OSDN Git Service

Add support for local GOT offsets.
[pf3gnuchains/pf3gnuchains3x.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <algorithm>
31
32 #include "parameters.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "reloc.h"
36 #include "merge.h"
37 #include "output.h"
38
39 namespace gold
40 {
41
42 // Output_data variables.
43
44 bool Output_data::sizes_are_fixed;
45
46 // Output_data methods.
47
48 Output_data::~Output_data()
49 {
50 }
51
52 // Set the address and offset.
53
54 void
55 Output_data::set_address(uint64_t addr, off_t off)
56 {
57   this->address_ = addr;
58   this->offset_ = off;
59
60   // Let the child class know.
61   this->do_set_address(addr, off);
62 }
63
64 // Return the default alignment for a size--32 or 64.
65
66 uint64_t
67 Output_data::default_alignment(int size)
68 {
69   if (size == 32)
70     return 4;
71   else if (size == 64)
72     return 8;
73   else
74     gold_unreachable();
75 }
76
77 // Output_section_header methods.  This currently assumes that the
78 // segment and section lists are complete at construction time.
79
80 Output_section_headers::Output_section_headers(
81     const Layout* layout,
82     const Layout::Segment_list* segment_list,
83     const Layout::Section_list* unattached_section_list,
84     const Stringpool* secnamepool)
85   : layout_(layout),
86     segment_list_(segment_list),
87     unattached_section_list_(unattached_section_list),
88     secnamepool_(secnamepool)
89 {
90   // Count all the sections.  Start with 1 for the null section.
91   off_t count = 1;
92   for (Layout::Segment_list::const_iterator p = segment_list->begin();
93        p != segment_list->end();
94        ++p)
95     if ((*p)->type() == elfcpp::PT_LOAD)
96       count += (*p)->output_section_count();
97   count += unattached_section_list->size();
98
99   const int size = parameters->get_size();
100   int shdr_size;
101   if (size == 32)
102     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
103   else if (size == 64)
104     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
105   else
106     gold_unreachable();
107
108   this->set_data_size(count * shdr_size);
109 }
110
111 // Write out the section headers.
112
113 void
114 Output_section_headers::do_write(Output_file* of)
115 {
116   if (parameters->get_size() == 32)
117     {
118       if (parameters->is_big_endian())
119         {
120 #ifdef HAVE_TARGET_32_BIG
121           this->do_sized_write<32, true>(of);
122 #else
123           gold_unreachable();
124 #endif
125         }
126       else
127         {
128 #ifdef HAVE_TARGET_32_LITTLE
129           this->do_sized_write<32, false>(of);
130 #else
131           gold_unreachable();
132 #endif
133         }
134     }
135   else if (parameters->get_size() == 64)
136     {
137       if (parameters->is_big_endian())
138         {
139 #ifdef HAVE_TARGET_64_BIG
140           this->do_sized_write<64, true>(of);
141 #else
142           gold_unreachable();
143 #endif
144         }
145       else
146         {
147 #ifdef HAVE_TARGET_64_LITTLE
148           this->do_sized_write<64, false>(of);
149 #else
150           gold_unreachable();
151 #endif
152         }
153     }
154   else
155     gold_unreachable();
156 }
157
158 template<int size, bool big_endian>
159 void
160 Output_section_headers::do_sized_write(Output_file* of)
161 {
162   off_t all_shdrs_size = this->data_size();
163   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
164
165   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
166   unsigned char* v = view;
167
168   {
169     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
170     oshdr.put_sh_name(0);
171     oshdr.put_sh_type(elfcpp::SHT_NULL);
172     oshdr.put_sh_flags(0);
173     oshdr.put_sh_addr(0);
174     oshdr.put_sh_offset(0);
175     oshdr.put_sh_size(0);
176     oshdr.put_sh_link(0);
177     oshdr.put_sh_info(0);
178     oshdr.put_sh_addralign(0);
179     oshdr.put_sh_entsize(0);
180   }
181
182   v += shdr_size;
183
184   unsigned shndx = 1;
185   for (Layout::Segment_list::const_iterator p = this->segment_list_->begin();
186        p != this->segment_list_->end();
187        ++p)
188     v = (*p)->write_section_headers SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
189             this->layout_, this->secnamepool_, v, &shndx
190             SELECT_SIZE_ENDIAN(size, big_endian));
191   for (Layout::Section_list::const_iterator p =
192          this->unattached_section_list_->begin();
193        p != this->unattached_section_list_->end();
194        ++p)
195     {
196       gold_assert(shndx == (*p)->out_shndx());
197       elfcpp::Shdr_write<size, big_endian> oshdr(v);
198       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
199       v += shdr_size;
200       ++shndx;
201     }
202
203   of->write_output_view(this->offset(), all_shdrs_size, view);
204 }
205
206 // Output_segment_header methods.
207
208 Output_segment_headers::Output_segment_headers(
209     const Layout::Segment_list& segment_list)
210   : segment_list_(segment_list)
211 {
212   const int size = parameters->get_size();
213   int phdr_size;
214   if (size == 32)
215     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
216   else if (size == 64)
217     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
218   else
219     gold_unreachable();
220
221   this->set_data_size(segment_list.size() * phdr_size);
222 }
223
224 void
225 Output_segment_headers::do_write(Output_file* of)
226 {
227   if (parameters->get_size() == 32)
228     {
229       if (parameters->is_big_endian())
230         {
231 #ifdef HAVE_TARGET_32_BIG
232           this->do_sized_write<32, true>(of);
233 #else
234           gold_unreachable();
235 #endif
236         }
237       else
238         {
239 #ifdef HAVE_TARGET_32_LITTLE
240         this->do_sized_write<32, false>(of);
241 #else
242         gold_unreachable();
243 #endif
244         }
245     }
246   else if (parameters->get_size() == 64)
247     {
248       if (parameters->is_big_endian())
249         {
250 #ifdef HAVE_TARGET_64_BIG
251           this->do_sized_write<64, true>(of);
252 #else
253           gold_unreachable();
254 #endif
255         }
256       else
257         {
258 #ifdef HAVE_TARGET_64_LITTLE
259           this->do_sized_write<64, false>(of);
260 #else
261           gold_unreachable();
262 #endif
263         }
264     }
265   else
266     gold_unreachable();
267 }
268
269 template<int size, bool big_endian>
270 void
271 Output_segment_headers::do_sized_write(Output_file* of)
272 {
273   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
274   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
275   unsigned char* view = of->get_output_view(this->offset(),
276                                             all_phdrs_size);
277   unsigned char* v = view;
278   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
279        p != this->segment_list_.end();
280        ++p)
281     {
282       elfcpp::Phdr_write<size, big_endian> ophdr(v);
283       (*p)->write_header(&ophdr);
284       v += phdr_size;
285     }
286
287   of->write_output_view(this->offset(), all_phdrs_size, view);
288 }
289
290 // Output_file_header methods.
