OSDN Git Service

CodeGen: Cleanup regmask construction; NFC
[android-x86/external-llvm.git] / include / llvm / CodeGen / MachineFunction.h
1 //===- llvm/CodeGen/MachineFunction.h ---------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect native machine code for a function.  This class contains a list of
11 // MachineBasicBlock instances that make up the current compiled function.
12 //
13 // This class also contains pointers to various classes which hold
14 // target-specific information about the generated code.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #ifndef LLVM_CODEGEN_MACHINEFUNCTION_H
19 #define LLVM_CODEGEN_MACHINEFUNCTION_H
20
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/GraphTraits.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/ilist.h"
29 #include "llvm/ADT/iterator.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/MC/MCDwarf.h"
38 #include "llvm/MC/MCSymbol.h"
39 #include "llvm/Support/Allocator.h"
40 #include "llvm/Support/ArrayRecycler.h"
41 #include "llvm/Support/AtomicOrdering.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/Recycler.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <memory>
48 #include <utility>
49 #include <vector>
50
51 namespace llvm {
52
53 class BasicBlock;
54 class BlockAddress;
55 class DataLayout;
56 class DIExpression;
57 class DILocalVariable;
58 class DILocation;
59 class Function;
60 class GlobalValue;
61 class MachineConstantPool;
62 class MachineFrameInfo;
63 class MachineFunction;
64 class MachineJumpTableInfo;
65 class MachineModuleInfo;
66 class MachineRegisterInfo;
67 class MCContext;
68 class MCInstrDesc;
69 class Pass;
70 class PseudoSourceValueManager;
71 class raw_ostream;
72 class SlotIndexes;
73 class TargetMachine;
74 class TargetRegisterClass;
75 class TargetSubtargetInfo;
76 struct WasmEHFuncInfo;
77 struct WinEHFuncInfo;
78
79 template <> struct ilist_alloc_traits<MachineBasicBlock> {
80   void deleteNode(MachineBasicBlock *MBB);
81 };
82
83 template <> struct ilist_callback_traits<MachineBasicBlock> {
84   void addNodeToList(MachineBasicBlock* N);
85   void removeNodeFromList(MachineBasicBlock* N);
86
87   template <class Iterator>
88   void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) {
89     llvm_unreachable("Never transfer between lists");
90   }
91 };
92
93 /// MachineFunctionInfo - This class can be derived from and used by targets to
94 /// hold private target-specific information for each MachineFunction.  Objects
95 /// of type are accessed/created with MF::getInfo and destroyed when the
96 /// MachineFunction is destroyed.
97 struct MachineFunctionInfo {
98   virtual ~MachineFunctionInfo();
99
100   /// Factory function: default behavior is to call new using the
101   /// supplied allocator.
102   ///
103   /// This function can be overridden in a derive class.
104   template<typename Ty>
105   static Ty *create(BumpPtrAllocator &Allocator, MachineFunction &MF) {
106     return new (Allocator.Allocate<Ty>()) Ty(MF);
107   }
108 };
109
110 /// Properties which a MachineFunction may have at a given point in time.
111 /// Each of these has checking code in the MachineVerifier, and passes can
112 /// require that a property be set.
113 class MachineFunctionProperties {
114   // Possible TODO: Allow targets to extend this (perhaps by allowing the
115   // constructor to specify the size of the bit vector)
116   // Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be
117   // stated as the negative of "has vregs"
118
119 public:
120   // The properties are stated in "positive" form; i.e. a pass could require
121   // that the property hold, but not that it does not hold.
122
123   // Property descriptions:
124   // IsSSA: True when the machine function is in SSA form and virtual registers
125   //  have a single def.
126   // NoPHIs: The machine function does not contain any PHI instruction.
127   // TracksLiveness: True when tracking register liveness accurately.
128   //  While this property is set, register liveness information in basic block
129   //  live-in lists and machine instruction operands (e.g. kill flags, implicit
130   //  defs) is accurate. This means it can be used to change the code in ways
131   //  that affect the values in registers, for example by the register
132   //  scavenger.
133   //  When this property is clear, liveness is no longer reliable.
134   // NoVRegs: The machine function does not use any virtual registers.
135   // Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic
136   //  instructions have been legalized; i.e., all instructions are now one of:
137   //   - generic and always legal (e.g., COPY)
138   //   - target-specific
139   //   - legal pre-isel generic instructions.
140   // RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic
141   //  virtual registers have been assigned to a register bank.
142   // Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel
143   //  generic instructions have been eliminated; i.e., all instructions are now
144   //  target-specific or non-pre-isel generic instructions (e.g., COPY).
