OSDN Git Service

Don't check assertions until symbols are finalized. Create an output
[pf3gnuchains/pf3gnuchains3x.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "options.h"
32 #include "script.h"
33 #include "script-sections.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "dynobj.h"
37 #include "ehframe.h"
38 #include "compressed_output.h"
39 #include "reloc.h"
40 #include "layout.h"
41
42 namespace gold
43 {
44
45 // Layout_task_runner methods.
46
47 // Lay out the sections.  This is called after all the input objects
48 // have been read.
49
50 void
51 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
52 {
53   off_t file_size = this->layout_->finalize(this->input_objects_,
54                                             this->symtab_,
55                                             this->target_,
56                                             task);
57
58   // Now we know the final size of the output file and we know where
59   // each piece of information goes.
60   Output_file* of = new Output_file(parameters->options().output_file_name());
61   if (this->options_.oformat() != General_options::OBJECT_FORMAT_ELF)
62     of->set_is_temporary();
63   of->open(file_size);
64
65   // Queue up the final set of tasks.
66   gold::queue_final_tasks(this->options_, this->input_objects_,
67                           this->symtab_, this->layout_, workqueue, of);
68 }
69
70 // Layout methods.
71
72 Layout::Layout(const General_options& options, Script_options* script_options)
73   : options_(options), script_options_(script_options), namepool_(),
74     sympool_(), dynpool_(), signatures_(),
75     section_name_map_(), segment_list_(), section_list_(),
76     unattached_section_list_(), special_output_list_(),
77     section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
78     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
79     eh_frame_section_(NULL), group_signatures_(), output_file_size_(-1),
80     input_requires_executable_stack_(false),
81     input_with_gnu_stack_note_(false),
82     input_without_gnu_stack_note_(false),
83     has_static_tls_(false),
84     any_postprocessing_sections_(false)
85 {
86   // Make space for more than enough segments for a typical file.
87   // This is just for efficiency--it's OK if we wind up needing more.
88   this->segment_list_.reserve(12);
89
90   // We expect two unattached Output_data objects: the file header and
91   // the segment headers.
92   this->special_output_list_.reserve(2);
93 }
94
95 // Hash a key we use to look up an output section mapping.
96
97 size_t
98 Layout::Hash_key::operator()(const Layout::Key& k) const
99 {
100  return k.first + k.second.first + k.second.second;
101 }
102
103 // Return whether PREFIX is a prefix of STR.
104
105 static inline bool
106 is_prefix_of(const char* prefix, const char* str)
107 {
108   return strncmp(prefix, str, strlen(prefix)) == 0;
109 }
110
111 // Returns whether the given section is in the list of
112 // debug-sections-used-by-some-version-of-gdb.  Currently,
113 // we've checked versions of gdb up to and including 6.7.1.
114
115 static const char* gdb_sections[] =
116 { ".debug_abbrev",
117   // ".debug_aranges",   // not used by gdb as of 6.7.1
118   ".debug_frame",
119   ".debug_info",
120   ".debug_line",
121   ".debug_loc",
122   ".debug_macinfo",
123   // ".debug_pubnames",  // not used by gdb as of 6.7.1
124   ".debug_ranges",
125   ".debug_str",
126 };
127
128 static inline bool
129 is_gdb_debug_section(const char* str)
130 {
131   // We can do this faster: binary search or a hashtable.  But why bother?
132   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
133     if (strcmp(str, gdb_sections[i]) == 0)
134       return true;
135   return false;
136 }
137
138 // Whether to include this section in the link.
139
140 template<int size, bool big_endian>
141 bool
142 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
143                         const elfcpp::Shdr<size, big_endian>& shdr)
144 {
145   switch (shdr.get_sh_type())
146     {
147     case elfcpp::SHT_NULL:
148     case elfcpp::SHT_SYMTAB:
149     case elfcpp::SHT_DYNSYM:
150     case elfcpp::SHT_STRTAB:
151     case elfcpp::SHT_HASH:
152     case elfcpp::SHT_DYNAMIC:
153     case elfcpp::SHT_SYMTAB_SHNDX:
154       return false;
155
156     case elfcpp::SHT_RELA:
157     case elfcpp::SHT_REL:
158     case elfcpp::SHT_GROUP:
159       // If we are emitting relocations these should be handled
160       // elsewhere.
161       gold_assert(!parameters->options().relocatable()
162                   && !parameters->options().emit_relocs());
163       return false;
164
165     case elfcpp::SHT_PROGBITS:
166       if (parameters->options().strip_debug()
167           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
168         {
169           // Debugging sections can only be recognized by name.
170           if (is_prefix_of(".debug", name)
171               || is_prefix_of(".gnu.linkonce.wi.", name)
172               || is_prefix_of(".line", name)
173               || is_prefix_of(".stab", name))
174             return false;
175         }
176       if (parameters->options().strip_debug_gdb()
177           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
178         {
179           // Debugging sections can only be recognized by name.
180           if (is_prefix_of(".debug", name)
181               && !is_gdb_debug_section(name))
182             return false;
183         }
184       return true;
185
186     default:
187       return true;
188     }
189 }
190
191 // Return an output section named NAME, or NULL if there is none.
192
193 Output_section*
194 Layout::find_output_section(const char* name) const
195 {
196   for (Section_list::const_iterator p = this->section_list_.begin();
197        p != this->section_list_.end();
198        ++p)
199     if (strcmp((*p)->name(), name) == 0)
200       return *p;
201   return NULL;
202 }
203
204 // Return an output segment of type TYPE, with segment flags SET set
205 // and segment flags CLEAR clear.  Return NULL if there is none.
206
207 Output_segment*
208 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
209                             elfcpp::Elf_Word clear) const
210 {
211   for (Segment_list::const_iterator p = this->segment_list_.begin();
212        p != this->segment_list_.end();
213        ++p)
214     if (static_cast<elfcpp::PT>((*p)->type()) == type
215         && ((*p)->flags() & set) == set
216         && ((*p)->flags() & clear) == 0)
217       return *p;
218   return NULL;
219 }
220
221 // Return the output section to use for section NAME with type TYPE
222 // and section flags FLAGS.  NAME must be canonicalized in the string
223 // pool, and NAME_KEY is the key.
224
225 Output_section*
226 Layout::get_output_section(const char* name, Stringpool::Key name_key,
227                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
228 {
229   const Key key(name_key, std::make_pair(type, flags));
230   const std::pair<Key, Output_section*> v(key, NULL);
231   std::pair<Section_name_map::iterator, bool> ins(
232     this->section_name_map_.insert(v));
233
234   if (!ins.second)
235     return ins.first->second;
236   else
237     {
238       // This is the first time we've seen this name/type/flags
239       // combination.  If the section has contents but no flags, then
240       // see whether we have an existing section with the same name.
241       // This is a workaround for cases where assembler code forgets
242       // to set section flags, and the GNU linker would simply pick an
243       // existing section with the same name.  FIXME: Perhaps there
244       // should be an option to control this.
245       Output_section* os = NULL;
246       if (type == elfcpp::SHT_PROGBITS && flags == 0)
247         {
248           os = this->find_output_section(name);
249           if (os != NULL && os->type() != elfcpp::SHT_PROGBITS)
250             os = NULL;
251         }
252       if (os == NULL)
253         os = this->make_output_section(name, type, flags);
254       ins.first->second = os;
255       return os;
256     }
257 }
258
259 // Pick the output section to use for section NAME, in input file
260 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
261 // linker created section.  ADJUST_NAME is true if we should apply the
262 // standard name mappings in Layout::output_section_name.  This will
263 // return NULL if the input section should be discarded.
264
265 Output_section*
266 Layout::choose_output_section(const Relobj* relobj, const char* name,
267                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
268                               bool adjust_name)
269 {
270   // We should ignore some flags.  FIXME: This will need some
271   // adjustment for ld -r.
272   flags &= ~ (elfcpp::SHF_INFO_LINK
273               | elfcpp::SHF_LINK_ORDER
274               | elfcpp::SHF_GROUP
275               | elfcpp::SHF_MERGE
276               | elfcpp::SHF_STRINGS);
277
278   if (this->script_options_->saw_sections_clause())
279     {
280       // We are using a SECTIONS clause, so the output section is
281       // chosen based only on the name.
282
283       Script_sections* ss = this->script_options_->script_sections();
284       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
285       Output_section** output_section_slot;
286       name = ss->output_section_name(file_name, name, &output_section_slot);
287       if (name == NULL)
288         {
289           // The SECTIONS clause says to discard this input section.
290           return NULL;
291         }
292
293       // If this is an orphan section--one not mentioned in the linker
294       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
295       // default processing below.
296
297       if (output_section_slot != NULL)
298         {
299           if (*output_section_slot != NULL)
300             return *output_section_slot;
301
302           // We don't put sections found in the linker script into
303           // SECTION_NAME_MAP_.  That keeps us from getting confused
304           // if an orphan section is mapped to a section with the same
305           // name as one in the linker script.
306
307           name = this->namepool_.add(name, false, NULL);
308
309           Output_section* os = this->make_output_section(name, type, flags);
310           os->set_found_in_sections_clause();
311           *output_section_slot = os;
312           return os;
313         }
314     }
315
316   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
317
318   // Turn NAME from the name of the input section into the name of the
319   // output section.
320
321   size_t len = strlen(name);
322   if (adjust_name && !parameters->options().relocatable())
323     name = Layout::output_section_name(name, &len);
324
325   Stringpool::Key name_key;
326   name = this->namepool_.add_with_length(name, len, true, &name_key);
327
328   // Find or make the output section.  The output section is selected
329   // based on the section name, type, and flags.
330   return this->get_output_section(name, name_key, type, flags);
331 }
332
333 // Return the output section to use for input section SHNDX, with name
334 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
335 // index of a relocation section which applies to this section, or 0
336 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
337 // relocation section if there is one.  Set *OFF to the offset of this
338 // input section without the output section.  Return NULL if the
339 // section should be discarded.  Set *OFF to -1 if the section
340 // contents should not be written directly to the output file, but
341 // will instead receive special handling.
342
343 template<int size, bool big_endian>
344 Output_section*
345 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
346                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
347                unsigned int reloc_shndx, unsigned int, off_t* off)
348 {
349   if (!this->include_section(object, name, shdr))
350     return NULL;
351
352   Output_section* os;
353
354   // In a relocatable link a grouped section must not be combined with
355   // any other sections.
356   if (parameters->options().relocatable()
357       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
358     {
359       name = this->namepool_.add(name, true, NULL);
360       os = this->make_output_section(name, shdr.get_sh_type(),
361                                      shdr.get_sh_flags());
362     }
363   else
364     {
365       os = this->choose_output_section(object, name, shdr.get_sh_type(),
366                                        shdr.get_sh_flags(), true);
367       if (os == NULL)
368         return NULL;
369     }
370
371   // FIXME: Handle SHF_LINK_ORDER somewhere.
372
373   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
374                                this->script_options_->saw_sections_clause());
375
376   return os;
377 }
378
379 // Handle a relocation section when doing a relocatable link.