291
292 Output_file_header::Output_file_header(const Target* target,
293                                        const Symbol_table* symtab,
294                                        const Output_segment_headers* osh)
295   : target_(target),
296     symtab_(symtab),
297     segment_header_(osh),
298     section_header_(NULL),
299     shstrtab_(NULL)
300 {
301   const int size = parameters->get_size();
302   int ehdr_size;
303   if (size == 32)
304     ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
305   else if (size == 64)
306     ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
307   else
308     gold_unreachable();
309
310   this->set_data_size(ehdr_size);
311 }
312
313 // Set the section table information for a file header.
314
315 void
316 Output_file_header::set_section_info(const Output_section_headers* shdrs,
317                                      const Output_section* shstrtab)
318 {
319   this->section_header_ = shdrs;
320   this->shstrtab_ = shstrtab;
321 }
322
323 // Write out the file header.
324
325 void
326 Output_file_header::do_write(Output_file* of)
327 {
328   if (parameters->get_size() == 32)
329     {
330       if (parameters->is_big_endian())
331         {
332 #ifdef HAVE_TARGET_32_BIG
333           this->do_sized_write<32, true>(of);
334 #else
335           gold_unreachable();
336 #endif
337         }
338       else
339         {
340 #ifdef HAVE_TARGET_32_LITTLE
341           this->do_sized_write<32, false>(of);
342 #else
343           gold_unreachable();
344 #endif
345         }
346     }
347   else if (parameters->get_size() == 64)
348     {
349       if (parameters->is_big_endian())
350         {
351 #ifdef HAVE_TARGET_64_BIG
352           this->do_sized_write<64, true>(of);
353 #else
354           gold_unreachable();
355 #endif
356         }
357       else
358         {
359 #ifdef HAVE_TARGET_64_LITTLE
360           this->do_sized_write<64, false>(of);
361 #else
362           gold_unreachable();
363 #endif
364         }
365     }
366   else
367     gold_unreachable();
368 }
369
370 // Write out the file header with appropriate size and endianess.
371
372 template<int size, bool big_endian>
373 void
374 Output_file_header::do_sized_write(Output_file* of)
375 {
376   gold_assert(this->offset() == 0);
377
378   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
379   unsigned char* view = of->get_output_view(0, ehdr_size);
380   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
381
382   unsigned char e_ident[elfcpp::EI_NIDENT];
383   memset(e_ident, 0, elfcpp::EI_NIDENT);
384   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
385   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
386   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
387   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
388   if (size == 32)
389     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
390   else if (size == 64)
391     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
392   else
393     gold_unreachable();
394   e_ident[elfcpp::EI_DATA] = (big_endian
395                               ? elfcpp::ELFDATA2MSB
396                               : elfcpp::ELFDATA2LSB);
397   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
398   // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
399   oehdr.put_e_ident(e_ident);
400
401   elfcpp::ET e_type;
402   // FIXME: ET_DYN.
403   if (parameters->output_is_object())
404     e_type = elfcpp::ET_REL;
405   else
406     e_type = elfcpp::ET_EXEC;
407   oehdr.put_e_type(e_type);
408
409   oehdr.put_e_machine(this->target_->machine_code());
410   oehdr.put_e_version(elfcpp::EV_CURRENT);
411
412   // FIXME: Need to support -e, and target specific entry symbol.
413   Symbol* sym = this->symtab_->lookup("_start");
414   typename Sized_symbol<size>::Value_type v;
415   if (sym == NULL)
416     v = 0;
417   else
418     {
419       Sized_symbol<size>* ssym;
420       ssym = this->symtab_->get_sized_symbol SELECT_SIZE_NAME(size) (
421         sym SELECT_SIZE(size));
422       v = ssym->value();
423     }
424   oehdr.put_e_entry(v);
425
426   oehdr.put_e_phoff(this->segment_header_->offset());
427   oehdr.put_e_shoff(this->section_header_->offset());
428
429   // FIXME: The target needs to set the flags.
430   oehdr.put_e_flags(0);
431
432   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
433   oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
434   oehdr.put_e_phnum(this->segment_header_->data_size()
435                      / elfcpp::Elf_sizes<size>::phdr_size);
436   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
437   oehdr.put_e_shnum(this->section_header_->data_size()
438                      / elfcpp::Elf_sizes<size>::shdr_size);
439   oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
440
441   of->write_output_view(0, ehdr_size, view);
442 }
443
444 // Output_data_const methods.
445
446 void
447 Output_data_const::do_write(Output_file* of)
448 {
449   of->write(this->offset(), this->data_.data(), this->data_.size());
450 }
451
452 // Output_data_const_buffer methods.
453
454 void
455 Output_data_const_buffer::do_write(Output_file* of)
456 {
457   of->write(this->offset(), this->p_, this->data_size());
458 }
459
460 // Output_section_data methods.
461
462 // Record the output section, and set the entry size and such.
463
464 void
465 Output_section_data::set_output_section(Output_section* os)
466 {
467   gold_assert(this->output_section_ == NULL);
468   this->output_section_ = os;
469   this->do_adjust_output_section(os);
470 }
471
472 // Return the section index of the output section.
473
474 unsigned int
475 Output_section_data::do_out_shndx() const
476 {
477   gold_assert(this->output_section_ != NULL);
478   return this->output_section_->out_shndx();
479 }
480
481 // Output_data_strtab methods.
482
483 // Set the address.  We don't actually care about the address, but we
484 // do set our final size.
485
486 void
487 Output_data_strtab::do_set_address(uint64_t, off_t)
488 {
489   this->strtab_->set_string_offsets();
490   this->set_data_size(this->strtab_->get_strtab_size());
491 }
492
493 // Write out a string table.
494
495 void
496 Output_data_strtab::do_write(Output_file* of)
497 {
498   this->strtab_->write(of, this->offset());
499 }
500
501 // Output_reloc methods.
502
503 // Get the symbol index of a relocation.
504
505 template<bool dynamic, int size, bool big_endian>
506 unsigned int
507 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
508   const
509 {
510   unsigned int index;
511   switch (this->local_sym_index_)
512     {
513     case INVALID_CODE:
514       gold_unreachable();
515
516     case GSYM_CODE:
517       if (this->u1_.gsym == NULL)
518         index = 0;
519       else if (dynamic)
520         index = this->u1_.gsym->dynsym_index();
521       else
522         index = this->u1_.gsym->symtab_index();
523       break;
524
525     case SECTION_CODE:
526       if (dynamic)
527         index = this->u1_.os->dynsym_index();
528       else
529         index = this->u1_.os->symtab_index();
530       break;
531
532     default:
533       if (dynamic)
534         {
535           // FIXME: It seems that some targets may need to generate
536           // dynamic relocations against local symbols for some
537           // reasons.  This will have to be addressed at some point.