145   //  Since only pre-isel generic instructions can have generic virtual register
146   //  operands, this also means that all generic virtual registers have been
147   //  constrained to virtual registers (assigned to register classes) and that
148   //  all sizes attached to them have been eliminated.
149   enum class Property : unsigned {
150     IsSSA,
151     NoPHIs,
152     TracksLiveness,
153     NoVRegs,
154     FailedISel,
155     Legalized,
156     RegBankSelected,
157     Selected,
158     LastProperty = Selected,
159   };
160
161   bool hasProperty(Property P) const {
162     return Properties[static_cast<unsigned>(P)];
163   }
164
165   MachineFunctionProperties &set(Property P) {
166     Properties.set(static_cast<unsigned>(P));
167     return *this;
168   }
169
170   MachineFunctionProperties &reset(Property P) {
171     Properties.reset(static_cast<unsigned>(P));
172     return *this;
173   }
174
175   /// Reset all the properties.
176   MachineFunctionProperties &reset() {
177     Properties.reset();
178     return *this;
179   }
180
181   MachineFunctionProperties &set(const MachineFunctionProperties &MFP) {
182     Properties |= MFP.Properties;
183     return *this;
184   }
185
186   MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) {
187     Properties.reset(MFP.Properties);
188     return *this;
189   }
190
191   // Returns true if all properties set in V (i.e. required by a pass) are set
192   // in this.
193   bool verifyRequiredProperties(const MachineFunctionProperties &V) const {
194     return !V.Properties.test(Properties);
195   }
196
197   /// Print the MachineFunctionProperties in human-readable form.
198   void print(raw_ostream &OS) const;
199
200 private:
201   BitVector Properties =
202       BitVector(static_cast<unsigned>(Property::LastProperty)+1);
203 };
204
205 struct SEHHandler {
206   /// Filter or finally function. Null indicates a catch-all.
207   const Function *FilterOrFinally;
208
209   /// Address of block to recover at. Null for a finally handler.
210   const BlockAddress *RecoverBA;
211 };
212
213 /// This structure is used to retain landing pad info for the current function.
214 struct LandingPadInfo {
215   MachineBasicBlock *LandingPadBlock;      // Landing pad block.
216   SmallVector<MCSymbol *, 1> BeginLabels;  // Labels prior to invoke.
217   SmallVector<MCSymbol *, 1> EndLabels;    // Labels after invoke.
218   SmallVector<SEHHandler, 1> SEHHandlers;  // SEH handlers active at this lpad.
219   MCSymbol *LandingPadLabel = nullptr;     // Label at beginning of landing pad.
220   std::vector<int> TypeIds;                // List of type ids (filters negative).
221
222   explicit LandingPadInfo(MachineBasicBlock *MBB)
223       : LandingPadBlock(MBB) {}
224 };
225
226 class MachineFunction {
227   const Function &F;
228   const TargetMachine &Target;
229   const TargetSubtargetInfo *STI;
230   MCContext &Ctx;
231   MachineModuleInfo &MMI;
232
233   // RegInfo - Information about each register in use in the function.
234   MachineRegisterInfo *RegInfo;
235
236   // Used to keep track of target-specific per-machine function information for
237   // the target implementation.
238   MachineFunctionInfo *MFInfo;
239
240   // Keep track of objects allocated on the stack.
241   MachineFrameInfo *FrameInfo;
242
243   // Keep track of constants which are spilled to memory
244   MachineConstantPool *ConstantPool;
245
246   // Keep track of jump tables for switch instructions
247   MachineJumpTableInfo *JumpTableInfo;
248
249   // Keeps track of Wasm exception handling related data. This will be null for
250   // functions that aren't using a wasm EH personality.
251   WasmEHFuncInfo *WasmEHInfo = nullptr;
252
253   // Keeps track of Windows exception handling related data. This will be null
254   // for functions that aren't using a funclet-based EH personality.
255   WinEHFuncInfo *WinEHInfo = nullptr;
256
257   // Function-level unique numbering for MachineBasicBlocks.  When a
258   // MachineBasicBlock is inserted into a MachineFunction is it automatically
259   // numbered and this vector keeps track of the mapping from ID's to MBB's.
260   std::vector<MachineBasicBlock*> MBBNumbering;
261
262   // Pool-allocate MachineFunction-lifetime and IR objects.
263   BumpPtrAllocator Allocator;
264
265   // Allocation management for instructions in function.
266   Recycler<MachineInstr> InstructionRecycler;
267
268   // Allocation management for operand arrays on instructions.