380
381 template<int size, bool big_endian>
382 Output_section*
383 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
384                      unsigned int,
385                      const elfcpp::Shdr<size, big_endian>& shdr,
386                      Output_section* data_section,
387                      Relocatable_relocs* rr)
388 {
389   gold_assert(parameters->options().relocatable()
390               || parameters->options().emit_relocs());
391
392   int sh_type = shdr.get_sh_type();
393
394   std::string name;
395   if (sh_type == elfcpp::SHT_REL)
396     name = ".rel";
397   else if (sh_type == elfcpp::SHT_RELA)
398     name = ".rela";
399   else
400     gold_unreachable();
401   name += data_section->name();
402
403   Output_section* os = this->choose_output_section(object, name.c_str(),
404                                                    sh_type,
405                                                    shdr.get_sh_flags(),
406                                                    false);
407
408   os->set_should_link_to_symtab();
409   os->set_info_section(data_section);
410
411   Output_section_data* posd;
412   if (sh_type == elfcpp::SHT_REL)
413     {
414       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
415       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
416                                            size,
417                                            big_endian>(rr);
418     }
419   else if (sh_type == elfcpp::SHT_RELA)
420     {
421       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
422       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
423                                            size,
424                                            big_endian>(rr);
425     }
426   else
427     gold_unreachable();
428
429   os->add_output_section_data(posd);
430   rr->set_output_data(posd);
431
432   return os;
433 }
434
435 // Handle a group section when doing a relocatable link.
436
437 template<int size, bool big_endian>
438 void
439 Layout::layout_group(Symbol_table* symtab,
440                      Sized_relobj<size, big_endian>* object,
441                      unsigned int,
442                      const char* group_section_name,
443                      const char* signature,
444                      const elfcpp::Shdr<size, big_endian>& shdr,
445                      const elfcpp::Elf_Word* contents)
446 {
447   gold_assert(parameters->options().relocatable());
448   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
449   group_section_name = this->namepool_.add(group_section_name, true, NULL);
450   Output_section* os = this->make_output_section(group_section_name,
451                                                  elfcpp::SHT_GROUP,
452                                                  shdr.get_sh_flags());
453
454   // We need to find a symbol with the signature in the symbol table.
455   // If we don't find one now, we need to look again later.
456   Symbol* sym = symtab->lookup(signature, NULL);
457   if (sym != NULL)
458     os->set_info_symndx(sym);
459   else
460     {
461       // We will wind up using a symbol whose name is the signature.
462       // So just put the signature in the symbol name pool to save it.
463       signature = symtab->canonicalize_name(signature);
464       this->group_signatures_.push_back(Group_signature(os, signature));
465     }
466
467   os->set_should_link_to_symtab();
468   os->set_entsize(4);
469
470   section_size_type entry_count =
471     convert_to_section_size_type(shdr.get_sh_size() / 4);
472   Output_section_data* posd =
473     new Output_data_group<size, big_endian>(object, entry_count, contents);
474   os->add_output_section_data(posd);
475 }
476
477 // Special GNU handling of sections name .eh_frame.  They will
478 // normally hold exception frame data as defined by the C++ ABI
479 // (http://codesourcery.com/cxx-abi/).
480
481 template<int size, bool big_endian>
482 Output_section*
483 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
484                         const unsigned char* symbols,
485                         off_t symbols_size,
486                         const unsigned char* symbol_names,
487                         off_t symbol_names_size,
488                         unsigned int shndx,
489                         const elfcpp::Shdr<size, big_endian>& shdr,
490                         unsigned int reloc_shndx, unsigned int reloc_type,
491                         off_t* off)
492 {
493   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
494   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
495
496   const char* const name = ".eh_frame";
497   Output_section* os = this->choose_output_section(object,
498                                                    name,
499                                                    elfcpp::SHT_PROGBITS,
500                                                    elfcpp::SHF_ALLOC,
501                                                    false);
502   if (os == NULL)
503     return NULL;
504
505   if (this->eh_frame_section_ == NULL)
506     {
507       this->eh_frame_section_ = os;
508       this->eh_frame_data_ = new Eh_frame();
509       os->add_output_section_data(this->eh_frame_data_);
510
511       if (this->options_.eh_frame_hdr())
512         {
513           Output_section* hdr_os =
514             this->choose_output_section(NULL,
515                                         ".eh_frame_hdr",
516                                         elfcpp::SHT_PROGBITS,
517                                         elfcpp::SHF_ALLOC,
518                                         false);
519
520           if (hdr_os != NULL)
521             {
522               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
523                                                         this->eh_frame_data_);
524               hdr_os->add_output_section_data(hdr_posd);
525
526               hdr_os->set_after_input_sections();
527
528               if (!this->script_options_->saw_phdrs_clause())
529                 {
530                   Output_segment* hdr_oseg;
531                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
532                                                        elfcpp::PF_R);
533                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
534                 }
535
536               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
537             }
538         }
539     }
540
541   gold_assert(this->eh_frame_section_ == os);
542
543   if (this->eh_frame_data_->add_ehframe_input_section(object,
544                                                       symbols,
545                                                       symbols_size,
546                                                       symbol_names,
547                                                       symbol_names_size,
548                                                       shndx,
549                                                       reloc_shndx,
550                                                       reloc_type))
551     *off = -1;
552   else
553     {
554       // We couldn't handle this .eh_frame section for some reason.
555       // Add it as a normal section.
556       bool saw_sections_clause = this->script_options_->saw_sections_clause();
557       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
558                                    saw_sections_clause);
559     }
560
561   return os;
562 }
563
564 // Add POSD to an output section using NAME, TYPE, and FLAGS.
565
566 void
567 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
568                                 elfcpp::Elf_Xword flags,
569                                 Output_section_data* posd)
570 {
571   Output_section* os = this->choose_output_section(NULL, name, type, flags,
572                                                    false);
573   if (os != NULL)
574     os->add_output_section_data(posd);
575 }
576
577 // Map section flags to segment flags.
578
579 elfcpp::Elf_Word
580 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
581 {
582   elfcpp::Elf_Word ret = elfcpp::PF_R;
583   if ((flags & elfcpp::SHF_WRITE) != 0)
584     ret |= elfcpp::PF_W;
585   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
586     ret |= elfcpp::PF_X;
587   return ret;
588 }
589
590 // Sometimes we compress sections.  This is typically done for
591 // sections that are not part of normal program execution (such as
592 // .debug_* sections), and where the readers of these sections know
593 // how to deal with compressed sections.  (To make it easier for them,
594 // we will rename the ouput section in such cases from .foo to
595 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
596 // doesn't say for certain whether we'll compress -- it depends on
597 // commandline options as well -- just whether this section is a
598 // candidate for compression.
599
600 static bool
601 is_compressible_debug_section(const char* secname)
602 {
603   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
604 }
605
606 // Make a new Output_section, and attach it to segments as
607 // appropriate.
608
609 Output_section*
610 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
611                             elfcpp::Elf_Xword flags)
612 {
613   Output_section* os;
614   if ((flags & elfcpp::SHF_ALLOC) == 0
615       && this->options_.compress_debug_sections()
616       && is_compressible_debug_section(name))
617     os = new Output_compressed_section(&this->options_, name, type, flags);
618   else
619     os = new Output_section(name, type, flags);
620
621   this->section_list_.push_back(os);
622
623   if ((flags & elfcpp::SHF_ALLOC) == 0)
624     this->unattached_section_list_.push_back(os);
625   else
626     {
627       if (parameters->options().relocatable())
628         return os;
629
630       // If we have a SECTIONS clause, we can't handle the attachment
631       // to segments until after we've seen all the sections.
632       if (this->script_options_->saw_sections_clause())
633         return os;
634
635       gold_assert(!this->script_options_->saw_phdrs_clause());
636
637       // This output section goes into a PT_LOAD segment.
638
639       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
640
641       // In general the only thing we really care about for PT_LOAD
642       // segments is whether or not they are writable, so that is how
643       // we search for them.  People who need segments sorted on some
644       // other basis will have to use a linker script.
645
646       Segment_list::const_iterator p;
647       for (p = this->segment_list_.begin();
648            p != this->segment_list_.end();
649            ++p)
650         {
651           if ((*p)->type() == elfcpp::PT_LOAD
652               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
653             {
654               // If -Tbss was specified, we need to separate the data
655               // and BSS segments.
656               if (this->options_.user_set_Tbss())
657                 {
658                   if ((type == elfcpp::SHT_NOBITS)
659                       == (*p)->has_any_data_sections())
660                     continue;
661                 }
662
663               (*p)->add_output_section(os, seg_flags);
664               break;
665             }
666         }
667
668       if (p == this->segment_list_.end())
669         {
670           Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
671                                                            seg_flags);
672           oseg->add_output_section(os, seg_flags);
673         }
674
675       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
676       // segment.
677       if (type == elfcpp::SHT_NOTE)
678         {
679           // See if we already have an equivalent PT_NOTE segment.
680           for (p = this->segment_list_.begin();
681                p != segment_list_.end();
682                ++p)
683             {
684               if ((*p)->type() == elfcpp::PT_NOTE
685                   && (((*p)->flags() & elfcpp::PF_W)
686                       == (seg_flags & elfcpp::PF_W)))
687                 {
688                   (*p)->add_output_section(os, seg_flags);
689                   break;
690                 }
691             }
692
693           if (p == this->segment_list_.end())
694             {
695               Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
696                                                                seg_flags);
697               oseg->add_output_section(os, seg_flags);
698             }
699         }
700
701       // If we see a loadable SHF_TLS section, we create a PT_TLS
702       // segment.  There can only be one such segment.
703       if ((flags & elfcpp::SHF_TLS) != 0)
704         {
705           if (this->tls_segment_ == NULL)
706             this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
707                                                            seg_flags);
708           this->tls_segment_->add_output_section(os, seg_flags);
709         }
710     }
711
712   return os;
713 }
714
715 // Make an output section for a script.
716
717 Output_section*
718 Layout::make_output_section_for_script(const char* name)
719 {
720   name = this->namepool_.add(name, false, NULL);
721   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
722                                                  elfcpp::SHF_ALLOC);
723   os->set_found_in_sections_clause();
724   return os;
725 }
726
727 // Return the number of segments we expect to see.
728
729 size_t
730 Layout::expected_segment_count() const
731 {
732   size_t ret = this->segment_list_.size();
733
734   // If we didn't see a SECTIONS clause in a linker script, we should
735   // already have the complete list of segments.  Otherwise we ask the
736   // SECTIONS clause how many segments it expects, and add in the ones
737   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
738
739   if (!this->script_options_->saw_sections_clause())
740     return ret;
741   else
742     {
743       const Script_sections* ss = this->script_options_->script_sections();
744       return ret + ss->expected_segment_count(this);
745     }
746 }
747
748 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
749 // is whether we saw a .note.GNU-stack section in the object file.
750 // GNU_STACK_FLAGS is the section flags.  The flags give the
751 // protection required for stack memory.  We record this in an
752 // executable as a PT_GNU_STACK segment.  If an object file does not
753 // have a .note.GNU-stack segment, we must assume that it is an old
754 // object.  On some targets that will force an executable stack.
755
756 void
757 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
758 {
759   if (!seen_gnu_stack)
760     this->input_without_gnu_stack_note_ = true;
761   else
762     {
763       this->input_with_gnu_stack_note_ = true;
764       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
765         this->input_requires_executable_stack_ = true;
766     }
767 }
768
769 // Create the dynamic sections which are needed before we read the
770 // relocs.