538           gold_unreachable();
539         }
540       else
541         index = this->u1_.relobj->symtab_index(this->local_sym_index_);
542       break;
543     }
544   gold_assert(index != -1U);
545   return index;
546 }
547
548 // Write out the offset and info fields of a Rel or Rela relocation
549 // entry.
550
551 template<bool dynamic, int size, bool big_endian>
552 template<typename Write_rel>
553 void
554 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
555     Write_rel* wr) const
556 {
557   Address address = this->address_;
558   if (this->shndx_ != INVALID_CODE)
559     {
560       off_t off;
561       Output_section* os = this->u2_.relobj->output_section(this->shndx_,
562                                                             &off);
563       gold_assert(os != NULL);
564       address += os->address() + off;
565     }
566   else if (this->u2_.od != NULL)
567     address += this->u2_.od->address();
568   wr->put_r_offset(address);
569   wr->put_r_info(elfcpp::elf_r_info<size>(this->get_symbol_index(),
570                                           this->type_));
571 }
572
573 // Write out a Rel relocation.
574
575 template<bool dynamic, int size, bool big_endian>
576 void
577 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
578     unsigned char* pov) const
579 {
580   elfcpp::Rel_write<size, big_endian> orel(pov);
581   this->write_rel(&orel);
582 }
583
584 // Write out a Rela relocation.
585
586 template<bool dynamic, int size, bool big_endian>
587 void
588 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
589     unsigned char* pov) const
590 {
591   elfcpp::Rela_write<size, big_endian> orel(pov);
592   this->rel_.write_rel(&orel);
593   orel.put_r_addend(this->addend_);
594 }
595
596 // Output_data_reloc_base methods.
597
598 // Adjust the output section.
599
600 template<int sh_type, bool dynamic, int size, bool big_endian>
601 void
602 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
603     ::do_adjust_output_section(Output_section* os)
604 {
605   if (sh_type == elfcpp::SHT_REL)
606     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
607   else if (sh_type == elfcpp::SHT_RELA)
608     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
609   else
610     gold_unreachable();
611   if (dynamic)
612     os->set_should_link_to_dynsym();
613   else
614     os->set_should_link_to_symtab();
615 }
616
617 // Write out relocation data.
618
619 template<int sh_type, bool dynamic, int size, bool big_endian>
620 void
621 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
622     Output_file* of)
623 {
624   const off_t off = this->offset();
625   const off_t oview_size = this->data_size();
626   unsigned char* const oview = of->get_output_view(off, oview_size);
627
628   unsigned char* pov = oview;
629   for (typename Relocs::const_iterator p = this->relocs_.begin();
630        p != this->relocs_.end();
631        ++p)
632     {
633       p->write(pov);
634       pov += reloc_size;
635     }
636
637   gold_assert(pov - oview == oview_size);
638
639   of->write_output_view(off, oview_size, oview);
640
641   // We no longer need the relocation entries.
642   this->relocs_.clear();
643 }
644
645 // Output_data_got::Got_entry methods.
646
647 // Write out the entry.
648
649 template<int size, bool big_endian>
650 void
651 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
652 {
653   Valtype val = 0;
654
655   switch (this->local_sym_index_)
656     {
657     case GSYM_CODE:
658       {
659         Symbol* gsym = this->u_.gsym;
660
661         // If the symbol is resolved locally, we need to write out its
662         // value.  Otherwise we just write zero.  The target code is
663         // responsible for creating a relocation entry to fill in the
664         // value at runtime.
665         if (gsym->final_value_is_known())
666           {
667             Sized_symbol<size>* sgsym;
668             // This cast is a bit ugly.  We don't want to put a
669             // virtual method in Symbol, because we want Symbol to be
670             // as small as possible.
671             sgsym = static_cast<Sized_symbol<size>*>(gsym);
672             val = sgsym->value();
673           }
674       }
675       break;
676
677     case CONSTANT_CODE:
678       val = this->u_.constant;
679       break;
680
681     default:
682       val = this->u_.object->local_symbol_value(this->local_sym_index_);
683       break;
684     }
685
686   elfcpp::Swap<size, big_endian>::writeval(pov, val);
687 }
688
689 // Output_data_got methods.
690
691 // Add an entry for a global symbol to the GOT.  This returns true if
692 // this is a new GOT entry, false if the symbol already had a GOT
693 // entry.
694
695 template<int size, bool big_endian>
696 bool
697 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
698 {
699   if (gsym->has_got_offset())
700     return false;
701
702   this->entries_.push_back(Got_entry(gsym));
703   this->set_got_size();
704   gsym->set_got_offset(this->last_got_offset());
705   return true;
706 }
707
708 // Add an entry for a local symbol to the GOT.  This returns true if
709 // this is a new GOT entry, false if the symbol already has a GOT
710 // entry.
711
712 template<int size, bool big_endian>
713 bool
714 Output_data_got<size, big_endian>::add_local(
715     Sized_relobj<size, big_endian>* object,
716     unsigned int symndx)
717 {
718   if (object->local_has_got_offset(symndx))
719     return false;
720   this->entries_.push_back(Got_entry(object, symndx));
721   this->set_got_size();
722   object->set_local_got_offset(symndx, this->last_got_offset());
723   return true;
724 }
725
726 // Write out the GOT.
727
728 template<int size, bool big_endian>
729 void
730 Output_data_got<size, big_endian>::do_write(Output_file* of)
731 {
732   const int add = size / 8;
733
734   const off_t off = this->offset();
735   const off_t oview_size = this->data_size();
736   unsigned char* const oview = of->get_output_view(off, oview_size);
737
738   unsigned char* pov = oview;
739   for (typename Got_entries::const_iterator p = this->entries_.begin();
740        p != this->entries_.end();
741        ++p)
742     {
743       p->write(pov);
744       pov += add;
745     }
746
747   gold_assert(pov - oview == oview_size);
748
749   of->write_output_view(off, oview_size, oview);
750
751   // We no longer need the GOT entries.
752   this->entries_.clear();
753 }
754
755 // Output_data_dynamic::Dynamic_entry methods.
756
757 // Write out the entry.