269   ArrayRecycler<MachineOperand> OperandRecycler;
270
271   // Allocation management for basic blocks in function.
272   Recycler<MachineBasicBlock> BasicBlockRecycler;
273
274   // List of machine basic blocks in function
275   using BasicBlockListType = ilist<MachineBasicBlock>;
276   BasicBlockListType BasicBlocks;
277
278   /// FunctionNumber - This provides a unique ID for each function emitted in
279   /// this translation unit.
280   ///
281   unsigned FunctionNumber;
282
283   /// Alignment - The alignment of the function.
284   unsigned Alignment;
285
286   /// ExposesReturnsTwice - True if the function calls setjmp or related
287   /// functions with attribute "returns twice", but doesn't have
288   /// the attribute itself.
289   /// This is used to limit optimizations which cannot reason
290   /// about the control flow of such functions.
291   bool ExposesReturnsTwice = false;
292
293   /// True if the function includes any inline assembly.
294   bool HasInlineAsm = false;
295
296   /// True if any WinCFI instruction have been emitted in this function.
297   Optional<bool> HasWinCFI;
298
299   /// Current high-level properties of the IR of the function (e.g. is in SSA
300   /// form or whether registers have been allocated)
301   MachineFunctionProperties Properties;
302
303   // Allocation management for pseudo source values.
304   std::unique_ptr<PseudoSourceValueManager> PSVManager;
305
306   /// List of moves done by a function's prolog.  Used to construct frame maps
307   /// by debug and exception handling consumers.
308   std::vector<MCCFIInstruction> FrameInstructions;
309
310   /// \name Exception Handling
311   /// \{
312
313   /// List of LandingPadInfo describing the landing pad information.
314   std::vector<LandingPadInfo> LandingPads;
315
316   /// Map a landing pad's EH symbol to the call site indexes.
317   DenseMap<MCSymbol*, SmallVector<unsigned, 4>> LPadToCallSiteMap;
318
319   /// Map of invoke call site index values to associated begin EH_LABEL.
320   DenseMap<MCSymbol*, unsigned> CallSiteMap;
321
322   /// CodeView label annotations.
323   std::vector<std::pair<MCSymbol *, MDNode *>> CodeViewAnnotations;
324
325   bool CallsEHReturn = false;
326   bool CallsUnwindInit = false;
327   bool HasEHScopes = false;
328   bool HasEHFunclets = false;
329
330   /// List of C++ TypeInfo used.
331   std::vector<const GlobalValue *> TypeInfos;
332
333   /// List of typeids encoding filters used.
334   std::vector<unsigned> FilterIds;
335
336   /// List of the indices in FilterIds corresponding to filter terminators.
337   std::vector<unsigned> FilterEnds;
338
339   EHPersonality PersonalityTypeCache = EHPersonality::Unknown;
340
341   /// \}
342
343   /// Clear all the members of this MachineFunction, but the ones used
344   /// to initialize again the MachineFunction.
345   /// More specifically, this deallocates all the dynamically allocated
346   /// objects and get rid of all the XXXInfo data structure, but keep
347   /// unchanged the references to Fn, Target, MMI, and FunctionNumber.
348   void clear();
349   /// Allocate and initialize the different members.
350   /// In particular, the XXXInfo data structure.
351   /// \pre Fn, Target, MMI, and FunctionNumber are properly set.
352   void init();
353
354 public:
355   struct VariableDbgInfo {
356     const DILocalVariable *Var;
357     const DIExpression *Expr;
358     // The Slot can be negative for fixed stack objects.
359     int Slot;
360     const DILocation *Loc;
361
362     VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
363                     int Slot, const DILocation *Loc)
364         : Var(Var), Expr(Expr), Slot(Slot), Loc(Loc) {}
365   };
366   using VariableDbgInfoMapTy = SmallVector<VariableDbgInfo, 4>;
367   VariableDbgInfoMapTy VariableDbgInfos;
368
369   MachineFunction(const Function &F, const TargetMachine &Target,
370                   const TargetSubtargetInfo &STI, unsigned FunctionNum,
371                   MachineModuleInfo &MMI);
372   MachineFunction(const MachineFunction &) = delete;
373   MachineFunction &operator=(const MachineFunction &) = delete;
374   ~MachineFunction();
375
376   /// Reset the instance as if it was just created.
377   void reset() {
378     clear();
379     init();
380   }
381
382   MachineModuleInfo &getMMI() const { return MMI; }
383   MCContext &getContext() const { return Ctx; }
384
385   PseudoSourceValueManager &getPSVManager() const { return *PSVManager; }
386
387   /// Return the DataLayout attached to the Module associated to this MF.
