OSDN Git Service

net: hns3: add NULL pointer check for hns3_set/get_ringparam()
[uclinux-h8/linux.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38
39 #include <trace/events/power.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/cpuhp.h>
42
43 #include "smpboot.h"
44
45 /**
46  * struct cpuhp_cpu_state - Per cpu hotplug state storage
47  * @state:      The current cpu state
48  * @target:     The target state
49  * @fail:       Current CPU hotplug callback state
50  * @thread:     Pointer to the hotplug thread
51  * @should_run: Thread should execute
52  * @rollback:   Perform a rollback
53  * @single:     Single callback invocation
54  * @bringup:    Single callback bringup or teardown selector
55  * @cpu:        CPU number
56  * @node:       Remote CPU node; for multi-instance, do a
57  *              single entry callback for install/remove
58  * @last:       For multi-instance rollback, remember how far we got
59  * @cb_state:   The state for a single callback (install/uninstall)
60  * @result:     Result of the operation
61  * @done_up:    Signal completion to the issuer of the task for cpu-up
62  * @done_down:  Signal completion to the issuer of the task for cpu-down
63  */
64 struct cpuhp_cpu_state {
65         enum cpuhp_state        state;
66         enum cpuhp_state        target;
67         enum cpuhp_state        fail;
68 #ifdef CONFIG_SMP
69         struct task_struct      *thread;
70         bool                    should_run;
71         bool                    rollback;
72         bool                    single;
73         bool                    bringup;
74         int                     cpu;
75         struct hlist_node       *node;
76         struct hlist_node       *last;
77         enum cpuhp_state        cb_state;
78         int                     result;
79         struct completion       done_up;
80         struct completion       done_down;
81 #endif
82 };
83
84 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
85         .fail = CPUHP_INVALID,
86 };
87
88 #ifdef CONFIG_SMP
89 cpumask_t cpus_booted_once_mask;
90 #endif
91
92 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
93 static struct lockdep_map cpuhp_state_up_map =
94         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
95 static struct lockdep_map cpuhp_state_down_map =
96         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
97
98
99 static inline void cpuhp_lock_acquire(bool bringup)
100 {
101         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
102 }
103
104 static inline void cpuhp_lock_release(bool bringup)
105 {
106         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
107 }
108 #else
109
110 static inline void cpuhp_lock_acquire(bool bringup) { }
111 static inline void cpuhp_lock_release(bool bringup) { }
112
113 #endif
114
115 /**
116  * struct cpuhp_step - Hotplug state machine step
117  * @name:       Name of the step
118  * @startup:    Startup function of the step
119  * @teardown:   Teardown function of the step
120  * @cant_stop:  Bringup/teardown can't be stopped at this step
121  * @multi_instance:     State has multiple instances which get added afterwards
122  */
123 struct cpuhp_step {
124         const char              *name;
125         union {
126                 int             (*single)(unsigned int cpu);
127                 int             (*multi)(unsigned int cpu,
128                                          struct hlist_node *node);
129         } startup;
130         union {
131                 int             (*single)(unsigned int cpu);
132                 int             (*multi)(unsigned int cpu,
133                                          struct hlist_node *node);
134         } teardown;
135         /* private: */
136         struct hlist_head       list;
137         /* public: */
138         bool                    cant_stop;
139         bool                    multi_instance;
140 };
141
142 static DEFINE_MUTEX(cpuhp_state_mutex);
143 static struct cpuhp_step cpuhp_hp_states[];
144
145 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
146 {
147         return cpuhp_hp_states + state;
148 }
149
150 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
151 {
152         return bringup ? !step->startup.single : !step->teardown.single;
153 }
154
155 /**
156  * cpuhp_invoke_callback - Invoke the callbacks for a given state
157  * @cpu:        The cpu for which the callback should be invoked
158  * @state:      The state to do callbacks for
159  * @bringup:    True if the bringup callback should be invoked
160  * @node:       For multi-instance, do a single entry callback for install/remove
161  * @lastp:      For multi-instance rollback, remember how far we got
162  *
163  * Called from cpu hotplug and from the state register machinery.
164  *
165  * Return: %0 on success or a negative errno code
166  */
167 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
168                                  bool bringup, struct hlist_node *node,
169                                  struct hlist_node **lastp)
170 {
171         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
172         struct cpuhp_step *step = cpuhp_get_step(state);
173         int (*cbm)(unsigned int cpu, struct hlist_node *node);
174         int (*cb)(unsigned int cpu);
175         int ret, cnt;
176
177         if (st->fail == state) {
178                 st->fail = CPUHP_INVALID;
179                 return -EAGAIN;
180         }
181
182         if (cpuhp_step_empty(bringup, step)) {
183                 WARN_ON_ONCE(1);
184                 return 0;
185         }
186
187         if (!step->multi_instance) {
188                 WARN_ON_ONCE(lastp && *lastp);
189                 cb = bringup ? step->startup.single : step->teardown.single;
190
191                 trace_cpuhp_enter(cpu, st->target, state, cb);
192                 ret = cb(cpu);
193                 trace_cpuhp_exit(cpu, st->state, state, ret);
194                 return ret;
195         }
196         cbm = bringup ? step->startup.multi : step->teardown.multi;
197
198         /* Single invocation for instance add/remove */
199         if (node) {
200                 WARN_ON_ONCE(lastp && *lastp);
201                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
202                 ret = cbm(cpu, node);
203                 trace_cpuhp_exit(cpu, st->state, state, ret);
204                 return ret;
205         }
206
207         /* State transition. Invoke on all instances */
208         cnt = 0;
209         hlist_for_each(node, &step->list) {
210                 if (lastp && node == *lastp)
211                         break;
212
213                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
214                 ret = cbm(cpu, node);
215                 trace_cpuhp_exit(cpu, st->state, state, ret);
216                 if (ret) {
217                         if (!lastp)
218                                 goto err;
219
220                         *lastp = node;
221                         return ret;
222                 }
223                 cnt++;
224         }
225         if (lastp)
226                 *lastp = NULL;
227         return 0;
228 err:
229         /* Rollback the instances if one failed */
230         cbm = !bringup ? step->startup.multi : step->teardown.multi;
231         if (!cbm)
232                 return ret;
233
234         hlist_for_each(node, &step->list) {
235                 if (!cnt--)
236                         break;
237
238                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
239                 ret = cbm(cpu, node);
240                 trace_cpuhp_exit(cpu, st->state, state, ret);
241                 /*
242                  * Rollback must not fail,
243                  */
244                 WARN_ON_ONCE(ret);
245         }
246         return ret;
247 }
248
249 #ifdef CONFIG_SMP
250 static bool cpuhp_is_ap_state(enum cpuhp_state state)
251 {
252         /*
253          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
254          * purposes as that state is handled explicitly in cpu_down.
255          */
256         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
257 }
258
259 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
260 {
261         struct completion *done = bringup ? &st->done_up : &st->done_down;
262         wait_for_completion(done);
263 }
264
265 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
266 {
267         struct completion *done = bringup ? &st->done_up : &st->done_down;
268         complete(done);
269 }
270
271 /*
272  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
273  */
274 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
275 {
276         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
277 }
278
279 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
280 static DEFINE_MUTEX(cpu_add_remove_lock);
281 bool cpuhp_tasks_frozen;
282 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
283
284 /*
285  * The following two APIs (cpu_maps_update_begin/done) must be used when
286  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
287  */
288 void cpu_maps_update_begin(void)
289 {
290         mutex_lock(&cpu_add_remove_lock);
291 }
292
293 void cpu_maps_update_done(void)
294 {
295         mutex_unlock(&cpu_add_remove_lock);
296 }
297
298 /*
299  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
300  * Should always be manipulated under cpu_add_remove_lock
301  */
302 static int cpu_hotplug_disabled;
303
304 #ifdef CONFIG_HOTPLUG_CPU
305
306 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
307
308 void cpus_read_lock(void)
309 {
310         percpu_down_read(&cpu_hotplug_lock);
311 }
312 EXPORT_SYMBOL_GPL(cpus_read_lock);
313
314 int cpus_read_trylock(void)
315 {
316         return percpu_down_read_trylock(&cpu_hotplug_lock);
317 }
318 EXPORT_SYMBOL_GPL(cpus_read_trylock);
319
320 void cpus_read_unlock(void)
321 {
322         percpu_up_read(&cpu_hotplug_lock);
323 }
324 EXPORT_SYMBOL_GPL(cpus_read_unlock);
325
326 void cpus_write_lock(void)
327 {
328         percpu_down_write(&cpu_hotplug_lock);
329 }
330
331 void cpus_write_unlock(void)
332 {
333         percpu_up_write(&cpu_hotplug_lock);
334 }
335
336 void lockdep_assert_cpus_held(void)
337 {
338         /*
339          * We can't have hotplug operations before userspace starts running,
340          * and some init codepaths will knowingly not take the hotplug lock.
341          * This is all valid, so mute lockdep until it makes sense to report
342          * unheld locks.
343          */
344         if (system_state < SYSTEM_RUNNING)
345                 return;
346
347         percpu_rwsem_assert_held(&cpu_hotplug_lock);
348 }
349
350 #ifdef CONFIG_LOCKDEP
351 int lockdep_is_cpus_held(void)
352 {
353         return percpu_rwsem_is_held(&cpu_hotplug_lock);
354 }
355 #endif
356
357 static void lockdep_acquire_cpus_lock(void)
358 {
359         rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
360 }
361
362 static void lockdep_release_cpus_lock(void)
363 {
364         rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
365 }
366
367 /*
368  * Wait for currently running CPU hotplug operations to complete (if any) and
369  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
370  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
371  * hotplug path before performing hotplug operations. So acquiring that lock
372  * guarantees mutual exclusion from any currently running hotplug operations.
