OSDN Git Service

38aa4596b1419aa13dba06469ac26f8d019417a7
[qmiga/qemu.git] / hw / net / igb_core.c
1 /*
2  * Core code for QEMU igb emulation
3  *
4  * Datasheet:
5  * https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf
6  *
7  * Copyright (c) 2020-2023 Red Hat, Inc.
8  * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
9  * Developed by Daynix Computing LTD (http://www.daynix.com)
10  *
11  * Authors:
12  * Akihiko Odaki <akihiko.odaki@daynix.com>
13  * Gal Hammmer <gal.hammer@sap.com>
14  * Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
15  * Dmitry Fleytman <dmitry@daynix.com>
16  * Leonid Bloch <leonid@daynix.com>
17  * Yan Vugenfirer <yan@daynix.com>
18  *
19  * Based on work done by:
20  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
21  * Copyright (c) 2008 Qumranet
22  * Based on work done by:
23  * Copyright (c) 2007 Dan Aloni
24  * Copyright (c) 2004 Antony T Curtis
25  *
26  * This library is free software; you can redistribute it and/or
27  * modify it under the terms of the GNU Lesser General Public
28  * License as published by the Free Software Foundation; either
29  * version 2.1 of the License, or (at your option) any later version.
30  *
31  * This library is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
34  * Lesser General Public License for more details.
35  *
36  * You should have received a copy of the GNU Lesser General Public
37  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
38  */
39
40 #include "qemu/osdep.h"
41 #include "qemu/log.h"
42 #include "net/net.h"
43 #include "net/tap.h"
44 #include "hw/net/mii.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci/msix.h"
47 #include "sysemu/runstate.h"
48
49 #include "net_tx_pkt.h"
50 #include "net_rx_pkt.h"
51
52 #include "igb_common.h"
53 #include "e1000x_common.h"
54 #include "igb_core.h"
55
56 #include "trace.h"
57
58 #define E1000E_MAX_TX_FRAGS (64)
59
60 union e1000_rx_desc_union {
61     struct e1000_rx_desc legacy;
62     union e1000_adv_rx_desc adv;
63 };
64
65 typedef struct IGBTxPktVmdqCallbackContext {
66     IGBCore *core;
67     NetClientState *nc;
68 } IGBTxPktVmdqCallbackContext;
69
70 static ssize_t
71 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt,
72                      bool has_vnet, bool *external_tx);
73
74 static inline void
75 igb_set_interrupt_cause(IGBCore *core, uint32_t val);
76
77 static void igb_update_interrupt_state(IGBCore *core);
78 static void igb_reset(IGBCore *core, bool sw);
79
80 static inline void
81 igb_raise_legacy_irq(IGBCore *core)
82 {
83     trace_e1000e_irq_legacy_notify(true);
84     e1000x_inc_reg_if_not_full(core->mac, IAC);
85     pci_set_irq(core->owner, 1);
86 }
87
88 static inline void
89 igb_lower_legacy_irq(IGBCore *core)
90 {
91     trace_e1000e_irq_legacy_notify(false);
92     pci_set_irq(core->owner, 0);
93 }
94
95 static void igb_msix_notify(IGBCore *core, unsigned int vector)
96 {
97     PCIDevice *dev = core->owner;
98     uint16_t vfn;
99
100     vfn = 8 - (vector + 2) / IGBVF_MSIX_VEC_NUM;
101     if (vfn < pcie_sriov_num_vfs(core->owner)) {
102         dev = pcie_sriov_get_vf_at_index(core->owner, vfn);
103         assert(dev);
104         vector = (vector + 2) % IGBVF_MSIX_VEC_NUM;
105     } else if (vector >= IGB_MSIX_VEC_NUM) {
106         qemu_log_mask(LOG_GUEST_ERROR,
107                       "igb: Tried to use vector unavailable for PF");
108         return;
109     }
110
111     msix_notify(dev, vector);
112 }
113
114 static inline void
115 igb_intrmgr_rearm_timer(IGBIntrDelayTimer *timer)
116 {
117     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
118                                  timer->delay_resolution_ns;
119
120     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
121
122     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
123
124     timer->running = true;
125 }
126
127 static void
128 igb_intmgr_timer_resume(IGBIntrDelayTimer *timer)
129 {
130     if (timer->running) {
131         igb_intrmgr_rearm_timer(timer);
132     }
133 }
134
135 static void
136 igb_intmgr_timer_pause(IGBIntrDelayTimer *timer)
137 {
138     if (timer->running) {
139         timer_del(timer->timer);
140     }
141 }
142
143 static void
144 igb_intrmgr_on_msix_throttling_timer(void *opaque)
145 {
146     IGBIntrDelayTimer *timer = opaque;
147     int idx = timer - &timer->core->eitr[0];
148
149     timer->running = false;
150
151     trace_e1000e_irq_msix_notify_postponed_vec(idx);
152     igb_msix_notify(timer->core, idx);
153 }
154
155 static void
156 igb_intrmgr_initialize_all_timers(IGBCore *core, bool create)
157 {
158     int i;
159
160     for (i = 0; i < IGB_INTR_NUM; i++) {
161         core->eitr[i].core = core;
162         core->eitr[i].delay_reg = EITR0 + i;
163         core->eitr[i].delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
164     }
165
166     if (!create) {
167         return;
168     }
169
170     for (i = 0; i < IGB_INTR_NUM; i++) {
171         core->eitr[i].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
172                                            igb_intrmgr_on_msix_throttling_timer,
173                                            &core->eitr[i]);
174     }
175 }
176
177 static void
178 igb_intrmgr_resume(IGBCore *core)
179 {
180     int i;
181
182     for (i = 0; i < IGB_INTR_NUM; i++) {
183         igb_intmgr_timer_resume(&core->eitr[i]);
184     }
185 }
186
187 static void
188 igb_intrmgr_pause(IGBCore *core)
189 {
190     int i;
191
192     for (i = 0; i < IGB_INTR_NUM; i++) {
193         igb_intmgr_timer_pause(&core->eitr[i]);
194     }
195 }
196
197 static void
198 igb_intrmgr_reset(IGBCore *core)
199 {
200     int i;
201
202     for (i = 0; i < IGB_INTR_NUM; i++) {
203         if (core->eitr[i].running) {
204             timer_del(core->eitr[i].timer);
205             igb_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
206         }
207     }
208 }
209
210 static void
211 igb_intrmgr_pci_unint(IGBCore *core)
212 {
213     int i;
214
215     for (i = 0; i < IGB_INTR_NUM; i++) {
216         timer_free(core->eitr[i].timer);
217     }
218 }
219
220 static void
221 igb_intrmgr_pci_realize(IGBCore *core)
222 {
223     igb_intrmgr_initialize_all_timers(core, true);
224 }
225
226 static inline bool
227 igb_rx_csum_enabled(IGBCore *core)
228 {
229     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
230 }
231
232 static inline bool
233 igb_rx_use_legacy_descriptor(IGBCore *core)
234 {
235     /*
236      * TODO: If SRRCTL[n],DESCTYPE = 000b, the 82576 uses the legacy Rx
237      * descriptor.
238      */
239     return false;
240 }
241
242 static inline bool
243 igb_rss_enabled(IGBCore *core)
244 {
245     return (core->mac[MRQC] & 3) == E1000_MRQC_ENABLE_RSS_MQ &&
246            !igb_rx_csum_enabled(core) &&
247            !igb_rx_use_legacy_descriptor(core);
248 }
249
250 typedef struct E1000E_RSSInfo_st {
251     bool enabled;
252     uint32_t hash;
253     uint32_t queue;
254     uint32_t type;
255 } E1000E_RSSInfo;
256
257 static uint32_t
258 igb_rss_get_hash_type(IGBCore *core, struct NetRxPkt *pkt)
259 {
260     bool hasip4, hasip6;
261     EthL4HdrProto l4hdr_proto;
262
263     assert(igb_rss_enabled(core));
264
265     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
266
267     if (hasip4) {
268         trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
269                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
270                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
271
272         if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
273             E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
274             return E1000_MRQ_RSS_TYPE_IPV4TCP;
275         }
276
277         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
278             return E1000_MRQ_RSS_TYPE_IPV4;
279         }
280     } else if (hasip6) {
281         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
282
283         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
284         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
285
286         /*
287          * Following two traces must not be combined because resulting
288          * event will have 11 arguments totally and some trace backends
289          * (at least "ust") have limitation of maximum 10 arguments per
290          * event. Events with more arguments fail to compile for
291          * backends like these.
292          */
293         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
294         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
295                                 ip6info->has_ext_hdrs,
296                                 ip6info->rss_ex_dst_valid,
297                                 ip6info->rss_ex_src_valid,
298                                 core->mac[MRQC],
299                                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
300                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
301                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
302
303         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
304             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
305                               ip6info->rss_ex_src_valid))) {
306
307             if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
308                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
309                 return E1000_MRQ_RSS_TYPE_IPV6TCP;
310             }
311
312             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
313                 return E1000_MRQ_RSS_TYPE_IPV6EX;
314             }
315
316         }
317
318         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
319             return E1000_MRQ_RSS_TYPE_IPV6;
320         }
321
322     }
323
324     return E1000_MRQ_RSS_TYPE_NONE;
325 }
326
327 static uint32_t
328 igb_rss_calc_hash(IGBCore *core, struct NetRxPkt *pkt, E1000E_RSSInfo *info)
329 {
330     NetRxPktRssType type;
331
332     assert(igb_rss_enabled(core));
333
334     switch (info->type) {
335     case E1000_MRQ_RSS_TYPE_IPV4:
336         type = NetPktRssIpV4;
337         break;
338     case E1000_MRQ_RSS_TYPE_IPV4TCP:
339         type = NetPktRssIpV4Tcp;
340         break;
341     case E1000_MRQ_RSS_TYPE_IPV6TCP:
342         type = NetPktRssIpV6TcpEx;
343         break;
344     case E1000_MRQ_RSS_TYPE_IPV6:
345         type = NetPktRssIpV6;
346         break;
347     case E1000_MRQ_RSS_TYPE_IPV6EX:
348         type = NetPktRssIpV6Ex;
349         break;
350     default:
351         assert(false);
352         return 0;
353     }
354
355     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
356 }
357
358 static void
359 igb_rss_parse_packet(IGBCore *core, struct NetRxPkt *pkt, bool tx,
360                      E1000E_RSSInfo *info)
361 {
362     trace_e1000e_rx_rss_started();
363
364     if (tx || !igb_rss_enabled(core)) {
365         info->enabled = false;
366         info->hash = 0;
367         info->queue = 0;
368         info->type = 0;
369         trace_e1000e_rx_rss_disabled();
370         return;
371     }
372
373     info->enabled = true;
374
375     info->type = igb_rss_get_hash_type(core, pkt);
376
377     trace_e1000e_rx_rss_type(info->type);
378
379     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
380         info->hash = 0;
381         info->queue = 0;
382         return;
383     }
384
385     info->hash = igb_rss_calc_hash(core, pkt, info);
386     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
387 }
388
389 static bool
390 igb_setup_tx_offloads(IGBCore *core, struct igb_tx *tx)
391 {
392     if (tx->first_cmd_type_len & E1000_ADVTXD_DCMD_TSE) {
393         uint32_t idx = (tx->first_olinfo_status >> 4) & 1;
394         uint32_t mss = tx->ctx[idx].mss_l4len_idx >> 16;
395         if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, mss)) {
396             return false;
397         }
398
399         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
400         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
401         return true;
402     }
403
404     if (tx->first_olinfo_status & E1000_ADVTXD_POTS_TXSM) {
405         if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
406             return false;
407         }
408     }
409
410     if (tx->first_olinfo_status & E1000_ADVTXD_POTS_IXSM) {
411         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
412     }
413
414     return true;
415 }
416
417 static void igb_tx_pkt_mac_callback(void *core,
418                                     const struct iovec *iov,
419                                     int iovcnt,
420                                     const struct iovec *virt_iov,
421                                     int virt_iovcnt)
422 {
423     igb_receive_internal(core, virt_iov, virt_iovcnt, true, NULL);
424 }
425
426 static void igb_tx_pkt_vmdq_callback(void *opaque,
427                                      const struct iovec *iov,
428                                      int iovcnt,
429                                      const struct iovec *virt_iov,
430                                      int virt_iovcnt)
431 {
432     IGBTxPktVmdqCallbackContext *context = opaque;
433     bool external_tx;
434
435     igb_receive_internal(context->core, virt_iov, virt_iovcnt, true,
436                          &external_tx);
437
438     if (external_tx) {
439         if (context->core->has_vnet) {
440             qemu_sendv_packet(context->nc, virt_iov, virt_iovcnt);
441         } else {
442             qemu_sendv_packet(context->nc, iov, iovcnt);
443         }
444     }
445 }
446
447 /* TX Packets Switching (7.10.3.6) */
448 static bool igb_tx_pkt_switch(IGBCore *core, struct igb_tx *tx,
449                               NetClientState *nc)
450 {
451     IGBTxPktVmdqCallbackContext context;
452
453     /* TX switching is only used to serve VM to VM traffic. */
454     if (!(core->mac[MRQC] & 1)) {
455         goto send_out;
456     }
457
458     /* TX switching requires DTXSWC.Loopback_en bit enabled. */
459     if (!(core->mac[DTXSWC] & E1000_DTXSWC_VMDQ_LOOPBACK_EN)) {
460         goto send_out;
461     }
462
463     context.core = core;
464     context.nc = nc;
465
466     return net_tx_pkt_send_custom(tx->tx_pkt, false,
467                                   igb_tx_pkt_vmdq_callback, &context);
468
469 send_out:
470     return net_tx_pkt_send(tx->tx_pkt, nc);
471 }
472
473 static bool
474 igb_tx_pkt_send(IGBCore *core, struct igb_tx *tx, int queue_index)
475 {
476     int target_queue = MIN(core->max_queue_num, queue_index);
477     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
478
479     if (!igb_setup_tx_offloads(core, tx)) {
480         return false;
481     }
482
483     net_tx_pkt_dump(tx->tx_pkt);
484
485     if ((core->phy[MII_BMCR] & MII_BMCR_LOOPBACK) ||
486         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
487         return net_tx_pkt_send_custom(tx->tx_pkt, false,
488                                       igb_tx_pkt_mac_callback, core);
489     } else {
490         return igb_tx_pkt_switch(core, tx, queue);
491     }
492 }
493
494 static void
495 igb_on_tx_done_update_stats(IGBCore *core, struct NetTxPkt *tx_pkt)
496 {
497     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
498                                     PTC1023, PTC1522 };
499
500     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
501
502     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
503     e1000x_inc_reg_if_not_full(core->mac, TPT);
504     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
505
506     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
507     case ETH_PKT_BCAST:
508         e1000x_inc_reg_if_not_full(core->mac, BPTC);
509         break;
510     case ETH_PKT_MCAST:
511         e1000x_inc_reg_if_not_full(core->mac, MPTC);
512         break;
513     case ETH_PKT_UCAST:
514         break;
515     default:
516         g_assert_not_reached();
517     }
518
519     core->mac[GPTC] = core->mac[TPT];
520     core->mac[GOTCL] = core->mac[TOTL];
521     core->mac[GOTCH] = core->mac[TOTH];
522 }
523
524 static void
525 igb_process_tx_desc(IGBCore *core,
526                     PCIDevice *dev,
527                     struct igb_tx *tx,
528                     union e1000_adv_tx_desc *tx_desc,
529                     int queue_index)
530 {
531     struct e1000_adv_tx_context_desc *tx_ctx_desc;
532     uint32_t cmd_type_len;
533     uint32_t idx;
534     uint64_t buffer_addr;
535     uint16_t length;
536
537     cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len);
538
539     if (cmd_type_len & E1000_ADVTXD_DCMD_DEXT) {
540         if ((cmd_type_len & E1000_ADVTXD_DTYP_DATA) ==
541             E1000_ADVTXD_DTYP_DATA) {
542             /* advanced transmit data descriptor */
543             if (tx->first) {
544                 tx->first_cmd_type_len = cmd_type_len;
545                 tx->first_olinfo_status = le32_to_cpu(tx_desc->read.olinfo_status);
546                 tx->first = false;
547             }
548         } else if ((cmd_type_len & E1000_ADVTXD_DTYP_CTXT) ==
549                    E1000_ADVTXD_DTYP_CTXT) {
550             /* advanced transmit context descriptor */
551             tx_ctx_desc = (struct e1000_adv_tx_context_desc *)tx_desc;
552             idx = (le32_to_cpu(tx_ctx_desc->mss_l4len_idx) >> 4) & 1;
553             tx->ctx[idx].vlan_macip_lens = le32_to_cpu(tx_ctx_desc->vlan_macip_lens);
554             tx->ctx[idx].seqnum_seed = le32_to_cpu(tx_ctx_desc->seqnum_seed);
555             tx->ctx[idx].type_tucmd_mlhl = le32_to_cpu(tx_ctx_desc->type_tucmd_mlhl);
556             tx->ctx[idx].mss_l4len_idx = le32_to_cpu(tx_ctx_desc->mss_l4len_idx);
557             return;
558         } else {
559             /* unknown descriptor type */
560             return;
561         }
562     } else {
563         /* legacy descriptor */
564
565         /* TODO: Implement a support for legacy descriptors (7.2.2.1). */
566     }
567
568     buffer_addr = le64_to_cpu(tx_desc->read.buffer_addr);
569     length = cmd_type_len & 0xFFFF;
570
571     if (!tx->skip_cp) {
572         if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, buffer_addr, length)) {
573             tx->skip_cp = true;
574         }
575     }
576
577     if (cmd_type_len & E1000_TXD_CMD_EOP) {
578         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
579             if (cmd_type_len & E1000_TXD_CMD_VLE) {
580                 idx = (tx->first_olinfo_status >> 4) & 1;
581                 uint16_t vlan = tx->ctx[idx].vlan_macip_lens >> 16;
582                 uint16_t vet = core->mac[VET] & 0xffff;
583                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, vlan, vet);
584             }
585             if (igb_tx_pkt_send(core, tx, queue_index)) {
586                 igb_on_tx_done_update_stats(core, tx->tx_pkt);
587             }
588         }
589
590         tx->first = true;
591         tx->skip_cp = false;
592         net_tx_pkt_reset(tx->tx_pkt, dev);
593     }
594 }
595
596 static uint32_t igb_tx_wb_eic(IGBCore *core, int queue_idx)
597 {
598     uint32_t n, ent = 0;
599
600     n = igb_ivar_entry_tx(queue_idx);
601     ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff;
602
603     return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0;
604 }
605
606 static uint32_t igb_rx_wb_eic(IGBCore *core, int queue_idx)
607 {
608     uint32_t n, ent = 0;
609
610     n = igb_ivar_entry_rx(queue_idx);
611     ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff;
612
613     return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0;
614 }
615
616 typedef struct E1000E_RingInfo_st {
617     int dbah;
618     int dbal;
619     int dlen;
620     int dh;
621     int dt;
622     int idx;
623 } E1000E_RingInfo;
624
625 static inline bool
626 igb_ring_empty(IGBCore *core, const E1000E_RingInfo *r)
627 {
628     return core->mac[r->dh] == core->mac[r->dt] ||
629                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
630 }
631
632 static inline uint64_t
633 igb_ring_base(IGBCore *core, const E1000E_RingInfo *r)
634 {
635     uint64_t bah = core->mac[r->dbah];
636     uint64_t bal = core->mac[r->dbal];
637
638     return (bah << 32) + bal;
639 }
640
641 static inline uint64_t
642 igb_ring_head_descr(IGBCore *core, const E1000E_RingInfo *r)
643 {
644     return igb_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
645 }
646
647 static inline void
648 igb_ring_advance(IGBCore *core, const E1000E_RingInfo *r, uint32_t count)
649 {
650     core->mac[r->dh] += count;
651
652     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
653         core->mac[r->dh] = 0;
654     }
655 }
656
657 static inline uint32_t
658 igb_ring_free_descr_num(IGBCore *core, const E1000E_RingInfo *r)
659 {
660     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
661                                  core->mac[r->dh],  core->mac[r->dt]);
662
663     if (core->mac[r->dh] <= core->mac[r->dt]) {
664         return core->mac[r->dt] - core->mac[r->dh];
665     }
666
667     if (core->mac[r->dh] > core->mac[r->dt]) {
668         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
669                core->mac[r->dt] - core->mac[r->dh];
670     }
671
672     g_assert_not_reached();
673     return 0;
674 }
675
676 static inline bool
677 igb_ring_enabled(IGBCore *core, const E1000E_RingInfo *r)
678 {
679     return core->mac[r->dlen] > 0;
680 }
681
682 typedef struct IGB_TxRing_st {
683     const E1000E_RingInfo *i;
