options().now())
2929     flags |= elfcpp::DF_1_NOW;
2930   if (flags)
2931     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2932 }
2933
2934 // The mapping of input section name prefixes to output section names.
2935 // In some cases one prefix is itself a prefix of another prefix; in
2936 // such a case the longer prefix must come first.  These prefixes are
2937 // based on the GNU linker default ELF linker script.
2938
2939 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2940 const Layout::Section_name_mapping Layout::section_name_mapping[] =
2941 {
2942   MAPPING_INIT(".text.", ".text"),
2943   MAPPING_INIT(".ctors.", ".ctors"),
2944   MAPPING_INIT(".dtors.", ".dtors"),
2945   MAPPING_INIT(".rodata.", ".rodata"),
2946   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
2947   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
2948   MAPPING_INIT(".data.", ".data"),
2949   MAPPING_INIT(".bss.", ".bss"),
2950   MAPPING_INIT(".tdata.", ".tdata"),
2951   MAPPING_INIT(".tbss.", ".tbss"),
2952   MAPPING_INIT(".init_array.", ".init_array"),
2953   MAPPING_INIT(".fini_array.", ".fini_array"),
2954   MAPPING_INIT(".sdata.", ".sdata"),
2955   MAPPING_INIT(".sbss.", ".sbss"),
2956   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
2957   // differently depending on whether it is creating a shared library.
2958   MAPPING_INIT(".sdata2.", ".sdata"),
2959   MAPPING_INIT(".sbss2.", ".sbss"),
2960   MAPPING_INIT(".lrodata.", ".lrodata"),
2961   MAPPING_INIT(".ldata.", ".ldata"),
2962   MAPPING_INIT(".lbss.", ".lbss"),
2963   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
2964   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
2965   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
2966   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
2967   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
2968   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
2969   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
2970   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
2971   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
2972   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
2973   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
2974   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
2975   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
2976   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
2977   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
2978   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
2979   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
2980   MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
2981   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
2982   MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
2983   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
2984 };
2985 #undef MAPPING_INIT
2986
2987 const int Layout::section_name_mapping_count =
2988   (sizeof(Layout::section_name_mapping)
2989    / sizeof(Layout::section_name_mapping[0]));
2990
2991 // Choose the output section name to use given an input section name.
2992 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2993 // length of NAME.
2994
2995 const char*
2996 Layout::output_section_name(const char* name, size_t* plen)
2997 {
2998   // gcc 4.3 generates the following sorts of section names when it
2999   // needs a section name specific to a function:
3000   //   .text.FN
3001   //   .rodata.FN
3002   //   .sdata2.FN
3003   //   .data.FN
3004   //   .data.rel.FN
3005   //   .data.rel.local.FN
3006   //   .data.rel.ro.FN
3007   //   .data.rel.ro.local.FN
3008   //   .sdata.FN
3009   //   .bss.FN
3010   //   .sbss.FN
3011   //   .tdata.FN
3012   //   .tbss.FN
3013
3014   // The GNU linker maps all of those to the part before the .FN,
3015   // except that .data.rel.local.FN is mapped to .data, and
3016   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
3017   // beginning with .data.rel.ro.local are grouped together.
3018
3019   // For an anonymous namespace, the string FN can contain a '.'.
3020
3021   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3022   // GNU linker maps to .rodata.
3023
3024   // The .data.rel.ro sections are used with -z relro.  The sections
3025   // are recognized by name.  We use the same names that the GNU
3026   // linker does for these sections.
3027
3028   // It is hard to handle this in a principled way, so we don't even
3029   // try.  We use a table of mappings.  If the input section name is
3030   // not found in the table, we simply use it as the output section
3031   // name.
3032
3033   const Section_name_mapping* psnm = section_name_mapping;
3034   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3035     {
3036       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3037         {
3038           *plen = psnm->tolen;
3039           return psnm->to;
3040         }
3041     }
3042
3043   return name;
3044 }
3045
3046 // Check if a comdat group or .gnu.linkonce section with the given
3047 // NAME is selected for the link.  If there is already a section,
3048 // *KEPT_SECTION is set to point to the existing section and the
3049 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3050 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3051 // *KEPT_SECTION is set to the internal copy and the function returns
3052 // true.