373  */
374 void cpu_hotplug_disable(void)
375 {
376         cpu_maps_update_begin();
377         cpu_hotplug_disabled++;
378         cpu_maps_update_done();
379 }
380 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
381
382 static void __cpu_hotplug_enable(void)
383 {
384         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
385                 return;
386         cpu_hotplug_disabled--;
387 }
388
389 void cpu_hotplug_enable(void)
390 {
391         cpu_maps_update_begin();
392         __cpu_hotplug_enable();
393         cpu_maps_update_done();
394 }
395 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
396
397 #else
398
399 static void lockdep_acquire_cpus_lock(void)
400 {
401 }
402
403 static void lockdep_release_cpus_lock(void)
404 {
405 }
406
407 #endif  /* CONFIG_HOTPLUG_CPU */
408
409 /*
410  * Architectures that need SMT-specific errata handling during SMT hotplug
411  * should override this.
412  */
413 void __weak arch_smt_update(void) { }
414
415 #ifdef CONFIG_HOTPLUG_SMT
416 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
417
418 void __init cpu_smt_disable(bool force)
419 {
420         if (!cpu_smt_possible())
421                 return;
422
423         if (force) {
424                 pr_info("SMT: Force disabled\n");
425                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
426         } else {
427                 pr_info("SMT: disabled\n");
428                 cpu_smt_control = CPU_SMT_DISABLED;
429         }
430 }
431
432 /*
433  * The decision whether SMT is supported can only be done after the full
434  * CPU identification. Called from architecture code.
435  */
436 void __init cpu_smt_check_topology(void)
437 {
438         if (!topology_smt_supported())
439                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
440 }
441
442 static int __init smt_cmdline_disable(char *str)
443 {
444         cpu_smt_disable(str && !strcmp(str, "force"));
445         return 0;
446 }
447 early_param("nosmt", smt_cmdline_disable);
448
449 static inline bool cpu_smt_allowed(unsigned int cpu)
450 {
451         if (cpu_smt_control == CPU_SMT_ENABLED)
452                 return true;
453
454         if (topology_is_primary_thread(cpu))
455                 return true;
456
457         /*
458          * On x86 it's required to boot all logical CPUs at least once so
459          * that the init code can get a chance to set CR4.MCE on each
460          * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
461          * core will shutdown the machine.
462          */
463         return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
464 }
465
466 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
467 bool cpu_smt_possible(void)
468 {
469         return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
470                 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
471 }
472 EXPORT_SYMBOL_GPL(cpu_smt_possible);
473 #else
474 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
475 #endif
476
477 static inline enum cpuhp_state
478 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
479 {
480         enum cpuhp_state prev_state = st->state;
481         bool bringup = st->state < target;
482
483         st->rollback = false;
484         st->last = NULL;
485
486         st->target = target;
487         st->single = false;
488         st->bringup = bringup;
489         if (cpu_dying(st->cpu) != !bringup)
490                 set_cpu_dying(st->cpu, !bringup);
491
492         return prev_state;
493 }
494
495 static inline void
496 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
497 {
498         bool bringup = !st->bringup;
499
500         st->target = prev_state;
501
502         /*
503          * Already rolling back. No need invert the bringup value or to change
504          * the current state.
505          */
506         if (st->rollback)
507                 return;
508
509         st->rollback = true;
510
511         /*
512          * If we have st->last we need to undo partial multi_instance of this
513          * state first. Otherwise start undo at the previous state.
514          */
515         if (!st->last) {
516                 if (st->bringup)
517                         st->state--;
518                 else
519                         st->state++;
520         }
521
522         st->bringup = bringup;
523         if (cpu_dying(st->cpu) != !bringup)
524                 set_cpu_dying(st->cpu, !bringup);
525 }
526
527 /* Regular hotplug invocation of the AP hotplug thread */
528 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
529 {
530         if (!st->single && st->state == st->target)
531                 return;
532
533         st->result = 0;
534         /*
535          * Make sure the above stores are visible before should_run becomes
536          * true. Paired with the mb() above in cpuhp_thread_fun()
537          */
538         smp_mb();
539         st->should_run = true;
540         wake_up_process(st->thread);
541         wait_for_ap_thread(st, st->bringup);
542 }
543
544 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
545 {
546         enum cpuhp_state prev_state;
547         int ret;
548
549         prev_state = cpuhp_set_state(st, target);
550         __cpuhp_kick_ap(st);
551         if ((ret = st->result)) {
552                 cpuhp_reset_state(st, prev_state);
553                 __cpuhp_kick_ap(st);
554         }
555
556         return ret;
557 }
558
559 static int bringup_wait_for_ap(unsigned int cpu)
560 {
561         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
562
563         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
564         wait_for_ap_thread(st, true);
565         if (WARN_ON_ONCE((!cpu_online(cpu))))
566                 return -ECANCELED;
567
568         /* Unpark the hotplug thread of the target cpu */
569         kthread_unpark(st->thread);
570
571         /*
572          * SMT soft disabling on X86 requires to bring the CPU out of the
573          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
574          * CPU marked itself as booted_once in notify_cpu_starting() so the
575          * cpu_smt_allowed() check will now return false if this is not the
576          * primary sibling.
577          */
578         if (!cpu_smt_allowed(cpu))
579                 return -ECANCELED;
580
581         if (st->target <= CPUHP_AP_ONLINE_IDLE)
582                 return 0;
583
584         return cpuhp_kick_ap(st, st->target);
585 }
586
587 static int bringup_cpu(unsigned int cpu)
588 {
589         struct task_struct *idle = idle_thread_get(cpu);
590         int ret;
591
592         /*
593          * Reset stale stack state from the last time this CPU was online.
594          */
595         scs_task_reset(idle);
596         kasan_unpoison_task_stack(idle);
597
598         /*
599          * Some architectures have to walk the irq descriptors to
600          * setup the vector space for the cpu which comes online.
601          * Prevent irq alloc/free across the bringup.
602          */
603         irq_lock_sparse();
604
605         /* Arch-specific enabling code. */
606         ret = __cpu_up(cpu, idle);
607         irq_unlock_sparse();
608         if (ret)
609                 return ret;
610         return bringup_wait_for_ap(cpu);
611 }
612
613 static int finish_cpu(unsigned int cpu)
614 {
615         struct task_struct *idle = idle_thread_get(cpu);
616         struct mm_struct *mm = idle->active_mm;
617
618         /*
619          * idle_task_exit() will have switched to &init_mm, now
620          * clean up any remaining active_mm state.
621          */
622         if (mm != &init_mm)
623                 idle->active_mm = &init_mm;
624         mmdrop(mm);
625         return 0;
626 }
627
628 /*
629  * Hotplug state machine related functions
630  */
631
632 /*
633  * Get the next state to run. Empty ones will be skipped. Returns true if a
634  * state must be run.
635  *
636  * st->state will be modified ahead of time, to match state_to_run, as if it
637  * has already ran.
638  */
639 static bool cpuhp_next_state(bool bringup,
640                              enum cpuhp_state *state_to_run,
641                              struct cpuhp_cpu_state *st,
642                              enum cpuhp_state target)
643 {
644         do {
645                 if (bringup) {
646                         if (st->state >= target)
647                                 return false;
648
649                         *state_to_run = ++st->state;
650                 } else {
651                         if (st->state <= target)
652                                 return false;
653
654                         *state_to_run = st->state--;
655                 }
656
657                 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
658                         break;
659         } while (true);
660
661         return true;
662 }
663
664 static int cpuhp_invoke_callback_range(bool bringup,
665                                        unsigned int cpu,
666                                        struct cpuhp_cpu_state *st,
667                                        enum cpuhp_state target)
668 {
669         enum cpuhp_state state;
670         int err = 0;
671
672         while (cpuhp_next_state(bringup, &state, st, target)) {
673                 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
674                 if (err)
675                         break;
676         }
677
678         return err;
679 }
680
681 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
682 {
683         if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
684                 return true;
685         /*
686          * When CPU hotplug is disabled, then taking the CPU down is not
687          * possible because takedown_cpu() and the architecture and
688          * subsystem specific mechanisms are not available. So the CPU
689          * which would be completely unplugged again needs to stay around
690          * in the current state.
691          */
692         return st->state <= CPUHP_BRINGUP_CPU;
693 }
694
695 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
696                               enum cpuhp_state target)
697 {
698         enum cpuhp_state prev_state = st->state;
699         int ret = 0;
700
701         ret = cpuhp_invoke_callback_range(true, cpu, st, target);
702         if (ret) {
703                 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
704                          ret, cpu, cpuhp_get_step(st->state)->name,
705                          st->state);
706
707                 cpuhp_reset_state(st, prev_state);
708                 if (can_rollback_cpu(st))
709                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
710                                                             prev_state));
711         }
712         return ret;
713 }
714
715 /*
716  * The cpu hotplug threads manage the bringup and teardown of the cpus
717  */
718 static void cpuhp_create(unsigned int cpu)
719 {
720         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
721
722         init_completion(&st->done_up);
723         init_completion(&st->done_down);
724         st->cpu = cpu;
725 }
726
727 static int cpuhp_should_run(unsigned int cpu)
728 {
729         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
730
731         return st->should_run;
732 }
733
734 /*
735  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
736  * callbacks when a state gets [un]installed at runtime.
737  *
738  * Each invocation of this function by the smpboot thread does a single AP
739  * state callback.
740  *
741  * It has 3 modes of operation:
742  *  - single: runs st->cb_state
743  *  - up:     runs ++st->state, while st->state < st->target
744  *  - down:   runs st->state--, while st->state > st->target
745  *
746  * When complete or on error, should_run is cleared and the completion is fired.
747  */
748 static void cpuhp_thread_fun(unsigned int cpu)
749 {
750         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
751         bool bringup = st->bringup;
752         enum cpuhp_state state;
753
754         if (WARN_ON_ONCE(!st->should_run))
755                 return;
756
757         /*
758          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
759          * that if we see ->should_run we also see the rest of the state.