684     struct igb_tx *tx;
685 } IGB_TxRing;
686
687 static inline int
688 igb_mq_queue_idx(int base_reg_idx, int reg_idx)
689 {
690     return (reg_idx - base_reg_idx) / 16;
691 }
692
693 static inline void
694 igb_tx_ring_init(IGBCore *core, IGB_TxRing *txr, int idx)
695 {
696     static const E1000E_RingInfo i[IGB_NUM_QUEUES] = {
697         { TDBAH0, TDBAL0, TDLEN0, TDH0, TDT0, 0 },
698         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 },
699         { TDBAH2, TDBAL2, TDLEN2, TDH2, TDT2, 2 },
700         { TDBAH3, TDBAL3, TDLEN3, TDH3, TDT3, 3 },
701         { TDBAH4, TDBAL4, TDLEN4, TDH4, TDT4, 4 },
702         { TDBAH5, TDBAL5, TDLEN5, TDH5, TDT5, 5 },
703         { TDBAH6, TDBAL6, TDLEN6, TDH6, TDT6, 6 },
704         { TDBAH7, TDBAL7, TDLEN7, TDH7, TDT7, 7 },
705         { TDBAH8, TDBAL8, TDLEN8, TDH8, TDT8, 8 },
706         { TDBAH9, TDBAL9, TDLEN9, TDH9, TDT9, 9 },
707         { TDBAH10, TDBAL10, TDLEN10, TDH10, TDT10, 10 },
708         { TDBAH11, TDBAL11, TDLEN11, TDH11, TDT11, 11 },
709         { TDBAH12, TDBAL12, TDLEN12, TDH12, TDT12, 12 },
710         { TDBAH13, TDBAL13, TDLEN13, TDH13, TDT13, 13 },
711         { TDBAH14, TDBAL14, TDLEN14, TDH14, TDT14, 14 },
712         { TDBAH15, TDBAL15, TDLEN15, TDH15, TDT15, 15 }
713     };
714
715     assert(idx < ARRAY_SIZE(i));
716
717     txr->i     = &i[idx];
718     txr->tx    = &core->tx[idx];
719 }
720
721 typedef struct E1000E_RxRing_st {
722     const E1000E_RingInfo *i;
723 } E1000E_RxRing;
724
725 static inline void
726 igb_rx_ring_init(IGBCore *core, E1000E_RxRing *rxr, int idx)
727 {
728     static const E1000E_RingInfo i[IGB_NUM_QUEUES] = {
729         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
730         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 },
731         { RDBAH2, RDBAL2, RDLEN2, RDH2, RDT2, 2 },
732         { RDBAH3, RDBAL3, RDLEN3, RDH3, RDT3, 3 },
733         { RDBAH4, RDBAL4, RDLEN4, RDH4, RDT4, 4 },
734         { RDBAH5, RDBAL5, RDLEN5, RDH5, RDT5, 5 },
735         { RDBAH6, RDBAL6, RDLEN6, RDH6, RDT6, 6 },
736         { RDBAH7, RDBAL7, RDLEN7, RDH7, RDT7, 7 },
737         { RDBAH8, RDBAL8, RDLEN8, RDH8, RDT8, 8 },
738         { RDBAH9, RDBAL9, RDLEN9, RDH9, RDT9, 9 },
739         { RDBAH10, RDBAL10, RDLEN10, RDH10, RDT10, 10 },
740         { RDBAH11, RDBAL11, RDLEN11, RDH11, RDT11, 11 },
741         { RDBAH12, RDBAL12, RDLEN12, RDH12, RDT12, 12 },
742         { RDBAH13, RDBAL13, RDLEN13, RDH13, RDT13, 13 },
743         { RDBAH14, RDBAL14, RDLEN14, RDH14, RDT14, 14 },
744         { RDBAH15, RDBAL15, RDLEN15, RDH15, RDT15, 15 }
745     };
746
747     assert(idx < ARRAY_SIZE(i));
748
749     rxr->i      = &i[idx];
750 }
751
752 static uint32_t
753 igb_txdesc_writeback(IGBCore *core, dma_addr_t base,
754                      union e1000_adv_tx_desc *tx_desc,
755                      const E1000E_RingInfo *txi)
756 {
757     PCIDevice *d;
758     uint32_t cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len);
759     uint64_t tdwba;
760
761     tdwba = core->mac[E1000_TDWBAL(txi->idx) >> 2];
762     tdwba |= (uint64_t)core->mac[E1000_TDWBAH(txi->idx) >> 2] << 32;
763
764     if (!(cmd_type_len & E1000_TXD_CMD_RS)) {
765         return 0;
766     }
767
768     d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8);
769     if (!d) {
770         d = core->owner;
771     }
772
773     if (tdwba & 1) {
774         uint32_t buffer = cpu_to_le32(core->mac[txi->dh]);
775         pci_dma_write(d, tdwba & ~3, &buffer, sizeof(buffer));
776     } else {
777         uint32_t status = le32_to_cpu(tx_desc->wb.status) | E1000_TXD_STAT_DD;
778
779         tx_desc->wb.status = cpu_to_le32(status);
780         pci_dma_write(d, base + offsetof(union e1000_adv_tx_desc, wb),
781             &tx_desc->wb, sizeof(tx_desc->wb));
782     }
783
784     return igb_tx_wb_eic(core, txi->idx);
785 }
786
787 static inline bool
788 igb_tx_enabled(IGBCore *core, const E1000E_RingInfo *txi)
789 {
790     bool vmdq = core->mac[MRQC] & 1;
791     uint16_t qn = txi->idx;
792     uint16_t pool = qn % IGB_NUM_VM_POOLS;
793
794     return (core->mac[TCTL] & E1000_TCTL_EN) &&
795         (!vmdq || core->mac[VFTE] & BIT(pool)) &&
796         (core->mac[TXDCTL0 + (qn * 16)] & E1000_TXDCTL_QUEUE_ENABLE);
797 }
798
799 static void
800 igb_start_xmit(IGBCore *core, const IGB_TxRing *txr)
801 {
802     PCIDevice *d;
803     dma_addr_t base;
804     union e1000_adv_tx_desc desc;
805     const E1000E_RingInfo *txi = txr->i;
806     uint32_t eic = 0;
807
808     if (!igb_tx_enabled(core, txi)) {
809         trace_e1000e_tx_disabled();
810         return;
811     }
812
813     d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8);
814     if (!d) {
815         d = core->owner;
816     }
817
818     net_tx_pkt_reset(txr->tx->tx_pkt, d);
819
820     while (!igb_ring_empty(core, txi)) {
821         base = igb_ring_head_descr(core, txi);
822
823         pci_dma_read(d, base, &desc, sizeof(desc));
824
825         trace_e1000e_tx_descr((void *)(intptr_t)desc.read.buffer_addr,
826                               desc.read.cmd_type_len, desc.wb.status);
827
828         igb_process_tx_desc(core, d, txr->tx, &desc, txi->idx);
829         igb_ring_advance(core, txi, 1);
830         eic |= igb_txdesc_writeback(core, base, &desc, txi);
831     }
832
833     if (eic) {
834         core->mac[EICR] |= eic;
835         igb_set_interrupt_cause(core, E1000_ICR_TXDW);
836     }
837 }
838
839 static uint32_t
840 igb_rxbufsize(IGBCore *core, const E1000E_RingInfo *r)
841 {
842     uint32_t srrctl = core->mac[E1000_SRRCTL(r->idx) >> 2];
843     uint32_t bsizepkt = srrctl & E1000_SRRCTL_BSIZEPKT_MASK;
844     if (bsizepkt) {
845         return bsizepkt << E1000_SRRCTL_BSIZEPKT_SHIFT;
846     }
847
848     return e1000x_rxbufsize(core->mac[RCTL]);
849 }
850
851 static bool
852 igb_has_rxbufs(IGBCore *core, const E1000E_RingInfo *r, size_t total_size)
853 {
854     uint32_t bufs = igb_ring_free_descr_num(core, r);
855     uint32_t bufsize = igb_rxbufsize(core, r);
856
857     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, bufsize);
858
859     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
860                          bufsize;
861 }
862
863 void
864 igb_start_recv(IGBCore *core)
865 {
866     int i;
867
868     trace_e1000e_rx_start_recv();
869
870     for (i = 0; i <= core->max_queue_num; i++) {
871         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
872     }
873 }
874
875 bool
876 igb_can_receive(IGBCore *core)
877 {
878     int i;
879
880     if (!e1000x_rx_ready(core->owner, core->mac)) {
881         return false;
882     }
883
884     for (i = 0; i < IGB_NUM_QUEUES; i++) {
885         E1000E_RxRing rxr;
886         if (!(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) {
887             continue;
888         }
889
890         igb_rx_ring_init(core, &rxr, i);
891         if (igb_ring_enabled(core, rxr.i) && igb_has_rxbufs(core, rxr.i, 1)) {
892             trace_e1000e_rx_can_recv();
893             return true;
894         }
895     }
896
897     trace_e1000e_rx_can_recv_rings_full();
898     return false;
899 }
900
901 ssize_t
902 igb_receive(IGBCore *core, const uint8_t *buf, size_t size)
903 {
904     const struct iovec iov = {
905         .iov_base = (uint8_t *)buf,
906         .iov_len = size
907     };
908
909     return igb_receive_iov(core, &iov, 1);
910 }
911
912 static inline bool
913 igb_rx_l3_cso_enabled(IGBCore *core)
914 {
915     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
916 }
917
918 static inline bool
919 igb_rx_l4_cso_enabled(IGBCore *core)
920 {
921     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
922 }
923
924 static bool
925 igb_rx_is_oversized(IGBCore *core, uint16_t qn, size_t size)
926 {
927     uint16_t pool = qn % IGB_NUM_VM_POOLS;
928     bool lpe = !!(core->mac[VMOLR0 + pool] & E1000_VMOLR_LPE);
929     int max_ethernet_lpe_size =
930         core->mac[VMOLR0 + pool] & E1000_VMOLR_RLPML_MASK;
931     int max_ethernet_vlan_size = 1522;
932
933     return size > (lpe ? max_ethernet_lpe_size : max_ethernet_vlan_size);
934 }
935
936 static uint16_t igb_receive_assign(IGBCore *core, const struct eth_header *ehdr,
937                                    size_t size, E1000E_RSSInfo *rss_info,
938                                    bool *external_tx)
939 {
940     static const int ta_shift[] = { 4, 3, 2, 0 };
941     uint32_t f, ra[2], *macp, rctl = core->mac[RCTL];
942     uint16_t queues = 0;
943     uint16_t oversized = 0;
944     uint16_t vid = lduw_be_p(&PKT_GET_VLAN_HDR(ehdr)->h_tci) & VLAN_VID_MASK;
945     bool accepted = false;
946     int i;
947
948     memset(rss_info, 0, sizeof(E1000E_RSSInfo));
949
950     if (external_tx) {
951         *external_tx = true;
952     }
953
954     if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff) &&
955         e1000x_vlan_rx_filter_enabled(core->mac)) {
956         uint32_t vfta =
957             ldl_le_p((uint32_t *)(core->mac + VFTA) +
958                      ((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK));
959         if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) {
960             trace_e1000e_rx_flt_vlan_mismatch(vid);
961             return queues;
962         } else {
963             trace_e1000e_rx_flt_vlan_match(vid);
964         }
965     }
966
967     if (core->mac[MRQC] & 1) {
968         if (is_broadcast_ether_addr(ehdr->h_dest)) {
969             for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
970                 if (core->mac[VMOLR0 + i] & E1000_VMOLR_BAM) {
971                     queues |= BIT(i);
972                 }
973             }
974         } else {
975             for (macp = core->mac + RA; macp < core->mac + RA + 32; macp += 2) {
976                 if (!(macp[1] & E1000_RAH_AV)) {
977                     continue;
978                 }
979                 ra[0] = cpu_to_le32(macp[0]);
980                 ra[1] = cpu_to_le32(macp[1]);
981                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
982                     queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1;
983                 }
984             }
985
986             for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) {
987                 if (!(macp[1] & E1000_RAH_AV)) {
988                     continue;
989                 }
990                 ra[0] = cpu_to_le32(macp[0]);
991                 ra[1] = cpu_to_le32(macp[1]);
992                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
993                     queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1;
994                 }
995             }
996
997             if (!queues) {
998                 macp = core->mac + (is_multicast_ether_addr(ehdr->h_dest) ? MTA : UTA);
999
1000                 f = ta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
1001                 f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff;
1002                 if (macp[f >> 5] & (1 << (f & 0x1f))) {
1003                     for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1004                         if (core->mac[VMOLR0 + i] & E1000_VMOLR_ROMPE) {
1005                             queues |= BIT(i);
1006                         }
1007                     }
1008                 }
1009             } else if (is_unicast_ether_addr(ehdr->h_dest) && external_tx) {
1010                 *external_tx = false;
1011             }
1012         }
1013
1014         if (e1000x_vlan_rx_filter_enabled(core->mac)) {
1015             uint16_t mask = 0;
1016
1017             if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff)) {
1018                 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
1019                     if ((core->mac[VLVF0 + i] & E1000_VLVF_VLANID_MASK) == vid &&
1020                         (core->mac[VLVF0 + i] & E1000_VLVF_VLANID_ENABLE)) {
1021                         uint32_t poolsel = core->mac[VLVF0 + i] & E1000_VLVF_POOLSEL_MASK;
1022                         mask |= poolsel >> E1000_VLVF_POOLSEL_SHIFT;
1023                     }
1024                 }
1025             } else {
1026                 for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1027                     if (core->mac[VMOLR0 + i] & E1000_VMOLR_AUPE) {
1028                         mask |= BIT(i);
1029                     }
1030                 }
1031             }
1032
1033             queues &= mask;
1034         }
1035
1036         if (is_unicast_ether_addr(ehdr->h_dest) && !queues && !external_tx &&
1037             !(core->mac[VT_CTL] & E1000_VT_CTL_DISABLE_DEF_POOL)) {
1038             uint32_t def_pl = core->mac[VT_CTL] & E1000_VT_CTL_DEFAULT_POOL_MASK;
1039             queues = BIT(def_pl >> E1000_VT_CTL_DEFAULT_POOL_SHIFT);
1040         }
1041
1042         queues &= core->mac[VFRE];
1043         if (queues) {
1044             for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1045                 if ((queues & BIT(i)) && igb_rx_is_oversized(core, i, size)) {
1046                     oversized |= BIT(i);
1047                 }
1048             }
1049             /* 8.19.37 increment ROC if packet is oversized for all queues */
1050             if (oversized == queues) {
1051                 trace_e1000x_rx_oversized(size);
1052                 e1000x_inc_reg_if_not_full(core->mac, ROC);
1053             }
1054             queues &= ~oversized;
1055         }
1056
1057         if (queues) {
1058             igb_rss_parse_packet(core, core->rx_pkt,
1059                                  external_tx != NULL, rss_info);
1060             if (rss_info->queue & 1) {
1061                 queues <<= 8;
1062             }
1063         }
1064     } else {
1065         switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1066         case ETH_PKT_UCAST:
1067             if (rctl & E1000_RCTL_UPE) {
1068                 accepted = true; /* promiscuous ucast */
1069             }
1070             break;
1071
1072         case ETH_PKT_BCAST:
1073             if (rctl & E1000_RCTL_BAM) {
1074                 accepted = true; /* broadcast enabled */
1075             }
1076             break;
1077
1078         case ETH_PKT_MCAST:
1079             if (rctl & E1000_RCTL_MPE) {
1080                 accepted = true; /* promiscuous mcast */
1081             }
1082             break;
1083
1084         default:
1085             g_assert_not_reached();
1086         }
1087
1088         if (!accepted) {
1089             accepted = e1000x_rx_group_filter(core->mac, ehdr->h_dest);
1090         }
1091
1092         if (!accepted) {
1093             for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) {
1094                 if (!(macp[1] & E1000_RAH_AV)) {
1095                     continue;
1096                 }
1097                 ra[0] = cpu_to_le32(macp[0]);
1098                 ra[1] = cpu_to_le32(macp[1]);
1099                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1100                     trace_e1000x_rx_flt_ucast_match((int)(macp - core->mac - RA2) / 2,
1101                                                     MAC_ARG(ehdr->h_dest));
1102
1103                     accepted = true;
1104                     break;
1105                 }
1106             }
1107         }
1108
1109         if (accepted) {
1110             igb_rss_parse_packet(core, core->rx_pkt, false, rss_info);
1111             queues = BIT(rss_info->queue);
1112         }
1113     }
1114
1115     return queues;
1116 }
1117
1118 static inline void
1119 igb_read_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc,
1120                        hwaddr *buff_addr)
1121 {
1122     *buff_addr = le64_to_cpu(desc->buffer_addr);
1123 }
1124
1125 static inline void
1126 igb_read_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1127                       hwaddr *buff_addr)
1128 {
1129     *buff_addr = le64_to_cpu(desc->read.pkt_addr);
1130 }
1131
1132 static inline void
1133 igb_read_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc,
1134                   hwaddr *buff_addr)
1135 {
1136     if (igb_rx_use_legacy_descriptor(core)) {
1137         igb_read_lgcy_rx_descr(core, &desc->legacy, buff_addr);
1138     } else {
1139         igb_read_adv_rx_descr(core, &desc->adv, buff_addr);
1140     }
1141 }
1142
1143 static void
1144 igb_verify_csum_in_sw(IGBCore *core,
1145                       struct NetRxPkt *pkt,
1146                       uint32_t *status_flags,
1147                       EthL4HdrProto l4hdr_proto)
1148 {
1149     bool csum_valid;
1150     uint32_t csum_error;
1151
1152     if (igb_rx_l3_cso_enabled(core)) {
1153         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1154             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1155         } else {
1156             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1157             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1158         }
1159     } else {
1160         trace_e1000e_rx_metadata_l3_cso_disabled();
1161     }
1162
1163     if (!igb_rx_l4_cso_enabled(core)) {
1164         trace_e1000e_rx_metadata_l4_cso_disabled();
1165         return;
1166     }
1167
1168     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1169         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1170         return;
1171     }
1172
1173     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1174     *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1175
1176     if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1177         *status_flags |= E1000_RXD_STAT_UDPCS;
1178     }
1179 }
1180
1181 static void
1182 igb_build_rx_metadata(IGBCore *core,
1183                       struct NetRxPkt *pkt,
1184                       bool is_eop,
1185                       const E1000E_RSSInfo *rss_info,
1186                       uint16_t *pkt_info, uint16_t *hdr_info,
1187                       uint32_t *rss,
1188                       uint32_t *status_flags,
1189                       uint16_t *ip_id,
1190                       uint16_t *vlan_tag)
1191 {
1192     struct virtio_net_hdr *vhdr;
1193     bool hasip4, hasip6;
1194     EthL4HdrProto l4hdr_proto;
1195     uint32_t pkt_type;
1196
1197     *status_flags = E1000_RXD_STAT_DD;
1198
1199     /* No additional metadata needed for non-EOP descriptors */
1200     /* TODO: EOP apply only to status so don't skip whole function. */
1201     if (!is_eop) {
1202         goto func_exit;
1203     }
1204
1205     *status_flags |= E1000_RXD_STAT_EOP;
1206
1207     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1208     trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1209
1210     /* VLAN state */
1211     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1212         *status_flags |= E1000_RXD_STAT_VP;
1213         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1214         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1215     }
1216
1217     /* Packet parsing results */
1218     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1219         if (rss_info->enabled) {
1220             *rss = cpu_to_le32(rss_info->hash);
1221             trace_igb_rx_metadata_rss(*rss);
1222         }
1223     } else if (hasip4) {
1224             *status_flags |= E1000_RXD_STAT_IPIDV;
1225             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1226             trace_e1000e_rx_metadata_ip_id(*ip_id);
1227     }
1228
1229     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && net_rx_pkt_is_tcp_ack(pkt)) {
1230         *status_flags |= E1000_RXD_STAT_ACK;
1231         trace_e1000e_rx_metadata_ack();
1232     }
1233
1234     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1235         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1236         pkt_type = E1000_RXD_PKT_MAC;
1237     } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1238                l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1239         pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1240     } else if (hasip4 || hasip6) {
1241         pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1242     } else {
1243         pkt_type = E1000_RXD_PKT_MAC;
1244     }
1245
1246     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1247
1248     if (pkt_info) {
1249         if (rss_info->enabled) {
1250             *pkt_info = rss_info->type;
1251         }
1252
1253         *pkt_info |= (pkt_type << 4);
1254     } else {
1255         *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1256     }
1257
1258     if (hdr_info) {
1259         *hdr_info = 0;
1260     }
1261
1262     /* RX CSO information */
1263     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1264         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1265         goto func_exit;
1266     }
1267
1268     vhdr = net_rx_pkt_get_vhdr(pkt);
1269
1270     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1271         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1272         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1273         igb_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1274         goto func_exit;
1275     }
1276
1277     if (igb_rx_l3_cso_enabled(core)) {
1278         *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1279     } else {
1280         trace_e1000e_rx_metadata_l3_cso_disabled();
1281     }
1282
1283     if (igb_rx_l4_cso_enabled(core)) {
1284         switch (l4hdr_proto) {
1285         case ETH_L4_HDR_PROTO_TCP:
1286             *status_flags |= E1000_RXD_STAT_TCPCS;
