OSDN Git Service

Merge remote-tracking branch 'remotes/riku/tags/pull-linux-user-20171018' into staging
[qmiga/qemu.git] / hw / ppc / pnv.c
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/numa.h"
24 #include "sysemu/cpus.h"
25 #include "hw/hw.h"
26 #include "target/ppc/cpu.h"
27 #include "qemu/log.h"
28 #include "hw/ppc/fdt.h"
29 #include "hw/ppc/ppc.h"
30 #include "hw/ppc/pnv.h"
31 #include "hw/ppc/pnv_core.h"
32 #include "hw/loader.h"
33 #include "exec/address-spaces.h"
34 #include "qemu/cutils.h"
35 #include "qapi/visitor.h"
36 #include "monitor/monitor.h"
37 #include "hw/intc/intc.h"
38 #include "hw/ipmi/ipmi.h"
39
40 #include "hw/ppc/xics.h"
41 #include "hw/ppc/pnv_xscom.h"
42
43 #include "hw/isa/isa.h"
44 #include "hw/char/serial.h"
45 #include "hw/timer/mc146818rtc.h"
46
47 #include <libfdt.h>
48
49 #define FDT_MAX_SIZE            0x00100000
50
51 #define FW_FILE_NAME            "skiboot.lid"
52 #define FW_LOAD_ADDR            0x0
53 #define FW_MAX_SIZE             0x00400000
54
55 #define KERNEL_LOAD_ADDR        0x20000000
56 #define INITRD_LOAD_ADDR        0x40000000
57
58 static const char *pnv_chip_core_typename(const PnvChip *o)
59 {
60     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
61     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
62     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
63     const char *core_type = object_class_get_name(object_class_by_name(s));
64     g_free(s);
65     return core_type;
66 }
67
68 /*
69  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
70  *     4 * 4 sockets * 12 cores * 8 threads = 1536
71  * Let's make it 2^11
72  */
73 #define MAX_CPUS                2048
74
75 /*
76  * Memory nodes are created by hostboot, one for each range of memory
77  * that has a different "affinity". In practice, it means one range
78  * per chip.
79  */
80 static void powernv_populate_memory_node(void *fdt, int chip_id, hwaddr start,
81                                          hwaddr size)
82 {
83     char *mem_name;
84     uint64_t mem_reg_property[2];
85     int off;
86
87     mem_reg_property[0] = cpu_to_be64(start);
88     mem_reg_property[1] = cpu_to_be64(size);
89
90     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
91     off = fdt_add_subnode(fdt, 0, mem_name);
92     g_free(mem_name);
93
94     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
95     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
96                        sizeof(mem_reg_property))));
97     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
98 }
99
100 static int get_cpus_node(void *fdt)
101 {
102     int cpus_offset = fdt_path_offset(fdt, "/cpus");
103
104     if (cpus_offset < 0) {
105         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
106         if (cpus_offset) {
107             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
108             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
109         }
110     }
111     _FDT(cpus_offset);
112     return cpus_offset;
113 }
114
115 /*
116  * The PowerNV cores (and threads) need to use real HW ids and not an
117  * incremental index like it has been done on other platforms. This HW
118  * id is stored in the CPU PIR, it is used to create cpu nodes in the
119  * device tree, used in XSCOM to address cores and in interrupt
120  * servers.