760          */
761         smp_mb();
762
763         /*
764          * The BP holds the hotplug lock, but we're now running on the AP,
765          * ensure that anybody asserting the lock is held, will actually find
766          * it so.
767          */
768         lockdep_acquire_cpus_lock();
769         cpuhp_lock_acquire(bringup);
770
771         if (st->single) {
772                 state = st->cb_state;
773                 st->should_run = false;
774         } else {
775                 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
776                 if (!st->should_run)
777                         goto end;
778         }
779
780         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
781
782         if (cpuhp_is_atomic_state(state)) {
783                 local_irq_disable();
784                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
785                 local_irq_enable();
786
787                 /*
788                  * STARTING/DYING must not fail!
789                  */
790                 WARN_ON_ONCE(st->result);
791         } else {
792                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
793         }
794
795         if (st->result) {
796                 /*
797                  * If we fail on a rollback, we're up a creek without no
798                  * paddle, no way forward, no way back. We loose, thanks for
799                  * playing.
800                  */
801                 WARN_ON_ONCE(st->rollback);
802                 st->should_run = false;
803         }
804
805 end:
806         cpuhp_lock_release(bringup);
807         lockdep_release_cpus_lock();
808
809         if (!st->should_run)
810                 complete_ap_thread(st, bringup);
811 }
812
813 /* Invoke a single callback on a remote cpu */
814 static int
815 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
816                          struct hlist_node *node)
817 {
818         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
819         int ret;
820
821         if (!cpu_online(cpu))
822                 return 0;
823
824         cpuhp_lock_acquire(false);
825         cpuhp_lock_release(false);
826
827         cpuhp_lock_acquire(true);
828         cpuhp_lock_release(true);
829
830         /*
831          * If we are up and running, use the hotplug thread. For early calls
832          * we invoke the thread function directly.
833          */
834         if (!st->thread)
835                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
836
837         st->rollback = false;
838         st->last = NULL;
839
840         st->node = node;
841         st->bringup = bringup;
842         st->cb_state = state;
843         st->single = true;
844
845         __cpuhp_kick_ap(st);
846
847         /*
848          * If we failed and did a partial, do a rollback.
849          */
850         if ((ret = st->result) && st->last) {
851                 st->rollback = true;
852                 st->bringup = !bringup;
853
854                 __cpuhp_kick_ap(st);
855         }
856
857         /*
858          * Clean up the leftovers so the next hotplug operation wont use stale
859          * data.
860          */
861         st->node = st->last = NULL;
862         return ret;
863 }
864
865 static int cpuhp_kick_ap_work(unsigned int cpu)
866 {
867         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
868         enum cpuhp_state prev_state = st->state;
869         int ret;
870
871         cpuhp_lock_acquire(false);
872         cpuhp_lock_release(false);
873
874         cpuhp_lock_acquire(true);
875         cpuhp_lock_release(true);
876
877         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
878         ret = cpuhp_kick_ap(st, st->target);
879         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
880
881         return ret;
882 }
883
884 static struct smp_hotplug_thread cpuhp_threads = {
885         .store                  = &cpuhp_state.thread,
886         .create                 = &cpuhp_create,
887         .thread_should_run      = cpuhp_should_run,
888         .thread_fn              = cpuhp_thread_fun,
889         .thread_comm            = "cpuhp/%u",
890         .selfparking            = true,
891 };
892
893 void __init cpuhp_threads_init(void)
894 {
895         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
896         kthread_unpark(this_cpu_read(cpuhp_state.thread));
897 }
898
899 /*
900  *
901  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
902  * protected region.
903  *
904  * The operation is still serialized against concurrent CPU hotplug via
905  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
906  * serialized against other hotplug related activity like adding or
907  * removing of state callbacks and state instances, which invoke either the
908  * startup or the teardown callback of the affected state.
909  *
910  * This is required for subsystems which are unfixable vs. CPU hotplug and
911  * evade lock inversion problems by scheduling work which has to be
912  * completed _before_ cpu_up()/_cpu_down() returns.
913  *
914  * Don't even think about adding anything to this for any new code or even
915  * drivers. It's only purpose is to keep existing lock order trainwrecks
916  * working.
917  *
918  * For cpu_down() there might be valid reasons to finish cleanups which are
919  * not required to be done under cpu_hotplug_lock, but that's a different
920  * story and would be not invoked via this.
921  */
922 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
923 {
924         /*
925          * cpusets delegate hotplug operations to a worker to "solve" the
926          * lock order problems. Wait for the worker, but only if tasks are
927          * _not_ frozen (suspend, hibernate) as that would wait forever.
928          *
929          * The wait is required because otherwise the hotplug operation
930          * returns with inconsistent state, which could even be observed in
931          * user space when a new CPU is brought up. The CPU plug uevent
932          * would be delivered and user space reacting on it would fail to
933          * move tasks to the newly plugged CPU up to the point where the
934          * work has finished because up to that point the newly plugged CPU
935          * is not assignable in cpusets/cgroups. On unplug that's not
936          * necessarily a visible issue, but it is still inconsistent state,
937          * which is the real problem which needs to be "fixed". This can't
938          * prevent the transient state between scheduling the work and
939          * returning from waiting for it.
940          */
941         if (!tasks_frozen)
942                 cpuset_wait_for_hotplug();
943 }
944
945 #ifdef CONFIG_HOTPLUG_CPU
946 #ifndef arch_clear_mm_cpumask_cpu
947 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
948 #endif
949
950 /**
951  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
952  * @cpu: a CPU id
953  *
954  * This function walks all processes, finds a valid mm struct for each one and
955  * then clears a corresponding bit in mm's cpumask.  While this all sounds
956  * trivial, there are various non-obvious corner cases, which this function
957  * tries to solve in a safe manner.
958  *
959  * Also note that the function uses a somewhat relaxed locking scheme, so it may
960  * be called only for an already offlined CPU.
961  */
962 void clear_tasks_mm_cpumask(int cpu)
963 {
964         struct task_struct *p;
965
966         /*
967          * This function is called after the cpu is taken down and marked
968          * offline, so its not like new tasks will ever get this cpu set in
969          * their mm mask. -- Peter Zijlstra
970          * Thus, we may use rcu_read_lock() here, instead of grabbing
971          * full-fledged tasklist_lock.
972          */
973         WARN_ON(cpu_online(cpu));
974         rcu_read_lock();
975         for_each_process(p) {
976                 struct task_struct *t;
977
978                 /*
979                  * Main thread might exit, but other threads may still have
980                  * a valid mm. Find one.
981                  */
982                 t = find_lock_task_mm(p);
983                 if (!t)
984                         continue;
985                 arch_clear_mm_cpumask_cpu(cpu, t->mm);
986                 task_unlock(t);
987         }
988         rcu_read_unlock();
989 }
990
991 /* Take this CPU down. */
992 static int take_cpu_down(void *_param)
993 {
994         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
995         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
996         int err, cpu = smp_processor_id();
997         int ret;
998
999         /* Ensure this CPU doesn't handle any more interrupts. */
1000         err = __cpu_disable();
1001         if (err < 0)
1002                 return err;
1003
1004         /*
1005          * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1006          * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1007          */
1008         WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1009
1010         /* Invoke the former CPU_DYING callbacks */
1011         ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1012
1013         /*
1014          * DYING must not fail!
1015          */
1016         WARN_ON_ONCE(ret);
1017
1018         /* Give up timekeeping duties */
1019         tick_handover_do_timer();
1020         /* Remove CPU from timer broadcasting */
1021         tick_offline_cpu(cpu);
1022         /* Park the stopper thread */
1023         stop_machine_park(cpu);
1024         return 0;
1025 }
1026
1027 static int takedown_cpu(unsigned int cpu)
1028 {
1029         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1030         int err;
1031
1032         /* Park the smpboot threads */
1033         kthread_park(st->thread);
1034
1035         /*
1036          * Prevent irq alloc/free while the dying cpu reorganizes the
1037          * interrupt affinities.
1038          */
1039         irq_lock_sparse();
1040
1041         /*
1042          * So now all preempt/rcu users must observe !cpu_active().
1043          */
1044         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1045         if (err) {
1046                 /* CPU refused to die */
1047                 irq_unlock_sparse();
1048                 /* Unpark the hotplug thread so we can rollback there */
1049                 kthread_unpark(st->thread);
1050                 return err;
1051         }
1052         BUG_ON(cpu_online(cpu));
1053
1054         /*
1055          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1056          * all runnable tasks from the CPU, there's only the idle task left now
1057          * that the migration thread is done doing the stop_machine thing.
1058          *
1059          * Wait for the stop thread to go away.
1060          */
1061         wait_for_ap_thread(st, false);
1062         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1063
1064         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1065         irq_unlock_sparse();
1066
1067         hotplug_cpu__broadcast_tick_pull(cpu);
1068         /* This actually kills the CPU. */
1069         __cpu_die(cpu);
1070
1071         tick_cleanup_dead_cpu(cpu);
1072         rcutree_migrate_callbacks(cpu);
1073         return 0;
1074 }
1075
1076 static void cpuhp_complete_idle_dead(void *arg)
1077 {
1078         struct cpuhp_cpu_state *st = arg;
1079
1080         complete_ap_thread(st, false);
1081 }
1082
1083 void cpuhp_report_idle_dead(void)
1084 {
1085         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1086
1087         BUG_ON(st->state != CPUHP_AP_OFFLINE);
1088         rcu_report_dead(smp_processor_id());
1089         st->state = CPUHP_AP_IDLE_DEAD;
1090         /*
1091          * We cannot call complete after rcu_report_dead() so we delegate it
1092          * to an online cpu.