388   const DataLayout &getDataLayout() const;
389
390   /// Return the LLVM function that this machine code represents
391   const Function &getFunction() const { return F; }
392
393   /// getName - Return the name of the corresponding LLVM function.
394   StringRef getName() const;
395
396   /// getFunctionNumber - Return a unique ID for the current function.
397   unsigned getFunctionNumber() const { return FunctionNumber; }
398
399   /// getTarget - Return the target machine this machine code is compiled with
400   const TargetMachine &getTarget() const { return Target; }
401
402   /// getSubtarget - Return the subtarget for which this machine code is being
403   /// compiled.
404   const TargetSubtargetInfo &getSubtarget() const { return *STI; }
405   void setSubtarget(const TargetSubtargetInfo *ST) { STI = ST; }
406
407   /// getSubtarget - This method returns a pointer to the specified type of
408   /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
409   /// returned is of the correct type.
410   template<typename STC> const STC &getSubtarget() const {
411     return *static_cast<const STC *>(STI);
412   }
413
414   /// getRegInfo - Return information about the registers currently in use.
415   MachineRegisterInfo &getRegInfo() { return *RegInfo; }
416   const MachineRegisterInfo &getRegInfo() const { return *RegInfo; }
417
418   /// getFrameInfo - Return the frame info object for the current function.
419   /// This object contains information about objects allocated on the stack
420   /// frame of the current function in an abstract way.
421   MachineFrameInfo &getFrameInfo() { return *FrameInfo; }
422   const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; }
423
424   /// getJumpTableInfo - Return the jump table info object for the current
425   /// function.  This object contains information about jump tables in the
426   /// current function.  If the current function has no jump tables, this will
427   /// return null.
428   const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; }
429   MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; }
430
431   /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it
432   /// does already exist, allocate one.
433   MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind);
434
435   /// getConstantPool - Return the constant pool object for the current
436   /// function.
437   MachineConstantPool *getConstantPool() { return ConstantPool; }
438   const MachineConstantPool *getConstantPool() const { return ConstantPool; }
439
440   /// getWasmEHFuncInfo - Return information about how the current function uses
441   /// Wasm exception handling. Returns null for functions that don't use wasm
442   /// exception handling.
443   const WasmEHFuncInfo *getWasmEHFuncInfo() const { return WasmEHInfo; }
444   WasmEHFuncInfo *getWasmEHFuncInfo() { return WasmEHInfo; }
445
446   /// getWinEHFuncInfo - Return information about how the current function uses
447   /// Windows exception handling. Returns null for functions that don't use
448   /// funclets for exception handling.
449   const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; }
450   WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; }
451
452   /// getAlignment - Return the alignment (log2, not bytes) of the function.
453   unsigned getAlignment() const { return Alignment; }
454
455   /// setAlignment - Set the alignment (log2, not bytes) of the function.
456   void setAlignment(unsigned A) { Alignment = A; }
457
458   /// ensureAlignment - Make sure the function is at least 1 << A bytes aligned.
459   void ensureAlignment(unsigned A) {
460     if (Alignment < A) Alignment = A;
461   }
462
463   /// exposesReturnsTwice - Returns true if the function calls setjmp or
464   /// any other similar functions with attribute "returns twice" without
465   /// having the attribute itself.
466   bool exposesReturnsTwice() const {
467     return ExposesReturnsTwice;
468   }
469
470   /// setCallsSetJmp - Set a flag that indicates if there's a call to
471   /// a "returns twice" function.
472   void setExposesReturnsTwice(bool B) {
473     ExposesReturnsTwice = B;
474   }
475
476   /// Returns true if the function contains any inline assembly.
477   bool hasInlineAsm() const {
478     return HasInlineAsm;
479   }
480
481   /// Set a flag that indicates that the function contains inline assembly.
482   void setHasInlineAsm(bool B) {
483     HasInlineAsm = B;
484   }
485
486   bool hasWinCFI() const {
487     assert(HasWinCFI.hasValue() && "HasWinCFI not set yet!");
488     return *HasWinCFI;
489   }
490   void setHasWinCFI(bool v) { HasWinCFI = v; }
491
492   /// Get the function properties
493   const MachineFunctionProperties &getProperties() const { return Properties; }
494   MachineFunctionProperties &getProperties() { return Properties; }
495
496   /// getInfo - Keep track of various per-function pieces of information for
497   /// backends that would like to do so.