121  */
122 static void powernv_create_core_node(PnvChip *chip, PnvCore *pc, void *fdt)
123 {
124     CPUState *cs = CPU(DEVICE(pc->threads));
125     DeviceClass *dc = DEVICE_GET_CLASS(cs);
126     PowerPCCPU *cpu = POWERPC_CPU(cs);
127     int smt_threads = CPU_CORE(pc)->nr_threads;
128     CPUPPCState *env = &cpu->env;
129     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
130     uint32_t servers_prop[smt_threads];
131     int i;
132     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
133                        0xffffffff, 0xffffffff};
134     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
135     uint32_t cpufreq = 1000000000;
136     uint32_t page_sizes_prop[64];
137     size_t page_sizes_prop_size;
138     const uint8_t pa_features[] = { 24, 0,
139                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
140                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
141                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
142                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
143     int offset;
144     char *nodename;
145     int cpus_offset = get_cpus_node(fdt);
146
147     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
148     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
149     _FDT(offset);
150     g_free(nodename);
151
152     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
153
154     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
155     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
156     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
157
158     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
159     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
160                             env->dcache_line_size)));
161     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
162                             env->dcache_line_size)));
163     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
164                             env->icache_line_size)));
165     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
166                             env->icache_line_size)));
167
168     if (pcc->l1_dcache_size) {
169         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
170                                pcc->l1_dcache_size)));
171     } else {
172         warn_report("Unknown L1 dcache size for cpu");
173     }
174     if (pcc->l1_icache_size) {
175         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
176                                pcc->l1_icache_size)));
177     } else {
178         warn_report("Unknown L1 icache size for cpu");
179     }
180
181     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
182     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
183     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
184     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
185     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
186
187     if (env->spr_cb[SPR_PURR].oea_read) {
188         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
189     }
190
191     if (env->mmu_model & POWERPC_MMU_1TSEG) {
192         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
193                            segs, sizeof(segs))));
194     }
195
196     /* Advertise VMX/VSX (vector extensions) if available
197      *   0 / no property == no vector extensions
198      *   1               == VMX / Altivec available
199      *   2               == VSX available */
200     if (env->insns_flags & PPC_ALTIVEC) {
201         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
202
203         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
204     }
205
206     /* Advertise DFP (Decimal Floating Point) if available
207      *   0 / no property == no DFP
208      *   1               == DFP available */
209     if (env->insns_flags2 & PPC2_DFP) {
210         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
211     }
212
213     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
214                                                   sizeof(page_sizes_prop));
215     if (page_sizes_prop_size) {
216         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
217                            page_sizes_prop, page_sizes_prop_size)));
218     }
219
220     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
221                        pa_features, sizeof(pa_features))));
222
223     /* Build interrupt servers properties */
224     for (i = 0; i < smt_threads; i++) {
225         servers_prop[i] = cpu_to_be32(pc->pir + i);
226     }
227     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
228                        servers_prop, sizeof(servers_prop))));
229 }
230
231 static void powernv_populate_icp(PnvChip *chip, void *fdt, uint32_t pir,
232                                  uint32_t nr_threads)
233 {
234     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
235     char *name;
236     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
237     uint32_t irange[2], i, rsize;
238     uint64_t *reg;
239     int offset;
240
241     irange[0] = cpu_to_be32(pir);
242     irange[1] = cpu_to_be32(nr_threads);
243
244     rsize = sizeof(uint64_t) * 2 * nr_threads;
245     reg = g_malloc(rsize);
246     for (i = 0; i < nr_threads; i++) {
247         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
248         reg[i * 2 + 1] = cpu_to_be64(0x1000);
249     }
250
251     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
252     offset = fdt_add_subnode(fdt, 0, name);
253     _FDT(offset);
254     g_free(name);
255
256     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
257     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
258     _FDT((fdt_setprop_string(fdt, offset, "device_type",
259                               "PowerPC-External-Interrupt-Presentation")));
260     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
261     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
262                        irange, sizeof(irange))));
263     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
264     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
265     g_free(reg);
266 }
267
268 static int pnv_chip_lpc_offset(PnvChip *chip, void *fdt)
269 {
270     char *name;
271     int offset;
272
273     name = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
274                            (uint64_t) PNV_XSCOM_BASE(chip), PNV_XSCOM_LPC_BASE);
275     offset = fdt_path_offset(fdt, name);
276     g_free(name);
277     return offset;
278 }
279
280 static void powernv_populate_chip(PnvChip *chip, void *fdt)
281 {
282     const char *typename = pnv_chip_core_typename(chip);
283     size_t typesize = object_type_get_instance_size(typename);
284     int i;
285
286     pnv_xscom_populate(chip, fdt, 0);
287
288     /* The default LPC bus of a multichip system is on chip 0. It's
289      * recognized by the firmware (skiboot) using a "primary"
290      * property.