1093          */
1094         smp_call_function_single(cpumask_first(cpu_online_mask),
1095                                  cpuhp_complete_idle_dead, st, 0);
1096 }
1097
1098 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1099                                 enum cpuhp_state target)
1100 {
1101         enum cpuhp_state prev_state = st->state;
1102         int ret = 0;
1103
1104         ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1105         if (ret) {
1106                 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1107                          ret, cpu, cpuhp_get_step(st->state)->name,
1108                          st->state);
1109
1110                 cpuhp_reset_state(st, prev_state);
1111
1112                 if (st->state < prev_state)
1113                         WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1114                                                             prev_state));
1115         }
1116
1117         return ret;
1118 }
1119
1120 /* Requires cpu_add_remove_lock to be held */
1121 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1122                            enum cpuhp_state target)
1123 {
1124         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1125         int prev_state, ret = 0;
1126
1127         if (num_online_cpus() == 1)
1128                 return -EBUSY;
1129
1130         if (!cpu_present(cpu))
1131                 return -EINVAL;
1132
1133         cpus_write_lock();
1134
1135         cpuhp_tasks_frozen = tasks_frozen;
1136
1137         prev_state = cpuhp_set_state(st, target);
1138         /*
1139          * If the current CPU state is in the range of the AP hotplug thread,
1140          * then we need to kick the thread.
1141          */
1142         if (st->state > CPUHP_TEARDOWN_CPU) {
1143                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1144                 ret = cpuhp_kick_ap_work(cpu);
1145                 /*
1146                  * The AP side has done the error rollback already. Just
1147                  * return the error code..
1148                  */
1149                 if (ret)
1150                         goto out;
1151
1152                 /*
1153                  * We might have stopped still in the range of the AP hotplug
1154                  * thread. Nothing to do anymore.
1155                  */
1156                 if (st->state > CPUHP_TEARDOWN_CPU)
1157                         goto out;
1158
1159                 st->target = target;
1160         }
1161         /*
1162          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1163          * to do the further cleanups.
1164          */
1165         ret = cpuhp_down_callbacks(cpu, st, target);
1166         if (ret && st->state < prev_state) {
1167                 if (st->state == CPUHP_TEARDOWN_CPU) {
1168                         cpuhp_reset_state(st, prev_state);
1169                         __cpuhp_kick_ap(st);
1170                 } else {
1171                         WARN(1, "DEAD callback error for CPU%d", cpu);
1172                 }
1173         }
1174
1175 out:
1176         cpus_write_unlock();
1177         /*
1178          * Do post unplug cleanup. This is still protected against
1179          * concurrent CPU hotplug via cpu_add_remove_lock.
1180          */
1181         lockup_detector_cleanup();
1182         arch_smt_update();
1183         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1184         return ret;
1185 }
1186
1187 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1188 {
1189         if (cpu_hotplug_disabled)
1190                 return -EBUSY;
1191         return _cpu_down(cpu, 0, target);
1192 }
1193
1194 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1195 {
1196         int err;
1197
1198         cpu_maps_update_begin();
1199         err = cpu_down_maps_locked(cpu, target);
1200         cpu_maps_update_done();
1201         return err;
1202 }
1203
1204 /**
1205  * cpu_device_down - Bring down a cpu device
1206  * @dev: Pointer to the cpu device to offline
1207  *
1208  * This function is meant to be used by device core cpu subsystem only.
1209  *
1210  * Other subsystems should use remove_cpu() instead.
1211  *
1212  * Return: %0 on success or a negative errno code
1213  */
1214 int cpu_device_down(struct device *dev)
1215 {
1216         return cpu_down(dev->id, CPUHP_OFFLINE);
1217 }
1218
1219 int remove_cpu(unsigned int cpu)
1220 {
1221         int ret;
1222
1223         lock_device_hotplug();
1224         ret = device_offline(get_cpu_device(cpu));
1225         unlock_device_hotplug();
1226
1227         return ret;
1228 }
1229 EXPORT_SYMBOL_GPL(remove_cpu);
1230
1231 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1232 {
1233         unsigned int cpu;
1234         int error;
1235
1236         cpu_maps_update_begin();
1237
1238         /*
1239          * Make certain the cpu I'm about to reboot on is online.
1240          *
1241          * This is inline to what migrate_to_reboot_cpu() already do.
1242          */
1243         if (!cpu_online(primary_cpu))
1244                 primary_cpu = cpumask_first(cpu_online_mask);
1245
1246         for_each_online_cpu(cpu) {
1247                 if (cpu == primary_cpu)
1248                         continue;
1249
1250                 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1251                 if (error) {
1252                         pr_err("Failed to offline CPU%d - error=%d",
1253                                 cpu, error);
1254                         break;
1255                 }
1256         }
1257
1258         /*
1259          * Ensure all but the reboot CPU are offline.
1260          */
1261         BUG_ON(num_online_cpus() > 1);
1262
1263         /*
1264          * Make sure the CPUs won't be enabled by someone else after this
1265          * point. Kexec will reboot to a new kernel shortly resetting
1266          * everything along the way.
1267          */
1268         cpu_hotplug_disabled++;
1269
1270         cpu_maps_update_done();
1271 }
1272
1273 #else
1274 #define takedown_cpu            NULL
1275 #endif /*CONFIG_HOTPLUG_CPU*/
1276
1277 /**
1278  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1279  * @cpu: cpu that just started
1280  *
1281  * It must be called by the arch code on the new cpu, before the new cpu
1282  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1283  */
1284 void notify_cpu_starting(unsigned int cpu)
1285 {
1286         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1287         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1288         int ret;
1289
1290         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1291         cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1292         ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1293
1294         /*
1295          * STARTING must not fail!
1296          */
1297         WARN_ON_ONCE(ret);
1298 }
1299
1300 /*
1301  * Called from the idle task. Wake up the controlling task which brings the
1302  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1303  * online bringup to the hotplug thread.
1304  */
1305 void cpuhp_online_idle(enum cpuhp_state state)
1306 {
1307         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1308
1309         /* Happens for the boot cpu */
1310         if (state != CPUHP_AP_ONLINE_IDLE)
1311                 return;
1312
1313         /*
1314          * Unpart the stopper thread before we start the idle loop (and start
1315          * scheduling); this ensures the stopper task is always available.
1316          */
1317         stop_machine_unpark(smp_processor_id());
1318
1319         st->state = CPUHP_AP_ONLINE_IDLE;
1320         complete_ap_thread(st, true);
1321 }
1322
1323 /* Requires cpu_add_remove_lock to be held */
1324 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1325 {
1326         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1327         struct task_struct *idle;
1328         int ret = 0;
1329
1330         cpus_write_lock();
1331
1332         if (!cpu_present(cpu)) {
1333                 ret = -EINVAL;
1334                 goto out;
1335         }
1336
1337         /*
1338          * The caller of cpu_up() might have raced with another
1339          * caller. Nothing to do.
1340          */
1341         if (st->state >= target)
1342                 goto out;
1343
1344         if (st->state == CPUHP_OFFLINE) {
1345                 /* Let it fail before we try to bring the cpu up */
1346                 idle = idle_thread_get(cpu);
1347                 if (IS_ERR(idle)) {
1348                         ret = PTR_ERR(idle);
1349                         goto out;
1350                 }
1351         }
1352
1353         cpuhp_tasks_frozen = tasks_frozen;
1354
1355         cpuhp_set_state(st, target);
1356         /*
1357          * If the current CPU state is in the range of the AP hotplug thread,
1358          * then we need to kick the thread once more.
1359          */
1360         if (st->state > CPUHP_BRINGUP_CPU) {
1361                 ret = cpuhp_kick_ap_work(cpu);
1362                 /*
1363                  * The AP side has done the error rollback already. Just
1364                  * return the error code..
1365                  */
1366                 if (ret)
1367                         goto out;
1368         }
1369
1370         /*
1371          * Try to reach the target state. We max out on the BP at
1372          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1373          * responsible for bringing it up to the target state.
1374          */
1375         target = min((int)target, CPUHP_BRINGUP_CPU);
1376         ret = cpuhp_up_callbacks(cpu, st, target);
1377 out:
1378         cpus_write_unlock();
1379         arch_smt_update();
1380         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1381         return ret;
1382 }
1383
1384 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1385 {
1386         int err = 0;
1387
1388         if (!cpu_possible(cpu)) {
1389                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1390                        cpu);
1391 #if defined(CONFIG_IA64)
1392                 pr_err("please check additional_cpus= boot parameter\n");
1393 #endif
1394                 return -EINVAL;
1395         }
1396
1397         err = try_online_node(cpu_to_node(cpu));
1398         if (err)
1399                 return err;
1400
1401         cpu_maps_update_begin();
1402
1403         if (cpu_hotplug_disabled) {
1404                 err = -EBUSY;
1405                 goto out;
1406         }
1407         if (!cpu_smt_allowed(cpu)) {
1408                 err = -EPERM;
1409                 goto out;
1410         }
1411
1412         err = _cpu_up(cpu, 0, target);
1413 out:
1414         cpu_maps_update_done();
1415         return err;
1416 }
1417
1418 /**
1419  * cpu_device_up - Bring up a cpu device
1420  * @dev: Pointer to the cpu device to online
1421  *
1422  * This function is meant to be used by device core cpu subsystem only.
1423  *
1424  * Other subsystems should use add_cpu() instead.
1425  *
1426  * Return: %0 on success or a negative errno code
1427  */
1428 int cpu_device_up(struct device *dev)
1429 {
1430         return cpu_up(dev->id, CPUHP_ONLINE);
1431 }
1432
1433 int add_cpu(unsigned int cpu)
1434 {
1435         int ret;
1436
1437         lock_device_hotplug();
1438         ret = device_online(get_cpu_device(cpu));
1439         unlock_device_hotplug();
1440
1441         return ret;
1442 }
1443 EXPORT_SYMBOL_GPL(add_cpu);
1444
1445 /**
1446  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1447  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1448  *
1449  * On some architectures like arm64, we can hibernate on any CPU, but on
1450  * wake up the CPU we hibernated on might be offline as a side effect of
1451  * using maxcpus= for example.