1287             break;
1288
1289         case ETH_L4_HDR_PROTO_UDP:
1290             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1291             break;
1292
1293         default:
1294             goto func_exit;
1295         }
1296     } else {
1297         trace_e1000e_rx_metadata_l4_cso_disabled();
1298     }
1299
1300     trace_e1000e_rx_metadata_status_flags(*status_flags);
1301
1302 func_exit:
1303     *status_flags = cpu_to_le32(*status_flags);
1304 }
1305
1306 static inline void
1307 igb_write_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc,
1308                         struct NetRxPkt *pkt,
1309                         const E1000E_RSSInfo *rss_info,
1310                         uint16_t length)
1311 {
1312     uint32_t status_flags, rss;
1313     uint16_t ip_id;
1314
1315     assert(!rss_info->enabled);
1316     desc->length = cpu_to_le16(length);
1317     desc->csum = 0;
1318
1319     igb_build_rx_metadata(core, pkt, pkt != NULL,
1320                           rss_info,
1321                           NULL, NULL, &rss,
1322                           &status_flags, &ip_id,
1323                           &desc->special);
1324     desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1325     desc->status = (uint8_t) le32_to_cpu(status_flags);
1326 }
1327
1328 static inline void
1329 igb_write_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1330                        struct NetRxPkt *pkt,
1331                        const E1000E_RSSInfo *rss_info,
1332                        uint16_t length)
1333 {
1334     memset(&desc->wb, 0, sizeof(desc->wb));
1335
1336     desc->wb.upper.length = cpu_to_le16(length);
1337
1338     igb_build_rx_metadata(core, pkt, pkt != NULL,
1339                           rss_info,
1340                           &desc->wb.lower.lo_dword.pkt_info,
1341                           &desc->wb.lower.lo_dword.hdr_info,
1342                           &desc->wb.lower.hi_dword.rss,
1343                           &desc->wb.upper.status_error,
1344                           &desc->wb.lower.hi_dword.csum_ip.ip_id,
1345                           &desc->wb.upper.vlan);
1346 }
1347
1348 static inline void
1349 igb_write_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc,
1350 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, uint16_t length)
1351 {
1352     if (igb_rx_use_legacy_descriptor(core)) {
1353         igb_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info, length);
1354     } else {
1355         igb_write_adv_rx_descr(core, &desc->adv, pkt, rss_info, length);
1356     }
1357 }
1358
1359 static inline void
1360 igb_pci_dma_write_rx_desc(IGBCore *core, PCIDevice *dev, dma_addr_t addr,
1361                           union e1000_rx_desc_union *desc, dma_addr_t len)
1362 {
1363     if (igb_rx_use_legacy_descriptor(core)) {
1364         struct e1000_rx_desc *d = &desc->legacy;
1365         size_t offset = offsetof(struct e1000_rx_desc, status);
1366         uint8_t status = d->status;
1367
1368         d->status &= ~E1000_RXD_STAT_DD;
1369         pci_dma_write(dev, addr, desc, len);
1370
1371         if (status & E1000_RXD_STAT_DD) {
1372             d->status = status;
1373             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1374         }
1375     } else {
1376         union e1000_adv_rx_desc *d = &desc->adv;
1377         size_t offset =
1378             offsetof(union e1000_adv_rx_desc, wb.upper.status_error);
1379         uint32_t status = d->wb.upper.status_error;
1380
1381         d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1382         pci_dma_write(dev, addr, desc, len);
1383
1384         if (status & E1000_RXD_STAT_DD) {
1385             d->wb.upper.status_error = status;
1386             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1387         }
1388     }
1389 }
1390
1391 static void
1392 igb_write_to_rx_buffers(IGBCore *core,
1393                         PCIDevice *d,
1394                         hwaddr ba,
1395                         uint16_t *written,
1396                         const char *data,
1397                         dma_addr_t data_len)
1398 {
1399     trace_igb_rx_desc_buff_write(ba, *written, data, data_len);
1400     pci_dma_write(d, ba + *written, data, data_len);
1401     *written += data_len;
1402 }
1403
1404 static void
1405 igb_update_rx_stats(IGBCore *core, size_t data_size, size_t data_fcs_size)
1406 {
1407     e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1408
1409     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1410     case ETH_PKT_BCAST:
1411         e1000x_inc_reg_if_not_full(core->mac, BPRC);
1412         break;
1413
1414     case ETH_PKT_MCAST:
1415         e1000x_inc_reg_if_not_full(core->mac, MPRC);
1416         break;
1417
1418     default:
1419         break;
1420     }
1421 }
1422
1423 static inline bool
1424 igb_rx_descr_threshold_hit(IGBCore *core, const E1000E_RingInfo *rxi)
1425 {
1426     return igb_ring_free_descr_num(core, rxi) ==
1427            ((core->mac[E1000_SRRCTL(rxi->idx) >> 2] >> 20) & 31) * 16;
1428 }
1429
1430 static void
1431 igb_write_packet_to_guest(IGBCore *core, struct NetRxPkt *pkt,
1432                           const E1000E_RxRing *rxr,
1433                           const E1000E_RSSInfo *rss_info)
1434 {
1435     PCIDevice *d;
1436     dma_addr_t base;
1437     union e1000_rx_desc_union desc;
1438     size_t desc_size;
1439     size_t desc_offset = 0;
1440     size_t iov_ofs = 0;
1441
1442     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1443     size_t size = net_rx_pkt_get_total_len(pkt);
1444     size_t total_size = size + e1000x_fcs_len(core->mac);
1445     const E1000E_RingInfo *rxi = rxr->i;
1446     size_t bufsize = igb_rxbufsize(core, rxi);
1447
1448     d = pcie_sriov_get_vf_at_index(core->owner, rxi->idx % 8);
1449     if (!d) {
1450         d = core->owner;
1451     }
1452
1453     do {
1454         hwaddr ba;
1455         uint16_t written = 0;
1456         bool is_last = false;
1457
1458         desc_size = total_size - desc_offset;
1459
1460         if (desc_size > bufsize) {
1461             desc_size = bufsize;
1462         }
1463
1464         if (igb_ring_empty(core, rxi)) {
1465             return;
1466         }
1467
1468         base = igb_ring_head_descr(core, rxi);
1469
1470         pci_dma_read(d, base, &desc, core->rx_desc_len);
1471
1472         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1473
1474         igb_read_rx_descr(core, &desc, &ba);
1475
1476         if (ba) {
1477             if (desc_offset < size) {
1478                 static const uint32_t fcs_pad;
1479                 size_t iov_copy;
1480                 size_t copy_size = size - desc_offset;
1481                 if (copy_size > bufsize) {
1482                     copy_size = bufsize;
1483                 }
1484
1485                 /* Copy packet payload */
1486                 while (copy_size) {
1487                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1488
1489                     igb_write_to_rx_buffers(core, d, ba, &written,
1490                                             iov->iov_base + iov_ofs, iov_copy);
1491
1492                     copy_size -= iov_copy;
1493                     iov_ofs += iov_copy;
1494                     if (iov_ofs == iov->iov_len) {
1495                         iov++;
1496                         iov_ofs = 0;
1497                     }
1498                 }
1499
1500                 if (desc_offset + desc_size >= total_size) {
1501                     /* Simulate FCS checksum presence in the last descriptor */
1502                     igb_write_to_rx_buffers(core, d, ba, &written,
1503                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1504                 }
1505             }
1506         } else { /* as per intel docs; skip descriptors with null buf addr */
1507             trace_e1000e_rx_null_descriptor();
1508         }
1509         desc_offset += desc_size;
1510         if (desc_offset >= total_size) {
1511             is_last = true;
1512         }
1513
1514         igb_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1515                            rss_info, written);
1516         igb_pci_dma_write_rx_desc(core, d, base, &desc, core->rx_desc_len);
1517
1518         igb_ring_advance(core, rxi, core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1519
1520     } while (desc_offset < total_size);
1521
1522     igb_update_rx_stats(core, size, total_size);
1523 }
1524
1525 static inline void
1526 igb_rx_fix_l4_csum(IGBCore *core, struct NetRxPkt *pkt)
1527 {
1528     struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1529
1530     if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1531         net_rx_pkt_fix_l4_csum(pkt);
1532     }
1533 }
1534
1535 ssize_t
1536 igb_receive_iov(IGBCore *core, const struct iovec *iov, int iovcnt)
1537 {
1538     return igb_receive_internal(core, iov, iovcnt, core->has_vnet, NULL);
1539 }
1540
1541 static ssize_t
1542 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt,
1543                      bool has_vnet, bool *external_tx)
1544 {
1545     static const int maximum_ethernet_hdr_len = (ETH_HLEN + 4);
1546
1547     uint16_t queues = 0;
1548     uint32_t n = 0;
1549     uint8_t min_buf[ETH_ZLEN];
1550     struct iovec min_iov;
1551     struct eth_header *ehdr;
1552     uint8_t *filter_buf;
1553     size_t size, orig_size;
1554     size_t iov_ofs = 0;
1555     E1000E_RxRing rxr;
1556     E1000E_RSSInfo rss_info;
1557     size_t total_size;
1558     int i;
1559
1560     trace_e1000e_rx_receive_iov(iovcnt);
1561
1562     if (external_tx) {
1563         *external_tx = true;
1564     }
1565
1566     if (!e1000x_hw_rx_enabled(core->mac)) {
1567         return -1;
1568     }
1569
1570     /* Pull virtio header in */
1571     if (has_vnet) {
1572         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1573         iov_ofs = sizeof(struct virtio_net_hdr);
1574     } else {
1575         net_rx_pkt_unset_vhdr(core->rx_pkt);
1576     }
1577
1578     filter_buf = iov->iov_base + iov_ofs;
1579     orig_size = iov_size(iov, iovcnt);
1580     size = orig_size - iov_ofs;
1581
1582     /* Pad to minimum Ethernet frame length */
1583     if (size < sizeof(min_buf)) {
1584         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1585         memset(&min_buf[size], 0, sizeof(min_buf) - size);
1586         e1000x_inc_reg_if_not_full(core->mac, RUC);
1587         min_iov.iov_base = filter_buf = min_buf;
1588         min_iov.iov_len = size = sizeof(min_buf);
1589         iovcnt = 1;
1590         iov = &min_iov;
1591         iov_ofs = 0;
1592     } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1593         /* This is very unlikely, but may happen. */
1594         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1595         filter_buf = min_buf;
1596     }
1597
1598     /* Discard oversized packets if !LPE and !SBP. */
1599     if (e1000x_is_oversized(core->mac, size)) {
1600         return orig_size;
1601     }
1602
1603     ehdr = PKT_GET_ETH_HDR(filter_buf);
1604     net_rx_pkt_set_packet_type(core->rx_pkt, get_eth_packet_type(ehdr));
1605
1606     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1607                                e1000x_vlan_enabled(core->mac),
1608                                core->mac[VET] & 0xffff);
1609
1610     queues = igb_receive_assign(core, ehdr, size, &rss_info, external_tx);
1611     if (!queues) {
1612         trace_e1000e_rx_flt_dropped();
1613         return orig_size;
1614     }
1615
1616     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1617         e1000x_fcs_len(core->mac);
1618
1619     for (i = 0; i < IGB_NUM_QUEUES; i++) {
1620         if (!(queues & BIT(i)) ||
1621             !(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) {
1622             continue;
1623         }
1624
1625         igb_rx_ring_init(core, &rxr, i);
1626
1627         if (!igb_has_rxbufs(core, rxr.i, total_size)) {
1628             n |= E1000_ICS_RXO;
1629             trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1630             continue;
1631         }
1632
1633         n |= E1000_ICR_RXDW;
1634
1635         igb_rx_fix_l4_csum(core, core->rx_pkt);
1636         igb_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1637
1638         /* Check if receive descriptor minimum threshold hit */
1639         if (igb_rx_descr_threshold_hit(core, rxr.i)) {
1640             n |= E1000_ICS_RXDMT0;
1641         }
1642
1643         core->mac[EICR] |= igb_rx_wb_eic(core, rxr.i->idx);
1644
1645         trace_e1000e_rx_written_to_guest(rxr.i->idx);
1646     }
1647
1648     trace_e1000e_rx_interrupt_set(n);
1649     igb_set_interrupt_cause(core, n);
1650
1651     return orig_size;
1652 }
1653
1654 static inline bool
1655 igb_have_autoneg(IGBCore *core)
1656 {
1657     return core->phy[MII_BMCR] & MII_BMCR_AUTOEN;
1658 }
1659
1660 static void igb_update_flowctl_status(IGBCore *core)
1661 {
1662     if (igb_have_autoneg(core) && core->phy[MII_BMSR] & MII_BMSR_AN_COMP) {
1663         trace_e1000e_link_autoneg_flowctl(true);
1664         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1665     } else {
1666         trace_e1000e_link_autoneg_flowctl(false);
1667     }
1668 }
1669
1670 static inline void
1671 igb_link_down(IGBCore *core)
1672 {
1673     e1000x_update_regs_on_link_down(core->mac, core->phy);
1674     igb_update_flowctl_status(core);
1675 }
1676
1677 static inline void
1678 igb_set_phy_ctrl(IGBCore *core, uint16_t val)
1679 {
1680     /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1681     core->phy[MII_BMCR] = val & ~(0x3f | MII_BMCR_RESET | MII_BMCR_ANRESTART);
1682
1683     if ((val & MII_BMCR_ANRESTART) && igb_have_autoneg(core)) {
1684         e1000x_restart_autoneg(core->mac, core->phy, core->autoneg_timer);
1685     }
1686 }
1687
1688 void igb_core_set_link_status(IGBCore *core)
1689 {
1690     NetClientState *nc = qemu_get_queue(core->owner_nic);
1691     uint32_t old_status = core->mac[STATUS];
1692
1693     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1694
1695     if (nc->link_down) {
1696         e1000x_update_regs_on_link_down(core->mac, core->phy);
1697     } else {
1698         if (igb_have_autoneg(core) &&
1699             !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) {
1700             e1000x_restart_autoneg(core->mac, core->phy,
1701                                    core->autoneg_timer);
1702         } else {
1703             e1000x_update_regs_on_link_up(core->mac, core->phy);
1704             igb_start_recv(core);
1705         }
1706     }
1707
1708     if (core->mac[STATUS] != old_status) {
1709         igb_set_interrupt_cause(core, E1000_ICR_LSC);
1710     }
1711 }
1712
1713 static void
1714 igb_set_ctrl(IGBCore *core, int index, uint32_t val)
1715 {
1716     trace_e1000e_core_ctrl_write(index, val);
1717
1718     /* RST is self clearing */
1719     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1720     core->mac[CTRL_DUP] = core->mac[CTRL];
1721
1722     trace_e1000e_link_set_params(
1723         !!(val & E1000_CTRL_ASDE),
1724         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1725         !!(val & E1000_CTRL_FRCSPD),
1726         !!(val & E1000_CTRL_FRCDPX),
1727         !!(val & E1000_CTRL_RFCE),
1728         !!(val & E1000_CTRL_TFCE));
1729
1730     if (val & E1000_CTRL_RST) {
1731         trace_e1000e_core_ctrl_sw_reset();
1732         igb_reset(core, true);
1733     }
1734
1735     if (val & E1000_CTRL_PHY_RST) {
1736         trace_e1000e_core_ctrl_phy_reset();
1737         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1738     }
1739 }
1740
1741 static void
1742 igb_set_rfctl(IGBCore *core, int index, uint32_t val)
1743 {
1744     trace_e1000e_rx_set_rfctl(val);
1745
1746     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1747         trace_e1000e_wrn_iscsi_filtering_not_supported();
1748     }
1749
1750     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1751         trace_e1000e_wrn_nfsw_filtering_not_supported();
1752     }
1753
1754     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1755         trace_e1000e_wrn_nfsr_filtering_not_supported();
1756     }
1757
1758     core->mac[RFCTL] = val;
1759 }
1760
1761 static void
1762 igb_calc_rxdesclen(IGBCore *core)
1763 {
1764     if (igb_rx_use_legacy_descriptor(core)) {
1765         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1766     } else {
1767         core->rx_desc_len = sizeof(union e1000_adv_rx_desc);
1768     }
1769     trace_e1000e_rx_desc_len(core->rx_desc_len);
1770 }
1771
1772 static void
1773 igb_set_rx_control(IGBCore *core, int index, uint32_t val)
1774 {
1775     core->mac[RCTL] = val;
1776     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1777
1778     if (val & E1000_RCTL_DTYP_MASK) {
1779         qemu_log_mask(LOG_GUEST_ERROR,
1780                       "igb: RCTL.DTYP must be zero for compatibility");
1781     }
1782
1783     if (val & E1000_RCTL_EN) {
1784         igb_calc_rxdesclen(core);
1785         igb_start_recv(core);
1786     }
1787 }
1788
1789 static inline void
1790 igb_clear_ims_bits(IGBCore *core, uint32_t bits)
1791 {
1792     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1793     core->mac[IMS] &= ~bits;
1794 }
1795
1796 static inline bool
1797 igb_postpone_interrupt(IGBIntrDelayTimer *timer)
1798 {
1799     if (timer->running) {
1800         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1801
1802         return true;
1803     }
1804
1805     if (timer->core->mac[timer->delay_reg] != 0) {
1806         igb_intrmgr_rearm_timer(timer);
1807     }
1808
1809     return false;
1810 }
1811
1812 static inline bool
1813 igb_eitr_should_postpone(IGBCore *core, int idx)
1814 {
1815     return igb_postpone_interrupt(&core->eitr[idx]);
1816 }
1817
1818 static void igb_send_msix(IGBCore *core)
1819 {
1820     uint32_t causes = core->mac[EICR] & core->mac[EIMS];
1821     uint32_t effective_eiac;
1822     int vector;
1823
1824     for (vector = 0; vector < IGB_INTR_NUM; ++vector) {
1825         if ((causes & BIT(vector)) && !igb_eitr_should_postpone(core, vector)) {
1826
1827             trace_e1000e_irq_msix_notify_vec(vector);
1828             igb_msix_notify(core, vector);
1829
1830             trace_e1000e_irq_icr_clear_eiac(core->mac[EICR], core->mac[EIAC]);
1831             effective_eiac = core->mac[EIAC] & BIT(vector);
1832             core->mac[EICR] &= ~effective_eiac;
1833         }
1834     }
1835 }
1836
1837 static inline void
1838 igb_fix_icr_asserted(IGBCore *core)
1839 {
1840     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
1841     if (core->mac[ICR]) {
1842         core->mac[ICR] |= E1000_ICR_ASSERTED;
1843     }
1844
1845     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
1846 }
1847
1848 static void
1849 igb_update_interrupt_state(IGBCore *core)
1850 {
1851     uint32_t icr;
1852     uint32_t causes;
1853     uint32_t int_alloc;
1854
1855     icr = core->mac[ICR] & core->mac[IMS];
1856
1857     if (msix_enabled(core->owner)) {
1858         if (icr) {
1859             causes = 0;
1860             if (icr & E1000_ICR_DRSTA) {
1861                 int_alloc = core->mac[IVAR_MISC] & 0xff;
1862                 if (int_alloc & E1000_IVAR_VALID) {
1863                     causes |= BIT(int_alloc & 0x1f);
1864                 }
1865             }
1866             /* Check if other bits (excluding the TCP Timer) are enabled. */
1867             if (icr & ~E1000_ICR_DRSTA) {
1868                 int_alloc = (core->mac[IVAR_MISC] >> 8) & 0xff;
1869                 if (int_alloc & E1000_IVAR_VALID) {
1870                     causes |= BIT(int_alloc & 0x1f);
1871                 }
1872                 trace_e1000e_irq_add_msi_other(core->mac[EICR]);
1873             }
1874             core->mac[EICR] |= causes;
1875         }
1876
1877         if ((core->mac[EICR] & core->mac[EIMS])) {
1878             igb_send_msix(core);
1879         }
1880     } else {
1881         igb_fix_icr_asserted(core);
1882
1883         if (icr) {
1884             core->mac[EICR] |= (icr & E1000_ICR_DRSTA) | E1000_EICR_OTHER;
1885         } else {
1886             core->mac[EICR] &= ~E1000_EICR_OTHER;
1887         }
1888
1889         trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
1890                                             core->mac[ICR], core->mac[IMS]);
1891
1892         if (msi_enabled(core->owner)) {
1893             if (icr) {
1894                 msi_notify(core->owner, 0);
1895             }
1896         } else {
1897             if (icr) {
1898                 igb_raise_legacy_irq(core);
1899             } else {
1900                 igb_lower_legacy_irq(core);
1901             }
1902         }
1903     }
1904 }
1905
1906 static void
1907 igb_set_interrupt_cause(IGBCore *core, uint32_t val)
1908 {
1909     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
1910
1911     core->mac[ICR] |= val;
1912
1913     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
1914
1915     igb_update_interrupt_state(core);
1916 }
1917
1918 static void igb_set_eics(IGBCore *core, int index, uint32_t val)
1919 {
1920     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
1921
1922     trace_igb_irq_write_eics(val, msix);
1923
1924     core->mac[EICS] |=
1925         val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK);
1926
1927     /*
1928      * TODO: Move to igb_update_interrupt_state if EICS is modified in other
1929      * places.