291      */
292     if (chip->chip_id == 0x0) {
293         int lpc_offset = pnv_chip_lpc_offset(chip, fdt);
294
295         _FDT((fdt_setprop(fdt, lpc_offset, "primary", NULL, 0)));
296     }
297
298     for (i = 0; i < chip->nr_cores; i++) {
299         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
300
301         powernv_create_core_node(chip, pnv_core, fdt);
302
303         /* Interrupt Control Presenters (ICP). One per core. */
304         powernv_populate_icp(chip, fdt, pnv_core->pir,
305                              CPU_CORE(pnv_core)->nr_threads);
306     }
307
308     if (chip->ram_size) {
309         powernv_populate_memory_node(fdt, chip->chip_id, chip->ram_start,
310                                      chip->ram_size);
311     }
312 }
313
314 static void powernv_populate_rtc(ISADevice *d, void *fdt, int lpc_off)
315 {
316     uint32_t io_base = d->ioport_id;
317     uint32_t io_regs[] = {
318         cpu_to_be32(1),
319         cpu_to_be32(io_base),
320         cpu_to_be32(2)
321     };
322     char *name;
323     int node;
324
325     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
326     node = fdt_add_subnode(fdt, lpc_off, name);
327     _FDT(node);
328     g_free(name);
329
330     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
331     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
332 }
333
334 static void powernv_populate_serial(ISADevice *d, void *fdt, int lpc_off)
335 {
336     const char compatible[] = "ns16550\0pnpPNP,501";
337     uint32_t io_base = d->ioport_id;
338     uint32_t io_regs[] = {
339         cpu_to_be32(1),
340         cpu_to_be32(io_base),
341         cpu_to_be32(8)
342     };
343     char *name;
344     int node;
345
346     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
347     node = fdt_add_subnode(fdt, lpc_off, name);
348     _FDT(node);
349     g_free(name);
350
351     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
352     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
353                       sizeof(compatible))));
354
355     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
356     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
357     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
358     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
359                            fdt_get_phandle(fdt, lpc_off))));
360
361     /* This is needed by Linux */
362     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
363 }
364
365 static void powernv_populate_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
366 {
367     const char compatible[] = "bt\0ipmi-bt";
368     uint32_t io_base;
369     uint32_t io_regs[] = {
370         cpu_to_be32(1),
371         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
372         cpu_to_be32(3)
373     };
374     uint32_t irq;
375     char *name;
376     int node;
377
378     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
379     io_regs[1] = cpu_to_be32(io_base);
380
381     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
382
383     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
384     node = fdt_add_subnode(fdt, lpc_off, name);
385     _FDT(node);
386     g_free(name);
387
388     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
389     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
390                       sizeof(compatible))));
391
392     /* Mark it as reserved to avoid Linux trying to claim it */
393     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
394     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
395     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
396                            fdt_get_phandle(fdt, lpc_off))));
397 }
398
399 typedef struct ForeachPopulateArgs {
400     void *fdt;
401     int offset;
402 } ForeachPopulateArgs;
403
404 static int powernv_populate_isa_device(DeviceState *dev, void *opaque)
405 {
406     ForeachPopulateArgs *args = opaque;
407     ISADevice *d = ISA_DEVICE(dev);
408
409     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
410         powernv_populate_rtc(d, args->fdt, args->offset);
411     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
412         powernv_populate_serial(d, args->fdt, args->offset);
413     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
414         powernv_populate_ipmi_bt(d, args->fdt, args->offset);
415     } else {
416         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
417                      d->ioport_id);
418     }
419
420     return 0;
421 }
422
423 static void powernv_populate_isa(ISABus *bus, void *fdt, int lpc_offset)
424 {
425     ForeachPopulateArgs args = {
426         .fdt = fdt,
427         .offset = lpc_offset,
428     };
429
430     /* ISA devices are not necessarily parented to the ISA bus so we
431      * can not use object_child_foreach() */
432     qbus_walk_children(BUS(bus), powernv_populate_isa_device,
433                        NULL, NULL, NULL, &args);
434 }
435