771
772 void
773 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
774 {
775   if (parameters->doing_static_link())
776     return;
777
778   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
779                                                        elfcpp::SHT_DYNAMIC,
780                                                        (elfcpp::SHF_ALLOC
781                                                         | elfcpp::SHF_WRITE),
782                                                        false);
783
784   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
785                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
786                                 elfcpp::STV_HIDDEN, 0, false, false);
787
788   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
789
790   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
791 }
792
793 // For each output section whose name can be represented as C symbol,
794 // define __start and __stop symbols for the section.  This is a GNU
795 // extension.
796
797 void
798 Layout::define_section_symbols(Symbol_table* symtab)
799 {
800   for (Section_list::const_iterator p = this->section_list_.begin();
801        p != this->section_list_.end();
802        ++p)
803     {
804       const char* const name = (*p)->name();
805       if (name[strspn(name,
806                       ("0123456789"
807                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
808                        "abcdefghijklmnopqrstuvwxyz"
809                        "_"))]
810           == '\0')
811         {
812           const std::string name_string(name);
813           const std::string start_name("__start_" + name_string);
814           const std::string stop_name("__stop_" + name_string);
815
816           symtab->define_in_output_data(start_name.c_str(),
817                                         NULL, // version
818                                         *p,
819                                         0, // value
820                                         0, // symsize
821                                         elfcpp::STT_NOTYPE,
822                                         elfcpp::STB_GLOBAL,
823                                         elfcpp::STV_DEFAULT,
824                                         0, // nonvis
825                                         false, // offset_is_from_end
826                                         true); // only_if_ref
827
828           symtab->define_in_output_data(stop_name.c_str(),
829                                         NULL, // version
830                                         *p,
831                                         0, // value
832                                         0, // symsize
833                                         elfcpp::STT_NOTYPE,
834                                         elfcpp::STB_GLOBAL,
835                                         elfcpp::STV_DEFAULT,
836                                         0, // nonvis
837                                         true, // offset_is_from_end
838                                         true); // only_if_ref
839         }
840     }
841 }
842
843 // Define symbols for group signatures.
844
845 void
846 Layout::define_group_signatures(Symbol_table* symtab)
847 {
848   for (Group_signatures::iterator p = this->group_signatures_.begin();
849        p != this->group_signatures_.end();
850        ++p)
851     {
852       Symbol* sym = symtab->lookup(p->signature, NULL);
853       if (sym != NULL)
854         p->section->set_info_symndx(sym);
855       else
856         {
857           // Force the name of the group section to the group
858           // signature, and use the group's section symbol as the
859           // signature symbol.
860           if (strcmp(p->section->name(), p->signature) != 0)
861             {
862               const char* name = this->namepool_.add(p->signature,
863                                                      true, NULL);
864               p->section->set_name(name);
865             }
866           p->section->set_needs_symtab_index();
867           p->section->set_info_section_symndx(p->section);
868         }
869     }
870
871   this->group_signatures_.clear();
872 }
873
874 // Find the first read-only PT_LOAD segment, creating one if
875 // necessary.
876
877 Output_segment*
878 Layout::find_first_load_seg()
879 {
880   for (Segment_list::const_iterator p = this->segment_list_.begin();
881        p != this->segment_list_.end();
882        ++p)
883     {
884       if ((*p)->type() == elfcpp::PT_LOAD
885           && ((*p)->flags() & elfcpp::PF_R) != 0
886           && ((*p)->flags() & elfcpp::PF_W) == 0)
887         return *p;
888     }
889
890   gold_assert(!this->script_options_->saw_phdrs_clause());
891
892   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
893                                                        elfcpp::PF_R);
894   return load_seg;
895 }
896
897 // Finalize the layout.  When this is called, we have created all the
898 // output sections and all the output segments which are based on
899 // input sections.  We have several things to do, and we have to do
900 // them in the right order, so that we get the right results correctly
901 // and efficiently.
902
903 // 1) Finalize the list of output segments and create the segment
904 // table header.
905
906 // 2) Finalize the dynamic symbol table and associated sections.
907
908 // 3) Determine the final file offset of all the output segments.
909
910 // 4) Determine the final file offset of all the SHF_ALLOC output
911 // sections.
912
913 // 5) Create the symbol table sections and the section name table
914 // section.
915
916 // 6) Finalize the symbol table: set symbol values to their final
917 // value and make a final determination of which symbols are going
918 // into the output symbol table.
919
920 // 7) Create the section table header.
921
922 // 8) Determine the final file offset of all the output sections which
923 // are not SHF_ALLOC, including the section table header.
924
925 // 9) Finalize the ELF file header.
926
927 // This function returns the size of the output file.
928
929 off_t
930 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
931                  Target* target, const Task* task)
932 {
933   target->finalize_sections(this);
934
935   this->count_local_symbols(task, input_objects);
936
937   this->create_gold_note();
938   this->create_executable_stack_info(target);
939
940   Output_segment* phdr_seg = NULL;
941   if (!parameters->options().relocatable() && !parameters->doing_static_link())
942     {
943       // There was a dynamic object in the link.  We need to create
944       // some information for the dynamic linker.
945
946       // Create the PT_PHDR segment which will hold the program
947       // headers.
948       if (!this->script_options_->saw_phdrs_clause())
949         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
950
951       // Create the dynamic symbol table, including the hash table.
952       Output_section* dynstr;
953       std::vector<Symbol*> dynamic_symbols;
954       unsigned int local_dynamic_count;
955       Versions versions(*this->script_options()->version_script_info(),
956                         &this->dynpool_);
957       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
958                                   &local_dynamic_count, &dynamic_symbols,
959                                   &versions);
960
961       // Create the .interp section to hold the name of the
962       // interpreter, and put it in a PT_INTERP segment.
963       if (!parameters->options().shared())
964         this->create_interp(target);
965
966       // Finish the .dynamic section to hold the dynamic data, and put
967       // it in a PT_DYNAMIC segment.
968       this->finish_dynamic_section(input_objects, symtab);
969
970       // We should have added everything we need to the dynamic string
971       // table.
972       this->dynpool_.set_string_offsets();
973
974       // Create the version sections.  We can't do this until the
975       // dynamic string table is complete.
976       this->create_version_sections(&versions, symtab, local_dynamic_count,
977                                     dynamic_symbols, dynstr);
978     }
979
980   // If there is a SECTIONS clause, put all the input sections into
981   // the required order.
982   Output_segment* load_seg;
983   if (this->script_options_->saw_sections_clause())
984     load_seg = this->set_section_addresses_from_script(symtab);
985   else if (parameters->options().relocatable())
986     load_seg = NULL;
987   else
988     load_seg = this->find_first_load_seg();
989
990   if (this->options_.oformat() != General_options::OBJECT_FORMAT_ELF)
991     load_seg = NULL;
992
993   gold_assert(phdr_seg == NULL || load_seg != NULL);
994
995   // Lay out the segment headers.
996   Output_segment_headers* segment_headers;
997   if (parameters->options().relocatable())
998     segment_headers = NULL;
999   else
1000     {
1001       segment_headers = new Output_segment_headers(this->segment_list_);
1002       if (load_seg != NULL)
1003         load_seg->add_initial_output_data(segment_headers);
1004       if (phdr_seg != NULL)
1005         phdr_seg->add_initial_output_data(segment_headers);
1006     }
1007
1008   // Lay out the file header.
1009   Output_file_header* file_header;
1010   file_header = new Output_file_header(target, symtab, segment_headers,
1011                                        this->options_.entry());
1012   if (load_seg != NULL)
1013     load_seg->add_initial_output_data(file_header);
1014
1015   this->special_output_list_.push_back(file_header);
1016   if (segment_headers != NULL)
1017     this->special_output_list_.push_back(segment_headers);
1018
1019   if (this->script_options_->saw_phdrs_clause()
1020       && !parameters->options().relocatable())
1021     {
1022       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1023       // clause in a linker script.
1024       Script_sections* ss = this->script_options_->script_sections();
1025       ss->put_headers_in_phdrs(file_header, segment_headers);
1026     }
1027
1028   // We set the output section indexes in set_segment_offsets and
1029   // set_section_indexes.
1030   unsigned int shndx = 1;
1031
1032   // Set the file offsets of all the segments, and all the sections
1033   // they contain.
1034   off_t off;
1035   if (!parameters->options().relocatable())
1036     off = this->set_segment_offsets(target, load_seg, &shndx);
1037   else
1038     off = this->set_relocatable_section_offsets(file_header, &shndx);
1039
1040   // Set the file offsets of all the non-data sections we've seen so
1041   // far which don't have to wait for the input sections.  We need
1042   // this in order to finalize local symbols in non-allocated
1043   // sections.
1044   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1045
1046   // Create the symbol table sections.
1047   this->create_symtab_sections(input_objects, symtab, &off);
1048   if (!parameters->doing_static_link())
1049     this->assign_local_dynsym_offsets(input_objects);
1050
1051   // Process any symbol assignments from a linker script.  This must
1052   // be called after the symbol table has been finalized.
1053   this->script_options_->finalize_symbols(symtab, this);
1054
1055   // Create the .shstrtab section.
1056   Output_section* shstrtab_section = this->create_shstrtab();
1057
1058   // Set the file offsets of the rest of the non-data sections which
1059   // don't have to wait for the input sections.
1060   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1061
1062   // Now that all sections have been created, set the section indexes.
1063   shndx = this->set_section_indexes(shndx);
1064
1065   // Create the section table header.
1066   this->create_shdrs(&off);
1067
1068   // If there are no sections which require postprocessing, we can
1069   // handle the section names now, and avoid a resize later.
1070   if (!this->any_postprocessing_sections_)
1071     off = this->set_section_offsets(off,
1072                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1073
1074   file_header->set_section_info(this->section_headers_, shstrtab_section);
1075
1076   // Now we know exactly where everything goes in the output file
1077   // (except for non-allocated sections which require postprocessing).
1078   Output_data::layout_complete();
1079
1080   this->output_file_size_ = off;
1081
1082   return off;
1083 }
1084
1085 // Create a .note section for an executable or shared library.  This
1086 // records the version of gold used to create the binary.
1087
1088 void
1089 Layout::create_gold_note()
1090 {
1091   if (parameters->options().relocatable())
1092     return;
1093
1094   // Authorities all agree that the values in a .note field should
1095   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1096   // they differ on what the alignment is for 64-bit binaries.
1097   // The GABI says unambiguously they take 8-byte alignment:
1098   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1099   // Other documentation says alignment should always be 4 bytes:
1100   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1101   // GNU ld and GNU readelf both support the latter (at least as of
1102   // version 2.16.91), and glibc always generates the latter for
1103   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1104   // here.
1105 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1106   const int size = parameters->target().get_size();
1107 #else
1108   const int size = 32;
1109 #endif
1110
1111   // The contents of the .note section.