1930      */
1931     core->mac[EICR] = core->mac[EICS];
1932
1933     igb_update_interrupt_state(core);
1934 }
1935
1936 static void igb_set_eims(IGBCore *core, int index, uint32_t val)
1937 {
1938     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
1939
1940     trace_igb_irq_write_eims(val, msix);
1941
1942     core->mac[EIMS] |=
1943         val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK);
1944
1945     igb_update_interrupt_state(core);
1946 }
1947
1948 static void mailbox_interrupt_to_vf(IGBCore *core, uint16_t vfn)
1949 {
1950     uint32_t ent = core->mac[VTIVAR_MISC + vfn];
1951
1952     if ((ent & E1000_IVAR_VALID)) {
1953         core->mac[EICR] |= (ent & 0x3) << (22 - vfn * IGBVF_MSIX_VEC_NUM);
1954         igb_update_interrupt_state(core);
1955     }
1956 }
1957
1958 static void mailbox_interrupt_to_pf(IGBCore *core)
1959 {
1960     igb_set_interrupt_cause(core, E1000_ICR_VMMB);
1961 }
1962
1963 static void igb_set_pfmailbox(IGBCore *core, int index, uint32_t val)
1964 {
1965     uint16_t vfn = index - P2VMAILBOX0;
1966
1967     trace_igb_set_pfmailbox(vfn, val);
1968
1969     if (val & E1000_P2VMAILBOX_STS) {
1970         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFSTS;
1971         mailbox_interrupt_to_vf(core, vfn);
1972     }
1973
1974     if (val & E1000_P2VMAILBOX_ACK) {
1975         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFACK;
1976         mailbox_interrupt_to_vf(core, vfn);
1977     }
1978
1979     /* Buffer Taken by PF (can be set only if the VFU is cleared). */
1980     if (val & E1000_P2VMAILBOX_PFU) {
1981         if (!(core->mac[index] & E1000_P2VMAILBOX_VFU)) {
1982             core->mac[index] |= E1000_P2VMAILBOX_PFU;
1983             core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFU;
1984         }
1985     } else {
1986         core->mac[index] &= ~E1000_P2VMAILBOX_PFU;
1987         core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_PFU;
1988     }
1989
1990     if (val & E1000_P2VMAILBOX_RVFU) {
1991         core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_VFU;
1992         core->mac[MBVFICR] &= ~((E1000_MBVFICR_VFACK_VF1 << vfn) |
1993                                 (E1000_MBVFICR_VFREQ_VF1 << vfn));
1994     }
1995 }
1996
1997 static void igb_set_vfmailbox(IGBCore *core, int index, uint32_t val)
1998 {
1999     uint16_t vfn = index - V2PMAILBOX0;
2000
2001     trace_igb_set_vfmailbox(vfn, val);
2002
2003     if (val & E1000_V2PMAILBOX_REQ) {
2004         core->mac[MBVFICR] |= E1000_MBVFICR_VFREQ_VF1 << vfn;
2005         mailbox_interrupt_to_pf(core);
2006     }
2007
2008     if (val & E1000_V2PMAILBOX_ACK) {
2009         core->mac[MBVFICR] |= E1000_MBVFICR_VFACK_VF1 << vfn;
2010         mailbox_interrupt_to_pf(core);
2011     }
2012
2013     /* Buffer Taken by VF (can be set only if the PFU is cleared). */
2014     if (val & E1000_V2PMAILBOX_VFU) {
2015         if (!(core->mac[index] & E1000_V2PMAILBOX_PFU)) {
2016             core->mac[index] |= E1000_V2PMAILBOX_VFU;
2017             core->mac[P2VMAILBOX0 + vfn] |= E1000_P2VMAILBOX_VFU;
2018         }
2019     } else {
2020         core->mac[index] &= ~E1000_V2PMAILBOX_VFU;
2021         core->mac[P2VMAILBOX0 + vfn] &= ~E1000_P2VMAILBOX_VFU;
2022     }
2023 }
2024
2025 static void igb_vf_reset(IGBCore *core, uint16_t vfn)
2026 {
2027     uint16_t qn0 = vfn;
2028     uint16_t qn1 = vfn + IGB_NUM_VM_POOLS;
2029
2030     /* disable Rx and Tx for the VF*/
2031     core->mac[RXDCTL0 + (qn0 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE;
2032     core->mac[RXDCTL0 + (qn1 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE;
2033     core->mac[TXDCTL0 + (qn0 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE;
2034     core->mac[TXDCTL0 + (qn1 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE;
2035     core->mac[VFRE] &= ~BIT(vfn);
2036     core->mac[VFTE] &= ~BIT(vfn);
2037     /* indicate VF reset to PF */
2038     core->mac[VFLRE] |= BIT(vfn);
2039     /* VFLRE and mailbox use the same interrupt cause */
2040     mailbox_interrupt_to_pf(core);
2041 }
2042
2043 static void igb_w1c(IGBCore *core, int index, uint32_t val)
2044 {
2045     core->mac[index] &= ~val;
2046 }
2047
2048 static void igb_set_eimc(IGBCore *core, int index, uint32_t val)
2049 {
2050     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2051
2052     /* Interrupts are disabled via a write to EIMC and reflected in EIMS. */
2053     core->mac[EIMS] &=
2054         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2055
2056     trace_igb_irq_write_eimc(val, core->mac[EIMS], msix);
2057     igb_update_interrupt_state(core);
2058 }
2059
2060 static void igb_set_eiac(IGBCore *core, int index, uint32_t val)
2061 {
2062     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2063
2064     if (msix) {
2065         trace_igb_irq_write_eiac(val);
2066
2067         /*
2068          * TODO: When using IOV, the bits that correspond to MSI-X vectors
2069          * that are assigned to a VF are read-only.
2070          */
2071         core->mac[EIAC] |= (val & E1000_EICR_MSIX_MASK);
2072     }
2073 }
2074
2075 static void igb_set_eiam(IGBCore *core, int index, uint32_t val)
2076 {
2077     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2078
2079     /*
2080      * TODO: When using IOV, the bits that correspond to MSI-X vectors that
2081      * are assigned to a VF are read-only.
2082      */
2083     core->mac[EIAM] |=
2084         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2085
2086     trace_igb_irq_write_eiam(val, msix);
2087 }
2088
2089 static void igb_set_eicr(IGBCore *core, int index, uint32_t val)
2090 {
2091     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2092
2093     /*
2094      * TODO: In IOV mode, only bit zero of this vector is available for the PF
2095      * function.
2096      */
2097     core->mac[EICR] &=
2098         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2099
2100     trace_igb_irq_write_eicr(val, msix);
2101     igb_update_interrupt_state(core);
2102 }
2103
2104 static void igb_set_vtctrl(IGBCore *core, int index, uint32_t val)
2105 {
2106     uint16_t vfn;
2107
2108     if (val & E1000_CTRL_RST) {
2109         vfn = (index - PVTCTRL0) / 0x40;
2110         igb_vf_reset(core, vfn);
2111     }
2112 }
2113
2114 static void igb_set_vteics(IGBCore *core, int index, uint32_t val)
2115 {
2116     uint16_t vfn = (index - PVTEICS0) / 0x40;
2117
2118     core->mac[index] = val;
2119     igb_set_eics(core, EICS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2120 }
2121
2122 static void igb_set_vteims(IGBCore *core, int index, uint32_t val)
2123 {
2124     uint16_t vfn = (index - PVTEIMS0) / 0x40;
2125
2126     core->mac[index] = val;
2127     igb_set_eims(core, EIMS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2128 }
2129
2130 static void igb_set_vteimc(IGBCore *core, int index, uint32_t val)
2131 {
2132     uint16_t vfn = (index - PVTEIMC0) / 0x40;
2133
2134     core->mac[index] = val;
2135     igb_set_eimc(core, EIMC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2136 }
2137
2138 static void igb_set_vteiac(IGBCore *core, int index, uint32_t val)
2139 {
2140     uint16_t vfn = (index - PVTEIAC0) / 0x40;
2141
2142     core->mac[index] = val;
2143     igb_set_eiac(core, EIAC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2144 }
2145
2146 static void igb_set_vteiam(IGBCore *core, int index, uint32_t val)
2147 {
2148     uint16_t vfn = (index - PVTEIAM0) / 0x40;
2149
2150     core->mac[index] = val;
2151     igb_set_eiam(core, EIAM, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2152 }
2153
2154 static void igb_set_vteicr(IGBCore *core, int index, uint32_t val)
2155 {
2156     uint16_t vfn = (index - PVTEICR0) / 0x40;
2157
2158     core->mac[index] = val;
2159     igb_set_eicr(core, EICR, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2160 }
2161
2162 static void igb_set_vtivar(IGBCore *core, int index, uint32_t val)
2163 {
2164     uint16_t vfn = (index - VTIVAR);
2165     uint16_t qn = vfn;
2166     uint8_t ent;
2167     int n;
2168
2169     core->mac[index] = val;
2170
2171     /* Get assigned vector associated with queue Rx#0. */
2172     if ((val & E1000_IVAR_VALID)) {
2173         n = igb_ivar_entry_rx(qn);
2174         ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (val & 0x7)));
2175         core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4);
2176     }
2177
2178     /* Get assigned vector associated with queue Tx#0 */
2179     ent = val >> 8;
2180     if ((ent & E1000_IVAR_VALID)) {
2181         n = igb_ivar_entry_tx(qn);
2182         ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (ent & 0x7)));
2183         core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4);
2184     }
2185
2186     /*
2187      * Ignoring assigned vectors associated with queues Rx#1 and Tx#1 for now.
2188      */
2189 }
2190
2191 static inline void
2192 igb_autoneg_timer(void *opaque)
2193 {
2194     IGBCore *core = opaque;
2195     if (!qemu_get_queue(core->owner_nic)->link_down) {
2196         e1000x_update_regs_on_autoneg_done(core->mac, core->phy);
2197         igb_start_recv(core);
2198
2199         igb_update_flowctl_status(core);
2200         /* signal link status change to the guest */
2201         igb_set_interrupt_cause(core, E1000_ICR_LSC);
2202     }
2203 }
2204
2205 static inline uint16_t
2206 igb_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2207 {
2208     uint16_t index = (addr & 0x1ffff) >> 2;
2209     return index + (mac_reg_access[index] & 0xfffe);
2210 }
2211
2212 static const char igb_phy_regcap[MAX_PHY_REG_ADDRESS + 1] = {
2213     [MII_BMCR]                   = PHY_RW,
2214     [MII_BMSR]                   = PHY_R,
2215     [MII_PHYID1]                 = PHY_R,
2216     [MII_PHYID2]                 = PHY_R,
2217     [MII_ANAR]                   = PHY_RW,
2218     [MII_ANLPAR]                 = PHY_R,
2219     [MII_ANER]                   = PHY_R,
2220     [MII_ANNP]                   = PHY_RW,
2221     [MII_ANLPRNP]                = PHY_R,
2222     [MII_CTRL1000]               = PHY_RW,
2223     [MII_STAT1000]               = PHY_R,
2224     [MII_EXTSTAT]                = PHY_R,
2225
2226     [IGP01E1000_PHY_PORT_CONFIG] = PHY_RW,
2227     [IGP01E1000_PHY_PORT_STATUS] = PHY_R,
2228     [IGP01E1000_PHY_PORT_CTRL]   = PHY_RW,
2229     [IGP01E1000_PHY_LINK_HEALTH] = PHY_R,
2230     [IGP02E1000_PHY_POWER_MGMT]  = PHY_RW,
2231     [IGP01E1000_PHY_PAGE_SELECT] = PHY_W
2232 };
2233
2234 static void
2235 igb_phy_reg_write(IGBCore *core, uint32_t addr, uint16_t data)
2236 {
2237     assert(addr <= MAX_PHY_REG_ADDRESS);
2238
2239     if (addr == MII_BMCR) {
2240         igb_set_phy_ctrl(core, data);
2241     } else {
2242         core->phy[addr] = data;
2243     }
2244 }
2245
2246 static void
2247 igb_set_mdic(IGBCore *core, int index, uint32_t val)
2248 {
2249     uint32_t data = val & E1000_MDIC_DATA_MASK;
2250     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2251
2252     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2253         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2254     } else if (val & E1000_MDIC_OP_READ) {
2255         if (!(igb_phy_regcap[addr] & PHY_R)) {
2256             trace_igb_core_mdic_read_unhandled(addr);
2257             val |= E1000_MDIC_ERROR;
2258         } else {
2259             val = (val ^ data) | core->phy[addr];
2260             trace_igb_core_mdic_read(addr, val);
2261         }
2262     } else if (val & E1000_MDIC_OP_WRITE) {
2263         if (!(igb_phy_regcap[addr] & PHY_W)) {
2264             trace_igb_core_mdic_write_unhandled(addr);
2265             val |= E1000_MDIC_ERROR;
2266         } else {
2267             trace_igb_core_mdic_write(addr, data);
2268             igb_phy_reg_write(core, addr, data);
2269         }
2270     }
2271     core->mac[MDIC] = val | E1000_MDIC_READY;
2272
2273     if (val & E1000_MDIC_INT_EN) {
2274         igb_set_interrupt_cause(core, E1000_ICR_MDAC);
2275     }
2276 }
2277
2278 static void
2279 igb_set_rdt(IGBCore *core, int index, uint32_t val)
2280 {
2281     core->mac[index] = val & 0xffff;
2282     trace_e1000e_rx_set_rdt(igb_mq_queue_idx(RDT0, index), val);
2283     igb_start_recv(core);
2284 }
2285
2286 static void
2287 igb_set_status(IGBCore *core, int index, uint32_t val)
2288 {
2289     if ((val & E1000_STATUS_PHYRA) == 0) {
2290         core->mac[index] &= ~E1000_STATUS_PHYRA;
2291     }
2292 }
2293
2294 static void
2295 igb_set_ctrlext(IGBCore *core, int index, uint32_t val)
2296 {
2297     trace_igb_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2298                                   !!(val & E1000_CTRL_EXT_SPD_BYPS),
2299                                   !!(val & E1000_CTRL_EXT_PFRSTD));
2300
2301     /* Zero self-clearing bits */
2302     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2303     core->mac[CTRL_EXT] = val;
2304
2305     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PFRSTD) {
2306         for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) {
2307             core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_RSTI;
2308             core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTD;
2309         }
2310     }
2311 }
2312
2313 static void
2314 igb_set_pbaclr(IGBCore *core, int index, uint32_t val)
2315 {
2316     int i;
2317
2318     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2319
2320     if (!msix_enabled(core->owner)) {
2321         return;
2322     }
2323
2324     for (i = 0; i < IGB_INTR_NUM; i++) {
2325         if (core->mac[PBACLR] & BIT(i)) {
2326             msix_clr_pending(core->owner, i);
2327         }
2328     }
2329 }
2330
2331 static void
2332 igb_set_fcrth(IGBCore *core, int index, uint32_t val)
2333 {
2334     core->mac[FCRTH] = val & 0xFFF8;
2335 }
2336
2337 static void
2338 igb_set_fcrtl(IGBCore *core, int index, uint32_t val)
2339 {
2340     core->mac[FCRTL] = val & 0x8000FFF8;
2341 }
2342
2343 #define IGB_LOW_BITS_SET_FUNC(num)                             \
2344     static void                                                \
2345     igb_set_##num##bit(IGBCore *core, int index, uint32_t val) \
2346     {                                                          \
2347         core->mac[index] = val & (BIT(num) - 1);               \
2348     }
2349
2350 IGB_LOW_BITS_SET_FUNC(4)
2351 IGB_LOW_BITS_SET_FUNC(13)
2352 IGB_LOW_BITS_SET_FUNC(16)
2353
2354 static void
2355 igb_set_dlen(IGBCore *core, int index, uint32_t val)
2356 {
2357     core->mac[index] = val & 0xffff0;
2358 }
2359
2360 static void
2361 igb_set_dbal(IGBCore *core, int index, uint32_t val)
2362 {
2363     core->mac[index] = val & E1000_XDBAL_MASK;
2364 }
2365
2366 static void
2367 igb_set_tdt(IGBCore *core, int index, uint32_t val)
2368 {
2369     IGB_TxRing txr;
2370     int qn = igb_mq_queue_idx(TDT0, index);
2371
2372     core->mac[index] = val & 0xffff;
2373
2374     igb_tx_ring_init(core, &txr, qn);
2375     igb_start_xmit(core, &txr);
2376 }
2377
2378 static void
2379 igb_set_ics(IGBCore *core, int index, uint32_t val)
2380 {
2381     trace_e1000e_irq_write_ics(val);
2382     igb_set_interrupt_cause(core, val);
2383 }
2384
2385 static void
2386 igb_set_imc(IGBCore *core, int index, uint32_t val)
2387 {
2388     trace_e1000e_irq_ims_clear_set_imc(val);
2389     igb_clear_ims_bits(core, val);
2390     igb_update_interrupt_state(core);
2391 }
2392
2393 static void
2394 igb_set_ims(IGBCore *core, int index, uint32_t val)
2395 {
2396     uint32_t valid_val = val & 0x77D4FBFD;
2397
2398     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2399     core->mac[IMS] |= valid_val;
2400     igb_update_interrupt_state(core);
2401 }
2402
2403 static void igb_commit_icr(IGBCore *core)
2404 {
2405     /*
2406      * If GPIE.NSICR = 0, then the copy of IAM to IMS will occur only if at
2407      * least one bit is set in the IMS and there is a true interrupt as
2408      * reflected in ICR.INTA.