498   ///
499   template<typename Ty>
500   Ty *getInfo() {
501     if (!MFInfo)
502       MFInfo = Ty::template create<Ty>(Allocator, *this);
503     return static_cast<Ty*>(MFInfo);
504   }
505
506   template<typename Ty>
507   const Ty *getInfo() const {
508      return const_cast<MachineFunction*>(this)->getInfo<Ty>();
509   }
510
511   /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they
512   /// are inserted into the machine function.  The block number for a machine
513   /// basic block can be found by using the MBB::getNumber method, this method
514   /// provides the inverse mapping.
515   MachineBasicBlock *getBlockNumbered(unsigned N) const {
516     assert(N < MBBNumbering.size() && "Illegal block number");
517     assert(MBBNumbering[N] && "Block was removed from the machine function!");
518     return MBBNumbering[N];
519   }
520
521   /// Should we be emitting segmented stack stuff for the function
522   bool shouldSplitStack() const;
523
524   /// getNumBlockIDs - Return the number of MBB ID's allocated.
525   unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); }
526
527   /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
528   /// recomputes them.  This guarantees that the MBB numbers are sequential,
529   /// dense, and match the ordering of the blocks within the function.  If a
530   /// specific MachineBasicBlock is specified, only that block and those after
531   /// it are renumbered.
532   void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr);
533
534   /// print - Print out the MachineFunction in a format suitable for debugging
535   /// to the specified stream.
536   void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
537
538   /// viewCFG - This function is meant for use from the debugger.  You can just
539   /// say 'call F->viewCFG()' and a ghostview window should pop up from the
540   /// program, displaying the CFG of the current function with the code for each
541   /// basic block inside.  This depends on there being a 'dot' and 'gv' program
542   /// in your path.
543   void viewCFG() const;
544
545   /// viewCFGOnly - This function is meant for use from the debugger.  It works
546   /// just like viewCFG, but it does not include the contents of basic blocks
547   /// into the nodes, just the label.  If you are only interested in the CFG
548   /// this can make the graph smaller.
549   ///
550   void viewCFGOnly() const;
551
552   /// dump - Print the current MachineFunction to cerr, useful for debugger use.
553   void dump() const;
554
555   /// Run the current MachineFunction through the machine code verifier, useful
556   /// for debugger use.
557   /// \returns true if no problems were found.
558   bool verify(Pass *p = nullptr, const char *Banner = nullptr,
559               bool AbortOnError = true) const;
560
561   // Provide accessors for the MachineBasicBlock list...
562   using iterator = BasicBlockListType::iterator;
563   using const_iterator = BasicBlockListType::const_iterator;
564   using const_reverse_iterator = BasicBlockListType::const_reverse_iterator;
565   using reverse_iterator = BasicBlockListType::reverse_iterator;
566
567   /// Support for MachineBasicBlock::getNextNode().
568   static BasicBlockListType MachineFunction::*
569   getSublistAccess(MachineBasicBlock *) {
570     return &MachineFunction::BasicBlocks;
571   }
572
573   /// addLiveIn - Add the specified physical register as a live-in value and
574   /// create a corresponding virtual register for it.
575   unsigned addLiveIn(unsigned PReg, const TargetRegisterClass *RC);
576
577   //===--------------------------------------------------------------------===//
578   // BasicBlock accessor functions.
579   //
580   iterator                 begin()       { return BasicBlocks.begin(); }
581   const_iterator           begin() const { return BasicBlocks.begin(); }
582   iterator                 end  ()       { return BasicBlocks.end();   }
583   const_iterator           end  () const { return BasicBlocks.end();   }
584
585   reverse_iterator        rbegin()       { return BasicBlocks.rbegin(); }
586   const_reverse_iterator  rbegin() const { return BasicBlocks.rbegin(); }
587   reverse_iterator        rend  ()       { return BasicBlocks.rend();   }
588   const_reverse_iterator  rend  () const { return BasicBlocks.rend();   }
589
590   unsigned                  size() const { return (unsigned)BasicBlocks.size();}
591   bool                     empty() const { return BasicBlocks.empty(); }
592   const MachineBasicBlock &front() const { return BasicBlocks.front(); }
593         MachineBasicBlock &front()       { return BasicBlocks.front(); }
594   const MachineBasicBlock & back() const { return BasicBlocks.back(); }
595         MachineBasicBlock & back()       { return BasicBlocks.back(); }
596
597   void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); }
598   void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); }
599   void insert(iterator MBBI, MachineBasicBlock *MBB) {
600     BasicBlocks.insert(MBBI, MBB);
601   }
602   void splice(iterator InsertPt, iterator MBBI) {
603     BasicBlocks.splice(InsertPt, BasicBlocks, MBBI);
604   }
605   void splice(iterator InsertPt, MachineBasicBlock *MBB) {
606     BasicBlocks.splice(InsertPt, BasicBlocks, MBB);
607   }
608   void splice(iterator InsertPt, iterator MBBI, iterator MBBE) {
609     BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE);
610   }
611
612   void remove(iterator MBBI) { BasicBlocks.remove(MBBI); }
613   void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); }
614   void erase(iterator MBBI) { BasicBlocks.erase(MBBI); }
615   void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); }
616
617   template <typename Comp>
618   void sort(Comp comp) {
619     BasicBlocks.sort(comp);
620   }
621
622   //===--------------------------------------------------------------------===//
623   // Internal functions used to automatically number MachineBasicBlocks
624
625   /// Adds the MBB to the internal numbering. Returns the unique number
626   /// assigned to the MBB.