758
759 template<int size, bool big_endian>
760 void
761 Output_data_dynamic::Dynamic_entry::write(
762     unsigned char* pov,
763     const Stringpool* pool
764     ACCEPT_SIZE_ENDIAN) const
765 {
766   typename elfcpp::Elf_types<size>::Elf_WXword val;
767   switch (this->classification_)
768     {
769     case DYNAMIC_NUMBER:
770       val = this->u_.val;
771       break;
772
773     case DYNAMIC_SECTION_ADDRESS:
774       val = this->u_.od->address();
775       break;
776
777     case DYNAMIC_SECTION_SIZE:
778       val = this->u_.od->data_size();
779       break;
780
781     case DYNAMIC_SYMBOL:
782       {
783         const Sized_symbol<size>* s =
784           static_cast<const Sized_symbol<size>*>(this->u_.sym);
785         val = s->value();
786       }
787       break;
788
789     case DYNAMIC_STRING:
790       val = pool->get_offset(this->u_.str);
791       break;
792
793     default:
794       gold_unreachable();
795     }
796
797   elfcpp::Dyn_write<size, big_endian> dw(pov);
798   dw.put_d_tag(this->tag_);
799   dw.put_d_val(val);
800 }
801
802 // Output_data_dynamic methods.
803
804 // Adjust the output section to set the entry size.
805
806 void
807 Output_data_dynamic::do_adjust_output_section(Output_section* os)
808 {
809   if (parameters->get_size() == 32)
810     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
811   else if (parameters->get_size() == 64)
812     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
813   else
814     gold_unreachable();
815 }
816
817 // Set the final data size.
818
819 void
820 Output_data_dynamic::do_set_address(uint64_t, off_t)
821 {
822   // Add the terminating entry.
823   this->add_constant(elfcpp::DT_NULL, 0);
824
825   int dyn_size;
826   if (parameters->get_size() == 32)
827     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
828   else if (parameters->get_size() == 64)
829     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
830   else
831     gold_unreachable();
832   this->set_data_size(this->entries_.size() * dyn_size);
833 }
834
835 // Write out the dynamic entries.
836
837 void
838 Output_data_dynamic::do_write(Output_file* of)
839 {
840   if (parameters->get_size() == 32)
841     {
842       if (parameters->is_big_endian())
843         {
844 #ifdef HAVE_TARGET_32_BIG
845           this->sized_write<32, true>(of);
846 #else
847           gold_unreachable();
848 #endif
849         }
850       else
851         {
852 #ifdef HAVE_TARGET_32_LITTLE
853           this->sized_write<32, false>(of);
854 #else
855           gold_unreachable();
856 #endif
857         }
858     }
859   else if (parameters->get_size() == 64)
860     {
861       if (parameters->is_big_endian())
862         {
863 #ifdef HAVE_TARGET_64_BIG
864           this->sized_write<64, true>(of);
865 #else
866           gold_unreachable();
867 #endif
868         }
869       else
870         {
871 #ifdef HAVE_TARGET_64_LITTLE
872           this->sized_write<64, false>(of);
873 #else
874           gold_unreachable();
875 #endif
876         }
877     }
878   else
879     gold_unreachable();
880 }
881
882 template<int size, bool big_endian>
883 void
884 Output_data_dynamic::sized_write(Output_file* of)
885 {
886   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
887
888   const off_t offset = this->offset();
889   const off_t oview_size = this->data_size();
890   unsigned char* const oview = of->get_output_view(offset, oview_size);
891
892   unsigned char* pov = oview;
893   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
894        p != this->entries_.end();
895        ++p)
896     {
897       p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
898           pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
899       pov += dyn_size;
900     }
901
902   gold_assert(pov - oview == oview_size);
903
904   of->write_output_view(offset, oview_size, oview);
905
906   // We no longer need the dynamic entries.
907   this->entries_.clear();
908 }
909
910 // Output_section::Input_section methods.
911
912 // Return the data size.  For an input section we store the size here.
913 // For an Output_section_data, we have to ask it for the size.
914
915 off_t
916 Output_section::Input_section::data_size() const
917 {
918   if (this->is_input_section())
919     return this->u1_.data_size;
920   else
921     return this->u2_.posd->data_size();
922 }
923
924 // Set the address and file offset.
925
926 void
927 Output_section::Input_section::set_address(uint64_t addr, off_t off,
928                                            off_t secoff)
929 {
930   if (this->is_input_section())
931     this->u2_.object->set_section_offset(this->shndx_, off - secoff);
932   else
933     this->u2_.posd->set_address(addr, off);
934 }
935
936 // Try to turn an input address into an output address.
937
938 bool
939 Output_section::Input_section::output_address(const Relobj* object,
940                                               unsigned int shndx,
941                                               off_t offset,
942                                               uint64_t output_section_address,
943                                               uint64_t *poutput) const
944 {
945   if (!this->is_input_section())
946     return this->u2_.posd->output_address(object, shndx, offset,
947                                           output_section_address, poutput);
948   else
949     {
950       if (this->shndx_ != shndx
951           || this->u2_.object != object)
952         return false;
953       off_t output_offset;
954       Output_section* os = object->output_section(shndx, &output_offset);
955       gold_assert(os != NULL);
956       *poutput = output_section_address + output_offset + offset;
957       return true;
958     }
959 }
960
961 // Write out the data.  We don't have to do anything for an input
962 // section--they are handled via Object::relocate--but this is where
963 // we write out the data for an Output_section_data.
964
965 void
966 Output_section::Input_section::write(Output_file* of)
967 {
968   if (!this->is_input_section())
969     this->u2_.posd->write(of);
970 }
971
972 // Output_section methods.
973
974 // Construct an Output_section.  NAME will point into a Stringpool.
975
976 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
977                                elfcpp::Elf_Xword flags)
978   : name_(name),
979     addralign_(0),
980     entsize_(0),
981     link_section_(NULL),
982     link_(0),
983     info_section_(NULL),
984     info_(0),
985     type_(type),
986     flags_(flags),
987     out_shndx_(0),
988     symtab_index_(0),
989     dynsym_index_(0),
990     input_sections_(),
991     first_input_offset_(0),
992     fills_(),
993     needs_symtab_index_(false),
994     needs_dynsym_index_(false),
995     should_link_to_symtab_(false),
996     should_link_to_dynsym_(false)
997 {
998 }
999
1000 Output_section::~Output_section()
1001 {
1002 }
1003
1004 // Set the entry size.
1005
1006 void
1007 Output_section::set_entsize(uint64_t v)
1008 {
1009   if (this->entsize_ == 0)
1010     this->entsize_ = v;
1011   else
1012     gold_assert(this->entsize_ == v);
1013 }
1014
1015 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1016 // OBJECT, to the Output_section.  Return the offset of the input
1017 // section within the output section.  We don't always keep track of
1018 // input sections for an Output_section.  Instead, each Object keeps
1019 // track of the Output_section for each of its input sections.