1452  *
1453  * Return: %0 on success or a negative errno code
1454  */
1455 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1456 {
1457         int ret;
1458
1459         if (!cpu_online(sleep_cpu)) {
1460                 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1461                 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1462                 if (ret) {
1463                         pr_err("Failed to bring hibernate-CPU up!\n");
1464                         return ret;
1465                 }
1466         }
1467         return 0;
1468 }
1469
1470 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1471 {
1472         unsigned int cpu;
1473
1474         for_each_present_cpu(cpu) {
1475                 if (num_online_cpus() >= setup_max_cpus)
1476                         break;
1477                 if (!cpu_online(cpu))
1478                         cpu_up(cpu, CPUHP_ONLINE);
1479         }
1480 }
1481
1482 #ifdef CONFIG_PM_SLEEP_SMP
1483 static cpumask_var_t frozen_cpus;
1484
1485 int freeze_secondary_cpus(int primary)
1486 {
1487         int cpu, error = 0;
1488
1489         cpu_maps_update_begin();
1490         if (primary == -1) {
1491                 primary = cpumask_first(cpu_online_mask);
1492                 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1493                         primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1494         } else {
1495                 if (!cpu_online(primary))
1496                         primary = cpumask_first(cpu_online_mask);
1497         }
1498
1499         /*
1500          * We take down all of the non-boot CPUs in one shot to avoid races
1501          * with the userspace trying to use the CPU hotplug at the same time
1502          */
1503         cpumask_clear(frozen_cpus);
1504
1505         pr_info("Disabling non-boot CPUs ...\n");
1506         for_each_online_cpu(cpu) {
1507                 if (cpu == primary)
1508                         continue;
1509
1510                 if (pm_wakeup_pending()) {
1511                         pr_info("Wakeup pending. Abort CPU freeze\n");
1512                         error = -EBUSY;
1513                         break;
1514                 }
1515
1516                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1517                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1518                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1519                 if (!error)
1520                         cpumask_set_cpu(cpu, frozen_cpus);
1521                 else {
1522                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1523                         break;
1524                 }
1525         }
1526
1527         if (!error)
1528                 BUG_ON(num_online_cpus() > 1);
1529         else
1530                 pr_err("Non-boot CPUs are not disabled\n");
1531
1532         /*
1533          * Make sure the CPUs won't be enabled by someone else. We need to do
1534          * this even in case of failure as all freeze_secondary_cpus() users are
1535          * supposed to do thaw_secondary_cpus() on the failure path.
1536          */
1537         cpu_hotplug_disabled++;
1538
1539         cpu_maps_update_done();
1540         return error;
1541 }
1542
1543 void __weak arch_thaw_secondary_cpus_begin(void)
1544 {
1545 }
1546
1547 void __weak arch_thaw_secondary_cpus_end(void)
1548 {
1549 }
1550
1551 void thaw_secondary_cpus(void)
1552 {
1553         int cpu, error;
1554
1555         /* Allow everyone to use the CPU hotplug again */
1556         cpu_maps_update_begin();
1557         __cpu_hotplug_enable();
1558         if (cpumask_empty(frozen_cpus))
1559                 goto out;
1560
1561         pr_info("Enabling non-boot CPUs ...\n");
1562
1563         arch_thaw_secondary_cpus_begin();
1564
1565         for_each_cpu(cpu, frozen_cpus) {
1566                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1567                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1568                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1569                 if (!error) {
1570                         pr_info("CPU%d is up\n", cpu);
1571                         continue;
1572                 }
1573                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1574         }
1575
1576         arch_thaw_secondary_cpus_end();
1577
1578         cpumask_clear(frozen_cpus);
1579 out:
1580         cpu_maps_update_done();
1581 }
1582
1583 static int __init alloc_frozen_cpus(void)
1584 {
1585         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1586                 return -ENOMEM;
1587         return 0;
1588 }
1589 core_initcall(alloc_frozen_cpus);
1590
1591 /*
1592  * When callbacks for CPU hotplug notifications are being executed, we must
1593  * ensure that the state of the system with respect to the tasks being frozen
1594  * or not, as reported by the notification, remains unchanged *throughout the
1595  * duration* of the execution of the callbacks.
1596  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1597  *
1598  * This synchronization is implemented by mutually excluding regular CPU
1599  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1600  * Hibernate notifications.
1601  */
1602 static int
1603 cpu_hotplug_pm_callback(struct notifier_block *nb,
1604                         unsigned long action, void *ptr)
1605 {
1606         switch (action) {
1607
1608         case PM_SUSPEND_PREPARE:
1609         case PM_HIBERNATION_PREPARE:
1610                 cpu_hotplug_disable();
1611                 break;
1612
1613         case PM_POST_SUSPEND:
1614         case PM_POST_HIBERNATION:
1615                 cpu_hotplug_enable();
1616                 break;
1617
1618         default:
1619                 return NOTIFY_DONE;
1620         }
1621
1622         return NOTIFY_OK;
1623 }
1624
1625
1626 static int __init cpu_hotplug_pm_sync_init(void)
1627 {
1628         /*
1629          * cpu_hotplug_pm_callback has higher priority than x86
1630          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1631          * to disable cpu hotplug to avoid cpu hotplug race.
1632          */
1633         pm_notifier(cpu_hotplug_pm_callback, 0);
1634         return 0;
1635 }
1636 core_initcall(cpu_hotplug_pm_sync_init);
1637
1638 #endif /* CONFIG_PM_SLEEP_SMP */
1639
1640 int __boot_cpu_id;
1641
1642 #endif /* CONFIG_SMP */
1643
1644 /* Boot processor state steps */
1645 static struct cpuhp_step cpuhp_hp_states[] = {
1646         [CPUHP_OFFLINE] = {
1647                 .name                   = "offline",
1648                 .startup.single         = NULL,
1649                 .teardown.single        = NULL,
1650         },
1651 #ifdef CONFIG_SMP
1652         [CPUHP_CREATE_THREADS]= {
1653                 .name                   = "threads:prepare",
1654                 .startup.single         = smpboot_create_threads,
1655                 .teardown.single        = NULL,
1656                 .cant_stop              = true,
1657         },
1658         [CPUHP_PERF_PREPARE] = {
1659                 .name                   = "perf:prepare",
1660                 .startup.single         = perf_event_init_cpu,
1661                 .teardown.single        = perf_event_exit_cpu,
1662         },
1663         [CPUHP_RANDOM_PREPARE] = {
1664                 .name                   = "random:prepare",
1665                 .startup.single         = random_prepare_cpu,
1666                 .teardown.single        = NULL,
1667         },
1668         [CPUHP_WORKQUEUE_PREP] = {
1669                 .name                   = "workqueue:prepare",
1670                 .startup.single         = workqueue_prepare_cpu,
1671                 .teardown.single        = NULL,
1672         },
1673         [CPUHP_HRTIMERS_PREPARE] = {
1674                 .name                   = "hrtimers:prepare",
1675                 .startup.single         = hrtimers_prepare_cpu,
1676                 .teardown.single        = hrtimers_dead_cpu,
1677         },
1678         [CPUHP_SMPCFD_PREPARE] = {
1679                 .name                   = "smpcfd:prepare",
1680                 .startup.single         = smpcfd_prepare_cpu,
1681                 .teardown.single        = smpcfd_dead_cpu,
1682         },
1683         [CPUHP_RELAY_PREPARE] = {
1684                 .name                   = "relay:prepare",
1685                 .startup.single         = relay_prepare_cpu,
1686                 .teardown.single        = NULL,
1687         },
1688         [CPUHP_SLAB_PREPARE] = {
1689                 .name                   = "slab:prepare",
1690                 .startup.single         = slab_prepare_cpu,
1691                 .teardown.single        = slab_dead_cpu,
1692         },
1693         [CPUHP_RCUTREE_PREP] = {
1694                 .name                   = "RCU/tree:prepare",
1695                 .startup.single         = rcutree_prepare_cpu,
1696                 .teardown.single        = rcutree_dead_cpu,
1697         },
1698         /*
1699          * On the tear-down path, timers_dead_cpu() must be invoked
1700          * before blk_mq_queue_reinit_notify() from notify_dead(),
1701          * otherwise a RCU stall occurs.
1702          */
1703         [CPUHP_TIMERS_PREPARE] = {
1704                 .name                   = "timers:prepare",
1705                 .startup.single         = timers_prepare_cpu,
1706                 .teardown.single        = timers_dead_cpu,
1707         },
1708         /* Kicks the plugged cpu into life */
1709         [CPUHP_BRINGUP_CPU] = {
1710                 .name                   = "cpu:bringup",
1711                 .startup.single         = bringup_cpu,
1712                 .teardown.single        = finish_cpu,
1713                 .cant_stop              = true,
1714         },
1715         /* Final state before CPU kills itself */
1716         [CPUHP_AP_IDLE_DEAD] = {
1717                 .name                   = "idle:dead",
1718         },
1719         /*
1720          * Last state before CPU enters the idle loop to die. Transient state
1721          * for synchronization.
1722          */
1723         [CPUHP_AP_OFFLINE] = {
1724                 .name                   = "ap:offline",
1725                 .cant_stop              = true,
1726         },
1727         /* First state is scheduler control. Interrupts are disabled */
1728         [CPUHP_AP_SCHED_STARTING] = {
1729                 .name                   = "sched:starting",
1730                 .startup.single         = sched_cpu_starting,
1731                 .teardown.single        = sched_cpu_dying,
1732         },
1733         [CPUHP_AP_RCUTREE_DYING] = {
1734                 .name                   = "RCU/tree:dying",
1735                 .startup.single         = NULL,
1736                 .teardown.single        = rcutree_dying_cpu,
1737         },
1738         [CPUHP_AP_SMPCFD_DYING] = {
1739                 .name                   = "smpcfd:dying",
1740                 .startup.single         = NULL,
1741                 .teardown.single        = smpcfd_dying_cpu,
1742         },
1743         /* Entry state on starting. Interrupts enabled from here on. Transient
1744          * state for synchronsization */
1745         [CPUHP_AP_ONLINE] = {
1746                 .name                   = "ap:online",
1747         },
1748         /*
1749          * Handled on control processor until the plugged processor manages
1750          * this itself.