627   unsigned addToMBBNumbering(MachineBasicBlock *MBB) {
628     MBBNumbering.push_back(MBB);
629     return (unsigned)MBBNumbering.size()-1;
630   }
631
632   /// removeFromMBBNumbering - Remove the specific machine basic block from our
633   /// tracker, this is only really to be used by the MachineBasicBlock
634   /// implementation.
635   void removeFromMBBNumbering(unsigned N) {
636     assert(N < MBBNumbering.size() && "Illegal basic block #");
637     MBBNumbering[N] = nullptr;
638   }
639
640   /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
641   /// of `new MachineInstr'.
642   MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, const DebugLoc &DL,
643                                    bool NoImp = false);
644
645   /// Create a new MachineInstr which is a copy of \p Orig, identical in all
646   /// ways except the instruction has no parent, prev, or next. Bundling flags
647   /// are reset.
648   ///
649   /// Note: Clones a single instruction, not whole instruction bundles.
650   /// Does not perform target specific adjustments; consider using
651   /// TargetInstrInfo::duplicate() instead.
652   MachineInstr *CloneMachineInstr(const MachineInstr *Orig);
653
654   /// Clones instruction or the whole instruction bundle \p Orig and insert
655   /// into \p MBB before \p InsertBefore.
656   ///
657   /// Note: Does not perform target specific adjustments; consider using
658   /// TargetInstrInfo::duplicate() intead.
659   MachineInstr &CloneMachineInstrBundle(MachineBasicBlock &MBB,
660       MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig);
661
662   /// DeleteMachineInstr - Delete the given MachineInstr.
663   void DeleteMachineInstr(MachineInstr *MI);
664
665   /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
666   /// instead of `new MachineBasicBlock'.
667   MachineBasicBlock *CreateMachineBasicBlock(const BasicBlock *bb = nullptr);
668
669   /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
670   void DeleteMachineBasicBlock(MachineBasicBlock *MBB);
671
672   /// getMachineMemOperand - Allocate a new MachineMemOperand.
673   /// MachineMemOperands are owned by the MachineFunction and need not be
674   /// explicitly deallocated.
675   MachineMemOperand *getMachineMemOperand(
676       MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
677       unsigned base_alignment, const AAMDNodes &AAInfo = AAMDNodes(),
678       const MDNode *Ranges = nullptr,
679       SyncScope::ID SSID = SyncScope::System,
680       AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
681       AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
682
683   /// getMachineMemOperand - Allocate a new MachineMemOperand by copying
684   /// an existing one, adjusting by an offset and using the given size.
685   /// MachineMemOperands are owned by the MachineFunction and need not be
686   /// explicitly deallocated.
687   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
688                                           int64_t Offset, uint64_t Size);
689
690   /// Allocate a new MachineMemOperand by copying an existing one,
691   /// replacing only AliasAnalysis information. MachineMemOperands are owned
692   /// by the MachineFunction and need not be explicitly deallocated.
693   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
694                                           const AAMDNodes &AAInfo);
695
696   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
697
698   /// Allocate an array of MachineOperands. This is only intended for use by
699   /// internal MachineInstr functions.
700   MachineOperand *allocateOperandArray(OperandCapacity Cap) {
701     return OperandRecycler.allocate(Cap, Allocator);
702   }
703
704   /// Dellocate an array of MachineOperands and recycle the memory. This is
705   /// only intended for use by internal MachineInstr functions.
706   /// Cap must be the same capacity that was used to allocate the array.
707   void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) {
708     OperandRecycler.deallocate(Cap, Array);
709   }
710
711   /// Allocate and initialize a register mask with @p NumRegister bits.