3053
3054 bool
3055 Layout::find_or_add_kept_section(const std::string& name,
3056                                  Relobj* object,
3057                                  unsigned int shndx,
3058                                  bool is_comdat,
3059                                  bool is_group_name,
3060                                  Kept_section** kept_section)
3061 {
3062   // It's normal to see a couple of entries here, for the x86 thunk
3063   // sections.  If we see more than a few, we're linking a C++
3064   // program, and we resize to get more space to minimize rehashing.
3065   if (this->signatures_.size() > 4
3066       && !this->resized_signatures_)
3067     {
3068       reserve_unordered_map(&this->signatures_,
3069                             this->number_of_input_files_ * 64);
3070       this->resized_signatures_ = true;
3071     }
3072
3073   Kept_section candidate;
3074   std::pair<Signatures::iterator, bool> ins =
3075     this->signatures_.insert(std::make_pair(name, candidate));
3076
3077   if (kept_section != NULL)
3078     *kept_section = &ins.first->second;
3079   if (ins.second)
3080     {
3081       // This is the first time we've seen this signature.
3082       ins.first->second.set_object(object);
3083       ins.first->second.set_shndx(shndx);
3084       if (is_comdat)
3085         ins.first->second.set_is_comdat();
3086       if (is_group_name)
3087         ins.first->second.set_is_group_name();
3088       return true;
3089     }
3090
3091   // We have already seen this signature.
3092
3093   if (ins.first->second.is_group_name())
3094     {
3095       // We've already seen a real section group with this signature.
3096       // If the kept group is from a plugin object, and we're in the
3097       // replacement phase, accept the new one as a replacement.
3098       if (ins.first->second.object() == NULL
3099           && parameters->options().plugins()->in_replacement_phase())
3100         {
3101           ins.first->second.set_object(object);
3102           ins.first->second.set_shndx(shndx);
3103           return true;
3104         }
3105       return false;
3106     }
3107   else if (is_group_name)
3108     {
3109       // This is a real section group, and we've already seen a
3110       // linkonce section with this signature.  Record that we've seen
3111       // a section group, and don't include this section group.
3112       ins.first->second.set_is_group_name();
3113       return false;
3114     }
3115   else
3116     {
3117       // We've already seen a linkonce section and this is a linkonce
3118       // section.  These don't block each other--this may be the same
3119       // symbol name with different section types.
3120       return true;
3121     }
3122 }
3123
3124 // Store the allocated sections into the section list.
3125
3126 void
3127 Layout::get_allocated_sections(Section_list* section_list) const
3128 {
3129   for (Section_list::const_iterator p = this->section_list_.begin();
3130        p != this->section_list_.end();
3131        ++p)
3132     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3133       section_list->push_back(*p);
3134 }
3135
3136 // Create an output segment.
3137
3138 Output_segment*
3139 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3140 {
3141   gold_assert(!parameters->options().relocatable());
3142   Output_segment* oseg = new Output_segment(type, flags);
3143   this->segment_list_.push_back(oseg);
3144
3145   if (type == elfcpp::PT_TLS)
3146     this->tls_segment_ = oseg;
3147   else if (type == elfcpp::PT_GNU_RELRO)
3148     this->relro_segment_ = oseg;
3149
3150   return oseg;
3151 }
3152
3153 // Write out the Output_sections.  Most won't have anything to write,
3154 // since most of the data will come from input sections which are
3155 // handled elsewhere.  But some Output_sections do have Output_data.
3156
3157 void
3158 Layout::write_output_sections(Output_file* of) const
3159 {
3160   for (Section_list::const_iterator p = this->section_list_.begin();
3161        p != this->section_list_.end();
3162        ++p)
3163     {
3164       if (!(*p)->after_input_sections())
3165         (*p)->write(of);
3166     }
3167 }
3168
3169 // Write out data not associated with a section or the symbol table.