1751          */
1752         [CPUHP_TEARDOWN_CPU] = {
1753                 .name                   = "cpu:teardown",
1754                 .startup.single         = NULL,
1755                 .teardown.single        = takedown_cpu,
1756                 .cant_stop              = true,
1757         },
1758
1759         [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1760                 .name                   = "sched:waitempty",
1761                 .startup.single         = NULL,
1762                 .teardown.single        = sched_cpu_wait_empty,
1763         },
1764
1765         /* Handle smpboot threads park/unpark */
1766         [CPUHP_AP_SMPBOOT_THREADS] = {
1767                 .name                   = "smpboot/threads:online",
1768                 .startup.single         = smpboot_unpark_threads,
1769                 .teardown.single        = smpboot_park_threads,
1770         },
1771         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1772                 .name                   = "irq/affinity:online",
1773                 .startup.single         = irq_affinity_online_cpu,
1774                 .teardown.single        = NULL,
1775         },
1776         [CPUHP_AP_PERF_ONLINE] = {
1777                 .name                   = "perf:online",
1778                 .startup.single         = perf_event_init_cpu,
1779                 .teardown.single        = perf_event_exit_cpu,
1780         },
1781         [CPUHP_AP_WATCHDOG_ONLINE] = {
1782                 .name                   = "lockup_detector:online",
1783                 .startup.single         = lockup_detector_online_cpu,
1784                 .teardown.single        = lockup_detector_offline_cpu,
1785         },
1786         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1787                 .name                   = "workqueue:online",
1788                 .startup.single         = workqueue_online_cpu,
1789                 .teardown.single        = workqueue_offline_cpu,
1790         },
1791         [CPUHP_AP_RANDOM_ONLINE] = {
1792                 .name                   = "random:online",
1793                 .startup.single         = random_online_cpu,
1794                 .teardown.single        = NULL,
1795         },
1796         [CPUHP_AP_RCUTREE_ONLINE] = {
1797                 .name                   = "RCU/tree:online",
1798                 .startup.single         = rcutree_online_cpu,
1799                 .teardown.single        = rcutree_offline_cpu,
1800         },
1801 #endif
1802         /*
1803          * The dynamically registered state space is here
1804          */
1805
1806 #ifdef CONFIG_SMP
1807         /* Last state is scheduler control setting the cpu active */
1808         [CPUHP_AP_ACTIVE] = {
1809                 .name                   = "sched:active",
1810                 .startup.single         = sched_cpu_activate,
1811                 .teardown.single        = sched_cpu_deactivate,
1812         },
1813 #endif
1814
1815         /* CPU is fully up and running. */
1816         [CPUHP_ONLINE] = {
1817                 .name                   = "online",
1818                 .startup.single         = NULL,
1819                 .teardown.single        = NULL,
1820         },
1821 };
1822
1823 /* Sanity check for callbacks */
1824 static int cpuhp_cb_check(enum cpuhp_state state)
1825 {
1826         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1827                 return -EINVAL;
1828         return 0;
1829 }
1830
1831 /*
1832  * Returns a free for dynamic slot assignment of the Online state. The states
1833  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1834  * by having no name assigned.
1835  */
1836 static int cpuhp_reserve_state(enum cpuhp_state state)
1837 {
1838         enum cpuhp_state i, end;
1839         struct cpuhp_step *step;
1840
1841         switch (state) {
1842         case CPUHP_AP_ONLINE_DYN:
1843                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1844                 end = CPUHP_AP_ONLINE_DYN_END;
1845                 break;
1846         case CPUHP_BP_PREPARE_DYN:
1847                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1848                 end = CPUHP_BP_PREPARE_DYN_END;
1849                 break;
1850         default:
1851                 return -EINVAL;
1852         }
1853
1854         for (i = state; i <= end; i++, step++) {
1855                 if (!step->name)
1856                         return i;
1857         }
1858         WARN(1, "No more dynamic states available for CPU hotplug\n");
1859         return -ENOSPC;
1860 }
1861
1862 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1863                                  int (*startup)(unsigned int cpu),
1864                                  int (*teardown)(unsigned int cpu),
1865                                  bool multi_instance)
1866 {
1867         /* (Un)Install the callbacks for further cpu hotplug operations */
1868         struct cpuhp_step *sp;
1869         int ret = 0;
1870
1871         /*
1872          * If name is NULL, then the state gets removed.
1873          *
1874          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1875          * the first allocation from these dynamic ranges, so the removal
1876          * would trigger a new allocation and clear the wrong (already
1877          * empty) state, leaving the callbacks of the to be cleared state
1878          * dangling, which causes wreckage on the next hotplug operation.
1879          */
1880         if (name && (state == CPUHP_AP_ONLINE_DYN ||
1881                      state == CPUHP_BP_PREPARE_DYN)) {
1882                 ret = cpuhp_reserve_state(state);
1883                 if (ret < 0)
1884                         return ret;
1885                 state = ret;
1886         }
1887         sp = cpuhp_get_step(state);
1888         if (name && sp->name)
1889                 return -EBUSY;
1890
1891         sp->startup.single = startup;
1892         sp->teardown.single = teardown;
1893         sp->name = name;
1894         sp->multi_instance = multi_instance;
1895         INIT_HLIST_HEAD(&sp->list);
1896         return ret;
1897 }
1898
1899 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1900 {
1901         return cpuhp_get_step(state)->teardown.single;
1902 }
1903
1904 /*
1905  * Call the startup/teardown function for a step either on the AP or
1906  * on the current CPU.
1907  */
1908 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1909                             struct hlist_node *node)
1910 {
1911         struct cpuhp_step *sp = cpuhp_get_step(state);
1912         int ret;
1913
1914         /*
1915          * If there's nothing to do, we done.
1916          * Relies on the union for multi_instance.
1917          */
1918         if (cpuhp_step_empty(bringup, sp))
1919                 return 0;
1920         /*
1921          * The non AP bound callbacks can fail on bringup. On teardown
1922          * e.g. module removal we crash for now.
1923          */
1924 #ifdef CONFIG_SMP
1925         if (cpuhp_is_ap_state(state))
1926                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1927         else
1928                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1929 #else
1930         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1931 #endif
1932         BUG_ON(ret && !bringup);
1933         return ret;
1934 }
1935
1936 /*
1937  * Called from __cpuhp_setup_state on a recoverable failure.
1938  *
1939  * Note: The teardown callbacks for rollback are not allowed to fail!
1940  */
1941 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1942                                    struct hlist_node *node)
1943 {
1944         int cpu;
1945
1946         /* Roll back the already executed steps on the other cpus */
1947         for_each_present_cpu(cpu) {
1948                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1949                 int cpustate = st->state;
1950
1951                 if (cpu >= failedcpu)
1952                         break;
1953
1954                 /* Did we invoke the startup call on that cpu ? */
1955                 if (cpustate >= state)
1956                         cpuhp_issue_call(cpu, state, false, node);
1957         }
1958 }
1959
1960 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1961                                           struct hlist_node *node,
1962                                           bool invoke)
1963 {
1964         struct cpuhp_step *sp;
1965         int cpu;
1966         int ret;
1967
1968         lockdep_assert_cpus_held();
1969
1970         sp = cpuhp_get_step(state);
1971         if (sp->multi_instance == false)
1972                 return -EINVAL;
1973
1974         mutex_lock(&cpuhp_state_mutex);
1975
1976         if (!invoke || !sp->startup.multi)
1977                 goto add_node;
1978
1979         /*
1980          * Try to call the startup callback for each present cpu
1981          * depending on the hotplug state of the cpu.
1982          */
1983         for_each_present_cpu(cpu) {
1984                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1985                 int cpustate = st->state;
1986
1987                 if (cpustate < state)
1988                         continue;
1989
1990                 ret = cpuhp_issue_call(cpu, state, true, node);
1991                 if (ret) {
1992                         if (sp->teardown.multi)
1993                                 cpuhp_rollback_install(cpu, state, node);
1994                         goto unlock;
1995                 }
1996         }
1997 add_node:
1998         ret = 0;
1999         hlist_add_head(node, &sp->list);
2000 unlock:
2001         mutex_unlock(&cpuhp_state_mutex);
2002         return ret;
2003 }
2004
2005 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2006                                bool invoke)
2007 {
2008         int ret;
2009
2010         cpus_read_lock();
2011         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2012         cpus_read_unlock();
2013         return ret;
2014 }
2015 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2016
2017 /**
2018  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2019  * @state:              The state to setup
2020  * @name:               Name of the step
2021  * @invoke:             If true, the startup function is invoked for cpus where
2022  *                      cpu state >= @state
2023  * @startup:            startup callback function
2024  * @teardown:           teardown callback function
2025  * @multi_instance:     State is set up for multiple instances which get
2026  *                      added afterwards.
2027  *
2028  * The caller needs to hold cpus read locked while calling this function.
2029  * Return:
2030  *   On success:
2031  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2032  *      0 for all other states
2033  *   On failure: proper (negative) error code
2034  */
2035 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2036                                    const char *name, bool invoke,
2037                                    int (*startup)(unsigned int cpu),
2038                                    int (*teardown)(unsigned int cpu),
2039                                    bool multi_instance)
2040 {
2041         int cpu, ret = 0;
2042         bool dynstate;
2043
2044         lockdep_assert_cpus_held();
2045
2046         if (cpuhp_cb_check(state) || !name)
2047                 return -EINVAL;
2048
2049         mutex_lock(&cpuhp_state_mutex);
2050
2051         ret = cpuhp_store_callbacks(state, name, startup, teardown,
2052                                     multi_instance);
2053
2054         dynstate = state == CPUHP_AP_ONLINE_DYN;
2055         if (ret > 0 && dynstate) {
2056                 state = ret;
2057                 ret = 0;
2058         }
2059
2060         if (ret || !invoke || !startup)
2061                 goto out;
2062
2063         /*
2064          * Try to call the startup callback for each present cpu
2065          * depending on the hotplug state of the cpu.