2409      */
2410     if ((core->mac[GPIE] & E1000_GPIE_NSICR) ||
2411         (core->mac[IMS] && (core->mac[ICR] & E1000_ICR_INT_ASSERTED))) {
2412         igb_set_ims(core, IMS, core->mac[IAM]);
2413     } else {
2414         igb_update_interrupt_state(core);
2415     }
2416 }
2417
2418 static void igb_set_icr(IGBCore *core, int index, uint32_t val)
2419 {
2420     uint32_t icr = core->mac[ICR] & ~val;
2421
2422     trace_igb_irq_icr_write(val, core->mac[ICR], icr);
2423     core->mac[ICR] = icr;
2424     igb_commit_icr(core);
2425 }
2426
2427 static uint32_t
2428 igb_mac_readreg(IGBCore *core, int index)
2429 {
2430     return core->mac[index];
2431 }
2432
2433 static uint32_t
2434 igb_mac_ics_read(IGBCore *core, int index)
2435 {
2436     trace_e1000e_irq_read_ics(core->mac[ICS]);
2437     return core->mac[ICS];
2438 }
2439
2440 static uint32_t
2441 igb_mac_ims_read(IGBCore *core, int index)
2442 {
2443     trace_e1000e_irq_read_ims(core->mac[IMS]);
2444     return core->mac[IMS];
2445 }
2446
2447 static uint32_t
2448 igb_mac_swsm_read(IGBCore *core, int index)
2449 {
2450     uint32_t val = core->mac[SWSM];
2451     core->mac[SWSM] = val | E1000_SWSM_SMBI;
2452     return val;
2453 }
2454
2455 static uint32_t
2456 igb_mac_eitr_read(IGBCore *core, int index)
2457 {
2458     return core->eitr_guest_value[index - EITR0];
2459 }
2460
2461 static uint32_t igb_mac_vfmailbox_read(IGBCore *core, int index)
2462 {
2463     uint32_t val = core->mac[index];
2464
2465     core->mac[index] &= ~(E1000_V2PMAILBOX_PFSTS | E1000_V2PMAILBOX_PFACK |
2466                           E1000_V2PMAILBOX_RSTD);
2467
2468     return val;
2469 }
2470
2471 static uint32_t
2472 igb_mac_icr_read(IGBCore *core, int index)
2473 {
2474     uint32_t ret = core->mac[ICR];
2475     trace_e1000e_irq_icr_read_entry(ret);
2476
2477     if (core->mac[GPIE] & E1000_GPIE_NSICR) {
2478         trace_igb_irq_icr_clear_gpie_nsicr();
2479         core->mac[ICR] = 0;
2480     } else if (core->mac[IMS] == 0) {
2481         trace_e1000e_irq_icr_clear_zero_ims();
2482         core->mac[ICR] = 0;
2483     } else if (!msix_enabled(core->owner)) {
2484         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2485         core->mac[ICR] = 0;
2486     }
2487
2488     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2489     igb_commit_icr(core);
2490     return ret;
2491 }
2492
2493 static uint32_t
2494 igb_mac_read_clr4(IGBCore *core, int index)
2495 {
2496     uint32_t ret = core->mac[index];
2497
2498     core->mac[index] = 0;
2499     return ret;
2500 }
2501
2502 static uint32_t
2503 igb_mac_read_clr8(IGBCore *core, int index)
2504 {
2505     uint32_t ret = core->mac[index];
2506
2507     core->mac[index] = 0;
2508     core->mac[index - 1] = 0;
2509     return ret;
2510 }
2511
2512 static uint32_t
2513 igb_get_ctrl(IGBCore *core, int index)
2514 {
2515     uint32_t val = core->mac[CTRL];
2516
2517     trace_e1000e_link_read_params(
2518         !!(val & E1000_CTRL_ASDE),
2519         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2520         !!(val & E1000_CTRL_FRCSPD),
2521         !!(val & E1000_CTRL_FRCDPX),
2522         !!(val & E1000_CTRL_RFCE),
2523         !!(val & E1000_CTRL_TFCE));
2524
2525     return val;
2526 }
2527
2528 static uint32_t igb_get_status(IGBCore *core, int index)
2529 {
2530     uint32_t res = core->mac[STATUS];
2531     uint16_t num_vfs = pcie_sriov_num_vfs(core->owner);
2532
2533     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2534         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2535     } else {
2536         res |= E1000_STATUS_FD;
2537     }
2538
2539     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2540         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2541         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2542         case E1000_CTRL_SPD_10:
2543             res |= E1000_STATUS_SPEED_10;
2544             break;
2545         case E1000_CTRL_SPD_100:
2546             res |= E1000_STATUS_SPEED_100;
2547             break;
2548         case E1000_CTRL_SPD_1000:
2549         default:
2550             res |= E1000_STATUS_SPEED_1000;
2551             break;
2552         }
2553     } else {
2554         res |= E1000_STATUS_SPEED_1000;
2555     }
2556
2557     if (num_vfs) {
2558         res |= num_vfs << E1000_STATUS_NUM_VFS_SHIFT;
2559         res |= E1000_STATUS_IOV_MODE;
2560     }
2561
2562     /*
2563      * Windows driver 12.18.9.23 resets if E1000_STATUS_GIO_MASTER_ENABLE is
2564      * left set after E1000_CTRL_LRST is set.
2565      */
2566     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE) &&
2567         !(core->mac[CTRL] & E1000_CTRL_LRST)) {
2568         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2569     }
2570
2571     return res;
2572 }
2573
2574 static void
2575 igb_mac_writereg(IGBCore *core, int index, uint32_t val)
2576 {
2577     core->mac[index] = val;
2578 }
2579
2580 static void
2581 igb_mac_setmacaddr(IGBCore *core, int index, uint32_t val)
2582 {
2583     uint32_t macaddr[2];
2584
2585     core->mac[index] = val;
2586
2587     macaddr[0] = cpu_to_le32(core->mac[RA]);
2588     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2589     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2590         (uint8_t *) macaddr);
2591
2592     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2593 }
2594
2595 static void
2596 igb_set_eecd(IGBCore *core, int index, uint32_t val)
2597 {
2598     static const uint32_t ro_bits = E1000_EECD_PRES          |
2599                                     E1000_EECD_AUTO_RD       |
2600                                     E1000_EECD_SIZE_EX_MASK;
2601
2602     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2603 }
2604
2605 static void
2606 igb_set_eerd(IGBCore *core, int index, uint32_t val)
2607 {
2608     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2609     uint32_t flags = 0;
2610     uint32_t data = 0;
2611
2612     if ((addr < IGB_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2613         data = core->eeprom[addr];
2614         flags = E1000_EERW_DONE;
2615     }
2616
2617     core->mac[EERD] = flags                           |
2618                       (addr << E1000_EERW_ADDR_SHIFT) |
2619                       (data << E1000_EERW_DATA_SHIFT);
2620 }
2621
2622 static void
2623 igb_set_eitr(IGBCore *core, int index, uint32_t val)
2624 {
2625     uint32_t eitr_num = index - EITR0;
2626
2627     trace_igb_irq_eitr_set(eitr_num, val);
2628
2629     core->eitr_guest_value[eitr_num] = val & ~E1000_EITR_CNT_IGNR;
2630     core->mac[index] = val & 0x7FFE;
2631 }
2632
2633 static void
2634 igb_update_rx_offloads(IGBCore *core)
2635 {
2636     int cso_state = igb_rx_l4_cso_enabled(core);
2637
2638     trace_e1000e_rx_set_cso(cso_state);
2639
2640     if (core->has_vnet) {
2641         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2642                          cso_state, 0, 0, 0, 0);
2643     }
2644 }
2645
2646 static void
2647 igb_set_rxcsum(IGBCore *core, int index, uint32_t val)
2648 {
2649     core->mac[RXCSUM] = val;
2650     igb_update_rx_offloads(core);
2651 }
2652
2653 static void
2654 igb_set_gcr(IGBCore *core, int index, uint32_t val)
2655 {
2656     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2657     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2658 }
2659
2660 static uint32_t igb_get_systiml(IGBCore *core, int index)
2661 {
2662     e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2663     return core->mac[SYSTIML];
2664 }
2665
2666 static uint32_t igb_get_rxsatrh(IGBCore *core, int index)
2667 {
2668     core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2669     return core->mac[RXSATRH];
2670 }
2671
2672 static uint32_t igb_get_txstmph(IGBCore *core, int index)
2673 {
2674     core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2675     return core->mac[TXSTMPH];
2676 }
2677
2678 static void igb_set_timinca(IGBCore *core, int index, uint32_t val)
2679 {
2680     e1000x_set_timinca(core->mac, &core->timadj, val);
2681 }
2682
2683 static void igb_set_timadjh(IGBCore *core, int index, uint32_t val)
2684 {
2685     core->mac[TIMADJH] = val;
2686     core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2687 }
2688
2689 #define igb_getreg(x)    [x] = igb_mac_readreg
2690 typedef uint32_t (*readops)(IGBCore *, int);
2691 static const readops igb_macreg_readops[] = {
2692     igb_getreg(WUFC),
2693     igb_getreg(MANC),
2694     igb_getreg(TOTL),
2695     igb_getreg(RDT0),
2696     igb_getreg(RDT1),
2697     igb_getreg(RDT2),
2698     igb_getreg(RDT3),
2699     igb_getreg(RDT4),
2700     igb_getreg(RDT5),
2701     igb_getreg(RDT6),
2702     igb_getreg(RDT7),
2703     igb_getreg(RDT8),
2704     igb_getreg(RDT9),
2705     igb_getreg(RDT10),
2706     igb_getreg(RDT11),
2707     igb_getreg(RDT12),
2708     igb_getreg(RDT13),
2709     igb_getreg(RDT14),
2710     igb_getreg(RDT15),
2711     igb_getreg(RDBAH0),
2712     igb_getreg(RDBAH1),
2713     igb_getreg(RDBAH2),
2714     igb_getreg(RDBAH3),
2715     igb_getreg(RDBAH4),
2716     igb_getreg(RDBAH5),
2717     igb_getreg(RDBAH6),
2718     igb_getreg(RDBAH7),
2719     igb_getreg(RDBAH8),
2720     igb_getreg(RDBAH9),
2721     igb_getreg(RDBAH10),
2722     igb_getreg(RDBAH11),
2723     igb_getreg(RDBAH12),
2724     igb_getreg(RDBAH13),
2725     igb_getreg(RDBAH14),
2726     igb_getreg(RDBAH15),
2727     igb_getreg(TDBAL0),
2728     igb_getreg(TDBAL1),
2729     igb_getreg(TDBAL2),
2730     igb_getreg(TDBAL3),
2731     igb_getreg(TDBAL4),
2732     igb_getreg(TDBAL5),
2733     igb_getreg(TDBAL6),
2734     igb_getreg(TDBAL7),
2735     igb_getreg(TDBAL8),
2736     igb_getreg(TDBAL9),
2737     igb_getreg(TDBAL10),
2738     igb_getreg(TDBAL11),
2739     igb_getreg(TDBAL12),
2740     igb_getreg(TDBAL13),
2741     igb_getreg(TDBAL14),
2742     igb_getreg(TDBAL15),
2743     igb_getreg(RDLEN0),
2744     igb_getreg(RDLEN1),
2745     igb_getreg(RDLEN2),
2746     igb_getreg(RDLEN3),
2747     igb_getreg(RDLEN4),
2748     igb_getreg(RDLEN5),
2749     igb_getreg(RDLEN6),
2750     igb_getreg(RDLEN7),
2751     igb_getreg(RDLEN8),
2752     igb_getreg(RDLEN9),
2753     igb_getreg(RDLEN10),
2754     igb_getreg(RDLEN11),
2755     igb_getreg(RDLEN12),
2756     igb_getreg(RDLEN13),
2757     igb_getreg(RDLEN14),
2758     igb_getreg(RDLEN15),
2759     igb_getreg(SRRCTL0),
2760     igb_getreg(SRRCTL1),
2761     igb_getreg(SRRCTL2),
2762     igb_getreg(SRRCTL3),
2763     igb_getreg(SRRCTL4),
2764     igb_getreg(SRRCTL5),
2765     igb_getreg(SRRCTL6),
2766     igb_getreg(SRRCTL7),
2767     igb_getreg(SRRCTL8),
2768     igb_getreg(SRRCTL9),
2769     igb_getreg(SRRCTL10),
2770     igb_getreg(SRRCTL11),
2771     igb_getreg(SRRCTL12),
2772     igb_getreg(SRRCTL13),
2773     igb_getreg(SRRCTL14),
2774     igb_getreg(SRRCTL15),
2775     igb_getreg(LATECOL),
2776     igb_getreg(XONTXC),
2777     igb_getreg(TDFH),
2778     igb_getreg(TDFT),
2779     igb_getreg(TDFHS),
2780     igb_getreg(TDFTS),
2781     igb_getreg(TDFPC),
2782     igb_getreg(WUS),
2783     igb_getreg(RDFH),
2784     igb_getreg(RDFT),
2785     igb_getreg(RDFHS),
2786     igb_getreg(RDFTS),
2787     igb_getreg(RDFPC),
2788     igb_getreg(GORCL),
2789     igb_getreg(MGTPRC),
2790     igb_getreg(EERD),
2791     igb_getreg(EIAC),
2792     igb_getreg(MANC2H),
2793     igb_getreg(RXCSUM),
2794     igb_getreg(GSCL_3),
2795     igb_getreg(GSCN_2),
2796     igb_getreg(FCAH),
2797     igb_getreg(FCRTH),
2798     igb_getreg(FLOP),
2799     igb_getreg(RXSTMPH),
2800     igb_getreg(TXSTMPL),
2801     igb_getreg(TIMADJL),
2802     igb_getreg(RDH0),
2803     igb_getreg(RDH1),
2804     igb_getreg(RDH2),
2805     igb_getreg(RDH3),
2806     igb_getreg(RDH4),
2807     igb_getreg(RDH5),
2808     igb_getreg(RDH6),
2809     igb_getreg(RDH7),
2810     igb_getreg(RDH8),
2811     igb_getreg(RDH9),
2812     igb_getreg(RDH10),
2813     igb_getreg(RDH11),
2814     igb_getreg(RDH12),
2815     igb_getreg(RDH13),
2816     igb_getreg(RDH14),
2817     igb_getreg(RDH15),
2818     igb_getreg(TDT0),
2819     igb_getreg(TDT1),
2820     igb_getreg(TDT2),
2821     igb_getreg(TDT3),
2822     igb_getreg(TDT4),
2823     igb_getreg(TDT5),
2824     igb_getreg(TDT6),
2825     igb_getreg(TDT7),
2826     igb_getreg(TDT8),
2827     igb_getreg(TDT9),
2828     igb_getreg(TDT10),
2829     igb_getreg(TDT11),
2830     igb_getreg(TDT12),
2831     igb_getreg(TDT13),
2832     igb_getreg(TDT14),
2833     igb_getreg(TDT15),
2834     igb_getreg(TNCRS),
2835     igb_getreg(RJC),
2836     igb_getreg(IAM),
2837     igb_getreg(GSCL_2),
2838     igb_getreg(TIPG),
2839     igb_getreg(FLMNGCTL),
2840     igb_getreg(FLMNGCNT),
2841     igb_getreg(TSYNCTXCTL),
2842     igb_getreg(EEMNGDATA),
2843     igb_getreg(CTRL_EXT),
2844     igb_getreg(SYSTIMH),
2845     igb_getreg(EEMNGCTL),
2846     igb_getreg(FLMNGDATA),
2847     igb_getreg(TSYNCRXCTL),
2848     igb_getreg(LEDCTL),
2849     igb_getreg(TCTL),
2850     igb_getreg(TCTL_EXT),
2851     igb_getreg(DTXCTL),
2852     igb_getreg(RXPBS),
2853     igb_getreg(TDH0),
2854     igb_getreg(TDH1),
2855     igb_getreg(TDH2),
2856     igb_getreg(TDH3),
2857     igb_getreg(TDH4),
2858     igb_getreg(TDH5),
2859     igb_getreg(TDH6),
2860     igb_getreg(TDH7),
2861     igb_getreg(TDH8),
2862     igb_getreg(TDH9),
2863     igb_getreg(TDH10),
2864     igb_getreg(TDH11),
2865     igb_getreg(TDH12),
2866     igb_getreg(TDH13),
2867     igb_getreg(TDH14),
2868     igb_getreg(TDH15),
2869     igb_getreg(ECOL),
2870     igb_getreg(DC),
2871     igb_getreg(RLEC),
2872     igb_getreg(XOFFTXC),
2873     igb_getreg(RFC),
2874     igb_getreg(RNBC),
2875     igb_getreg(MGTPTC),
2876     igb_getreg(TIMINCA),
2877     igb_getreg(FACTPS),
2878     igb_getreg(GSCL_1),
2879     igb_getreg(GSCN_0),
2880     igb_getreg(PBACLR),
2881     igb_getreg(FCTTV),
2882     igb_getreg(RXSATRL),
2883     igb_getreg(TORL),
2884     igb_getreg(TDLEN0),
2885     igb_getreg(TDLEN1),
2886     igb_getreg(TDLEN2),
2887     igb_getreg(TDLEN3),
2888     igb_getreg(TDLEN4),
2889     igb_getreg(TDLEN5),
2890     igb_getreg(TDLEN6),
2891     igb_getreg(TDLEN7),