712   uint32_t *allocateRegMask();
713
714   /// allocateMemRefsArray - Allocate an array to hold MachineMemOperand
715   /// pointers.  This array is owned by the MachineFunction.
716   MachineInstr::mmo_iterator allocateMemRefsArray(unsigned long Num);
717
718   /// extractLoadMemRefs - Allocate an array and populate it with just the
719   /// load information from the given MachineMemOperand sequence.
720   std::pair<MachineInstr::mmo_iterator,
721             MachineInstr::mmo_iterator>
722     extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
723                        MachineInstr::mmo_iterator End);
724
725   /// extractStoreMemRefs - Allocate an array and populate it with just the
726   /// store information from the given MachineMemOperand sequence.
727   std::pair<MachineInstr::mmo_iterator,
728             MachineInstr::mmo_iterator>
729     extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
730                         MachineInstr::mmo_iterator End);
731
732   /// Allocate a string and populate it with the given external symbol name.
733   const char *createExternalSymbolName(StringRef Name);
734
735   //===--------------------------------------------------------------------===//
736   // Label Manipulation.
737
738   /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
739   /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
740   /// normal 'L' label is returned.
741   MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx,
742                          bool isLinkerPrivate = false) const;
743
744   /// getPICBaseSymbol - Return a function-local symbol to represent the PIC
745   /// base.
746   MCSymbol *getPICBaseSymbol() const;
747
748   /// Returns a reference to a list of cfi instructions in the function's
749   /// prologue.  Used to construct frame maps for debug and exception handling
750   /// comsumers.
751   const std::vector<MCCFIInstruction> &getFrameInstructions() const {
752     return FrameInstructions;
753   }
754
755   LLVM_NODISCARD unsigned addFrameInst(const MCCFIInstruction &Inst) {
756     FrameInstructions.push_back(Inst);
757     return FrameInstructions.size() - 1;
758   }
759
760   /// \name Exception Handling
761   /// \{
762
763   bool callsEHReturn() const { return CallsEHReturn; }
764   void setCallsEHReturn(bool b) { CallsEHReturn = b; }
765
766   bool callsUnwindInit() const { return CallsUnwindInit; }
767   void setCallsUnwindInit(bool b) { CallsUnwindInit = b; }
768
769   bool hasEHScopes() const { return HasEHScopes; }
770   void setHasEHScopes(bool V) { HasEHScopes = V; }
771
772   bool hasEHFunclets() const { return HasEHFunclets; }
773   void setHasEHFunclets(bool V) { HasEHFunclets = V; }
774
775   /// Find or create an LandingPadInfo for the specified MachineBasicBlock.
776   LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad);
777
778   /// Remap landing pad labels and remove any deleted landing pads.
779   void tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap = nullptr);
780
781   /// Return a reference to the landing pad info for the current function.
782   const std::vector<LandingPadInfo> &getLandingPads() const {
783     return LandingPads;
784   }
785
786   /// Provide the begin and end labels of an invoke style call and associate it
787   /// with a try landing pad block.
788   void addInvoke(MachineBasicBlock *LandingPad,
789                  MCSymbol *BeginLabel, MCSymbol *EndLabel);
790
791   /// Add a new panding pad.  Returns the label ID for the landing pad entry.
792   MCSymbol *addLandingPad(MachineBasicBlock *LandingPad);
793
794   /// Provide the catch typeinfo for a landing pad.
795   void addCatchTypeInfo(MachineBasicBlock *LandingPad,
796                         ArrayRef<const GlobalValue *> TyInfo);
797
798   /// Provide the filter typeinfo for a landing pad.
799   void addFilterTypeInfo(MachineBasicBlock *LandingPad,
800                          ArrayRef<const GlobalValue *> TyInfo);
801
802   /// Add a cleanup action for a landing pad.
803   void addCleanup(MachineBasicBlock *LandingPad);
804
805   void addSEHCatchHandler(MachineBasicBlock *LandingPad, const Function *Filter,
806                           const BlockAddress *RecoverBA);
807
808   void addSEHCleanupHandler(MachineBasicBlock *LandingPad,
809                             const Function *Cleanup);
810
811   /// Return the type id for the specified typeinfo.  This is function wide.
812   unsigned getTypeIDFor(const GlobalValue *TI);
813
814   /// Return the id of the filter encoded by TyIds.  This is function wide.
815   int getFilterIDFor(std::vector<unsigned> &TyIds);
816
817   /// Map the landing pad's EH symbol to the call site indexes.
818   void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites);
819
820   /// Get the call site indexes for a landing pad EH symbol.