3170
3171 void
3172 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3173 {
3174   if (!parameters->options().strip_all())
3175     {
3176       const Output_section* symtab_section = this->symtab_section_;
3177       for (Section_list::const_iterator p = this->section_list_.begin();
3178            p != this->section_list_.end();
3179            ++p)
3180         {
3181           if ((*p)->needs_symtab_index())
3182             {
3183               gold_assert(symtab_section != NULL);
3184               unsigned int index = (*p)->symtab_index();
3185               gold_assert(index > 0 && index != -1U);
3186               off_t off = (symtab_section->offset()
3187                            + index * symtab_section->entsize());
3188               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3189             }
3190         }
3191     }
3192
3193   const Output_section* dynsym_section = this->dynsym_section_;
3194   for (Section_list::const_iterator p = this->section_list_.begin();
3195        p != this->section_list_.end();
3196        ++p)
3197     {
3198       if ((*p)->needs_dynsym_index())
3199         {
3200           gold_assert(dynsym_section != NULL);
3201           unsigned int index = (*p)->dynsym_index();
3202           gold_assert(index > 0 && index != -1U);
3203           off_t off = (dynsym_section->offset()
3204                        + index * dynsym_section->entsize());
3205           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3206         }
3207     }
3208
3209   // Write out the Output_data which are not in an Output_section.
3210   for (Data_list::const_iterator p = this->special_output_list_.begin();
3211        p != this->special_output_list_.end();
3212        ++p)
3213     (*p)->write(of);
3214 }
3215
3216 // Write out the Output_sections which can only be written after the
3217 // input sections are complete.
3218
3219 void
3220 Layout::write_sections_after_input_sections(Output_file* of)
3221 {
3222   // Determine the final section offsets, and thus the final output
3223   // file size.  Note we finalize the .shstrab last, to allow the
3224   // after_input_section sections to modify their section-names before
3225   // writing.
3226   if (this->any_postprocessing_sections_)
3227     {
3228       off_t off = this->output_file_size_;
3229       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3230
3231       // Now that we've finalized the names, we can finalize the shstrab.
3232       off =
3233         this->set_section_offsets(off,
3234                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3235
3236       if (off > this->output_file_size_)
3237         {
3238           of->resize(off);
3239           this->output_file_size_ = off;
3240         }
3241     }
3242
3243   for (Section_list::const_iterator p = this->section_list_.begin();
3244        p != this->section_list_.end();
3245        ++p)
3246     {
3247       if ((*p)->after_input_sections())
3248         (*p)->write(of);
3249     }
3250
3251   this->section_headers_->write(of);
3252 }
3253
3254 // If the build ID requires computing a checksum, do so here, and
3255 // write it out.  We compute a checksum over the entire file because
3256 // that is simplest.
3257
3258 void
3259 Layout::write_build_id(Output_file* of) const
3260 {
3261   if (this->build_id_note_ == NULL)
3262     return;
3263
3264   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3265
3266   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3267                                           this->build_id_note_->data_size());
3268
3269   const char* style = parameters->options().build_id();
3270   if (strcmp(style, "sha1") == 0)
3271     {
3272       sha1_ctx ctx;
3273       sha1_init_ctx(&ctx);
3274       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3275       sha1_finish_ctx(&ctx, ov);
3276     }
3277   else if (strcmp(style, "md5") == 0)
3278     {
3279       md5_ctx ctx;
3280       md5_init_ctx(&ctx);
3281       md5_process_bytes(iv, this->output_file_size_, &ctx);
3282       md5_finish_ctx(&ctx, ov);
3283     }
3284   else
3285     gold_unreachable();
3286
3287   of->write_output_view(this->build_id_note_->offset(),
3288                         this->build_id_note_->data_size(),
3289                         ov);
3290
3291   of->free_input_view(0, this->output_file_size_, iv);
3292 }
3293
3294 // Write out a binary file.  This is called after the link is
3295 // complete.  IN is the temporary output file we used to generate the
3296 // ELF code.  We simply walk through the segments, read them from
3297 // their file offset in IN, and write them to their load address in
3298 // the output file.  FIXME: with a bit more work, we could support
3299 // S-records and/or Intel hex format here.
