OSDN Git Service

Hash tables, dynamic section, i386 PLT, gold_assert.
[pf3gnuchains/pf3gnuchains4x.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 #include "gold.h"
4
5 #include <stdint.h>
6 #include <string>
7 #include <utility>
8
9 #include "object.h"
10 #include "dynobj.h"
11 #include "output.h"
12 #include "target.h"
13 #include "workqueue.h"
14 #include "symtab.h"
15
16 namespace gold
17 {
18
19 // Class Symbol.
20
21 // Initialize fields in Symbol.  This initializes everything except u_
22 // and source_.
23
24 void
25 Symbol::init_fields(const char* name, const char* version,
26                     elfcpp::STT type, elfcpp::STB binding,
27                     elfcpp::STV visibility, unsigned char nonvis)
28 {
29   this->name_ = name;
30   this->version_ = version;
31   this->symtab_index_ = 0;
32   this->dynsym_index_ = 0;
33   this->got_offset_ = 0;
34   this->type_ = type;
35   this->binding_ = binding;
36   this->visibility_ = visibility;
37   this->nonvis_ = nonvis;
38   this->is_target_special_ = false;
39   this->is_def_ = false;
40   this->is_forwarder_ = false;
41   this->needs_dynsym_entry_ = false;
42   this->in_dyn_ = false;
43   this->has_got_offset_ = false;
44   this->has_warning_ = false;
45 }
46
47 // Initialize the fields in the base class Symbol for SYM in OBJECT.
48
49 template<int size, bool big_endian>
50 void
51 Symbol::init_base(const char* name, const char* version, Object* object,
52                   const elfcpp::Sym<size, big_endian>& sym)
53 {
54   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
55                     sym.get_st_visibility(), sym.get_st_nonvis());
56   this->u_.from_object.object = object;
57   // FIXME: Handle SHN_XINDEX.
58   this->u_.from_object.shnum = sym.get_st_shndx();
59   this->source_ = FROM_OBJECT;
60   this->in_dyn_ = object->is_dynamic();
61 }
62
63 // Initialize the fields in the base class Symbol for a symbol defined
64 // in an Output_data.
65
66 void
67 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
68                   elfcpp::STB binding, elfcpp::STV visibility,
69                   unsigned char nonvis, bool offset_is_from_end)
70 {
71   this->init_fields(name, NULL, type, binding, visibility, nonvis);
72   this->u_.in_output_data.output_data = od;
73   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
74   this->source_ = IN_OUTPUT_DATA;
75 }
76
77 // Initialize the fields in the base class Symbol for a symbol defined
78 // in an Output_segment.
79
80 void
81 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
82                   elfcpp::STB binding, elfcpp::STV visibility,
83                   unsigned char nonvis, Segment_offset_base offset_base)
84 {
85   this->init_fields(name, NULL, type, binding, visibility, nonvis);
86   this->u_.in_output_segment.output_segment = os;
87   this->u_.in_output_segment.offset_base = offset_base;
88   this->source_ = IN_OUTPUT_SEGMENT;
89 }
90
91 // Initialize the fields in the base class Symbol for a symbol defined
92 // as a constant.
93
94 void
95 Symbol::init_base(const char* name, elfcpp::STT type,
96                   elfcpp::STB binding, elfcpp::STV visibility,
97                   unsigned char nonvis)
98 {
99   this->init_fields(name, NULL, type, binding, visibility, nonvis);
100   this->source_ = CONSTANT;
101 }
102
103 // Initialize the fields in Sized_symbol for SYM in OBJECT.
104
105 template<int size>
106 template<bool big_endian>
107 void
108 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
109                          const elfcpp::Sym<size, big_endian>& sym)
110 {
111   this->init_base(name, version, object, sym);
112   this->value_ = sym.get_st_value();
113   this->symsize_ = sym.get_st_size();
114 }
115
116 // Initialize the fields in Sized_symbol for a symbol defined in an
117 // Output_data.
118
119 template<int size>
120 void
121 Sized_symbol<size>::init(const char* name, Output_data* od,
122                          Value_type value, Size_type symsize,
123                          elfcpp::STT type, elfcpp::STB binding,
124                          elfcpp::STV visibility, unsigned char nonvis,
125                          bool offset_is_from_end)
126 {
127   this->init_base(name, od, type, binding, visibility, nonvis,
128                   offset_is_from_end);
129   this->value_ = value;
130   this->symsize_ = symsize;
131 }
132
133 // Initialize the fields in Sized_symbol for a symbol defined in an
134 // Output_segment.
135
136 template<int size>
137 void
138 Sized_symbol<size>::init(const char* name, Output_segment* os,
139                          Value_type value, Size_type symsize,
140                          elfcpp::STT type, elfcpp::STB binding,
141                          elfcpp::STV visibility, unsigned char nonvis,
142                          Segment_offset_base offset_base)
143 {
144   this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
145   this->value_ = value;
146   this->symsize_ = symsize;
147 }
148
149 // Initialize the fields in Sized_symbol for a symbol defined as a
150 // constant.
151
152 template<int size>
153 void
154 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
155                          elfcpp::STT type, elfcpp::STB binding,
156                          elfcpp::STV visibility, unsigned char nonvis)
157 {
158   this->init_base(name, type, binding, visibility, nonvis);
159   this->value_ = value;
160   this->symsize_ = symsize;
161 }
162
163 // Class Symbol_table.
164
165 Symbol_table::Symbol_table()
166   : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(),
167     forwarders_(), commons_(), warnings_()
168 {
169 }
170
171 Symbol_table::~Symbol_table()
172 {
173 }
174
175 // The hash function.  The key is always canonicalized, so we use a
176 // simple combination of the pointers.