821   SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) {
822     assert(hasCallSiteLandingPad(Sym) &&
823            "missing call site number for landing pad!");
824     return LPadToCallSiteMap[Sym];
825   }
826
827   /// Return true if the landing pad Eh symbol has an associated call site.
828   bool hasCallSiteLandingPad(MCSymbol *Sym) {
829     return !LPadToCallSiteMap[Sym].empty();
830   }
831
832   /// Map the begin label for a call site.
833   void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) {
834     CallSiteMap[BeginLabel] = Site;
835   }
836
837   /// Get the call site number for a begin label.
838   unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const {
839     assert(hasCallSiteBeginLabel(BeginLabel) &&
840            "Missing call site number for EH_LABEL!");
841     return CallSiteMap.lookup(BeginLabel);
842   }
843
844   /// Return true if the begin label has a call site number associated with it.
845   bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const {
846     return CallSiteMap.count(BeginLabel);
847   }
848
849   /// Record annotations associated with a particular label.
850   void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD) {
851     CodeViewAnnotations.push_back({Label, MD});
852   }
853
854   ArrayRef<std::pair<MCSymbol *, MDNode *>> getCodeViewAnnotations() const {
855     return CodeViewAnnotations;
856   }
857
858   /// Return a reference to the C++ typeinfo for the current function.
859   const std::vector<const GlobalValue *> &getTypeInfos() const {
860     return TypeInfos;
861   }
862
863   /// Return a reference to the typeids encoding filters used in the current
864   /// function.
865   const std::vector<unsigned> &getFilterIds() const {
866     return FilterIds;
867   }
868
869   /// \}
870
871   /// Collect information used to emit debugging information of a variable.
872   void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
873                           int Slot, const DILocation *Loc) {
874     VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc);
875   }
876
877   VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; }
878   const VariableDbgInfoMapTy &getVariableDbgInfo() const {
879     return VariableDbgInfos;
880   }
881 };
882
883 /// \name Exception Handling
884 /// \{
885
886 /// Extract the exception handling information from the landingpad instruction
887 /// and add them to the specified machine module info.
888 void addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB);
889
890 /// \}
891
892 //===--------------------------------------------------------------------===//
893 // GraphTraits specializations for function basic block graphs (CFGs)
894 //===--------------------------------------------------------------------===//
895
896 // Provide specializations of GraphTraits to be able to treat a
897 // machine function as a graph of machine basic blocks... these are
898 // the same as the machine basic block iterators, except that the root
899 // node is implicitly the first node of the function.
900 //
901 template <> struct GraphTraits<MachineFunction*> :
902   public GraphTraits<MachineBasicBlock*> {
903   static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); }
904
905   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
906   using nodes_iterator = pointer_iterator<MachineFunction::iterator>;
907
908   static nodes_iterator nodes_begin(MachineFunction *F) {
909     return nodes_iterator(F->begin());
910   }
911
912   static nodes_iterator nodes_end(MachineFunction *F) {
913     return nodes_iterator(F->end());
914   }
915
916   static unsigned       size       (MachineFunction *F) { return F->size(); }
917 };
918 template <> struct GraphTraits<const MachineFunction*> :
919   public GraphTraits<const MachineBasicBlock*> {
920   static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); }
921
922   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
923   using nodes_iterator = pointer_iterator<MachineFunction::const_iterator>;
924
925   static nodes_iterator nodes_begin(const MachineFunction *F) {
926     return nodes_iterator(F->begin());
927   }
928
929   static nodes_iterator nodes_end  (const MachineFunction *F) {
930     return nodes_iterator(F->end());
931   }
932
933   static unsigned       size       (const MachineFunction *F)  {
934     return F->size();
935   }
936 };
937
938 // Provide specializations of GraphTraits to be able to treat a function as a
939 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
940 // a function is considered to be when traversing the predecessor edges of a BB
941 // instead of the successor edges.
942 //
943 template <> struct GraphTraits<Inverse<MachineFunction*>> :
944   public GraphTraits<Inverse<MachineBasicBlock*>> {
945   static NodeRef getEntryNode(Inverse<MachineFunction *> G) {
946     return &G.Graph->front();
947   }
948 };
949 template <> struct GraphTraits<Inverse<const MachineFunction*>> :
950   public GraphTraits<Inverse<const MachineBasicBlock*>> {
951   static NodeRef getEntryNode(Inverse<const MachineFunction *> G) {
952     return &G.Graph->front();
953   }
954 };
955
956 } // end namespace llvm
957
958 #endif // LLVM_CODEGEN_MACHINEFUNCTION_H