436 static void *powernv_create_fdt(MachineState *machine)
437 {
438     const char plat_compat[] = "qemu,powernv\0ibm,powernv";
439     PnvMachineState *pnv = POWERNV_MACHINE(machine);
440     void *fdt;
441     char *buf;
442     int off;
443     int i;
444     int lpc_offset;
445
446     fdt = g_malloc0(FDT_MAX_SIZE);
447     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
448
449     /* Root node */
450     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
451     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
452     _FDT((fdt_setprop_string(fdt, 0, "model",
453                              "IBM PowerNV (emulated by qemu)")));
454     _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat,
455                       sizeof(plat_compat))));
456
457     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
458     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
459     if (qemu_uuid_set) {
460         _FDT((fdt_property_string(fdt, "system-id", buf)));
461     }
462     g_free(buf);
463
464     off = fdt_add_subnode(fdt, 0, "chosen");
465     if (machine->kernel_cmdline) {
466         _FDT((fdt_setprop_string(fdt, off, "bootargs",
467                                  machine->kernel_cmdline)));
468     }
469
470     if (pnv->initrd_size) {
471         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
472         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
473
474         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
475                                &start_prop, sizeof(start_prop))));
476         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
477                                &end_prop, sizeof(end_prop))));
478     }
479
480     /* Populate device tree for each chip */
481     for (i = 0; i < pnv->num_chips; i++) {
482         powernv_populate_chip(pnv->chips[i], fdt);
483     }
484
485     /* Populate ISA devices on chip 0 */
486     lpc_offset = pnv_chip_lpc_offset(pnv->chips[0], fdt);
487     powernv_populate_isa(pnv->isa_bus, fdt, lpc_offset);
488
489     if (pnv->bmc) {
490         pnv_bmc_populate_sensors(pnv->bmc, fdt);
491     }
492
493     return fdt;
494 }
495
496 static void pnv_powerdown_notify(Notifier *n, void *opaque)
497 {
498     PnvMachineState *pnv = POWERNV_MACHINE(qdev_get_machine());
499
500     if (pnv->bmc) {
501         pnv_bmc_powerdown(pnv->bmc);
502     }
503 }
504
505 static void ppc_powernv_reset(void)
506 {
507     MachineState *machine = MACHINE(qdev_get_machine());
508     PnvMachineState *pnv = POWERNV_MACHINE(machine);
509     void *fdt;
510     Object *obj;
511
512     qemu_devices_reset();
513
514     /* OpenPOWER systems have a BMC, which can be defined on the
515      * command line with:
516      *
517      *   -device ipmi-bmc-sim,id=bmc0
518      *
519      * This is the internal simulator but it could also be an external
520      * BMC.
521      */
522     obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
523     if (obj) {
524         pnv->bmc = IPMI_BMC(obj);
525     }
526
527     fdt = powernv_create_fdt(machine);
528
529     /* Pack resulting tree */
530     _FDT((fdt_pack(fdt)));
531
532     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
533 }
534
535 static ISABus *pnv_isa_create(PnvChip *chip)
536 {
537     PnvLpcController *lpc = &chip->lpc;
538     ISABus *isa_bus;
539     qemu_irq *irqs;
540     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
541
542     /* let isa_bus_new() create its own bridge on SysBus otherwise
543      * devices speficied on the command line won't find the bus and
544      * will fail to create.
545      */
546     isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io,
547                           &error_fatal);
548
549     irqs = pnv_lpc_isa_irq_create(lpc, pcc->chip_type, ISA_NUM_IRQS);
550
551     isa_bus_irqs(isa_bus, irqs);
552     return isa_bus;
553 }
554
555 static void ppc_powernv_init(MachineState *machine)
556 {
557     PnvMachineState *pnv = POWERNV_MACHINE(machine);
558     MemoryRegion *ram;
559     char *fw_filename;
560     long fw_size;
561     int i;
562     char *chip_typename;
563
564     /* allocate RAM */
565     if (machine->ram_size < (1 * G_BYTE)) {
566         warn_report("skiboot may not work with < 1GB of RAM");
567     }
568
569     ram = g_new(MemoryRegion, 1);
570     memory_region_allocate_system_memory(ram, NULL, "ppc_powernv.ram",
571                                          machine->ram_size);
572     memory_region_add_subregion(get_system_memory(), 0, ram);
573
574     /* load skiboot firmware  */
575     if (bios_name == NULL) {
576         bios_name = FW_FILE_NAME;
577     }
578
579     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
580     if (!fw_filename) {
581         error_report("Could not find OPAL firmware '%s'", bios_name);
582         exit(1);
583     }
584
585     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
586     if (fw_size < 0) {
587         error_report("Could not load OPAL firmware '%s'", fw_filename);