2892     igb_getreg(TDLEN8),
2893     igb_getreg(TDLEN9),
2894     igb_getreg(TDLEN10),
2895     igb_getreg(TDLEN11),
2896     igb_getreg(TDLEN12),
2897     igb_getreg(TDLEN13),
2898     igb_getreg(TDLEN14),
2899     igb_getreg(TDLEN15),
2900     igb_getreg(MCC),
2901     igb_getreg(WUC),
2902     igb_getreg(EECD),
2903     igb_getreg(FCRTV),
2904     igb_getreg(TXDCTL0),
2905     igb_getreg(TXDCTL1),
2906     igb_getreg(TXDCTL2),
2907     igb_getreg(TXDCTL3),
2908     igb_getreg(TXDCTL4),
2909     igb_getreg(TXDCTL5),
2910     igb_getreg(TXDCTL6),
2911     igb_getreg(TXDCTL7),
2912     igb_getreg(TXDCTL8),
2913     igb_getreg(TXDCTL9),
2914     igb_getreg(TXDCTL10),
2915     igb_getreg(TXDCTL11),
2916     igb_getreg(TXDCTL12),
2917     igb_getreg(TXDCTL13),
2918     igb_getreg(TXDCTL14),
2919     igb_getreg(TXDCTL15),
2920     igb_getreg(TXCTL0),
2921     igb_getreg(TXCTL1),
2922     igb_getreg(TXCTL2),
2923     igb_getreg(TXCTL3),
2924     igb_getreg(TXCTL4),
2925     igb_getreg(TXCTL5),
2926     igb_getreg(TXCTL6),
2927     igb_getreg(TXCTL7),
2928     igb_getreg(TXCTL8),
2929     igb_getreg(TXCTL9),
2930     igb_getreg(TXCTL10),
2931     igb_getreg(TXCTL11),
2932     igb_getreg(TXCTL12),
2933     igb_getreg(TXCTL13),
2934     igb_getreg(TXCTL14),
2935     igb_getreg(TXCTL15),
2936     igb_getreg(TDWBAL0),
2937     igb_getreg(TDWBAL1),
2938     igb_getreg(TDWBAL2),
2939     igb_getreg(TDWBAL3),
2940     igb_getreg(TDWBAL4),
2941     igb_getreg(TDWBAL5),
2942     igb_getreg(TDWBAL6),
2943     igb_getreg(TDWBAL7),
2944     igb_getreg(TDWBAL8),
2945     igb_getreg(TDWBAL9),
2946     igb_getreg(TDWBAL10),
2947     igb_getreg(TDWBAL11),
2948     igb_getreg(TDWBAL12),
2949     igb_getreg(TDWBAL13),
2950     igb_getreg(TDWBAL14),
2951     igb_getreg(TDWBAL15),
2952     igb_getreg(TDWBAH0),
2953     igb_getreg(TDWBAH1),
2954     igb_getreg(TDWBAH2),
2955     igb_getreg(TDWBAH3),
2956     igb_getreg(TDWBAH4),
2957     igb_getreg(TDWBAH5),
2958     igb_getreg(TDWBAH6),
2959     igb_getreg(TDWBAH7),
2960     igb_getreg(TDWBAH8),
2961     igb_getreg(TDWBAH9),
2962     igb_getreg(TDWBAH10),
2963     igb_getreg(TDWBAH11),
2964     igb_getreg(TDWBAH12),
2965     igb_getreg(TDWBAH13),
2966     igb_getreg(TDWBAH14),
2967     igb_getreg(TDWBAH15),
2968     igb_getreg(PVTCTRL0),
2969     igb_getreg(PVTCTRL1),
2970     igb_getreg(PVTCTRL2),
2971     igb_getreg(PVTCTRL3),
2972     igb_getreg(PVTCTRL4),
2973     igb_getreg(PVTCTRL5),
2974     igb_getreg(PVTCTRL6),
2975     igb_getreg(PVTCTRL7),
2976     igb_getreg(PVTEIMS0),
2977     igb_getreg(PVTEIMS1),
2978     igb_getreg(PVTEIMS2),
2979     igb_getreg(PVTEIMS3),
2980     igb_getreg(PVTEIMS4),
2981     igb_getreg(PVTEIMS5),
2982     igb_getreg(PVTEIMS6),
2983     igb_getreg(PVTEIMS7),
2984     igb_getreg(PVTEIAC0),
2985     igb_getreg(PVTEIAC1),
2986     igb_getreg(PVTEIAC2),
2987     igb_getreg(PVTEIAC3),
2988     igb_getreg(PVTEIAC4),
2989     igb_getreg(PVTEIAC5),
2990     igb_getreg(PVTEIAC6),
2991     igb_getreg(PVTEIAC7),
2992     igb_getreg(PVTEIAM0),
2993     igb_getreg(PVTEIAM1),
2994     igb_getreg(PVTEIAM2),
2995     igb_getreg(PVTEIAM3),
2996     igb_getreg(PVTEIAM4),
2997     igb_getreg(PVTEIAM5),
2998     igb_getreg(PVTEIAM6),
2999     igb_getreg(PVTEIAM7),
3000     igb_getreg(PVFGPRC0),
3001     igb_getreg(PVFGPRC1),
3002     igb_getreg(PVFGPRC2),
3003     igb_getreg(PVFGPRC3),
3004     igb_getreg(PVFGPRC4),
3005     igb_getreg(PVFGPRC5),
3006     igb_getreg(PVFGPRC6),
3007     igb_getreg(PVFGPRC7),
3008     igb_getreg(PVFGPTC0),
3009     igb_getreg(PVFGPTC1),
3010     igb_getreg(PVFGPTC2),
3011     igb_getreg(PVFGPTC3),
3012     igb_getreg(PVFGPTC4),
3013     igb_getreg(PVFGPTC5),
3014     igb_getreg(PVFGPTC6),
3015     igb_getreg(PVFGPTC7),
3016     igb_getreg(PVFGORC0),
3017     igb_getreg(PVFGORC1),
3018     igb_getreg(PVFGORC2),
3019     igb_getreg(PVFGORC3),
3020     igb_getreg(PVFGORC4),
3021     igb_getreg(PVFGORC5),
3022     igb_getreg(PVFGORC6),
3023     igb_getreg(PVFGORC7),
3024     igb_getreg(PVFGOTC0),
3025     igb_getreg(PVFGOTC1),
3026     igb_getreg(PVFGOTC2),
3027     igb_getreg(PVFGOTC3),
3028     igb_getreg(PVFGOTC4),
3029     igb_getreg(PVFGOTC5),
3030     igb_getreg(PVFGOTC6),
3031     igb_getreg(PVFGOTC7),
3032     igb_getreg(PVFMPRC0),
3033     igb_getreg(PVFMPRC1),
3034     igb_getreg(PVFMPRC2),
3035     igb_getreg(PVFMPRC3),
3036     igb_getreg(PVFMPRC4),
3037     igb_getreg(PVFMPRC5),
3038     igb_getreg(PVFMPRC6),
3039     igb_getreg(PVFMPRC7),
3040     igb_getreg(PVFGPRLBC0),
3041     igb_getreg(PVFGPRLBC1),
3042     igb_getreg(PVFGPRLBC2),
3043     igb_getreg(PVFGPRLBC3),
3044     igb_getreg(PVFGPRLBC4),
3045     igb_getreg(PVFGPRLBC5),
3046     igb_getreg(PVFGPRLBC6),
3047     igb_getreg(PVFGPRLBC7),
3048     igb_getreg(PVFGPTLBC0),
3049     igb_getreg(PVFGPTLBC1),
3050     igb_getreg(PVFGPTLBC2),
3051     igb_getreg(PVFGPTLBC3),
3052     igb_getreg(PVFGPTLBC4),
3053     igb_getreg(PVFGPTLBC5),
3054     igb_getreg(PVFGPTLBC6),
3055     igb_getreg(PVFGPTLBC7),
3056     igb_getreg(PVFGORLBC0),
3057     igb_getreg(PVFGORLBC1),
3058     igb_getreg(PVFGORLBC2),
3059     igb_getreg(PVFGORLBC3),
3060     igb_getreg(PVFGORLBC4),
3061     igb_getreg(PVFGORLBC5),
3062     igb_getreg(PVFGORLBC6),
3063     igb_getreg(PVFGORLBC7),
3064     igb_getreg(PVFGOTLBC0),
3065     igb_getreg(PVFGOTLBC1),
3066     igb_getreg(PVFGOTLBC2),
3067     igb_getreg(PVFGOTLBC3),
3068     igb_getreg(PVFGOTLBC4),
3069     igb_getreg(PVFGOTLBC5),
3070     igb_getreg(PVFGOTLBC6),
3071     igb_getreg(PVFGOTLBC7),
3072     igb_getreg(RCTL),
3073     igb_getreg(MDIC),
3074     igb_getreg(FCRUC),
3075     igb_getreg(VET),
3076     igb_getreg(RDBAL0),
3077     igb_getreg(RDBAL1),
3078     igb_getreg(RDBAL2),
3079     igb_getreg(RDBAL3),
3080     igb_getreg(RDBAL4),
3081     igb_getreg(RDBAL5),
3082     igb_getreg(RDBAL6),
3083     igb_getreg(RDBAL7),
3084     igb_getreg(RDBAL8),
3085     igb_getreg(RDBAL9),
3086     igb_getreg(RDBAL10),
3087     igb_getreg(RDBAL11),
3088     igb_getreg(RDBAL12),
3089     igb_getreg(RDBAL13),
3090     igb_getreg(RDBAL14),
3091     igb_getreg(RDBAL15),
3092     igb_getreg(TDBAH0),
3093     igb_getreg(TDBAH1),
3094     igb_getreg(TDBAH2),
3095     igb_getreg(TDBAH3),
3096     igb_getreg(TDBAH4),
3097     igb_getreg(TDBAH5),
3098     igb_getreg(TDBAH6),
3099     igb_getreg(TDBAH7),
3100     igb_getreg(TDBAH8),
3101     igb_getreg(TDBAH9),
3102     igb_getreg(TDBAH10),
3103     igb_getreg(TDBAH11),
3104     igb_getreg(TDBAH12),
3105     igb_getreg(TDBAH13),
3106     igb_getreg(TDBAH14),
3107     igb_getreg(TDBAH15),
3108     igb_getreg(SCC),
3109     igb_getreg(COLC),
3110     igb_getreg(XOFFRXC),
3111     igb_getreg(IPAV),
3112     igb_getreg(GOTCL),
3113     igb_getreg(MGTPDC),
3114     igb_getreg(GCR),
3115     igb_getreg(MFVAL),
3116     igb_getreg(FUNCTAG),
3117     igb_getreg(GSCL_4),
3118     igb_getreg(GSCN_3),
3119     igb_getreg(MRQC),
3120     igb_getreg(FCT),
3121     igb_getreg(FLA),
3122     igb_getreg(RXDCTL0),
3123     igb_getreg(RXDCTL1),
3124     igb_getreg(RXDCTL2),
3125     igb_getreg(RXDCTL3),
3126     igb_getreg(RXDCTL4),
3127     igb_getreg(RXDCTL5),
3128     igb_getreg(RXDCTL6),
3129     igb_getreg(RXDCTL7),
3130     igb_getreg(RXDCTL8),
3131     igb_getreg(RXDCTL9),
3132     igb_getreg(RXDCTL10),
3133     igb_getreg(RXDCTL11),
3134     igb_getreg(RXDCTL12),
3135     igb_getreg(RXDCTL13),
3136     igb_getreg(RXDCTL14),
3137     igb_getreg(RXDCTL15),
3138     igb_getreg(RXSTMPL),
3139     igb_getreg(TIMADJH),
3140     igb_getreg(FCRTL),
3141     igb_getreg(XONRXC),
3142     igb_getreg(RFCTL),
3143     igb_getreg(GSCN_1),
3144     igb_getreg(FCAL),
3145     igb_getreg(GPIE),
3146     igb_getreg(TXPBS),
3147     igb_getreg(RLPML),
3148
3149     [TOTH]    = igb_mac_read_clr8,
3150     [GOTCH]   = igb_mac_read_clr8,
3151     [PRC64]   = igb_mac_read_clr4,
3152     [PRC255]  = igb_mac_read_clr4,
3153     [PRC1023] = igb_mac_read_clr4,
3154     [PTC64]   = igb_mac_read_clr4,
3155     [PTC255]  = igb_mac_read_clr4,
3156     [PTC1023] = igb_mac_read_clr4,
3157     [GPRC]    = igb_mac_read_clr4,
3158     [TPT]     = igb_mac_read_clr4,
3159     [RUC]     = igb_mac_read_clr4,
3160     [BPRC]    = igb_mac_read_clr4,
3161     [MPTC]    = igb_mac_read_clr4,
3162     [IAC]     = igb_mac_read_clr4,
3163     [ICR]     = igb_mac_icr_read,
3164     [STATUS]  = igb_get_status,
3165     [ICS]     = igb_mac_ics_read,
3166     /*
3167      * 8.8.10: Reading the IMC register returns the value of the IMS register.
3168      */
3169     [IMC]     = igb_mac_ims_read,
3170     [TORH]    = igb_mac_read_clr8,
3171     [GORCH]   = igb_mac_read_clr8,
3172     [PRC127]  = igb_mac_read_clr4,
3173     [PRC511]  = igb_mac_read_clr4,
3174     [PRC1522] = igb_mac_read_clr4,
3175     [PTC127]  = igb_mac_read_clr4,
3176     [PTC511]  = igb_mac_read_clr4,
3177     [PTC1522] = igb_mac_read_clr4,
3178     [GPTC]    = igb_mac_read_clr4,
3179     [TPR]     = igb_mac_read_clr4,
3180     [ROC]     = igb_mac_read_clr4,
3181     [MPRC]    = igb_mac_read_clr4,
3182     [BPTC]    = igb_mac_read_clr4,
3183     [TSCTC]   = igb_mac_read_clr4,
3184     [CTRL]    = igb_get_ctrl,
3185     [SWSM]    = igb_mac_swsm_read,
3186     [IMS]     = igb_mac_ims_read,
3187     [SYSTIML] = igb_get_systiml,
3188     [RXSATRH] = igb_get_rxsatrh,
3189     [TXSTMPH] = igb_get_txstmph,
3190
3191     [CRCERRS ... MPC]      = igb_mac_readreg,
3192     [IP6AT ... IP6AT + 3]  = igb_mac_readreg,
3193     [IP4AT ... IP4AT + 6]  = igb_mac_readreg,
3194     [RA ... RA + 31]       = igb_mac_readreg,
3195     [RA2 ... RA2 + 31]     = igb_mac_readreg,
3196     [WUPM ... WUPM + 31]   = igb_mac_readreg,
3197     [MTA ... MTA + E1000_MC_TBL_SIZE - 1]    = igb_mac_readreg,
3198     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]  = igb_mac_readreg,
3199     [FFMT ... FFMT + 254]  = igb_mac_readreg,
3200     [MDEF ... MDEF + 7]    = igb_mac_readreg,
3201     [FTFT ... FTFT + 254]  = igb_mac_readreg,
3202     [RETA ... RETA + 31]   = igb_mac_readreg,
3203     [RSSRK ... RSSRK + 9]  = igb_mac_readreg,
3204     [MAVTV0 ... MAVTV3]    = igb_mac_readreg,
3205     [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_mac_eitr_read,
3206     [PVTEICR0] = igb_mac_read_clr4,
3207     [PVTEICR1] = igb_mac_read_clr4,
3208     [PVTEICR2] = igb_mac_read_clr4,
3209     [PVTEICR3] = igb_mac_read_clr4,
3210     [PVTEICR4] = igb_mac_read_clr4,
3211     [PVTEICR5] = igb_mac_read_clr4,
3212     [PVTEICR6] = igb_mac_read_clr4,
3213     [PVTEICR7] = igb_mac_read_clr4,
3214
3215     /* IGB specific: */
3216     [FWSM]       = igb_mac_readreg,
3217     [SW_FW_SYNC] = igb_mac_readreg,
3218     [HTCBDPC]    = igb_mac_read_clr4,
3219     [EICR]       = igb_mac_read_clr4,
3220     [EIMS]       = igb_mac_readreg,
3221     [EIAM]       = igb_mac_readreg,
3222     [IVAR0 ... IVAR0 + 7] = igb_mac_readreg,
3223     igb_getreg(IVAR_MISC),
3224     igb_getreg(VT_CTL),
3225     [P2VMAILBOX0 ... P2VMAILBOX7] = igb_mac_readreg,
3226     [V2PMAILBOX0 ... V2PMAILBOX7] = igb_mac_vfmailbox_read,
3227     igb_getreg(MBVFICR),
3228     [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_readreg,
3229     igb_getreg(MBVFIMR),
3230     igb_getreg(VFLRE),
3231     igb_getreg(VFRE),
3232     igb_getreg(VFTE),
3233     igb_getreg(QDE),
3234     igb_getreg(DTXSWC),
3235     igb_getreg(RPLOLR),
3236     [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_readreg,
3237     [VMVIR0 ... VMVIR7] = igb_mac_readreg,
3238     [VMOLR0 ... VMOLR7] = igb_mac_readreg,
3239     [WVBR] = igb_mac_read_clr4,
3240     [RQDPC0] = igb_mac_read_clr4,
3241     [RQDPC1] = igb_mac_read_clr4,
3242     [RQDPC2] = igb_mac_read_clr4,
3243     [RQDPC3] = igb_mac_read_clr4,
3244     [RQDPC4] = igb_mac_read_clr4,
3245     [RQDPC5] = igb_mac_read_clr4,
3246     [RQDPC6] = igb_mac_read_clr4,
3247     [RQDPC7] = igb_mac_read_clr4,
3248     [RQDPC8] = igb_mac_read_clr4,
3249     [RQDPC9] = igb_mac_read_clr4,
3250     [RQDPC10] = igb_mac_read_clr4,
3251     [RQDPC11] = igb_mac_read_clr4,
3252     [RQDPC12] = igb_mac_read_clr4,
3253     [RQDPC13] = igb_mac_read_clr4,
3254     [RQDPC14] = igb_mac_read_clr4,
3255     [RQDPC15] = igb_mac_read_clr4,
3256     [VTIVAR ... VTIVAR + 7] = igb_mac_readreg,
3257     [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_readreg,
3258 };
3259 enum { IGB_NREADOPS = ARRAY_SIZE(igb_macreg_readops) };
3260
3261 #define igb_putreg(x)    [x] = igb_mac_writereg
3262 typedef void (*writeops)(IGBCore *, int, uint32_t);
3263 static const writeops igb_macreg_writeops[] = {
3264     igb_putreg(SWSM),
3265     igb_putreg(WUFC),
3266     igb_putreg(RDBAH0),
3267     igb_putreg(RDBAH1),
3268     igb_putreg(RDBAH2),
3269     igb_putreg(RDBAH3),
3270     igb_putreg(RDBAH4),
3271     igb_putreg(RDBAH5),
3272     igb_putreg(RDBAH6),
3273     igb_putreg(RDBAH7),
3274     igb_putreg(RDBAH8),
3275     igb_putreg(RDBAH9),
3276     igb_putreg(RDBAH10),
3277     igb_putreg(RDBAH11),
3278     igb_putreg(RDBAH12),
3279     igb_putreg(RDBAH13),
3280     igb_putreg(RDBAH14),
3281     igb_putreg(RDBAH15),
3282     igb_putreg(SRRCTL0),
3283     igb_putreg(SRRCTL1),
3284     igb_putreg(SRRCTL2),
3285     igb_putreg(SRRCTL3),
3286     igb_putreg(SRRCTL4),
3287     igb_putreg(SRRCTL5),
3288     igb_putreg(SRRCTL6),
3289     igb_putreg(SRRCTL7),
3290     igb_putreg(SRRCTL8),
3291     igb_putreg(SRRCTL9),
3292     igb_putreg(SRRCTL10),
3293     igb_putreg(SRRCTL11),
3294     igb_putreg(SRRCTL12),
3295     igb_putreg(SRRCTL13),
3296     igb_putreg(SRRCTL14),
3297     igb_putreg(SRRCTL15),
3298     igb_putreg(RXDCTL0),
3299     igb_putreg(RXDCTL1),
3300     igb_putreg(RXDCTL2),
3301     igb_putreg(RXDCTL3),
3302     igb_putreg(RXDCTL4),
3303     igb_putreg(RXDCTL5),
3304     igb_putreg(RXDCTL6),
3305     igb_putreg(RXDCTL7),
3306     igb_putreg(RXDCTL8),
3307     igb_putreg(RXDCTL9),
3308     igb_putreg(RXDCTL10),
3309     igb_putreg(RXDCTL11),
3310     igb_putreg(RXDCTL12),
3311     igb_putreg(RXDCTL13),
3312     igb_putreg(RXDCTL14),
3313     igb_putreg(RXDCTL15),
3314     igb_putreg(LEDCTL),
3315     igb_putreg(TCTL),
3316     igb_putreg(TCTL_EXT),