3300
3301 void
3302 Layout::write_binary(Output_file* in) const
3303 {
3304   gold_assert(parameters->options().oformat_enum()
3305               == General_options::OBJECT_FORMAT_BINARY);
3306
3307   // Get the size of the binary file.
3308   uint64_t max_load_address = 0;
3309   for (Segment_list::const_iterator p = this->segment_list_.begin();
3310        p != this->segment_list_.end();
3311        ++p)
3312     {
3313       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3314         {
3315           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3316           if (max_paddr > max_load_address)
3317             max_load_address = max_paddr;
3318         }
3319     }
3320
3321   Output_file out(parameters->options().output_file_name());
3322   out.open(max_load_address);
3323
3324   for (Segment_list::const_iterator p = this->segment_list_.begin();
3325        p != this->segment_list_.end();
3326        ++p)
3327     {
3328       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3329         {
3330           const unsigned char* vin = in->get_input_view((*p)->offset(),
3331                                                         (*p)->filesz());
3332           unsigned char* vout = out.get_output_view((*p)->paddr(),
3333                                                     (*p)->filesz());
3334           memcpy(vout, vin, (*p)->filesz());
3335           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3336           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3337         }
3338     }
3339
3340   out.close();
3341 }
3342
3343 // Print the output sections to the map file.
3344
3345 void
3346 Layout::print_to_mapfile(Mapfile* mapfile) const
3347 {
3348   for (Segment_list::const_iterator p = this->segment_list_.begin();
3349        p != this->segment_list_.end();
3350        ++p)
3351     (*p)->print_sections_to_mapfile(mapfile);
3352 }
3353
3354 // Print statistical information to stderr.  This is used for --stats.
3355
3356 void
3357 Layout::print_stats() const
3358 {
3359   this->namepool_.print_stats("section name pool");
3360   this->sympool_.print_stats("output symbol name pool");
3361   this->dynpool_.print_stats("dynamic name pool");
3362
3363   for (Section_list::const_iterator p = this->section_list_.begin();
3364        p != this->section_list_.end();
3365        ++p)
3366     (*p)->print_merge_stats();
3367 }
3368
3369 // Write_sections_task methods.
3370
3371 // We can always run this task.
3372
3373 Task_token*
3374 Write_sections_task::is_runnable()
3375 {
3376   return NULL;
3377 }
3378
3379 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3380 // when finished.
3381
3382 void
3383 Write_sections_task::locks(Task_locker* tl)
3384 {
3385   tl->add(this, this->output_sections_blocker_);
3386   tl->add(this, this->final_blocker_);
3387 }
3388
3389 // Run the task--write out the data.
3390
3391 void
3392 Write_sections_task::run(Workqueue*)
3393 {
3394   this->layout_->write_output_sections(this->of_);
3395 }
3396
3397 // Write_data_task methods.
3398
3399 // We can always run this task.
3400
3401 Task_token*
3402 Write_data_task::is_runnable()
3403 {
3404   return NULL;
3405 }
3406
3407 // We need to unlock FINAL_BLOCKER when finished.
3408
3409 void
3410 Write_data_task::locks(Task_locker* tl)
3411 {
3412   tl->add(this, this->final_blocker_);
3413 }
3414
3415 // Run the task--write out the data.
3416
3417 void
3418 Write_data_task::run(Workqueue*)
3419 {
3420   this->layout_->write_data(this->symtab_, this->of_);
3421 }
3422
3423 // Write_symbols_task methods.
3424
3425 // We can always run this task.
3426
3427 Task_token*
3428 Write_symbols_task::is_runnable()
3429 {
3430   return NULL;
3431 }
3432
3433 // We need to unlock FINAL_BLOCKER when finished.
3434
3435 void
3436 Write_symbols_task::locks(Task_locker* tl)
3437 {
3438   tl->add(this, this->final_blocker_);
3439 }
3440
3441 // Run the task--write out the symbols.