1020
1021 template<int size, bool big_endian>
1022 off_t
1023 Output_section::add_input_section(Relobj* object, unsigned int shndx,
1024                                   const char* secname,
1025                                   const elfcpp::Shdr<size, big_endian>& shdr)
1026 {
1027   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1028   if ((addralign & (addralign - 1)) != 0)
1029     {
1030       fprintf(stderr, _("%s: %s: invalid alignment %lu for section \"%s\"\n"),
1031               program_name, object->name().c_str(),
1032               static_cast<unsigned long>(addralign), secname);
1033       gold_exit(false);
1034     }
1035
1036   if (addralign > this->addralign_)
1037     this->addralign_ = addralign;
1038
1039   // If this is a SHF_MERGE section, we pass all the input sections to
1040   // a Output_data_merge.
1041   if ((shdr.get_sh_flags() & elfcpp::SHF_MERGE) != 0)
1042     {
1043       if (this->add_merge_input_section(object, shndx, shdr.get_sh_flags(),
1044                                         shdr.get_sh_entsize(),
1045                                         addralign))
1046         {
1047           // Tell the relocation routines that they need to call the
1048           // output_address method to determine the final address.
1049           return -1;
1050         }
1051     }
1052
1053   off_t offset_in_section = this->data_size();
1054   off_t aligned_offset_in_section = align_address(offset_in_section,
1055                                                   addralign);
1056
1057   if (aligned_offset_in_section > offset_in_section
1058       && (shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0
1059       && object->target()->has_code_fill())
1060     {
1061       // We need to add some fill data.  Using fill_list_ when
1062       // possible is an optimization, since we will often have fill
1063       // sections without input sections.
1064       off_t fill_len = aligned_offset_in_section - offset_in_section;
1065       if (this->input_sections_.empty())
1066         this->fills_.push_back(Fill(offset_in_section, fill_len));
1067       else
1068         {
1069           // FIXME: When relaxing, the size needs to adjust to
1070           // maintain a constant alignment.
1071           std::string fill_data(object->target()->code_fill(fill_len));
1072           Output_data_const* odc = new Output_data_const(fill_data, 1);
1073           this->input_sections_.push_back(Input_section(odc));
1074         }
1075     }
1076
1077   this->set_data_size(aligned_offset_in_section + shdr.get_sh_size());
1078
1079   // We need to keep track of this section if we are already keeping
1080   // track of sections, or if we are relaxing.  FIXME: Add test for
1081   // relaxing.
1082   if (!this->input_sections_.empty())
1083     this->input_sections_.push_back(Input_section(object, shndx,
1084                                                   shdr.get_sh_size(),
1085                                                   addralign));
1086
1087   return aligned_offset_in_section;
1088 }
1089
1090 // Add arbitrary data to an output section.
1091
1092 void
1093 Output_section::add_output_section_data(Output_section_data* posd)
1094 {
1095   Input_section inp(posd);
1096   this->add_output_section_data(&inp);
1097 }
1098
1099 // Add arbitrary data to an output section by Input_section.
1100
1101 void
1102 Output_section::add_output_section_data(Input_section* inp)
1103 {
1104   if (this->input_sections_.empty())
1105     this->first_input_offset_ = this->data_size();
1106
1107   this->input_sections_.push_back(*inp);
1108
1109   uint64_t addralign = inp->addralign();
1110   if (addralign > this->addralign_)
1111     this->addralign_ = addralign;
1112
1113   inp->set_output_section(this);
1114 }
1115
1116 // Add a merge section to an output section.
1117
1118 void
1119 Output_section::add_output_merge_section(Output_section_data* posd,
1120                                          bool is_string, uint64_t entsize)
1121 {
1122   Input_section inp(posd, is_string, entsize);
1123   this->add_output_section_data(&inp);
1124 }
1125
1126 // Add an input section to a SHF_MERGE section.
1127
1128 bool
1129 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1130                                         uint64_t flags, uint64_t entsize,
1131                                         uint64_t addralign)
1132 {
1133   // We only merge constants if the alignment is not more than the
1134   // entry size.  This could be handled, but it's unusual.
1135   if (addralign > entsize)
1136     return false;
1137
1138   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1139   Input_section_list::iterator p;
1140   for (p = this->input_sections_.begin();
1141        p != this->input_sections_.end();
1142        ++p)
1143     if (p->is_merge_section(is_string, entsize))
1144       break;
1145
1146   // We handle the actual constant merging in Output_merge_data or
1147   // Output_merge_string_data.
1148   if (p != this->input_sections_.end())
1149     p->add_input_section(object, shndx);
1150   else
1151     {
1152       Output_section_data* posd;
1153       if (!is_string)
1154         posd = new Output_merge_data(entsize);
1155       else if (entsize == 1)
1156         posd = new Output_merge_string<char>();
1157       else if (entsize == 2)
1158         posd = new Output_merge_string<uint16_t>();
1159       else if (entsize == 4)
1160         posd = new Output_merge_string<uint32_t>();
1161       else
1162         return false;
1163
1164       this->add_output_merge_section(posd, is_string, entsize);
1165       posd->add_input_section(object, shndx);
1166     }
1167
1168   return true;
1169 }
1170
1171 // Return the output virtual address of OFFSET relative to the start
1172 // of input section SHNDX in object OBJECT.
1173
1174 uint64_t
1175 Output_section::output_address(const Relobj* object, unsigned int shndx,
1176                                off_t offset) const
1177 {
1178   uint64_t addr = this->address() + this->first_input_offset_;
1179   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1180        p != this->input_sections_.end();
1181        ++p)
1182     {
1183       addr = align_address(addr, p->addralign());
1184       uint64_t output;
1185       if (p->output_address(object, shndx, offset, addr, &output))
1186         return output;
1187       addr += p->data_size();
1188     }
1189
1190   // If we get here, it means that we don't know the mapping for this
1191   // input section.  This might happen in principle if
1192   // add_input_section were called before add_output_section_data.
1193   // But it should never actually happen.
1194
1195   gold_unreachable();
1196 }
1197
1198 // Set the address of an Output_section.  This is where we handle
1199 // setting the addresses of any Output_section_data objects.
1200
1201 void
1202 Output_section::do_set_address(uint64_t address, off_t startoff)
1203 {
1204   if (this->input_sections_.empty())
1205     return;
1206
1207   off_t off = startoff + this->first_input_offset_;
1208   for (Input_section_list::iterator p = this->input_sections_.begin();
1209        p != this->input_sections_.end();
1210        ++p)
1211     {
1212       off = align_address(off, p->addralign());
1213       p->set_address(address + (off - startoff), off, startoff);
1214       off += p->data_size();
1215     }
1216
1217   this->set_data_size(off - startoff);
1218 }
1219
1220 // Write the section header to *OSHDR.