588         exit(1);
589     }
590     g_free(fw_filename);
591
592     /* load kernel */
593     if (machine->kernel_filename) {
594         long kernel_size;
595
596         kernel_size = load_image_targphys(machine->kernel_filename,
597                                           KERNEL_LOAD_ADDR, 0x2000000);
598         if (kernel_size < 0) {
599             error_report("Could not load kernel '%s'",
600                          machine->kernel_filename);
601             exit(1);
602         }
603     }
604
605     /* load initrd */
606     if (machine->initrd_filename) {
607         pnv->initrd_base = INITRD_LOAD_ADDR;
608         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
609                                   pnv->initrd_base, 0x10000000); /* 128MB max */
610         if (pnv->initrd_size < 0) {
611             error_report("Could not load initial ram disk '%s'",
612                          machine->initrd_filename);
613             exit(1);
614         }
615     }
616
617     /* Create the processor chips */
618     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
619     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
620                                     i, machine->cpu_type);
621     if (!object_class_by_name(chip_typename)) {
622         error_report("invalid CPU model '%.*s' for %s machine",
623                      i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name);
624         exit(1);
625     }
626
627     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
628     for (i = 0; i < pnv->num_chips; i++) {
629         char chip_name[32];
630         Object *chip = object_new(chip_typename);
631
632         pnv->chips[i] = PNV_CHIP(chip);
633
634         /* TODO: put all the memory in one node on chip 0 until we find a
635          * way to specify different ranges for each chip
636          */
637         if (i == 0) {
638             object_property_set_int(chip, machine->ram_size, "ram-size",
639                                     &error_fatal);
640         }
641
642         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
643         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
644         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
645                                 &error_fatal);
646         object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal);
647         object_property_set_bool(chip, true, "realized", &error_fatal);
648     }
649     g_free(chip_typename);
650
651     /* Instantiate ISA bus on chip 0 */
652     pnv->isa_bus = pnv_isa_create(pnv->chips[0]);
653
654     /* Create serial port */
655     serial_hds_isa_init(pnv->isa_bus, 0, MAX_SERIAL_PORTS);
656
657     /* Create an RTC ISA device too */
658     rtc_init(pnv->isa_bus, 2000, NULL);
659
660     /* OpenPOWER systems use a IPMI SEL Event message to notify the
661      * host to powerdown */
662     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
663     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
664 }
665
666 /*
667  *    0:21  Reserved - Read as zeros
668  *   22:24  Chip ID
669  *   25:28  Core number
670  *   29:31  Thread ID
671  */
672 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
673 {
674     return (chip->chip_id << 7) | (core_id << 3);
675 }
676
677 /*
678  *    0:48  Reserved - Read as zeroes
679  *   49:52  Node ID
680  *   53:55  Chip ID
681  *   56     Reserved - Read as zero
682  *   57:61  Core number
683  *   62:63  Thread ID
684  *
685  * We only care about the lower bits. uint32_t is fine for the moment.
686  */
687 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
688 {
689     return (chip->chip_id << 8) | (core_id << 2);
690 }
691
692 /* Allowed core identifiers on a POWER8 Processor Chip :
693  *
694  * <EX0 reserved>
695  *  EX1  - Venice only
696  *  EX2  - Venice only
697  *  EX3  - Venice only
698  *  EX4
699  *  EX5
700  *  EX6
701  * <EX7,8 reserved> <reserved>
702  *  EX9  - Venice only
703  *  EX10 - Venice only
704  *  EX11 - Venice only
705  *  EX12
706  *  EX13
707  *  EX14
708  * <EX15 reserved>
709  */
710 #define POWER8E_CORE_MASK  (0x7070ull)
711 #define POWER8_CORE_MASK   (0x7e7eull)
712
713 /*
714  * POWER9 has 24 cores, ids starting at 0x20
715  */
716 #define POWER9_CORE_MASK   (0xffffff00000000ull)
717
718 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
719 {
720     DeviceClass *dc = DEVICE_CLASS(klass);
721     PnvChipClass *k = PNV_CHIP_CLASS(klass);
722
723     k->chip_type = PNV_CHIP_POWER8E;
724     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
725     k->cores_mask = POWER8E_CORE_MASK;
726     k->core_pir = pnv_chip_core_pir_p8;
727     k->xscom_base = 0x003fc0000000000ull;
728     k->xscom_core_base = 0x10000000ull;
729     dc->desc = "PowerNV Chip POWER8E";
730 }
731
732 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
733 {
734     DeviceClass *dc = DEVICE_CLASS(klass);
735     PnvChipClass *k = PNV_CHIP_CLASS(klass);
736
737     k->chip_type = PNV_CHIP_POWER8;