2066          */
2067         for_each_present_cpu(cpu) {
2068                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2069                 int cpustate = st->state;
2070
2071                 if (cpustate < state)
2072                         continue;
2073
2074                 ret = cpuhp_issue_call(cpu, state, true, NULL);
2075                 if (ret) {
2076                         if (teardown)
2077                                 cpuhp_rollback_install(cpu, state, NULL);
2078                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2079                         goto out;
2080                 }
2081         }
2082 out:
2083         mutex_unlock(&cpuhp_state_mutex);
2084         /*
2085          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2086          * dynamically allocated state in case of success.
2087          */
2088         if (!ret && dynstate)
2089                 return state;
2090         return ret;
2091 }
2092 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2093
2094 int __cpuhp_setup_state(enum cpuhp_state state,
2095                         const char *name, bool invoke,
2096                         int (*startup)(unsigned int cpu),
2097                         int (*teardown)(unsigned int cpu),
2098                         bool multi_instance)
2099 {
2100         int ret;
2101
2102         cpus_read_lock();
2103         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2104                                              teardown, multi_instance);
2105         cpus_read_unlock();
2106         return ret;
2107 }
2108 EXPORT_SYMBOL(__cpuhp_setup_state);
2109
2110 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2111                                   struct hlist_node *node, bool invoke)
2112 {
2113         struct cpuhp_step *sp = cpuhp_get_step(state);
2114         int cpu;
2115
2116         BUG_ON(cpuhp_cb_check(state));
2117
2118         if (!sp->multi_instance)
2119                 return -EINVAL;
2120
2121         cpus_read_lock();
2122         mutex_lock(&cpuhp_state_mutex);
2123
2124         if (!invoke || !cpuhp_get_teardown_cb(state))
2125                 goto remove;
2126         /*
2127          * Call the teardown callback for each present cpu depending
2128          * on the hotplug state of the cpu. This function is not
2129          * allowed to fail currently!
2130          */
2131         for_each_present_cpu(cpu) {
2132                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2133                 int cpustate = st->state;
2134
2135                 if (cpustate >= state)
2136                         cpuhp_issue_call(cpu, state, false, node);
2137         }
2138
2139 remove:
2140         hlist_del(node);
2141         mutex_unlock(&cpuhp_state_mutex);
2142         cpus_read_unlock();
2143
2144         return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2147
2148 /**
2149  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2150  * @state:      The state to remove
2151  * @invoke:     If true, the teardown function is invoked for cpus where
2152  *              cpu state >= @state
2153  *
2154  * The caller needs to hold cpus read locked while calling this function.
2155  * The teardown callback is currently not allowed to fail. Think
2156  * about module removal!
2157  */
2158 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2159 {
2160         struct cpuhp_step *sp = cpuhp_get_step(state);
2161         int cpu;
2162
2163         BUG_ON(cpuhp_cb_check(state));
2164
2165         lockdep_assert_cpus_held();
2166
2167         mutex_lock(&cpuhp_state_mutex);
2168         if (sp->multi_instance) {
2169                 WARN(!hlist_empty(&sp->list),
2170                      "Error: Removing state %d which has instances left.\n",
2171                      state);
2172                 goto remove;
2173         }
2174
2175         if (!invoke || !cpuhp_get_teardown_cb(state))
2176                 goto remove;
2177
2178         /*
2179          * Call the teardown callback for each present cpu depending
2180          * on the hotplug state of the cpu. This function is not
2181          * allowed to fail currently!
2182          */
2183         for_each_present_cpu(cpu) {
2184                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2185                 int cpustate = st->state;
2186
2187                 if (cpustate >= state)
2188                         cpuhp_issue_call(cpu, state, false, NULL);
2189         }
2190 remove:
2191         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2192         mutex_unlock(&cpuhp_state_mutex);
2193 }
2194 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2195
2196 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2197 {
2198         cpus_read_lock();
2199         __cpuhp_remove_state_cpuslocked(state, invoke);
2200         cpus_read_unlock();
2201 }
2202 EXPORT_SYMBOL(__cpuhp_remove_state);
2203
2204 #ifdef CONFIG_HOTPLUG_SMT
2205 static void cpuhp_offline_cpu_device(unsigned int cpu)
2206 {
2207         struct device *dev = get_cpu_device(cpu);
2208
2209         dev->offline = true;
2210         /* Tell user space about the state change */
2211         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2212 }
2213
2214 static void cpuhp_online_cpu_device(unsigned int cpu)
2215 {
2216         struct device *dev = get_cpu_device(cpu);
2217
2218         dev->offline = false;
2219         /* Tell user space about the state change */
2220         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2221 }
2222
2223 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2224 {
2225         int cpu, ret = 0;
2226
2227         cpu_maps_update_begin();
2228         for_each_online_cpu(cpu) {
2229                 if (topology_is_primary_thread(cpu))
2230                         continue;
2231                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2232                 if (ret)
2233                         break;
2234                 /*
2235                  * As this needs to hold the cpu maps lock it's impossible
2236                  * to call device_offline() because that ends up calling
2237                  * cpu_down() which takes cpu maps lock. cpu maps lock
2238                  * needs to be held as this might race against in kernel
2239                  * abusers of the hotplug machinery (thermal management).
2240                  *
2241                  * So nothing would update device:offline state. That would
2242                  * leave the sysfs entry stale and prevent onlining after
2243                  * smt control has been changed to 'off' again. This is
2244                  * called under the sysfs hotplug lock, so it is properly
2245                  * serialized against the regular offline usage.
2246                  */
2247                 cpuhp_offline_cpu_device(cpu);
2248         }
2249         if (!ret)
2250                 cpu_smt_control = ctrlval;
2251         cpu_maps_update_done();
2252         return ret;
2253 }
2254
2255 int cpuhp_smt_enable(void)
2256 {
2257         int cpu, ret = 0;
2258
2259         cpu_maps_update_begin();
2260         cpu_smt_control = CPU_SMT_ENABLED;
2261         for_each_present_cpu(cpu) {
2262                 /* Skip online CPUs and CPUs on offline nodes */
2263                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2264                         continue;
2265                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2266                 if (ret)
2267                         break;
2268                 /* See comment in cpuhp_smt_disable() */
2269                 cpuhp_online_cpu_device(cpu);
2270         }
2271         cpu_maps_update_done();
2272         return ret;
2273 }
2274 #endif
2275
2276 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2277 static ssize_t state_show(struct device *dev,
2278                           struct device_attribute *attr, char *buf)
2279 {
2280         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2281
2282         return sprintf(buf, "%d\n", st->state);
2283 }
2284 static DEVICE_ATTR_RO(state);
2285
2286 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2287                             const char *buf, size_t count)
2288 {
2289         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2290         struct cpuhp_step *sp;
2291         int target, ret;
2292
2293         ret = kstrtoint(buf, 10, &target);
2294         if (ret)
2295                 return ret;
2296
2297 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2298         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2299                 return -EINVAL;
2300 #else
2301         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2302                 return -EINVAL;
2303 #endif
2304
2305         ret = lock_device_hotplug_sysfs();
2306         if (ret)
2307                 return ret;
2308
2309         mutex_lock(&cpuhp_state_mutex);
2310         sp = cpuhp_get_step(target);
2311         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2312         mutex_unlock(&cpuhp_state_mutex);
2313         if (ret)
2314                 goto out;
2315
2316         if (st->state < target)
2317                 ret = cpu_up(dev->id, target);
2318         else
2319                 ret = cpu_down(dev->id, target);
2320 out:
2321         unlock_device_hotplug();
2322         return ret ? ret : count;
2323 }
2324
2325 static ssize_t target_show(struct device *dev,
2326                            struct device_attribute *attr, char *buf)
2327 {
2328         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2329
2330         return sprintf(buf, "%d\n", st->target);
2331 }
2332 static DEVICE_ATTR_RW(target);
2333
2334 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2335                           const char *buf, size_t count)
2336 {
2337         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2338         struct cpuhp_step *sp;
2339         int fail, ret;
2340
2341         ret = kstrtoint(buf, 10, &fail);
2342         if (ret)
2343                 return ret;
2344
2345         if (fail == CPUHP_INVALID) {
2346                 st->fail = fail;
2347                 return count;
2348         }
2349
2350         if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2351                 return -EINVAL;
2352
2353         /*
2354          * Cannot fail STARTING/DYING callbacks.
2355          */
2356         if (cpuhp_is_atomic_state(fail))
2357                 return -EINVAL;
2358
2359         /*
2360          * DEAD callbacks cannot fail...
2361          * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2362          * triggering STARTING callbacks, a failure in this state would
2363          * hinder rollback.
2364          */
2365         if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2366                 return -EINVAL;
2367
2368         /*
2369          * Cannot fail anything that doesn't have callbacks.