3317     igb_putreg(DTXCTL),
3318     igb_putreg(RXPBS),
3319     igb_putreg(RQDPC0),
3320     igb_putreg(FCAL),
3321     igb_putreg(FCRUC),
3322     igb_putreg(WUC),
3323     igb_putreg(WUS),
3324     igb_putreg(IPAV),
3325     igb_putreg(TDBAH0),
3326     igb_putreg(TDBAH1),
3327     igb_putreg(TDBAH2),
3328     igb_putreg(TDBAH3),
3329     igb_putreg(TDBAH4),
3330     igb_putreg(TDBAH5),
3331     igb_putreg(TDBAH6),
3332     igb_putreg(TDBAH7),
3333     igb_putreg(TDBAH8),
3334     igb_putreg(TDBAH9),
3335     igb_putreg(TDBAH10),
3336     igb_putreg(TDBAH11),
3337     igb_putreg(TDBAH12),
3338     igb_putreg(TDBAH13),
3339     igb_putreg(TDBAH14),
3340     igb_putreg(TDBAH15),
3341     igb_putreg(IAM),
3342     igb_putreg(MANC),
3343     igb_putreg(MANC2H),
3344     igb_putreg(MFVAL),
3345     igb_putreg(FACTPS),
3346     igb_putreg(FUNCTAG),
3347     igb_putreg(GSCL_1),
3348     igb_putreg(GSCL_2),
3349     igb_putreg(GSCL_3),
3350     igb_putreg(GSCL_4),
3351     igb_putreg(GSCN_0),
3352     igb_putreg(GSCN_1),
3353     igb_putreg(GSCN_2),
3354     igb_putreg(GSCN_3),
3355     igb_putreg(MRQC),
3356     igb_putreg(FLOP),
3357     igb_putreg(FLA),
3358     igb_putreg(TXDCTL0),
3359     igb_putreg(TXDCTL1),
3360     igb_putreg(TXDCTL2),
3361     igb_putreg(TXDCTL3),
3362     igb_putreg(TXDCTL4),
3363     igb_putreg(TXDCTL5),
3364     igb_putreg(TXDCTL6),
3365     igb_putreg(TXDCTL7),
3366     igb_putreg(TXDCTL8),
3367     igb_putreg(TXDCTL9),
3368     igb_putreg(TXDCTL10),
3369     igb_putreg(TXDCTL11),
3370     igb_putreg(TXDCTL12),
3371     igb_putreg(TXDCTL13),
3372     igb_putreg(TXDCTL14),
3373     igb_putreg(TXDCTL15),
3374     igb_putreg(TXCTL0),
3375     igb_putreg(TXCTL1),
3376     igb_putreg(TXCTL2),
3377     igb_putreg(TXCTL3),
3378     igb_putreg(TXCTL4),
3379     igb_putreg(TXCTL5),
3380     igb_putreg(TXCTL6),
3381     igb_putreg(TXCTL7),
3382     igb_putreg(TXCTL8),
3383     igb_putreg(TXCTL9),
3384     igb_putreg(TXCTL10),
3385     igb_putreg(TXCTL11),
3386     igb_putreg(TXCTL12),
3387     igb_putreg(TXCTL13),
3388     igb_putreg(TXCTL14),
3389     igb_putreg(TXCTL15),
3390     igb_putreg(TDWBAL0),
3391     igb_putreg(TDWBAL1),
3392     igb_putreg(TDWBAL2),
3393     igb_putreg(TDWBAL3),
3394     igb_putreg(TDWBAL4),
3395     igb_putreg(TDWBAL5),
3396     igb_putreg(TDWBAL6),
3397     igb_putreg(TDWBAL7),
3398     igb_putreg(TDWBAL8),
3399     igb_putreg(TDWBAL9),
3400     igb_putreg(TDWBAL10),
3401     igb_putreg(TDWBAL11),
3402     igb_putreg(TDWBAL12),
3403     igb_putreg(TDWBAL13),
3404     igb_putreg(TDWBAL14),
3405     igb_putreg(TDWBAL15),
3406     igb_putreg(TDWBAH0),
3407     igb_putreg(TDWBAH1),
3408     igb_putreg(TDWBAH2),
3409     igb_putreg(TDWBAH3),
3410     igb_putreg(TDWBAH4),
3411     igb_putreg(TDWBAH5),
3412     igb_putreg(TDWBAH6),
3413     igb_putreg(TDWBAH7),
3414     igb_putreg(TDWBAH8),
3415     igb_putreg(TDWBAH9),
3416     igb_putreg(TDWBAH10),
3417     igb_putreg(TDWBAH11),
3418     igb_putreg(TDWBAH12),
3419     igb_putreg(TDWBAH13),
3420     igb_putreg(TDWBAH14),
3421     igb_putreg(TDWBAH15),
3422     igb_putreg(TIPG),
3423     igb_putreg(RXSTMPH),
3424     igb_putreg(RXSTMPL),
3425     igb_putreg(RXSATRL),
3426     igb_putreg(RXSATRH),
3427     igb_putreg(TXSTMPL),
3428     igb_putreg(TXSTMPH),
3429     igb_putreg(SYSTIML),
3430     igb_putreg(SYSTIMH),
3431     igb_putreg(TIMADJL),
3432     igb_putreg(TSYNCRXCTL),
3433     igb_putreg(TSYNCTXCTL),
3434     igb_putreg(EEMNGCTL),
3435     igb_putreg(GPIE),
3436     igb_putreg(TXPBS),
3437     igb_putreg(RLPML),
3438     igb_putreg(VET),
3439
3440     [TDH0]     = igb_set_16bit,
3441     [TDH1]     = igb_set_16bit,
3442     [TDH2]     = igb_set_16bit,
3443     [TDH3]     = igb_set_16bit,
3444     [TDH4]     = igb_set_16bit,
3445     [TDH5]     = igb_set_16bit,
3446     [TDH6]     = igb_set_16bit,
3447     [TDH7]     = igb_set_16bit,
3448     [TDH8]     = igb_set_16bit,
3449     [TDH9]     = igb_set_16bit,
3450     [TDH10]    = igb_set_16bit,
3451     [TDH11]    = igb_set_16bit,
3452     [TDH12]    = igb_set_16bit,
3453     [TDH13]    = igb_set_16bit,
3454     [TDH14]    = igb_set_16bit,
3455     [TDH15]    = igb_set_16bit,
3456     [TDT0]     = igb_set_tdt,
3457     [TDT1]     = igb_set_tdt,
3458     [TDT2]     = igb_set_tdt,
3459     [TDT3]     = igb_set_tdt,
3460     [TDT4]     = igb_set_tdt,
3461     [TDT5]     = igb_set_tdt,
3462     [TDT6]     = igb_set_tdt,
3463     [TDT7]     = igb_set_tdt,
3464     [TDT8]     = igb_set_tdt,
3465     [TDT9]     = igb_set_tdt,
3466     [TDT10]    = igb_set_tdt,
3467     [TDT11]    = igb_set_tdt,
3468     [TDT12]    = igb_set_tdt,
3469     [TDT13]    = igb_set_tdt,
3470     [TDT14]    = igb_set_tdt,
3471     [TDT15]    = igb_set_tdt,
3472     [MDIC]     = igb_set_mdic,
3473     [ICS]      = igb_set_ics,
3474     [RDH0]     = igb_set_16bit,
3475     [RDH1]     = igb_set_16bit,
3476     [RDH2]     = igb_set_16bit,
3477     [RDH3]     = igb_set_16bit,
3478     [RDH4]     = igb_set_16bit,
3479     [RDH5]     = igb_set_16bit,
3480     [RDH6]     = igb_set_16bit,
3481     [RDH7]     = igb_set_16bit,
3482     [RDH8]     = igb_set_16bit,
3483     [RDH9]     = igb_set_16bit,
3484     [RDH10]    = igb_set_16bit,
3485     [RDH11]    = igb_set_16bit,
3486     [RDH12]    = igb_set_16bit,
3487     [RDH13]    = igb_set_16bit,
3488     [RDH14]    = igb_set_16bit,
3489     [RDH15]    = igb_set_16bit,
3490     [RDT0]     = igb_set_rdt,
3491     [RDT1]     = igb_set_rdt,
3492     [RDT2]     = igb_set_rdt,
3493     [RDT3]     = igb_set_rdt,
3494     [RDT4]     = igb_set_rdt,
3495     [RDT5]     = igb_set_rdt,
3496     [RDT6]     = igb_set_rdt,
3497     [RDT7]     = igb_set_rdt,
3498     [RDT8]     = igb_set_rdt,
3499     [RDT9]     = igb_set_rdt,
3500     [RDT10]    = igb_set_rdt,
3501     [RDT11]    = igb_set_rdt,
3502     [RDT12]    = igb_set_rdt,
3503     [RDT13]    = igb_set_rdt,
3504     [RDT14]    = igb_set_rdt,
3505     [RDT15]    = igb_set_rdt,
3506     [IMC]      = igb_set_imc,
3507     [IMS]      = igb_set_ims,
3508     [ICR]      = igb_set_icr,
3509     [EECD]     = igb_set_eecd,
3510     [RCTL]     = igb_set_rx_control,
3511     [CTRL]     = igb_set_ctrl,
3512     [EERD]     = igb_set_eerd,
3513     [TDFH]     = igb_set_13bit,
3514     [TDFT]     = igb_set_13bit,
3515     [TDFHS]    = igb_set_13bit,
3516     [TDFTS]    = igb_set_13bit,
3517     [TDFPC]    = igb_set_13bit,
3518     [RDFH]     = igb_set_13bit,
3519     [RDFT]     = igb_set_13bit,
3520     [RDFHS]    = igb_set_13bit,
3521     [RDFTS]    = igb_set_13bit,
3522     [RDFPC]    = igb_set_13bit,
3523     [GCR]      = igb_set_gcr,
3524     [RXCSUM]   = igb_set_rxcsum,
3525     [TDLEN0]   = igb_set_dlen,
3526     [TDLEN1]   = igb_set_dlen,
3527     [TDLEN2]   = igb_set_dlen,
3528     [TDLEN3]   = igb_set_dlen,
3529     [TDLEN4]   = igb_set_dlen,
3530     [TDLEN5]   = igb_set_dlen,
3531     [TDLEN6]   = igb_set_dlen,
3532     [TDLEN7]   = igb_set_dlen,
3533     [TDLEN8]   = igb_set_dlen,
3534     [TDLEN9]   = igb_set_dlen,
3535     [TDLEN10]  = igb_set_dlen,
3536     [TDLEN11]  = igb_set_dlen,
3537     [TDLEN12]  = igb_set_dlen,
3538     [TDLEN13]  = igb_set_dlen,
3539     [TDLEN14]  = igb_set_dlen,
3540     [TDLEN15]  = igb_set_dlen,
3541     [RDLEN0]   = igb_set_dlen,
3542     [RDLEN1]   = igb_set_dlen,
3543     [RDLEN2]   = igb_set_dlen,
3544     [RDLEN3]   = igb_set_dlen,
3545     [RDLEN4]   = igb_set_dlen,
3546     [RDLEN5]   = igb_set_dlen,
3547     [RDLEN6]   = igb_set_dlen,
3548     [RDLEN7]   = igb_set_dlen,
3549     [RDLEN8]   = igb_set_dlen,
3550     [RDLEN9]   = igb_set_dlen,
3551     [RDLEN10]  = igb_set_dlen,
3552     [RDLEN11]  = igb_set_dlen,
3553     [RDLEN12]  = igb_set_dlen,
3554     [RDLEN13]  = igb_set_dlen,
3555     [RDLEN14]  = igb_set_dlen,
3556     [RDLEN15]  = igb_set_dlen,
3557     [TDBAL0]   = igb_set_dbal,
3558     [TDBAL1]   = igb_set_dbal,
3559     [TDBAL2]   = igb_set_dbal,
3560     [TDBAL3]   = igb_set_dbal,
3561     [TDBAL4]   = igb_set_dbal,
3562     [TDBAL5]   = igb_set_dbal,
3563     [TDBAL6]   = igb_set_dbal,
3564     [TDBAL7]   = igb_set_dbal,
3565     [TDBAL8]   = igb_set_dbal,
3566     [TDBAL9]   = igb_set_dbal,
3567     [TDBAL10]  = igb_set_dbal,
3568     [TDBAL11]  = igb_set_dbal,
3569     [TDBAL12]  = igb_set_dbal,
3570     [TDBAL13]  = igb_set_dbal,
3571     [TDBAL14]  = igb_set_dbal,
3572     [TDBAL15]  = igb_set_dbal,
3573     [RDBAL0]   = igb_set_dbal,
3574     [RDBAL1]   = igb_set_dbal,
3575     [RDBAL2]   = igb_set_dbal,
3576     [RDBAL3]   = igb_set_dbal,
3577     [RDBAL4]   = igb_set_dbal,
3578     [RDBAL5]   = igb_set_dbal,
3579     [RDBAL6]   = igb_set_dbal,
3580     [RDBAL7]   = igb_set_dbal,
3581     [RDBAL8]   = igb_set_dbal,
3582     [RDBAL9]   = igb_set_dbal,
3583     [RDBAL10]  = igb_set_dbal,
3584     [RDBAL11]  = igb_set_dbal,
3585     [RDBAL12]  = igb_set_dbal,
3586     [RDBAL13]  = igb_set_dbal,
3587     [RDBAL14]  = igb_set_dbal,
3588     [RDBAL15]  = igb_set_dbal,
3589     [STATUS]   = igb_set_status,
3590     [PBACLR]   = igb_set_pbaclr,
3591     [CTRL_EXT] = igb_set_ctrlext,
3592     [FCAH]     = igb_set_16bit,
3593     [FCT]      = igb_set_16bit,
3594     [FCTTV]    = igb_set_16bit,
3595     [FCRTV]    = igb_set_16bit,
3596     [FCRTH]    = igb_set_fcrth,
3597     [FCRTL]    = igb_set_fcrtl,
3598     [CTRL_DUP] = igb_set_ctrl,
3599     [RFCTL]    = igb_set_rfctl,
3600     [TIMINCA]  = igb_set_timinca,
3601     [TIMADJH]  = igb_set_timadjh,
3602
3603     [IP6AT ... IP6AT + 3]    = igb_mac_writereg,
3604     [IP4AT ... IP4AT + 6]    = igb_mac_writereg,
3605     [RA]                     = igb_mac_writereg,
3606     [RA + 1]                 = igb_mac_setmacaddr,
3607     [RA + 2 ... RA + 31]     = igb_mac_writereg,
3608     [RA2 ... RA2 + 31]       = igb_mac_writereg,
3609     [WUPM ... WUPM + 31]     = igb_mac_writereg,
3610     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg,
3611     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_writereg,
3612     [FFMT ... FFMT + 254]    = igb_set_4bit,
3613     [MDEF ... MDEF + 7]      = igb_mac_writereg,
3614     [FTFT ... FTFT + 254]    = igb_mac_writereg,
3615     [RETA ... RETA + 31]     = igb_mac_writereg,
3616     [RSSRK ... RSSRK + 9]    = igb_mac_writereg,
3617     [MAVTV0 ... MAVTV3]      = igb_mac_writereg,
3618     [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_set_eitr,
3619
3620     /* IGB specific: */
3621     [FWSM]     = igb_mac_writereg,
3622     [SW_FW_SYNC] = igb_mac_writereg,
3623     [EICR] = igb_set_eicr,
3624     [EICS] = igb_set_eics,
3625     [EIAC] = igb_set_eiac,
3626     [EIAM] = igb_set_eiam,
3627     [EIMC] = igb_set_eimc,
3628     [EIMS] = igb_set_eims,
3629     [IVAR0 ... IVAR0 + 7] = igb_mac_writereg,
3630     igb_putreg(IVAR_MISC),
3631     igb_putreg(VT_CTL),
3632     [P2VMAILBOX0 ... P2VMAILBOX7] = igb_set_pfmailbox,
3633     [V2PMAILBOX0 ... V2PMAILBOX7] = igb_set_vfmailbox,
3634     [MBVFICR] = igb_w1c,
3635     [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_writereg,
3636     igb_putreg(MBVFIMR),
3637     [VFLRE] = igb_w1c,
3638     igb_putreg(VFRE),
3639     igb_putreg(VFTE),
3640     igb_putreg(QDE),
3641     igb_putreg(DTXSWC),
3642     igb_putreg(RPLOLR),
3643     [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_writereg,
3644     [VMVIR0 ... VMVIR7] = igb_mac_writereg,
3645     [VMOLR0 ... VMOLR7] = igb_mac_writereg,
3646     [UTA ... UTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg,
3647     [PVTCTRL0] = igb_set_vtctrl,
3648     [PVTCTRL1] = igb_set_vtctrl,
3649     [PVTCTRL2] = igb_set_vtctrl,
3650     [PVTCTRL3] = igb_set_vtctrl,
3651     [PVTCTRL4] = igb_set_vtctrl,
3652     [PVTCTRL5] = igb_set_vtctrl,
3653     [PVTCTRL6] = igb_set_vtctrl,
3654     [PVTCTRL7] = igb_set_vtctrl,
3655     [PVTEICS0] = igb_set_vteics,
3656     [PVTEICS1] = igb_set_vteics,
3657     [PVTEICS2] = igb_set_vteics,
3658     [PVTEICS3] = igb_set_vteics,
3659     [PVTEICS4] = igb_set_vteics,
3660     [PVTEICS5] = igb_set_vteics,
3661     [PVTEICS6] = igb_set_vteics,
3662     [PVTEICS7] = igb_set_vteics,
3663     [PVTEIMS0] = igb_set_vteims,
3664     [PVTEIMS1] = igb_set_vteims,
3665     [PVTEIMS2] = igb_set_vteims,
3666     [PVTEIMS3] = igb_set_vteims,
3667     [PVTEIMS4] = igb_set_vteims,
3668     [PVTEIMS5] = igb_set_vteims,
3669     [PVTEIMS6] = igb_set_vteims,
3670     [PVTEIMS7] = igb_set_vteims,
3671     [PVTEIMC0] = igb_set_vteimc,
3672     [PVTEIMC1] = igb_set_vteimc,
3673     [PVTEIMC2] = igb_set_vteimc,
3674     [PVTEIMC3] = igb_set_vteimc,
3675     [PVTEIMC4] = igb_set_vteimc,
3676     [PVTEIMC5] = igb_set_vteimc,
3677     [PVTEIMC6] = igb_set_vteimc,
3678     [PVTEIMC7] = igb_set_vteimc,
3679     [PVTEIAC0] = igb_set_vteiac,
3680     [PVTEIAC1] = igb_set_vteiac,
3681     [PVTEIAC2] = igb_set_vteiac,
3682     [PVTEIAC3] = igb_set_vteiac,
3683     [PVTEIAC4] = igb_set_vteiac,
3684     [PVTEIAC5] = igb_set_vteiac,
3685     [PVTEIAC6] = igb_set_vteiac,
3686     [PVTEIAC7] = igb_set_vteiac,
3687     [PVTEIAM0] = igb_set_vteiam,
3688     [PVTEIAM1] = igb_set_vteiam,
3689     [PVTEIAM2] = igb_set_vteiam,
3690     [PVTEIAM3] = igb_set_vteiam,
3691     [PVTEIAM4] = igb_set_vteiam,
3692     [PVTEIAM5] = igb_set_vteiam,
3693     [PVTEIAM6] = igb_set_vteiam,
3694     [PVTEIAM7] = igb_set_vteiam,
3695     [PVTEICR0] = igb_set_vteicr,
3696     [PVTEICR1] = igb_set_vteicr,
3697     [PVTEICR2] = igb_set_vteicr,
3698     [PVTEICR3] = igb_set_vteicr,
3699     [PVTEICR4] = igb_set_vteicr,
3700     [PVTEICR5] = igb_set_vteicr,
3701     [PVTEICR6] = igb_set_vteicr,
3702     [PVTEICR7] = igb_set_vteicr,
3703     [VTIVAR ... VTIVAR + 7] = igb_set_vtivar,
3704     [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_writereg
3705 };
3706 enum { IGB_NWRITEOPS = ARRAY_SIZE(igb_macreg_writeops) };
3707
3708 enum { MAC_ACCESS_PARTIAL = 1 };
3709
3710 /*
3711  * The array below combines alias offsets of the index values for the
3712  * MAC registers that have aliases, with the indication of not fully
3713  * implemented registers (lowest bit). This combination is possible
3714  * because all of the offsets are even.