738     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
739     k->cores_mask = POWER8_CORE_MASK;
740     k->core_pir = pnv_chip_core_pir_p8;
741     k->xscom_base = 0x003fc0000000000ull;
742     k->xscom_core_base = 0x10000000ull;
743     dc->desc = "PowerNV Chip POWER8";
744 }
745
746 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
747 {
748     DeviceClass *dc = DEVICE_CLASS(klass);
749     PnvChipClass *k = PNV_CHIP_CLASS(klass);
750
751     k->chip_type = PNV_CHIP_POWER8NVL;
752     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
753     k->cores_mask = POWER8_CORE_MASK;
754     k->core_pir = pnv_chip_core_pir_p8;
755     k->xscom_base = 0x003fc0000000000ull;
756     k->xscom_core_base = 0x10000000ull;
757     dc->desc = "PowerNV Chip POWER8NVL";
758 }
759
760 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
761 {
762     DeviceClass *dc = DEVICE_CLASS(klass);
763     PnvChipClass *k = PNV_CHIP_CLASS(klass);
764
765     k->chip_type = PNV_CHIP_POWER9;
766     k->chip_cfam_id = 0x100d104980000000ull; /* P9 Nimbus DD1.0 */
767     k->cores_mask = POWER9_CORE_MASK;
768     k->core_pir = pnv_chip_core_pir_p9;
769     k->xscom_base = 0x00603fc00000000ull;
770     k->xscom_core_base = 0x0ull;
771     dc->desc = "PowerNV Chip POWER9";
772 }
773
774 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
775 {
776     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
777     int cores_max;
778
779     /*
780      * No custom mask for this chip, let's use the default one from *
781      * the chip class
782      */
783     if (!chip->cores_mask) {
784         chip->cores_mask = pcc->cores_mask;
785     }
786
787     /* filter alien core ids ! some are reserved */
788     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
789         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
790                    chip->cores_mask);
791         return;
792     }
793     chip->cores_mask &= pcc->cores_mask;
794
795     /* now that we have a sane layout, let check the number of cores */
796     cores_max = ctpop64(chip->cores_mask);
797     if (chip->nr_cores > cores_max) {
798         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
799                    cores_max);
800         return;
801     }
802 }
803
804 static void pnv_chip_init(Object *obj)
805 {
806     PnvChip *chip = PNV_CHIP(obj);
807     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
808
809     chip->xscom_base = pcc->xscom_base;
810
811     object_initialize(&chip->lpc, sizeof(chip->lpc), TYPE_PNV_LPC);
812     object_property_add_child(obj, "lpc", OBJECT(&chip->lpc), NULL);
813
814     object_initialize(&chip->psi, sizeof(chip->psi), TYPE_PNV_PSI);
815     object_property_add_child(obj, "psi", OBJECT(&chip->psi), NULL);
816     object_property_add_const_link(OBJECT(&chip->psi), "xics",
817                                    OBJECT(qdev_get_machine()), &error_abort);
818
819     object_initialize(&chip->occ, sizeof(chip->occ), TYPE_PNV_OCC);
820     object_property_add_child(obj, "occ", OBJECT(&chip->occ), NULL);
821     object_property_add_const_link(OBJECT(&chip->occ), "psi",
822                                    OBJECT(&chip->psi), &error_abort);
823
824     /* The LPC controller needs PSI to generate interrupts */
825     object_property_add_const_link(OBJECT(&chip->lpc), "psi",
826                                    OBJECT(&chip->psi), &error_abort);
827 }
828
829 static void pnv_chip_icp_realize(PnvChip *chip, Error **errp)
830 {
831     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
832     const char *typename = pnv_chip_core_typename(chip);
833     size_t typesize = object_type_get_instance_size(typename);
834     int i, j;
835     char *name;
836     XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
837
838     name = g_strdup_printf("icp-%x", chip->chip_id);
839     memory_region_init(&chip->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
840     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip->icp_mmio);
841     g_free(name);
842
843     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
844
845     /* Map the ICP registers for each thread */
846     for (i = 0; i < chip->nr_cores; i++) {
847         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
848         int core_hwid = CPU_CORE(pnv_core)->core_id;
849
850         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
851             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
852             PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
853
854             memory_region_add_subregion(&chip->icp_mmio, pir << 12, &icp->mmio);
855         }
856     }
857 }
858
859 static void pnv_chip_realize(DeviceState *dev, Error **errp)
860 {
861     PnvChip *chip = PNV_CHIP(dev);
862     Error *error = NULL;
863     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
864     const char *typename = pnv_chip_core_typename(chip);
865     size_t typesize = object_type_get_instance_size(typename);
866     int i, core_hwid;
867