2370          */
2371         mutex_lock(&cpuhp_state_mutex);
2372         sp = cpuhp_get_step(fail);
2373         if (!sp->startup.single && !sp->teardown.single)
2374                 ret = -EINVAL;
2375         mutex_unlock(&cpuhp_state_mutex);
2376         if (ret)
2377                 return ret;
2378
2379         st->fail = fail;
2380
2381         return count;
2382 }
2383
2384 static ssize_t fail_show(struct device *dev,
2385                          struct device_attribute *attr, char *buf)
2386 {
2387         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2388
2389         return sprintf(buf, "%d\n", st->fail);
2390 }
2391
2392 static DEVICE_ATTR_RW(fail);
2393
2394 static struct attribute *cpuhp_cpu_attrs[] = {
2395         &dev_attr_state.attr,
2396         &dev_attr_target.attr,
2397         &dev_attr_fail.attr,
2398         NULL
2399 };
2400
2401 static const struct attribute_group cpuhp_cpu_attr_group = {
2402         .attrs = cpuhp_cpu_attrs,
2403         .name = "hotplug",
2404         NULL
2405 };
2406
2407 static ssize_t states_show(struct device *dev,
2408                                  struct device_attribute *attr, char *buf)
2409 {
2410         ssize_t cur, res = 0;
2411         int i;
2412
2413         mutex_lock(&cpuhp_state_mutex);
2414         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2415                 struct cpuhp_step *sp = cpuhp_get_step(i);
2416
2417                 if (sp->name) {
2418                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2419                         buf += cur;
2420                         res += cur;
2421                 }
2422         }
2423         mutex_unlock(&cpuhp_state_mutex);
2424         return res;
2425 }
2426 static DEVICE_ATTR_RO(states);
2427
2428 static struct attribute *cpuhp_cpu_root_attrs[] = {
2429         &dev_attr_states.attr,
2430         NULL
2431 };
2432
2433 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2434         .attrs = cpuhp_cpu_root_attrs,
2435         .name = "hotplug",
2436         NULL
2437 };
2438
2439 #ifdef CONFIG_HOTPLUG_SMT
2440
2441 static ssize_t
2442 __store_smt_control(struct device *dev, struct device_attribute *attr,
2443                     const char *buf, size_t count)
2444 {
2445         int ctrlval, ret;
2446
2447         if (sysfs_streq(buf, "on"))
2448                 ctrlval = CPU_SMT_ENABLED;
2449         else if (sysfs_streq(buf, "off"))
2450                 ctrlval = CPU_SMT_DISABLED;
2451         else if (sysfs_streq(buf, "forceoff"))
2452                 ctrlval = CPU_SMT_FORCE_DISABLED;
2453         else
2454                 return -EINVAL;
2455
2456         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2457                 return -EPERM;
2458
2459         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2460                 return -ENODEV;
2461
2462         ret = lock_device_hotplug_sysfs();
2463         if (ret)
2464                 return ret;
2465
2466         if (ctrlval != cpu_smt_control) {
2467                 switch (ctrlval) {
2468                 case CPU_SMT_ENABLED:
2469                         ret = cpuhp_smt_enable();
2470                         break;
2471                 case CPU_SMT_DISABLED:
2472                 case CPU_SMT_FORCE_DISABLED:
2473                         ret = cpuhp_smt_disable(ctrlval);
2474                         break;
2475                 }
2476         }
2477
2478         unlock_device_hotplug();
2479         return ret ? ret : count;
2480 }
2481
2482 #else /* !CONFIG_HOTPLUG_SMT */
2483 static ssize_t
2484 __store_smt_control(struct device *dev, struct device_attribute *attr,
2485                     const char *buf, size_t count)
2486 {
2487         return -ENODEV;
2488 }
2489 #endif /* CONFIG_HOTPLUG_SMT */
2490
2491 static const char *smt_states[] = {
2492         [CPU_SMT_ENABLED]               = "on",
2493         [CPU_SMT_DISABLED]              = "off",
2494         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2495         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2496         [CPU_SMT_NOT_IMPLEMENTED]       = "notimplemented",
2497 };
2498
2499 static ssize_t control_show(struct device *dev,
2500                             struct device_attribute *attr, char *buf)
2501 {
2502         const char *state = smt_states[cpu_smt_control];
2503
2504         return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2505 }
2506
2507 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2508                              const char *buf, size_t count)
2509 {
2510         return __store_smt_control(dev, attr, buf, count);
2511 }
2512 static DEVICE_ATTR_RW(control);
2513
2514 static ssize_t active_show(struct device *dev,
2515                            struct device_attribute *attr, char *buf)
2516 {
2517         return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2518 }
2519 static DEVICE_ATTR_RO(active);
2520
2521 static struct attribute *cpuhp_smt_attrs[] = {
2522         &dev_attr_control.attr,
2523         &dev_attr_active.attr,
2524         NULL
2525 };
2526
2527 static const struct attribute_group cpuhp_smt_attr_group = {
2528         .attrs = cpuhp_smt_attrs,
2529         .name = "smt",
2530         NULL
2531 };
2532
2533 static int __init cpu_smt_sysfs_init(void)
2534 {
2535         return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2536                                   &cpuhp_smt_attr_group);
2537 }
2538
2539 static int __init cpuhp_sysfs_init(void)
2540 {
2541         int cpu, ret;
2542
2543         ret = cpu_smt_sysfs_init();
2544         if (ret)
2545                 return ret;
2546
2547         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2548                                  &cpuhp_cpu_root_attr_group);
2549         if (ret)
2550                 return ret;
2551
2552         for_each_possible_cpu(cpu) {
2553                 struct device *dev = get_cpu_device(cpu);
2554
2555                 if (!dev)
2556                         continue;
2557                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2558                 if (ret)
2559                         return ret;
2560         }
2561         return 0;
2562 }
2563 device_initcall(cpuhp_sysfs_init);
2564 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2565
2566 /*
2567  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2568  * represents all NR_CPUS bits binary values of 1<<nr.
2569  *
2570  * It is used by cpumask_of() to get a constant address to a CPU
2571  * mask value that has a single bit set only.
2572  */
2573
2574 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2575 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
2576 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2577 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2578 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2579
2580 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2581
2582         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
2583         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
2584 #if BITS_PER_LONG > 32
2585         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
2586         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
2587 #endif
2588 };
2589 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2590
2591 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2592 EXPORT_SYMBOL(cpu_all_bits);
2593
2594 #ifdef CONFIG_INIT_ALL_POSSIBLE
2595 struct cpumask __cpu_possible_mask __read_mostly
2596         = {CPU_BITS_ALL};
2597 #else
2598 struct cpumask __cpu_possible_mask __read_mostly;
2599 #endif
2600 EXPORT_SYMBOL(__cpu_possible_mask);
2601
2602 struct cpumask __cpu_online_mask __read_mostly;
2603 EXPORT_SYMBOL(__cpu_online_mask);
2604
2605 struct cpumask __cpu_present_mask __read_mostly;
2606 EXPORT_SYMBOL(__cpu_present_mask);
2607
2608 struct cpumask __cpu_active_mask __read_mostly;
2609 EXPORT_SYMBOL(__cpu_active_mask);
2610
2611 struct cpumask __cpu_dying_mask __read_mostly;
2612 EXPORT_SYMBOL(__cpu_dying_mask);
2613
2614 atomic_t __num_online_cpus __read_mostly;
2615 EXPORT_SYMBOL(__num_online_cpus);
2616
2617 void init_cpu_present(const struct cpumask *src)
2618 {
2619         cpumask_copy(&__cpu_present_mask, src);
2620 }
2621
2622 void init_cpu_possible(const struct cpumask *src)
2623 {
2624         cpumask_copy(&__cpu_possible_mask, src);
2625 }
2626
2627 void init_cpu_online(const struct cpumask *src)
2628 {
2629         cpumask_copy(&__cpu_online_mask, src);
2630 }
2631
2632 void set_cpu_online(unsigned int cpu, bool online)
2633 {
2634         /*
2635          * atomic_inc/dec() is required to handle the horrid abuse of this
2636          * function by the reboot and kexec code which invoke it from
2637          * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2638          * regular CPU hotplug is properly serialized.
2639          *
2640          * Note, that the fact that __num_online_cpus is of type atomic_t
2641          * does not protect readers which are not serialized against
2642          * concurrent hotplug operations.
2643          */
2644         if (online) {
2645                 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2646                         atomic_inc(&__num_online_cpus);
2647         } else {
2648                 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2649                         atomic_dec(&__num_online_cpus);
2650         }
2651 }
2652
2653 /*
2654  * Activate the first processor.
2655  */
2656 void __init boot_cpu_init(void)
2657 {
2658         int cpu = smp_processor_id();
2659
2660         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2661         set_cpu_online(cpu, true);
2662         set_cpu_active(cpu, true);
2663         set_cpu_present(cpu, true);
2664         set_cpu_possible(cpu, true);
2665
2666 #ifdef CONFIG_SMP
2667         __boot_cpu_id = cpu;
2668 #endif
2669 }
2670
2671 /*
2672  * Must be called _AFTER_ setting up the per_cpu areas
2673  */
2674 void __init boot_cpu_hotplug_init(void)
2675 {
2676 #ifdef CONFIG_SMP
2677         cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2678 #endif
2679         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2680 }
2681
2682 /*
2683  * These are used for a global "mitigations=" cmdline option for toggling
2684  * optional CPU mitigations.
2685  */
2686 enum cpu_mitigations {
2687         CPU_MITIGATIONS_OFF,
2688         CPU_MITIGATIONS_AUTO,
2689         CPU_MITIGATIONS_AUTO_NOSMT,
2690 };
2691
2692 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2693         CPU_MITIGATIONS_AUTO;
2694
2695 static int __init mitigations_parse_cmdline(char *arg)
2696 {
2697         if (!strcmp(arg, "off"))
2698                 cpu_mitigations = CPU_MITIGATIONS_OFF;
2699         else if (!strcmp(arg, "auto"))
2700                 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2701         else if (!strcmp(arg, "auto,nosmt"))
2702                 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2703         else
2704                 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2705                         arg);
2706
2707         return 0;
2708 }
2709 early_param("mitigations", mitigations_parse_cmdline);
2710
2711 /* mitigations=off */
2712 bool cpu_mitigations_off(void)
2713 {
2714         return cpu_mitigations == CPU_MITIGATIONS_OFF;
2715 }
2716 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2717
2718 /* mitigations=auto,nosmt */
2719 bool cpu_mitigations_auto_nosmt(void)
2720 {
2721         return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2722 }
2723 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);