1112   const char* name = "GNU";
1113   std::string desc(std::string("gold ") + gold::get_version_string());
1114   size_t namesz = strlen(name) + 1;
1115   size_t aligned_namesz = align_address(namesz, size / 8);
1116   size_t descsz = desc.length() + 1;
1117   size_t aligned_descsz = align_address(descsz, size / 8);
1118   const int note_type = 4;
1119
1120   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
1121
1122   unsigned char buffer[128];
1123   gold_assert(sizeof buffer >= notesz);
1124   memset(buffer, 0, notesz);
1125
1126   bool is_big_endian = parameters->target().is_big_endian();
1127
1128   if (size == 32)
1129     {
1130       if (!is_big_endian)
1131         {
1132           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1133           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1134           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1135         }
1136       else
1137         {
1138           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1139           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1140           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1141         }
1142     }
1143   else if (size == 64)
1144     {
1145       if (!is_big_endian)
1146         {
1147           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1148           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1149           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1150         }
1151       else
1152         {
1153           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1154           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1155           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1156         }
1157     }
1158   else
1159     gold_unreachable();
1160
1161   memcpy(buffer + 3 * (size / 8), name, namesz);
1162   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
1163
1164   const char* note_name = this->namepool_.add(".note", false, NULL);
1165   Output_section* os = this->make_output_section(note_name,
1166                                                  elfcpp::SHT_NOTE,
1167                                                  0);
1168   Output_section_data* posd = new Output_data_const(buffer, notesz,
1169                                                     size / 8);
1170   os->add_output_section_data(posd);
1171 }
1172
1173 // Record whether the stack should be executable.  This can be set
1174 // from the command line using the -z execstack or -z noexecstack
1175 // options.  Otherwise, if any input file has a .note.GNU-stack
1176 // section with the SHF_EXECINSTR flag set, the stack should be
1177 // executable.  Otherwise, if at least one input file a
1178 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1179 // section, we use the target default for whether the stack should be
1180 // executable.  Otherwise, we don't generate a stack note.  When
1181 // generating a object file, we create a .note.GNU-stack section with
1182 // the appropriate marking.  When generating an executable or shared
1183 // library, we create a PT_GNU_STACK segment.
1184
1185 void
1186 Layout::create_executable_stack_info(const Target* target)
1187 {
1188   bool is_stack_executable;
1189   if (this->options_.is_execstack_set())
1190     is_stack_executable = this->options_.is_stack_executable();
1191   else if (!this->input_with_gnu_stack_note_)
1192     return;
1193   else
1194     {
1195       if (this->input_requires_executable_stack_)
1196         is_stack_executable = true;
1197       else if (this->input_without_gnu_stack_note_)
1198         is_stack_executable = target->is_default_stack_executable();
1199       else
1200         is_stack_executable = false;
1201     }
1202
1203   if (parameters->options().relocatable())
1204     {
1205       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1206       elfcpp::Elf_Xword flags = 0;
1207       if (is_stack_executable)
1208         flags |= elfcpp::SHF_EXECINSTR;
1209       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1210     }
1211   else
1212     {
1213       if (this->script_options_->saw_phdrs_clause())
1214         return;
1215       int flags = elfcpp::PF_R | elfcpp::PF_W;
1216       if (is_stack_executable)
1217         flags |= elfcpp::PF_X;
1218       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1219     }
1220 }
1221
1222 // Return whether SEG1 should be before SEG2 in the output file.  This
1223 // is based entirely on the segment type and flags.  When this is
1224 // called the segment addresses has normally not yet been set.
1225
1226 bool
1227 Layout::segment_precedes(const Output_segment* seg1,
1228                          const Output_segment* seg2)
1229 {
1230   elfcpp::Elf_Word type1 = seg1->type();
1231   elfcpp::Elf_Word type2 = seg2->type();
1232
1233   // The single PT_PHDR segment is required to precede any loadable
1234   // segment.  We simply make it always first.
1235   if (type1 == elfcpp::PT_PHDR)
1236     {
1237       gold_assert(type2 != elfcpp::PT_PHDR);
1238       return true;
1239     }
1240   if (type2 == elfcpp::PT_PHDR)
1241     return false;
1242
1243   // The single PT_INTERP segment is required to precede any loadable
1244   // segment.  We simply make it always second.
1245   if (type1 == elfcpp::PT_INTERP)
1246     {
1247       gold_assert(type2 != elfcpp::PT_INTERP);
1248       return true;
1249     }
1250   if (type2 == elfcpp::PT_INTERP)
1251     return false;
1252
1253   // We then put PT_LOAD segments before any other segments.
1254   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1255     return true;
1256   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1257     return false;
1258
1259   // We put the PT_TLS segment last, because that is where the dynamic
1260   // linker expects to find it (this is just for efficiency; other
1261   // positions would also work correctly).
1262   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1263     return false;
1264   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1265     return true;
1266
1267   const elfcpp::Elf_Word flags1 = seg1->flags();
1268   const elfcpp::Elf_Word flags2 = seg2->flags();
1269
1270   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1271   // by the numeric segment type and flags values.  There should not
1272   // be more than one segment with the same type and flags.
1273   if (type1 != elfcpp::PT_LOAD)
1274     {
1275       if (type1 != type2)
1276         return type1 < type2;
1277       gold_assert(flags1 != flags2);
1278       return flags1 < flags2;
1279     }
1280
1281   // If the addresses are set already, sort by load address.
1282   if (seg1->are_addresses_set())
1283     {
1284       if (!seg2->are_addresses_set())
1285         return true;
1286
1287       unsigned int section_count1 = seg1->output_section_count();
1288       unsigned int section_count2 = seg2->output_section_count();
1289       if (section_count1 == 0 && section_count2 > 0)
1290         return true;
1291       if (section_count1 > 0 && section_count2 == 0)
1292         return false;
1293
1294       uint64_t paddr1 = seg1->first_section_load_address();
1295       uint64_t paddr2 = seg2->first_section_load_address();
1296       if (paddr1 != paddr2)
1297         return paddr1 < paddr2;
1298     }
1299   else if (seg2->are_addresses_set())
1300     return false;
1301
1302   // We sort PT_LOAD segments based on the flags.  Readonly segments
1303   // come before writable segments.  Then writable segments with data
1304   // come before writable segments without data.  Then executable
1305   // segments come before non-executable segments.  Then the unlikely
1306   // case of a non-readable segment comes before the normal case of a
1307   // readable segment.  If there are multiple segments with the same
1308   // type and flags, we require that the address be set, and we sort
1309   // by virtual address and then physical address.
1310   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1311     return (flags1 & elfcpp::PF_W) == 0;
1312   if ((flags1 & elfcpp::PF_W) != 0
1313       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1314     return seg1->has_any_data_sections();
1315   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1316     return (flags1 & elfcpp::PF_X) != 0;
1317   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1318     return (flags1 & elfcpp::PF_R) == 0;
1319
1320   // We shouldn't get here--we shouldn't create segments which we
1321   // can't distinguish.
1322   gold_unreachable();
1323 }
1324
1325 // Set the file offsets of all the segments, and all the sections they
1326 // contain.  They have all been created.  LOAD_SEG must be be laid out
1327 // first.  Return the offset of the data to follow.
1328
1329 off_t
1330 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1331                             unsigned int *pshndx)
1332 {
1333   // Sort them into the final order.
1334   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1335             Layout::Compare_segments());
1336
1337   // Find the PT_LOAD segments, and set their addresses and offsets
1338   // and their section's addresses and offsets.
1339   uint64_t addr;
1340   if (this->options_.user_set_Ttext())
1341     addr = this->options_.Ttext();
1342   else if (parameters->options().shared())
1343     addr = 0;
1344   else
1345     addr = target->default_text_segment_address();
1346   off_t off = 0;
1347
1348   // If LOAD_SEG is NULL, then the file header and segment headers
1349   // will not be loadable.  But they still need to be at offset 0 in
1350   // the file.  Set their offsets now.
1351   if (load_seg == NULL)
1352     {
1353       for (Data_list::iterator p = this->special_output_list_.begin();
1354            p != this->special_output_list_.end();
1355            ++p)
1356         {
1357           off = align_address(off, (*p)->addralign());
1358           (*p)->set_address_and_file_offset(0, off);
1359           off += (*p)->data_size();
1360         }
1361     }
1362
1363   bool was_readonly = false;
1364   for (Segment_list::iterator p = this->segment_list_.begin();
1365        p != this->segment_list_.end();
1366        ++p)
1367     {
1368       if ((*p)->type() == elfcpp::PT_LOAD)
1369         {
1370           if (load_seg != NULL && load_seg != *p)
1371             gold_unreachable();
1372           load_seg = NULL;
1373
1374           bool are_addresses_set = (*p)->are_addresses_set();
1375           if (are_addresses_set)
1376             {
1377               // When it comes to setting file offsets, we care about
1378               // the physical address.
1379               addr = (*p)->paddr();
1380             }
1381           else if (this->options_.user_set_Tdata()
1382                    && ((*p)->flags() & elfcpp::PF_W) != 0
1383                    && (!this->options_.user_set_Tbss()
1384                        || (*p)->has_any_data_sections()))
1385             {
1386               addr = this->options_.Tdata();
1387               are_addresses_set = true;
1388             }
1389           else if (this->options_.user_set_Tbss()
1390                    && ((*p)->flags() & elfcpp::PF_W) != 0
1391                    && !(*p)->has_any_data_sections())
1392             {
1393               addr = this->options_.Tbss();
1394               are_addresses_set = true;
1395             }
1396
1397           uint64_t orig_addr = addr;
1398           uint64_t orig_off = off;
1399
1400           uint64_t aligned_addr = 0;
1401           uint64_t abi_pagesize = target->abi_pagesize();
1402
1403           // FIXME: This should depend on the -n and -N options.
1404           (*p)->set_minimum_p_align(target->common_pagesize());
1405
1406           if (are_addresses_set)
1407             {
1408               // Adjust the file offset to the same address modulo the
1409               // page size.
1410               uint64_t unsigned_off = off;
1411               uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1412                                       | (addr & (abi_pagesize - 1)));
1413               if (aligned_off < unsigned_off)
1414                 aligned_off += abi_pagesize;
1415               off = aligned_off;
1416             }
1417           else
1418             {
1419               // If the last segment was readonly, and this one is
1420               // not, then skip the address forward one page,
1421               // maintaining the same position within the page.  This
1422               // lets us store both segments overlapping on a single
1423               // page in the file, but the loader will put them on
1424               // different pages in memory.
1425
1426               addr = align_address(addr, (*p)->maximum_alignment());
1427               aligned_addr = addr;
1428
1429               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1430                 {
1431                   if ((addr & (abi_pagesize - 1)) != 0)
1432                     addr = addr + abi_pagesize;
1433                 }
1434
1435               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1436             }
1437
1438           unsigned int shndx_hold = *pshndx;
1439           uint64_t new_addr = (*p)->set_section_addresses(false, addr, &off,
1440                                                           pshndx);
1441
1442           // Now that we know the size of this segment, we may be able
1443           // to save a page in memory, at the cost of wasting some
1444           // file space, by instead aligning to the start of a new
1445           // page.  Here we use the real machine page size rather than
1446           // the ABI mandated page size.
1447
1448           if (!are_addresses_set && aligned_addr != addr)
1449             {
1450               uint64_t common_pagesize = target->common_pagesize();
1451               uint64_t first_off = (common_pagesize
1452                                     - (aligned_addr
1453                                        & (common_pagesize - 1)));
1454               uint64_t last_off = new_addr & (common_pagesize - 1);
1455               if (first_off > 0
1456                   && last_off > 0
1457                   && ((aligned_addr & ~ (common_pagesize - 1))
1458                       != (new_addr & ~ (common_pagesize - 1)))
1459                   && first_off + last_off <= common_pagesize)
1460                 {
1461                   *pshndx = shndx_hold;
1462                   addr = align_address(aligned_addr, common_pagesize);
1463                   addr = align_address(addr, (*p)->maximum_alignment());
1464                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1465                   new_addr = (*p)->set_section_addresses(true, addr, &off,
1466                                                          pshndx);
1467                 }
1468             }
1469
1470           addr = new_addr;
1471
1472           if (((*p)->flags() & elfcpp::PF_W) == 0)
1473             was_readonly = true;
1474         }
1475     }
1476
1477   // Handle the non-PT_LOAD segments, setting their offsets from their
1478   // section's offsets.