868     if (!object_class_by_name(typename)) {
869         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
870         return;
871     }
872
873     /* XSCOM bridge */
874     pnv_xscom_realize(chip, &error);
875     if (error) {
876         error_propagate(errp, error);
877         return;
878     }
879     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
880
881     /* Cores */
882     pnv_chip_core_sanitize(chip, &error);
883     if (error) {
884         error_propagate(errp, error);
885         return;
886     }
887
888     chip->cores = g_malloc0(typesize * chip->nr_cores);
889
890     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
891              && (i < chip->nr_cores); core_hwid++) {
892         char core_name[32];
893         void *pnv_core = chip->cores + i * typesize;
894
895         if (!(chip->cores_mask & (1ull << core_hwid))) {
896             continue;
897         }
898
899         object_initialize(pnv_core, typesize, typename);
900         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
901         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
902                                   &error_fatal);
903         object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads",
904                                 &error_fatal);
905         object_property_set_int(OBJECT(pnv_core), core_hwid,
906                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
907         object_property_set_int(OBJECT(pnv_core),
908                                 pcc->core_pir(chip, core_hwid),
909                                 "pir", &error_fatal);
910         object_property_add_const_link(OBJECT(pnv_core), "xics",
911                                        qdev_get_machine(), &error_fatal);
912         object_property_set_bool(OBJECT(pnv_core), true, "realized",
913                                  &error_fatal);
914         object_unref(OBJECT(pnv_core));
915
916         /* Each core has an XSCOM MMIO region */
917         pnv_xscom_add_subregion(chip,
918                                 PNV_XSCOM_EX_CORE_BASE(pcc->xscom_core_base,
919                                                        core_hwid),
920                                 &PNV_CORE(pnv_core)->xscom_regs);
921         i++;
922     }
923
924     /* Create LPC controller */
925     object_property_set_bool(OBJECT(&chip->lpc), true, "realized",
926                              &error_fatal);
927     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip->lpc.xscom_regs);
928
929     /* Interrupt Management Area. This is the memory region holding
930      * all the Interrupt Control Presenter (ICP) registers */
931     pnv_chip_icp_realize(chip, &error);
932     if (error) {
933         error_propagate(errp, error);
934         return;
935     }
936
937     /* Processor Service Interface (PSI) Host Bridge */
938     object_property_set_int(OBJECT(&chip->psi), PNV_PSIHB_BASE(chip),
939                             "bar", &error_fatal);
940     object_property_set_bool(OBJECT(&chip->psi), true, "realized", &error);
941     if (error) {
942         error_propagate(errp, error);
943         return;
944     }
945     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, &chip->psi.xscom_regs);
946
947     /* Create the simplified OCC model */
948     object_property_set_bool(OBJECT(&chip->occ), true, "realized", &error);
949     if (error) {
950         error_propagate(errp, error);
951         return;
952     }
953     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip->occ.xscom_regs);
954 }
955
956 static Property pnv_chip_properties[] = {
957     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
958     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
959     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
960     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
961     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
962     DEFINE_PROP_END_OF_LIST(),
963 };
964
965 static void pnv_chip_class_init(ObjectClass *klass, void *data)
966 {
967     DeviceClass *dc = DEVICE_CLASS(klass);
968
969     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
970     dc->realize = pnv_chip_realize;
971     dc->props = pnv_chip_properties;
972     dc->desc = "PowerNV Chip";
973 }
974
975 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
976 {
977     PnvMachineState *pnv = POWERNV_MACHINE(xi);
978     int i;
979
980     for (i = 0; i < pnv->num_chips; i++) {
981         if (ics_valid_irq(&pnv->chips[i]->psi.ics, irq)) {
982             return &pnv->chips[i]->psi.ics;
983         }
984     }
985     return NULL;
986 }
987
988 static void pnv_ics_resend(XICSFabric *xi)
989 {
990     PnvMachineState *pnv = POWERNV_MACHINE(xi);
991     int i;
992
993     for (i = 0; i < pnv->num_chips; i++) {
994         ics_resend(&pnv->chips[i]->psi.ics);
995     }
996 }
997
998 static PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
999 {
1000     CPUState *cs;
1001
1002     CPU_FOREACH(cs) {