177
178 size_t
179 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
180 {
181   return key.first ^ key.second;
182 }
183
184 // The symbol table key equality function.  This is only called with
185 // canonicalized name and version strings, so we can use pointer
186 // comparison.
187
188 bool
189 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
190                                           const Symbol_table_key& k2) const
191 {
192   return k1.first == k2.first && k1.second == k2.second;
193 }
194
195 // Make TO a symbol which forwards to FROM.  
196
197 void
198 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
199 {
200   gold_assert(from != to);
201   gold_assert(!from->is_forwarder() && !to->is_forwarder());
202   this->forwarders_[from] = to;
203   from->set_forwarder();
204 }
205
206 // Resolve the forwards from FROM, returning the real symbol.
207
208 Symbol*
209 Symbol_table::resolve_forwards(const Symbol* from) const
210 {
211   gold_assert(from->is_forwarder());
212   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
213     this->forwarders_.find(from);
214   gold_assert(p != this->forwarders_.end());
215   return p->second;
216 }
217
218 // Look up a symbol by name.
219
220 Symbol*
221 Symbol_table::lookup(const char* name, const char* version) const
222 {
223   Stringpool::Key name_key;
224   name = this->namepool_.find(name, &name_key);
225   if (name == NULL)
226     return NULL;
227
228   Stringpool::Key version_key = 0;
229   if (version != NULL)
230     {
231       version = this->namepool_.find(version, &version_key);
232       if (version == NULL)
233         return NULL;
234     }
235
236   Symbol_table_key key(name_key, version_key);
237   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
238   if (p == this->table_.end())
239     return NULL;
240   return p->second;
241 }
242
243 // Resolve a Symbol with another Symbol.  This is only used in the
244 // unusual case where there are references to both an unversioned
245 // symbol and a symbol with a version, and we then discover that that
246 // version is the default version.  Because this is unusual, we do
247 // this the slow way, by converting back to an ELF symbol.
248
249 template<int size, bool big_endian>
250 void
251 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from
252                       ACCEPT_SIZE_ENDIAN)
253 {
254   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
255   elfcpp::Sym_write<size, big_endian> esym(buf);
256   // We don't bother to set the st_name field.
257   esym.put_st_value(from->value());
258   esym.put_st_size(from->symsize());
259   esym.put_st_info(from->binding(), from->type());
260   esym.put_st_other(from->visibility(), from->nonvis());
261   esym.put_st_shndx(from->shnum());
262   Symbol_table::resolve(to, esym.sym(), from->object());
263 }
264
265 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
266 // name and VERSION is the version; both are canonicalized.  DEF is
267 // whether this is the default version.
268
269 // If DEF is true, then this is the definition of a default version of
270 // a symbol.  That means that any lookup of NAME/NULL and any lookup
271 // of NAME/VERSION should always return the same symbol.  This is
272 // obvious for references, but in particular we want to do this for
273 // definitions: overriding NAME/NULL should also override
274 // NAME/VERSION.  If we don't do that, it would be very hard to
275 // override functions in a shared library which uses versioning.
276
277 // We implement this by simply making both entries in the hash table
278 // point to the same Symbol structure.  That is easy enough if this is
279 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
280 // that we have seen both already, in which case they will both have
281 // independent entries in the symbol table.  We can't simply change
282 // the symbol table entry, because we have pointers to the entries
283 // attached to the object files.  So we mark the entry attached to the
284 // object file as a forwarder, and record it in the forwarders_ map.
285 // Note that entries in the hash table will never be marked as
286 // forwarders.
287
288 template<int size, bool big_endian>
289 Symbol*
290 Symbol_table::add_from_object(Object* object,
291                               const char *name,
292                               Stringpool::Key name_key,
293                               const char *version,
294                               Stringpool::Key version_key,
295                               bool def,
296                               const elfcpp::Sym<size, big_endian>& sym)
297 {
298   Symbol* const snull = NULL;
299   std::pair<typename Symbol_table_type::iterator, bool> ins =
300     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
301                                        snull));
302
303   std::pair<typename Symbol_table_type::iterator, bool> insdef =
304     std::make_pair(this->table_.end(), false);
305   if (def)
306     {
307       const Stringpool::Key vnull_key = 0;
308       insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
309                                                                  vnull_key),
310                                                   snull));
311     }
312
313   // ins.first: an iterator, which is a pointer to a pair.
314   // ins.first->first: the key (a pair of name and version).
315   // ins.first->second: the value (Symbol*).
316   // ins.second: true if new entry was inserted, false if not.
317
318   Sized_symbol<size>* ret;
319   bool was_undefined;
320   bool was_common;
321   if (!ins.second)
322     {
323       // We already have an entry for NAME/VERSION.
324       ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
325                                                            SELECT_SIZE(size));
326       gold_assert(ret != NULL);
327
328       was_undefined = ret->is_undefined();
329       was_common = ret->is_common();
330
331       Symbol_table::resolve(ret, sym, object);
332
333       if (def)
334         {
335           if (insdef.second)
336             {
337               // This is the first time we have seen NAME/NULL.  Make
338               // NAME/NULL point to NAME/VERSION.
339               insdef.first->second = ret;
340             }
341           else if (insdef.first->second != ret)
342             {
343               // This is the unfortunate case where we already have
344               // entries for both NAME/VERSION and NAME/NULL.
345               const Sized_symbol<size>* sym2;
346               sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
347                 insdef.first->second
348                 SELECT_SIZE(size));
349               Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
350                 ret, sym2 SELECT_SIZE_ENDIAN(size, big_endian));
351               this->make_forwarder(insdef.first->second, ret);
352               insdef.first->second = ret;
353             }
354         }
355     }
356   else
357     {
358       // This is the first time we have seen NAME/VERSION.