1479   for (Segment_list::iterator p = this->segment_list_.begin();
1480        p != this->segment_list_.end();
1481        ++p)
1482     {
1483       if ((*p)->type() != elfcpp::PT_LOAD)
1484         (*p)->set_offset();
1485     }
1486
1487   // Set the TLS offsets for each section in the PT_TLS segment.
1488   if (this->tls_segment_ != NULL)
1489     this->tls_segment_->set_tls_offsets();
1490
1491   return off;
1492 }
1493
1494 // Set the offsets of all the allocated sections when doing a
1495 // relocatable link.  This does the same jobs as set_segment_offsets,
1496 // only for a relocatable link.
1497
1498 off_t
1499 Layout::set_relocatable_section_offsets(Output_data* file_header,
1500                                         unsigned int *pshndx)
1501 {
1502   off_t off = 0;
1503
1504   file_header->set_address_and_file_offset(0, 0);
1505   off += file_header->data_size();
1506
1507   for (Section_list::iterator p = this->section_list_.begin();
1508        p != this->section_list_.end();
1509        ++p)
1510     {
1511       // We skip unallocated sections here, except that group sections
1512       // have to come first.
1513       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1514           && (*p)->type() != elfcpp::SHT_GROUP)
1515         continue;
1516
1517       off = align_address(off, (*p)->addralign());
1518
1519       // The linker script might have set the address.
1520       if (!(*p)->is_address_valid())
1521         (*p)->set_address(0);
1522       (*p)->set_file_offset(off);
1523       (*p)->finalize_data_size();
1524       off += (*p)->data_size();
1525
1526       (*p)->set_out_shndx(*pshndx);
1527       ++*pshndx;
1528     }
1529
1530   return off;
1531 }
1532
1533 // Set the file offset of all the sections not associated with a
1534 // segment.
1535
1536 off_t
1537 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1538 {
1539   for (Section_list::iterator p = this->unattached_section_list_.begin();
1540        p != this->unattached_section_list_.end();
1541        ++p)
1542     {
1543       // The symtab section is handled in create_symtab_sections.
1544       if (*p == this->symtab_section_)
1545         continue;
1546
1547       // If we've already set the data size, don't set it again.
1548       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1549         continue;
1550
1551       if (pass == BEFORE_INPUT_SECTIONS_PASS
1552           && (*p)->requires_postprocessing())
1553         {
1554           (*p)->create_postprocessing_buffer();
1555           this->any_postprocessing_sections_ = true;
1556         }
1557
1558       if (pass == BEFORE_INPUT_SECTIONS_PASS
1559           && (*p)->after_input_sections())
1560         continue;
1561       else if (pass == POSTPROCESSING_SECTIONS_PASS
1562                && (!(*p)->after_input_sections()
1563                    || (*p)->type() == elfcpp::SHT_STRTAB))
1564         continue;
1565       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1566                && (!(*p)->after_input_sections()
1567                    || (*p)->type() != elfcpp::SHT_STRTAB))
1568         continue;
1569
1570       off = align_address(off, (*p)->addralign());
1571       (*p)->set_file_offset(off);
1572       (*p)->finalize_data_size();
1573       off += (*p)->data_size();
1574
1575       // At this point the name must be set.
1576       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1577         this->namepool_.add((*p)->name(), false, NULL);
1578     }
1579   return off;
1580 }
1581
1582 // Set the section indexes of all the sections not associated with a
1583 // segment.
1584
1585 unsigned int
1586 Layout::set_section_indexes(unsigned int shndx)
1587 {
1588   const bool output_is_object = parameters->options().relocatable();
1589   for (Section_list::iterator p = this->unattached_section_list_.begin();
1590        p != this->unattached_section_list_.end();
1591        ++p)
1592     {
1593       // In a relocatable link, we already did group sections.
1594       if (output_is_object
1595           && (*p)->type() == elfcpp::SHT_GROUP)
1596         continue;
1597
1598       (*p)->set_out_shndx(shndx);
1599       ++shndx;
1600     }
1601   return shndx;
1602 }
1603
1604 // Set the section addresses according to the linker script.  This is
1605 // only called when we see a SECTIONS clause.  This returns the
1606 // program segment which should hold the file header and segment
1607 // headers, if any.  It will return NULL if they should not be in a
1608 // segment.
1609
1610 Output_segment*
1611 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1612 {
1613   Script_sections* ss = this->script_options_->script_sections();
1614   gold_assert(ss->saw_sections_clause());
1615
1616   // Place each orphaned output section in the script.
1617   for (Section_list::iterator p = this->section_list_.begin();
1618        p != this->section_list_.end();
1619        ++p)
1620     {
1621       if (!(*p)->found_in_sections_clause())
1622         ss->place_orphan(*p);
1623     }
1624
1625   return this->script_options_->set_section_addresses(symtab, this);
1626 }
1627
1628 // Count the local symbols in the regular symbol table and the dynamic
1629 // symbol table, and build the respective string pools.
1630
1631 void
1632 Layout::count_local_symbols(const Task* task,
1633                             const Input_objects* input_objects)
1634 {
1635   // First, figure out an upper bound on the number of symbols we'll
1636   // be inserting into each pool.  This helps us create the pools with
1637   // the right size, to avoid unnecessary hashtable resizing.
1638   unsigned int symbol_count = 0;
1639   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1640        p != input_objects->relobj_end();
1641        ++p)
1642     symbol_count += (*p)->local_symbol_count();
1643
1644   // Go from "upper bound" to "estimate."  We overcount for two
1645   // reasons: we double-count symbols that occur in more than one
1646   // object file, and we count symbols that are dropped from the
1647   // output.  Add it all together and assume we overcount by 100%.
1648   symbol_count /= 2;
1649
1650   // We assume all symbols will go into both the sympool and dynpool.
1651   this->sympool_.reserve(symbol_count);
1652   this->dynpool_.reserve(symbol_count);
1653
1654   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1655        p != input_objects->relobj_end();
1656        ++p)
1657     {
1658       Task_lock_obj<Object> tlo(task, *p);
1659       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1660     }
1661 }
1662
1663 // Create the symbol table sections.  Here we also set the final
1664 // values of the symbols.  At this point all the loadable sections are
1665 // fully laid out.
1666
1667 void
1668 Layout::create_symtab_sections(const Input_objects* input_objects,
1669                                Symbol_table* symtab,
1670                                off_t* poff)
1671 {
1672   int symsize;
1673   unsigned int align;
1674   if (parameters->target().get_size() == 32)
1675     {
1676       symsize = elfcpp::Elf_sizes<32>::sym_size;
1677       align = 4;
1678     }
1679   else if (parameters->target().get_size() == 64)
1680     {
1681       symsize = elfcpp::Elf_sizes<64>::sym_size;
1682       align = 8;
1683     }
1684   else
1685     gold_unreachable();
1686
1687   off_t off = *poff;
1688   off = align_address(off, align);
1689   off_t startoff = off;
1690
1691   // Save space for the dummy symbol at the start of the section.  We
1692   // never bother to write this out--it will just be left as zero.
1693   off += symsize;
1694   unsigned int local_symbol_index = 1;
1695
1696   // Add STT_SECTION symbols for each Output section which needs one.
1697   for (Section_list::iterator p = this->section_list_.begin();
1698        p != this->section_list_.end();
1699        ++p)
1700     {
1701       if (!(*p)->needs_symtab_index())
1702         (*p)->set_symtab_index(-1U);
1703       else
1704         {
1705           (*p)->set_symtab_index(local_symbol_index);
1706           ++local_symbol_index;
1707           off += symsize;
1708         }
1709     }
1710
1711   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1712        p != input_objects->relobj_end();
1713        ++p)
1714     {
1715       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1716                                                         off);
1717       off += (index - local_symbol_index) * symsize;
1718       local_symbol_index = index;
1719     }
1720
1721   unsigned int local_symcount = local_symbol_index;
1722   gold_assert(local_symcount * symsize == off - startoff);
1723
1724   off_t dynoff;
1725   size_t dyn_global_index;
1726   size_t dyncount;
1727   if (this->dynsym_section_ == NULL)
1728     {
1729       dynoff = 0;
1730       dyn_global_index = 0;
1731       dyncount = 0;
1732     }
1733   else
1734     {
1735       dyn_global_index = this->dynsym_section_->info();
1736       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1737       dynoff = this->dynsym_section_->offset() + locsize;
1738       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1739       gold_assert(static_cast<off_t>(dyncount * symsize)
1740                   == this->dynsym_section_->data_size() - locsize);
1741     }
1742
1743   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1744                          &this->sympool_, &local_symcount);
1745
1746   if (!parameters->options().strip_all())
1747     {
1748       this->sympool_.set_string_offsets();
1749
1750       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1751       Output_section* osymtab = this->make_output_section(symtab_name,
1752                                                           elfcpp::SHT_SYMTAB,
1753                                                           0);
1754       this->symtab_section_ = osymtab;
1755
1756       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1757                                                              align);
1758       osymtab->add_output_section_data(pos);
1759
1760       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1761       Output_section* ostrtab = this->make_output_section(strtab_name,
1762                                                           elfcpp::SHT_STRTAB,
1763                                                           0);
1764
1765       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1766       ostrtab->add_output_section_data(pstr);
1767
1768       osymtab->set_file_offset(startoff);
1769       osymtab->finalize_data_size();
1770       osymtab->set_link_section(ostrtab);
1771       osymtab->set_info(local_symcount);
1772       osymtab->set_entsize(symsize);
1773
1774       *poff = off;
1775     }
1776 }
1777
1778 // Create the .shstrtab section, which holds the names of the
1779 // sections.  At the time this is called, we have created all the
1780 // output sections except .shstrtab itself.
1781
1782 Output_section*
1783 Layout::create_shstrtab()
1784 {
1785   // FIXME: We don't need to create a .shstrtab section if we are
1786   // stripping everything.
1787
1788   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1789
1790   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1791
1792   // We can't write out this section until we've set all the section
1793   // names, and we don't set the names of compressed output sections
1794   // until relocations are complete.
1795   os->set_after_input_sections();
1796
1797   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1798   os->add_output_section_data(posd);
1799
1800   return os;
1801 }
1802
1803 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1804 // offset.
1805
1806 void
1807 Layout::create_shdrs(off_t* poff)
1808 {
1809   Output_section_headers* oshdrs;
1810   oshdrs = new Output_section_headers(this,
1811                                       &this->segment_list_,
1812                                       &this->section_list_,
1813                                       &this->unattached_section_list_,
1814                                       &this->namepool_);
1815   off_t off = align_address(*poff, oshdrs->addralign());
1816   oshdrs->set_address_and_file_offset(0, off);
1817   off += oshdrs->data_size();
1818   *poff = off;
1819   this->section_headers_ = oshdrs;
1820 }
1821
1822 // Create the dynamic symbol table.
1823
1824 void
1825 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1826                               Symbol_table* symtab,
1827                               Output_section **pdynstr,
1828                               unsigned int* plocal_dynamic_count,
1829                               std::vector<Symbol*>* pdynamic_symbols,
1830                               Versions* pversions)
1831 {
1832   // Count all the symbols in the dynamic symbol table, and set the
1833   // dynamic symbol indexes.
