OSDN Git Service

Add utility to clone loops.
[android-x86/external-llvm.git] / include / llvm / Transforms / Utils / Cloning.h
1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines various functions that are used to clone chunks of LLVM
11 // code for various purposes.  This varies from copying whole modules into new
12 // modules, to cloning functions with different arguments, to inlining
13 // functions, to copying basic blocks to support loop unrolling or superblock
14 // formation, etc.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
19 #define LLVM_TRANSFORMS_UTILS_CLONING_H
20
21 #include <vector>
22 #include "llvm/ADT/DenseMap.h"
23
24 namespace llvm {
25
26 class Module;
27 class Function;
28 class Loop;
29 class LoopInfo;
30 class Pass;
31 class LPPassManager;
32 class BasicBlock;
33 class Value;
34 class CallInst;
35 class InvokeInst;
36 class ReturnInst;
37 class CallSite;
38 class Trace;
39 class CallGraph;
40 class TargetData;
41
42 /// CloneModule - Return an exact copy of the specified module
43 ///
44 Module *CloneModule(const Module *M);
45 Module *CloneModule(const Module *M, DenseMap<const Value*, Value*> &ValueMap);
46
47 /// ClonedCodeInfo - This struct can be used to capture information about code
48 /// being cloned, while it is being cloned.
49 struct ClonedCodeInfo {
50   /// ContainsCalls - This is set to true if the cloned code contains a normal
51   /// call instruction.
52   bool ContainsCalls;
53   
54   /// ContainsUnwinds - This is set to true if the cloned code contains an
55   /// unwind instruction.
56   bool ContainsUnwinds;
57   
58   /// ContainsDynamicAllocas - This is set to true if the cloned code contains
59   /// a 'dynamic' alloca.  Dynamic allocas are allocas that are either not in
60   /// the entry block or they are in the entry block but are not a constant
61   /// size.
62   bool ContainsDynamicAllocas;
63   
64   ClonedCodeInfo() {
65     ContainsCalls = false;
66     ContainsUnwinds = false;
67     ContainsDynamicAllocas = false;
68   }
69 };
70
71
72 /// CloneBasicBlock - Return a copy of the specified basic block, but without
73 /// embedding the block into a particular function.  The block returned is an
74 /// exact copy of the specified basic block, without any remapping having been
75 /// performed.  Because of this, this is only suitable for applications where
76 /// the basic block will be inserted into the same function that it was cloned
77 /// from (loop unrolling would use this, for example).
78 ///
79 /// Also, note that this function makes a direct copy of the basic block, and
80 /// can thus produce illegal LLVM code.  In particular, it will copy any PHI
81 /// nodes from the original block, even though there are no predecessors for the
82 /// newly cloned block (thus, phi nodes will have to be updated).  Also, this
83 /// block will branch to the old successors of the original block: these
84 /// successors will have to have any PHI nodes updated to account for the new
85 /// incoming edges.
86 ///
87 /// The correlation between instructions in the source and result basic blocks
88 /// is recorded in the ValueMap map.
89 ///
90 /// If you have a particular suffix you'd like to use to add to any cloned
91 /// names, specify it as the optional third parameter.
92 ///
93 /// If you would like the basic block to be auto-inserted into the end of a
94 /// function, you can specify it as the optional fourth parameter.
95 ///
96 /// If you would like to collect additional information about the cloned
97 /// function, you can specify a ClonedCodeInfo object with the optional fifth
98 /// parameter.
99 ///
100 BasicBlock *CloneBasicBlock(const BasicBlock *BB,
101                             DenseMap<const Value*, Value*> &ValueMap,
102                             const char *NameSuffix = "", Function *F = 0,
103                             ClonedCodeInfo *CodeInfo = 0);
104
105
106 /// CloneLoop - Clone Loop. Clone dominator info for loop insiders. Populate ValueMap
107 /// using old blocks to new blocks mapping.