359       gold_assert(ins.first->second == NULL);
360
361       was_undefined = false;
362       was_common = false;
363
364       if (def && !insdef.second)
365         {
366           // We already have an entry for NAME/NULL.  Make
367           // NAME/VERSION point to it.
368           ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
369               insdef.first->second
370               SELECT_SIZE(size));
371           Symbol_table::resolve(ret, sym, object);
372           ins.first->second = ret;
373         }
374       else
375         {
376           Sized_target<size, big_endian>* target =
377             object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
378                 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
379           if (!target->has_make_symbol())
380             ret = new Sized_symbol<size>();
381           else
382             {
383               ret = target->make_symbol();
384               if (ret == NULL)
385                 {
386                   // This means that we don't want a symbol table
387                   // entry after all.
388                   if (!def)
389                     this->table_.erase(ins.first);
390                   else
391                     {
392                       this->table_.erase(insdef.first);
393                       // Inserting insdef invalidated ins.
394                       this->table_.erase(std::make_pair(name_key,
395                                                         version_key));
396                     }
397                   return NULL;
398                 }
399             }
400
401           ret->init(name, version, object, sym);
402
403           ins.first->second = ret;
404           if (def)
405             {
406               // This is the first time we have seen NAME/NULL.  Point
407               // it at the new entry for NAME/VERSION.
408               gold_assert(insdef.second);
409               insdef.first->second = ret;
410             }
411         }
412     }
413
414   // Record every time we see a new undefined symbol, to speed up
415   // archive groups.
416   if (!was_undefined && ret->is_undefined())
417     ++this->saw_undefined_;
418
419   // Keep track of common symbols, to speed up common symbol
420   // allocation.
421   if (!was_common && ret->is_common())
422     this->commons_.push_back(ret);
423
424   return ret;
425 }
426
427 // Add all the symbols in a relocatable object to the hash table.
428
429 template<int size, bool big_endian>
430 void
431 Symbol_table::add_from_relobj(
432     Sized_relobj<size, big_endian>* relobj,
433     const unsigned char* syms,
434     size_t count,
435     const char* sym_names,
436     size_t sym_name_size,
437     Symbol** sympointers)
438 {
439   // We take the size from the first object we see.
440   if (this->get_size() == 0)
441     this->set_size(size);
442
443   if (size != this->get_size() || size != relobj->target()->get_size())
444     {
445       fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
446               program_name, relobj->name().c_str());
447       gold_exit(false);
448     }
449
450   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
451
452   const unsigned char* p = syms;
453   for (size_t i = 0; i < count; ++i, p += sym_size)
454     {
455       elfcpp::Sym<size, big_endian> sym(p);
456       elfcpp::Sym<size, big_endian>* psym = &sym;
457
458       unsigned int st_name = psym->get_st_name();
459       if (st_name >= sym_name_size)
460         {
461           fprintf(stderr,
462                   _("%s: %s: bad global symbol name offset %u at %lu\n"),
463                   program_name, relobj->name().c_str(), st_name,
464                   static_cast<unsigned long>(i));
465           gold_exit(false);
466         }
467
468       const char* name = sym_names + st_name;
469
470       // A symbol defined in a section which we are not including must
471       // be treated as an undefined symbol.
472       unsigned char symbuf[sym_size];
473       elfcpp::Sym<size, big_endian> sym2(symbuf);
474       unsigned int st_shndx = psym->get_st_shndx();
475       if (st_shndx != elfcpp::SHN_UNDEF
476           && st_shndx < elfcpp::SHN_LORESERVE
477           && !relobj->is_section_included(st_shndx))
478         {
479           memcpy(symbuf, p, sym_size);
480           elfcpp::Sym_write<size, big_endian> sw(symbuf);
481           sw.put_st_shndx(elfcpp::SHN_UNDEF);
482           psym = &sym2;
483         }
484
485       // In an object file, an '@' in the name separates the symbol
486       // name from the version name.  If there are two '@' characters,
487       // this is the default version.
488       const char* ver = strchr(name, '@');
489
490       Symbol* res;
491       if (ver == NULL)
492         {
493           Stringpool::Key name_key;
494           name = this->namepool_.add(name, &name_key);
495           res = this->add_from_object(relobj, name, name_key, NULL, 0,
496                                       false, *psym);
497         }
498       else
499         {
500           Stringpool::Key name_key;
501           name = this->namepool_.add(name, ver - name, &name_key);
502
503           bool def = false;
504           ++ver;
505           if (*ver == '@')
506             {
507               def = true;
508               ++ver;
509             }
510
511           Stringpool::Key ver_key;
512           ver = this->namepool_.add(ver, &ver_key);
513
514           res = this->add_from_object(relobj, name, name_key, ver, ver_key,
515                                       def, *psym);
516         }
517
518       *sympointers++ = res;
519     }
520 }
521
522 // Add all the symbols in a dynamic object to the hash table.
523
524 template<int size, bool big_endian>
525 void
526 Symbol_table::add_from_dynobj(
527     Sized_dynobj<size, big_endian>* dynobj,
528     const unsigned char* syms,
529     size_t count,
530     const char* sym_names,
531     size_t sym_name_size,
532     const unsigned char* versym,
533     size_t versym_size,
534     const std::vector<const char*>* version_map)
535 {
536   // We take the size from the first object we see.
537   if (this->get_size() == 0)
538     this->set_size(size);
539
540   if (size != this->get_size() || size != dynobj->target()->get_size())
541     {
542       fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
543               program_name, dynobj->name().c_str());
544       gold_exit(false);
545     }
546
547   if (versym != NULL && versym_size / 2 < count)
548     {
549       fprintf(stderr, _("%s: %s: too few symbol versions\n"),
550               program_name, dynobj->name().c_str());
551       gold_exit(false);
552     }
553
554   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
555
556   const unsigned char* p = syms;
557   const unsigned char* vs = versym;
558   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
559     {
560       elfcpp::Sym<size, big_endian> sym(p);
561
562       // Ignore symbols with local binding.