1834
1835   // Skip symbol 0, which is always all zeroes.
1836   unsigned int index = 1;
1837
1838   // Add STT_SECTION symbols for each Output section which needs one.
1839   for (Section_list::iterator p = this->section_list_.begin();
1840        p != this->section_list_.end();
1841        ++p)
1842     {
1843       if (!(*p)->needs_dynsym_index())
1844         (*p)->set_dynsym_index(-1U);
1845       else
1846         {
1847           (*p)->set_dynsym_index(index);
1848           ++index;
1849         }
1850     }
1851
1852   // Count the local symbols that need to go in the dynamic symbol table,
1853   // and set the dynamic symbol indexes.
1854   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1855        p != input_objects->relobj_end();
1856        ++p)
1857     {
1858       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1859       index = new_index;
1860     }
1861
1862   unsigned int local_symcount = index;
1863   *plocal_dynamic_count = local_symcount;
1864
1865   // FIXME: We have to tell set_dynsym_indexes whether the
1866   // -E/--export-dynamic option was used.
1867   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
1868                                      &this->dynpool_, pversions);
1869
1870   int symsize;
1871   unsigned int align;
1872   const int size = parameters->target().get_size();
1873   if (size == 32)
1874     {
1875       symsize = elfcpp::Elf_sizes<32>::sym_size;
1876       align = 4;
1877     }
1878   else if (size == 64)
1879     {
1880       symsize = elfcpp::Elf_sizes<64>::sym_size;
1881       align = 8;
1882     }
1883   else
1884     gold_unreachable();
1885
1886   // Create the dynamic symbol table section.
1887
1888   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
1889                                                        elfcpp::SHT_DYNSYM,
1890                                                        elfcpp::SHF_ALLOC,
1891                                                        false);
1892
1893   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1894                                                            align);
1895   dynsym->add_output_section_data(odata);
1896
1897   dynsym->set_info(local_symcount);
1898   dynsym->set_entsize(symsize);
1899   dynsym->set_addralign(align);
1900
1901   this->dynsym_section_ = dynsym;
1902
1903   Output_data_dynamic* const odyn = this->dynamic_data_;
1904   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1905   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1906
1907   // Create the dynamic string table section.
1908
1909   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
1910                                                        elfcpp::SHT_STRTAB,
1911                                                        elfcpp::SHF_ALLOC,
1912                                                        false);
1913
1914   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1915   dynstr->add_output_section_data(strdata);
1916
1917   dynsym->set_link_section(dynstr);
1918   this->dynamic_section_->set_link_section(dynstr);
1919
1920   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1921   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1922
1923   *pdynstr = dynstr;
1924
1925   // Create the hash tables.
1926
1927   // FIXME: We need an option to create a GNU hash table.
1928
1929   unsigned char* phash;
1930   unsigned int hashlen;
1931   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1932                                 &phash, &hashlen);
1933
1934   Output_section* hashsec = this->choose_output_section(NULL, ".hash",
1935                                                         elfcpp::SHT_HASH,
1936                                                         elfcpp::SHF_ALLOC,
1937                                                         false);
1938
1939   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1940                                                                hashlen,
1941                                                                align);
1942   hashsec->add_output_section_data(hashdata);
1943
1944   hashsec->set_link_section(dynsym);
1945   hashsec->set_entsize(4);
1946
1947   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1948 }
1949
1950 // Assign offsets to each local portion of the dynamic symbol table.
1951
1952 void
1953 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1954 {
1955   Output_section* dynsym = this->dynsym_section_;
1956   gold_assert(dynsym != NULL);
1957
1958   off_t off = dynsym->offset();
1959
1960   // Skip the dummy symbol at the start of the section.
1961   off += dynsym->entsize();
1962
1963   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1964        p != input_objects->relobj_end();
1965        ++p)
1966     {
1967       unsigned int count = (*p)->set_local_dynsym_offset(off);
1968       off += count * dynsym->entsize();
1969     }
1970 }
1971
1972 // Create the version sections.
1973
1974 void
1975 Layout::create_version_sections(const Versions* versions,
1976                                 const Symbol_table* symtab,
1977                                 unsigned int local_symcount,
1978                                 const std::vector<Symbol*>& dynamic_symbols,
1979                                 const Output_section* dynstr)
1980 {
1981   if (!versions->any_defs() && !versions->any_needs())
1982     return;
1983
1984   switch (parameters->size_and_endianness())
1985     {
1986 #ifdef HAVE_TARGET_32_LITTLE
1987     case Parameters::TARGET_32_LITTLE:
1988       this->sized_create_version_sections
1989           SELECT_SIZE_ENDIAN_NAME(32, false)(
1990               versions, symtab, local_symcount, dynamic_symbols, dynstr
1991               SELECT_SIZE_ENDIAN(32, false));
1992       break;
1993 #endif
1994 #ifdef HAVE_TARGET_32_BIG
1995     case Parameters::TARGET_32_BIG:
1996       this->sized_create_version_sections
1997           SELECT_SIZE_ENDIAN_NAME(32, true)(
1998               versions, symtab, local_symcount, dynamic_symbols, dynstr
1999               SELECT_SIZE_ENDIAN(32, true));
2000       break;
2001 #endif
2002 #ifdef HAVE_TARGET_64_LITTLE
2003     case Parameters::TARGET_64_LITTLE:
2004       this->sized_create_version_sections
2005           SELECT_SIZE_ENDIAN_NAME(64, false)(
2006               versions, symtab, local_symcount, dynamic_symbols, dynstr
2007               SELECT_SIZE_ENDIAN(64, false));
2008       break;
2009 #endif
2010 #ifdef HAVE_TARGET_64_BIG
2011     case Parameters::TARGET_64_BIG:
2012       this->sized_create_version_sections
2013           SELECT_SIZE_ENDIAN_NAME(64, true)(
2014               versions, symtab, local_symcount, dynamic_symbols, dynstr
2015               SELECT_SIZE_ENDIAN(64, true));
2016       break;
2017 #endif
2018     default:
2019       gold_unreachable();
2020     }
2021 }
2022
2023 // Create the version sections, sized version.
2024
2025 template<int size, bool big_endian>
2026 void
2027 Layout::sized_create_version_sections(
2028     const Versions* versions,
2029     const Symbol_table* symtab,
2030     unsigned int local_symcount,
2031     const std::vector<Symbol*>& dynamic_symbols,
2032     const Output_section* dynstr
2033     ACCEPT_SIZE_ENDIAN)
2034 {
2035   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2036                                                      elfcpp::SHT_GNU_versym,
2037                                                      elfcpp::SHF_ALLOC,
2038                                                      false);
2039
2040   unsigned char* vbuf;
2041   unsigned int vsize;
2042   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2043       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
2044       SELECT_SIZE_ENDIAN(size, big_endian));
2045
2046   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
2047
2048   vsec->add_output_section_data(vdata);
2049   vsec->set_entsize(2);
2050   vsec->set_link_section(this->dynsym_section_);
2051
2052   Output_data_dynamic* const odyn = this->dynamic_data_;
2053   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2054
2055   if (versions->any_defs())
2056     {
2057       Output_section* vdsec;
2058       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2059                                          elfcpp::SHT_GNU_verdef,
2060                                          elfcpp::SHF_ALLOC,
2061                                          false);
2062
2063       unsigned char* vdbuf;
2064       unsigned int vdsize;
2065       unsigned int vdentries;
2066       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2067           &this->dynpool_, &vdbuf, &vdsize, &vdentries
2068           SELECT_SIZE_ENDIAN(size, big_endian));
2069
2070       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
2071                                                                  vdsize,
2072                                                                  4);
2073
2074       vdsec->add_output_section_data(vddata);
2075       vdsec->set_link_section(dynstr);
2076       vdsec->set_info(vdentries);
2077
2078       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2079       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2080     }
2081
2082   if (versions->any_needs())
2083     {
2084       Output_section* vnsec;
2085       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2086                                           elfcpp::SHT_GNU_verneed,
2087                                           elfcpp::SHF_ALLOC,
2088                                           false);
2089
2090       unsigned char* vnbuf;
2091       unsigned int vnsize;
2092       unsigned int vnentries;
2093       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
2094         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
2095          SELECT_SIZE_ENDIAN(size, big_endian));
2096
2097       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
2098                                                                  vnsize,
2099                                                                  4);
2100
2101       vnsec->add_output_section_data(vndata);
2102       vnsec->set_link_section(dynstr);
2103       vnsec->set_info(vnentries);
2104
2105       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2106       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2107     }
2108 }
2109
2110 // Create the .interp section and PT_INTERP segment.
2111
2112 void
2113 Layout::create_interp(const Target* target)
2114 {
2115   const char* interp = this->options_.dynamic_linker();
2116   if (interp == NULL)
2117     {
2118       interp = target->dynamic_linker();
2119       gold_assert(interp != NULL);
2120     }
2121
2122   size_t len = strlen(interp) + 1;
2123
2124   Output_section_data* odata = new Output_data_const(interp, len, 1);
2125
2126   Output_section* osec = this->choose_output_section(NULL, ".interp",
2127                                                      elfcpp::SHT_PROGBITS,
2128                                                      elfcpp::SHF_ALLOC,
2129                                                      false);
2130   osec->add_output_section_data(odata);
2131
2132   if (!this->script_options_->saw_phdrs_clause())
2133     {
2134       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2135                                                        elfcpp::PF_R);
2136       oseg->add_initial_output_section(osec, elfcpp::PF_R);
2137     }
2138 }
2139
2140 // Finish the .dynamic section and PT_DYNAMIC segment.
2141
2142 void
2143 Layout::finish_dynamic_section(const Input_objects* input_objects,
2144                                const Symbol_table* symtab)
2145 {
2146   if (!this->script_options_->saw_phdrs_clause())
2147     {
2148       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2149                                                        (elfcpp::PF_R
2150                                                         | elfcpp::PF_W));
2151       oseg->add_initial_output_section(this->dynamic_section_,
2152                                        elfcpp::PF_R | elfcpp::PF_W);
2153     }
2154
2155   Output_data_dynamic* const odyn = this->dynamic_data_;
2156
2157   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2158        p != input_objects->dynobj_end();
2159        ++p)
2160     {
2161       // FIXME: Handle --as-needed.
2162       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2163     }
2164
2165   if (parameters->options().shared())
2166     {
2167       const char* soname = this->options_.soname();
2168       if (soname != NULL)
2169         odyn->add_string(elfcpp::DT_SONAME, soname);
2170     }
2171
2172   // FIXME: Support --init and --fini.
2173   Symbol* sym = symtab->lookup("_init");
2174   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2175     odyn->add_symbol(elfcpp::DT_INIT, sym);
2176
2177   sym = symtab->lookup("_fini");
2178   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2179     odyn->add_symbol(elfcpp::DT_FINI, sym);
2180
2181   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2182
2183   // Add a DT_RPATH entry if needed.
2184   const General_options::Dir_list& rpath(this->options_.rpath());
2185   if (!rpath.empty())
2186     {
2187       std::string rpath_val;
2188       for (General_options::Dir_list::const_iterator p = rpath.begin();
2189            p != rpath.end();
2190            ++p)
2191         {
2192           if (rpath_val.empty())
2193             rpath_val = p->name();
2194           else
2195             {
2196               // Eliminate duplicates.