3442
3443 void
3444 Write_symbols_task::run(Workqueue*)
3445 {
3446   this->symtab_->write_globals(this->sympool_, this->dynpool_,
3447                                this->layout_->symtab_xindex(),
3448                                this->layout_->dynsym_xindex(), this->of_);
3449 }
3450
3451 // Write_after_input_sections_task methods.
3452
3453 // We can only run this task after the input sections have completed.
3454
3455 Task_token*
3456 Write_after_input_sections_task::is_runnable()
3457 {
3458   if (this->input_sections_blocker_->is_blocked())
3459     return this->input_sections_blocker_;
3460   return NULL;
3461 }
3462
3463 // We need to unlock FINAL_BLOCKER when finished.
3464
3465 void
3466 Write_after_input_sections_task::locks(Task_locker* tl)
3467 {
3468   tl->add(this, this->final_blocker_);
3469 }
3470
3471 // Run the task.
3472
3473 void
3474 Write_after_input_sections_task::run(Workqueue*)
3475 {
3476   this->layout_->write_sections_after_input_sections(this->of_);
3477 }
3478
3479 // Close_task_runner methods.
3480
3481 // Run the task--close the file.
3482
3483 void
3484 Close_task_runner::run(Workqueue*, const Task*)
3485 {
3486   // If we need to compute a checksum for the BUILD if, we do so here.
3487   this->layout_->write_build_id(this->of_);
3488
3489   // If we've been asked to create a binary file, we do so here.
3490   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3491     this->layout_->write_binary(this->of_);
3492
3493   this->of_->close();
3494 }
3495
3496 // Instantiate the templates we need.  We could use the configure
3497 // script to restrict this to only the ones for implemented targets.
3498
3499 #ifdef HAVE_TARGET_32_LITTLE
3500 template
3501 Output_section*
3502 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3503                           const char* name,
3504                           const elfcpp::Shdr<32, false>& shdr,
3505                           unsigned int, unsigned int, off_t*);
3506 #endif
3507
3508 #ifdef HAVE_TARGET_32_BIG
3509 template
3510 Output_section*
3511 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3512                          const char* name,
3513                          const elfcpp::Shdr<32, true>& shdr,
3514                          unsigned int, unsigned int, off_t*);
3515 #endif
3516
3517 #ifdef HAVE_TARGET_64_LITTLE
3518 template
3519 Output_section*
3520 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3521                           const char* name,
3522                           const elfcpp::Shdr<64, false>& shdr,
3523                           unsigned int, unsigned int, off_t*);
3524 #endif
3525
3526 #ifdef HAVE_TARGET_64_BIG
3527 template
3528 Output_section*
3529 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3530                          const char* name,
3531                          const elfcpp::Shdr<64, true>& shdr,
3532                          unsigned int, unsigned int, off_t*);
3533 #endif
3534
3535 #ifdef HAVE_TARGET_32_LITTLE
3536 template
3537 Output_section*
3538 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3539                                 unsigned int reloc_shndx,
3540                                 const elfcpp::Shdr<32, false>& shdr,
3541                                 Output_section* data_section,
3542                                 Relocatable_relocs* rr);
3543 #endif
3544
3545 #ifdef HAVE_TARGET_32_BIG
3546 template
3547 Output_section*
3548 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3549                                unsigned int reloc_shndx,
3550                                const elfcpp::Shdr<32, true>& shdr,
3551                                Output_section* data_section,
3552                                Relocatable_relocs* rr);
3553 #endif
3554
3555 #ifdef HAVE_TARGET_64_LITTLE
3556 template
3557 Output_section*
3558 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3559                                 unsigned int reloc_shndx,
3560                                 const elfcpp::Shdr<64, false>& shdr,
3561                                 Output_section* data_section,
3562                                 Relocatable_relocs* rr);
3563 #endif
3564
3565 #ifdef HAVE_TARGET_64_BIG
3566 template
3567 Output_section*
3568 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3569                                unsigned int reloc_shndx,
3570                                const elfcpp::Shdr<64, true>& shdr,
3571                                Output_section* data_section,
3572                                Relocatable_relocs* rr);
3573 #endif
3574
3575 #ifdef HAVE_TARGET_32_LITTLE
3576 template
3577 void
3578 Layout::layout_group<32, false>(Symbol_table* symtab,
3579                                 Sized_relobj<32, false>* object,
3580                                 unsigned int,
3581                                 const char* group_section_name,
3582                                 const char* signature,