563       if (sym.get_st_bind() == elfcpp::STB_LOCAL)
564         continue;
565
566       unsigned int st_name = sym.get_st_name();
567       if (st_name >= sym_name_size)
568         {
569           fprintf(stderr, _("%s: %s: bad symbol name offset %u at %lu\n"),
570                   program_name, dynobj->name().c_str(), st_name,
571                   static_cast<unsigned long>(i));
572           gold_exit(false);
573         }
574
575       const char* name = sym_names + st_name;
576
577       if (versym == NULL)
578         {
579           Stringpool::Key name_key;
580           name = this->namepool_.add(name, &name_key);
581           this->add_from_object(dynobj, name, name_key, NULL, 0,
582                                 false, sym);
583           continue;
584         }
585
586       // Read the version information.
587
588       unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
589
590       bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
591       v &= elfcpp::VERSYM_VERSION;
592
593       if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL))
594         {
595           // This symbol should not be visible outside the object.
596           continue;
597         }
598
599       // At this point we are definitely going to add this symbol.
600       Stringpool::Key name_key;
601       name = this->namepool_.add(name, &name_key);
602
603       if (v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
604         {
605           // This symbol does not have a version.
606           this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
607           continue;
608         }
609
610       if (v >= version_map->size())
611         {
612           fprintf(stderr,
613                   _("%s: %s: versym for symbol %zu out of range: %u\n"),
614                   program_name, dynobj->name().c_str(), i, v);
615           gold_exit(false);
616         }
617
618       const char* version = (*version_map)[v];
619       if (version == NULL)
620         {
621           fprintf(stderr, _("%s: %s: versym for symbol %zu has no name: %u\n"),
622                   program_name, dynobj->name().c_str(), i, v);
623           gold_exit(false);
624         }
625
626       Stringpool::Key version_key;
627       version = this->namepool_.add(version, &version_key);
628
629       // If this is an absolute symbol, and the version name and
630       // symbol name are the same, then this is the version definition
631       // symbol.  These symbols exist to support using -u to pull in
632       // particular versions.  We do not want to record a version for
633       // them.
634       if (sym.get_st_shndx() == elfcpp::SHN_ABS && name_key == version_key)
635         {
636           this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
637           continue;
638         }
639
640       const bool def = !hidden && sym.get_st_shndx() != elfcpp::SHN_UNDEF;
641
642       this->add_from_object(dynobj, name, name_key, version, version_key,
643                             def, sym);
644     }
645 }
646
647 // Create and return a specially defined symbol.  If ONLY_IF_REF is
648 // true, then only create the symbol if there is a reference to it.
649
650 template<int size, bool big_endian>
651 Sized_symbol<size>*
652 Symbol_table::define_special_symbol(Target* target, const char* name,
653                                     bool only_if_ref
654                                     ACCEPT_SIZE_ENDIAN)
655 {
656   gold_assert(this->size_ == size);
657
658   Symbol* oldsym;
659   Sized_symbol<size>* sym;
660
661   if (only_if_ref)
662     {
663       oldsym = this->lookup(name, NULL);
664       if (oldsym == NULL || !oldsym->is_undefined())
665         return NULL;
666       sym = NULL;
667
668       // Canonicalize NAME.
669       name = oldsym->name();
670     }
671   else
672     {
673       // Canonicalize NAME.
674       Stringpool::Key name_key;
675       name = this->namepool_.add(name, &name_key);
676
677       Symbol* const snull = NULL;
678       const Stringpool::Key ver_key = 0;
679       std::pair<typename Symbol_table_type::iterator, bool> ins =
680         this->table_.insert(std::make_pair(std::make_pair(name_key, ver_key),
681                                            snull));
682
683       if (!ins.second)
684         {
685           // We already have a symbol table entry for NAME.
686           oldsym = ins.first->second;
687           gold_assert(oldsym != NULL);
688           sym = NULL;
689         }
690       else
691         {
692           // We haven't seen this symbol before.
693           gold_assert(ins.first->second == NULL);
694
695           if (!target->has_make_symbol())
696             sym = new Sized_symbol<size>();
697           else
698             {
699               gold_assert(target->get_size() == size);
700               gold_assert(target->is_big_endian() ? big_endian : !big_endian);
701               typedef Sized_target<size, big_endian> My_target;
702               My_target* sized_target = static_cast<My_target*>(target);
703               sym = sized_target->make_symbol();
704               if (sym == NULL)
705                 return NULL;
706             }
707
708           ins.first->second = sym;
709           oldsym = NULL;
710         }
711     }
712
713   if (oldsym != NULL)
714     {
715       gold_assert(sym == NULL);
716
717       sym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
718                                                            SELECT_SIZE(size));
719       gold_assert(sym->source() == Symbol::FROM_OBJECT);
720       const int old_shnum = sym->shnum();
721       if (old_shnum != elfcpp::SHN_UNDEF
722           && old_shnum != elfcpp::SHN_COMMON
723           && !sym->object()->is_dynamic())
724         {
725           fprintf(stderr, "%s: linker defined: multiple definition of %s\n",
726                   program_name, name);
727           // FIXME: Report old location.  Record that we have seen an
728           // error.
729           return NULL;
730         }
731
732       // Our new definition is going to override the old reference.
733     }
734
735   return sym;
736 }
737
738 // Define a symbol based on an Output_data.