2197               General_options::Dir_list::const_iterator q;
2198               for (q = rpath.begin(); q != p; ++q)
2199                 if (q->name() == p->name())
2200                   break;
2201               if (q == p)
2202                 {
2203                   rpath_val += ':';
2204                   rpath_val += p->name();
2205                 }
2206             }
2207         }
2208
2209       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2210     }
2211
2212   // Look for text segments that have dynamic relocations.
2213   bool have_textrel = false;
2214   if (!this->script_options_->saw_sections_clause())
2215     {
2216       for (Segment_list::const_iterator p = this->segment_list_.begin();
2217            p != this->segment_list_.end();
2218            ++p)
2219         {
2220           if (((*p)->flags() & elfcpp::PF_W) == 0
2221               && (*p)->dynamic_reloc_count() > 0)
2222             {
2223               have_textrel = true;
2224               break;
2225             }
2226         }
2227     }
2228   else
2229     {
2230       // We don't know the section -> segment mapping, so we are
2231       // conservative and just look for readonly sections with
2232       // relocations.  If those sections wind up in writable segments,
2233       // then we have created an unnecessary DT_TEXTREL entry.
2234       for (Section_list::const_iterator p = this->section_list_.begin();
2235            p != this->section_list_.end();
2236            ++p)
2237         {
2238           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2239               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2240               && ((*p)->dynamic_reloc_count() > 0))
2241             {
2242               have_textrel = true;
2243               break;
2244             }
2245         }
2246     }
2247
2248   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2249   // post-link tools can easily modify these flags if desired.
2250   unsigned int flags = 0;
2251   if (have_textrel)
2252     {
2253       // Add a DT_TEXTREL for compatibility with older loaders.
2254       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2255       flags |= elfcpp::DF_TEXTREL;
2256     }
2257   if (parameters->options().shared() && this->has_static_tls())
2258     flags |= elfcpp::DF_STATIC_TLS;
2259   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2260 }
2261
2262 // The mapping of .gnu.linkonce section names to real section names.
2263
2264 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2265 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2266 {
2267   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
2268   MAPPING_INIT("t", ".text"),
2269   MAPPING_INIT("r", ".rodata"),
2270   MAPPING_INIT("d", ".data"),
2271   MAPPING_INIT("b", ".bss"),
2272   MAPPING_INIT("s", ".sdata"),
2273   MAPPING_INIT("sb", ".sbss"),
2274   MAPPING_INIT("s2", ".sdata2"),
2275   MAPPING_INIT("sb2", ".sbss2"),
2276   MAPPING_INIT("wi", ".debug_info"),
2277   MAPPING_INIT("td", ".tdata"),
2278   MAPPING_INIT("tb", ".tbss"),
2279   MAPPING_INIT("lr", ".lrodata"),
2280   MAPPING_INIT("l", ".ldata"),
2281   MAPPING_INIT("lb", ".lbss"),
2282 };
2283 #undef MAPPING_INIT
2284
2285 const int Layout::linkonce_mapping_count =
2286   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2287
2288 // Return the name of the output section to use for a .gnu.linkonce
2289 // section.  This is based on the default ELF linker script of the old
2290 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
2291 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
2292 // initialized to the length of NAME.
2293
2294 const char*
2295 Layout::linkonce_output_name(const char* name, size_t *plen)
2296 {
2297   const char* s = name + sizeof(".gnu.linkonce") - 1;
2298   if (*s != '.')
2299     return name;
2300   ++s;
2301   const Linkonce_mapping* plm = linkonce_mapping;
2302   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2303     {
2304       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2305         {
2306           *plen = plm->tolen;
2307           return plm->to;
2308         }
2309     }
2310   return name;
2311 }
2312
2313 // Choose the output section name to use given an input section name.
2314 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2315 // length of NAME.
2316
2317 const char*
2318 Layout::output_section_name(const char* name, size_t* plen)
2319 {
2320   if (Layout::is_linkonce(name))
2321     {
2322       // .gnu.linkonce sections are laid out as though they were named
2323       // for the sections are placed into.
2324       return Layout::linkonce_output_name(name, plen);
2325     }
2326
2327   // gcc 4.3 generates the following sorts of section names when it
2328   // needs a section name specific to a function:
2329   //   .text.FN
2330   //   .rodata.FN
2331   //   .sdata2.FN
2332   //   .data.FN
2333   //   .data.rel.FN
2334   //   .data.rel.local.FN
2335   //   .data.rel.ro.FN
2336   //   .data.rel.ro.local.FN
2337   //   .sdata.FN
2338   //   .bss.FN
2339   //   .sbss.FN
2340   //   .tdata.FN
2341   //   .tbss.FN
2342
2343   // The GNU linker maps all of those to the part before the .FN,
2344   // except that .data.rel.local.FN is mapped to .data, and
2345   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2346   // beginning with .data.rel.ro.local are grouped together.
2347
2348   // For an anonymous namespace, the string FN can contain a '.'.
2349
2350   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2351   // GNU linker maps to .rodata.
2352
2353   // The .data.rel.ro sections enable a security feature triggered by
2354   // the -z relro option.  Section which need to be relocated at
2355   // program startup time but which may be readonly after startup are
2356   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
2357   // segment.  The dynamic linker will make that segment writable,
2358   // perform relocations, and then make it read-only.  FIXME: We do
2359   // not yet implement this optimization.
2360
2361   // It is hard to handle this in a principled way.
2362
2363   // These are the rules we follow:
2364
2365   // If the section name has no initial '.', or no dot other than an
2366   // initial '.', we use the name unchanged (i.e., "mysection" and
2367   // ".text" are unchanged).
2368
2369   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2370
2371   // Otherwise, we drop the second '.' and everything that comes after
2372   // it (i.e., ".text.XXX" becomes ".text").
2373
2374   const char* s = name;
2375   if (*s != '.')
2376     return name;
2377   ++s;
2378   const char* sdot = strchr(s, '.');
2379   if (sdot == NULL)
2380     return name;
2381
2382   const char* const data_rel_ro = ".data.rel.ro";
2383   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2384     {
2385       *plen = strlen(data_rel_ro);
2386       return data_rel_ro;
2387     }
2388
2389   *plen = sdot - name;
2390   return name;
2391 }
2392
2393 // Record the signature of a comdat section, and return whether to
2394 // include it in the link.  If GROUP is true, this is a regular
2395 // section group.  If GROUP is false, this is a group signature
2396 // derived from the name of a linkonce section.  We want linkonce
2397 // signatures and group signatures to block each other, but we don't
2398 // want a linkonce signature to block another linkonce signature.
2399
2400 bool
2401 Layout::add_comdat(const char* signature, bool group)
2402 {
2403   std::string sig(signature);
2404   std::pair<Signatures::iterator, bool> ins(
2405     this->signatures_.insert(std::make_pair(sig, group)));
2406
2407   if (ins.second)
2408     {
2409       // This is the first time we've seen this signature.
2410       return true;
2411     }
2412
2413   if (ins.first->second)
2414     {
2415       // We've already seen a real section group with this signature.
2416       return false;
2417     }
2418   else if (group)
2419     {
2420       // This is a real section group, and we've already seen a
2421       // linkonce section with this signature.  Record that we've seen
2422       // a section group, and don't include this section group.
2423       ins.first->second = true;
2424       return false;
2425     }
2426   else
2427     {
2428       // We've already seen a linkonce section and this is a linkonce
2429       // section.  These don't block each other--this may be the same
2430       // symbol name with different section types.
2431       return true;
2432     }
2433 }
2434
2435 // Store the allocated sections into the section list.
2436
2437 void
2438 Layout::get_allocated_sections(Section_list* section_list) const
2439 {
2440   for (Section_list::const_iterator p = this->section_list_.begin();
2441        p != this->section_list_.end();
2442        ++p)
2443     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2444       section_list->push_back(*p);
2445 }
2446
2447 // Create an output segment.
2448
2449 Output_segment*
2450 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2451 {
2452   gold_assert(!parameters->options().relocatable());
2453   Output_segment* oseg = new Output_segment(type, flags);
2454   this->segment_list_.push_back(oseg);
2455   return oseg;
2456 }
2457
2458 // Write out the Output_sections.  Most won't have anything to write,
2459 // since most of the data will come from input sections which are
2460 // handled elsewhere.  But some Output_sections do have Output_data.
2461
2462 void
2463 Layout::write_output_sections(Output_file* of) const
2464 {
2465   for (Section_list::const_iterator p = this->section_list_.begin();
2466        p != this->section_list_.end();
2467        ++p)
2468     {
2469       if (!(*p)->after_input_sections())
2470         (*p)->write(of);
2471     }
2472 }
2473
2474 // Write out data not associated with a section or the symbol table.
2475
2476 void
2477 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2478 {
2479   if (!parameters->options().strip_all())
2480     {
2481       const Output_section* symtab_section = this->symtab_section_;
2482       for (Section_list::const_iterator p = this->section_list_.begin();
2483            p != this->section_list_.end();
2484            ++p)
2485         {
2486           if ((*p)->needs_symtab_index())
2487             {
2488               gold_assert(symtab_section != NULL);
2489               unsigned int index = (*p)->symtab_index();
2490               gold_assert(index > 0 && index != -1U);
2491               off_t off = (symtab_section->offset()
2492                            + index * symtab_section->entsize());
2493               symtab->write_section_symbol(*p, of, off);
2494             }
2495         }
2496     }
2497
2498   const Output_section* dynsym_section = this->dynsym_section_;
2499   for (Section_list::const_iterator p = this->section_list_.begin();
2500        p != this->section_list_.end();
2501        ++p)
2502     {
2503       if ((*p)->needs_dynsym_index())
2504         {
2505           gold_assert(dynsym_section != NULL);
2506           unsigned int index = (*p)->dynsym_index();
2507           gold_assert(index > 0 && index != -1U);
2508           off_t off = (dynsym_section->offset()
2509                        + index * dynsym_section->entsize());
2510           symtab->write_section_symbol(*p, of, off);
2511         }
2512     }
2513
2514   // Write out the Output_data which are not in an Output_section.
2515   for (Data_list::const_iterator p = this->special_output_list_.begin();
2516        p != this->special_output_list_.end();
2517        ++p)
2518     (*p)->write(of);
2519 }
2520
2521 // Write out the Output_sections which can only be written after the
2522 // input sections are complete.
2523
2524 void
2525 Layout::write_sections_after_input_sections(Output_file* of)
2526 {
2527   // Determine the final section offsets, and thus the final output
2528   // file size.  Note we finalize the .shstrab last, to allow the
2529   // after_input_section sections to modify their section-names before
2530   // writing.
2531   if (this->any_postprocessing_sections_)
2532     {
2533       off_t off = this->output_file_size_;
2534       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2535       
2536       // Now that we've finalized the names, we can finalize the shstrab.
2537       off =
2538         this->set_section_offsets(off,
2539                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2540
2541       if (off > this->output_file_size_)
2542         {
2543           of->resize(off);
2544           this->output_file_size_ = off;
2545         }
2546     }
2547
2548   for (Section_list::const_iterator p = this->section_list_.begin();
2549        p != this->section_list_.end();
2550        ++p)
2551     {
2552       if ((*p)->after_input_sections())
2553         (*p)->write(of);
2554     }
2555
2556   this->section_headers_->write(of);
2557 }
2558
2559 // Write out a binary file.  This is called after the link is
2560 // complete.  IN is the temporary output file we used to generate the
2561 // ELF code.  We simply walk through the segments, read them from
2562 // their file offset in IN, and write them to their load address in
2563 // the output file.  FIXME: with a bit more work, we could support
2564 // S-records and/or Intel hex format here.