3583                                 const elfcpp::Shdr<32, false>& shdr,
3584                                 elfcpp::Elf_Word flags,
3585                                 std::vector<unsigned int>* shndxes);
3586 #endif
3587
3588 #ifdef HAVE_TARGET_32_BIG
3589 template
3590 void
3591 Layout::layout_group<32, true>(Symbol_table* symtab,
3592                                Sized_relobj<32, true>* object,
3593                                unsigned int,
3594                                const char* group_section_name,
3595                                const char* signature,
3596                                const elfcpp::Shdr<32, true>& shdr,
3597                                elfcpp::Elf_Word flags,
3598                                std::vector<unsigned int>* shndxes);
3599 #endif
3600
3601 #ifdef HAVE_TARGET_64_LITTLE
3602 template
3603 void
3604 Layout::layout_group<64, false>(Symbol_table* symtab,
3605                                 Sized_relobj<64, false>* object,
3606                                 unsigned int,
3607                                 const char* group_section_name,
3608                                 const char* signature,
3609                                 const elfcpp::Shdr<64, false>& shdr,
3610                                 elfcpp::Elf_Word flags,
3611                                 std::vector<unsigned int>* shndxes);
3612 #endif
3613
3614 #ifdef HAVE_TARGET_64_BIG
3615 template
3616 void
3617 Layout::layout_group<64, true>(Symbol_table* symtab,
3618                                Sized_relobj<64, true>* object,
3619                                unsigned int,
3620                                const char* group_section_name,
3621                                const char* signature,
3622                                const elfcpp::Shdr<64, true>& shdr,
3623                                elfcpp::Elf_Word flags,
3624                                std::vector<unsigned int>* shndxes);
3625 #endif
3626
3627 #ifdef HAVE_TARGET_32_LITTLE
3628 template
3629 Output_section*
3630 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3631                                    const unsigned char* symbols,
3632                                    off_t symbols_size,
3633                                    const unsigned char* symbol_names,
3634                                    off_t symbol_names_size,
3635                                    unsigned int shndx,
3636                                    const elfcpp::Shdr<32, false>& shdr,
3637                                    unsigned int reloc_shndx,
3638                                    unsigned int reloc_type,
3639                                    off_t* off);
3640 #endif
3641
3642 #ifdef HAVE_TARGET_32_BIG
3643 template
3644 Output_section*
3645 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3646                                    const unsigned char* symbols,
3647                                    off_t symbols_size,
3648                                   const unsigned char* symbol_names,
3649                                   off_t symbol_names_size,
3650                                   unsigned int shndx,
3651                                   const elfcpp::Shdr<32, true>& shdr,
3652                                   unsigned int reloc_shndx,
3653                                   unsigned int reloc_type,
3654                                   off_t* off);
3655 #endif
3656
3657 #ifdef HAVE_TARGET_64_LITTLE
3658 template
3659 Output_section*
3660 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3661                                    const unsigned char* symbols,
3662                                    off_t symbols_size,
3663                                    const unsigned char* symbol_names,
3664                                    off_t symbol_names_size,
3665                                    unsigned int shndx,
3666                                    const elfcpp::Shdr<64, false>& shdr,
3667                                    unsigned int reloc_shndx,
3668                                    unsigned int reloc_type,
3669                                    off_t* off);
3670 #endif
3671
3672 #ifdef HAVE_TARGET_64_BIG
3673 template
3674 Output_section*
3675 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3676                                    const unsigned char* symbols,
3677                                    off_t symbols_size,
3678                                   const unsigned char* symbol_names,
3679                                   off_t symbol_names_size,
3680                                   unsigned int shndx,
3681                                   const elfcpp::Shdr<64, true>& shdr,
3682                                   unsigned int reloc_shndx,
3683                                   unsigned int reloc_type,
3684                                   off_t* off);
3685 #endif
3686
3687 } // End namespace gold.