1003         PowerPCCPU *cpu = POWERPC_CPU(cs);
1004         CPUPPCState *env = &cpu->env;
1005
1006         if (env->spr_cb[SPR_PIR].default_value == pir) {
1007             return cpu;
1008         }
1009     }
1010
1011     return NULL;
1012 }
1013
1014 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1015 {
1016     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1017
1018     return cpu ? ICP(cpu->intc) : NULL;
1019 }
1020
1021 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1022                                Monitor *mon)
1023 {
1024     PnvMachineState *pnv = POWERNV_MACHINE(obj);
1025     int i;
1026     CPUState *cs;
1027
1028     CPU_FOREACH(cs) {
1029         PowerPCCPU *cpu = POWERPC_CPU(cs);
1030
1031         icp_pic_print_info(ICP(cpu->intc), mon);
1032     }
1033
1034     for (i = 0; i < pnv->num_chips; i++) {
1035         ics_pic_print_info(&pnv->chips[i]->psi.ics, mon);
1036     }
1037 }
1038
1039 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1040                               void *opaque, Error **errp)
1041 {
1042     visit_type_uint32(v, name, &POWERNV_MACHINE(obj)->num_chips, errp);
1043 }
1044
1045 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1046                               void *opaque, Error **errp)
1047 {
1048     PnvMachineState *pnv = POWERNV_MACHINE(obj);
1049     uint32_t num_chips;
1050     Error *local_err = NULL;
1051
1052     visit_type_uint32(v, name, &num_chips, &local_err);
1053     if (local_err) {
1054         error_propagate(errp, local_err);
1055         return;
1056     }
1057
1058     /*
1059      * TODO: should we decide on how many chips we can create based
1060      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1061      */
1062     if (!is_power_of_2(num_chips) || num_chips > 4) {
1063         error_setg(errp, "invalid number of chips: '%d'", num_chips);
1064         return;
1065     }
1066
1067     pnv->num_chips = num_chips;
1068 }
1069
1070 static void powernv_machine_initfn(Object *obj)
1071 {
1072     PnvMachineState *pnv = POWERNV_MACHINE(obj);
1073     pnv->num_chips = 1;
1074 }
1075
1076 static void powernv_machine_class_props_init(ObjectClass *oc)
1077 {
1078     object_class_property_add(oc, "num-chips", "uint32",
1079                               pnv_get_num_chips, pnv_set_num_chips,
1080                               NULL, NULL, NULL);
1081     object_class_property_set_description(oc, "num-chips",
1082                               "Specifies the number of processor chips",
1083                               NULL);
1084 }
1085
1086 static void powernv_machine_class_init(ObjectClass *oc, void *data)
1087 {
1088     MachineClass *mc = MACHINE_CLASS(oc);
1089     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1090     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1091
1092     mc->desc = "IBM PowerNV (Non-Virtualized)";
1093     mc->init = ppc_powernv_init;
1094     mc->reset = ppc_powernv_reset;
1095     mc->max_cpus = MAX_CPUS;
1096     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1097     mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for
1098                                       * storage */
1099     mc->no_parallel = 1;
1100     mc->default_boot_order = NULL;
1101     mc->default_ram_size = 1 * G_BYTE;
1102     xic->icp_get = pnv_icp_get;
1103     xic->ics_get = pnv_ics_get;
1104     xic->ics_resend = pnv_ics_resend;
1105     ispc->print_info = pnv_pic_print_info;
1106
1107     powernv_machine_class_props_init(oc);
1108 }
1109
1110 #define DEFINE_PNV_CHIP_TYPE(type, class_initfn) \
1111     {                                            \
1112         .name          = type,                   \
1113         .class_init    = class_initfn,           \
1114         .parent        = TYPE_PNV_CHIP,          \
1115     }
1116
1117 static const TypeInfo types[] = {
1118     {
1119         .name          = TYPE_POWERNV_MACHINE,
1120         .parent        = TYPE_MACHINE,
1121         .instance_size = sizeof(PnvMachineState),
1122         .instance_init = powernv_machine_initfn,
1123         .class_init    = powernv_machine_class_init,
1124         .interfaces = (InterfaceInfo[]) {
1125             { TYPE_XICS_FABRIC },
1126             { TYPE_INTERRUPT_STATS_PROVIDER },
1127             { },
1128         },
1129     },
1130     {
1131         .name          = TYPE_PNV_CHIP,
1132         .parent        = TYPE_SYS_BUS_DEVICE,
1133         .class_init    = pnv_chip_class_init,
1134         .instance_init = pnv_chip_init,
1135         .instance_size = sizeof(PnvChip),
1136         .class_size    = sizeof(PnvChipClass),
1137         .abstract      = true,
1138     },
1139     DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1140     DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1141     DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1142     DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1143                          pnv_chip_power8nvl_class_init),
1144 };
1145
1146 DEFINE_TYPES(types)