739
740 void
741 Symbol_table::define_in_output_data(Target* target, const char* name,
742                                     Output_data* od,
743                                     uint64_t value, uint64_t symsize,
744                                     elfcpp::STT type, elfcpp::STB binding,
745                                     elfcpp::STV visibility,
746                                     unsigned char nonvis,
747                                     bool offset_is_from_end,
748                                     bool only_if_ref)
749 {
750   gold_assert(target->get_size() == this->size_);
751   if (this->size_ == 32)
752     this->do_define_in_output_data<32>(target, name, od, value, symsize,
753                                        type, binding, visibility, nonvis,
754                                        offset_is_from_end, only_if_ref);
755   else if (this->size_ == 64)
756     this->do_define_in_output_data<64>(target, name, od, value, symsize,
757                                        type, binding, visibility, nonvis,
758                                        offset_is_from_end, only_if_ref);
759   else
760     gold_unreachable();
761 }
762
763 // Define a symbol in an Output_data, sized version.
764
765 template<int size>
766 void
767 Symbol_table::do_define_in_output_data(
768     Target* target,
769     const char* name,
770     Output_data* od,
771     typename elfcpp::Elf_types<size>::Elf_Addr value,
772     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
773     elfcpp::STT type,
774     elfcpp::STB binding,
775     elfcpp::STV visibility,
776     unsigned char nonvis,
777     bool offset_is_from_end,
778     bool only_if_ref)
779 {
780   Sized_symbol<size>* sym;
781
782   if (target->is_big_endian())
783     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
784         target, name, only_if_ref
785         SELECT_SIZE_ENDIAN(size, true));
786   else
787     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
788         target, name, only_if_ref
789         SELECT_SIZE_ENDIAN(size, false));
790
791   if (sym == NULL)
792     return;
793
794   sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
795             offset_is_from_end);
796 }
797
798 // Define a symbol based on an Output_segment.
799
800 void
801 Symbol_table::define_in_output_segment(Target* target, const char* name,
802                                        Output_segment* os,
803                                        uint64_t value, uint64_t symsize,
804                                        elfcpp::STT type, elfcpp::STB binding,
805                                        elfcpp::STV visibility,
806                                        unsigned char nonvis,
807                                        Symbol::Segment_offset_base offset_base,
808                                        bool only_if_ref)
809 {
810   gold_assert(target->get_size() == this->size_);
811   if (this->size_ == 32)
812     this->do_define_in_output_segment<32>(target, name, os, value, symsize,
813                                           type, binding, visibility, nonvis,
814                                           offset_base, only_if_ref);
815   else if (this->size_ == 64)
816     this->do_define_in_output_segment<64>(target, name, os, value, symsize,
817                                           type, binding, visibility, nonvis,
818                                           offset_base, only_if_ref);
819   else
820     gold_unreachable();
821 }
822
823 // Define a symbol in an Output_segment, sized version.
824
825 template<int size>
826 void
827 Symbol_table::do_define_in_output_segment(
828     Target* target,
829     const char* name,
830     Output_segment* os,
831     typename elfcpp::Elf_types<size>::Elf_Addr value,
832     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
833     elfcpp::STT type,
834     elfcpp::STB binding,
835     elfcpp::STV visibility,
836     unsigned char nonvis,
837     Symbol::Segment_offset_base offset_base,
838     bool only_if_ref)
839 {
840   Sized_symbol<size>* sym;
841
842   if (target->is_big_endian())
843     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
844         target, name, only_if_ref
845         SELECT_SIZE_ENDIAN(size, true));
846   else
847     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
848         target, name, only_if_ref
849         SELECT_SIZE_ENDIAN(size, false));
850
851   if (sym == NULL)
852     return;
853
854   sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
855             offset_base);
856 }
857
858 // Define a special symbol with a constant value.  It is a multiple
859 // definition error if this symbol is already defined.
860
861 void
862 Symbol_table::define_as_constant(Target* target, const char* name,
863                                  uint64_t value, uint64_t symsize,
864                                  elfcpp::STT type, elfcpp::STB binding,
865                                  elfcpp::STV visibility, unsigned char nonvis,
866                                  bool only_if_ref)
867 {
868   gold_assert(target->get_size() == this->size_);
869   if (this->size_ == 32)
870     this->do_define_as_constant<32>(target, name, value, symsize,
871                                     type, binding, visibility, nonvis,
872                                     only_if_ref);
873   else if (this->size_ == 64)
874     this->do_define_as_constant<64>(target, name, value, symsize,
875                                     type, binding, visibility, nonvis,
876                                     only_if_ref);
877   else
878     gold_unreachable();
879 }
880
881 // Define a symbol as a constant, sized version.
882
883 template<int size>
884 void
885 Symbol_table::do_define_as_constant(
886     Target* target,
887     const char* name,
888     typename elfcpp::Elf_types<size>::Elf_Addr value,
889     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
890     elfcpp::STT type,
891     elfcpp::STB binding,
892     elfcpp::STV visibility,
893     unsigned char nonvis,
894     bool only_if_ref)
895 {
896   Sized_symbol<size>* sym;
897
898   if (target->is_big_endian())
899     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
900         target, name, only_if_ref
901         SELECT_SIZE_ENDIAN(size, true));
902   else
903     sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
904         target, name, only_if_ref
905         SELECT_SIZE_ENDIAN(size, false));
906
907   if (sym == NULL)
908     return;
909
910   sym->init(name, value, symsize, type, binding, visibility, nonvis);
911 }
912
913 // Define a set of symbols in output sections.