1221
1222 template<int size, bool big_endian>
1223 void
1224 Output_section::write_header(const Layout* layout,
1225                              const Stringpool* secnamepool,
1226                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
1227 {
1228   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1229   oshdr->put_sh_type(this->type_);
1230   oshdr->put_sh_flags(this->flags_);
1231   oshdr->put_sh_addr(this->address());
1232   oshdr->put_sh_offset(this->offset());
1233   oshdr->put_sh_size(this->data_size());
1234   if (this->link_section_ != NULL)
1235     oshdr->put_sh_link(this->link_section_->out_shndx());
1236   else if (this->should_link_to_symtab_)
1237     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
1238   else if (this->should_link_to_dynsym_)
1239     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
1240   else
1241     oshdr->put_sh_link(this->link_);
1242   if (this->info_section_ != NULL)
1243     oshdr->put_sh_info(this->info_section_->out_shndx());
1244   else
1245     oshdr->put_sh_info(this->info_);
1246   oshdr->put_sh_addralign(this->addralign_);
1247   oshdr->put_sh_entsize(this->entsize_);
1248 }
1249
1250 // Write out the data.  For input sections the data is written out by
1251 // Object::relocate, but we have to handle Output_section_data objects
1252 // here.
1253
1254 void
1255 Output_section::do_write(Output_file* of)
1256 {
1257   off_t output_section_file_offset = this->offset();
1258   for (Fill_list::iterator p = this->fills_.begin();
1259        p != this->fills_.end();
1260        ++p)
1261     {
1262       std::string fill_data(of->target()->code_fill(p->length()));
1263       of->write(output_section_file_offset + p->section_offset(),
1264                 fill_data.data(), fill_data.size());
1265     }
1266
1267   for (Input_section_list::iterator p = this->input_sections_.begin();
1268        p != this->input_sections_.end();
1269        ++p)
1270     p->write(of);
1271 }
1272
1273 // Output segment methods.
1274
1275 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
1276   : output_data_(),
1277     output_bss_(),
1278     vaddr_(0),
1279     paddr_(0),
1280     memsz_(0),
1281     align_(0),
1282     offset_(0),
1283     filesz_(0),
1284     type_(type),
1285     flags_(flags),
1286     is_align_known_(false)
1287 {
1288 }
1289
1290 // Add an Output_section to an Output_segment.
1291
1292 void
1293 Output_segment::add_output_section(Output_section* os,
1294                                    elfcpp::Elf_Word seg_flags,
1295                                    bool front)
1296 {
1297   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1298   gold_assert(!this->is_align_known_);
1299
1300   // Update the segment flags.
1301   this->flags_ |= seg_flags;
1302
1303   Output_segment::Output_data_list* pdl;
1304   if (os->type() == elfcpp::SHT_NOBITS)
1305     pdl = &this->output_bss_;
1306   else
1307     pdl = &this->output_data_;
1308
1309   // So that PT_NOTE segments will work correctly, we need to ensure
1310   // that all SHT_NOTE sections are adjacent.  This will normally
1311   // happen automatically, because all the SHT_NOTE input sections
1312   // will wind up in the same output section.  However, it is possible
1313   // for multiple SHT_NOTE input sections to have different section
1314   // flags, and thus be in different output sections, but for the
1315   // different section flags to map into the same segment flags and
1316   // thus the same output segment.
1317
1318   // Note that while there may be many input sections in an output
1319   // section, there are normally only a few output sections in an
1320   // output segment.  This loop is expected to be fast.
1321
1322   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
1323     {
1324       Output_segment::Output_data_list::iterator p = pdl->end();
1325       do
1326         {
1327           --p;
1328           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
1329             {
1330               // We don't worry about the FRONT parameter.
1331               ++p;
1332               pdl->insert(p, os);
1333               return;
1334             }
1335         }
1336       while (p != pdl->begin());
1337     }
1338
1339   // Similarly, so that PT_TLS segments will work, we need to group
1340   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
1341   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
1342   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
1343   // correctly.
1344   if ((os->flags() & elfcpp::SHF_TLS) != 0 && !this->output_data_.empty())
1345     {
1346       pdl = &this->output_data_;
1347       bool nobits = os->type() == elfcpp::SHT_NOBITS;
1348       bool sawtls = false;
1349       Output_segment::Output_data_list::iterator p = pdl->end();
1350       do
1351         {
1352           --p;
1353           bool insert;
1354           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
1355             {
1356               sawtls = true;
1357               // Put a NOBITS section after the first TLS section.
1358               // But a PROGBITS section after the first TLS/PROGBITS
1359               // section.
1360               insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
1361             }
1362           else
1363             {
1364               // If we've gone past the TLS sections, but we've seen a
1365               // TLS section, then we need to insert this section now.
1366               insert = sawtls;
1367             }
1368
1369           if (insert)
1370             {
1371               // We don't worry about the FRONT parameter.
1372               ++p;
1373               pdl->insert(p, os);
1374               return;
1375             }
1376         }
1377       while (p != pdl->begin());
1378
1379       // There are no TLS sections yet; put this one at the requested
1380       // location in the section list.
1381     }
1382
1383   if (front)
1384     pdl->push_front(os);
1385   else
1386     pdl->push_back(os);
1387 }
1388
1389 // Add an Output_data (which is not an Output_section) to the start of
1390 // a segment.
1391
1392 void
1393 Output_segment::add_initial_output_data(Output_data* od)
1394 {
1395   gold_assert(!this->is_align_known_);
1396   this->output_data_.push_front(od);
1397 }
1398
1399 // Return the maximum alignment of the Output_data in Output_segment.
1400 // Once we compute this, we prohibit new sections from being added.
1401
1402 uint64_t
1403 Output_segment::addralign()
1404 {
1405   if (!this->is_align_known_)
1406     {
1407       uint64_t addralign;
1408
1409       addralign = Output_segment::maximum_alignment(&this->output_data_);
1410       if (addralign > this->align_)
1411         this->align_ = addralign;
1412
1413       addralign = Output_segment::maximum_alignment(&this->output_bss_);
1414       if (addralign > this->align_)
1415         this->align_ = addralign;
1416
1417       this->is_align_known_ = true;
1418     }
1419
1420   return this->align_;
1421 }
1422
1423 // Return the maximum alignment of a list of Output_data.
1424
1425 uint64_t
1426 Output_segment::maximum_alignment(const Output_data_list* pdl)
1427 {
1428   uint64_t ret = 0;
1429   for (Output_data_list::const_iterator p = pdl->begin();
1430        p != pdl->end();
1431        ++p)
1432     {
1433       uint64_t addralign = (*p)->addralign();
1434       if (addralign > ret)
1435         ret = addralign;
1436     }
1437   return ret;
1438 }
1439
1440 // Set the section addresses for an Output_segment.  ADDR is the
1441 // address and *POFF is the file offset.  Set the section indexes
1442 // starting with *PSHNDX.  Return the address of the immediately
1443 // following segment.  Update *POFF and *PSHNDX.