108 Loop *CloneLoop(Loop *L, LPPassManager  *LPM, LoopInfo *LI, 
109                 DenseMap<const Value *, Value *> &ValueMap, Pass *P);
110
111 /// CloneFunction - Return a copy of the specified function, but without
112 /// embedding the function into another module.  Also, any references specified
113 /// in the ValueMap are changed to refer to their mapped value instead of the
114 /// original one.  If any of the arguments to the function are in the ValueMap,
115 /// the arguments are deleted from the resultant function.  The ValueMap is
116 /// updated to include mappings from all of the instructions and basicblocks in
117 /// the function from their old to new values.  The final argument captures
118 /// information about the cloned code if non-null.
119 ///
120 Function *CloneFunction(const Function *F,
121                         DenseMap<const Value*, Value*> &ValueMap,
122                         ClonedCodeInfo *CodeInfo = 0);
123
124 /// CloneFunction - Version of the function that doesn't need the ValueMap.
125 ///
126 inline Function *CloneFunction(const Function *F, ClonedCodeInfo *CodeInfo = 0){
127   DenseMap<const Value*, Value*> ValueMap;
128   return CloneFunction(F, ValueMap, CodeInfo);
129 }
130
131 /// Clone OldFunc into NewFunc, transforming the old arguments into references
132 /// to ArgMap values.  Note that if NewFunc already has basic blocks, the ones
133 /// cloned into it will be added to the end of the function.  This function
134 /// fills in a list of return instructions, and can optionally append the
135 /// specified suffix to all values cloned.
136 ///
137 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
138                        DenseMap<const Value*, Value*> &ValueMap,
139                        std::vector<ReturnInst*> &Returns,
140                        const char *NameSuffix = "", 
141                        ClonedCodeInfo *CodeInfo = 0);
142
143 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
144 /// except that it does some simple constant prop and DCE on the fly.  The
145 /// effect of this is to copy significantly less code in cases where (for
146 /// example) a function call with constant arguments is inlined, and those
147 /// constant arguments cause a significant amount of code in the callee to be
148 /// dead.  Since this doesn't produce an exactly copy of the input, it can't be
149 /// used for things like CloneFunction or CloneModule.
150 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
151                                DenseMap<const Value*, Value*> &ValueMap,
152                                std::vector<ReturnInst*> &Returns,
153                                const char *NameSuffix = "", 
154                                ClonedCodeInfo *CodeInfo = 0,
155                                const TargetData *TD = 0);
156
157
158 /// CloneTraceInto - Clone T into NewFunc. Original<->clone mapping is
159 /// saved in ValueMap.
160 ///
161 void CloneTraceInto(Function *NewFunc, Trace &T,
162                     DenseMap<const Value*, Value*> &ValueMap,
163                     const char *NameSuffix);
164
165 /// CloneTrace - Returns a copy of the specified trace.
166 /// It takes a vector of basic blocks clones the basic blocks, removes internal
167 /// phi nodes, adds it to the same function as the original (although there is
168 /// no jump to it) and returns the new vector of basic blocks.
169 std::vector<BasicBlock *> CloneTrace(const std::vector<BasicBlock*> &origTrace);
170
171 /// InlineFunction - This function inlines the called function into the basic
172 /// block of the caller.  This returns false if it is not possible to inline
173 /// this call.  The program is still in a well defined state if this occurs
174 /// though.
175 ///
176 /// Note that this only does one level of inlining.  For example, if the
177 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
178 /// exists in the instruction stream.  Similiarly this will inline a recursive
179 /// function by one level.
180 ///
181 /// If a non-null callgraph pointer is provided, these functions update the
182 /// CallGraph to represent the program after inlining.
183 ///
184 bool InlineFunction(CallInst *C, CallGraph *CG = 0, const TargetData *TD = 0);
185 bool InlineFunction(InvokeInst *II, CallGraph *CG = 0, const TargetData *TD =0);
186 bool InlineFunction(CallSite CS, CallGraph *CG = 0, const TargetData *TD = 0);
187
188 } // End llvm namespace
189
190 #endif