914
915 void
916 Symbol_table::define_symbols(const Layout* layout, Target* target, int count,
917                              const Define_symbol_in_section* p)
918 {
919   for (int i = 0; i < count; ++i, ++p)
920     {
921       Output_section* os = layout->find_output_section(p->output_section);
922       if (os != NULL)
923         this->define_in_output_data(target, p->name, os, p->value, p->size,
924                                     p->type, p->binding, p->visibility,
925                                     p->nonvis, p->offset_is_from_end,
926                                     p->only_if_ref);
927       else
928         this->define_as_constant(target, p->name, 0, p->size, p->type,
929                                  p->binding, p->visibility, p->nonvis,
930                                  p->only_if_ref);
931     }
932 }
933
934 // Define a set of symbols in output segments.
935
936 void
937 Symbol_table::define_symbols(const Layout* layout, Target* target, int count,
938                              const Define_symbol_in_segment* p)
939 {
940   for (int i = 0; i < count; ++i, ++p)
941     {
942       Output_segment* os = layout->find_output_segment(p->segment_type,
943                                                        p->segment_flags_set,
944                                                        p->segment_flags_clear);
945       if (os != NULL)
946         this->define_in_output_segment(target, p->name, os, p->value, p->size,
947                                        p->type, p->binding, p->visibility,
948                                        p->nonvis, p->offset_base,
949                                        p->only_if_ref);
950       else
951         this->define_as_constant(target, p->name, 0, p->size, p->type,
952                                  p->binding, p->visibility, p->nonvis,
953                                  p->only_if_ref);
954     }
955 }
956
957 // Set the dynamic symbol indexes.  INDEX is the index of the first
958 // global dynamic symbol.  Pointers to the symbols are stored into the
959 // vector SYMS.  The names are added to DYNPOOL.  This returns an
960 // updated dynamic symbol index.
961
962 unsigned int
963 Symbol_table::set_dynsym_indexes(unsigned int index,
964                                  std::vector<Symbol*>* syms,
965                                  Stringpool* dynpool)
966 {
967   for (Symbol_table_type::iterator p = this->table_.begin();
968        p != this->table_.end();
969        ++p)
970     {
971       Symbol* sym = p->second;
972       if (sym->needs_dynsym_entry())
973         {
974           sym->set_dynsym_index(index);
975           ++index;
976           syms->push_back(sym);
977           dynpool->add(sym->name(), NULL);
978         }
979     }
980
981   return index;
982 }
983
984 // Set the final values for all the symbols.  The index of the first
985 // global symbol in the output file is INDEX.  Record the file offset
986 // OFF.  Add their names to POOL.  Return the new file offset.
987
988 off_t
989 Symbol_table::finalize(unsigned int index, off_t off, Stringpool* pool)
990 {
991   off_t ret;
992
993   gold_assert(index != 0);
994   this->first_global_index_ = index;
995
996   if (this->size_ == 32)
997     ret = this->sized_finalize<32>(index, off, pool);
998   else if (this->size_ == 64)
999     ret = this->sized_finalize<64>(index, off, pool);
1000   else
1001     gold_unreachable();
1002
1003   // Now that we have the final symbol table, we can reliably note
1004   // which symbols should get warnings.
1005   this->warnings_.note_warnings(this);
1006
1007   return ret;
1008 }
1009
1010 // Set the final value for all the symbols.  This is called after
1011 // Layout::finalize, so all the output sections have their final
1012 // address.
1013
1014 template<int size>
1015 off_t
1016 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1017 {
1018   off = align_address(off, size >> 3);
1019   this->offset_ = off;
1020
1021   size_t orig_index = index;
1022
1023   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1024   for (Symbol_table_type::iterator p = this->table_.begin();
1025        p != this->table_.end();
1026        ++p)
1027     {
1028       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1029
1030       // FIXME: Here we need to decide which symbols should go into
1031       // the output file, based on --strip.
1032
1033       // The default version of a symbol may appear twice in the
1034       // symbol table.  We only need to finalize it once.
1035       if (sym->has_symtab_index())
1036         continue;
1037
1038       typename Sized_symbol<size>::Value_type value;
1039
1040       switch (sym->source())
1041         {
1042         case Symbol::FROM_OBJECT:
1043           {
1044             unsigned int shnum = sym->shnum();
1045
1046             // FIXME: We need some target specific support here.
1047             if (shnum >= elfcpp::SHN_LORESERVE
1048                 && shnum != elfcpp::SHN_ABS)
1049               {
1050                 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1051                         program_name, sym->name(), shnum);
1052                 gold_exit(false);
1053               }
1054
1055             Object* symobj = sym->object();
1056             if (symobj->is_dynamic())
1057               {
1058                 value = 0;
1059                 shnum = elfcpp::SHN_UNDEF;
1060               }
1061             else if (shnum == elfcpp::SHN_UNDEF)
1062               value = 0;
1063             else if (shnum == elfcpp::SHN_ABS)
1064               value = sym->value();
1065             else
1066               {
1067                 Relobj* relobj = static_cast<Relobj*>(symobj);
1068                 off_t secoff;
1069                 Output_section* os = relobj->output_section(shnum, &secoff);
1070
1071                 if (os == NULL)
1072                   {
1073                     sym->set_symtab_index(-1U);
1074                     continue;
1075                   }
1076
1077                 value = sym->value() + os->address() + secoff;
1078               }
1079           }
1080           break;
1081
1082         case Symbol::IN_OUTPUT_DATA:
1083           {
1084             Output_data* od = sym->output_data();
1085             value = sym->value() + od->address();
1086             if (sym->offset_is_from_end())
1087               value += od->data_size();
1088           }
1089           break;
1090
1091         case Symbol::IN_OUTPUT_SEGMENT:
1092           {
1093             Output_segment* os = sym->output_segment();
1094             value = sym->value() + os->vaddr();
1095             switch (sym->offset_base())
1096               {
1097               case Symbol::SEGMENT_START:
1098                 break;
1099               case Symbol::SEGMENT_END:
1100                 value += os->memsz();
1101                 break;
1102               case Symbol::SEGMENT_BSS:
1103                 value += os->filesz();
1104                 break;
1105               default:
1106                 gold_unreachable();
1107               }
1108           }
1109           break;
1110
1111         case Symbol::CONSTANT:
1112           value = sym->value();
1113           break;
1114
1115         default:
1116           gold_unreachable();
1117         }
1118
1119       sym->set_value(value);
1120       sym->set_symtab_index(index);
1121       pool->add(sym->name(), NULL);
1122       ++index;
1123       off += sym_size;
1124     }
1125
1126   this->output_count_ = index - orig_index;
1127
1128   return off;
1129 }
1130
1131 // Write out the global symbols.