2565
2566 void
2567 Layout::write_binary(Output_file* in) const
2568 {
2569   gold_assert(this->options_.oformat()
2570               == General_options::OBJECT_FORMAT_BINARY);
2571
2572   // Get the size of the binary file.
2573   uint64_t max_load_address = 0;
2574   for (Segment_list::const_iterator p = this->segment_list_.begin();
2575        p != this->segment_list_.end();
2576        ++p)
2577     {
2578       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2579         {
2580           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
2581           if (max_paddr > max_load_address)
2582             max_load_address = max_paddr;
2583         }
2584     }
2585
2586   Output_file out(parameters->options().output_file_name());
2587   out.open(max_load_address);
2588
2589   for (Segment_list::const_iterator p = this->segment_list_.begin();
2590        p != this->segment_list_.end();
2591        ++p)
2592     {
2593       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2594         {
2595           const unsigned char* vin = in->get_input_view((*p)->offset(),
2596                                                         (*p)->filesz());
2597           unsigned char* vout = out.get_output_view((*p)->paddr(),
2598                                                     (*p)->filesz());
2599           memcpy(vout, vin, (*p)->filesz());
2600           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
2601           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
2602         }
2603     }
2604
2605   out.close();
2606 }
2607
2608 // Print statistical information to stderr.  This is used for --stats.
2609
2610 void
2611 Layout::print_stats() const
2612 {
2613   this->namepool_.print_stats("section name pool");
2614   this->sympool_.print_stats("output symbol name pool");
2615   this->dynpool_.print_stats("dynamic name pool");
2616
2617   for (Section_list::const_iterator p = this->section_list_.begin();
2618        p != this->section_list_.end();
2619        ++p)
2620     (*p)->print_merge_stats();
2621 }
2622
2623 // Write_sections_task methods.
2624
2625 // We can always run this task.
2626
2627 Task_token*
2628 Write_sections_task::is_runnable()
2629 {
2630   return NULL;
2631 }
2632
2633 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2634 // when finished.
2635
2636 void
2637 Write_sections_task::locks(Task_locker* tl)
2638 {
2639   tl->add(this, this->output_sections_blocker_);
2640   tl->add(this, this->final_blocker_);
2641 }
2642
2643 // Run the task--write out the data.
2644
2645 void
2646 Write_sections_task::run(Workqueue*)
2647 {
2648   this->layout_->write_output_sections(this->of_);
2649 }
2650
2651 // Write_data_task methods.
2652
2653 // We can always run this task.
2654
2655 Task_token*
2656 Write_data_task::is_runnable()
2657 {
2658   return NULL;
2659 }
2660
2661 // We need to unlock FINAL_BLOCKER when finished.
2662
2663 void
2664 Write_data_task::locks(Task_locker* tl)
2665 {
2666   tl->add(this, this->final_blocker_);
2667 }
2668
2669 // Run the task--write out the data.
2670
2671 void
2672 Write_data_task::run(Workqueue*)
2673 {
2674   this->layout_->write_data(this->symtab_, this->of_);
2675 }
2676
2677 // Write_symbols_task methods.
2678
2679 // We can always run this task.
2680
2681 Task_token*
2682 Write_symbols_task::is_runnable()
2683 {
2684   return NULL;
2685 }
2686
2687 // We need to unlock FINAL_BLOCKER when finished.
2688
2689 void
2690 Write_symbols_task::locks(Task_locker* tl)
2691 {
2692   tl->add(this, this->final_blocker_);
2693 }
2694
2695 // Run the task--write out the symbols.
2696
2697 void
2698 Write_symbols_task::run(Workqueue*)
2699 {
2700   this->symtab_->write_globals(this->input_objects_, this->sympool_,
2701                                this->dynpool_, this->of_);
2702 }
2703
2704 // Write_after_input_sections_task methods.
2705
2706 // We can only run this task after the input sections have completed.
2707
2708 Task_token*
2709 Write_after_input_sections_task::is_runnable()
2710 {
2711   if (this->input_sections_blocker_->is_blocked())
2712     return this->input_sections_blocker_;
2713   return NULL;
2714 }
2715
2716 // We need to unlock FINAL_BLOCKER when finished.
2717
2718 void
2719 Write_after_input_sections_task::locks(Task_locker* tl)
2720 {
2721   tl->add(this, this->final_blocker_);
2722 }
2723
2724 // Run the task.
2725
2726 void
2727 Write_after_input_sections_task::run(Workqueue*)
2728 {
2729   this->layout_->write_sections_after_input_sections(this->of_);
2730 }
2731
2732 // Close_task_runner methods.
2733
2734 // Run the task--close the file.
2735
2736 void
2737 Close_task_runner::run(Workqueue*, const Task*)
2738 {
2739   // If we've been asked to create a binary file, we do so here.
2740   if (this->options_->oformat() != General_options::OBJECT_FORMAT_ELF)
2741     this->layout_->write_binary(this->of_);
2742
2743   this->of_->close();
2744 }
2745
2746 // Instantiate the templates we need.  We could use the configure
2747 // script to restrict this to only the ones for implemented targets.
2748
2749 #ifdef HAVE_TARGET_32_LITTLE
2750 template
2751 Output_section*
2752 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2753                           const char* name,
2754                           const elfcpp::Shdr<32, false>& shdr,
2755                           unsigned int, unsigned int, off_t*);
2756 #endif
2757
2758 #ifdef HAVE_TARGET_32_BIG
2759 template
2760 Output_section*
2761 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2762                          const char* name,
2763                          const elfcpp::Shdr<32, true>& shdr,
2764                          unsigned int, unsigned int, off_t*);
2765 #endif
2766
2767 #ifdef HAVE_TARGET_64_LITTLE
2768 template
2769 Output_section*
2770 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2771                           const char* name,
2772                           const elfcpp::Shdr<64, false>& shdr,
2773                           unsigned int, unsigned int, off_t*);
2774 #endif
2775
2776 #ifdef HAVE_TARGET_64_BIG
2777 template
2778 Output_section*
2779 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2780                          const char* name,
2781                          const elfcpp::Shdr<64, true>& shdr,
2782                          unsigned int, unsigned int, off_t*);
2783 #endif
2784
2785 #ifdef HAVE_TARGET_32_LITTLE
2786 template
2787 Output_section*
2788 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
2789                                 unsigned int reloc_shndx,
2790                                 const elfcpp::Shdr<32, false>& shdr,
2791                                 Output_section* data_section,
2792                                 Relocatable_relocs* rr);
2793 #endif
2794
2795 #ifdef HAVE_TARGET_32_BIG
2796 template
2797 Output_section*
2798 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
2799                                unsigned int reloc_shndx,
2800                                const elfcpp::Shdr<32, true>& shdr,
2801                                Output_section* data_section,
2802                                Relocatable_relocs* rr);
2803 #endif
2804
2805 #ifdef HAVE_TARGET_64_LITTLE
2806 template
2807 Output_section*
2808 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
2809                                 unsigned int reloc_shndx,
2810                                 const elfcpp::Shdr<64, false>& shdr,
2811                                 Output_section* data_section,
2812                                 Relocatable_relocs* rr);
2813 #endif
2814
2815 #ifdef HAVE_TARGET_64_BIG
2816 template
2817 Output_section*
2818 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
2819                                unsigned int reloc_shndx,
2820                                const elfcpp::Shdr<64, true>& shdr,
2821                                Output_section* data_section,
2822                                Relocatable_relocs* rr);
2823 #endif
2824
2825 #ifdef HAVE_TARGET_32_LITTLE
2826 template
2827 void
2828 Layout::layout_group<32, false>(Symbol_table* symtab,
2829                                 Sized_relobj<32, false>* object,
2830                                 unsigned int,
2831                                 const char* group_section_name,
2832                                 const char* signature,
2833                                 const elfcpp::Shdr<32, false>& shdr,
2834                                 const elfcpp::Elf_Word* contents);
2835 #endif
2836
2837 #ifdef HAVE_TARGET_32_BIG
2838 template
2839 void
2840 Layout::layout_group<32, true>(Symbol_table* symtab,
2841                                Sized_relobj<32, true>* object,
2842                                unsigned int,
2843                                const char* group_section_name,
2844                                const char* signature,
2845                                const elfcpp::Shdr<32, true>& shdr,
2846                                const elfcpp::Elf_Word* contents);
2847 #endif
2848
2849 #ifdef HAVE_TARGET_64_LITTLE
2850 template
2851 void
2852 Layout::layout_group<64, false>(Symbol_table* symtab,
2853                                 Sized_relobj<64, false>* object,
2854                                 unsigned int,
2855                                 const char* group_section_name,
2856                                 const char* signature,
2857                                 const elfcpp::Shdr<64, false>& shdr,
2858                                 const elfcpp::Elf_Word* contents);
2859 #endif
2860
2861 #ifdef HAVE_TARGET_64_BIG
2862 template
2863 void
2864 Layout::layout_group<64, true>(Symbol_table* symtab,
2865                                Sized_relobj<64, true>* object,
2866                                unsigned int,
2867                                const char* group_section_name,
2868                                const char* signature,
2869                                const elfcpp::Shdr<64, true>& shdr,
2870                                const elfcpp::Elf_Word* contents);
2871 #endif
2872
2873 #ifdef HAVE_TARGET_32_LITTLE
2874 template
2875 Output_section*
2876 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2877                                    const unsigned char* symbols,
2878                                    off_t symbols_size,
2879                                    const unsigned char* symbol_names,
2880                                    off_t symbol_names_size,
2881                                    unsigned int shndx,
2882                                    const elfcpp::Shdr<32, false>& shdr,
2883                                    unsigned int reloc_shndx,
2884                                    unsigned int reloc_type,
2885                                    off_t* off);
2886 #endif
2887
2888 #ifdef HAVE_TARGET_32_BIG
2889 template
2890 Output_section*
2891 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2892                                    const unsigned char* symbols,
2893                                    off_t symbols_size,
2894                                   const unsigned char* symbol_names,
2895                                   off_t symbol_names_size,
2896                                   unsigned int shndx,
2897                                   const elfcpp::Shdr<32, true>& shdr,
2898                                   unsigned int reloc_shndx,
2899                                   unsigned int reloc_type,
2900                                   off_t* off);
2901 #endif
2902
2903 #ifdef HAVE_TARGET_64_LITTLE
2904 template
2905 Output_section*
2906 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2907                                    const unsigned char* symbols,
2908                                    off_t symbols_size,
2909                                    const unsigned char* symbol_names,
2910                                    off_t symbol_names_size,
2911                                    unsigned int shndx,
2912                                    const elfcpp::Shdr<64, false>& shdr,
2913                                    unsigned int reloc_shndx,
2914                                    unsigned int reloc_type,
2915                                    off_t* off);
2916 #endif
2917
2918 #ifdef HAVE_TARGET_64_BIG
2919 template
2920 Output_section*
2921 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2922                                    const unsigned char* symbols,
2923                                    off_t symbols_size,
2924                                   const unsigned char* symbol_names,
2925                                   off_t symbol_names_size,
2926                                   unsigned int shndx,
2927                                   const elfcpp::Shdr<64, true>& shdr,
2928                                   unsigned int reloc_shndx,
2929                                   unsigned int reloc_type,
2930                                   off_t* off);
2931 #endif
2932
2933 } // End namespace gold.