3715  */
3716 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3717     /* Alias index offsets */
3718     [FCRTL_A] = 0x07fe,
3719     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3720     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3721     [RA_A ... RA_A + 31]      = 0x14f0,
3722     [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3723
3724     [RDBAL0_A] = 0x2600,
3725     [RDBAH0_A] = 0x2600,
3726     [RDLEN0_A] = 0x2600,
3727     [SRRCTL0_A] = 0x2600,
3728     [RDH0_A] = 0x2600,
3729     [RDT0_A] = 0x2600,
3730     [RXDCTL0_A] = 0x2600,
3731     [RXCTL0_A] = 0x2600,
3732     [RQDPC0_A] = 0x2600,
3733     [RDBAL1_A] = 0x25D0,
3734     [RDBAL2_A] = 0x25A0,
3735     [RDBAL3_A] = 0x2570,
3736     [RDBAH1_A] = 0x25D0,
3737     [RDBAH2_A] = 0x25A0,
3738     [RDBAH3_A] = 0x2570,
3739     [RDLEN1_A] = 0x25D0,
3740     [RDLEN2_A] = 0x25A0,
3741     [RDLEN3_A] = 0x2570,
3742     [SRRCTL1_A] = 0x25D0,
3743     [SRRCTL2_A] = 0x25A0,
3744     [SRRCTL3_A] = 0x2570,
3745     [RDH1_A] = 0x25D0,
3746     [RDH2_A] = 0x25A0,
3747     [RDH3_A] = 0x2570,
3748     [RDT1_A] = 0x25D0,
3749     [RDT2_A] = 0x25A0,
3750     [RDT3_A] = 0x2570,
3751     [RXDCTL1_A] = 0x25D0,
3752     [RXDCTL2_A] = 0x25A0,
3753     [RXDCTL3_A] = 0x2570,
3754     [RXCTL1_A] = 0x25D0,
3755     [RXCTL2_A] = 0x25A0,
3756     [RXCTL3_A] = 0x2570,
3757     [RQDPC1_A] = 0x25D0,
3758     [RQDPC2_A] = 0x25A0,
3759     [RQDPC3_A] = 0x2570,
3760     [TDBAL0_A] = 0x2A00,
3761     [TDBAH0_A] = 0x2A00,
3762     [TDLEN0_A] = 0x2A00,
3763     [TDH0_A] = 0x2A00,
3764     [TDT0_A] = 0x2A00,
3765     [TXCTL0_A] = 0x2A00,
3766     [TDWBAL0_A] = 0x2A00,
3767     [TDWBAH0_A] = 0x2A00,
3768     [TDBAL1_A] = 0x29D0,
3769     [TDBAL2_A] = 0x29A0,
3770     [TDBAL3_A] = 0x2970,
3771     [TDBAH1_A] = 0x29D0,
3772     [TDBAH2_A] = 0x29A0,
3773     [TDBAH3_A] = 0x2970,
3774     [TDLEN1_A] = 0x29D0,
3775     [TDLEN2_A] = 0x29A0,
3776     [TDLEN3_A] = 0x2970,
3777     [TDH1_A] = 0x29D0,
3778     [TDH2_A] = 0x29A0,
3779     [TDH3_A] = 0x2970,
3780     [TDT1_A] = 0x29D0,
3781     [TDT2_A] = 0x29A0,
3782     [TDT3_A] = 0x2970,
3783     [TXDCTL0_A] = 0x2A00,
3784     [TXDCTL1_A] = 0x29D0,
3785     [TXDCTL2_A] = 0x29A0,
3786     [TXDCTL3_A] = 0x2970,
3787     [TXCTL1_A] = 0x29D0,
3788     [TXCTL2_A] = 0x29A0,
3789     [TXCTL3_A] = 0x29D0,
3790     [TDWBAL1_A] = 0x29D0,
3791     [TDWBAL2_A] = 0x29A0,
3792     [TDWBAL3_A] = 0x2970,
3793     [TDWBAH1_A] = 0x29D0,
3794     [TDWBAH2_A] = 0x29A0,
3795     [TDWBAH3_A] = 0x2970,
3796
3797     /* Access options */
3798     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3799     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3800     [RDFPC] = MAC_ACCESS_PARTIAL,
3801     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3802     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3803     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3804     [FLA]   = MAC_ACCESS_PARTIAL,
3805     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3806     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3807     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3808     [FCRTH] = MAC_ACCESS_PARTIAL,
3809     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3810 };
3811
3812 void
3813 igb_core_write(IGBCore *core, hwaddr addr, uint64_t val, unsigned size)
3814 {
3815     uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr);
3816
3817     if (index < IGB_NWRITEOPS && igb_macreg_writeops[index]) {
3818         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3819             trace_e1000e_wrn_regs_write_trivial(index << 2);
3820         }
3821         trace_e1000e_core_write(index << 2, size, val);
3822         igb_macreg_writeops[index](core, index, val);
3823     } else if (index < IGB_NREADOPS && igb_macreg_readops[index]) {
3824         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3825     } else {
3826         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3827     }
3828 }
3829
3830 uint64_t
3831 igb_core_read(IGBCore *core, hwaddr addr, unsigned size)
3832 {
3833     uint64_t val;
3834     uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr);
3835
3836     if (index < IGB_NREADOPS && igb_macreg_readops[index]) {
3837         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3838             trace_e1000e_wrn_regs_read_trivial(index << 2);
3839         }
3840         val = igb_macreg_readops[index](core, index);
3841         trace_e1000e_core_read(index << 2, size, val);
3842         return val;
3843     } else {
3844         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3845     }
3846     return 0;
3847 }
3848
3849 static inline void
3850 igb_autoneg_pause(IGBCore *core)
3851 {
3852     timer_del(core->autoneg_timer);
3853 }
3854
3855 static void
3856 igb_autoneg_resume(IGBCore *core)
3857 {
3858     if (igb_have_autoneg(core) &&
3859         !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) {
3860         qemu_get_queue(core->owner_nic)->link_down = false;
3861         timer_mod(core->autoneg_timer,
3862                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3863     }
3864 }
3865
3866 static void
3867 igb_vm_state_change(void *opaque, bool running, RunState state)
3868 {
3869     IGBCore *core = opaque;
3870
3871     if (running) {
3872         trace_e1000e_vm_state_running();
3873         igb_intrmgr_resume(core);
3874         igb_autoneg_resume(core);
3875     } else {
3876         trace_e1000e_vm_state_stopped();
3877         igb_autoneg_pause(core);
3878         igb_intrmgr_pause(core);
3879     }
3880 }
3881
3882 void
3883 igb_core_pci_realize(IGBCore        *core,
3884                      const uint16_t *eeprom_templ,
3885                      uint32_t        eeprom_size,
3886                      const uint8_t  *macaddr)
3887 {
3888     int i;
3889
3890     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3891                                        igb_autoneg_timer, core);
3892     igb_intrmgr_pci_realize(core);
3893
3894     core->vmstate = qemu_add_vm_change_state_handler(igb_vm_state_change, core);
3895
3896     for (i = 0; i < IGB_NUM_QUEUES; i++) {
3897         net_tx_pkt_init(&core->tx[i].tx_pkt, NULL, E1000E_MAX_TX_FRAGS);
3898     }
3899
3900     net_rx_pkt_init(&core->rx_pkt);
3901
3902     e1000x_core_prepare_eeprom(core->eeprom,
3903                                eeprom_templ,
3904                                eeprom_size,
3905                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3906                                macaddr);
3907     igb_update_rx_offloads(core);
3908 }
3909
3910 void
3911 igb_core_pci_uninit(IGBCore *core)
3912 {
3913     int i;
3914
3915     timer_free(core->autoneg_timer);
3916
3917     igb_intrmgr_pci_unint(core);
3918
3919     qemu_del_vm_change_state_handler(core->vmstate);
3920
3921     for (i = 0; i < IGB_NUM_QUEUES; i++) {
3922         net_tx_pkt_reset(core->tx[i].tx_pkt, NULL);
3923         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3924     }
3925
3926     net_rx_pkt_uninit(core->rx_pkt);
3927 }
3928
3929 static const uint16_t
3930 igb_phy_reg_init[] = {
3931     [MII_BMCR] = MII_BMCR_SPEED1000 |
3932                  MII_BMCR_FD        |
3933                  MII_BMCR_AUTOEN,
3934
3935     [MII_BMSR] = MII_BMSR_EXTCAP    |
3936                  MII_BMSR_LINK_ST   |
3937                  MII_BMSR_AUTONEG   |
3938                  MII_BMSR_MFPS      |
3939                  MII_BMSR_EXTSTAT   |
3940                  MII_BMSR_10T_HD    |
3941                  MII_BMSR_10T_FD    |
3942                  MII_BMSR_100TX_HD  |
3943                  MII_BMSR_100TX_FD,
3944
3945     [MII_PHYID1]            = IGP03E1000_E_PHY_ID >> 16,
3946     [MII_PHYID2]            = (IGP03E1000_E_PHY_ID & 0xfff0) | 1,
3947     [MII_ANAR]              = MII_ANAR_CSMACD | MII_ANAR_10 |
3948                               MII_ANAR_10FD | MII_ANAR_TX |
3949                               MII_ANAR_TXFD | MII_ANAR_PAUSE |
3950                               MII_ANAR_PAUSE_ASYM,
3951     [MII_ANLPAR]            = MII_ANLPAR_10 | MII_ANLPAR_10FD |
3952                               MII_ANLPAR_TX | MII_ANLPAR_TXFD |
3953                               MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
3954     [MII_ANER]              = MII_ANER_NP | MII_ANER_NWAY,
3955     [MII_ANNP]              = 0x1 | MII_ANNP_MP,
3956     [MII_CTRL1000]          = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
3957                               MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
3958     [MII_STAT1000]          = MII_STAT1000_HALF | MII_STAT1000_FULL |
3959                               MII_STAT1000_ROK | MII_STAT1000_LOK,
3960     [MII_EXTSTAT]           = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
3961
3962     [IGP01E1000_PHY_PORT_CONFIG] = BIT(5) | BIT(8),
3963     [IGP01E1000_PHY_PORT_STATUS] = IGP01E1000_PSSR_SPEED_1000MBPS,
3964     [IGP02E1000_PHY_POWER_MGMT]  = BIT(0) | BIT(3) | IGP02E1000_PM_D3_LPLU |
3965                                    IGP01E1000_PSCFR_SMART_SPEED
3966 };
3967
3968 static const uint32_t igb_mac_reg_init[] = {
3969     [LEDCTL]        = 2 | (3 << 8) | BIT(15) | (6 << 16) | (7 << 24),
3970     [EEMNGCTL]      = BIT(31),
3971     [TXDCTL0]       = E1000_TXDCTL_QUEUE_ENABLE,
3972     [RXDCTL0]       = E1000_RXDCTL_QUEUE_ENABLE | (1 << 16),
3973     [RXDCTL1]       = 1 << 16,
3974     [RXDCTL2]       = 1 << 16,
3975     [RXDCTL3]       = 1 << 16,
3976     [RXDCTL4]       = 1 << 16,
3977     [RXDCTL5]       = 1 << 16,
3978     [RXDCTL6]       = 1 << 16,
3979     [RXDCTL7]       = 1 << 16,
3980     [RXDCTL8]       = 1 << 16,
3981     [RXDCTL9]       = 1 << 16,
3982     [RXDCTL10]      = 1 << 16,
3983     [RXDCTL11]      = 1 << 16,
3984     [RXDCTL12]      = 1 << 16,
3985     [RXDCTL13]      = 1 << 16,
3986     [RXDCTL14]      = 1 << 16,
3987     [RXDCTL15]      = 1 << 16,
3988     [TIPG]          = 0x08 | (0x04 << 10) | (0x06 << 20),
3989     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_LRST | E1000_CTRL_SPD_1000 |
3990                       E1000_CTRL_ADVD3WUC,
3991     [STATUS]        = E1000_STATUS_PHYRA | BIT(31),
3992     [EECD]          = E1000_EECD_FWE_DIS | E1000_EECD_PRES |
3993                       (2 << E1000_EECD_SIZE_EX_SHIFT),
3994     [GCR]           = E1000_L0S_ADJUST |
3995                       E1000_GCR_CMPL_TMOUT_RESEND |
3996                       E1000_GCR_CAP_VER2 |
3997                       E1000_L1_ENTRY_LATENCY_MSB |
3998                       E1000_L1_ENTRY_LATENCY_LSB,
3999     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
4000     [TXPBS]         = 0x28,
4001     [RXPBS]         = 0x40,
4002     [TCTL]          = E1000_TCTL_PSP | (0xF << E1000_CT_SHIFT) |
4003                       (0x40 << E1000_COLD_SHIFT) | (0x1 << 26) | (0xA << 28),
4004     [TCTL_EXT]      = 0x40 | (0x42 << 10),
4005     [DTXCTL]        = E1000_DTXCTL_8023LL | E1000_DTXCTL_SPOOF_INT,
4006     [VET]           = ETH_P_VLAN | (ETH_P_VLAN << 16),
4007
4008     [V2PMAILBOX0 ... V2PMAILBOX0 + IGB_MAX_VF_FUNCTIONS - 1] = E1000_V2PMAILBOX_RSTI,
4009     [MBVFIMR]       = 0xFF,
4010     [VFRE]          = 0xFF,
4011     [VFTE]          = 0xFF,
4012     [VMOLR0 ... VMOLR0 + 7] = 0x2600 | E1000_VMOLR_STRCRC,
4013     [RPLOLR]        = E1000_RPLOLR_STRCRC,
4014     [RLPML]         = 0x2600,
4015     [TXCTL0]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4016                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4017                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4018     [TXCTL1]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4019                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4020                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4021     [TXCTL2]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4022                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4023                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4024     [TXCTL3]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4025                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4026                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4027     [TXCTL4]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4028                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4029                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4030     [TXCTL5]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4031                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4032                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4033     [TXCTL6]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4034                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4035                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4036     [TXCTL7]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4037                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4038                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4039     [TXCTL8]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4040                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4041                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4042     [TXCTL9]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4043                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4044                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4045     [TXCTL10]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4046                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4047                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4048     [TXCTL11]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4049                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4050                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4051     [TXCTL12]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4052                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4053                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4054     [TXCTL13]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4055                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4056                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4057     [TXCTL14]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4058                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4059                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4060     [TXCTL15]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4061                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4062                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4063 };
4064
4065 static void igb_reset(IGBCore *core, bool sw)
4066 {
4067     struct igb_tx *tx;
4068     int i;
4069
4070     timer_del(core->autoneg_timer);
4071
4072     igb_intrmgr_reset(core);
4073
4074     memset(core->phy, 0, sizeof core->phy);
4075     memcpy(core->phy, igb_phy_reg_init, sizeof igb_phy_reg_init);
4076
4077     for (i = 0; i < E1000E_MAC_SIZE; i++) {
4078         if (sw &&
4079             (i == RXPBS || i == TXPBS ||
4080              (i >= EITR0 && i < EITR0 + IGB_INTR_NUM))) {
4081             continue;
4082         }
4083
4084         core->mac[i] = i < ARRAY_SIZE(igb_mac_reg_init) ?
4085                        igb_mac_reg_init[i] : 0;
4086     }
4087
4088     if (qemu_get_queue(core->owner_nic)->link_down) {
4089         igb_link_down(core);
4090     }
4091
4092     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
4093
4094     for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) {
4095         /* Set RSTI, so VF can identify a PF reset is in progress */
4096         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTI;
4097     }
4098
4099     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
4100         tx = &core->tx[i];
4101         net_tx_pkt_reset(tx->tx_pkt, NULL);
4102         memset(tx->ctx, 0, sizeof(tx->ctx));
4103         tx->first = true;
4104         tx->skip_cp = false;
4105     }
4106 }
4107
4108 void
4109 igb_core_reset(IGBCore *core)
4110 {
4111     igb_reset(core, false);
4112 }
4113
4114 void igb_core_pre_save(IGBCore *core)
4115 {
4116     int i;
4117     NetClientState *nc = qemu_get_queue(core->owner_nic);
4118
4119     /*
4120      * If link is down and auto-negotiation is supported and ongoing,
4121      * complete auto-negotiation immediately. This allows us to look
4122      * at MII_BMSR_AN_COMP to infer link status on load.
4123      */
4124     if (nc->link_down && igb_have_autoneg(core)) {
4125         core->phy[MII_BMSR] |= MII_BMSR_AN_COMP;
4126         igb_update_flowctl_status(core);
4127     }
4128
4129     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
4130         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
4131             core->tx[i].skip_cp = true;
4132         }
4133     }
4134 }
4135
4136 int
4137 igb_core_post_load(IGBCore *core)
4138 {
4139     NetClientState *nc = qemu_get_queue(core->owner_nic);
4140
4141     /*
4142      * nc.link_down can't be migrated, so infer link_down according
4143      * to link status bit in core.mac[STATUS].
4144      */
4145     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
4146
4147     return 0;
4148 }