1132
1133 void
1134 Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
1135                             Output_file* of) const
1136 {
1137   if (this->size_ == 32)
1138     {
1139       if (target->is_big_endian())
1140         this->sized_write_globals<32, true>(target, sympool, of);
1141       else
1142         this->sized_write_globals<32, false>(target, sympool, of);
1143     }
1144   else if (this->size_ == 64)
1145     {
1146       if (target->is_big_endian())
1147         this->sized_write_globals<64, true>(target, sympool, of);
1148       else
1149         this->sized_write_globals<64, false>(target, sympool, of);
1150     }
1151   else
1152     gold_unreachable();
1153 }
1154
1155 // Write out the global symbols.
1156
1157 template<int size, bool big_endian>
1158 void
1159 Symbol_table::sized_write_globals(const Target*,
1160                                   const Stringpool* sympool,
1161                                   Output_file* of) const
1162 {
1163   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1164   unsigned int index = this->first_global_index_;
1165   const off_t oview_size = this->output_count_ * sym_size;
1166   unsigned char* psyms = of->get_output_view(this->offset_, oview_size);
1167
1168   unsigned char* ps = psyms;
1169   for (Symbol_table_type::const_iterator p = this->table_.begin();
1170        p != this->table_.end();
1171        ++p)
1172     {
1173       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1174
1175       unsigned int sym_index = sym->symtab_index();
1176       if (sym_index == -1U)
1177         {
1178           // This symbol is not included in the output file.
1179           continue;
1180         }
1181       if (sym_index != index)
1182         {
1183           // We have already seen this symbol, because it has a
1184           // default version.
1185           gold_assert(sym_index < index);
1186           continue;
1187         }
1188       ++index;
1189
1190       unsigned int shndx;
1191       switch (sym->source())
1192         {
1193         case Symbol::FROM_OBJECT:
1194           {
1195             unsigned int shnum = sym->shnum();
1196
1197             // FIXME: We need some target specific support here.
1198             if (shnum >= elfcpp::SHN_LORESERVE
1199                 && shnum != elfcpp::SHN_ABS)
1200               {
1201                 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1202                         program_name, sym->name(), sym->shnum());
1203                 gold_exit(false);
1204               }
1205
1206             Object* symobj = sym->object();
1207             if (symobj->is_dynamic())
1208               {
1209                 // FIXME.
1210                 shndx = elfcpp::SHN_UNDEF;
1211               }
1212             else if (shnum == elfcpp::SHN_UNDEF || shnum == elfcpp::SHN_ABS)
1213               shndx = shnum;
1214             else
1215               {
1216                 Relobj* relobj = static_cast<Relobj*>(symobj);
1217                 off_t secoff;
1218                 Output_section* os = relobj->output_section(shnum, &secoff);
1219                 gold_assert(os != NULL);
1220                 shndx = os->out_shndx();
1221               }
1222           }
1223           break;
1224
1225         case Symbol::IN_OUTPUT_DATA:
1226           shndx = sym->output_data()->out_shndx();
1227           break;
1228
1229         case Symbol::IN_OUTPUT_SEGMENT:
1230           shndx = elfcpp::SHN_ABS;
1231           break;
1232
1233         case Symbol::CONSTANT:
1234           shndx = elfcpp::SHN_ABS;
1235           break;
1236
1237         default:
1238           gold_unreachable();
1239         }
1240
1241       elfcpp::Sym_write<size, big_endian> osym(ps);
1242       osym.put_st_name(sympool->get_offset(sym->name()));
1243       osym.put_st_value(sym->value());
1244       osym.put_st_size(sym->symsize());
1245       osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1246       osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
1247                                              sym->nonvis()));
1248       osym.put_st_shndx(shndx);
1249
1250       ps += sym_size;
1251     }
1252
1253   gold_assert(ps - psyms == oview_size);
1254
1255   of->write_output_view(this->offset_, oview_size, psyms);
1256 }
1257
1258 // Write out a section symbol.  Return the update offset.
1259
1260 void
1261 Symbol_table::write_section_symbol(const Target* target,
1262                                    const Output_section *os,
1263                                    Output_file* of,
1264                                    off_t offset) const
1265 {
1266   if (this->size_ == 32)
1267     {
1268       if (target->is_big_endian())
1269         this->sized_write_section_symbol<32, true>(os, of, offset);
1270       else
1271         this->sized_write_section_symbol<32, false>(os, of, offset);
1272     }
1273   else if (this->size_ == 64)
1274     {
1275       if (target->is_big_endian())
1276         this->sized_write_section_symbol<64, true>(os, of, offset);
1277       else
1278         this->sized_write_section_symbol<64, false>(os, of, offset);
1279     }
1280   else
1281     gold_unreachable();
1282 }
1283
1284 // Write out a section symbol, specialized for size and endianness.