1444
1445 uint64_t
1446 Output_segment::set_section_addresses(uint64_t addr, off_t* poff,
1447                                       unsigned int* pshndx)
1448 {
1449   gold_assert(this->type_ == elfcpp::PT_LOAD);
1450
1451   this->vaddr_ = addr;
1452   this->paddr_ = addr;
1453
1454   off_t orig_off = *poff;
1455   this->offset_ = orig_off;
1456
1457   *poff = align_address(*poff, this->addralign());
1458
1459   addr = this->set_section_list_addresses(&this->output_data_, addr, poff,
1460                                           pshndx);
1461   this->filesz_ = *poff - orig_off;
1462
1463   off_t off = *poff;
1464
1465   uint64_t ret = this->set_section_list_addresses(&this->output_bss_, addr,
1466                                                   poff, pshndx);
1467   this->memsz_ = *poff - orig_off;
1468
1469   // Ignore the file offset adjustments made by the BSS Output_data
1470   // objects.
1471   *poff = off;
1472
1473   return ret;
1474 }
1475
1476 // Set the addresses and file offsets in a list of Output_data
1477 // structures.
1478
1479 uint64_t
1480 Output_segment::set_section_list_addresses(Output_data_list* pdl,
1481                                            uint64_t addr, off_t* poff,
1482                                            unsigned int* pshndx)
1483 {
1484   off_t startoff = *poff;
1485
1486   off_t off = startoff;
1487   for (Output_data_list::iterator p = pdl->begin();
1488        p != pdl->end();
1489        ++p)
1490     {
1491       off = align_address(off, (*p)->addralign());
1492       (*p)->set_address(addr + (off - startoff), off);
1493
1494       // Unless this is a PT_TLS segment, we want to ignore the size
1495       // of a SHF_TLS/SHT_NOBITS section.  Such a section does not
1496       // affect the size of a PT_LOAD segment.
1497       if (this->type_ == elfcpp::PT_TLS
1498           || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
1499           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
1500         off += (*p)->data_size();
1501
1502       if ((*p)->is_section())
1503         {
1504           (*p)->set_out_shndx(*pshndx);
1505           ++*pshndx;
1506         }
1507     }
1508
1509   *poff = off;
1510   return addr + (off - startoff);
1511 }
1512
1513 // For a non-PT_LOAD segment, set the offset from the sections, if
1514 // any.
1515
1516 void
1517 Output_segment::set_offset()
1518 {
1519   gold_assert(this->type_ != elfcpp::PT_LOAD);
1520
1521   if (this->output_data_.empty() && this->output_bss_.empty())
1522     {
1523       this->vaddr_ = 0;
1524       this->paddr_ = 0;
1525       this->memsz_ = 0;
1526       this->align_ = 0;
1527       this->offset_ = 0;
1528       this->filesz_ = 0;
1529       return;
1530     }
1531
1532   const Output_data* first;
1533   if (this->output_data_.empty())
1534     first = this->output_bss_.front();
1535   else
1536     first = this->output_data_.front();
1537   this->vaddr_ = first->address();
1538   this->paddr_ = this->vaddr_;
1539   this->offset_ = first->offset();
1540
1541   if (this->output_data_.empty())
1542     this->filesz_ = 0;
1543   else
1544     {
1545       const Output_data* last_data = this->output_data_.back();
1546       this->filesz_ = (last_data->address()
1547                        + last_data->data_size()
1548                        - this->vaddr_);
1549     }
1550
1551   const Output_data* last;
1552   if (this->output_bss_.empty())
1553     last = this->output_data_.back();
1554   else
1555     last = this->output_bss_.back();
1556   this->memsz_ = (last->address()
1557                   + last->data_size()
1558                   - this->vaddr_);
1559 }
1560
1561 // Return the number of Output_sections in an Output_segment.
1562
1563 unsigned int
1564 Output_segment::output_section_count() const
1565 {
1566   return (this->output_section_count_list(&this->output_data_)
1567           + this->output_section_count_list(&this->output_bss_));
1568 }
1569
1570 // Return the number of Output_sections in an Output_data_list.
1571
1572 unsigned int
1573 Output_segment::output_section_count_list(const Output_data_list* pdl) const
1574 {
1575   unsigned int count = 0;
1576   for (Output_data_list::const_iterator p = pdl->begin();
1577        p != pdl->end();
1578        ++p)
1579     {
1580       if ((*p)->is_section())
1581         ++count;
1582     }
1583   return count;
1584 }
1585
1586 // Write the segment data into *OPHDR.
1587
1588 template<int size, bool big_endian>
1589 void
1590 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
1591 {
1592   ophdr->put_p_type(this->type_);
1593   ophdr->put_p_offset(this->offset_);
1594   ophdr->put_p_vaddr(this->vaddr_);
1595   ophdr->put_p_paddr(this->paddr_);
1596   ophdr->put_p_filesz(this->filesz_);
1597   ophdr->put_p_memsz(this->memsz_);
1598   ophdr->put_p_flags(this->flags_);
1599   ophdr->put_p_align(this->addralign());
1600 }
1601
1602 // Write the section headers into V.
1603
1604 template<int size, bool big_endian>
1605 unsigned char*
1606 Output_segment::write_section_headers(const Layout* layout,
1607                                       const Stringpool* secnamepool,
1608                                       unsigned char* v,
1609                                       unsigned int *pshndx
1610                                       ACCEPT_SIZE_ENDIAN) const
1611 {
1612   // Every section that is attached to a segment must be attached to a
1613   // PT_LOAD segment, so we only write out section headers for PT_LOAD
1614   // segments.
1615   if (this->type_ != elfcpp::PT_LOAD)
1616     return v;
1617
1618   v = this->write_section_headers_list
1619       SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1620           layout, secnamepool, &this->output_data_, v, pshndx
1621           SELECT_SIZE_ENDIAN(size, big_endian));
1622   v = this->write_section_headers_list
1623       SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1624           layout, secnamepool, &this->output_bss_, v, pshndx
1625           SELECT_SIZE_ENDIAN(size, big_endian));
1626   return v;
1627 }
1628
1629 template<int size, bool big_endian>
1630 unsigned char*
1631 Output_segment::write_section_headers_list(const Layout* layout,
1632                                            const Stringpool* secnamepool,
1633                                            const Output_data_list* pdl,
1634                                            unsigned char* v,
1635                                            unsigned int* pshndx
1636                                            ACCEPT_SIZE_ENDIAN) const
1637 {
1638   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1639   for (Output_data_list::const_iterator p = pdl->begin();
1640        p != pdl->end();
1641        ++p)
1642     {
1643       if ((*p)->is_section())
1644         {
1645           const Output_section* ps = static_cast<const Output_section*>(*p);
1646           gold_assert(*pshndx == ps->out_shndx());
1647           elfcpp::Shdr_write<size, big_endian> oshdr(v);
1648           ps->write_header(layout, secnamepool, &oshdr);
1649           v += shdr_size;
1650           ++*pshndx;
1651         }
1652     }
1653   return v;
1654 }
1655
1656 // Output_file methods.