1285
1286 template<int size, bool big_endian>
1287 void
1288 Symbol_table::sized_write_section_symbol(const Output_section* os,
1289                                          Output_file* of,
1290                                          off_t offset) const
1291 {
1292   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1293
1294   unsigned char* pov = of->get_output_view(offset, sym_size);
1295
1296   elfcpp::Sym_write<size, big_endian> osym(pov);
1297   osym.put_st_name(0);
1298   osym.put_st_value(os->address());
1299   osym.put_st_size(0);
1300   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1301                                        elfcpp::STT_SECTION));
1302   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1303   osym.put_st_shndx(os->out_shndx());
1304
1305   of->write_output_view(offset, sym_size, pov);
1306 }
1307
1308 // Warnings functions.
1309
1310 // Add a new warning.
1311
1312 void
1313 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1314                       unsigned int shndx)
1315 {
1316   name = symtab->canonicalize_name(name);
1317   this->warnings_[name].set(obj, shndx);
1318 }
1319
1320 // Look through the warnings and mark the symbols for which we should
1321 // warn.  This is called during Layout::finalize when we know the
1322 // sources for all the symbols.
1323
1324 void
1325 Warnings::note_warnings(Symbol_table* symtab)
1326 {
1327   for (Warning_table::iterator p = this->warnings_.begin();
1328        p != this->warnings_.end();
1329        ++p)
1330     {
1331       Symbol* sym = symtab->lookup(p->first, NULL);
1332       if (sym != NULL
1333           && sym->source() == Symbol::FROM_OBJECT
1334           && sym->object() == p->second.object)
1335         {
1336           sym->set_has_warning();
1337
1338           // Read the section contents to get the warning text.  It
1339           // would be nicer if we only did this if we have to actually
1340           // issue a warning.  Unfortunately, warnings are issued as
1341           // we relocate sections.  That means that we can not lock
1342           // the object then, as we might try to issue the same
1343           // warning multiple times simultaneously.
1344           {
1345             Task_locker_obj<Object> tl(*p->second.object);
1346             const unsigned char* c;
1347             off_t len;
1348             c = p->second.object->section_contents(p->second.shndx, &len);
1349             p->second.set_text(reinterpret_cast<const char*>(c), len);
1350           }
1351         }
1352     }
1353 }
1354
1355 // Issue a warning.  This is called when we see a relocation against a
1356 // symbol for which has a warning.
1357
1358 void
1359 Warnings::issue_warning(const Symbol* sym, const std::string& location) const
1360 {
1361   gold_assert(sym->has_warning());
1362   Warning_table::const_iterator p = this->warnings_.find(sym->name());
1363   gold_assert(p != this->warnings_.end());
1364   fprintf(stderr, _("%s: %s: warning: %s\n"), program_name, location.c_str(),
1365           p->second.text.c_str());
1366 }
1367
1368 // Instantiate the templates we need.  We could use the configure
1369 // script to restrict this to only the ones needed for implemented
1370 // targets.
1371
1372 template
1373 void
1374 Symbol_table::add_from_relobj<32, true>(
1375     Sized_relobj<32, true>* relobj,
1376     const unsigned char* syms,
1377     size_t count,
1378     const char* sym_names,
1379     size_t sym_name_size,
1380     Symbol** sympointers);
1381
1382 template
1383 void
1384 Symbol_table::add_from_relobj<32, false>(
1385     Sized_relobj<32, false>* relobj,
1386     const unsigned char* syms,
1387     size_t count,
1388     const char* sym_names,
1389     size_t sym_name_size,
1390     Symbol** sympointers);
1391
1392 template
1393 void
1394 Symbol_table::add_from_relobj<64, true>(
1395     Sized_relobj<64, true>* relobj,
1396     const unsigned char* syms,
1397     size_t count,
1398     const char* sym_names,
1399     size_t sym_name_size,
1400     Symbol** sympointers);
1401
1402 template
1403 void
1404 Symbol_table::add_from_relobj<64, false>(
1405     Sized_relobj<64, false>* relobj,
1406     const unsigned char* syms,
1407     size_t count,
1408     const char* sym_names,
1409     size_t sym_name_size,
1410     Symbol** sympointers);
1411
1412 template
1413 void
1414 Symbol_table::add_from_dynobj<32, true>(
1415     Sized_dynobj<32, true>* dynobj,
1416     const unsigned char* syms,
1417     size_t count,
1418     const char* sym_names,
1419     size_t sym_name_size,
1420     const unsigned char* versym,
1421     size_t versym_size,
1422     const std::vector<const char*>* version_map);
1423
1424 template
1425 void
1426 Symbol_table::add_from_dynobj<32, false>(
1427     Sized_dynobj<32, false>* dynobj,
1428     const unsigned char* syms,
1429     size_t count,
1430     const char* sym_names,
1431     size_t sym_name_size,
1432     const unsigned char* versym,
1433     size_t versym_size,
1434     const std::vector<const char*>* version_map);
1435
1436 template
1437 void
1438 Symbol_table::add_from_dynobj<64, true>(
1439     Sized_dynobj<64, true>* dynobj,
1440     const unsigned char* syms,
1441     size_t count,
1442     const char* sym_names,
1443     size_t sym_name_size,
1444     const unsigned char* versym,
1445     size_t versym_size,
1446     const std::vector<const char*>* version_map);
1447
1448 template
1449 void
1450 Symbol_table::add_from_dynobj<64, false>(
1451     Sized_dynobj<64, false>* dynobj,
1452     const unsigned char* syms,
1453     size_t count,
1454     const char* sym_names,
1455     size_t sym_name_size,
1456     const unsigned char* versym,
1457     size_t versym_size,
1458     const std::vector<const char*>* version_map);
1459
1460 } // End namespace gold.