1657
1658 Output_file::Output_file(const General_options& options, Target* target)
1659   : options_(options),
1660     target_(target),
1661     name_(options.output_file_name()),
1662     o_(-1),
1663     file_size_(0),
1664     base_(NULL)
1665 {
1666 }
1667
1668 // Open the output file.
1669
1670 void
1671 Output_file::open(off_t file_size)
1672 {
1673   this->file_size_ = file_size;
1674
1675   int mode = parameters->output_is_object() ? 0666 : 0777;
1676   int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
1677   if (o < 0)
1678     {
1679       fprintf(stderr, _("%s: %s: open: %s\n"),
1680               program_name, this->name_, strerror(errno));
1681       gold_exit(false);
1682     }
1683   this->o_ = o;
1684
1685   // Write out one byte to make the file the right size.
1686   if (::lseek(o, file_size - 1, SEEK_SET) < 0)
1687     {
1688       fprintf(stderr, _("%s: %s: lseek: %s\n"),
1689               program_name, this->name_, strerror(errno));
1690       gold_exit(false);
1691     }
1692   char b = 0;
1693   if (::write(o, &b, 1) != 1)
1694     {
1695       fprintf(stderr, _("%s: %s: write: %s\n"),
1696               program_name, this->name_, strerror(errno));
1697       gold_exit(false);
1698     }
1699
1700   // Map the file into memory.
1701   void* base = ::mmap(NULL, file_size, PROT_READ | PROT_WRITE,
1702                       MAP_SHARED, o, 0);
1703   if (base == MAP_FAILED)
1704     {
1705       fprintf(stderr, _("%s: %s: mmap: %s\n"),
1706               program_name, this->name_, strerror(errno));
1707       gold_exit(false);
1708     }
1709   this->base_ = static_cast<unsigned char*>(base);
1710 }
1711
1712 // Close the output file.
1713
1714 void
1715 Output_file::close()
1716 {
1717   if (::munmap(this->base_, this->file_size_) < 0)
1718     {
1719       fprintf(stderr, _("%s: %s: munmap: %s\n"),
1720               program_name, this->name_, strerror(errno));
1721       gold_exit(false);
1722     }
1723   this->base_ = NULL;
1724
1725   if (::close(this->o_) < 0)
1726     {
1727       fprintf(stderr, _("%s: %s: close: %s\n"),
1728               program_name, this->name_, strerror(errno));
1729       gold_exit(false);
1730     }
1731   this->o_ = -1;
1732 }
1733
1734 // Instantiate the templates we need.  We could use the configure
1735 // script to restrict this to only the ones for implemented targets.
1736
1737 #ifdef HAVE_TARGET_32_LITTLE
1738 template
1739 off_t
1740 Output_section::add_input_section<32, false>(
1741     Relobj* object,
1742     unsigned int shndx,
1743     const char* secname,
1744     const elfcpp::Shdr<32, false>& shdr);
1745 #endif
1746
1747 #ifdef HAVE_TARGET_32_BIG
1748 template
1749 off_t
1750 Output_section::add_input_section<32, true>(
1751     Relobj* object,
1752     unsigned int shndx,
1753     const char* secname,
1754     const elfcpp::Shdr<32, true>& shdr);
1755 #endif
1756
1757 #ifdef HAVE_TARGET_64_LITTLE
1758 template
1759 off_t
1760 Output_section::add_input_section<64, false>(
1761     Relobj* object,
1762     unsigned int shndx,
1763     const char* secname,
1764     const elfcpp::Shdr<64, false>& shdr);
1765 #endif
1766
1767 #ifdef HAVE_TARGET_64_BIG
1768 template
1769 off_t
1770 Output_section::add_input_section<64, true>(
1771     Relobj* object,
1772     unsigned int shndx,
1773     const char* secname,
1774     const elfcpp::Shdr<64, true>& shdr);
1775 #endif
1776
1777 #ifdef HAVE_TARGET_32_LITTLE
1778 template
1779 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
1780 #endif
1781
1782 #ifdef HAVE_TARGET_32_BIG
1783 template
1784 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
1785 #endif
1786
1787 #ifdef HAVE_TARGET_64_LITTLE
1788 template
1789 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
1790 #endif
1791
1792 #ifdef HAVE_TARGET_64_BIG
1793 template
1794 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
1795 #endif
1796
1797 #ifdef HAVE_TARGET_32_LITTLE
1798 template
1799 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
1800 #endif
1801
1802 #ifdef HAVE_TARGET_32_BIG
1803 template
1804 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
1805 #endif
1806
1807 #ifdef HAVE_TARGET_64_LITTLE
1808 template
1809 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
1810 #endif
1811
1812 #ifdef HAVE_TARGET_64_BIG
1813 template
1814 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
1815 #endif
1816
1817 #ifdef HAVE_TARGET_32_LITTLE
1818 template
1819 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
1820 #endif
1821
1822 #ifdef HAVE_TARGET_32_BIG
1823 template
1824 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
1825 #endif
1826
1827 #ifdef HAVE_TARGET_64_LITTLE
1828 template
1829 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
1830 #endif
1831
1832 #ifdef HAVE_TARGET_64_BIG
1833 template
1834 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
1835 #endif
1836
1837 #ifdef HAVE_TARGET_32_LITTLE
1838 template
1839 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
1840 #endif
1841
1842 #ifdef HAVE_TARGET_32_BIG
1843 template
1844 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
1845 #endif
1846
1847 #ifdef HAVE_TARGET_64_LITTLE
1848 template
1849 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
1850 #endif
1851
1852 #ifdef HAVE_TARGET_64_BIG
1853 template
1854 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
1855 #endif
1856
1857 #ifdef HAVE_TARGET_32_LITTLE
1858 template
1859 class Output_data_got<32, false>;
1860 #endif
1861
1862 #ifdef HAVE_TARGET_32_BIG
1863 template
1864 class Output_data_got<32, true>;
1865 #endif
1866
1867 #ifdef HAVE_TARGET_64_LITTLE
1868 template
1869 class Output_data_got<64, false>;
1870 #endif
1871
1872 #ifdef HAVE_TARGET_64_BIG
1873 template
1874 class Output_data_got<64, true>;
1875 #endif
1876
1877 } // End namespace gold.